Fast DDS Documentation
Release 2.0.0

eProsima

Aug 03, 2020

Fast DDS-Gen

RTPS Wire Protocol

Main Features

Contacts and Commercial support
Contributing to the documentation

Structure of the documentation

6.1 DDSAPI
6.2 FastDDS-Gen
6.3 RTPS Wire Protocol
6.4 MainFeatures,
6.5 Contacts and Commercial support
6.6 Contributing to the documentation
6.7 Structure of the documentation
6.8 Linux installation from binaries
6.9 Windows installation from binaries
6.10 Linux installation from sources
6.11 Windows installation from sources
6.12 CMakeoptionso vt
6.13 Getting Started Lo
6.14 Library Overview
6.15 DDSLayer
6.16 RTPSLayer
6.17 DIiSCOVery . . . v v v i e e
6.18 TransportLayer
6.19 Persistence Service
6.20 Security L.
6.21 Logging. e
6.22 XMLoprofiles
6.23 Environment variables
6.24 Dynamic Topic Types
6.25 Typical Use-Cases
6.26 APIReference
6.27 Introduction
628 Usage o oo

6.29 Building a publish/subscribe application

6.30 DefiningadatatypevialDL

INTRODUCTION

6.31 CLI . . . o e
6.32 Version 2.0.1 e e e e e e
6.33 Previous VEISIONS v v v v v o e v e e e e e e e e e e e e e e e e e e e

Index

Fast DDS Documentation, Release 2.0.0

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2).

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the
data exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same
domain can discover each other through matching topics, and consequently exchange data between publishers and
subscribers.

INTRODUCTION 1

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.0.0

2 INTRODUCTION

CHAPTER
ONE

FAST DDS-GEN

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Defini-
tion Language (IDL) file.

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/

Fast DDS Documentation, Release 2.0.0

4 Chapter 1. Fast DDS-Gen

CHAPTER
TWO

RTPS WIRE PROTOCOL

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees
compatibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.0.0

6 Chapter 2. RTPS Wire Protocol

CHAPTER
THREE

MAIN FEATURES

Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

Built-in Discovery Service. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an
application using DDS to switch among DDS implementations with only a re-compile.

Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still partici-
pate in the network.

High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

Fast DDS Documentation, Release 2.0.0

* Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

¢ Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

e Multi-platform. The OS dependencies are treated as pluggable modules. The user can easily implement his
platform modules to eProsima Fast DDS library in his specific platform. By default, the project can run over
Linux, Windows and MacOS.

* Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

8 Chapter 3. Main Features

CHAPTER
FOUR

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.
Support available at:
* Email: support@eprosima.com

e Phone: +34 91 804 34 48

https://eprosima.com/
mailto:support@eprosima.com

Fast DDS Documentation, Release 2.0.0

10 Chapter 4. Contacts and Commercial support

CHAPTER
FIVE

CONTRIBUTING TO THE DOCUMENTATION

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

11

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

Fast DDS Documentation, Release 2.0.0

12 Chapter 5. Contributing to the documentation

CHAPTER
SIX

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.
e Installation Manual
e Fast DDS
* Fast DDS-Gen

e Release Notes

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2).

6.1 DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the
data exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that

13

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.0.0

want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same
domain can discover each other through matching topics, and consequently exchange data between publishers and
subscribers.

6.2 Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Defini-
tion Language (IDL) file.

6.3 RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees
compatibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

6.4 Main Features

* Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

* Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

¢ Built-in Discovery Service. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

* Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

14 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.0.0

* Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

* Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

e Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

¢ Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

* Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

* Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

¢ Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an
application using DDS to switch among DDS implementations with only a re-compile.

 Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

¢ Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still partici-
pate in the network.

* High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

* Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

¢ Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

e Multi-platform. The OS dependencies are treated as pluggable modules. The user can easily implement his
platform modules to eProsima Fast DDS library in his specific platform. By default, the project can run over
Linux, Windows and MacOS.

* Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

6.4. Main Features 15

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

Fast DDS Documentation, Release 2.0.0

6.5 Contacts and Commercial support

Find more about us at eProsima’s webpage.
Support available at:
e Email: support@eprosima.com

e Phone: +34 91 804 34 48

6.6 Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

6.7 Structure of the documentation

This documentation is organized into the sections below.
* Installation Manual
* Fast DDS
* Fast DDS-Gen

e Release Notes

6.8 Linux installation from binaries

The instructions for installing eProsima Fast DDS in a Linux environment from binaries are provided in this page.

e Install
— Contents

— Run an application

e Uninstall

6.8.1 Install

The latest release of eProsima Fast DDS for Linux is available at the eProsima website Downloads tab. Once down-
loaded, extract the contents in your preferred directory. Then, to install eProsima Fast DDS and all its dependencies
in the system, execute the install. sh script with administrative privileges:

cd <extraction_directory>
sudo ./install.sh

16 Chapter 6. Structure of the documentation

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://eprosima.com/index.php/downloads-all

Fast DDS Documentation, Release 2.0.0

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Linux installation
from sources page.

Contents

The src folder contains the following packages:
* foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library for data serialization according to the CDR standard (Section 10.2.1.2 OMG CDR).
* fastrtps, the core library of eProsima Fast DDS library.
» fastrtpsgen, aJava application that generates source code using the data types defined in an IDL file.

In case any of these components is unwanted, it can be simply renamed or removed from the src directory.

Run an application
When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, /usr/local/1lib/. There are two possibilities:

* Prepare the environment locally by typing in the console used for running the eProsima Fast DDS instance the
command:

’export LD_LIBRARY PATH=/usr/local/lib/

* Add it permanently to the PATH by executing:

’echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.8.2 Uninstall

To uninstall all installed components, execute the uninstall.sh script (with administrative privileges):

cd <extraction_directory>
sudo ./uninstall.sh

Warning: If any of the other components were already installed in some other way in the system, they will be
removed as well. To avoid it, edit the script before executing it.

6.8. Linux installation from binaries 17

https://github.com/foonathan/memory
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.0.0

6.9 Windows installation from binaries

The instructions for installing eProsima Fast DDS in a Windows environment from binaries are provided in this page.
It is organized as follows:

* Requirements
— Visual Studio
— Chocolatey
* Dependencies
- TinyXML2
— OpenSSL
* Install

— Contents

— Environment variables

First of all, the Requirements and Dependencies detailed below need to be met.

6.9.1 Requirements
The installation of eProsima Fast DDS in a Windows environment from binaries requires the following tools to be
installed in the system:

* Visual Studio

* Chocolatey

Visual Studio
Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with
C++. Finally, click Mod1i fy at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies.
Download and install it directly from the website.

18 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/

Fast DDS Documentation, Release 2.0.0

6.9.2 Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Windows environment:
o TinyXML?2
* OpenSSL

TinyXML2

TinyXML2 is a simple, small and efficient C++ XML parser. It can be downloaded directly from here.

After downloading this package, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the package has been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. The latest
OpenSSL version for Windows can be found in the OpenSSL website. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

6.9.3 Install

The latest release of eProsima Fast DDS for Windows is available at the company website downloads page. Once
downloaded, execute the installer and follow the instructions, choosing the preferred Visual Studio version and archi-
tecture when prompted.

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Windows installa-
tion from sources page.

Contents

By default, the installation will download all the available packages, namely:
e foonathan memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
* fastrtps, the core library of eProsima Fast DDS library.

» fastrtpsgen, a Java application that generates source code using the data types defined in an IDL file.

6.9. Windows installation from binaries 19

https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://www.openssl.org/
https://eprosima.com/index.php/downloads-all
https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.0.0

Environment variables

eProsima Fast DDS requires the following environment variable setup in order to function properly:
e FASTRTPSHOME: Root folder where eProsima Fast DDS is installed.

* Additions to the PATH: The location of eProsima Fast DDS scripts and libraries should be appended to the
PATH.

These variables are set automatically by checking the corresponding box during the installation process.

6.10 Linux installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

* Fast DDS library installation

— Requirements

Dependencies

Colcon installation

CMake installation
e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.10.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Linux environment from sources. The
following packages will be installed:

e foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
* fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose
whether to follow either the colcon) or the CMake) installation instructions.

20 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.0.0

Requirements
The installation of eProsima Fast DDS in a Linux environment from binaries requires the following tools to be installed
in the system:

e CMake, g++, pip, wget and git

* Gtest [optional]

CMake, g++, pip, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, g++, pip, wget and git using the package manager of the appropriate Linux distribution. For example,
on Ubuntu use the command:

sudo apt install cmake g++ pip wget git

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. For a detailed description of the Gtest installation process, please refer to the Gtest
Installation Guide.

Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Linux environment:
* Asio and TinyXML2 libraries
* OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

6.10. Linux installation from sources 21

https://cmake.org
https://gcc.gnu.org/
https://pypi.org/project/pip/
https://www.gnu.org/software/wget/
https://git-scm.com/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://github.com/google/googletest
https://www.openssl.org/

Fast DDS Documentation, Release 2.0.0

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains
how to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the ——user flag to the pip installation command.

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and
its dependencies:

mkdir ~/Fast-DDS

cd ~/Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

3. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the CMake specific arguments page of the
colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

* Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

’echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

22 Chapter 6. Structure of the documentation

https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org

Fast DDS Documentation, Release 2.0.0

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

* Foonathan memory

cd ~/Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_ vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. —-DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=0ON
sudo cmake —--build . --target install
¢ Fast CDR

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. —-DCMAKE_INSTALL PREFIX=~/Fast-DDS/install
sudo cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_ PATH=~/Fast-
—DDS/install
sudo cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast—-CDR and Fast—-DDS, and change the first in the configuration step of foonathan_memory_vendor to
the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ —-DBUILD_SHARED_LIBS=ON

6.10. Linux installation from sources 23

https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git
https://github.com/google/googletest

Fast DDS Documentation, Release 2.0.0

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where
the packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local
installation is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

’export LD_LIBRARY PATH=/usr/local/lib/

* Add it permanently it to the PATH, by typing:

’echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.2 Fast DDS-Gen installation
This section provides the instructions for installing Fast DDS-Gen in a Linux environment from sources. Fast DDS-

Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to
Introduction for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:
* Java JDK
e Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

cd ~

git clone —-recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradle assemble

24 Chapter 6. Structure of the documentation

https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install

Fast DDS Documentation, Release 2.0.0

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastrtps, where the generated Java application is.

* scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to
the PATH environment variable using the method described above.

6.11 Windows installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

» Fast DDS library installation

— Requirements

Dependencies

Colcon installation
— CMake installation
e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.11.1 Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS in a Windows environment from sources. The
following packages will be installed:

* foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
* fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose
whether to follow either the colcon) or the CMake) installation instructions.

6.11. Windows installation from sources 25

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.0.0

Requirements
The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

* Visual Studio

* Chocolatey

* CMake, pip, wget and git

* Gtest [optional]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with
C++. Finally, click Mod1i fy at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies.
Download and install it directly from the website.

CMake, pip, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. For a detailed description of the Gtest installation process, please refer to the Gtest
Installation Guide.

Dependencies

eProsima Fast RTPS has the following dependencies, when installed from sources in a Windows environment:
* Asio and TinyXML2 libraries
* OpenSSL

26 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://pypi.org/project/pip/
https://www.gnu.org/software/wget/
https://git-scm.com/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://github.com/google/googletest

Fast DDS Documentation, Release 2.0.0

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML?2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

¢ Asio
e TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y —-s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains
how to use it to compile eProsima Fast DDS and its dependencies.

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip install -U colcon-common-extensions vcstool

and add the path to the vcs executable to the PATH from the Edit the system environment variables control
panel.

Note: If this fails due to an Environment Error, add the ——user flag to the pip installation command.

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and
its dependencies:

mkdir ~\Fast-DDS

cd ~\Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

Finally, use colcon to compile all software:

6.11. Windows installation from sources 27

https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://colcon.readthedocs.io/en/released/

Fast DDS Documentation, Release 2.0.0

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the CMake specific arguments page of the
colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

* Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables
control panel, and adding ~/Fast-DDS/install/setup.bat to the PATH.

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Open a command prompt, and create a Fast—-DDS directory where to download and build eProsima Fast DDS
and its dependencies:

mkdir ~\Fast-DDS

2. Clone the following dependencies and compile them using CMake.

* Foonathan memory

cd ~\Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor

mkdir build && cd build

cmake .. —-DBUILD_SHARED_LIBS=ON
cmake --build . --target install
e Fast CDR

cd ~\Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
cd Fast-CDR

mkdir build && cd build

cmake

cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

28 Chapter 6. Structure of the documentation

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.0.0

cd ~\Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
cd Fast-DDS

mkdir build && cd build

cmake ..

cmake —--build . --target install

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS.

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the Fast DDS and Fast CDR installation directories:

* Fast DDS: C:\Program Files\fastrtps
 Fast CDR: C:\Program Files\fastcdr

6.11.2 Fast DDS-Gen installation
This section outlines the instructions for installing Fast DDS-Gen in a Windows environment from sources. Fast

DDS-Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to
Introduction for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:
* Java JDK
* Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

6.11. Windows installation from sources 29

https://github.com/google/googletest
https://www.oracle.com/java/technologies/javase-downloads.html

Fast DDS Documentation, Release 2.0.0

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, install Fast DDS-Gen by following the steps below:

cd ~

git clone —--recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradle assemble

Contents

The Fast-DDS—Gen folder contains the following packages:
* share/fastrtps, where the generated Java application is.

* scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any directory, add the scripts folder path to the PATH environ-
ment variable.

6.12 CMake options

eProsima Fast DDS provides numerous CMake options for changing the behavior and configuration of Fast DDS.
These options allow the user to enable/disable certain Fast DDS settings by defining these options to ON/OFF at the
CMake execution. This section is structured as follows: first, the CMake options for the general configuration of Fast
DDS are described; then, the options related to the third party libraries are presented; finally, the possible options for
the building of Fast DDS tests are defined.

6.12.1 General options

The Fast DDS CMake options for configuring general settings are shown below, together with their description and
dependency on other options.

30 Chapter 6. Structure of the documentation

https://gradle.org/install

Fast DDS Documentation, Release 2.0.0

Option

Description

Default

EPROSIMA_INSTALLER

Creates a build for Windows binary
installers. Specifically it adds to
the list of components to install
(CPACK_COMPONENTS_ALL)
the libraries corresponding
to the Microsoft Visual C++
compiler MSVO). Setting
EPROSIMA_INSTALLER to
ON has the following effects on
other options:
e EPROSIMA_BUILD is set to
ON.
e BUILD_DOCUMENTATION
is set to ON.
e INSTALL_EXAMPLES is set
to ON.

OFF

EPROSIMA_BUILD

Activates internal Fast DDS
builds. It is set to ON if
EPROSIMA_INSTALLER is
ON. Sdﬁng EPROSIMA_BUILD
to ON has the following effects on
other options:

e INTERNAL_DEBUG is set to

ON.

SHM_TRANSPORT_DEFAULT]
is set to ON and
EPROSIMA_INSTALLER is
set to OF'F.

e COMPILE_EXAMPLES
is set to ON if
EPROSIMA_INSTALLER is
OFF.

e THIRDPARTY is set to ON.

¢ EPROSIMA_GTEST is set to
ON if GoogleTest (GTest) li-
brary was found.

* EPROSIMA_GMOCK is set to
ON if GoogleMock (GMock)
library was found.

EPROSIMA_BUILD_TESTS
is set to ON if
EPROSIMA_INSTALLER is
OF'F.

OFF

BUILD_SHARED_LIBS

Builds internal libraries as
shared libraries, 1i.e. cause
add_library () CMake func-
tion to create shared libraries if on.
All libraries are built shared unless
the library was explicitly added as a
static library.

ON

6.32cUCMake options

Activates the Fast DDS security
module. Please refer to Security for
more information on security mod-
ule.

OFF

31

https://github.com/eProsima/Fast-DDS/tree/master/examples
https://github.com/eProsima/Fast-DDS/tree/master/examples

Fast DDS Documentation, Release 2.0.0

Third-party libraries options

Fast DDS relies on the eProsima FastCDR library for serialization mechanisms. Moreover, Fast DDS requires two
external dependencies for its proper operation: Asio and TinyXML2. Asio is a cross-platform C++ library for network
and low-level I/O programming, while TinyXML2 parses the XML profile files, so Fast DDS can use them (see XML
profiles). These three libraries (eProsima FastCDR, Asio and TinyXML2) can be installed by the user, or downloaded
on the Fast DDS build. In the latter case, they are referred to as Fast DDS internal third-party libraries. This can be
done by setting either THIRDPARTY or EPROSIMA_BUILD to ON.

These libraries can also be configured using Fast DDS CMake options.

Option Description De-
fault
THIRDPARTY Activates the use of Fast CDR and the internal third-party libraries. It is set to | OFF
ON if EPROSIMA_BUILD is ON.
THIRDPARTY_UPDATE | Activates the automatic update of just Fast CDR library. ON
THIRDPARTY_fastcdy Links against the internal Fast CDR library. OFF
THIRDPARTY_Asio Links against the internal Asio internal third-party library. OFF
THIRDPARTY_ TinyXMI2Links against the internal TinyXML2 internal third-party library. OFF
THIRDPARTY_android-lifiksldagainst the internal android-ifaddrs, an implementation of | OFF
getifaddrs () for Android. Only if ANDROID is ON.

Note: ANDROID is a CMake environment variable that is set to 1 if the target system (CMAKE_SYSTEM_NAME) is
Android.

Test options

eProsima Fast DDS comes with a full set of tests for continuous integration. The types of tests are: unit tests, black-
box tests, performance tests, profiling tests, and XTypes tests. The building and execution of these tests is specified by
the Fast DDS CMake options shown in the table below.

Option Description De-
fault
GTEST_INIAKGYBEZthe individual building of GoogleTest tests, since Fast DDS tests are implemented | OFF
using the GoogleTest framework. However, the test are compiled if EPROSIMA_BUILD is set
to ON. Therefore, if GTEST_INDIVIDUAL is OFF and EPROSIMA_BUILD is ON, the tests
are processed as a single major test.

EPROSIMA_ATiR&Es special set of GTEST_ROQT, i.e. the root directory of the GoogleTest installation. OFF
EPROSIMA_Auitivatks special set of GMOCK_ROQT, i.e. the root directory of the GoogleTest C++ mocking | OFF
framework installation. In the latest version of GoogleTest, GoogleMock is integrated into it.
FASTRTP §_BnableT #eTimilding of black-box tests for the verification of RTPS communications using the | OFF
Fast DDS RTPS-layer APIL
FASTDDS | HEhdble® theTlsding of black-box tests for the verification of DDS communications using the | OFF
Fast DDS DDS-layer API.
PERFORMANGHivAES & building of performance tests, except for the video test, which requires both | OFF
PERFORMANCE_TESTS and VIDEO_TESTS to be set to ON.
PROF ILINACTiRStESthe building of profiling tests using Valgrind. OFF
EPROSIMA Afivafes fedniding of black-box, unit, xtypes, RTPS communication and DDS communica- | OFF
tion tests. It is set to ON if EPROSIMA_BUILD is ON and EPROSIMA_INSTALLER is OFF.
VIDEO_TEJfBERFORMANCE_TESTS is ON, it will activate the building of video performance tests. OFF
DISABLE]| DirablesTHRPHO tests. OFF

32 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-CDR

Fast DDS Documentation, Release 2.0.0

6.13 Getting Started

This section defines the concepts of DDS and RTPS. It also provides a step-by-step tutorial on how to write a simple
Fast DDS (formerly Fast RTPS) publish/subscribe application.

6.13.1 What is DDS?

The Data Distribution Service (DDS) is a data-centric communication protocol used for distributed software applica-
tion communications. It describes the communications Application Programming Interfaces (APIs) and Communica-
tion Semantics that enable communication between data providers and data consumers.

Since it is a Data-Centric Publish Subscribe (DCPS) model, three key application entities are defined in its implemen-
tation: publication entities, which define the information-generating objects and their properties; subscription entities,
which define the information-consuming objects and their properties; and configuration entities that define the types
of information that are transmitted as topics, and create the publisher and subscriber with its Quality of Service (QoS)
properties, ensuring the correct performance of the above entities.

DDS uses QoS to define the behavioral characteristics of DDS Entities. QoS are comprised of individual QoS policies
(objects of type deriving from QoSPolicy). These are described in Policy.

The DCPS conceptual model

In the DCPS model, four basic elements are defined for the development of a system of communicating applications.

* Publisher. It is the DCPS entity in charge of the creation and configuration of the DataWriters it implements.
The DataWriter is the entity in charge of the actual publication of the messages. Each one will have an assigned
Topic under which the messages are published. See Publisher for further details.

 Subscriber. It is the DCPS Entity in charge of receiving the data published under the topics to which it sub-
scribes. It serves one or more DataReader objects, which are responsible for communicating the availability of
new data to the application. See Subscriber for further details.

 Topic. It is the entity that binds publications and subscriptions. It is unique within a DDS domain. Through the
TopicDescription, it allows the uniformity of data types of publications and subscriptions. See Topic for further
details.

e Domain. This is the concept used to link all publishers and subscribers, belonging to one or more applications,
which exchange data under different topics. These individual applications that participate in a domain are
called DomainParticipant. The DDS Domain is identified by a domain ID. The DomainParticipant defines the
domain ID to specify the DDS domain to which it belongs. Two DomainParticipants with different IDs are not
aware of each other’s presence in the network. Hence, several communication channels can be created. This
is applied in scenarios where several DDS applications are involved, with their respective DomainParticipants
communicating with each other, but these applications must not interfere. The DomainParticipant acts as a
container for other DCPS Entities, acts as a factory for Publisher, Subscriber and Topic Entities, and provides
administrative services in the domain. See Domain for further details.

These elements are shown in the figure below.

Fig. 2: DCPS model entities in the DDS Domain.

6.13. Getting Started 33

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.0.0

6.13.2 What is RTPS?

The Real-Time Publish Subscribe (RTPS) protocol, developed to support DDS applications, is a publication-
subscription communication middleware over best-effort transports such as UDP/IP. Furthermore, Fast DDS provides
support for TCP and Shared Memory (SHM) transports.

It is designed to support both unicast and multicast communications.

At the top of RTPS, inherited from DDS, the Domain can be found, which defines a separate plane of communication.
Several domains can coexist at the same time independently. A domain contains any number of RTPSParticipants,
that is, elements capable of sending and receiving data. To do this, the RTPSParticipants use their Endpoints:

e RTPSWriter: Endpoint able to send data.
¢ RTPSReader: Endpoint able to receive data.

A RTPSParticipant can have any number of writer and reader endpoints.

Fig. 3: RTPS high-level architecture

Communication revolves around Topics, which define and label the data being exchanged. The topics do not be-
long to a specific participant. The participant, through the RTPSWriters, makes changes in the data published un-
der a topic, and through the RTPSReaders receives the data associated with the topics to which it subscribes. The
communication unit is called Change, which represents an update in the data that is written under a Topic. RTP-
SReaders/RTPSWriters register these changes on their History, a data structure that serves as a cache for recent
changes.

In the default configuration of eProsima Fast DDS, when you publish a change through a RTPSWriter endpoint, the
following steps happen behind the scenes:

1. The change is added to the RTPSWriter’s history cache.
2. The RTPSWriter sends the change to any RTPSReaders it knows about.
3. After receiving data, RTPSReaders update their history cache with the new change.

However, Fast DDS supports numerous configurations that allow you to change the behavior of RTPSWrit-
ers/RTPSReaders. A modification in the default configuration of the RTPS entities implies a change in the data
exchange flow between RTPSWriters and RTPSReaders. Moreover, by choosing Quality of Service (QoS) policies,
you can affect how these history caches are managed in several ways, but the communication loop remains the same.
You can continue reading section R7TPS Layer to learn more about the implementation of the RTPS protocol in Fast
DDS.

6.13.3 Writing a simple publisher and subscriber application

This section details how to create an simple Fast DDS application with a publisher and a subscriber step by step. It
is also possible to self-generate a similar example to the one implemented in this section by using the eProsima Fast
DDS-Gen tool. This additional approach is explained in Building a publish/subscribe application.

* Background
* Prerequisites

* Create the application workspace

* Import linked libraries and its dependencies

34 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

— Installation from binaries and manual installation
— Colcon installation

* Configure the CMake project

* Build the topic data type
— CMakeLists.txt

» Write the Fast DDS publisher
— Examining the code
— CMakeLists.txt

» Write the Fast DDS subscriber
— Examining the code
— CMakeLists.txt

* Putting all together

* Summary

* Next steps

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under
a topic and subscribers subscribe to this same topic to receive information.

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast
DDS and all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the
installation of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for
a Linux environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files build/
DDSHelloWorldPublisher and build/DDSHelloWorldSubscriber are the Publisher application and
Subscriber application respectively.

L— workspace_DDSHelloWorld

— build
CMakeCache.txt
CMakeFiles
cmake_install.cmake
DDSHelloWorldPublisher
DDSHelloWorldSubscriber
Makefile

(continues on next page)

6.13. Getting Started 35

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

|: CMakeLists.txt

src
HelloWorld.cxx
HelloWorld.h
HelloWorld.idl
HelloWorldPublisher.cpp
HelloWorldPubSubTypes.cxx
HelloWorldPubSubTypes.h
HelloWorldSubscriber.cpp

Let’s create the directory tree first.

mkdir workspace_DDSHelloWorld && cd workspace_DDSHelloWorld
mkdir src build

Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries. The way we will make these accessible from the
workspace depends on the installation procedure we have followed in the Installation Manual.

Installation from binaries and manual installation

If we have followed the installation from binaries or the manual installation, these libraries are already accessible from
the workspace. On Linux, the header files can be found in directories /usr/include/fastrtps/ and /usr/include/fastcdr/
for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory /us#/lib/.

Colcon installation

If you have followed the Colcon installation there are several ways to import the libraries. If you want these to be
accessible only from the current shell session, run one of the following two commands.

source <path/to/Fast-DDS/workspace>/install/setup.bash

If you want these to be accessible from any session, you can add the Fast DDS installation directory to your SPATH
variable in the shell configuration files running the following command.

’echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

Configure the CMake project

We will use the CMake tool to manage the building of the project. With your preferred text editor, create a new
file called CMakeLists.txt and copy and paste the following code snippet. Save this file in the root directory of your
workspace. If you have followed these steps, it should be workspace_DDSHelloWorld.

cmake_minimum_required (VERSION 3.12.4)

1f (NOT CMAKE_VERSION VERSION_LESS 3.0)
cmake_policy (SET CMP0048 NEW)
endif ()

(continues on next page)

36 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

project (DDSHelloWorld)

Find requirements
if (NOT fastcdr_FOUND)

find_package (fastcdr REQUIRED)
endif ()

if (NOT fastrtps_FOUND)
find_package (fastrtps REQUIRED)
endif ()

Set C++11
include (CheckCXXCompilerFlag)
if (CMAKE_COMPILER_IS_GNUCXX OR CMAKE_COMPILER_IS_CLANG OR
CMAKE_CXX_COMPILER_ID MATCHES "Clang")
check_cxx_compiler_flag(-std=c++11 SUPPORTS_CXX11)
if (SUPPORTS_CXX11)
add_compile_options (—std=c++11)
else ()
message (FATAL_ERROR "Compiler doesn't support C++11")
endif ()
endif ()

In each section we will complete this file to include the specific generated files.

Build the topic data type
eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate a functional example that uses your topic data.

It will be the former that will be followed in this tutorial. To see an example of application of the latter you can check
this other example. See Introduction for further details. For this project, we will use the Fast DDS-Gen application to
define the data type of the messages that will be sent by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

cd src && touch HelloWorld.idl

This creates the HelloWorld.idl file in the s7c directory. Open the file in your favorite text editor and copy and paste
the following snippet of code.

struct HelloWorld

{
unsigned long index;
string message;

}i

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t
and a message of type std: : string. All that remains is to generate the source code that implements this data type
in C++11. To do this, run the following command from the src directory.

<path/to/Fast DDS-Gen>/scripts/fastrtpsgen HelloWorld.idl

6.13. Getting Started 37

20

21

22

23

24

25

26

27

28

Fast DDS Documentation, Release 2.0.0

This must have generated the following files:
* HelloWorld.cxx: HelloWorld type definition.
* HelloWorld.h: Header file for HelloWorld.cxx.
* HelloWorldPubSubTypes.cxx: Serialization and Deserialization code for the HelloWorld type.
* HelloWorldPubSubTypes.h: Header file for HelloWorldPubSubTypes.cxx.

CMakelLists.txt

Include the following code snippet at the end of the CMakeList.txt file you created earlier. This includes the files we
have just created.

message (STATUS "Configuring HelloWorld publisher/subscriber example...")
file (GLOB DDS_HELLOWORLD_SOURCES_CXX "src/#.cxx")

Write the Fast DDS publisher

From the src directory in the workspace, run the following command to download the HelloWorldPublisher.cpp file.

wget -0 HelloWorldPublisher.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
<+C++/DDSHelloWorld/src/HelloWorldPublisher.cpp

Now you have the publisher’s source code. The publisher is going to send 10 publications under the topic HelloWorld.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in writing, software
// distributed under the License 1s distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

VS
* @file HelloWorldPublisher.cpp

*

*/
#include "HelloWorldPubSubTypes.h'"

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

#include <fastdds/dds/publisher/DataWriter.hpp>

#include <fastdds/dds/publisher/DataWriterListener.hpp>

(continues on next page)

38 Chapter 6. Structure of the documentation

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

using namespace eprosima::fastdds::dds;
class HelloWorldPublisher
{
private:
HelloWorld hello_;
DomainParticipant* participant_;
Publisherx publisher_;
Topic* topic_;
DataWriterx writer_;

TypeSupport type_;

class PubListener : public DataWriterListener

{

public:
PubListener ()
matched_ (0)
{
}
~PubListener () override

{
}

void on_publication_matched(
DataWriter«*,
const PublicationMatchedStatus& info) override

if (info.current_count_change == 1)
{

matched_ = info.total_count;

std::cout << "Publisher matched." << std::endl;
}
else if (info.current_count_change == -1)
{

matched_ = info.total_count;

std::cout << "Publisher unmatched." << std::endl;
}
else
{

std::cout << info.current_count_change

<< " is not a valid value for PublicationMatchedStatus,
—current count change." << std::endl;

}

std::atomic_int matched_;

} listener_;

(continues on next page)

6.13. Getting Started 39

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

public:

HelloWorldPublisher ()
: participant_ (nullptr)
, publisher_(nullptr)
, topic_ (nullptr)
, writer_ (nullptr)
, type_ (new HelloWorldPubSubType())

virtual ~HelloWorldPublisher ()
{
if (writer_ != nullptr)
{
publisher_ ->delete_datawriter (writer_);
}
if (publisher_ != nullptr)
{
participant_->delete_publisher (publisher_);
}
if (topic_ != nullptr)
{
participant_->delete_topic (topic_);
}

DomainParticipantFactory::get_instance () ->delete_participant (participant_);

//!Initialize the publisher

bool init ()

{
hello_.index (0);
hello_.message ("HelloWorld");

DomainParticipantQos participantQos;
participantQos.name ("Participant_publisher™);

participant_ = DomainParticipantFactory::get_instance () ->create_participant (0,

— participantQos);

if (participant_ == nullptr)
{

return false;
// Register the Type
type_.register_type (participant_);

// Create the publications Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_

<,Q0S_DEFAULT) ;

if (topic_ == nullptr)
{

return false;

// Create the Publisher

(continues on next page)

40

Chapter 6. Structure of the documentation

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

publisher_ = participant_->create_publisher (PUBLISHER _QOS_DEFAULT, nullptr);

if (publisher_ == nullptr)
{

return false;

// Create the DataWriter
writer_ = publisher_ ->create_datawriter (topic_, DATAWRITER QOS_DEFAULT, &
—listener_);

if (writer_ == nullptr)
{
return false;

}

return true;

//!Send a publication
bool publish()
{
if (listener_.matched_ > 0)
{
hello_.index (hello_.index () + 1);
writer_ ->write (&¢hello_);
return true;
}

return false;

//!Run the Publisher
void run (
uint32_t samples)

uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publish{())
{
samples_sent++;
std::cout << "Message: " << hello_.message () << " with index: " <<
—~hello_.index ()
<< " SENT" << std::endl;
}
std::this_thread::sleep_for (std::chrono::milliseconds (1000));

bi

int main(
int argc,
charx* argv)

std::cout << "Starting publisher." << std::endl;
int samples = 10;

HelloWorldPublisher* mypub = new HelloWorldPublisher();

(continues on next page)

6.13. Getting Started a1

195

196

197

198

199

201

202

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (mypub->init ())
{

mypub->run (static_cast<uint32_t> (samples));

delete mypub;
return 0O;

Examining the code

At the beginning of the file we have a Doxygen style comment block with the @file field that tells us the name of
the file.

J ok k
* @file HelloWorldPublisher.cpp

*

*/

Below are the includes of the C++ headers. The first one includes the HelloWorldPubSubTypes.h file with the serial-
ization and deserialization functions of the data type that we have defined in the previous section.

#include "HelloWorldPubSubTypes.h"

The next block includes the C++ header files that allow the use of the Fast DDS API.
* DomainParticipantFactory. Allows for the creation and destruction of DomainParticipant objects.

* DomainParticipant. Acts as a container for all other Entity objects and as a factory for the Publisher,
Subscriber, and Topic objects.

* TypeSupport. Provides the participant with the functions to serialize, deserialize and get the key of a specific
data type.

» Publisher. Is the object responsible for the creation of DataReaders.
e Datalriter. Allows the application to set the value of the data to be published under a given Topic.

e DatalWriterListener. Allows the redefinition of the functions of the DataWriterListener.

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

#include <fastdds/dds/publisher/DataWriter.hpp>

#include <fastdds/dds/publisher/DataWriterListener.hpp>

Next, we define the namespace that contains the eProsima Fast DDS classes and functions that we are going to use in
our application.

’using namespace eprosima::fastdds::dds;

The next line creates the HelloWor1ldPublisher class that implements a publisher.

’class HelloWorldPublisher

42 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Continuing with the private data members of the class, the hello_ data member is defined as an object of the
HelloWorld class that defines the data type we created with the IDL file. Next, the private data members correspond-
ing to the participant, publisher, topic, DataWriter and data type are defined. The type_ object of the TypeSupport
class is the object that will be used to register the topic data type in the DomainParticipant.

private:
HelloWorld hello_;
DomainParticipant* participant_;
Publisherx publisher_;
Topic* topic_;
DataWriterx writer_;

TypeSupport type_;

Then, the PubListener class is defined by inheriting from the DataWriterListener class. This class overrides
the default DataWriter listener callbacks, which allow us to execute routines in case of an event. The overridden
callback on_publication_matched allows you to define a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change () detects
these changes of DataReaders that are matched to the DataWriter. This is a member in the Mat chedStat us structure
that allows you to track changes in the status of subscriptions. Finally, the 1istener_ object of the class is defined
as an instance of PubListener.

class PubListener : public DataWriterListener

{
public:

PubListener ()
matched_ (0)

~PubListener () override
{
}

void on_publication_matched (
DataWriterx,
const PublicationMatchedStatus& info) override

if (info.current_count_change == 1)
{
matched_ = info.total_count;
std::cout << "Publisher matched." << std::endl;

}

else if (info.current_count_change == -1)
{
matched_ = info.total_count;
std::cout << "Publisher unmatched." << std::endl;
}
else

{

std::cout << info.current_count_change

(continues on next page)

6.13. Getting Started 43

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<< " is not a valid value for PublicationMatchedStatus current
—count change." << std::endl;

}

std::atomic_int matched_;

} listener_;

The public constructor and destructor of the HelloWorldPublisher class are defined below. The constructor
initializes the private data members of the class to nullptr, with the exception of the TypeSupport object, that is
initialized as an instance of the Hel1loWorldPubSubType class. The class destructor removes these data members
and thus cleans the system memory.

HelloWorldPublisher ()
: participant_ (nullptr)
, publisher_(nullptr)
, topic_ (nullptr)
, writer_ (nullptr)
, type_ (new HelloWorldPubSubType())

virtual ~HelloWorldPublisher ()
{

if (writer_ != nullptr)

{

publisher_ ->delete_datawriter (writer_);
if (publisher_ != nullptr)
participant_->delete_publisher (publisher_);
if (topic_ != nullptr)
participant_->delete_topic (topic_);

}

DomainParticipantFactory: :get_instance () —>delete_participant (participant_);

Continuing with the public member functions of the HelloWorldPublisher class, the next snippet of code defines
the public publisher’s initialization member function. This function performs several actions:

1. Initializes the content of the HelloWorld type hello_ structure members.
Assigns a name to the participant through the QoS of the DomainParticipant.
Uses the DomainParticipantFactory to create the participant.
Registers the data type defined in the IDL.

Creates the topic for the publications.

Creates the publisher.

T o

Creates the DataWriter with the listener previously created.

As you can see, the QoS configuration for all entities, except for the participant’s name, is the de-
fault configuration (PARTICIPANT_QOS_DEFAULT, PUBLISHER QOS_DEFAULT, TOPIC_QOS_DEFAULT,

44 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

DATAWRITER_QOS_DEFAULT). The default value of the QoS of each DDS Entity can be checked in the DDS
standard.

//!Initialize the publisher
bool init ()

{
hello_.index (0);
hello_.message ("HelloWorld");

DomainParticipantQos participantQos;

participantQos.name ("Participant_publisher");

participant_ = DomainParticipantFactory::get_instance () ->create_participant (0,
—participantQos);

if (participant_ == nullptr)

{

return false;

// Register the Type
type_.register_type (participant_);

// Create the publications Topic

topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;
if (topic_ == nullptr)

{

return false;

// Create the Publisher
publisher_ = participant_->create_publisher (PUBLISHER_QOS_DEFAULT, nullptr);

if (publisher_ == nullptr)
{

return false;

// Create the DataWriter
writer_ = publisher_->create_datawriter (topic_, DATAWRITER_QOS_DEFAULT, &listener_

)7

if (writer_ == nullptr)
{

return false;

}

return true;

To make the publication, the public member function publish () is implemented. In the DataWriter’s listener
callback which states that the DataWriter has matched with a DataReader that listens to the publication topic, the
data member matched_ is updated. It contains the number of DataReaders discovered. Therefore, when the first
DataReader has been discovered, the application starts to publish. This is simply the writing of a change by the
DataWriter object.

//1Send a publication
bool publish()

(continues on next page)

6.13. Getting Started 45

https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (listener_.matched_ > 0)

{
hello_.index (hello_.index () + 1);
writer_ ->write(&hello_);
return true;

}

return false;

The public run function executes the action of publishing a given number of times, waiting for 1 second between
publications.

//!Run the Publisher
void run (
uint32_t samples)

uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publish())
{
samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.
—index ()
<< " SENT" << std::endl;

}
std::this_thread::sleep_for(std::chrono::milliseconds (1000));

Finally, the HelloWorldPublisher is initialized and run in main.

int main(
int argc,
charx* argv)

std::cout << "Starting publisher." << std::endl;
int samples = 10;

HelloWorldPublisher* mypub = new HelloWorldPublisher();
if (mypub->init ())
{

mypub->run (static_cast<uint32_t> (samples));

delete mypub;
return 0O;

46 Chapter 6. Structure of the documentation

20

21

22

23

24

25

26

27

Fast DDS Documentation, Release 2.0.0

CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source
files needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldPublisher src/HelloWorldPublisher.cpp $/{DDS_HELLOWORLD_
—SOURCES_CXX})
target_link_libraries (DDSHelloWorldPublisher fastrtps fastcdr)

At this point you can build, compile and run the publisher application. From the build directory in the workspace, run
the following commands.

cmake
make
./DDSHelloWorldPublisher

Write the Fast DDS subscriber

From the src directory in the workspace, execute the following command to download the HelloWorldSubscriber.cpp
file.

wget -0 HelloWorldSubscriber.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
—C++/DDSHelloWorld/src/HelloWorldSubscriber.cpp

Now you have the subscriber’s source code. The application runs a subscriber until it receives 10 samples under the
topic HelloWorldTopic. At this point the subscriber stops.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in writing, software
// distributed under the License 1s distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

J ko
* @file HelloWorldSubscriber.cpp

*

*/
#include "HelloWorldPubSubTypes.h"

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/subscriber/Subscriber.hpp>

#include <fastdds/dds/subscriber/DataReader.hpp>

#include <fastdds/dds/subscriber/DataReaderListener.hpp>

(continues on next page)

6.13. Getting Started a7

40

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

#include <fastdds/dds/subscriber/qos/DataReaderQos.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

using namespace eprosima::fastdds: :dds;

class HelloWorldSubscriber

{

private:
DomainParticipant* participant_;
Subscriber* subscriber_;
DataReaderx reader_;
Topic* topic_;
TypeSupport type_;

class SubListener : public DataReaderListener

{
public:

SubListener ()
samples_ (0)

~SubListener () override
{
}

void on_subscription_matched (
DataReaderx,
const SubscriptionMatchedStatus& info) override

if (info.current_count_change == 1)
{

std::cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{

std::cout << "Subscriber unmatched." << std::endl;
}
else
{

std::cout << info.current_count_change

<< " is not a valid value for SubscriptionMatchedStatus,
—current count change" << std::endl;

}

void on_data_available (
DataReader* reader) override

SampleInfo info;

if (reader->take_next_sample (&¢hello_, &info) == ReturnCode_t::RETCODE_OK)

(continues on next page)

48 Chapter 6. Structure of the documentation

90
91
92
93
94
95
96
97
98
99
100

101

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133

134
135
136
137

138

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (info.instance_state == ALIVE)
{

samples_++;
std::cout << "Message: " << hello_.message() << " with index: " <
< hello_.index ()
<< " RECEIVED." << std::endl;

HelloWorld hello_;
std::atomic_int samples_;
} listener_;
public:

HelloWorldSubscriber ()
: participant_ (nullptr)
, subscriber_ (nullptr)
, topic_ (nullptr)
, reader_ (nullptr)
, type_ (new HelloWorldPubSubType())

virtual ~HelloWorldSubscriber ()
{

if (reader_ != nullptr)

{

subscriber_->delete_datareader (reader_);
if (topic_ != nullptr)

participant_->delete_topic (topic_);
}
if (subscriber_ != nullptr)
{
participant_->delete_subscriber (subscriber_);

}

DomainParticipantFactory: :get_instance () ->delete_participant (participant_);

//!Initialize the subscriber
bool init ()
{
DomainParticipantQos participantQos;
participantQos.name ("Participant_subscriber");
participant_ = DomainParticipantFactory::get_instance()->create_participant (0,
— participantQos);

if (participant_ == nullptr)
{

return false;

(continues on next page)

6.13. Getting Started 49

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Register the Type
type_.register_type (participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_
—QOS_DEFAULT) ;

if (topic_ == nullptr)
{

return false;

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT,
—nullptr) ;

if (subscriber_ == nullptr)
{

return false;

// Create the DataReader
reader_ = subscriber_->create_datareader (topic_, DATAREADER_QOS_DEFAULT, &
—~listener_);

if (reader_ == nullptr)
{

return false;

return true;

//!Run the Subscriber
void run (
uint32_t samples)

while (listener_.samples_ < samples)

{
std::this_thread::sleep_for (std::chrono::milliseconds (100));

}i

int main(
int argc,
char** argv)

std::cout << "Starting subscriber." << std::endl;
int samples = 10;

HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
if (mysub->init ())
{

mysub->run (static_cast<uint32_t> (samples));

(continues on next page)

50 Chapter 6. Structure of the documentation

193

194

195

196

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

delete mysub;
return 0O;

Examining the code

As you have noticed, the source code to implement the subscriber is practically identical to the source code imple-
mented by the publisher. Therefore, we will focus on the main differences between them, without explaining all the
code again.

Following the same structure as in the publisher explanation, we start with the includes of the C++ header files. In
these, the files that include the publisher class are replaced by the subscriber class and the data writer class by the data
reader class.

* Subscriber. Itis the object responsible for the creation and configuration of DataReaders.

* DataReader. It is the object responsible for the actual reception of the data. It registers in the application the
topic (TopicDescription) that identifies the data to be read and accesses the data received by the subscriber.

* DataReaderListener. This is the listener assigned to the data reader.
e DataReaderQoS. Structure that defines the QoS of the DataReader.

e SampleInfo. Itis the information that accompanies each sample that is ‘read’ or ‘taken.’

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

The next line defines the HelloWorldSubscriber class that implements a subscriber.

class HelloWorldSubscriber

Starting with the private data members of the class, it is worth mentioning the implementation of the data reader
listener. The private data members of the class will be the participant, the subscriber, the topic, the data reader, and the
data type. As it was the case with the data writer, the listener implements the callbacks to be executed in case an event
occurs. The first overridden callback of the SubListener is the on_subscription_matched, which is the analog
of the on_publication_matched callback of the DataWriter.

void on_subscription_matched (
DataReaderx,
const SubscriptionMatchedStatus& info) override

if (info.current_count_change == 1)
{

std::cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{

std::cout << "Subscriber unmatched." << std::endl;
}
else
{

std::cout << info.current_count_change

<< " is not a valid value for SubscriptionMatchedStatus current count,
—change" << std::endl;

(continues on next page)

6.13. Getting Started 51

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

The second overridden callback is on_data_available. In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampleInfo class is defined,
which determines whether a sample has already been read or taken. Each time a sample is read, the counter of samples

received is increased.

void on_data_available (
DataReader* reader) override

SampleInfo infoj;
if (reader->take_next_sample (&¢hello_, &info) == ReturnCode_t::RETCODE_OK)

{
if (info.instance_state == ALIVE)

{
samples_++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.

—index ()
<< " RECEIVED." << std::endl;

The public constructor and destructor of the class is defined below.

HelloWorldSubscriber ()
: participant_ (nullptr)
, subscriber_ (nullptr)
, topic_ (nullptr)
, reader_ (nullptr)
type_ (new HelloWorldPubSubType ())

virtual ~HelloWorldSubscriber ()

{
if (reader_ != nullptr)

{ subscriber_ ->delete_datareader (reader_);

if (topic_ != nullptr)
participant_->delete_topic(topic_);

if (subscriber_ != nullptr)
participant_->delete_subscriber (subscriber_);

}

DomainParticipantFactory::get_instance () ->delete_participant (participant_);

Then we have the subscriber initialization public member function. This is the same as the initialization pub-
lic member function defined for the HelloWorldPublisher. The QoS configuration for all entities, except
for the participant’s name, is the default QoS (PARTICIPANT _QOS_DEFAULT, SUBSCRIBER_QOS_DEFAULT,
TOPIC _QOS_DEFAULT, DATAREADER_QOS_DEFAULT). The default value of the QoS of each DDS Entity can

be checked in the DDS standard.

52 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.0.0

//!Initialize the subscriber
bool init ()
{

DomainParticipantQos participantQos;
participantQos.name ("Participant_subscriber");
participant_ = DomainParticipantFactory::get_instance () ->create_participant (0,

—participantQos);

if (participant_ == nullptr)
{

return false;

// Register the Type
type_.register_type (participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_

—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)

{

return false;

// Create the DataReader
reader_ = subscriber_->create_datareader (topic_, DATAREADER_QOS_DEFAULT, &

—~listener_);
if (reader_ == nullptr)
{

return false;

return true;

The public member function run () ensures that the subscriber runs until all the samples have been received. This
member function implements an active wait of the subscriber, with a 100ms sleep interval to ease the CPU.

//!Run the Subscriber
void run (
uint32_t samples)

while (listener_.samples_ < samples)

{
std::this_thread::sleep_for (std::chrono::milliseconds (100));

6.13. Getting Started 53

Fast DDS Documentation, Release 2.0.0

Finally, the participant that implements a subscriber is initialized and run in main.

int main(
int argc,
char+* argv)

std::cout << "Starting subscriber." << std::endl;
int samples = 10;

HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
if (mysub->init ())
{

mysub->run (static_cast<uint32_t> (samples));

delete mysub;
return 0;

CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source
files needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldSubscriber src/HelloWorldSubscriber.cpp DDS_HELLOWC
—SOURCES_CXX})
target_link_libraries (DDSHelloWorldSubscriber fastrtps fastcdr)

At this point you can build, compile and run the subscriber application. From the build directory in the workspace, run
the following commands.

cmake
make clean && make
./DDSHelloWorldSubscriber

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

./DDSHelloWorldPublisher
./DDSHelloWorldSubscriber

Summary

In this tutorial you have built a publisher and a subscriber DDS application. You have also learned how to build the
CMake file for source code compilation, and how to include and use the Fast DDS and Fast CDR libraries in your
project.

54 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communica-
tion for a multitude of use cases and scenarios. You can find them here.

6.14 Library Overview

Fast DDS (formerly Fast RTPS) is an efficient and high-performance implementation of the DDS specification, a
data-centric communications middleware (DCPS) for distributed application software. This section reviews the archi-
tecture, operation and key features of Fast DDS.

6.14.1 Architecture

The architecture of Fast DDS is shown in the figure below, where a layer model with the following different environ-
ments can be seen.

» Application layer. The user application that makes use of the Fast DDS API for the implementation of com-
munications in distributed systems.

« Fast DDS layer. Robust implementation of the DDS communications middleware. It allows the deployment
of one or more DDS domains in which DomainParticipants within the same domain exchange messages by
publishing/subscribing under a domain topic.

e RTPS layer. Implementation of the Real-Time Publish-Subscribe (RTPS) protocol for interoperability with
DDS applications. This layer acts an abstraction layer of the transport layer.

* Transport Layer. Fast DDS can be used over various transport protocols such as unreliable transport protocols
(UDP), reliable transport protocols (TCP), or shared memory transport protocols (SHM).

Fig. 4: Fast DDS layer model architecture

DDS Layer

Several key elements for communication are defined in the DDS layer of Fast DDS. The user will create these elements
in their application, thus incorporating DDS application elements and creating a data-centric communication system.
Fast DDS, following the DDS specification, defines these elements involved in communication as Entities. A DDS
Entity is any object that supports Quality of Service configuration (QoS), and the implements listener.

* QoS. The mechanism by which the behavior of each of the entities is defined.

« Listener. The mechanism by which the entities are notified of the possible events that arise during the applica-
tion’s execution.

Below are listed the DDS Entities together with their description and functionality. For a more detailed explanation of
each entity, their QoS, and their listeners, please refer to DDS Layer section.

* Domain. A positive integer which identifies the DDS domain. Each DomainParticipant will have an assigned
DDS domain, so that DomainParticipants in the same domain can communicate, as well as isolate commu-
nications between DDS domains. This value must be given by the application developer when creating the
DomainParticipants.

¢ DomainParticipant. Object containing other DDS entities such as publishers, subscribers, topics and multi-
topics. It is the entity that allows the creation of the previous entities it contains, as well as the configuration of
their behavior.

6.14. Library Overview 55

https://github.com/eProsima/Fast-DDS/tree/master/examples/C%2B%2B/DDS
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.0.0

e Publisher. The Publisher publishes data under a topic using a DataWriter, which reads the data from the
transport. It is the entity that creates and configures the DataWriter entities it contains, and may contain one or
more of them.

e DataWriter. It is the entity in charge of publishing messages. The user must provide a Topic when creating
this entity which will be the Topic under which the data will be published. Publication is done by writing the
data-objects as a change in the DataWriterHistory.

» DataWriterHistory. This is a list of changes to the data-objects. When the DataWriter proceeds to publish data
under a specific Topic, it actually creates a change in this data. It is this change that is registered in the History.
These changes are then sent to the DataReader that subscribes to that specific topic.

* Subscriber. The Subscriber subscribes to a topic using a DataReader, which reads the data from the transport.
It is the entity that creates and configures the DataReader entities it contains, and may contain one or more
DataReader entities.

* DataReader. It is the entity that subscribes to the topics for the reception of publications. The user must
provide a subscription Topic when creating this entity. A DataReader receives the messages as changes in its
HistoryDataReader.

* DataReaderHistory. It contains the changes in the data-objects that the DataReader receives as a result of
subscribing to a certain Topic.

 Topic. Entity that binds Publishers’ DataWriters with Subscribers’ DataReaders.

RTPS layer
As mentioned above, the RTPS protocol in Fast DDS allows the abstraction of DDS application entities from the
transport layer. According to the graph shown above, the RTPS layer has four main Entities.

e RTPSDomain. It is the extension of the DDS domain to the RTPS protocol.

* RTPSParticipant. Entity containing other RTPS entities. It allows the configuration and creation of the entities
it contains.

e RTPSWriter. The source of the messages. It reads the changes written in the DataWriterHistory and transmits
them to all the RTPSReaders to which it has previously matched.

* RTPSReader. Receiving entity of the messages. It writes the changes reported by the RTPSWriter into the
DataReaderHistory.

For a more detailed explanation of each entity, their attributes, and their listeners, please refer to RTPS Layer section.
Transport layer
Fast DDS supports the implementation of applications over various transport protocols. Those are UDPv4, UDPv6,

TCPv4, TCPv6 and Shared Memory Transport (SHM). By default, a DomainParticipant implements a UDPv4 trans-
port protocol. The configuration of all supported transport protocols is detailed in the Transport Layer section.

56 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

6.14.2 Programming and execution model

Fast DDS is concurrent and event-based. The following explains the multithreading model that governs the operation
of Fast DDS as well as the possible events.

Concurrency and multithreading

Fast DDS implements a concurrent multithreading system. Each DomainParticipant spawns a set of threads to take
care of background tasks such as logging, message reception, and asynchronous communication. This should not
impact the way you use the library, i.e. the Fast DDS API is thread safe, so you can fearlessly call any methods on
the same DomainParticipant from different threads. However, this multithreading implementation must be taken into
account when external functions access to resources that are modified by threads running internally in the library. An
example of this is the modified resources in the entity listener callbacks. The following is a brief overview of how Fast
DDS multithreading schedule work:

* Main thread: Managed by the application.
 Event thread: Each DomainParticipant owns one of these. It processes periodic and triggered time events.

* Asynchronous writer thread: This thread manages asynchronous writes for all DomainParticipants. Even for
synchronous writers, some forms of communication must be initiated in the background.

* Reception threads: DomainParticipants spawn a thread for each reception channel, where the concept of a
channel depends on the transport layer (e.g. a UDP port).

Event-driven architecture

There is a time-event system that enables Fast DDS to respond to certain conditions, as well as schedule periodic
operations. Few of them are visible to the user since most are related to DDS and RTPS metadata. However, the user
can define in their application periodic time-events by inheriting from the TimedEvent class.

6.14.3 Functionalities

Fast DDS has some added features that can be implemented and configured by the user in their application. These are
outlined below.

Discovery Protocols

The discovery protocols define the mechanisms by which DataWriters publishing under a given Topic, and DataRead-
ers subscribing to that same Topic are matched, so that they can start sharing data. This applies at any point in the
communication process. Fast DDS provides the following discovery mechanisms:

» Simple Discovery. This is the default discovery mechanism, which is defined in the RTPS standard and provides
compatibility with other DDS implementations Here the DomainParticipants are discovered individually at an
early stage to subsequently match the DataWriter and DataReader they implement.

* Server-Client Discovery. This discovery mechanism uses a centralized discovery architecture, where servers
act as a hubs for discovery meta traffic.

« Static Discovery. This implements the discovery of DomainParticipants to each other but it is possible to skip
the discovery of the entities contained in each DomainParticipant (DataReader/DataWriter) if these entities are
known in advance by the remote DomainParticipants.

6.14. Library Overview 57

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.0.0

e Manual Discovery. This mechanism is only compatible with the RTPS layer. It allows the user to man-
ually match and unmatch RTPSParticipants, RTPSWriters, and RTPSReaders using whatever external meta-
information channel of its choice.

The detailed explanation and configuration of all the discovery protocols implemented in Fast DDS can be seen in the
Discovery section.

Security

Fast DDS can be configured to provide secure communications by implementing pluggable security at three levels:

* Authentication of remote DomainParticipants. The DDS:Auth:PKI-DH plugin provides authentication using a
trusted Certificate Authority (CA) and ECDSA Digital Signature Algorithms to perform the mutual authentica-
tion. It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement protocol.

* Access control of entities. The DDS:Access:Permissions plugin provides access control to DomainParticipants
at the DDS Domain and Topic level.

* Encryption of data. The DDS:Crypto:AES-GCM-GMAC plugin provides authenticated encryption using Ad-
vanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

More information about security configuration in Fast DDS is available in the Security section.

Logging

Fast DDS provides an extensible Logging system. Log class is the entry point of the Logging system. It exposes three
macro definitions to ease its usage: logInfo, logWarning and logError. Moreover, it allows the definition
of new categories, in addition to those already available (INFO_MSG, WARN_MSG and ERROR_MSG). It provides
filtering by category using regular expressions, as well as control of the verbosity of the Logging system. Details of
the possible Logging system configurations can be found in the Logging section.

XML profiles configuration

Fast DDS offers the possibility to make changes in its default settings by using XML profile configuration files. Thus,
the behavior of the DDS Entities can be modified without the need for the user to implement any program source code
or re-build an existing application.

The user has XML tags for each of the API functionalities. Therefore, it is possible to build and configure Do-
mainParticipant profiles through the <participant> tag, or the DataWriter and DataReader profiles with the
<data_writer> and <data_reader> tags respectively.

For a better understanding of how to write and use these XML profiles configuration files you can continue reading
the XML profiles section.

Environment variables

Environment variables are those variables that are defined outside the scope of the program, through operating system
functionalities. Fast DDS relies on environment variables so that the user can easily customize the default settings
of DDS applications. Please, refer to the Environment variables section for a complete list and description of the
environment variables affecting Fast DDS.

58 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

6.15 DDS Layer

eProsima Fast DDS exposes two different APIs to interact with the communication service at different levels. The main
API is the Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model
(PIM) API, or DDS DCPS PIM for short, which is defined by the Data Distribution Service (DDS) version 1.4 speci-
fication, to which Fast DDS complies. This section is devoted to explain the main characteristics and modes-of-use of
this API under Fast DDS, providing an in depth explanation of the five modules into which it is divided:

* Core: It defines the abstract classes and interfaces that are refined by the other modules. It also provides the
Quality of Service (QoS) definitions, as well as support for the notification-based interaction style with the
middleware.

* Domain: It contains the DomainParticipant class that acts as an entry-point of the Service, as well as a
factory for many of the classes. The DomainParticipant also acts as a container for the other objects that
make up the Service.

e Publisher: Tt describes the classes used on the publication side, including Publisher and DataWriter
classes, as well as the PublisherlListener and DataWriterListener interfaces.

» Subscriber: Tt describes the classes used on the subscription side, including Subscriber and DataReader
classes, as well as the SubscriberListener and DataReaderListener interfaces.

e Topic: It describes the classes used to define communication topics and data types, including Topic and
TopicDescription classes, as well as TypeSupport, and the TopicListener interface.

6.15.1 Core

This module defines the infrastructure classes and types that will be used by the other ones. It contains the definition
of Entity class, QoS policies, and Statuses.

e Entity: An Entity is a DDS communication object that has a Status and can be configured with Policies.
* Policy: Each of the configuration objects that govern the behavior of an Entity.

 Status: Each of the objects associated with an Entity, whose values represent the communication status of that
Entity.

Entity

Entity is the abstract base class for all the DDS entities, meaning an object that supports QoS policies, a listener,
and statuses.

Types of Entities

¢ DomainParticipant: This entity is the entry-point of the Service and acts as a factory for Publishers, Sub-
scribers, and Topics. See DomainParticipant for further details.

 Publisher: It acts as a factory that can create any number of DataWriters. See Publisher for further details.
* Subscriber: It acts as a factory that can create any number of DataReaders. See Subscriber for further details.

« Topic: This entity fits between the publication and subscription entities and acts as a channel. See Topic for
further details.

* DataWriter: Is the object responsible for the data distribution. See DaraWriter for further details.

* DataReader: Is the object used to access the received data. See DataReader for further details.

6.15. DDS Layer 59

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.0.0

The following figure shows the hierarchy between all DDS entities:

Common Entity Characteristics

All entity types share some characteristics that are common to the concept of an entity. Those are:

Entity Identifier

Each entity is identified by a unique ID, which is shared between the DDS entity and its corresponding RTPS entity
if it exists. That ID is stored on an Instance Handle object declared on Entity base class, which can be accessed using
the getter function get__instance_handle ().

QoS policy

The behavior of each entity can be configured with a set of configuration policies. For each entity type, there
is a corresponding Quality of Service (QoS) class that groups all the policies that affect said entity type. Users
can create instances of these QoS classes, modify the contained policies to their needs, and use them to config-
ure the entities, either during their creation or at a later time with the set_qgos () function that every entity
exposes (DomainParticipant: :set_qos (), Publisher::set_qgos (), Subscriber: :set_qos(),
Topic::set_qos (), DataWriter: :set_qos (), DataReader: :set_qos ()). See Policy for a list of
the available policies and their description. The QoS classes and the policies they contain are explained in the docu-
mentation for each entity type.

Listener

A listener is an object with functions that an entity will call in response to events. Therefore, the listener acts as an
asynchronous notification system that allows the entity to notify the application about the Status changes in the entity.

All entity types define an abstract listener interface, which contains the callback functions that the entity will
trigger to communicate the Status changes to the application. Users can implement their own listeners inheriting
from these interfaces and implementing the callbacks that are are needed on their application. Then they can link
these listeners to each entity, either during their creation or at a later time with the set_listener () function
that every entity exposes (DomainParticipant::set_listener (), Publisher::set_listener(),
Subscriber::set_listener (), Topic::set_listener (), DataWriter::set_listener(),
DataReader: :set_listener ()). The listener interfaces that each entity type and their callbacks are explained
in the documentation for each entity type.

Status

Each entity is associated with a set of status objects whose values represent the communication status of that entity.
The changes on these status values are the ones that trigger the invocation of the appropriate Listener callback to
asynchronously inform the application. See Status for a list of all the status objects and a description of their content.
There you can also find which status applies to which entity type.

60 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Enabling Entities

All the entities can be created either enabled or not enabled. By default, the factories are configured to create the
entities enabled, but it can be changed using the EntityFactoryQosPolicy on enabled factories. A disabled factory
creates disabled entities regardless of its QoS. A disabled entity has its operations limited to the following ones:

* Set/Get the entity QoS Policy.

 Set/Get the entity Listener.

* Create/Delete subentities.

* Get the Status of the entity, even if they will not change.
* Lookup operations.

Any other function called in this state will return NOT_ENABLED.

Policy

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
entity will behave. To increase the flexibility of the system, the QoS is decomposed in several QoS Policies that can
be configured independently. However, there may be cases where several policies conflict. Those conflicts are notified
to the user through the RefurnCodes that the QoS setter functions returns.

Each Qos Policy has a unique ID defined in the QosPolicyId t enumerator. This ID is used in some Status
instances to identify the specific Qos Policy to which the Status refers.

There are QoS Policies that are immutable, which means that only can be specified either at the entity creation or
before calling the enable operation.

Each DDS Entity has a specific set of QoS Policies that can be a mix of Standard QoS Policies, XTypes Extensions
and eProsima Extensions.

Standard QoS Policies

This section explains each of the DDS standard QoS Policies:

DeadlineQosPolicy

DestinationOrderQosPolicy

DurabilityQosPolicy

DurabilityServiceQosPolicy

EntityFactoryQosPolicy

GroupDataQosPolicy

HistoryQosPolicy

LatencyBudgetQosPolicy

LifespanQosPolicy

LivelinessQosPolicy

OwnershipQosPolicy

6.15. DDS Layer 61

Fast DDS Documentation, Release 2.0.0

OwnershipStrengthQosPolicy

PartitionQosPolicy

PresentationQosPolicy

ReaderDataLifecycleQosPolicy

ReliabilityQosPolicy

ResourceLimitsQosPolicy

TimeBasedFilterQosPolicy

TopicDataQosPolicy

TransportPriorityQosPolicy

» UserDataQosPolicy

WriterDataLifecycleQosPolicy

DeadlineQosPolicy

This QoS policy raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically (see DeadlineQosPolicy).

On the publishing side, the deadline defines the maximum period in which the application is expected to supply a new
sample. On the subscribing side, it defines the maximum period in which new samples should be received.

For Topics with keys, this QoS is applied by key. Suppose that the positions of some vehicles have to be published
periodically. In that case, it is possible to set the ID of the vehicle as the key of the data type and the deadline QoS to
the desired publication period.

List of QoS Policy data members:

Data Member Name | Type Default Value
period Duration_t | ¢_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

62 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Compatibility Rule

To maintain the compatibility between DeadlineQosPolicy in DataReaders and DataWriters, the offered deadline pe-
riod (configured on the DataWriter) must be less than or equal to the requested deadline period (configured on the
DataReader), otherwise, the entities are considered to be incompatible.

The DeadlineQosPolicy must be set consistently with the TimeBasedFilterQosPolicy, which means that the deadline
period must be higher or equal to the minimum separation.

Example

C++

DeadlineQosPolicy deadline;
//The DeadlineQosPolicy is default constructed with an infinite period.
//Change the period to 1 second

deadline.period.seconds = 1;
deadline.period.nanosec = 0;
XML

<publisher profile_name="publisher_xml_ conf_ deadline_profile">
<gos>
<deadline>
<period>
<sec>1</sec>
<nanosec>0</nanosec>
</period>
</deadline>
</qos>
</publisher>

<subscriber profile_name="subscriber_xml_conf_deadline_profile">
<qOS>
<deadline>
<period>
<sec>1</sec>
<nanosec>0</nanosec>
</period>
</deadline>
</gos>
</subscriber>

6.15. DDS Layer 63

Fast DDS Documentation, Release 2.0.0

DestinationOrderQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Multiple DataWriters can send messages in the same 7opic using the same key, and on the DataReader side all those
messages are stored within the same instance of data (see DestinationOrderQosPolicy). This QoS policy
controls the criteria used to determine the logical order of those messages. The behavior of the system depends on the
value of the DestinationOrderQosPolicyKind.

List of QoS Policy data members:

Data Member | Type Default Value

Name

kind DestinationOrderQosPoli- BY RECEPTION_TIMESTAMP DESTINATIONORDER |Q0S
cyKind

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

DestinationOrderQosPolicyKind

There are two possible values (see Dest inationOrderQosPolicyKind):

* BY RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based
on the reception time at each DataReader, which means that the last received value should be the one kept. This
option may cause that each DataReader ends up with a different final value, since the DataReaders may receive
the data at different times.

* BY SOURCE_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the
DataWriter timestamp at the time the message is sent. This option guarantees the consistency of the final value.

Both options depend on the values of the OwnershipQosPolicy and OwnershipStrengthQosPolicy, meaning that if the
Ownership is set to EXCLUSIVE and the last value came from a DataWriter with low ownership strength, it will be
discarded.

Compatibility Rule

To maintain the compatibility between DestinationOrderQosPolicy in DataReaders and DataWriters when they have
different kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the
different kinds is:

BY RECEPTION_TIMESTAMP_ DESTINATIONORDER QOS<BY SOURCE_TIMESTAMP DESTINATIONORDER_QOS

Table with the possible combinations:

64 Chapter 6. Structure of the documentation

Fast DDS Documentation, R

elease 2.0.0

DataWriter kind

DataReader kind

Compati-
bility

BY RECEPTION_TIMESTAMP_ DESTINATIONORDFEECKESITON TIMESTAMP_DESTINATIOIL

NOYeSER_ Q04

BY RECEPTION_TIMESTAMP DESTINATIONORDEFOURLF TIMESTAMP DESTINATIONORI

DANO Q0SS

BY SOURCE_TIMESTAMP_ DESTINATIONORDHRY REZEPTION_TIMESTAMP DESTINATIOIL

NOYeSER Q04

BY SOURCE_TIMESTAMP DESTINATIONORDIEFRY (BIBJRCE_TIMESTAMP DESTINATIONORI

DEYes 00S

DurabilityQosPolicy

A DataWriter can send messages throughout a 7opic even if there are no DataReaders on the network. Moreover, a
DataReader that joins to the Topic after some data has been written could be interested in accessing that information

(see DurabilityQosPolicy).

The DurabilityQoSPolicy defines how the system will behave regarding those samples that existed on the Topic before
the DataReader joins. The behavior of the system depends on the value of the DurabilityQosPolicyKind.

List of QoS Policy data members:

Data Member | Type
Name

Default Value

kind Durabili-
tyQosPolicyKind

VOLATILE DURABILITY QOS for DataReaders
TRANSIENT LOCAIL DURABILITY QOS for DataWriters

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Rule for further details.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility

DurabilityQosPolicyKind

There are four possible values (see DurabilityQosPolicyKind):

* VOLATILE DURABILITY QOS: Past samples are ignored and a joining DataReader receives samples gener-

ated after the moment it matches.

e TRANSIENT LOCAI_DURABILITY_QOS: When a new DataReader joins, its History is filled with past sam-

ples.

e TRANSIENT DURABILITY QOS: When a new DataReader joins, its History is filled with past samples,
which are stored on persistent storage (see Persistence Service).

* PERSISTENT DURABILITY QOS: (Not Implemented): All the samples are stored on a permanent storage,
so that they can outlive a system session.

6.15. DDS Layer

65

Fast DDS Documentation, Release 2.0.0

Compatibility Rule

To maintain the compatibility between DurabilityQosPolicy in DataReaders and DataWriters when they have different
kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the different
kinds is:

VOLATILE DURABILITY QOS < TRANSIENT LOCAL_DURABILITY QOS <
TRANSIENT DURABILITY QOS<PERSISTENT DURABILITY QOS

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
VOLATILE_DURABILITY._QOS VOLATILE_DURABILITY_QOS Yes
VOLATILE_DURABILITY_ QOS TRANSIENT_LOCAL DURABILITY QO0S | No
VOLATILE_DURABILITY._QOS TRANSIENT_DURABILITY_QOS No
TRANSIENT_LOCAL DURABILITY QOS | VOLATILE_DURABILITY QOS Yes
TRANSIENT_LOCAIL_DURABILITY_QOS | TRANSIENT_LOCAI_DURABILITY_QOS | Yes
TRANSIENT_LOCAL DURABILITY QOS | TRANSIENT DURABILITY_QOS No
TRANSIENT _DURABILITY QOS VOLATILE_DURABILITY_QOS Yes
TRANSIENT_DURABILITY QOS TRANSIENT_LOCAI_DURABILITY_QOS | Yes
TRANSIENT DURABILITY QOS TRANSIENT_DURABILITY. QOS Yes

Example

C++

DurabilityQosPolicy durability;

//The DurabilityQosPolicy is default constructed with kind = VOLATILE_DURABILITY_ QOS
//Change the kind to TRANSIENT_ LOCAIL_DURABILITY QOS

durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

XML

<publisher profile_name="publisher_xml_ conf_ durability_profile">
<gos>
<durability>
<kind>TRANSIENT_LOCAL</kind>
</durability>
</gos>
</publisher>

<subscriber profile_name="subscriber_xml_conf_durability_profile">
<gos>
<durability>
<kind>VOLATILE</kind>
</durability>
</qgos>
</subscriber>

66 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

DurabilityServiceQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy is used to configure the HistoryQosPolicy and ResourceLimitsQosPolicy of the fictitious
DataReader and DataWriter used when the DurabilityQosPolicy kind is set to TRANSTENT _DURABILITY_QOS
or PERSISTENT DURABILITY QOS (see DurabilityServiceQosPolicy).

Those entities are used to simulate the persistent storage. The fictitious DataReader reads the data written on the Topic
and stores it, so that if the user DataWriter does not have the information requested by the user DataReaders, the
fictitious DataWriter takes care of sending that information.

List of QoS Policy data members:

Data Member Name Type Default Value
service_cleanup_delay Duration_t c_TimeZero
history_kind HistoryQosPolicyKind | KEEP_LAST _HISTORY_ QOS
history depth int32_t 1

max_samples int32_t -1 (Length Unlimited)
max_instances int32_t -1 (Length Unlimited)
max_samples_per instance | int32_t -1 (Length Unlimited)

* service_cleanup_delay: It controls when the service can remove all the information regarding a data
instance. That information is kept until all the following conditions are met:

— The instance has been explicitly disposed and its InstanceState becomes NOT _ALIVE_DISPOSED.

— There is not any alive DataWriter writing the instance, which means that all existing writers either unreg-
ister the instance or lose their liveliness.

— A time interval longer than the one established on the service cleanup delay has elapsed since
the moment the service detected that the two previous conditions were met.

e history_kind: Controls the kind of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

* history_depth: Controls the depth of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

* max_samples: Controls the maximum number of samples of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities. This value must be higher than the maximum number of samples per
instance.

* max_instances: Controls the maximum number of instances of the ResourceLimitsQosPolicy associated
with the Durability Service fictitious entities.

* max_samples_per instance: Controls the maximum number of samples within an instance of the Re-
sourceLimitsQosPolicy associated with the Durability Service fictitious entities. This value must be lower than
the maximum number of samples.

Note: This QoS Policy concerns to Topic and DataWriter entities.

It cannot be changed on enabled entities.

6.15. DDS Layer 67

Fast DDS Documentation, Release 2.0.0

EntityFactoryQosPolicy

This QoS Policy controls the behavior of an Entiry when it acts as a factory for other entities. By default, all the entities
are created enabled, but if you change the value of the autoenable created entities to false, the new
entities will be created disabled (see EntityFactoryQosPolicy).

List of QoS Policy data members:

Data Member Name Type | Default Value
autoenable_created entities | bool | true

Note: This QoS Policy concerns to DomainParticipantFactory (as factory for DomainParticipant), DomainPartici-
pant (as factory for Publisher, Subscriber and Topic), Publisher (as factory for DataWriter) and Subscriber (as factory
for DataReader).

It can be changed on enabled entities, but it only affects those entities created after the change.

Example

C++

EntityFactoryQosPolicy entity_factory;

//The EntityFactoryQosPolicy is default constructed with autoenable_created _entities,_,
—= true

//Change it to false

entity_factory.autoenable_created_entities = false;

XML

This QoS Policy cannot be configured using XML for the moment.

GroupDataQosPolicy

Allows the application to attach additional information to created Publishers or Subscribers. This data is common
to all DataWriters/DataReaders belonging to the Publisher/Subscriber and it is propagated by means of the built-in
topics (see GroupDataQosPolicy).

This QoS Policy can be used in combination with DataWriter and DataReader listeners to implement a matching policy
similar to the PartitionQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It can be changed on enabled entities.

68 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Example

C++

GroupDataQosPolicy group_data;

//The GroupDataQosPolicy is default constructed with an empty collection
//Collection is a private member so you need to use getters and setters to access
//Add data to the collection

std::vector<eprosima::fastrtps::rtps::octet> vec;

vec = group_data.data_vec(); // Getter function

eprosima: :fastrtps::rtps::octet val = 3;
vec.push_back (val);
group_data.data_vec (vec); //Setter function

XML

This QoS Policy cannot be configured using XML for the moment.

HistoryQosPolicy

This QoS Policy controls the behavior of the system when the value of an instance changes one or more times before
it can be successfully communicated to the existing DataReader entities.

List of QoS Policy data members:

Data Member Name | Type Default Value
kind HistoryQosPolicyKind | KEEP_LAST _HISTORY_QOS
depth int32_t 1

e kind: Controls if the service should deliver only the most recent values, all the intermediate values or do
something in between. See HistoryQosPolicyKind for further details.

* depth: Establishes the maximum number of samples that must be kept on the history. It only has effect if the
kind is set to KEEP_LAST HISTORY_QOS and it needs to be consistent with the ResourceLimitsQosPolicy,
which means that its value must be lower or equal to max_samples_per_instance.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

HistoryQosPolicyKind

There are two possible values (see HistoryQosPolicyKind):

* KEEP_LAST_HISTORY_QOS: The service will only attempt to keep the most recent values of the instance
and discard the older ones. The maximum number of samples to keep and deliver is defined by the depth of the
HistoryQosPolicy, which needs to be consistent with the ResourceLimitsQosPolicy settings. If the limit defined
by depth is reached, the system will discard the oldest sample to make room for a new one.

6.15. DDS Layer 69

Fast DDS Documentation, Release 2.0.0

e KEEP_ALI_HISTORY_QOS: The service will attempt to keep all the values of the instance until it can be
delivered to all the existing Subscribers. If this option is selected, the depth will not have any effect, so the
history is only limited by the values set in ResourceLimitsQosPolicy. If the limit is reached, the behavior of the
system depends on the ReliabilityQosPolicy, if its kind is BEST_EFFORT the older values will be discarded, but
if it is RELIABLE the service blocks the DataWriter until the old values are delivered to all existing Subscribers.

Example

C++

HistoryQosPolicy history;

//The HistoryQosPolicy is default constructed with kind = KEEP_LAST and depth = 1.
//Change the depth to 20

history.depth = 20;

//You can also change the kind to KEEP_ALL but after that the depth will not have_
—effect.

history.kind = KEEP_ALL_HISTORY_QOS;

XML
<topic>
<historyQos>
<kind>KEEP_LAST</kind> <!-- string —-—>
<depth>20</depth> <!/-— uint32 ——>
</historyQos>
</topic>

LatencyBudgetQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the maximum acceptable delay from the time the data is written until the data is inserted
on the DataReader History and notified of the fact. That delay by default is set to O in order to optimize the internal
operations (see LatencyBudgetQosPolicy).

List of QoS Policy data members:

Data Member Name | Type Default Value
duration Duration_ t | ¢c_TimeZero

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It can be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

70 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Compatibility Rule

To maintain the compatibility between LatencyBudgetQosPolicy in DataReaders and DataWriters, the DataWriter
duration must be lower or equal to the DataReader duration.

LifespanQosPolicy

Each data sample written by a DataWriter has an associated expiration time beyond which the data is removed
from the DataWriter and DataReader history as well as from the transient and persistent information caches (see
LifespanQosPolicy).

By default, the duration is infinite, which means that there is not a maximum duration for the validity of the samples
written by the DataWriter.

The expiration time is computed by adding the duration to the source timestamp, which can be calculated automati-
cally if write () member function is called or supplied by the application by means of write_w_timestamp ()
member function. The DataReader is allowed to use the reception timestamp instead of the source timestamp.

List of QoS Policy data members:

Data Member Name | Type Default Value
duration Duration_t | ¢_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Example

C++

LifespanQosPolicy lifespan;

//The LifespanQosPolicy is default constructed with duration set to infinite.
//Change the duration to 5 s

lifespan.duration = {5, 0};

XML

<publisher profile_name="publisher_xml_conf lifespan_profile">
<qOS>
<lifespan>
<duration>
<sec>5</sec>
<nanosec>(0</nanosec>
</duration>
</lifespan>
</qgos>
</publisher>

(continues on next page)

6.15. DDS Layer 71

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<subscriber profile_name="subscriber_xml_conf_lifespan_profile">
<qOS>
<lifespan>
<duration>
<sec>5</sec>
<nanosec>0</nanosec>
</duration>
</lifespan>
</gos>
</subscriber>

LivelinessQosPolicy

This QoS Policy controls the mechanism used by the service to ensure that a particular entity on the network is still
alive. There are different settings that allow distinguishing between applications where data is updated periodically
and applications where data is changed sporadically. It also allows customizing the application regarding the kind of
failures that should be detected by the liveliness mechanism (see LivelinessQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value

kind LivelinessQosPolicyKind | AUTOMATIC_LIVELINESS_QOS
lease duration Duration_ t c _TimeInfinite
announcement_period | Duration_t c_TimeInfinite

e kind: This data member establishes if the service needs to assert the liveliness automatically or if it needs to
wait until the liveliness is asserted by the publishing side. See LivelinessQosPolicyKind for further details.

e Jease duration: Amount of time to wait since the last time the DataWriter asserts its liveliness to consider
that it is no longer alive.

e announcement_period: Amount of time between consecutive liveliness messages sent by the
DataWriter. This data member only takes effect if the kind is AUTOMATIC LIVELINESS_QOS or
MANUAI_BY PARTICIPANT LIVELINESS_QOS and needs to be lower than the lease duration.

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

72 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

LivelinessQosPolicyKind

There are three possible values (see LivelinessQosPolicyKind):

e AUTOMATIC LIVELINESS QOS: The service takes the responsibility for renewing the leases at the required
rates, as long as the local process where the participant is running and the link connecting it to remote par-
ticipants exists, the entities within the remote participant will be considered alive. This kind is suitable for
applications that only need to detect whether a remote application is still running.

* The two Manual modes require that the application on the publishing side asserts the liveliness periodically
before the lease_duration timer expires. Publishing any new data value implicitly asserts the DataWriter’s
liveliness, but it can be done explicitly by calling the assert_liveliness member function.

— MANUAL_BY PARTICIPANT LIVELINESS_QOS: If one of the entities in the publishing side asserts
its liveliness, the service deduces that all other entities within the same DomainParticipant are also alive.

— MANUAL_BY TOPIC _LIVELINESS_0Q0S: This mode is more restrictive and requires that at least one
instance within the DataWriter is asserted to consider that the DataWriter is alive.

Compatibility Rule

To maintain the compatibility between LivelinessQosPolicy in DataReaders and DataWriters, the DataWriter kind
must be higher or equal to the DataReader kind. And the order between the different kinds is:

| AUTOMATIC_LIVELINESS_QOS-api| < |MANUAL_BY_PARTICIPANT_ LIVELINESS_QOS-api| < |MANUAL_
BY_TOPIC_LIVELINESS_QOS-api |

Table with the possible combinations:

DataWriter kind DataReader kind Compati-
bility

AUTOMATIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
AUTOMATIC_LIVELINESS_QOS MANUAI_BY_PARTICIPANT_LIVELINESS |6
AUTOMATIC _LIVELINESS_QOS MANUAIL BY TOPIC_LIVELINESS_QOS No
MANUAI_BY_PARTICIPANT_LIVELINESS |OBBTOMATIC _LIVELINESS_QOS Yes
MANUAI_BY PARTICIPANT LIVELINESS |OMANUAIL_BY PARTICIPANT LIVELINESS_|OYe
MANUAI_BY_PARTICIPANT_LIVELINESS |QMBNUAI,_BY_ TOPIC_LIVELINESS_QOS No
MANUAIL_BY TOPIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
MANUAL_BY_TOPIC_LIVELINESS_QO0OS MANUAL_BY_ PARTICIPANT LIVELINESS |OYe%
MANUAI_BY_ TOPIC_LIVELINESS_QOS MANUAI_BY_ TOPIC_LIVELINESS_QOS Yes

Additionally, the lease_duration of the DataWriter must also be greater than the lease duration of the
DataReader.

6.15. DDS Layer 73

Fast DDS Documentation, Release 2.0.0

Example

C++

LivelinessQosPolicy liveliness;

//The LivelinessQosPolicy is default constructed with kind = AUTOMATIC

//Change the kind to MANUAL_BY_ PARTICIPANT

liveliness.kind = MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;

//The LivelinessQosPolicy 1is default constructed with lease_duration set to infinite
//Change the lease_duration to 1 second

liveliness.lease_duration = {1, 0};

//The LivelinessQosPolicy 1is default constructed with announcement_period set to
—infinite

//Change the announcement_period to 1 ms

liveliness.announcement_period = {0, 1000000};

XML

<publisher profile_name="publisher_xml_conf_liveliness_profile">
<qOS>
<liveliness>
<announcement_period>
<sec>0</sec>
<nanosec>1000000</nanosec>
</announcement_period>
<lease_duration>
<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>
</liveliness>
</qos>
</publisher>

<subscriber profile_name="subscriber_ xml_conf_ liveliness_profile">
<qOS>
<liveliness>
<lease_duration>
<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>
</liveliness>
</qgos>
</subscriber>

74 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

OwnershipQosPolicy

This QoS Policy specifies whether it is allowed for multiple DataWriters to update the same instance of data, and if
so, how these modifications should be arbitrated (see OwnershipQosPolicy).

List of QoS Policy data members:

Data Member Name | Type

Default Value

kind OwnershipQosPolicyKind

SHARED_OWNERSHIP_QOS

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Rule for further details.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility

OwnershipQosPolicyKind

There are two possible values (see OwnershipQosPolicyKind):

* SHARED_ OWNERSHIP_QOS: This option indicates that the service does not enforce unique ownership for each
instance. In this case, multiple DataWriters are allowed to update the same data instance and all the updates are
made available to the existing DataReaders. Those updates are also subject to the TimeBasedFilterQosPolicy or
HistoryQosPolicy settings, so they can be filtered.

* EXCLUSIVE_OWNERSHIP_QOS: This option indicates that each instance can only be updated by one
DataWriter, meaning that at any point in time a single DataWriter owns each instance and is the only one whose
modifications will be visible for the existing DataReaders. The owner can be changed dynamically according to
the highest strength between the alive DataWriters, which has not violated the deadline contract concerning the
data instances. That strength can be changed using the OwnershipStrengthQosPolicy.

Compatibility Rule

To maintain the compatibility between OwnershipQosPolicy in DataReaders and DataWriters, the DataWriter kind

must be equal to the DataReader kind.

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
SHARED_OWNERSHIP_QO0S SHARED_OWNERSHIP_QO0S Yes
SHARED_OWNERSHIP_QO0S EXCLUSIVE_OWNERSHIP_QOS | No
EXCLUSIVE_OWNERSHIP_QOS | SHARED OWNERSHIP_QOS No
EXCLUSIVE_OWNERSHIP_QOS | EXCLUSIVE_OWNERSHIP_QO0S | Yes

6.15. DDS Layer

75

Fast DDS Documentation, Release 2.0.0

Example

C++

OwnershipQosPolicy ownership;

//The OwnershipQosPolicy is default constructed with kind = SHARED.
//Change the kind to EXCLUSIVE

ownership.kind = EXCLUSIVE_OWNERSHIP_QOS;

XML

This QoS Policy cannot be configured using XML for the moment.

OwnershipStrengthQosPolicy

This QoS Policy specifies the value of the strength used to arbitrate among multiple DataWriters that at-
tempt to modify the same data instance. It is only applicable if the OwnershipQosPolicy kind is set to
EXCLUSIVE_OWNERSHIP_QOS.See OwnershipStrengthQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
value uint32_t | 0

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

Example

C++

OwnershipStrengthQosPolicy ownership_strength;

//The OwnershipStrengthQosPolicy is default constructed with value 0
//Change the strength to 10

ownership_strength.value = 10;

XML

This QoS Policy cannot be configured using XML for the moment.

76 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

PartitionQosPolicy

This Qos Policy allows the introduction of a logical partition inside the physical partition introduced by a domain. For
a DataReader to see the changes made by a DataWriter, not only the Topic must match, but also they have to share at

least one logical partition (see PartitionQosPolicy).

The empty string is also considered as a valid partition and it matches with other partition names using the same rules

of string matching and regular-expression matching used for any other partition name.

List of QoS Policy data members:

Data Member Name | Type Default Value
max_size uint32_t 0 (Length Unlimited)
names SerializedPayload_t | Empty List

* max_size: Maximum size for the list of partition names.

* names: List of partition names.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It can be changed on enabled entities.

Example

C++

PartitionQosPolicy partitions;

//The PartitionsQosPolicy is default constructed with max_size = 0.

//Max_size 1s a private member so you need to use getters and setters to access
//Change the max_size to 20

partitions.set_max_size (20); //Setter function

//The PartitionsQosPolicy is default constructed with an empty list of partitions
//Partitions is a private member so you need to use getters and setters to access
//Add new partitions

std: :vector<std::string> part = partitions.names(); //Getter function
part.push_back ("partl");

part.push_back ("part2");

partitions.names (part); //Setter function

XML

<publisher profile name="pub_partition example">
<qOS>
<partition>
<names>
<name>partl</name>
<name>part2</name>
</names>
</partition>
</qos>
</publisher>

(continues on next page)

6.15. DDS Layer

77

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<subscriber profile name="sub_partition_example">
<qgos>
<partition>
<names>
<name>partl</name>
<name>part2</name>
</names>
</partition>
</qos>
</subscriber>

PresentationQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies how the samples representing changes
application. It controls the extent to which changes to data instanc

to data instances are presented to the subscribing
es can be made dependent on each other, as well as

the kind of dependencies that can be propagated and maintained. See PresentationQosPolicy.

List of QoS Policy data members:

Data Member Name | Type

Default Value

access_scope PresentationQosPolicyAccessScopeKind | INSTANCE_PRESENTATION_QOS
coherent_access | bool false
ordered_access bool false

* access_scope: Determines the largest scope spanning the entities for which the order and coherency can be

preserved. See PresentationQosPolicyAccessScopeKind for

further details.

* coherent_access: Controls whether the service will preserve grouping of changes made on the publishing

side, such that they are received as a unit on the subscribing

side.

* ordered_access: Controls whether the service supports the ability of the subscriber to see changes in the

same order as they occurred on the publishing side.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It cannot be changed on enabled entities.

Rule for further details.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility

78

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

PresentationQosPolicyAccessScopeKind

There are three possible values, which have different behaviors depending on the values of coherent_access and or-
dered_access variables (see PresentationQosPolicyAccessScopeKind):

e INSTANCE_PRESENTATION_QOS: The changes to a data instance do not need to be coherent nor ordered
with respect to the changes to any other instance, which means that the order and coherent changes apply to

each instance separately.

— Enabling the coherent_access, in this case, has no effect on how the subscriber can access the data as the
scope is limited to each instance, changes to separate instances are considered independent and thus cannot

be grouped by a coherent change.

— Enabling the ordered_access, in this case, only affects to the changes within the same instance. There-
fore, the changes made to two instances are not necessarily seen in the order they occur even if the same
application thread and DataWriter made them.

e TOPIC_PRESENTATION_QOS: The scope spans to all the instances within the same DataWriter.

— Enabling the coherent_access makes that the grouping made with changes within the same DataWriter
will be available as coherent with respect to other changes to instances in that DataWriter, but will not be
grouped with changes made to instances belonging to different DataWriters.

— Enabling the ordered_access means that the changes made by a single DataWriter are made available to
the subscribers in the same order that they occur, but the changes made to instances through different
DataWriters are not necessarily seen in order.

* GROUP_PRESENTATION_QOS: The scope spans to all the instances belonging to DataWriters within the same

Publisher.

— Enabling the coherent_access, means that the coherent changes made to instances through DataWriters
attached to a common Publisher are made available as a unit to remote subscribers.

— Enabling the ordered_access with this scope makes that the changes done by any of the DataWriters

attached to the same Publisher are made available to the subscribers in the same order they occur.

Compatibility Rule

To maintain the compatibility between PresentationQosPolicy in DataReaders and DataWriters, the Publisher
access_scope must be higher or equal to the Subscriber access_scope. And the order between the differ-

entaccessscopesi&

| INSTANCE_PRESENTATION_QOS—api |

—Q0S—-api |

| TOPIC_PRESENTATION_QOS-api| < |GROUP_PRESENTATION_

Table with the possible combinations:

Publisher scope Subscriber scope Compatibility
INSTANCE_PRESENTATION_QOS | INSTANCE_PRESENTATION_QOS | Yes
INSTANCE_PRESENTATION_QOS | TOPIC_PRESENTATION_QOS No
INSTANCE_PRESENTATION_QOS | GROUP_PRESENTATION_QOS No
TOPIC_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS | Yes
TOPIC_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
TOPIC_PRESENTATION_QOS GROUP_PRESENTATION_QOS No
GROUP_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS | Yes
GROUP_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
GROUP_PRESENTATION_QOS GROUP_PRESENTATION_QOS Yes

6.15. DDS Layer

79

Fast DDS Documentation, Release 2.0.0

Additionally, the coherent_access and ordered_access of the Subscriber can only be enabled if they are also enabled
on the Publisher.

ReaderDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataReader with respect to the lifecycle of the data instances it manages,
that is, the instances that have been received and for which the DataReader maintains some internal resources. The
DataReader maintains the samples that have not been taken by the application, subject to the constraints imposed by
HistoryQosPolicy and ResourceLimitsQosPolicy. See ReaderDatalifecycleQosPolicy.

Under normal circumstances, the DataReader can only reclaim the resources associated with data instances if there
are no writers and all the samples have been taken. But this fact can cause problems if the application does not take
those samples as the service will prevent the DataReader from reclaiming the resources and they will remain in the
DataReader indefinitely. This QoS exist to avoid that situation.

List of QoS Policy data members:

Data Member Name Type Default Value
autopurge_no_writer_samples_delay | Duration t | ¢ _TimeInfinite
autopurge_disposed_samples_delay Duration_t | ¢c_TimeInfinite

* autopurge_no_writer samples_delay: Defines the maximum duration the DataReader must retain
the information regarding an instance once its instance_state becomes NOT _ALIVE_NO_WRITERS.
After this time elapses, the DataReader purges all the internal information of the instance, including the untaken
samples that will be lost.

e autopurge _disposed_samples_delay: Defines the maximum duration the DataReader must retain
the information regarding an instance once its instance_state becomes NOT _ALIVE DISPOSED. After
this time elapses, the DataReader purges all the samples for the instance.

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

ReliabilityQosPolicy

This QoS Policy indicates the level of reliability offered and requested by the service. See
ReliabilityQosPolicy.

List of QoS Policy data members:

Data Member | Type Default Value
Name
kind Reliabili- BEST EFFORT RELIABILITY QOS for DataReaders

tyQosPolicyKind | RELIABLE_RELTABILITY_QOS for DataWriters
max_blocking| thimeation_t 100 ms

* kind: Specifies the behavior of the service regarding delivery of the samples. See ReliabilityQosPolicyKind
for further details.

80 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* max_blocking_time: Configures the maximum duration that the write operation can be blocked.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

ReliabilityQosPolicyKind

There are two possible values ():

* BEST _EFFORT_RELIABILITY QOS:Itindicates that it is acceptable not to retransmit the missing samples,
so the messages are sent without waiting for an arrival confirmation. Presumably new values for the samples
are generated often enough that it is not necessary to re-send any sample. However, the data samples sent by the
same DataWriter will be stored in the DataReader history in the same order they occur. In other words, even if
the DataReader misses some data samples, an older value will never overwrite a newer value.

* RELTABLE_RELIABILITY_ QOS: It indicates that the service will attempt to deliver all samples of the
DataWriter’s history expecting an arrival confirmation from the DataReader. The data samples sent by the
same DataWriter cannot be made available to the DataReader if there are previous samples that have not been
received yet. The service will retransmit the lost data samples in order to reconstruct a correct snapshot of the
DataWriter history before it is accessible by the DataReader.

This option may block the write operation, hence the max_bIlocking_ time is set that will unblock it once
the time expires. But if the max blocking time expires before the data is sent, the write operation will
return an error.

Compatibility Rule

To maintain the compatibility between ReliabilityQosPolicy in DataReaders and DataWriters, the DataWriter kind
must be higher or equal to the DataReader kind. And the order between the different kinds is:

|BEST_EFFORT_RELIABILITY_QOS-api| < |RELIABLE_RELIABILITY_QOS-api|

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
BEST _EFFORT_RELIABILITY_QOS | BEST EFFORT_RELIABILITY_QOS | Yes
BEST EFFORT_RELIABILITY QOS | RELIABLE_RELIABILITY_QOS No
RELIABLE_RELIABILITY QOS BEST EFFORT_RELIABILITY_QOS | Yes
RELIABLE_RELIABILITY QOS RELIABLE_RELIABILITY_ QOS Yes

6.15. DDS Layer 81

Fast DDS Documentation, Release 2.0.0

Example

C++

ReliabilityQosPolicy reliability;

//The ReliabilityQosPolicy is default constructed with kind = BEST_EFFORT
//Change the kind to RELIABLE

reliability.kind = RELIABLE_RELIABILITY_QOS;

//The ReliabilityQosPolicy 1is default constructed with max_blocking time = 100ms
//Change the max_blocking_ time to 1s

reliability.max_blocking _time = {1, 0};

XML

<publisher profile_name="publisher_xml_ conf_ reliability_profile">

<gos>
<reliability>
<kind>RELIABLE</kind>
<max_blocking_time>
<sec>1</sec>
<nanosec>(0</nanosec>
</max_blocking_ time>
</reliability>
</qgos>
</publisher>

<subscriber profile_name="subscriber_xml_conf_reliability_profile">
<gos>
<reliability>
<kind>BEST_EFFORT</kind>
</reliability>
</qgos>
</subscriber>

ResourceLimitsQosPolicy

This QoS Policy controls the resources that the service can use in order to meet the requirements imposed by the
application and other QoS Policies. See ResourcelLimitsQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
max_samples int32_t | 5000
max_instances int32_t | 10
max_samples_per_instance | int32_t | 400
allocated _samples int32_t | 100

* max_samples: Controls the maximum number of samples that the DataWriter or DataReader can manage
across all the instances associated with it. In other words, it represents the maximum samples that the middle-
ware can store for a DataReader or DataWriter.

e max_instances: Controls the maximum number of instances that a DataWriter or DataReader can manage.

82 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* max_samples_per._instance: Controls the maximum number of samples within an instance that the
DataWriter or DataReader can manage.

* allocated_samples: States the number of samples that will be allocated on initialization.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Consistency Rule

To maintain the consistency within the ResourceLimitsQosPolicy, the values of the data members must follow the next
conditions:

* The value of max_samples must be higher or equal to the value of max_samples per instance.

e The value established for the HistoryQosPolicy depth must be lower or equal to the value stated for
max_samples_per_instance.

Example

C++

ResourcelLimitsQosPolicy resource_limits;

//The ResourceLimitsQosPolicy is default constructed with max_samples = 5000
//Change max_samples to 200

resource_limits.max_samples = 200;

//The ResourceLimitsQosPolicy is default constructed with max_instances = 10
//Change max_instances to 20

resource_limits.max_instances = 20;

//The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance =
400

//Change max_samples_per_instance to 100 as it must be lower than max_samples

[

resource_limits.max_samples_per_instance = 100;

//The ResourceLimitsQosPolicy is default constructed with allocated _samples = 100
//Change allocated_samples to 50

resource_limits.allocated_samples = 50;

XML

<publisher profile_name="publisher_xml_conf_ resource_limits_profile">
<topic>
<resourcelLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_instance>100</max_samples_per_instance>
<allocated_samples>50</allocated_samples>
</resourcelLimitsQos>
</topic>
</publisher>

(continues on next page)

6.15. DDS Layer 83

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<subscriber profile_name="subscriber_xml_conf_resource_limits_profile">
<topic>
<resourceLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_ instance>100</max_samples_per_instance>
<allocated_samples>50</allocated_samples>
</resourceLimitsQos>
</topic>
</subscriber>

TimeBasedFilterQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Filter that allows a DataReader to specify that it is interested only in a subset of the values of the data. This filter states
that the DataReader does not want to receive more than one value each minimum separation, regardless of how
fast the changes occur. See TimeBasedFilterQosPolicy.

The minimum separation must be lower than the DeadlineQosPolicy period. By default, the
minimum_separation is zero, which means that the DataReader is potentially interested in all the values.

List of QoS Policy data members:

Data Member Name Type Default Value
minimum_separation | Duration_t | ¢_TimeZero

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

TopicDataQosPolicy

Allows the application to attach additional information to a created 7opic so that when it is discovered by a remote
application, it can access the data and use it. See TopicDataQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

Note: This QoS Policy concerns to Topic entities.

It can be changed even if it is already created.

84 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
TopicDataQosPolicy topic_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;

vec = topic_data.data_vec(); // Getter Function

//Add new octet to topic data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back (val);
topic_data.data_vec(vec); //Setter Function

XML

This QoS Policy cannot be configured using XML for the moment.

TransportPriorityQosPolicy

Warning: This QoS Policy will be implemented in future releases.

The purpose of this QoS Policy is to allow the service to take advantage of those transports capable of sending
messages with different priorities. It establishes the priority of the underlying transport used to send the data. See
TransportPriorityQosPolicy

You can choose any value within the 32-bit range for the priority. The higher the value, the higher the priority.

List of QoS Policy data members:

Data Member Name | Type Default Value
value uint32_t | 0

Note: This QoS Policy concerns to Topic and DataWriter entities.

It can be changed on enabled entities.

UserDataQosPolicy

Allows the application to attach additional information to the Entity object so that when the entity is discovered the
remote application can access the data and use it. For example, it can be used to attach the security credentials to
authenticate the source from the remote application. See UserDataQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

6.15. DDS Layer 85

Fast DDS Documentation, Release 2.0.0

Note: This QoS Policy concerns to all DDS entities.

It can be changed on enabled entities.

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
UserDataQosPolicy user_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;

vec = user_data.data_vec(); // Getter Function

//Add new octet to topic data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back (val);
user_data.data_vec (vec); //Setter Function

XML

This QoS Policy cannot be configured using XML for the moment.

WriterDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataWriter with respect to the lifecycle of the data instances it manages
, that is, the instance that has been either explicitly registered with the DataWriter using the register operations or
implicitly by directly writing data.

The autodispose _unregistered_instances controls whether a DataWriter will automatically dispose an
instance each time it is unregistered. Even if it is disabled, the application can still get the same result if it uses the
dispose operation before unregistering the instance.

List of QoS Policy data members:

Data Member Name Type | Default Value

autodispose_unregistered _instances | bool true

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

86 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

eProsima Extensions

The eProsima QoS Policies extensions are those that allow changing the values of the RTPS layer configurable settings.

* DisablePositiveACKsQosPolicy
* ParticipantResourceLimitsQos
* PropertyPolicyQos

* PublishModeQosPolicy

* ReaderResourceLimitsQos

* RTPSEndpointQos

* RTPSReliableReaderQos

* RTPSReliableWriterQos

* TransportConfigQos

* TypeConsistencyQos

» WireProtocolConfigQos

» WriterResourceLimitsQos

DisablePositiveACKsQosPolicy

This additional QoS allows reducing network traffic when strict reliable communication is not required and bandwidth
is limited. It consists in changing the default behavior by which positive acks are sent from readers to writers. Instead,
only negative acks will be sent when a reader is missing a sample, but writers will keep data for a sufficient time before
considering it as acknowledged. See DisablePositiveACKsQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
enabled bool false
duration Duration_t | ¢_TimeInfinite

* enabled: Specifies if the QoS is enabled or not. If it is true means that the positive acks are disabled and the

DataReader only sends negative acks. Otherwise, both positive and negative acks are sent.

e duration: State the duration that the DataWriters keep the data before considering it as acknowledged. This

value does not apply to DataReaders.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Rule for further details.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility

6.15. DDS Layer

87

Fast DDS Documentation, Release 2.0.0

Compatibility Rule

To maintain the compatibility between DisablePositiveACKsQosPolicy in DataReaders and DataWriters, the
DataReader cannot have this QoS enabled if the DataWriter have it disabled.

Table with the possible combinations:

DataWriter enabled value | DataReader enabled value | Compatibility
true true Yes
true false Yes
false true No
false false Yes

Example

C++

DisablePositiveACKsQosPolicy disable_acks;

//The DisablePositiveACKsQosPolicy is default constructed with enabled = false
//Change enabled to true

disable_acks.enabled = true;

//The DisablePositiveACKsQosPolicy is default constructed with infinite duration
//Change the duration to 1 second

disable_acks.duration = {1, 0};

XML

<publisher profile_name="publisher_xml_conf_disable_positive_acks_profile">
<qos>
<disablePositiveAcks>
<enabled>true</enabled>
<duration>
<sec>1</sec>
</duration>
</disablePositiveAcks>
</qgos>
</publisher>

<subscriber profile_name="subscriber_xml_conf_disable_positive_acks_profile">
<gos>
<disablePositiveAcks>
<enabled>true</enabled>
</disablePositiveAcks>
</qgos>
</subscriber>

88 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

ParticipantResourceLimitsQos

This QoS configures allocation limits and the use of physical memory for internal resources.

ParticipantResourceLimitsQos.

List of QoS Policy data members:

Data Member Name | Type

locators RemoteLocatorsAllocationAttributes
participants ResourceLimitedContainerConfig
readers ResourceLimitedContainerConfig
writers ResourceLimitedContainerConfig
send_buffers SendBuffersAllocationAttributes
data_limits VariableLengthDataLimits

e Jocators: Defines the limits for collections of remote locators.

See

* participants: Specifies the allocation behavior and limits for collections dependent on the total number of

participants.

* readers: Specifies the allocation behavior and limits for collections dependent on the total number of readers

per participant.

* writers: Specifies the allocation behavior and limits for collections dependent on the total number of writers

per participant.

* send_buffers: Defines the allocation behavior and limits for the send buffer manager.

* data_limits: States the limits for variable-length data.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

RemotelLocatorsAllocationAttributes

This structure holds the limits for the remote
RemoteLocatorsAllocationAttributes.

List of structure members:

locators’ collections.

Member Name Type

Default Value

max_unicast_locators size_t

4

max_multicast_locators | size_t

1

See

* max_unicast_locators: This member controls the maximum number of unicast locators to keep for each
discovered remote entity. It is recommended to use the highest number of local addresses found on all the

systems belonging to the same domain.

e max_multicast_locators: This member controls the maximum number of multicast locators to keep for
each discovered remote entity. The default value is usually enough, as it does not make sense to add more than

one multicast locator per entity.

6.15. DDS Layer

89

Fast DDS Documentation, Release 2.0.0

ResourceLimitedContainerConfig

This structure holds the limits of a resource limited collection, as well as the allocation configuration, which can be
fixed size or dynamic size.

List of structure members:

Member Name | Type Default Value

initial size_t | 0O

maximum size_t | std::numeric_limits<size_t>::max ()
increment size_t | 1 (dynamic size), O (fixed size)

e initial: Indicates the number of elements to preallocate in the collection.
* maximum: Specifies the maximum number of elements allowed in the collection.

* increment: States the number of items to add when the reserved capacity limit is reached. This member has
a different default value depending on the allocation configuration chosen.

SendBuffersAllocationAttributes

This structure holds the limits for the allocations of the send buffers. See
SendBuffersAllocationAttributes.

List of structure members:

Member Name Type Default Value
preallocated_number | size_t | 0
dynamic bool false

e preallocated_number: This member controls the initial number of send buffers to be allocated. The
default value will perform an initial guess of the number of buffers required, based on the number of threads
from which a send operation could be started.

e dynamic: This member controls how the buffer manager behaves when a send buffer is not available. When
true, a new buffer will be created. Otherwise, it will wait for a buffer to be returned.

VariableLengthDataLimits

This structure holds the limits for variable-length data. See VariablelLengthDatalLimits.

List of structure members:

Member Name Type Default Value
max_properties | size_t | 0

max_user_data size_t | O
max_partitions | size_t | 0

* max_properties: Defines the maximum size, in octets, of the properties data in the local or remote partici-
pant.

* max_user._data: Establishes the maximum size, in octets, of the user data in the local or remote participant.

* max_partitions: States the maximum size, in octets, of the partitions data in the local or remote participant.

920 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Example

C++

ParticipantResourcelLimitsQos participant_limits;

//Set the maximum size of participant resource limits collection to 3 and it
—allocation configuration to fixed size

participant_limits.participants =_

—eprosima: :fastrtps::ResourcelLimitedContainerConfig::fixed_size_configuration (3u);
//Set the maximum size of reader's resource limits collection to 2 and its allocation,
—configuration to fixed size

participant_limits.readers =_
—eprosima: :fastrtps::ResourcelimitedContainerConfig::fixed_size_configuration (2u);
//Set the maximum size of writer's resource limits collection to 1 and its allocation,
—configuration to fixed size

participant_limits.writers =_

—eprosima: :fastrtps::ResourcelimitedContainerConfig::fixed_size_configuration(lu);
//Set the maximum size of the partition data to 256

participant_limits.data_limits.max_partitions = 256u;
//Set the maximum size of the user data to 256
participant_limits.data_limits.max_user_data = 256u;
//Set the maximum size of the properties data to 512
participant_limits.data_limits.max_properties = 512u;
XML

<_/ J—

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
—-—>

<participant profile_name="participant_alloc_gos_example">

<rtps>
<allocation>
<!-— We know we have 3 participants on the domain —->
<total_participants>

<initial>3</initial>

<maximum>3</maximum>

<increment>0</increment>
</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_ readers>

<initial>2</initial>

<maximum>2</maximum>

<increment>0</increment>
</total_readers>
<!-- We know we have at most 1 writer on each participant -->
<total_ writers>

<initial>l</initial>

<maximum>1</maximum>

<increment>0</increment>
</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

(continues on next page)

6.15. DDS Layer 91

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

</allocation>
</rtps>
</participant>

PropertyPolicyQos

This additional QoS Policy (PropertyPolicyQos) stores name/value pairs that can be used to configure certain
DDS settings that cannot be configured directly using an standard QoS Policy. In Fast DDS, it can be used to configure
the security settings (See Security for further details of the security functionality).

Example

C++

PropertyPolicyQos property_policy;

//Add new property for the Auth:PKI-DH plugin
property_policy.properties () .emplace_back ("dds.sec.auth.plugin", "builtin.PKI-DH");
//Add new property for the Access:Permissions plugin
property_policy.properties () .emplace_back (eprosima::fastrtps::rtps::Property("dds.sec.
—access.plugin", "builtin.Access-Permissions"));

XML

<participant profile_name="secure_participant_conf_all plugin_xml_profile">
<rtps>
<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin —-->

<property>
<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Activate Access:Permissions plugin —-->

<property>
<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>

</properties>
</propertiesPolicy>
</rtps>
</participant>

92 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

PublishModeQosPolicy

This QoS Policy configures how the DataWriter sends the data. See PublishModeQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
kind PublishModeQosPolicyKind | SYNCHRONOUS_PUBLISH_MODE

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

PublishModeQosPolicyKind

There are two possible values (see PublishModeQosPolicyKind):

e SYNCHRONOUS_PUBLISH_MODE: The data is sent in the context of the user thread that calls the write opera-
tion.

* ASYNCHRONOUS_PUBLISH _MODE: An internal thread takes the responsibility of sending the data asyn-
chronously. The write operation returns before the data is actually sent.

Example

C++

PublishModeQosPolicy publish_mode;

//The PublishModeQosPolicy is default constructed with kind = SYNCHRONOUS
//Change the kind to ASYNCHRONOUS

publish_mode.kind = ASYNCHRONOUS_PUBLISH_MODE;

XML

<publisher profile_name="publisher_profile_gos_publishmode">
<qOS>
<publishMode>
<kind>ASYNCHRONOUS</kind>
</publishMode>
</gos>
</publisher>

6.15. DDS Layer 93

Fast DDS Documentation, Release 2.0.0

ReaderResourceLimitsQos

This QoS Policy states the limits for the matched DataWriters® resource limited collections based on the maximum
number of DataWriters that are going to match with the DataReader. See ReaderResourcelLimitsQos.

List of QoS Policy data members:

Data Member Name Type
matched_publisher_allocation | ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

ReaderResourcelLimitsQos reader_limits;

//Set the maximum size for writer matched resource limits collection to 1 and its,
—allocation configuration to fixed size
reader_limits.matched_publisher_allocation =

—eprosima: :fastrtps::ResourcelimitedContainerConfig::fixed_size_configuration(lu);

XML

<subscriber profile_name="alloc_gos_example_sub">
<!-— we know we will only have one matching publisher ——>
<matchedPublishersAllocation>
<initial>l</initial>
<maximum>1</maximum>
<increment>0</increment>
</matchedPublishersAllocation>
</subscriber>

RTPSEndpointQos

This QoS Policy configures the aspects of an RTPS endpoint, such as the list of locators, the identifiers, and the history
memory policy. See RTPSEndpointQos.

List of QoS Policy data members:

Data Member Name Type Default Value
unicast_locator 1list LocatorList_t Empty List
multicast_locator_list | LocatorList_t Empty List

remote locator list LocatorList_t Empty List

user_defined_ id intlé_t -1

entity_id intl6_t -1

history_memory_policy MemoryManagementPolicy | PREALLOCATED_MEMORY_MODE

94 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* unicast_locator._list: Defines the list of unicast locators associated to the DDS Entity. DataReaders
and DataWriters inherit the list of unicast locators set in the DomainParticipant, but it can be changed by means
of this QoS.

e multicast_locator._list: Stores the list of multicast locators associated to the DDS Entity. By default,
DataReaders and DataWriters do not use any multicast locator, but it can be changed by means of this QoS.

e remote_locator_11ist: States the list of remote locators associated to the DDS Entity.
* user_defined_ id: Establishes the unique identifier used for StaticEndpointDiscovery.
e entity_id: The user can specify the identifier for the endpoint.

* history_memory_policy: Indicates the way the memory is managed in terms of dealing with the
CacheChanges.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

MemoryManagementPolicy

There are four possible values (see MemoryManagementPolicy):

* PREALLOCATED_MEMORY_ MODE: This option sets the size to the maximum of each data type. It produces
the largest memory footprint but the smallest allocation count.

* PREALLOCATED_WITH_ REALLOC_MEMORY_MODE: This option set the size to the default for each data type
and it requires reallocation when a bigger message arrives. It produces a lower memory footprint at the expense
of increasing the allocation count.

* DYNAMIC RESERVE_MEMORY MODE: This option allocates the size dynamically at the time of message ar-
rival. It produces the least memory footprint but the highest allocation count.

* DYNAMIC REUSABLE_MEMORY MODE: This option is similar to DYNAMIC_RESERVE_MEMORY_MODE,
but the allocated memory is reused for future messages.

Example

C++

RTPSEndpointQos endpoint;

//Add new unicast locator with port 7800
eprosima::fastrtps::rtps::Locator_t new_unicast_locator;
new_unicast_locator.port = 7800;
endpoint.unicast_locator_list.push_back (new_unicast_locator);
//Add new multicast locator with IP 239.255.0.4 and port 7900
eprosima: :fastrtps::rtps::Locator_t new_multicast_locator;
eprosima: :fastrtps::rtps::IPLocator: :setIPv4 (new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
endpoint.multicast_locator_list.push_back (new_multicast_locator);
//Set 3 as user defined id

endpoint.user_defined_id = 3;

//Set 4 as entity id

endpoint.entity_id = 4;

(continues on next page)

6.15. DDS Layer 95

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

//The RTPSEndpointQos is default constructed with history_memory_policy = PREALLOCATED
//Change the history_memory_policy to DYNAMIC_RESERVE

endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_RESERVE_MEMORY__
—MODE;

XML

<publisher profile_name="publisher_xml_conf_ unicast_locators_profile">
<userDefinedID>3</userDefinedID>
<entityID>2</entityID> <!/-- Intl6 ——>
<unicastLocatorList>
<locator>
<udpv4>
<port>7800</port>
</udpv4d>
</locator>
</unicastLocatorList>
<multicastLocatorList>
<locator>
<udpv4>
<address>239.255.0.4</address>
<port>7900</port>
</udpv4>
</locator>
</multicastLocatorList>
<!-— The history memory policy is changed to DYNAMIC RESERVE —-->
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</publisher>

<subscriber profile_name="subscriber_xml_conf_unicast_locators_profile">
<userDefinedID>5</userDefinedID>
<entityID>4</entityID> <!/-- Intl6 ——>
<unicastLocatorList>
<locator>
<udpv4>
<port>7800</port>
</udpv4>
</locator>
</unicastLocatorList>
<multicastLocatorList>
<locator>
<udpv4>
<address>239.255.0.4</address>
<port>7900</port>
</udpv4>
</locator>
</multicastLocatorList>
<historyMemoryPolicy>PREALLOCATED_WITH_ REALLOC</historyMemoryPolicy>
</subscriber>

96 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

RTPSReliableReaderQos

This RTPS QoS Policy allows the configuration of several RTPS reliable reader’s aspects. See
RTPSReliableReaderQos.

List of QoS Policy data members:

Data Member Name Type
times ReaderTimes
disable_positive_ACKs | DisablePositiveACKsQosPolicy

e times: Defines the duration of the RTPSReader events. See ReaderTimes for further details.

e disable positive_ACKs: Configures the settings to disable the positive acks. See DisablePositiveACK-
sQosPolicy for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

ReaderTimes

This structure defines the times associated with the Reliable Readers’ events. See ReaderTimes.

List of structure members:

Member Name Type Default Value
initialAcknackDelay Duration_t | 70 ms
heartbeatResponseDelay | Duration_t | Sms

e initialAcknackDelay: Defines the duration of the initial acknack delay.

* heartbeatResponseDelay: Establishes the duration of the delay applied when a heartbeat message is
received.

Example

C++

RTPSReliableReaderQos reliable_reader_dgos;

//The RTPSReliableReaderQos 1s default constructed with initialAcknackDelay = 70 ms
//Change the initialAcknackDelay to 70 nanoseconds
reliable_reader_gos.times.initialAcknackDelay = {0, 70};

//The RTPSReliableWriterQos is default constructed with heartbeatResponseDelay = 5 ms
//Change the heartbeatResponseDelay to 5 nanoseconds
reliable_reader_gos.times.heartbeatResponseDelay = {0, 5};

//You can also change the DisablePositiveACKsQosPolicy. For further details see,
—DisablePositiveACKsQosPolicy section.
reliable_reader_gos.disable_positive_ACKs.enabled = true;

6.15. DDS Layer 97

Fast DDS Documentation, Release 2.0.0

XML

<subscriber profile_name="sub_profile_name">

<times> <!-- readerTimesType —-—>
<initialAcknackDelay> <!/-— DURATION ——>
<sec>0</sec>

<nanosec>70</nanosec>
</initialAcknackDelay>
<heartbeatResponseDelay> <!/-- DURATION ——>

<sec>0</sec>

<nanosec>5</nanosec>
</heartbeatResponseDelay>

</times>

<!--You can also change the values of DisablePositiveACKsQosPolicy.—-—>

<!--See DisablePositiveACKsQosPolicy section for further details-—>
</subscriber>

RTPSReliableWriterQos

This RTPS QoS Policy allows the configuration of several RTPS reliable writer’s aspects.

RTPSReliablelWriterQos.

List of QoS Policy data members:

Data Member Name Type
times WriterTimes
disable _positive_acks | DisablePositiveACKsQosPolicy

e times: Defines the duration of the RTPSWriter events. See WriterTimes for further details.

See

* disable positive_ acks: Configures the settings to disable the positive acks. See DisablePositiveACK-

sQosPolicy for further details.

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

WriterTimes

This structure defines the times associated with the Reliable Writers’ events.

List of structure members:

Member Name Type Default Value
initialHeartbeatDelay Duration_ t | 12ms
heartbeatPeriod Duration_t | 3s
nackResponseDelay Duration_t | 5ms
nackSupressionDuration | Duration_t | Os

e initialHeartbeatDelay: Defines duration of the initial heartbeat delay.

* heartbeatPeriod: Specifies the interval between periodic heartbeats.

98 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* nackResponseDelay: Establishes the duration of the delay applied to the response of an ACKNACK mes-
sage.

* nackSupressionDuration: The RTPSWriter ignores the nack messages received after sending the data
until the duration time elapses.

Example

C++

RTPSReliableWriterQos reliable_writer_gos;

//The RTPSReliableWriterQos is default constructed with initialHeartbeatDelay = 12 ms
//Change the initialHeartbeatDelay to 20 nanoseconds
reliable_writer_gos.times.initialHeartbeatDelay = {0, 20};

//The RTPSReliableWriterQos 1is default constructed with heartbeatPeriod = 3 s
//Change the heartbeatPeriod to 5 seconds

reliable_writer_gos.times.heartbeatPeriod = {5, 0};

//The RTPSReliableWriterQos is default constructed with nackResponseDelay = 5 ms
//Change the nackResponseDelay to 10 nanoseconds

reliable_writer_gos.times.nackResponseDelay = {0, 10};

//The RTPSReliableWriterQos 1is default constructed with nackSupressionDuration = 0 s
//Change the nackSupressionDuration to 20 nanoseconds
reliable_writer_gos.times.nackSupressionDuration = {0, 20};

//You can also change the DisablePositiveACKsQosPolicy. For further details see,
—DisablePositiveACKsQosPolicy section.
reliable_writer_gos.disable_positive_acks.enabled = true;

XML

<publisher profile name="pub_profile name">
<times> <!-- writerTimesType ——>
<initialHeartbeatDelay> </-— DURATION —->
<sec>0</sec>
<nanosec>20</nanosec>
</initialHeartbeatDelay>
<heartbeatPeriod> <!/-—- DURATION ——>
<sec>5</sec>
<nanosec>0</nanosec>
</heartbeatPeriod>
<nackResponseDelay> <!/-- DURATION ——>
<sec>0</sec>
<nanosec>10</nanosec>
</nackResponseDelay>
<nackSupressionDuration> </-- DURATION —->
<sec>0</sec>
<nanosec>20</nanosec>
</nackSupressionDuration>

</times>

<!--You can also change the values of DisablePositiveACKsQosPolicy.—-—>

<!--See DisablePositiveACKsQosPolicy section for further details——>
</publisher>

6.15. DDS Layer 99

Fast DDS Documentation, Release 2.0.0

TransportConfigQos

This QoS Policy allows the configuration of the transport layer settings. See TransportConfigQos.

List of QoS Policy data members:

Data Member Name Type Default
Value
user_transports std: :vector<std::shared_ptr<TransportDescriptorInterfacs
use_builtin_transportdool Empty vec-
tor
send_socket_buffer _sjaant32_t true
listen _socket_buffer|amae32_t 0

e user_transports: This data member defines the list of transports to use alongside or in place of builtins.

* use builtin transports: It controls whether the built-in transport layer is enabled or disabled. If it is
set to false, the default UDPv4 implementation is disabled.

* send_socket_buffer size: By default, Fast DDS creates socket buffers using the system default size.

This data member allows to change the send socket buffer size used to send data.

e listen_socket_buffer_size: The listen socket buffer size is also created with the system default size,

but it can be changed usin

g this data member.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

TransportDescriptorinterface

This structure is the base for the data type used to define transport configuration.

List of structure members:

Member Name Type
maxMessageSize uint32_t
maxInitialPeersRange | uint32_t

* maxMessageSize: This member sets the maximum size in bytes of the transport’s message buffer.

* maxInitialPeersRange: This member states the maximum number of guessed initial peers to try to con-

nect.

Example

C++

>>

TransportConfigQos transport;

//Add new transport to the list of user transports

std: :shared_ptr<eprosima::fastdds::rtps::UDPv4TransportDescriptor> descriptor =
std: :make_shared<eprosima::fastdds::rtps::UDPv4TransportDescriptor>();

(continues on next page)

100

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

descriptor->sendBufferSize = 9126;
descriptor->receiveBufferSize = 9126;
transport.user_transports.push_back (descriptor);
//Set use_builtin transports to false
transport.use_builtin_transports = false;

XML

<transport_descriptors>
<transport_descriptor>
<transport_id>my_transport</transport_id>
<type>UDPvi</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
</transport_descriptor>
</transport_descriptors>

<participant profile name="my_ transport">
<rtps>
<userTransports>
<transport_id>my_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>

TypeConsistencyQos

This QoS Policy allows the configuration of the X7ypes extension QoS on the
TypeConsistencyQos.

List of QoS Policy data members:

Data Member Name Type
type_consistency | TypeConsistencyEnforcementQosPolicy
representation DataRepresentationQosPolicy

DataReader. See

* type_consistency: It states the rules for the data types compatibility. See TypeConsistencyEnforcemen-

tQosPolicy for further details.

* representation: It specifies the data representations valid for the entities. See DataRepresentationQosPol-

icy for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

6.15. DDS Layer

101

Fast DDS Documentation, Release 2.0.0

Example

C++

TypeConsistencyQos consistency_gos;

//You can change the DataRepresentationQosPolicy. For further details see,
—DataRepresentationQosPolicySection section.
consistency_gos.representation.m_value.push_back (DataRepresentationId_t::XCDR2_DATA__
—REPRESENTATION) ;

//You can change the TypeConsistencyEnforcementQosPolicy. For further details see_
—TypeConsistencyEnforcementQosPolicy section.
consistency_gos.type_consistency.m_kind = TypeConsistencyKind: :ALLOW_TYPE_COERCION;

XML

This QoS Policy cannot be configured using XML for the moment.

WireProtocolConfigQos

This QoS Policy allows the configuration of the wire protocol. See Wi reProtocolConfigQos.

List of QoS Policy data members:

Data Member Name Type Default Value
prefix fastrtps::rtps::GuidPrefix_t 0
participant_id int32_t -1

builtin RTPS BuiltinAttributes
throughput_controller ThroughputControllerDescriptor
default_unicast_locator_ list LocatorList_t Empty List
default_multicast_locator_list | LocatorList_t Empty List

* prefix: This data member allows the user to set manually the GUID prefix.

e participant_id: It sets the participant identifier. By default, it will be automatically generated by the

Domain.

e pbuiltin: This data member allows the configuration of the built-in parameters. See RTPS BuiltinAttributes

for further details.

* throughput_controller: It allows the configuration of the throughput settings.

e default_unicast_locator 1ist: States the default list of unicast locators to be used for any endpoint
defined inside the RTPSParticipant in the case that it was defined without unicast locators. This list should

include at least one locator.

e default_multicast_locator list: Stores the default list of multicast locators to be used for any
endpoint defined inside the RTPSParticipant in the case that it was defined without multicast locators. This list

is usually left empty.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

102 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

ThroughputControllerDescriptor

This structure allows to limit the output bandwidth. See ThroughputControllerDescriptor.

List of structure members:

Member Name Type
bytesPerPeriod uint32_t
periodMillisecs | uint32_t

* bytesPerPeriod: This member states the number of bytes that this controller will allow in a given period.

* periodMillisecs: It specifies the window of time in which no more than bytesPerPeriod bytes are allowed.

Example

C++

WireProtocolConfigQos wire_protocol;

//Set the guid prefix

std::istringstream("72.61.73.70.66.61.72.6d.74.65.73.74") >> wire_protocol.prefix;
//Configure Builtin Attributes
wire_protocol.builtin.discovery_config.discoveryProtocol =

—eprosima: :fastrtps::rtps::DiscoveryProtocol_t::SERVER;

//Add locator to unicast 1ist

eprosima::fastrtps::rtps::Locator_t server_locator;

eprosima: :fastrtps::rtps::IPLocator: :setIPv4 (server_locator, "192.168.10.57");
server_locator.port = 56542;
wire_protocol.builtin.metatrafficUnicastLocatorList.push_back (server_locator);
// Limit to 300kb per second.

eprosima: :fastrtps::rtps::ThroughputControllerDescriptor,,
—slowPublisherThroughputController{300000, 1000};
wire_protocol.throughput_controller = slowPublisherThroughputController;

//Add locator to default unicast locator 1list
eprosima::fastrtps::rtps::Locator_t unicast_locator;

eprosima: :fastrtps::rtps::IPLocator: :setIPv4 (unicast_locator, 192, 168, 1, 41);
unicast_locator.port = 7400;
wire_protocol.default_unicast_locator_list.push_back (unicast_locator);

//Add locator to default multicast locator 1list
eprosima::fastrtps::rtps::Locator_t multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4 (multicast_locator, 192, 168, 1, 41);
multicast_locator.port = 7400;
wire_protocol.default_multicast_locator_list.push_back (multicast_locator);

XML

<participant profile_name="UDP SERVER" is_default_profile="true">
<rtps>
<prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>
<builtin>
<discovery_ config>
<discoveryProtocol>SERVER</discoveryProtocol>
</discovery_config>

(continues on next page)

6.15. DDS Layer 103

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<metatrafficUnicastLocatorList>
<locator>
<udpv4>

<address>192.168.10.57</address>

<port>56542</port>
</udpv4d>
</locator>

</metatrafficUnicastLocatorList>
</builtin>
<throughputController>

<bytesPerPeriod>300000</bytesPerPeriod>

<periodMillisecs>1000</periodMillisecs>
</throughputController>
<defaultUnicastLocatorList>

<locator>
<udpv4>
<!-- Access as physical, like UDP
<port>7400</port>
<address>192.168.1.41</address>
</udpv4>
</locator>
</defaultUnicastLocatorList>
<defaultMulticastLocatorList>
<locator>
<udpvi4>
<!-— Access as physical, like UDP
<port>7400</port>
<address>192.168.1.41</address>
</udpvd>
</locator>
</defaultMulticastLocatorList>
</rtps>
</participant>

WriterResourceLimitsQos

This QoS Policy states the limits for the matched DataReaders’ resource limited collections based on the maximum
number of DataReaders that are going to match with the DataWriter. See WriterResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type

matched_subscriber_allocation

ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

104

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Example

C++

WriterResourcelLimitsQos writer_limits;

//Set the maximum size for reader matched resource limits collection to 3 and its_
—allocation configuration to fixed size
writer_limits.matched_subscriber_allocation =

—eprosima: :fastrtps::ResourcelLimitedContainerConfig::fixed_size_configuration (3u);

XML

<publisher profile_name="alloc_gos_example_pub_for_ topic_1">
<!-— we know we will have three matching subscribers -->
<matchedSubscribersAllocation>
<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>
</matchedSubscribersAllocation>
</publisher>

XTypes Extensions

This section explain those QoS Policy extensions defined in the XTypes Specification:

* DataRepresentationQosPolicy

* TypeConsistencyEnforcementQosPolicy

DataRepresentationQosPolicy

This XTypes QoS Policy states which data representations will be used by the DataWriters and DataReaders.

The DataWriters offer a single data representation that will be used to communicate with the matched DataRead-
ers. The DataReaders can request one or more data representations and in order to have communication with
the DataWriter, the offered data representation needs to be contained within the DataReader request. See
DataRepresentationQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
m_value std::vector<DataRepresentationld> | Empty vector

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

6.15. DDS Layer 105

https://www.omg.org/spec/DDS-XTypes/

Fast DDS Documentation, Release 2.0.0

DataRepresentationid

There are three possible values (see DataRepresentationId):

* XCDR_DATA REPRESENTATION: This option corresponds to the first version of the Extended CDR Repre-
sentation encoding.

e XMI, DATA REPRESENTATION: This option corresponds to the XML Data Representation.

* XCDR2_DATA_ REPRESENTATION: This option corresponds to the second version of the Extended CDR Rep-
resentation encoding.

Example

C++

DataRepresentationQosPolicy data_representation;

//Add XCDR vl data representation to the list of valid representations
data_representation.m_value.push_back (DataRepresentationId_t::XCDR_DATA_
—REPRESENTATION) ;

//Add XML data representation to the list of valid representations
data_representation.m_value.push_back (DataRepresentationId_t::XML_DATA_
—REPRESENTATION) ;

XML

This QoS Policy cannot be configured using XML for the moment.

TypeConsistencyEnforcementQosPolicy

This XTypes QoS Policy extension defines the rules for determining whether the data type used in the DataWriter is
consistent with the one used in the DataReader. See TypeConsistencyEnforcementQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value

m_kind TypeConsistencyKind | ALLOW_TYPE_COERCION
m_ignore_sequence_bounds | bool true
m_ignore_string_bounds bool true
m_ignore_member_names bool true
m_prevent_type_widening bool true
m_force_type_validation bool true

e m_kind: It determines whether the type in the DataWriter type must be equal to the type in the DataReader or
not. See TypeConsistencyKind for further details.

e m_ignore_sequence_bounds: This data member controls whether the sequence bounds are taken into
account for type assignability or not. If its value is true, the sequences maximum lengths are not considered,
which means that a sequence T2 with length L2 would be assignable to a sequence T1 with length L1, even if
L2 is greater than L1. But if it is false, L1 must be higher or equal to L2 to consider the sequences as assignable.

106 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

m_ignore_string_bounds: It controls whether the string bounds are considered for type assignation or
not. If its value is true, the strings maximum lengths are not considered, which means that a string S2 with
length L2 would be assignable to a string S1 with length L1, even if L2 is greater than L1. But if it is false, L1
must be higher or equal to L2 to consider the strings as assignable.

m_ignore_member_names: This boolean controls whether the member names are taken into consideration
for type assignability or not. If it is true, apart from the member ID, the member names are considered as part of
assignability, which means that the members with the same ID must also have the same name. But if the value
is false, the member names are ignored.

m_prevent_type_widening: This data member controls whether the type widening is allowed or not. If
it is false, the type widening is permitted, but if true, a wider type cannot be assignable to a narrower type.

m_force_type_validation: Itcontrols if the service needs the type information to complete the matching
between a DataWriter and a DataReader. If it is enabled, it must have the Complete Type Information, otherwise

it is not necessary.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

TypeConsistencyKind

There are two possible values:

* DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same data type in order

to communicate.

* ALLOW_TYPE_COERCION: The DataWriter and the DataReader do not need to support the same data type in

order to communicate as long as the DataReader’s type is assignable from the DataWriter’s type.

Example

C++

TypeConsistencyEnforcementQosPolicy type_enforcement;

//The TypeConsistencyEnforcementQosPolicy is default constructed with kind = ALLOW_
—TYPE_COERCION

//Change the kind to DISALLOW_TYPE_COERCION

type_enforcement.m_kind = TypeConsistencyKind::DISALLOW_TYPE_COERCION;

//Configures the system to ignore the sequence sizes In assignations
type_enforcement.m_ignore_sequence_bounds = true;

//Configures the system to ignore the string sizes in assignations
type_enforcement.m_ignore_string_bounds = true;

//Configures the system to ignore the member names. Members with same ID could have_,

—different names
type_enforcement.m_ignore_member_names = true;
//Configures the system to allow type widening

type_enforcement.m_prevent_type_widening = false;

//Configures the system to not use the complete Type Information in entities match_,
—process

type_enforcement.m_force_type_validation = false;

6.15. DDS Layer

107

Fast DDS Documentation, Release 2.0.0

XML

This QoS Policy cannot be configured using XML for the moment.

Status

Each Entity is associated with a set of Status objects whose values represent the communication status of that
Entity. Changes on the status values occur due to communication events related to each of the entities, e.g., when
new data arrives, a new participant is discovered, or a remote endpoint is lost. The status is decomposed into several
status objects, each concerning a different aspect of the communication, so that each of these status objects can vary

independently of the others.

Changes on a status object trigger the corresponding Listener callbacks that allow the Entity to inform the application
about the event. For a given status object with name fooStatus, the entity listener interface defines a callback
function on_foo () that will be called when the status changes. Beware that some statuses have data members that
are reset every time the corresponding listener is called. The only exception to this rule is when the entity has no
listener attached, so the callback cannot be called. See the documentation of each status for details.

The entities expose functions to access the value of its statuses. For a given status with name fooStatus, the
entity exposes a member function get_foo () to access the data in its fooStatus. The only exceptions are
DataOnReaders and DataAvailable. These getter functions return a read-only struct where all data members are
public and accessible to the application. Beware that some statuses have data members that are reset every time the
getter function is called by the application. See the documentation of each status for details.

The following subsections describe each of the status objects, their data members, and to which Entity type they
concern. The next table can be used as a quick reference too.

Is ()

Is ()

d_status ()

os_status ()

tus ()

Status Name Entity Listener callback Accessor
InconsistentTopicSta- Topic on_inconsistent_topic ()} get_inconsistent_topic statu
tus
DataOnReaders Sub- on_data_on_readers () N/A

scriber
DataAvailable DataReaderon_data_available () N/A
LivelinessChangedSta- | DataReaderon_1liveliness_changed () get_liveliness_changed_statu
tus
RequestedDeadline- DataReaderon _requested _deadline migesstedrdquested _deadline_misse
MissedStatus
RequestedIncompati- DataReaderon_requested _incompatilplegetgoaseduested incompatible g
bleQosStatus
SampleLostStatus DataReadeion_sample_lost () get_sample_lost_status ()
SampleRejectedStatus DataReaderon_sample_rejected() get_sample_rejected_status ()
SubscriptionMatched- DataReaderon_subscription matched @et_subscription_matched_sta
Status
LivelinessLostStatus DataWrit¢ron_liveliness_lost () get_liveliness_lost_status/()
OfferedDeadline- DataWrit¢ron_offered deadline_misspet()offered deadline_missed |status ()
MissedStatus
OfferedIncompatible- DataWrit¢ron_offered_incompatible gels (Jffered incompatible qgos| status ()
QosStatus
PublicationMatched- DataWrit¢ron_publication_matched|)get_publication_matched_status ()
Status

108

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

InconsistentTopicStatus

This status changes every time an inconsistent remote Topic is discovered, that is, one with the same name but different
characteristics than the current Topic. See TnconsistentTopicStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change | int32_t

e total_count: Total cumulative count of inconsistent Topics discovered since the creation of the current
Topic.

* total_count_change: The change in total_count since the last time
on_inconsistent_topic () was called or the status was read.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT__SUPPORTED and the corresponding listener will never be called.

DataOnReaders

This status becomes active every time there is new data available for the application on any DataReader belonging to
the current Subscriber. There is no getter function to access this status, as it does not keep track of any information
related to the data itself. Its only purpose is to trigger the on_data_on_readers () callback on the listener
attached to the DataReader.

DataAvailable

This status becomes active every time there is new data available for the application on the DataReader. There is no
getter function to access this status, as it does not keep track of any information related to the data itself. Its only
purpose is to trigger the on_data_available () callback on the listener attached to the DataReader.

LivelinessChangedStatus

This status changes every time the liveliness status of a matched DataWriter has changed. Either because a DataWriter
that was inactive has become active or the other way around. See LivelinessChangedStatus.

List of status data members:

Data Member Name Type

alive count int32_t
not_alive_count int32_t

alive count_change int32_t
not_alive_count_change int32_t
last_publication_handle | InstanceHandle_ t

e alive count: Total number of currently active DataWriters. This count increases every time a newly
matched DataWriter asserts its liveliness or a DataWriter that was considered not alive reasserts its liveliness. It
decreases every time an active DataWriter becomes not alive, either because it failed to asserts its liveliness or
because it was deleted for any reason.

6.15. DDS Layer 109

Fast DDS Documentation, Release 2.0.0

not_alive_count: Total number of matched DataWriters that are currently considered not alive. This count
increases every time an active DataWriter becomes not alive because it fails to assert its liveliness. It decreases
every time a DataWriter that was considered not alive reasserts its liveliness. Normal matching and unmatching
of DataWriters does not affect this count.

alive_count_change: The change in alive count since the last time
on_liveliness_changed () was called or the status was read. It can have positive or negative
values.

not_alive_count_change: The change in not_alive count since the last time
on_liveliness_changed () was called or the status was read. It can have positive or negative
values.

last_publication_handle: Handle to the last DataWriter whose liveliness status was changed. If no
liveliness has ever changed, it will have value c_InstanceHandle_Unknown.

RequestedDeadlineMissedStatus

This status changes every time the DataReader does not receive data within the deadline period configured on its
DataReaderQos. See RequestedDeadlineMissedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
last_instance _handle | InstanceHandle_ t

* total count: Total cumulative count of missed deadlines for any instance read by the current DataReader.

As the deadline period applies to each instance of the Topic independently, the count will will be incremented
by one for each instance for which data was not received in the deadline period.

e total_count_change: The change in total_count since the last time

on_requested_deadline_missed () was called or the status was read. It can only have zero or
positive values.

e Jast_instance handle: Handle to the last instance that missed the deadline. If no deadline was ever

missed, it will have value c_InstanceHandle_Unknown.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT__SUPPORTED and the corresponding listener will never be called.

RequestedincompatibleQosStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a com-
mon partition, but with a QoS configuration incompatible with the one defined on the DataReader. See
RequestedIncompatibleQosStatus.

List of status data members:

110

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Data Member Name Type

total_ count int32_t
total_count_change | int32_t
last_policy id QosPolicyId t
policies QosPolicyCountSeqg

e total_ count: Total cumulative count of DataWriters found matching the Topic and with a common partition,
but with a QoS configuration that is incompatible with the one defined on the DataReader.

* total_count_change: The change in total_count since the last time
on_requested_incompatible_gos () was called or the status was read. It can only have zero
or positive values.

e last_policy_1id: The policy ID of one of the policies that was found to be incompatible with the current
DataReader. If more than one policy happens to be incompatible, only one of them will be reported in this
member.

e policies: A collection that holds, for each policy, the total number of times that the policy was found to be
incompatible with the one offered by a remote DataWriter that matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for each policy.

QosPolicyCountSeq

Holds a QosPolicyCount for each Policy, indexed by its OosPolicyId_t. Therefore, the Qos Policy with ID N will
be at position N in the sequence. See QosPolicyCountSeq.

DataReader* data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;

// Get how many times ReliabilityQosPolicy was not compatible with a remote writer
RequestedIncompatibleQosStatus status;
data_reader->get_requested_incompatible_qgos_status (status);

uint32_t incompatible_reliability_count = status.policies[RELIABILITY_QOS_POLICY_ID].
—count;

QosPolicyCount

This structure holds a counter for a policy. See QosPolicyCount.

List of data members:

Data Member Name | Type
policy_id QosPolicyId t
count int32_t

e policy_id: The ID of the policy.

* count: The counter value for the policy.

6.15. DDS Layer 111

Fast DDS Documentation, Release 2.0.0

SamplelLostStatus

This status changes every time a new data sample is lost and will never be received. See SampleLostStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change | int32_t

* total_ count: Total cumulative count of lost samples under the Topic of the current DataReader.

e total count_change: The change in total count since the last time on_sample_lost () was
called or the status was read. It can only be positive or zero.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT_SUPPORTED and the corresponding listener will never be called.

SampleRejectedStatus

This status changes every time an incoming data sample is rejected by the DataReader. The reason for the rejection is
stored as a SampleRejectedStatusKind. See SampleRe jectedStatus.

List of status data members:

Data Member Name Type

total_count int32_t

total count_change int32_t

last_reason SampleRe jectedStatusKind
last_instance_handle | InstanceHandle_ t

e total_ count: Total cumulative count of rejected samples under the Topic of the current DataReader.

e total_count_change: The change in total_count since the last time on_sample rejected ()
was called or the status was read. It can only be positive or zero.

* Jast_reason: The reason for rejecting the last rejected sample. If no sample was ever rejected, it will have
value NOT _REJECTED. See SampleRejectedStatusKind for further details.

* Jlast_instance_handle: Handle to the last instance whose sample was rejected. If no sample was ever
rejected, it will have value c_InstanceHandle_Unknown.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT__SUPPORTED and the corresponding listener will never be called.

112 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

SampleRejectedStatusKind

There are four possible values (see SampleRe jectedStatusKind):

NOT_REJECTED: It means there have been no rejections so far on this DataReader. The rejection reason will
have this value only while the total count of rejections is zero.

REJECTED_BY INSTANCES_ LIMIT: The sample was rejected because the max_instances limit was
reached.

REJECTED_BY_SAMPLES_LIMIT: The sample was rejected because the max_samples limit was reached.

REJECTED_BY_SAMPLES _PER _INSTANCE_LIMIT: The sample was rejected because the
max_samples_per_instance limit was reached.

SubscriptionMatchedStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataWriter that was previously considered to be matched.
See SubscriptionMatchedStatus.

List of status data members:

Data Member Name Type

total_count int32_t

total_ count_change int32_t
current_count int32_t
current_count_change int32_t
last_publication_handle | InstanceHandle_t

total_count: Total cumulative count of remote DataWriters that have been discovered publishing on the
same Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

total_count_change: The change in total_count since the last time
on_subscription matched () was called or the status was read. It can only have zero or positive
values.

current_count: The number of remote DataWriters currently matched to the DataReader.

current_count_change: The change in current_count since the last time
on_subscription matched () was called or the status was read. It can have positive or negative
values.

last_publication_handle: Handle to the last DataWriter that matched the DataReader. If no matching
ever happened, it will have value ¢ TnstanceHandle Unknown.

LivelinessLostStatus

This status changes every time the DataWriter failed to assert its liveliness during the period configured on its
DataWriterQos. This means that matched DataReader entities will consider the DataWriter as no longer alive. See
LivelinessLostStatus.

List of status data members:

6.15.

DDS Layer 113

Fast DDS Documentation, Release 2.0.0

Data Member Name Type
total_count int32_t
total_count_change | int32_t

e total_count: Total cumulative count of times that the DataWriter failed to assert its liveliness during the
period configured on its DataWriterQos, becoming considered not alive. This count does not change when the
DataWriter is already considered not alive and simply remains not alive for another liveliness period.

* total count_change: The change in total_count since the last time on_liveliness_lost ()
was called or the status was read. It can only have zero or positive values.

OfferedDeadlineMissedStatus

This status changes every time the DataWriter fails to provide data within the deadline period configured on its
DataWriterQos. See Of feredDeadlineMissedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
last_instance_handle | InstanceHandle_ t

e total_count: Total cumulative count of missed deadlines for any instance written by the current DataWriter.
As the deadline period applies to each instance of the Topic independently, the count will will be incremented
by one for each instance for which data was not sent in the deadline period.

* total count_change: The change in total_count since the last time
on_offered deadline missed () was called or the status was read. It can only have zero or
positive values.

e Jast_instance_handle: Handle to the last instance that missed the deadline. If no deadline was ever
missed, it will have value ¢ ITnstanceHandle Unknown.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT__SUPPORTED and the corresponding listener will never be called.

OfferedincompatibleQosStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a com-
mon partition, but with a QoS configuration that is incompatible with the one defined on the DataWriter. See
Of feredIncompatibleQosStatus.

List of status data members:

Data Member Name Type

total_count int32_t

total_ count_change | int32_t
last_policy_1id QosPolicyId_ t
policies QosPolicyCountSeq

114 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

e total_ count: Total cumulative count of DataReaders found matching the Topic and with a common parti-
tion, but with a QoS configuration that is incompatible with the one defined on the DataWriter.

* total_ count_change: The change in total_count since the last time
on_offered incompatible gos () was called or the status was read. It can only have zero or
positive values.

e Jast_policy_id: The policy ID of one of the policies that was found to be incompatible with the current
DataWriter. If more than one policy happens to be incompatible, only one of them will be reported in this
member.

e policies: A collection that holds, for each policy, the total number of times that the policy was found to
be incompatible with the one requested by a remote DataReader that matched the Topic and with a common
partition. See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for
each policy.

PublicationMatchedStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataReader that was previously considered to be matched.
See PublicationMatchedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
current_count int32_t
current_count_change int32_t
last_subscription_handle | InstanceHandle t

e total_count: Total cumulative count of remote DataReaders that have been discovered publishing on the
same Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

e total_count_change: The change in total_count since the last time
on_publication_matched () was called or the status was read. It can only have zero or positive
values.

e current_count: The number of remote DataReaders currently matched to the DataWriter.

* current_count_change: The change in current_count since the last time
on_publication_matched () was called or the status was read. It can have positive or negative
values.

e last_subscription_handle: Handle to the last DataReader that matched the DataWriter. If no matching
ever happened, it will have value ¢ TnstanceHandle Unknown.

6.15. DDS Layer 115

Fast DDS Documentation, Release 2.0.0

6.15.2 Domain

A domain represents a separate communication plane. It creates a logical separation among the Entities that share
a common communication infrastructure. Conceptually, it can be seen as a virtual network linking all applications
running on the same domain and isolating them from applications running on different domains. This way, several
independent distributed applications can coexist in the same physical network without interfering, or even being aware
of each other.

Every domain has a unique identifier, called domainld, that is implemented as a uint 32 value. Applications that
share this domainld belong to the same domain and will be able to communicate.

For an application to be added to a domain, it must create an instance of DomainParticipant with the appropriate
domainld. Instances of DomainParticipant are created through the DomainParticipantFactory singleton.

Fartitions introduce another entity isolation level within the domain. While DomainParticipant will be able to com-
municate with each other if they are in the same domain, it is still possible to isolate their Publishers and Subscribers
assigning them to different Partitions.

Fig. 5: Domain class diagram

DomainParticipant

A DomainParticipant is the entry point of the application to a domain. Every DomainParticipant is linked to a single
domain from its creation, and contains all the Entities related to that domain. It also acts as a factory for Publisher,
Subscriber and Topic.

The behavior of the DomainParticipant can be modified with the QoS values specified on DomainPartici-
pantQos. The QoS values can be set at the creation of the DomainParticipant, or modified later with
DomainParticipant::set_qgos () member function.

As an Entity, DomainParticipant accepts a DomainParticipantListener that will be notified of status changes on the
DomainParticipant instance.

DomainParticipantQos

DomainParticipantQos controls the behavior of the DomainParticipant. Internally it contains the following
QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
UserDataQosPolicy user_data () Yes
EntityFactoryQosPolicy entity_factory () | Yes
FarticipantResourceLimitsQos | allocation () No
PropertyPolicyQos properties () No
WireProtocolConfigQos wire_protocol () No
TransportConfigQos transport () No

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS wvalue of a previously created DomainParticipant can be modified using the
DomainParticipant::set_qos () member function. Trying to modify an immutable QosPolicy on an
already enabled DomainParticipant will result on an error. In such case, no changes will be applied and the
DomainParticipant will keep its previous DomainParticipantQos.

116 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

// Create a DomainParticipant with default DomainParticipantQos
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DomainParticipantQos gos = participant->get_gos();

// Modify QoS attributes
gos.entity_factory () .autoenable_created_entities = false;

// Assign the new Qos to the object
participant->set_qgos (gos) ;

Default DomainParticipantQos

The default DomainParticipantQos refers to the value returned by the get_default_participant_qgos ()
member function on the DomainParticipantFactory singleton. The special value PARTICIPANT_QOS_DEFAULT
can be used as QoS argument on create_participant () or DomainParticipant::set_gos () member
functions to indicate that the current default DomainParticipantQos should be used.

When the system starts, the default DomainParticipantQos is equivalent to the default constructed value
DomainParticipantQos (). The default DomainParticipantQos can be modified at any time using the
set_default_participant_qgos () member function on the DomainParticipantFactory singleton. Modifying
the default DomainParticipantQos will not affect already existing DomainParticipant instances.

// Get the current QoS or create a new one from scratch
DomainParticipantQos gqos_typel = DomainParticipantFactory::get_instance()->get_
—default_participant_gos () ;

// Modify QoS attributes
/S)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance () ->set_default_participant_gos (gos_typel) !
—= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

// Create a DomainParticipant with the new default DomainParticipantQos.
DomainParticipant* participant_with_gos_typel =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_

—QOS_DEFAULT) ;
if (nullptr != participant_with_gos_typel)
{

// Error

return;

(continues on next page)

6.15. DDS Layer 117

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Get the current QoS or create a new one from scratch
DomainParticipantQos gos_type2;

// Modify QoS attributes
S/ ()

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance () ->set_default_participant_gos (gos_type2) !
—= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

// Create a Topic with the new default TopicQos.
DomainParticipant* participant_with_gos_type2 =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT__
—QOS_DEFAULT) ;
if (nullptr != participant_with_gos_type2)
{
// Error
return;

// Resetting the default DomainParticipantQos to the original default constructed,,
—values
if (DomainParticipantFactory::get_instance () ->set_default_participant_gos (PARTICIPANT_
—+QOS_DEFAULT)

= ReturnCode_t: :RETCODE_OK)

// Error
return;

// The previous instruction 1s equivalent to the following
if (DomainParticipantFactory::get_instance () ->set_default_participant_
—qgos (DomainParticipantQos())

= ReturnCode_t: :RETCODE_OK)

// Error
return;

set_default_participant_qgos () member function also accepts the value
PARTICIPANT_QOS_DEFAULT as input argument. This will reset the current default DomainParticipantQos
to the default constructed value DomainParticipantQos ().

// Create a custom DomainParticipantQos
DomainParticipantQos custom_gos;

// Modify QoS attributes
/()

// Create a DomainParticipant with a custom DomainParticipantQos

(continues on next page)

118 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

DomainParticipant* participant = DomainParticipantFactory::get_instance () ->create_
—participant (0, custom_gos);
if (nullptr != participant)
{
// Error
return;

// Set the QoS on the participant to the default
if (participant->set_qgos (PARTICIPANT_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// The previous instruction is equivalent to the following:
if (participant->set_gos (DomainParticipantFactory: :get_instance()->get_default_
—participant_gos())

= ReturnCode_t: :RETCODE_OK)

// Error
return;

Note: The value PARTICIPANT_QOS_DEFAULT has different meaning depending on where it is used:

e On create participant () and DomainParticipant::set_qgos () itrefers to the default Domain-
ParticipantQos as returned by get_default_participant_qgos ().

e On set_default_participant_qgos () it refers to the default constructed
DomainParticipantQos ().

DomainParticipantListener

DomainParticipantListener is an abstract class defining the callbacks that will be triggered in response to
state changes on the DomainParticipant. By default, all these callbacks are empty and do nothing. The user should
implement a specialization of this class overriding the callbacks that are needed on the application. Callbacks that are
not overridden will maintain their empty implementation.

DomainParticipantListener inherits from TopicListener, PublisherListener, and SubscriberListener. Therefore, it has
the ability to react to every kind of event that is reported to any of its attached Entities. Since events are always notified
to the most specific Entity Listener that can handle the event, callbacks that DomainParticipantListener inherits from
other Listeners will only be called if no other Entity was able to handle the event, either because it has no Listener
attached, or because the callback is disabled by the St atusMask on the Entity.

Additionally, DomainParticipantListener adds the following callbacks:

* on_participant_discovery (): A new DomainParticipant is discovered in the same domain, a previ-
ously known DomainParticipant has been removed, or some DomainParticipant has changed its QoS.

* on_subscriber _discovery (): Anew Subscriber is discovered in the same domain, a previously known
Subscriber has been removed, or some Subscriber has changed its QoS.

* on_publisher_discovery (): A new Publisher is discovered in the same domain, a previously known
Publisher has been removed, or some Publisher has changed its QoS.

6.15. DDS Layer 119

Fast DDS Documentation, Release 2.0.0

* on_type _discovery (): A new data Type is discovered in the same domain.

* on_type_dependencies_reply(): The Type lookup client received a replay to a
getTypeDependencies () request. This callback can be used to retrieve the new type using the
getTypes () request and create a new dynamic type using the retrieved type object.

* on_type_information received(): A new TypeInformation has been received from a newly
discovered DomainParticipant.

* onParticipantAuthentication (): Informs about the result of the authentication process of a remote
DomainParticipant (either on failure or success).

class CustomDomainParticipantListener : public DomainParticipantListener

{
public:

CustomDomainParticipantListener ()
DomainParticipantListener ()

virtual ~CustomDomainParticipantListener ()

{
}

virtual void on_participant_discovery (
DomainParticipant« /#participantx*/,
eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&s& info)

if (info.status ==
—eprosima::fastrtps::rtps::ParticipantDiscoveryInfo: :DISCOVERED_PARTICIPANT)
{

std::cout << "New participant discovered" << std::endl;

}
else if (info.status ==_
—eprosima::fastrtps::rtps::ParticipantDiscoveryInfo: :REMOVED_PARTICIPANT ||
info.status ==
—eprosima: :fastrtps::rtps::ParticipantDiscoveryInfo: :DROPPED_PARTICIPANT)
{

std::cout << "New participant lost" << std::endl;

#1f HAVE_SECURITY
virtual void onParticipantAuthentication(
DomainParticipant« /#participantx/,
eprosima: :fastrtps::rtps::ParticipantAuthenticationInfo&s& info)

if (info.status ==_
—eprosima::fastrtps::rtps::ParticipantAuthenticationInfo: :AUTHORIZED_PARTICIPANT)
{

std::cout << "A participant was authorized" << std::endl;

}

else if (info.status ==
—eprosima::fastrtps::rtps::ParticipantAuthenticationInfo: :UNAUTHORIZED_PARTICIPANT)

{

std::cout << "A participant failed authorization" << std::endl;

(continues on next page)

120 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

#endif

virtual void on_subscriber_discovery (
DomainParticipant« /#participantx/,
eprosima::fastrtps::rtps::ReaderDiscoveryInfo&s& info)

if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_
—READER)

{

std::cout << "New subscriber discovered" << std::endl;

}

else if (info.status ==_
—eprosima: :fastrtps::rtps::ReaderDiscoveryInfo: :REMOVED_READER)

{

std::cout << "New subscriber lost" << std::endl;

virtual void on_publisher_discovery (
DomainParticipant« /#participantx/,
eprosima: :fastrtps::rtps::WriterDiscoveryInfo&& info)

if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo: :DISCOVERED_
—WRITER)

{

std::cout << "New publisher discovered" << std::endl;

}

else if (info.status ==
—eprosima::fastrtps::rtps::WriterDiscoveryInfo::REMOVED_WRITER)

{

std::cout << "New publisher lost" << std::endl;

virtual void on_type_discovery (
DomainParticipant* participant,
const eprosima::fastrtps::rtps::Sampleldentity& request_sample_id,
const eprosima::fastrtps::string_255& topic,
const eprosima::fastrtps::types::Typeldentifier+ identifier,
const eprosima::fastrtps::types::TypeObject* object,
eprosima: :fastrtps::types: :DynamicType_ptr dyn_type)

(void)participant, (void)request_sample_id, (void)topic, (void)identifier,
— (void) object, (wvoid)dyn_type;
std::cout << "New data type discovered" << std::endl;

virtual void on_type_dependencies_reply (
DomainParticipant* participant,
const eprosima::fastrtps::rtps::Sampleldentity& request_sample_id,
const eprosima::fastrtps::types::TypeldentifierWithSizeSeq& dependencies)

(void)participant, (void)request_sample_id, (void)dependencies;
std::cout << "Answer to a request for type dependencies was received" <<

—std::endl; (continues on next page)

6.15. DDS Layer 121

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

virtual void on_type_information_received(
DomainParticipant+ participant,
const eprosima::fastrtps::string_255 topic_name,
const eprosima::fastrtps::string_255 type_name,
const eprosima::fastrtps::types::Typelnformation& type_information)

(void)participant, (void)topic_name, (void)type_name, (void)type_information;
std::cout << "New data type information received" << std::endl;

}i

DomainParticipantFactory

The sole purpose of this class is to allow the creation and destruction of DomainParticipant objects.
DomainParticipantFactory itself has no factory, it is a singleton object that can be accessed through the
get_instance () static member function on the DomainParticipantFactory class.

The behavior of the DomainParticipantFactory can be modified with the QoS values specified on DomainPar-
ticipantFactoryQos. Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory: :set_qgos () member function.

DomainParticipantFactory does not accept any Listener, since it is not an Entity.

DomainParticipantFactoryQos

DomainParticipantFactoryQos controls the behavior of the DomainParticipantFactory. Internally it contains the fol-
lowing QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
EntityFactoryQosPolicy | entity_factory () | Yes

Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory: :set_qgos () member function.

DomainParticipantFactoryQos qgos;

// Setting autoenable_created _entities to true makes the created DomainParticipants
// to be enabled upon creation

gos.entity_factory () .autoenable_created_entities = true;
if (DomainParticipantFactory::get_instance () ->set_gos(gos) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// Create a DomainParticipant with the new DomainParticipantFactoryQos.

// The returned DomainParticipant is already enabled

DomainParticipant* enabled_participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_

<,Q0S_DEFAULT) ;

if (nullptr != enabled_participant)

(continues on next page)

122 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Error
return;

// Setting autoenable created _entities to false makes the created DomainParticipants
// to be disabled upon creation

gos.entity_factory () .autoenable_created_entities = false;
if (DomainParticipantFactory::get_instance () ->set_gos(gos) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// Create a DomainParticipant with the new DomainParticipantFactoryQos.
// The returned DomainParticipant is disabled and will need to be enabled explicitly
DomainParticipant+ disabled_participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT__

—QOS_DEFAULT) ;
if (nullptr != disabled_participant)
{

// Error

return;

Loading profiles from an XML file

To create Entities based on XML profiles, the file containing such profiles must be loaded first.

If the profile is described in one of the default loaded files, it will be automatically available on initialization. Other-
wise, load_XMI,_profiles_file () member function can be used to load the profiles in the XML. See section
XML profiles for more information regarding XML profile format and automatic loading.

Once loaded, the name of the profiles can be used to create Entities that will have QoS settings according to the profile
specifications.

// Load the XML with the profiles
DomainParticipantFactory::get_instance () ->load_XML_profiles_file("profiles.xml");

// Profiles can now be used to create Entities
DomainParticipant* participant_with_profile =

DomainParticipantFactory: :get_instance () ->create_participant_with_profile (0,
—"participant_profile");
if (nullptr != participant_with_profile)
{
// Error
return;

6.15. DDS Layer 123

Fast DDS Documentation, Release 2.0.0

Creating a DomainParticipant
Creation of a DomainParticipant is done with the create_participant () member function on the DomainPar-
ticipantFactory singleton, that acts as a factory for the DomainParticipant.
Mandatory arguments are:
* The domainld that identifies the domain where the DomainParticipant will be created.

e The DomainParticipantQos describing the behavior of the DomainParticipant. If the provided value is
TOPIC_QOS_DEFAULT, the value of the DomainParticipantQos is used.

Optional arguments are:

e A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantLis-
tener. By default all events are enabled.

create_participant () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant with default DomainParticipantQos and no Listener
// The value PARTICIPANT QOS DEFAULT is used to denote the default Qo0S.
DomainParticipant* participant_with_default_attributes =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT_

<.QOS_DEFAULT) ;
if (nullptr != participant_with_default_attributes)
{

// Error

return;

// A custom DomainParticipantQos can be provided to the creation method
DomainParticipantQos custom_gos;

// Modify QoS attributes
/(o)

DomainParticipant+ participant_with_custom_gos =
DomainParticipantFactory::get_instance () ->create_participant (0, custom_gos);
if (nullptr != participant_with_custom_gos)
{
// Error
return;

// Create a DomainParticipant with default QoS and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
// The value PARTICIPANT_ QOS DEFAULT is used to denote the default QoS.
CustomDomainParticipantListener custom_listener;
DomainParticipant+ participant_with_default_gos_and_custom_listener =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_

—QOS_DEFAULT, &custom_listener);
if (nullptr != participant_with_default_gos_and_custom_listener)
{

// Error

return;

124 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Profile based creation of a DomainParticipant

Instead of using a DomainParticipantQos, the name of a profile can be used to create a DomainParticipant with the
create_participant_with_profile () member function on the DomainParticipantFactory singleton.

Mandatory arguments are:
* The domainld that identifies the domain where the DomainParticipant will be created.
* The name of the profile to be applied to the DomainParticipant.

Optional arguments are:

» A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantLis-
tener. By default all events are enabled.

create participant_with profile () will return a null pointer if there was an error during the operation,
e.g if the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid
pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance () ->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant using a profile and no Listener
DomainParticipant* participant_with_profile =

DomainParticipantFactory: :get_instance () —>create_participant_with_profile (0,
—"participant_profile");
if (nullptr != participant_with_profile)
{
// Error
return;

// Create a DomainParticipant using a profile and a custom Listener.

// CustomDomainParticipantListener inherits from DomainParticipantListener.
CustomDomainParticipantListener custom_listener;

DomainParticipant+ participant_with_profile_and_custom_listener =

DomainParticipantFactory::get_instance () —>create_participant_with_profile (0,
—"participant_profile", &custom_listener);
if (nullptr != participant_with_profile_and_custom_listener)
{
// Error
return;

6.15. DDS Layer 125

Fast DDS Documentation, Release 2.0.0

Deleting a DomainParticipant

A DomainParticipant can be deleted with the delete participant () member function on the DomainPartici-
pantFactory singleton.

Note: A DomainParticipant can only be deleted if all domain Entities belonging to the participant (Publisher, Sub-
scriber or Topic) have already been deleted. Otherwise, the function will issue an error and the DomainParticipant will
not be deleted.

// Create a DomainParticipant
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

}

// Use the DomainParticipant to communicate

//)

// Delete the DomainParticipant

if (DomainParticipantFactory::get_instance()->delete_participant (participant) !=
—ReturnCode_t : :RETCODE_OK)

{

// Error
return;

Partitions

Partitions introduce a logical entity isolation level concept inside the physical isolation induced by a Domain. They
represent another level to separate Publishers and Subscribers beyond Domain and 7opic. For a Publisher to commu-
nicate with a Subscriber, they have to belong at least to one common partition. In this sense, partitions represent a
light mechanism to provide data separation among endpoints:

¢ Unlike Domain and Topic, Partitions can be changed dynamically during the life cycle of the endpoint with
little cost. Specifically, no new threads are launched, no new memory is allocated, and the change history is
not affected. Beware that modifying the Partition membership of endpoints will trigger the announcement of
the new QoS configuration, and as a result, new endpoint matching may occur, depending on the new Partition
configuration. Changes on the memory allocation and running threads may occur due to the matching of remote
endpoints.

¢ Unlike Domain and Topic, an endpoint can belong to several Partitions at the same time. For certain data to be
shared over different Topics, there must be a different Publisher for each Topic, each of them sharing its own
history of changes. On the other hand, a single Publisher can share the same data over different Partitions using
a single topic data change, thus reducing network overload.

The Partition membership of an endpoint can be configured on the PartitionQosPolicy data member of the Publish-
erQos or SubscriberQos objects. This member holds a list of Partition name strings. If no Partition is defined for an
entity, it will be automatically included in the default nameless Partition. Therefore, a Publisher and a Subscriber that
specify no Partition will still be able to communicate through the default nameless Partition.

126 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Warning: Partitions are linked to the endpoint and not to the changes. This means that the endpoint history is
oblivious to modifications in the Partitions. For example, if a Publisher switches Partitions and afterwards needs
to resend some older change again, it will deliver it to the new Partition set, regardless of which Partitions were
defined when the change was created. This means that a late joiner Subscriber may receive changes that were
created when another set of Partitions was active.

Wildcards in Partitions

Partition name entries can have wildcards following the naming conventions defined by the POSIX fnmatch API
(1003.2-1992 section B.6). Entries with wildcards can match several names, allowing an endpoint to easily be included
in several Partitions. Two Partition names with wildcards will match if either of them matches the other one according
to fnmatch. That is, the matching is checked both ways. For example, consider the following configuration:

* A Publisher with Partition part »
¢ A Subscriber with Partition partition=

Even though partitionx* does not match part *, these Publisher and Subscriber will communicate between them
because part » matches partitionx.

Note that a Partition with name = will match any other partition except the default Partition.

Full example

Given a system with the following Partition configuration:

Participant_1 | Pub_11 {“Partition_1", “Partition_2""}
Pub_12 {e*}

Participant_2 | Pub_21 {}

Pub_22 {“Partition*”}

Participant_3 | Subs_31 | {“Partition_1""}

Subs_32 | {“Partition_2"}

Subs_33 | {“Partition_3"}

Subs_34 | {}

The endpoints will finally match the Partitions depicted on the following table. Note that Pub_12 does not match the
default Partition.

Participant_1 Participant_2 Participant_3
Pub_11 | Pub_12 | Pub_21 | Pub_22 | Subs_31 | Subs_32 | Subs_33 | Subs_34
Partition_1 | v/ v v v
Partition_2 | v/ v v v
Partition_3 v v v
{default} v v

The following table provides the communication matrix for the given example:

6.15. DDS Layer 127

https://standards.ieee.org/standard/1003_2-1992.html

Fast DDS Documentation, Release 2.0.0

Participant_1 Participant_2
Pub_11 | Pub_12 | Pub_21 | Pub_22
Participant_3 | Subs_31 | v v v
Subs_32 | vV v v
Subs_33 v v
Subs_34 N

The following piece of code shows the set of parameters needed for the use case depicted in this example.

128 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

PublisherQos pub_11_dgos;
pub_11_gos.partition() .push_back ("Partition_1");
pub_11_gos.partition() .push_back ("Partition_2");

PublisherQos pub_12_gos;
pub_12_gos.partition() .push_back ("x");

PublisherQos pub_21_gos;
//No partitions defined for pub_ 21

PublisherQos pub_22_gos;
pub_22_gos.partition () .push_back ("Partitionx");

SubscriberQos subs_31_gos;
subs_31_gos.partition () .push_back ("Partition_1");

SubscriberQos subs_32_gos;
subs_32_qgos.partition () .push_back ("Partition_2");

SubscriberQos subs_33_gos;
subs_33_qgos.partition () .push_back ("Partition_3");

SubscriberQos subs_34_gos;
//No partitions defined for subs_34

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<publisher profile name="pub_ 11">
<topic>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
</topic>
<qgos>
<partition>
<names>
<name>Partition_1l</name>
<name>Partition_2</name>
</names>
</partition>
</qos>
</publisher>

<publisher profile name="pub_ 12">
<topic>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
</topic>
<gos>
<partition>
<names>
<name> *</name>
</names>
</partition>
</gos>
</publisher>

6.15. R‘Rl%l"l%‘ﬁ%l} profile_name="pub_21"> 129

<topic>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

Fast DDS Documentation, Release 2.0.0

6.15.3 Publisher

A publication is defined by the association of a DataWriter to a Publisher. To start publishing the values of a data
instance, the application creates a new DataWriter in a Publisher. This DataWriter will be bound to the 7opic that
describes the data type that is being transmitted. Remote subscriptions that match with this Topic will be able to
receive the data value updates from the DataWriter.

Publisher

The Publisher acts on behalf of one or several DataWriter objects that belong to it. It serves as a container that allows
grouping different DataWriter objects under a common configuration given by the PublisherQos of the Publisher.

DataWriter objects that belong to the same Publisher do not have any other relation among each other beyond the
PublisherQos of the Publisher and act independently otherwise. Specifically, a Publisher can host DataWriter objects
for different 7opics and data types.

PublisherQos

PublisherQos controls the behavior of the Pub1isher. Internally it contains the following OosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy presentation () Yes
PartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data () Yes
EntityFactoryQosPolicy | entity_factory () | Yes

Refer to the detailed description of each QosPo11icy class for more information about their usage and default values.

The QoS value of a previously created Publisher can be modified using the Publisher: :set_gos () member
function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT__
<.Q0S_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

}

// Create a Publisher with default PublisherQos
Publisherx publisher =
participant->create_publisher (PUBLISHER_QOS_DEFAULT) ;
if (nullptr != publisher)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
PublisherQos gos = publisher->get_qgos () ;

(continues on next page)

130 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Modify QoS attributes
S/ ()

// Assign the new Qos to the object
publisher->set_gos (gos) ;

Default PublisherQos

The default PublisherQos refers to the value returned by the get_default_publisher_gos () member function
on the DomainParticipant instance. The special value PUBLISHER_QOS_DEFAULT can be used as QoS argument
on create _publisher () or Publisher: :set_qgos () member functions to indicate that the current default
PublisherQos should be used.

When the system starts, the default PublisherQos is equivalent to the default constructed value PublisherQos ().
The default PublisherQos can be modified at any time using the set_default_publisher_gos () member
function on the DomainParticipant instance. Modifying the default PublisherQos will not affect already existing
Publisher instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
DomainParticipantFactory::get_instance () —>create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Get the current QoS or create a new one from scratch
PublisherQos qgos_typel = participant->get_default_publisher_gos();

// Modify QoS attributes

J/e)
// Set as the new default PublisherQos
if (participant->set_default_publisher_gos (qos_typel) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_gos_typel =
participant->create_publisher (PUBLISHER_QOS_DEFAULT) ;
if (nullptr != publisher_with_gos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
PublisherQos gos_type?2;

// Modify QoS attributes

(continues on next page)

6.15. DDS Layer 131

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

/(o)
// Set as the new default PublisherQos
if (participant->set_default_publisher_gos (gos_type2) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_gos_type2 =
participant->create_publisher (PUBLISHER_QOS_DEFAULT) ;
if (nullptr != publisher_with_gos_type2)
{
// Error
return;

// Resetting the default PublisherQos to the original default constructed values
if (participant->set_default_publisher_gos (PUBLISHER_QOS_DEFAULT)
= ReturnCode_t : :RETCODE_OK)

// Error
return;

// The previous instruction is equivalent to the following
if (participant->set_default_publisher_gos (PublisherQos())
= ReturnCode_t : :RETCODE_OK)

// Error
return;

set_default_publisher_qgos () member function also accepts the special value
PUBLISHER_QOS_DEFAULT as input argument. This will reset the current default PublisherQos to default
constructed value PublisherQos ().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT_
—+QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a custom PublisherQos
PublisherQos custom_gos;

// Modify QoS attributes
/()

// Create a publisher with a custom PublisherQos
Publisherx publisher = participant->create_publisher (custom_gos);

(continues on next page)

132 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (nullptr != publisher)
{

// Error

return;

}

// Set the QoS on the publisher to the default
if (publisher->set_qgos (PUBLISHER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// The previous instruction is equivalent to the following:
if (publisher->set_gos (participant->get_default_publisher_gos())
!= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value PUBLISHER_QOS_DEFAULT has different meaning depending on where it is used:

e On create_publisher () and Publisher: :set_qgos () it refers to the default PublisherQos. as re-
turned by get_default_publisher qgos ().

e On set_default_publisher qgos () itrefers to the default constructed PublisherQos ().

PublisherListener

PublisherListener is an abstract class defining the callbacks that will be triggered in response to state changes
on the Publisher. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

PublisherListener inherits from DataWriterListener. Therefore, it has the ability to react to all events that are
reported to the DataWriter. Since events are always notified to the most specific Entity Listener that can handle the
event, callbacks that PublisherListener inherits from DataWriterListener will only be called if the triggering
DataWriter has no Listener attached, or if the callback is disabled by the St atusMask on the DataWriter.

PublisherListener does not add any new callback. Please, refer to the DataWriterListener for the list of inher-
ited callbacks and override examples.

Creating a Publisher

A Publisher always belongs to a DomainParticipant. Creation of a Publisher is done with the
create_publisher () member function on the DomainParticipant instance, that acts as a factory for the Pub-
lisher.

Mandatory arguments are:

e The PublisherQos describing the behavior of the Publisher. If the provided value is
PUBLISHER_QOS_DEFAULT, the value of the Default PublisherQos is used.

6.15. DDS Layer 133

Fast DDS Documentation, Release 2.0.0

Optional arguments are:

* A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT__
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Publisher with default PublisherQos and no Listener
// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.
Publisherx publisher_with_default_qgos =
participant->create_publisher (PUBLISHER_QOS_DEFAULT) ;
if (nullptr != publisher_with_default_gos)
{
// Error
return;

// A custom PublisherQos can be provided to the creation method
PublisherQos custom_gos;

// Modify QoS attributes
/()

Publisherx publisher_with_custom_gos =
participant->create_publisher (custom_gos) ;
if (nullptr != publisher_with_custom_gos)
{
// Error
return;

// Create a Publisher with default QoS and a custom Listener.
// CustomPublisherListener inherits from PublisherListener.
// The value PUBLISHER QOS DEFAULT is used to denote the default QoS.
CustomPublisherListener custom_listener;
Publisherx publisher_ with_default_gos_and_custom_listener =
participant->create_publisher (PUBLISHER_QOS_DEFAULT, &custom_listener);
if (nullptr != publisher_with_default_gos_and_custom_listener)
{
// Error
return;

134 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Profile based creation of a Publisher

Instead of using a PublisherQos, the name of a profile can be used to create a Publisher with the
create_publisher () member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Publisher.
Optional arguments are:

* A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance () —>load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—.QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Publisher using a profile and no Listener
Publisher* publisher_with_profile =
participant->create_publisher_with profile ("publisher profile™);
if (nullptr != publisher_with_profile)
{
// Error
return;

// Create a Publisher using a profile and a custom Listener.
// CustomPublisherListener inherits from PublisherListener.
CustomPublisherListener custom_listener;
Publisherx publisher_ with_profile_and_custom_listener =
participant->create_publisher_with_profile("publisher_profile", &custom_
—listener);
if (nullptr != publisher_with_profile_and_custom_listener)
{
// Error
return;

6.15. DDS Layer 135

Fast DDS Documentation, Release 2.0.0

Deleting a Publisher

A Publisher can be deleted with the delete publisher () member function on the DomainParticipant instance
where the Publisher was created.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Publisher
Publisherx publisher =
participant->create_publisher (PUBLISHER_QOS_DEFAULT) ;
if (nullptr != publisher)
{
// Error
return;

// Use the Publisher to communicate

/)

// Delete the Publisher

if (participant->delete_publisher (publisher) != ReturnCode_t::RETCODE_OK)
{
// Error
return;
}
DataWriter

A Dataliriter is attached to exactly one Publisher that acts as a factory for it. Additionally, each DataWriter is
bound to a single Topic since its creation. This Topic must exist prior to the creation of the DataWriter, and must be
bound to the data type that the DataWriter wants to publish.

The effect of creating a new DataWriter in a Publisher for a specific Topic is to initiate a new publication with the
name and data type described by the Topic.

Once the DataWriter is created, the application can inform of changes in the data value using the write () member
function on the DataWriter. These changes will be transmitted to all subscriptions matched with this publication.

136 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

DataWriterQos

DataliriterQos controls the behavior of the DataWriter. Internally it contains the following QosPo11icy objects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability () No
DurabilityServiceQosPolicy durability_service () Yes
DeadlineQosPolicy deadline () Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness () No
ReliabilityQosPolicy reliability () No (*)
DestinationOrderQosPolicy destination_order () No
HistoryQosPolicy history () Yes
ResourceLimitsQosPolicy resource _limits () Yes
TransportPriorityQosPolicy transport_priority() Yes
LifespanQosPolicy lifespan/() Yes
UserDataQosPolicy user._data () Yes
OwnershipQosPolicy ownership () No
OwnershipStrengthQosPolicy ownership strength () Yes
WriterDataLifecycleQosPolicy writer_data_lifecycle () Yes
PublishModeQosPolicy publish_mode () Yes
DataRepresentationQosPolicy representation () Yes
PropertyPolicyQos properties () Yes
RTPSReliableWriterQos reliable _writer_qgos () Yes
RTPSEndpointQos endpoint () Yes
WriterResourceLimitsQos writer _resource_limits () | Yes
ThroughputControllerDescriptor | throughput_controller () Yes

Refer to the detailed description of each QosPol1icy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataWriter can be modified using the DataWriter: :set_qgos () member
function.

// Create a DataWriter with default DataWriterQos
DataWriter+ data_writer =
publisher->create_datawriter (topic, DATAWRITER_QOS_DEFAULT) ;
if (nullptr != data_writer)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
DataWriterQos gos = data_writer->get_gos();

// Modify QoS attributes
/()

// Assign the new Qos to the object
data_writer—->set_qgos (gos);

6.15. DDS Layer 137

Fast DDS Documentation, Release 2.0.0

Default DataWriterQos

The default DataWriterQos refers to the value returned by the get_default_datawriter_gos () member
function on the Publisher instance. The special value DATAWRITER_QOS_DEFAULT can be used as QoS argu-
menton create datawriter () or Dataliriter: :set_qos () member functions to indicate that the current
default DataWriterQos should be used.

When the system starts, the default DataWriterQos is equivalent to the default constructed
value DatalWriterQos (). The default DataWriterQos can be modified at any time using the
set_default_datawriter_gos () member function on the Publisher instance. Modifying the default
DataWriterQos will not affect already existing DataWriter instances.

// Get the current QoS or create a new one from scratch
DataWriterQos gos_typel = publisher->get_default_datawriter_gos();

// Modify QoS attributes

/()
// Set as the new default DataWriterQos
if (publisher—->set_default_datawriter_gos (gos_typel) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a DatalWriter with the new default DataWriterQos.
DataWriter data_writer_with_gos_typel =
publisher->create_datawriter (topic, DATAWRITER_QOS_DEFAULT) ;
if (nullptr != data_writer_with_gos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DataWriterQos qgos_type2;

// Modify QoS attributes

J/(ea)
// Set as the new default DataWriterQos
if (publisher->set_default_datawriter_gos (gos_type2) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a DataWriter with the new default DataWriterQos.
DataWriterx data_writer_with_gos_type2 =
publisher—->create_datawriter (topic, DATAWRITER_QOS_DEFAULT) ;
if (nullptr != data_writer_with_gos_type2)
{
// Error
return;

// Resetting the default DataWriterQos to the original default constructed values

(continues on next page)

138 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (publisher->set_default_datawriter_gos (DATAWRITER_QOS_DEFAULT)
= ReturnCode_t: :RETCODE_OK)

// Error
return;

// The previous instruction is equivalent to the following
if (publisher->set_default_datawriter_gos (DataWriterQos())
= ReturnCode_t: :RETCODE_OK)

// Error
return;

set_default_datawriter_qgos () member function also accepts the special value
DATAWRITER_QOS_DEFAULT as input argument. This will reset the current default DataWriterQos to de-
fault constructed value DataWriterQos ().

// Create a custom DataWriterQos
DataWriterQos custom_gos;

// Modify QoS attributes
/()

// Create a DataWriter with a custom DataWriterQos
DataWriter data_writer = publisher->create_datawriter (topic, custom_gos);
if (nullptr != data_writer)
{
// Error
return;

// Set the QoS on the DataWriter to the default
if (data_writer->set_gos (DATAWRITER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// The previous instruction 1is equivalent to the following:
if (data_writer—->set_qgos (publisher->get_default_datawriter_gos())
= ReturnCode_t : :RETCODE_OK)

// Error
return;

Note: The value DATAWRITER_QOS_DEFAULT has different meaning depending on where it is used:

e On create_datawriter () and DataWriter: :set_qgos () it refers to the default DataWriterQos as
returned by get_default_datawriter qgos ()

e On set_default_datawriter_ qgos () itrefers to the default constructed DataWriterQos ().

6.15. DDS Layer 139

Fast DDS Documentation, Release 2.0.0

DataWriterListener

DataliriterListener is an abstract class defining the callbacks that will be triggered in response to state changes
on the DataWriter. By default, all these callbacks are empty and do nothing. The user should implement a special-
ization of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will

maintain their empty implementation.
DataWriterListener defines the following callbacks:

* on_publication_matched (): The DataWriter has found a DataReader that matches the Topic and has a
common partition and a compatible QoS, or has ceased to be matched with a DataReader that was previously
considered to be matched.

e on_offered_deadline_missed(): The DataWriter failed to provide data within the deadline period
configured on its DataWriterQos. It will be called for each deadline period and data instance for which the
DataWriter failed to provide data.

Warning: Currently on_offered_deadline_missed is not implemented (it will never be called), and will be imple-
mented on a future release of Fast DDS.

* on _offered_incompatible_gos (): The DataWriter has found a DataReader that matches the Topic and
has a common partition, but with a requested QoS that is incompatible with the one defined on the DataWriter.

e on_liveliness lost (): The DataWriter did not respect the liveliness configuration on its
DataWriterQos, and therefore, DataReader entities will consider the DataWriter as no longer active.

class CustomDataWriterListener : public DataWriterListener

{
public:

CustomDataWriterListener ()
DataWriterListener ()

virtual ~CustomDataWriterListener ()

{
}

virtual void on_publication_matched (
DataWriter+ writer,
const PublicationMatchedStatus& info)

(void)writer
7
if (info.current_count_change == 1)
{
std::cout << "Matched a remote Subscriber for one of our Topics" <<,
—std::endl;
}

else if (info.current_count_change == -1)

{

std::cout << "Unmatched a remote Subscriber" << std::endl;

(continues on next page)

140 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

virtual void on_offered_deadline_missed(
DataWriter* writer,
const OfferedDeadlineMissedStatus& status)

(void)writer, (wvoid)status;
std::cout << "Some data could not be delivered on time" << std::endl;

virtual void on_offered_incompatible_gos (
DataWriter* /swriter=/,
const OfferedIncompatibleQosStatusé& status)

std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << status.
—last_policy_id <<
")y" <<std::endl;

virtual void on_liveliness_lost (
DataWriter+ writer,
const LivelinessLostStatusé& status)

(void)writer, (void)status;
std::cout << "Liveliness lost. Matched Subscribers will consider us offline" <
—< std::endl;
}
}i

Creating a DataWriter
A DataWriter always belongs to a Publisher. Creation of a DataWriter is done with the create datawriter ()
member function on the Publisher instance, that acts as a factory for the DataWriter.
Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.

e The DataWriterQos describing the behavior of the DataWriter. If the provided value is
DATAWRITER_QOS_DEFAULT, the value of the Default DataWriterQos is used.

Optional arguments are:

* A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DataWriter with default DataWriterQos and no Listener
// The value DATAWRITER QOS_DEFAULT is used to denote the default QoS.
DataWriter data_writer_with_default_gos =
publisher->create_datawriter (topic, DATAWRITER_QOS_DEFAULT) ;
if (nullptr != data_writer_with_default_gos)
{
// Error

(continues on next page)

6.15. DDS Layer 141

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

return;

// A custom DataWriterQos can be provided to the creation method
DataWriterQos custom_gos;

// Modify QoS attributes
/S ()

DataWriter+ data_writer_with_custom_qgos =
publisher—->create_datawriter (topic, custom_gos);
if (nullptr != data_writer_with_custom_gos)
{
// Error
return;

// Create a DataWriter with default QoS and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
// The value DATAWRITER QOS DEFAULT is used to denote the default QoS.
CustomDataWriterListener custom_listener;
DataWriter data_writer_with_default_gos_and_custom_listener =
publisher->create_datawriter (topic, DATAWRITER_QOS_DEFAULT, &custom_listener);
if (nullptr != data_writer_with_default_gos_and_custom_listener)
{
// Error
return;

Profile based creation of a DataWriter

Instead of using a DataWriterQos, the name of a profile can be used to create a DataWriter with the
create_datawriter _with profile () member function on the Publisher instance.

Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.
* A string with the name that identifies the DataWriter.
Optional arguments are:

* A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter _with_profile () will return a null pointer if there was an error during the operation,
e.g. if the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid
pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

142 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

// First load the XML with the profiles
DomainParticipantFactory::get_instance () ->load_XML_profiles_file("profiles.xml");

// Create a DataWriter using a profile and no Listener
DataWriter data_writer_with_profile =

publisher->create_datawriter_with_profile(topic, "data_writer_ profile");
if (nullptr != data_writer_with_profile)
{
// Error
return;

// Create a DataWriter using a profile and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
CustomDataWriterListener custom_listener;

DataWriterx data_writer_with_profile_and_custom_listener =

publisher->create_datawriter_with_profile(topic, "data_writer_ profile", &
—custom_listener);
if (nullptr != data_writer_with_profile_and_custom_listener)
{
// Error
return;

Deleting a DataWriter

A DataWriter can be deleted with the delete datawriter () member function on the Publisher instance where
the DataWriter was created.

// Create a DataWriter
DataWriter+ data_writer =
publisher->create_datawriter (topic, DATAWRITER_QOS_DEFAULT) ;
if (nullptr != data_writer)
{
// Error
return;

// Use the DataWriter to communicate

SSe)

// Delete the DataWriter
if (publisher->delete_datawriter (data_writer) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

6.15. DDS Layer 143

Fast DDS Documentation, Release 2.0.0

Publishing data

The user informs of a change in the value of a data instance with the write () member function on the DataWriter.
This change will then be communicated to every DataReader matched with the DataWriter. As a side effect, this
operation asserts liveliness on the DataWriter itself, the Publisher and the DomainParticipant.

The function takes two arguments:
* A pointer to the data instance with the new values.
¢ The handler to the instance.

An empty (i.e., default constructed TnstanceHandle_t) instance handler can be used for the argument handle.
This indicates that the identity of the instance should be automatically deduced from the key of the instance data.
Alternatively, the member function write () is overloaded to take only the pointer to the data instance, which will
always deduced the identity from the key of the instance data.

If the handle is not empty, then it must correspond to the value obtained with the getKey () of the TypeSupport
instance. Otherwise the write function will fail with RETCODE_PRECONDITION_NOT_MET.

// Register the data type in the DomainParticipant.
TypeSupport custom_type_support (new CustomDataType());
custom_type_support.register_type (participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topicx custom_topic =
participant->create_topic ("topic_name", custom_type_support.get_type_name (),

—TOPIC_QOS_DEFAULT) ;
if (nullptr != custom_topic)
{

// Error

return;

// Create a DataWriter
DataWriter+ data_writer =
publisher->create_datawriter (custom_topic, DATAWRITER QOS_DEFAULT) ;
if (nullptr != data_writer)
{
// Error
return;

// Get a data instance
voidx data = custom_type_support->createDatal();

// Fill the data values
J/(ea)

// Publish the new value, deduce the instance handle

if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) !=
—ReturnCode_t: :RETCODE_OK)

{

[

// Error
return;

// The data instance can be reused to publish new values,
// but delete it at the end to avoid leaks

(continues on next page)

144 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

custom_type_support—->deleteData (data);

Blocking of the write operation

If the reliability kind is set to RELIABLE on the DataWriterQos, the write () operation may block. Specifically, if
the limits specified in the configured resource limits have been reached, the write () operation will block waiting
for space to become available. Under these circumstances, the reliability max_blocking_time configures the
maximum time the write operation may block waiting. If max_blocking_time elapses before the DataWriter is
able to store the modification without exceeding the limits, the write operation will fail and return TIMEOUT.

6.15.4 Subscriber

A subscription is defined by the association of a DataReader to a Subscriber. To start receiving updates of a pub-
lication, the application creates a new DataReader in a Subscriber. This DataReader will be bound to the Topic that
describes the data type that is going to be received. The DataReader will then start receiving data value updates from
remote publications that match this Topic.

When the Subscriber receives data, it informs the application that new data is available. Then, the application can use
the DataReader to get the received data.

Fig. 6: Subscriber class diagram

Subscriber

The Subscriber acts on behalf of one or several DataReader objects that belong to it. It serves as a container
that allows grouping different DataReader objects under a common configuration given by the SubscriberQos of the
Subscriber.

DataReader objects that belong to the same Subscriber do not have any other relation among each other beyond the
SubscriberQos of the Subscriber and act independently otherwise. Specifically, a Subscriber can host DataReader
objects for different topics and data types.

SubscriberQos

SubscriberQos controls the behavior of the Subscriber. Internally it contains the following OosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy | presentation () Yes
PartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data () Yes
EntityFactoryQosPolicy | entity_factory () | Yes

Refer to the detailed description of each QosPo11icy class for more information about their usage and default values.

The QoS value of a previously created Subscriber can be modified using the Subscriber: :set_gos () member
function.

6.15. DDS Layer 145

Fast DDS Documentation, Release 2.0.0

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Subscriber with default SubscriberQos
Subscriber* subscriber =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT) ;
if (nullptr != subscriber)
{
// Error
return;

// Get the current QoS or create a new one from scratch
SubscriberQos gos = subscriber->get_gos () ;

// Modify QoS attributes
gos.entity_factory () .autoenable_created_entities = false;

// Assign the new Qos to the object
subscriber—->set_gos (gos) ;

Default SubscriberQos

The default SubscriberQos refers to the value returned by the get__default_subscriber._gos () member func-
tion on the DomainParticipant instance. The special value SUBSCRIBER_QOS_DEFAULT can be used as QoS argu-
menton create subscriber () or Subscriber: :set_qos () member functions to indicate that the current
default SubscriberQos should be used.

When the system starts, the default SubscriberQos is equivalent to the default constructed value SubscriberQos ().
The default SubscriberQos can be modified at any time using the set_default_subscriber._gos () member
function on the DomainParticipant instance. Modifying the default SubscriberQos will not affect already existing
Subscriber instances.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Get the current QoS or create a new one from scratch
SubscriberQos gos_typel = participant->get_default_subscriber_gos();

// Modify QoS attributes
S/)

(continues on next page)

146 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Set as the new default SubscriberQos
if (participant->set_default_subscriber_gos (gos_typel) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_gos_typel =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT) ;
if (nullptr != subscriber_with_gos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
SubscriberQos gos_type2;

// Modify QoS attributes

/()
// Set as the new default SubscriberQos
if (participant->set_default_subscriber_gos (qos_type2) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_gos_type2 =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT) ;
if (nullptr != subscriber_with_gos_type2)
{
// Error
return;

// Resetting the default SubscriberQos to the original default constructed values
if (participant->set_default_subscriber_gos (SUBSCRIBER_QOS_DEFAULT)
= ReturnCode_t: :RETCODE_OK)

// Error
return;

// The previous instruction 1is equivalent to the following
if (participant->set_default_subscriber_gos (SubscriberQos())
= ReturnCode_t : :RETCODE_OK)

// Error
return;

set_default_subscriber_qgos () member function also accepts the special value
SUBSCRIBER_QOS_DEFAULT as input argument. This will reset the current default SubscriberQos to de-

6.15. DDS Layer 147

Fast DDS Documentation, Release 2.0.0

fault constructed value SubscriberQos ().

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a custom SubscriberQos
SubscriberQos custom_gos;

// Modify QoS attributes
/()

// Create a subscriber with a custom SubscriberQos
Subscriber* subscriber = participant->create_subscriber (custom_gos) ;
if (nullptr != subscriber)
{
// Error
return;

// Set the QoS on the subscriber to the default
if (subscriber->set_gos (SUBSCRIBER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// The previous instruction is equivalent to the following:
if (subscriber->set_qgos (participant->get_default_subscriber_gos())
= ReturnCode_t : :RETCODE_OK)

// Error
return;

Note: The value SUBSCRIBER_QOS_DEFAULT has different meaning depending on where it is used:

e On create _subscriber () and Subscriber::set_qgos () it refers to the default SubscriberQos as
returned by get_default_subscriber_qgos ().

e On set_default_subscriber._qgos () itrefers to the default constructed SubscriberQos ().

148 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

SubscriberListener

SubscriberListener is an abstract class defining the callbacks that will be triggered in response to state changes
on the Subscriber. By default, all these callbacks are empty and do nothing. The user should implement a special-
ization of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will
maintain their empty implementation.

SubscriberListener inherits from DataReaderListener. Therefore, it has the ability to react to all events that are
reported to the DataReader. Since events are always notified to the most specific Entity Listener that can handle
the event, callbacks that SubscriberListener inherits from DataReaderListener will only be called if the triggering
DataReader has no Listener attached, or if the callback is disabled by the St atusMask on the DataReader.

Additionally, SubscriberListener adds the following callback:

* on_data_on_readers (): New data is available on any DataReader belonging to this Subscriber. There is
no queuing of invocations to this callback, meaning that if several new data changes are received at once, only
one callback invocation may be issued for all of them, instead of one per change. If the application is retrieving
the received data on this callback, it must keep reading data until no new changes are left.

class CustomSubscriberListener : public SubscriberListener

{
public:

CustomSubscriberListener ()
SubscriberListener ()

virtual ~CustomSubscriberListener ()
{
}

virtual void on_data_on_readers (
Subscriber* sub)

(void) sub;
std::cout << "New data available" << std::endl;

}i

Creating a Subscriber

A Subscriber always belongs to a DomainParticipant. Creation of a Subscriber is done with the
create_subscriber () member function on the DomainParticipant instance, that acts as a factory for the Sub-
scriber.

Mandatory arguments are:

e The SubscriberQos describing the behavior of the Subscriber. If the provided value is
SUBSCRIBER_QOS_DEFAULT, the value of the Default SubscriberQos is used.

Optional arguments are:

* A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

6.15. DDS Layer 149

Fast DDS Documentation, Release 2.0.0

create_subscriber () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Subscriber with default SubscriberQos and no Listener
// The value SUBSCRIBER QOS DEFAULT is used to denote the default QoS.
Subscriber* subscriber_with_default_gos =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT) ;
if (nullptr != subscriber_with_default_gos)
{
// Error
return;

// A custom SubscriberQos can be provided to the creation method
SubscriberQos custom_gos;

// Modify QoS attributes
/()

Subscriber* subscriber_with_custom_gos =
participant->create_subscriber (custom_gos) ;
if (nullptr != subscriber_with_custom_gos)
{
// Error
return;

// Create a Subscriber with default QoS and a custom Listener.
// CustomSubscriberListener inherits from SubscriberListener.
// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_default_gos_and_custom_listener =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT, &custom_listener);
if (nullptr != subscriber_with_default_gos_and_custom_listener)
{
// Error
return;

150 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Profile based creation of a Subscriber

Instead of using a SubscriberQos, the name of a profile can be used to create a Subscriber with the
create_subscriber () member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Subscriber.
Optional arguments are:

* A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

create_subscriber () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance () —>load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—.QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Subscriber using a profile and no Listener
Subscriber* subscriber_with_profile =
participant->create_subscriber_with_profile("subscriber_ profile");
if (nullptr != subscriber_with_profile)
{
// Error
return;

// Create a Subscriber using a profile and a custom Listener.
// CustomSubscriberListener inherits from SubscriberListener.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_profile_and_custom_listener =
participant->create_subscriber_with_profile("subscriber_profile", &custom_
—listener);
if (nullptr != subscriber_with_profile_and_custom_listener)
{
// Error
return;

6.15. DDS Layer 151

Fast DDS Documentation, Release 2.0.0

Deleting a Subscriber

A Subscriber can be deleted with the delete_ subscriber () member function on the DomainParticipant instance
where the Subscriber was created.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Subscriber
Subscriber* subscriber =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT) ;
if (nullptr != subscriber)
{
// Error
return;

// Use the Subscriber to communicate

/)

// Delete the Subscriber

if (participant->delete_subscriber (subscriber) != ReturnCode_t::RETCODE_OK)
{
// Error
return;
}
DataReader

A DataReader is attached to exactly one Subscriber that acts as a factory for it. Additionally, each DataReader is
bound to a single 7opic since its creation. This Topic must exist prior to the creation of the DataReader, and must be
bound to the data type that the DataReader wants to publish.

The effect of creating a new DataReader in a Subscriber for a specific Topic is to initiate a new subscription with the
name and data type described by the Topic.

Once the DataReader is created, the application will be informed when changes in the data value are received from
remote publications. These changes can then be retrieved using the DataReader: : read _next_sample () or
DataReader: :take next_sample () member functions of the DataReader.

152 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

DataReaderQos

DataReaderQosS controls the behavior of the DataReader. Internally it contains the following QosPolicy ob-
jects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability () No
DurabilityServiceQosPolicy durability service () Yes
DeadlineQosPolicy deadline () Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness () No
ReliabilityQosPolicy reliability () No (*)
DestinationOrderQosPolicy destination_order () No
HistoryQosPolicy history() No
ResourceLimitsQosPolicy resource_limits () No
LifespanQosPolicy lifespan () Yes
UserDataQosPolicy user._data () Yes
OwnershipQosPolicy ownership () No
PropertyPolicyQos properties () Yes
RTPSEndpointQos endpoint () Yes
ReaderResourceLimitsQos reader_resource_limits () | Yes
RTPSEndpoinTimeBasedFilterQosPolicytQos | time_based_filter () Yes
ReaderDataLifecycleQosPolicy reader_data_lifecycle () Yes
RTPSReliableReaderQos reliable reader _qgos () Yes
TypeConsistencyQos type_consistency () Yes
boolean expects_inline_qgos () Yes

Refer to the detailed description of each QosPo11icy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy canbe modified any time.

The QoS value of a previously created DataReader can be modified using the DataReader: : set_qgos () member
function.

// Create a DataReader with default DataReaderQos
DataReader* data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;
if (nullptr != data_reader)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
DataReaderQos gos = data_reader—->get_gos();

// Modify QoS attributes
/(o)

// Assign the new Qos to the object
data_reader—->set_gos (gos) ;

6.15. DDS Layer 153

Fast DDS Documentation, Release 2.0.0

Default DataReaderQos

The default DataReaderQos refers to the value returned by the get_default_datareader_gos () member
function on the Subscriber instance. The special value DATAREADER_QOS_DEFAULT can be used as QoS argu-
menton create datareader () or DataReader: :set_qos () member functions to indicate that the current
default DataReaderQos should be used.

When the system starts, the default DataReaderQos is equivalent to the default constructed
value DataReaderQos (). The default DataReaderQos can be modified at any time using the
set_default_datareader_gos () member function on the Subscriber instance. Modifying the default
DataReaderQos will not affect already existing DataReader instances.

// Get the current QoS or create a new one from scratch
DataReaderQos gos_typel = subscriber->get_default_datareader_qgos();

// Modify QoS attributes

/()
// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_gos (gos_typel) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a DataReader with the new default DataReaderQos.
DataReader data_reader_with_gos_typel =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;
if (nullptr != data_reader_with_gos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DataReaderQos qgos_type2;

// Modify QoS attributes

J/(ea)
// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_gos (gos_type2) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a DataReader with the new default DataReaderQos.
DataReaderx data_reader_with_gos_type2 =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;
if (nullptr != data_reader_with_gos_type2)
{
// Error
return;

// Resetting the default DataReaderQos to the original default constructed values

(continues on next page)

154 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (subscriber->set_default_datareader_gos (DATAREADER_QOS_DEFAULT)
= ReturnCode_t: :RETCODE_OK)

// Error
return;

// The previous instruction is equivalent to the following
if (subscriber->set_default_datareader_gos (DataReaderQos ())
= ReturnCode_t: :RETCODE_OK)

// Error
return;

set_default_datareader_qgos () member function also accepts the special value
DATAREADER_QOS_DEFAULT as input argument. This will reset the current default DataReaderQos to de-
fault constructed value Dat aReaderQos ().

// Create a custom DataReaderQos
DataReaderQos custom_gos;

// Modify QoS attributes

J/(ea)
// Create a DataWriter with a custom DataReaderQos
DataReader+ data_reader = subscriber->create_datareader (topic, custom_gos);
if (nullptr != data_reader)
{
// Error
return;

// Set the QoS on the DataWriter to the default
if (data_reader->set_gos (DATAREADER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// The previous instruction 1is equivalent to the following:
if (data_reader—->set_qgos (subscriber->get_default_datareader_gos())
= ReturnCode_t : :RETCODE_OK)

// Error
return;

Note: The value DATAREADER_QOS_DEFAULT has different meaning depending on where it is used:

e On create _datareader () and DataReader: :set_qgos () it refers to the default DataReaderQos as
returned by get_default_datareader_qos ().

e On set_default_datareader_ qos () itrefers to the default constructed DataReaderQos ().

6.15. DDS Layer 155

Fast DDS Documentation, Release 2.0.0

DataReaderListener

DataReaderListener is an abstract class defining the callbacks that will be triggered in response to state changes
on the DataReader. By default, all these callbacks are empty and do nothing. The user should implement a special-
ization of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will
maintain their empty implementation.

DataReaderListener defines the following callbacks:

* on _data_available (): There is new data available for the application on the DataReader. There is no
queuing of invocations to this callback, meaning that if several new data changes are received at once, only one
callback invocation may be issued for all of them, instead of one per change. If the application is retrieving the
received data on this callback, it must keep reading data until no new changes are left.

* on_subscription_matched (): The DataReader has found a DataWriter that matches the Topic and has
a common partition and a compatible QoS, or has ceased to be matched with a DataWriter that was previously
considered to be matched. It is also triggered when a matched DataWriter has changed its DataWriterQos.

* on_requested_deadline_missed(): The DataReader did not receive data within the deadline period
configured on its DataReaderQos. It will be called for each deadline period and data instance for which the
DataReader missed data.

Warning: Currently on_requested _deadline _missed () is not implemented (it will never be called),
and will be implemented on a future release of Fast DDS.

e on_requested_incompatible gos (): The DataReader has found a DataWriter that matches the Topic
and has a common partition, but with a QoS that is incompatible with the one defined on the DataReader.

e on_liveliness_changed(): The liveliness status of a matched DataWriter has changed. Fither a
DataWriter that was inactive has become active or the other way around.

* on_sample_rejected(): A received data sample was rejected.

Warning: Currently on_sample rejected () is not implemented (it will never be called), and will be
implemented on a future release of Fast DDS.

* on_sample_lost (): A data sample was lost and will never be received.

Warning: Currently on_sample lost () isnotimplemented (it will never be called), and will be implemented
on a future release of Fast DDS.

class CustomDataReaderListener : public DataReaderListener

{
public:

CustomDataReaderListener ()
DataReaderListener ()

{

}

virtual ~CustomDataReaderListener ()

{
}

(continues on next page)

156 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

virtual void on_data_available(
DataReader* reader)

(void) reader;
std::cout << "Received new data message" << std::endl;

virtual void on_subscription_matched (
DataReader+ reader,
const SubscriptionMatchedStatus& info)

(void) reader;
if (info.current_count_change == 1)
{
std::cout << "Matched a remote DataWriter" << std::endl;
}
else if (info.current_count_change == -1)
{

std::cout << "Unmatched a remote DataWriter" << std::endl;

virtual void on_requested_deadline_missed(
DataReader* reader,
const eprosima::fastrtps::RequestedDeadlineMissedStatuss& info)

(void) reader, (void)info;
std::cout << "Some data was not received on time" << std::endl;

virtual void on_liveliness_changed(
DataReader+ reader,
const eprosima::fastrtps::LivelinessChangedStatusé& info)

(void) reader;
if (info.alive_count_change == 1)
{
std::cout << "A matched DataWriter has become active" << std::endl;
}
else if (info.not_alive_count_change == 1)
{

std::cout << "A matched DataWriter has become inactive" << std::endl;

virtual void on_sample_rejected(
DataReader+ reader,
const eprosima::fastrtps::SampleRejectedStatus& info)

(void) reader, (void)info;
std::cout << "A received data sample was rejected" << std::endl;

virtual void on_requested_incompatible_gos (
DataReader* /#reader=/,
const RequestedIncompatibleQosStatus& info)

(continues on next page)

6.15. DDS Layer 157

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << info.
—last_policy_id <<
")y" <<std::endl;

virtual void on_sample_lost (
DataReader* reader,
const SamplelostStatus& info)

(void) reader, (void)info;
std::cout << "A data sample was lost and will not be received" << std::endl;

}i

Creating a DataReader
A DataReader always belongs to a Subscriber. Creation of a DataReader is done with the create _datareader ()
member function on the Subscriber instance, that acts as a factory for the DataReader.
Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.

e The DataReaderQos describing the behavior of the DataReader. If the provided value is
DATAREADER_QOS_DEFAULT, the value of the Default DataReaderQos is used.

Optional arguments are:

* A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader () will return a null pointer if there was an error during the operation, e.g. if the provided
QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DataReader with default DataReaderQos and no Listener
// The value DATAREADER QOS_DEFAULT is used to denote the default QoS.
DataReader* data_reader_with_default_gos =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;

if (nullptr != data_reader_with_default_gos)
{

// Error

return;

// A custom DataReaderQos can be provided to the creation method
DataReaderQos custom_gos;

// Modify QoS attributes
S/ ()

DataReader* data_reader_with_custom_gos =
subscriber->create_datareader (topic, custom_gos);
if (nullptr != data_reader_with_custom_gos)

(continues on next page)

158 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Error
return;

// Create a DataReader with default QoS and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
// The value DATAREADER QOS_DEFAULT is used to denote the default QoS.
CustomDataReaderListener custom_listener;
DataReader data_reader_with_default_gos_and_custom_listener =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT, &custom_
—~listener);
if (nullptr != data_reader_with_default_gos_and_custom_listener)
{
// Error
return;

Profile based creation of a DataReader

Instead of using a DataReaderQos, the name of a profile can be used to create a DataReader with the
create_datareader with profile () member function on the Subscriber instance.

Mandatory arguments are:
» A Topic bound to the data type that will be transmitted.
* A string with the name that identifies the DataReader.
Optional arguments are:

* A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader _with_profile () will return a null pointer if there was an error during the operation,
e.g. if the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid
pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance () ->load_XML_profiles_file("profiles.xml");

// Create a DataReader using a profile and no Listener
DataReader data_reader_with_ profile =
subscriber->create_datareader_with_profile(topic, "data_reader_profile");
if (nullptr != data_reader_with_profile)
{
// Error
return;

(continues on next page)

6.15. DDS Layer 159

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Create a DataReader using a profile and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
CustomDataReaderListener custom_listener;
DataReaderx data_reader_with_profile_and_custom_listener =
subscriber->create_datareader_with_profile(topic, "data_reader_profile", &
—scustom_listener);
if (nullptr != data_reader_with_profile_and_custom_listener)
{
// Error
return;

Deleting a DataReader

A DataReader can be deleted with the delete datareader () member function on the Subscriber instance where
the DataReader was created.

// Create a DataReader
DataReader+ data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;
if (nullptr != data_reader)
{
// Error
return;

// Use the DataReader to communicate
J/(ea)

// Delete the DataReader

if (subscriber->delete_datareader (data_reader) != ReturnCode_t::RETCODE_OK)
{
// Error
return;
}
Samplelnfo

When a sample is retrieved from the DataReader, in addition to the sample data, a Sample Info instance is returned.
This object contains additional information that complements the returned data value and helps on it interpretation.
For example, if the valid_data value is false, the DataReader is not informing the application about a new value in
the data instance, but a change on its status, and the returned data value must be discarded.

Please, refer to the section Accessing received data for more information regarding how received data can be accessed
on the DataReader.

The following sections describe the data members of SampleInfo and the meaning of each one in relation to the
returned sample data.

* sample_state
* view_state
* instance_state

* disposed_generation_count

160 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* no_writers_generation_count
* sample_rank

e generation_rank

* absolute_generation_rank

* source_timestamp

o instance_handle

* publication_handle

* valid_data

* sample_identity

e related_sample_identity

sample_state

sample_state indicates whether or not the corresponding data sample has already been read previously. It can
take one of these values:

* READ: This is the first time this data sample has been retrieved.

* NOT_READ: The data sample has already been read or taken previously.

Note: Currently the sample state is not implemented, and its value is always set to NOT_READ. It will be
implemented on a future release of Fast DDS.

view_state

view_state indicates whether or not this is the very first sample of this data instance that the DataReader retrieves.
It can take one of these values:

* NEW: This is the first time a sample of this instance is retrieved.

* NOT_NEW: Other samples of this instance have been retrieved previously.

Note: Currently the view_state is not implemented, and its value is always set to NOT_NEW. It will be imple-
mented on a future release of Fast DDS.

instance_state

instance_state indicates whether the instance is currently in existence or it has been disposed. In the latter case,
it also provides information about the reason for the disposal. It can take one of these values:

e ALIVE: The instance is currently in existence.
« NOT_ALIVE_DISPOSED: A remote DataWriter disposed the instance.

* NOT_ALIVE_NO_WRITERS: The DataReader disposed the instance because no remote DataWriter that was
publishing the instance is alive.

6.15. DDS Layer 161

Fast DDS Documentation, Release 2.0.0

Note: Currently the instance_state is partially implemented, and the value NOT_ALIVE_NO_WRITERS
will never be set. It will be fully implemented on a future release of Fast DDS.

disposed_generation_count

disposed_generation_count indicates the number of times the instance had become alive after it was dis-
posed.

Note: Currently the disposed_generation_count is notimplemented, and its value is always set to 0. It will
be implemented on a future release of Fast DDS.

no_writers_generation_count

no_writers_generation_count indicates the number of times the instance had become alive after it was
disposed as NOT_ALIVE_NO_WRITERS.

Note: Currently the no_writers generation_count is not implemented, and its value is always set to 1. It
will be implemented on a future release of Fast DDS.

sample_rank

sample_rank indicates the number of samples of the same instance that have been received after this one. For
example, a value of 5 means that there are 5 newer samples available on the DataReader.

Note: Currently the sample_ rank is not implemented, and its value is always set to 0. It will be implemented on
a future release of Fast DDS.

generation_rank

generation_rank indicates the number of times the instance was disposed and become alive again between the
time the sample was received and the time the most recent sample of the same instance that is still held in the collection
was received.

Note: Currently the generation_rank is notimplemented, and its value is always set to 0. It will be implemented
on a future release of Fast DDS.

162 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

absolute_generation_rank

absolute_generation_rank indicates the number of times the instance was disposed and become alive again
between the time the sample was received and the time the most recent sample of the same instance (which may not
be in the collection) was received.

Note: Currently the absolute generation_rank is not implemented, and its value is always set to 0. It will
be implemented on a future release of Fast DDS.

source_timestamp

source_timestamp holds the time stamp provided by the DataWriter when the sample was published.

instance_handle

instance_ handle handles of the local instance.

publication_handle

publication_handle handles of the DataWriter that published the data change.

valid_data

valid data is aboolean that indicates whether the data sample contains a change in the value or not. Samples with
this value set to false are used to communicate a change in the instance status, e.g., a change in the liveliness of the
instance. In this case, the data sample should be dismissed as all the relevant information is in the data members of
Samplelnfo.

sample_identity

sample_identity is an extension for requester-replier configuration. It contains the DataWriter and the sequence
number of the current message, and it is used by the replier to fill the related_sample_identity when it sends the reply.

related_sample_identity

related_sample_identity is an extension for requester-replier configuration. On reply messages, it contains
the sample_identity of the related request message. It is used by the requester to be able to link each reply to the
appropriate request.

6.15. DDS Layer 163

Fast DDS Documentation, Release 2.0.0

Accessing received data

The application can access and consume the data values received on the DataReader by reading or taking.

¢ Reading is done with the DataReader: : read next_sample () member function. It reads the next,
non-previously accessed data value available on the DataReader, and stores it in the provided data buffer.

» Taking is done with the DataReader: :take next_sample () member function. It reads the next, non-
previously accessed data value available on the DataReader, and stores it in the provided data buffer. Addition-
ally, it also removes the value from the DataReader, so it is no longer accessible.

If there is no unread data in the DataReader, both operations will return NO_DATA and nothing is returned.

In addition to the data value, the data access operations also provide a Samplelnfo instance with additional information
that help interpreting the returned data value, like the originating DataWriter or the publication time stamp. Please,
refer to the Samplelnfo section for an extensive description of its contents.

Accessing data on callbacks

When the DataReader new data values from any matching DataWriter, it informs the application through two Listener
callbacks:

* on data _available().
* on data_on_readers ().

These callbacks can be used to retrieve the newly arrived data, as in the following example.

class CustomizedDataReaderListener : public DataReaderListener

{
public:

CustomizedDataReaderListener ()
DataReaderListener ()

virtual ~CustomizedDataReaderListener ()
{
}

virtual void on_data_available(
DataReader reader)

// Create a data and SampleInfo instance
voidx data = reader->type () .create_datal();
SampleInfo info;

// Keep taking data until there is nothing to take
while (reader->take_next_sample (&data, &info) == ReturnCode_t::RETCODE_OK)
{
if (info.instance_state == ALIVE)
{
// Do something with the data
std::cout << "Received new data value for topic
<< reader->get_topicdescription () ->get_name ()
<< std::endl;

"

(continues on next page)

164 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

}
else
{
std::cout << "Remote writer for topic "
<< reader->get_topicdescription () ->get_name ()
<< " is dead" << std::endl;

// The data instance can be reused to retrieve new values,
// but delete it at the end to avoid leaks
reader—>type () .delete_data (data);

}i

Note: If several new data changes are received at once, the callbacks may be triggered just once, instead of once per
change. The application must keep reading or taking until no new changes are available.

Accessing data with a waiting thread

Instead of relying on the Listener to try and get new data values, the application can also dedicate a thread to wait until
any new data is available on the DataReader. This can be done with the wait_for_unread_message () member
function, that blocks until a new data sample is available or the given timeout expires. If no new data was available
after the timeout expired, it will return with value false. This function returning with value t rue means there is
new data available on the DataReaderListener ready for the application to retrieve.

// Create a DataReader
DataReader* data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT) ;
if (nullptr != data_reader)
{
// Error
return;

// Create a data and SampleInfo instance
voidx data = data_reader->type () .create_datal();
SampleInfo info;

//Define a timeout of 5 seconds
eprosima: :fastrtps::Duration_t timeout (5,0);

// Loop reading data as it arrives
// This will make the current threat to be dedicated exclusively to
// waiting and reading data until the remote DatalWriter dies
while (true)
{
if (data_reader->wait_for_unread_message (timeout))
{
if (data_reader—->take_next_sample (&data, &info) == ReturnCode_t::RETCODE_OK)
{
if (info.instance_state == ALIVE)
{

(continues on next page)

6.15. DDS Layer 165

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Do something with the data

std::cout << "Received new data value for topic
<< topic->get_name ()
<< std::endl;

"

}
else
{
// If the remote writer is not alive, we exit the reading loop
std::cout << "Remote writer for topic "
<< topic—>get_name ()
<< " is dead" << std::endl;
break;

}

else

{

std::cout << "No data this time" << std::endl;

// The data instance can be reused to retrieve new values,
// but delete it at the end to avoid leaks
data_reader—>type () .delete_data (data);

6.15.5 Topic

A Topic conceptually fits between publications and subscriptions. Each publication channel must be unambiguously
identified by the subscriptions in order to receive only the data flow they are interested in, and not data from other
publications. A Topic serves this purpose, allowing publications and subscriptions that share the same Topic to match
and start communicating. In that sense, the Topic acts as a description for a data flow.

Publications are always linked to a single Topic, while subscriptions are linked to a broader concept of TopicDescrip-
tion.

Fig. 7: Topic class diagram

Topic
A Topicis aspecialization of the broader concept of TopicDescription. A Topic represents a single data flow between
Publisher and Subscriber, providing:

* The name to identify the data flow.

* The data type that is transmitted on that flow.

¢ The QoS values related to the data itself.

The behavior of the Topic can be modified with the QoS values specified on TopicQos. The QoS values can be set at
the creation of the Topic, or modified later with the Topic: :set_gos () member function.

Like other Entities, Topic accepts a Listener that will be notified of status changes on the Topic.

166 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

TopicQos

TopicQos controls the behavior of the Topic. Internally it contains the following OosPolicy objects:

QosPolicy class Accessor Mutable
TopicDataQosPolicy topic_data () Yes
DurabilityQosPolicy durability() Yes
DurabilityServiceQosPolicy durability service() | Yes
DeadlineQosPolicy deadline () Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness () Yes
ReliabilityQosPolicy reliability () Yes
DestinationOrderQosPolicy destination_order () Yes
HistoryQosPolicy history() Yes
ResourceLimitsQosPolicy resource_limits () Yes
TransportPriorityQosPolicy transport_priority () | Yes
LifespanQosPolicy lifespan () Yes
OwnershipQosPolicy ownership () Yes
DataRepresentationQosPolicy | representation () Yes

Refer to the detailed description of each QosPolicy-api class for more information about their usage and default values.

The QoS value of a previously created Topic can be modified using the Topic: :set_gos () member function.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

}

// Create a Topic with default TopicQos
Topicx topic =

participant->create_topic ("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr != topic)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos gos = topic—>get_gos();

// Modify QoS attributes
/()

// Assign the new Qos to the object
topic->set_gos (gos) ;

6.15. DDS Layer 167

Fast DDS Documentation, Release 2.0.0

Default TopicQos

The default TopicQos refers to the value returned by the get_default_topic_gos () member function on
the DomainParticipant instance. The special value TOPIC_QOS_DEFAULT can be used as QoS argument on
create_topic () or Topic: :set_qgos () member functions to indicate that the current default TopicQos should
be used.

When the system starts, the default TopicQos is equivalent to the default constructed value TopicQos (). The
default TopicQos can be modified at any time using the get_default_topic_gos () member function on the
DomainParticipant instance. Modifying the default TopicQos will not affect already existing Topic instances.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Get the current QoS or create a new one from scratch
TopicQos gos_typel = participant->get_default_topic_gos();

// Modify QoS attributes

S/S(ea)
// Set as the new default TopicQos
if (participant->set_default_topic_gos(gos_typel) != ReturnCode_t::RETCODE_OK)
{
// Error
return;

// Create a Topic with the new default TopicQos.
Topic* topic_with_gos_typel =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT) ;
if (nullptr != topic_with_qgos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
TopicQos gos_type2;

// Modify QoS attributes
JS)

// Set as the new default TopicQos
if (participant->set_default_topic_gos (gos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

// Create a Topic with the new default TopicQos.

(continues on next page)

168 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

Topic* topic_with_gos_type2 =

participant->create_topic ("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr != topic_with_gos_type2)
{
// Error
return;

// Resetting the default TopicQos to the original default constructed values
if (participant->set_default_topic_gos (TOPIC_QOS_DEFAULT)
= ReturnCode_t: :RETCODE_OK)

// Error
return;

// The previous instruction is equivalent to the following
if (participant->set_default_topic_gos (TopicQos())
!= ReturnCode_t: :RETCODE_OK)

// Error
return;

get_default_topic_gos () member function also accepts the value TOPIC_QOS_DEFAULT as input argu-
ment. This will reset the current default TopicQos to default constructed value TopicQos ().

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—+QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a custom TopicQos
TopicQos custom_gos;

// Modify QoS attributes
/S ()

// Create a topic with a custom TopicQos

Topicx topic = participant->create_topic("TopicName", "DataTypeName", custom_gos);
if (nullptr != topic)
{

// Error

return;

// Set the QoS on the topic to the default
if (topic->set_gos (TOPIC_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

(continues on next page)

6.15. DDS Layer 169

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// The previous instruction is equivalent to the following:
if (topic—>set_gos (participant->get_default_topic_gos())
= ReturnCode_t: :RETCODE_OK)

// Error
return;

Note: The value TOPIC_QOS_DEFAULT has different meaning depending on where it is used:

* On create_topic() and Topic::set_gos () it refers to the default TopicQos as returned by
get_default_topic_qgos ().

e On get_default_topic_qgos () itrefers to the default constructed TopicQos ().

TopicDescription

TopicDescription is an abstract class that serves as the base for all classes describing a data flow. Applications
will not create instances of TopicDescription directly, they must create instances of one of its specializations
instead. At the moment, the only specialization implemented is 7opic.

TopicListener

TopicListener is an abstract class defining the callbacks that will be triggered in response to state changes on the
Topic. By default, all these callbacks are empty and do nothing. The user should implement a specialization of this
class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain their
empty implementation.

TopicListener has the following callback:

* on_inconsistent_topic (): A remote Topic is discovered with the same name but different characteris-
tics as another locally created Topic.

Warning: Currently on_inconsistent_topic () is not implemented (it will never be called), and will be
implemented on a future release of Fast DDS.

class CustomTopicListener : public TopicListener

{
public:

CustomTopicListener ()
TopicListener ()

virtual ~CustomTopicListener ()
{
}

(continues on next page)

170 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

virtual void on_inconsistent_topic(
Topicx topic,
InconsistentTopicStatus status)

(void) topic, (void)status;
std::cout << "Inconsistent topic received discovered" << std::endl;

}i

Definition of data types

The definition of the data type exchanged in a Topic is divided in two classes: the TypeSupport and the
TopicDataType.

TopicDataType describes the data type exchanged between a publication and a subscription, i.e., the data corresponding
to a Topic. The user has to create a specialized class for each specific type that will be used by the application.

Any specialization of TopicDataType must be registered in the DomainParticipant before it can be used to create Topic
objects. A TypeSupport object encapsulates an instance of TopicDataType, providing the functions needed to register
the type and interact with the publication and subscription. To register the data type, create a new TypeSupport with a
TopicDataType instance and use the register_ type () member function on the TypeSupport. Then the Topic can
be created with the registered type name.

Note: Registering two different data types on the same DomainParticipant with identical names is not allowed and
will issue an error. However, it is allowed to register the same data type within the same DomainParticipant, with the
same or different names. If the same data type is registered twice on the same DomainParticipant with the same name,
the second registering will have no effect, but will not issue any error.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory::get_instance () ->create_participant (0, PARTICIPANT__
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Register the data type in the DomainParticipant.

// If nullptr is used as name argument, the one returned by the type itself is used
TypeSupport custom_type_support (new CustomDataType());
custom_type_support.register_type (participant, nullptr);

// The previous instruction is equivalent to the following one

// Even 1f we are registering the same data type with the same name twice, no error,,
—will be issued

custom_type_support.register_type (participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topicx topic =

participant->create_topic("topic_name", custom_type_support.get_type_name (), .,
—TOPIC_QOS_DEFAULT) ;

(continues on next page)

6.15. DDS Layer 171

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

if (nullptr != topic)
{

// Error

return;

// Create an alias for the same data type using a different name.
custom_type_support.register_type (participant, "data_type_name");

// We can now use the aliased name to If no name is given, 1t uses the name returned_
—by the type itself
Topic* another_topic =

participant->create_topic ("other_topic_name", "data_type_name", TOPIC_QOS_
—DEFAULT) ;
if (nullptr != another_topic)
{
// Error
return;

Dynamic data types

Instead of directly writing the specialized TopicDataType class, it is possible to dynamically define data types
following the OMG Extensible and Dynamic Topic Types for DDS interface. Data types can also be described on an
XML file that is dynamically loaded.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—.QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Load the XML file with the type description
eprosima: :fastrtps: :xmlparser: :XMLProfileManager: :loadXMLFile ("example_type.xml");

// Retrieve the an instance of the desired type and register it
eprosima: :fastrtps::types: :DynamicType_ptr dyn_type =

eprosima: :fastrtps::xmlparser: :XMLProfileManager: :getDynamicTypeByName (
—"DynamicType")->build();
TypeSupport dyn_type_support (new eprosima::fastrtps::types: :DynamicPubSubType (dyn_
—type));
dyn_type_support.register_type (participant, nullptr);

// Create a Topic with the registered type.
Topicx topic =
participant->create_topic ("topic_name", dyn_type_support.get_type_name(),

—TOPIC_QOS_DEFAULT) ;
if (nullptr != topic)
{

// Error

return;

(continues on next page)

172 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

A complete description of the dynamic definition of types can be found on the Dynamic Topic Types section.

Data types with a key

Data types that define a set of fields to form a unique key can distinguish different data sets within the same data type.

To define a keyed Topic, the getKey () member function on the TopicDataType has to be overridden to return
the appropriate key value according to the data fields. Additionally, the m_isGetKeyDefined data member needs
to be set to t rue to let the entities know that this is a keyed Topic and that get Key () should be used. Types that do
not define a key will have m_isGetKeyDefined set to false.

There are three ways to implement keys on the TopicDataType:
* Adding a @Key annotation to the members that form the key in the IDL file when using Fast DDS-Gen.
* Adding the attribute Key to the member and its parents when using Dynamic Topic Types.

e Manually implementing the getKey () member function on the TopicDataType and setting the
m_1isGetKeyDefined data member value to t rue.

Data types with key are used to define data sub flows on a single Topic. Data values with the same key on the same
Topic represent data from the same sub-flow, while data values with different keys on the same Topic represent data
from different sub-flows. The middleware keeps these sub-flows separated, but all will be restricted to the same QoS
values of the Topic. If no key is provided, the data set associated with the Topic is restricted to a single flow.

Creating a Topic
A Topic always belongs to a DomainParticipant. Creation of a Topic is done with the create_topic () member
function on the DomainParticipant instance, that acts as a factory for the Topic.
Mandatory arguments are:
* A string with the name that identifies the Topic.
* The name of the registered data type that will be transmitted.

* The TopicQos describing the behavior of the Topic. If the provided value is TOPIC_QOS_DEFAULT, the value
of the Default TopicQos is used.

Optional arguments are:

* A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic () will return a null pointer if there was an error during the operation, e.g. if the provided QoS is
not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{

(continues on next page)

6.15. DDS Layer 173

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Error
return;

// Create a Topic with default TopicQos and no Listener
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
Topic* topic_with_default_gos =

participant->create_topic ("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr != topic_with_default_gos)
{
// Error
return;

// A custom TopicQos can be provided to the creation method
TopicQos custom_gos;

// Modify QoS attributes

/()
Topic* topic_with_custom_gos =
participant->create_topic ("TopicName", "DataTypeName", custom_gos);
if (nullptr != topic_with_custom_gos)
{
// Error
return;

// Create a Topic with default QoS and a custom Listener.

// CustomTopicListener inherits from TopicListener.

// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
CustomTopicListener custom_listener;

Topic* topic_with_default_gos_and_custom_listener =

participant->create_topic ("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT, &
—custom_listener);
if (nullptr != topic_with_default_gos_and_custom_listener)
{
// Error
return;

Profile based creation of a Topic

Instead of using a TopicQos, the name of a profile can be used to create a Topic with the
create_topic_with_profile () member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Topic.
* The name of the registered dara type that will be transmitted.
* The name of the profile to be applied to the Topic.

Optional arguments are:

* A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

174 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic_with_profile () will return a null pointer if there was an error during the operation, e.g. if the
provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_
—QOS_DEFAULT) ;
if (nullptr != participant)
{
// Error
return;

// Create a Topic using a profile and no Listener
Topicx topic_with_profile =
participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_

—profile");
if (nullptr != topic_with_profile)
{

// Error

return;

// Create a Topic using a profile and a custom Listener.
// CustomTopicListener inherits from TopicListener.
CustomTopicListener custom_listener;

Topic* topic_with_profile_and_custom_listener =

participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_
—profile”, &custom_listener);
if (nullptr != topic_with_profile_and_custom_listener)
{
// Error
return;

Deleting a Topic

A Topic can be deleted with the delete topic () member function on the DomainParticipant instance where the
Topic was created.

// Create a DomainParticipant in the desired domain

DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () ->create_participant (0, PARTICIPANT_

—QOS_DEFAULT) ;

if (nullptr != participant)

{

(continues on next page)

6.15. DDS Layer 175

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

// Error
return;

// Create a Topic
Topicx topic =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT) ;
if (nullptr != topic)
{
// Error
return;

// Use the Topic to communicate

/S)

// Delete the Topic
if (participant->delete_topic(topic) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

Fast DDS-Gen for data types source code generation

eProsima Fast DDS comes with a built-in source code generation tool, Fast DDS-Gen, which eases the process of
translating an IDL specification of a data type to a functional implementation. Thus, this tool automatically generates
the source code of a data type defined using IDL. A basic use of the tool is described below. To learn about all the
features that Fast DDS offers, please refer to Fast DDS-Gen section.

Basic usage

Fast DDS can be executed by calling fastrtpsgen on Linux or fastrtpsgen.bat on Windows. The IDL file containing
the data type definition is given with the <IDLfile> argument.

Linux

fastrtpsgen [<options>] <IDLfile> [<IDLfile> ...]

Windows

fastrtpsgen.bat [<options>] <IDLfile> [<IDLfile> ...]

Among the available arguments defined in Usage, the main Fast DDS-Gen options for data type source code generation
are the following:

* —replace: It replaces existing files in case the data type files have been previously generated.
e —help: It lists the currently supported platforms and Visual Studio versions.

* —typeobject: It builds additional files for TypeOb ject generation and management (see TypeObject).

176 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* —example: It generates a basic example of a DDS application and the files to build it for the given plat form.
Thus, Fast DDS-Gen tool can generate a sample application using the provided data type, together with a
Makefile, to compile it on Linux distributions, and a Visual Studio project for Windows. To see an example of
this please refer to tutorial Building a publish/subscribe application.

Output files

Fast DDS-Gen outputs several files. Assuming the IDL file had the name “Mytype”, and none of the above options
have been defined, these files are:

* MyType.cxx/.h: Type definition.

* MyTypePubSubType.cxx/.h: Serialization and deserialization source code for the data type. It also defines the
getKey () member function of the MyTypePubSubType class in case the topic implements keys (see Data
types with a key).

If the -t ypeobject argument was used, MyType.cxx is modified to register the TypeOb ject representation in the
TypeObjectFactory, and these files will also be generated:

* MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

6.16 RTPS Layer

The lower level RTPS Layer of eprosima Fast DDS serves an implementation of the protocol defined in the RTPS
standard. This layer provides more control over the internals of the communication protocol than the DDS Layer, so
advanced users have finer control over the library’s functionalities.

6.16.1 Relation to the DDS Layer

Elements of this layer map one-to-one with elements from the DDS Layer, with a few additions. This correspondence
is shown in the following table:

DDS Layer RTPS Layer
Domain RTPSDomain
DomainParticipant | RTPSParticipant
DataWriter RTPSWriter
DataReader RTPSReader

6.16.2 How to use the RTPS Layer

We will now go over the use of the RTPS Layer like we did with the DDS Layer one, explaining the new features it
presents.

We recommend you to look at the two examples of how to use this layer the distribution comes with while reading this
section. They are located in examples/RTPSTest_as_socket and in examples/RTPSTest_registered

6.16. RTPS Layer 177

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

Managing the Participant

Creating a RTIPSParticipant is done with RTIPSDomain: :createParticipant ().
RTPSParticipantAttributes structure is used to configure the RTPSParticipant upon creation.

RTPSParticipantAttributes participant_attr;
participant_attr.setName ("participant");
RTPSParticipant+ participant = RTPSDomain::createParticipant (0, participant_attr);

Managing the Writers and Readers
As the RTPS standard specifies, Writers and Readers are always associated with a History element. In the DDS Layer,
its creation and management is hidden, but in the RTPS Layer, you have full control over its creation and configuration.

Writers are created with RTPSDomain: :createRTPSWriter () and configured with a WriterAttributes
structure. They also need a WriterHistory which is configured with a HistoryAttributes structure.

HistoryAttributes history_attr;

WriterHistoryx history = new WriterHistory (history_attr);

WriterAttributes writer_attr;

RTPSWriter+ writer = RTPSDomain::createRTPSWriter (participant, writer_attr, history);

The creation of a Reader is similar to that of the Writers. Note that in this case, you can provide a specialization of
ReaderListener class that implements your callbacks:

class MyReaderListener : public ReaderlListener
{
// Callbacks override
bi
MyReaderListener listener;
HistoryAttributes history_attr;
ReaderHistory* history = new ReaderHistory(history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader (participant, reader_attr, history, &
—listener);

Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated History. Each piece of data is
represented by a Change, which eprosima Fast DDS implements as CacheChange_t. Changes are always managed
by the History. As a user, the procedure for interacting with the History is always the same:

1. Request a CacheChange_t from the History
2. Useit
3. Release it

You can interact with the History of the Writer to send data. A callback that returns the maximum number of payload
bytes is required:

//Request a change from the history

CacheChange_t* change = writer->new_change ([] () —> uint32_t {
return 255;
}, ALIVE);

//Write serialized data into the change

(continues on next page)

178 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

change->serializedPayload.length = sprintf ((charx) change->serializedPayload.data,
—"My example string %d", 2) + 1;

//Insert change back into the history. The Writer takes care of the rest.
history->add_change (change) ;

If your topic data type has several fields, you will have to provide functions to serialize and deserialize your data in
and out of the CacheChange_t. Fast DDS-Gen does this for you.

You can receive data from within a ReaderListener callback method as we did in the DDS Layer:

class MyReaderListener : public ReaderlListener

{
public:

MyReaderListener ()
{
}

~MyReaderListener ()
{
}

void onNewCacheChangeAdded (
RTPSReader+ reader,
const CacheChange_t* const change)

// The incoming message 1is enclosed within the ‘change' in the function,,
—parameters

printf ("$s\n", change->serializedPayload.data);

// Once done, remove the change

reader->getHistory () —>remove_change ((CacheChange_t*) change) ;

}i

6.16.3 Configuring Readers and Writers

One of the benefits of using the RTPS Layer is that it provides new configuration possibilities while maintaining the
options from the DDS layer. For example, you can set a Writer or a Reader as a Reliable or Best-Effort endpoint as
previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

Setting the data durability kind
The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader
matches. eProsima Fast DDS offers three Durability options:

* VOLATILE (default): Messages are discarded as they are sent. If a new Reader matches after message 7, it will
start received from message n+1.

* TRANSIENT_LOCAL: The Writer saves a record of the last kK messages it has sent. If a new reader matches
after message n, it will start receiving from message n-k

6.16. RTPS Layer 179

Fast DDS Documentation, Release 2.0.0

e TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it
will be available if the writer is destroyed and recreated, or in case of an application crash.

To choose your preferred option:

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the RTPS Layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT modes the
Writer sends all changes you have not explicitly released from the History.

6.16.4 Configuring the History

The History has its own configuration structure, the HistoryAttributes.

Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t. Be sure to choose a size that
allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250;//Defaults to 500 bytes

Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as
they are needed until it reaches the maximum size.

6.17 Discovery

Fast DDS, as a Data Distribution Service (DDS) implementation, provides discovery mechanisms that allow for au-
tomatically finding and matching DataWriters and DataReaders across DomainParticipants so they can start sharing
data. This discovery is performed, for all the mechanisms, in two phases.

6.17.1 Discovery phases

1. Participant Discovery Phase (PDP): During this phase the DomainParticipants acknowledge each
other’s existence. To do that, each DomainParticipant sends periodic announcement messages, which spec-
ify, among other things, unicast addresses (IP and port) where the DomainParticipant is listening for incoming
meta and user data traffic. Two given DomainParticipants will match when they exist in the same DDS Domain.
By default, the announcement messages are sent using well-known multicast addresses and ports (calculated
using the DomainId). Furthermore, it is possible to specify a list of addresses to send announcements using
unicast (see in /nitial peers). Moreover, is is also possible to configure the periodicity of such announcements
(see Discovery Configuration).

180 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.0.0

2. Endpoint Discovery Phase (EDP): During this phase, the DataWriters and DataReaders acknowledge
each other. To do that, the DomainParticipants share information about their DataWriters and DataReaders with

each other, using the communication channels established during the PDP. This information contains, among
other things, the Topic and data type (see Topic). For two endpoints to match, their topic and data type must

coincide. Once DataWriter and DataReader have matched, they are ready for sending/receiving user data traffic.

6.17.2 Discovery mechanisms

Fast DDS provides the following discovery mechanisms:

e Simple Discovery: This is the default mechanism. It upholds the RTPS standard for both PDP and EDP, and

therefore provides compatibility with any other DDS and RTPS implementations.

e Static Discovery: This mechanisms uses the Simple Participant Discovery Protocol (SPDP) for the PDP phase

(as specified by the RTPS standard), but allows for skipping the Simple Participant Discovery Protocol (SEDP)
phase when all the DataWriters’ and DataReaders’ IPs and ports, data types, and Topics are known beforehand.

* Server-Client Discovery: This discovery mechanism uses a centralized discovery architecture, where a Domain-

Participant, referred as Server, act as a hub for discovery meta traffic.

e Manual Discovery: This mechanism is only compatible with the RTPS layer. It disables the PDP, letting
the user to manually match and unmatch RTPSParticipants, RTPSReaders, and RTPSWriters using
whatever external meta-information channel of its choice. Therefore, the user must access the RTPSParticipant
implemented by the DomainParticipant and directly match the RTPS Entities.

6.17.3 Discovery settings

The following sections list and describe the settings available for each of the previously defined discovery mechanisms,

as well as how to define the DomainParticipantListener discovery callbacks.

General Discovery Settings

Some discovery settings are shared across the different discovery mechanisms. These settings are defined under the

builtin public data member of the WireProtocolConfigQos class. These are:

TR

Name Description Type De-
fault
Discovery The discovery protocol to use (see Discovery mechanisms). DiscoveryProtodo$IMPLE]
Protocol
Ignore Par- | Filter discovery traffic for DomainParticipants in the same pro- | ParticipantFilteNQngFl
ticipant cess, in different processes, or in different hosts.
flags
Lease Dura- | Indicates for how much time should a remote DomainPartici- | Duration t 20s
tion pant consider the local DomainParticipant to be alive.
Announce- The period for the DomainParticipant to send PDP announce- | Duration_t 3s
ment Period | ments.
6.17. Discovery 181

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

Discovery Protocol

Specifies the discovery protocol to use (see Discovery mechanisms). The possible values are:

Dis- Pos- Description

covery sible

Mecha- val-

nism ues

Simple SIMPLE Simple discovery protocol as specified in RTPS standard.

Static STATIC SPDP with manual EDP specified in XML files.

Server- SERVER The DomainParticipant acts as a hub for discovery traffic, receiving and distributing dis-

Client covery information.

CLIENT The DomainParticipant acts as a client for discovery traffic. It send its discovery informa-
tion to the server, and receives all other discovery information from the server.

BACKUR Creates a SERVER DomainParticipant which has a persistent sglite database. A
BACKUP server can load the a database on start. This type of sever makes the Server-
Client architecture resilient to server destruction.

Manual NONE | Disables PDP phase, therefore the is no EDP phase. All matching must be done manu-
ally through the addReaderLocator, addReaderProxy, addWriterProxy RTPS
layer methods.

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::SIMPLE;

XML

<participant profile_name="participant_discovery_protocol">
<rtps>
<builtin>
<discovery_ config>
<discoveryProtocol>SIMPLE</discoveryProtocol>
</discovery_config>
</builtin>
</rtps>
</participant>

182

Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

Ignore Participant flags

Defines a filter to ignore some discovery traffic when received. This is useful to add an extra level of DomainParticipant
isolation. The possible values are:

Possible values Description

NO_FILTER All Discovery traffic is processed.

FILTER DIFFERENT HOST Discovery traffic from another host is discarded.

FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host
is discarded.

FILTER_SAME_PROCESS Discovery traffic from DomainParticipant’s own process
is discarded.

FILTER DIFFERENT PROCESS | | Discovery traffic from DomainParticipant’s own host is

FILTER SAME PROCESS discarded.

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.ignoreParticipantFlags =
static_cast<eprosima::fastrtps::rtps::ParticipantFilteringFlags_t>(
ParticipantFilteringFlags_t::FILTER_DIFFERENT_PROCESS |
ParticipantFilteringFlags_t::FILTER_SAME_PROCESS) ;

XML

<participant profile_name="participant_discovery_ignore_flags">
<rtps>
<builtin>
<discovery config>
<ignoreParticipantFlags>FILTER_DIFFERENT_PROCESS | FILTER_SAME_
—PROCESS</ignoreParticipantFlags>
</discovery_config>
</builtin>
</rtps>
</participant>

Lease Duration

Indicates for how much time should a remote DomainParticipant consider the local DomainParticipant to be alive. If
the liveliness of the local DomainParticipant has not being asserted within this time, the remote DomainParticipant
considers the local DomainParticipant dead and destroys all the information regarding the local DomainParticipant
and all its endpoints.

The local DomainParticipant’s liveliness is asserted on the remote DomainParticipant any time the remote Domain-
Participant receives any kind of traffic from the local DomainParticipant.

The lease duration is specified as a time expressed in seconds and nanosecond using a Duration_t.

6.17. Discovery 183

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.leaseDuration = Duration_t (10, 20);

XML

<participant profile name="participant_discovery_lease_duration">
<rtps>
<builtin>
<discovery_ config>
<leaseDuration>
<sec>10</sec>
<nanosec>20</nanosec>
</leaseDuration>
</discovery_config>
</builtin>
</rtps>
</participant>

Announcement Period

It specifies the periodicity of the DomainParticipant’s PDP announcements. For liveliness’ sake it is recommend that
the announcement period is shorter than the lease duration, so that the DomainParticipant’s liveliness is asserted even
when there is no data traffic. It is important to note that there is a trade-off involved in the setting of the announcement
period, i.e. too frequent announcements will bloat the network with meta traffic, but too scarce ones will delay the
discovery of late joiners.

DomainParticipant’s announcement period is specified as a time expressed in seconds and nanosecond using a
Duration_t.

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.leaseDuration_announcementperiod =

—Duration_t (1, 2);

XML

<participant profile_name="participant_discovery_lease_announcement">
<rtps>
<builtin>
<discovery_ config>
<leaseAnnouncement>
<sec>1</sec>
<nanosec>2</nanosec>
</leaseAnnouncement>
</discovery_config>
</builtin>
</rtps>
</participant>

184 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

SIMPLE Discovery Settings

The SIMPLE discovery protocol resolves the establishment of the end-to-end connection between various DDS Enti-
ties. eProsima Fast DDS implements the SIMPLE discovery protocol to provide compatibility with the RTPS standard.
The specification splits up the SIMPLE discovery protocol into two independent protocols:

» Simple Participant Discovery Protocol (SPDP): specifies how DomainParticipants discover each other in the
network; it announces and detects the presence of DomainParticipants within the same domain.

 Simple Endpoint Discovery Protocol (SEDP): defines the protocol adopted by the discovered DomainPartici-
pants for the exchange of information in order to discover the DDS Entities contained in each of them, i.e. the
DataWriter and DataReader.

Name Description

Initial Announcements | It defines the behavior of the DomainParticipants initial announcements.

Simple EDP Attributes | It defines the use of the SIMPLE protocol as a discovery protocol.

Initial peers A list of DomainParticipant’s IP/port pairs to which the SPDP announcements are sent.

Initial Announcements

RTPS standard simple discovery mechanism requires the DomainParticipants to send announcements of their presence
in the domain. These announcements are not delivered in a reliable fashion, and can be disposed of by the network.
In order to avoid the discovery delay induced by message disposal, the initial announcement can be set up to make
several shots, in order to increase proper reception chances. See InitialAnnouncementConfig.

Initial announcements only take place upon participant creation. Once this phase is over, the only announcements
enforced are the standard ones based on the lecaseDuration_announcementperiod period (not the period).

Name | Description Type Default
count | It defines the number of announcements to send at start-up. | uint32_t 5
period | It defines the specific period for initial announcements. Duration_t | 100ms

6.17. Discovery 185

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.initial_announcements.count = 5;
pgos.wire_protocol () .builtin.discovery_config.initial_announcements.period =
—Duration_t (0, 100000000u);

XML

<participant profile_name="participant_profile_simple_discovery">

<rtps>
<builtin>
<discovery_ config>
<initialAnnouncements>
<count>5</count>
<period>
<sec>0</sec>
<nanosec>100000000</nanosec>
</period>
</initialAnnouncements>
</discovery_config>
</builtin>
</rtps>
</participant>

Simple EDP Attributes

Name Description Typel De-
fault
SIMPLE EDP It defines the use of the SIMPLE protocol as a discovery protocol for EDP phase. | bool true
A DomainParticipant may create DataWriters, DataReaders, both or neither.

Publication It is intended for DomainParticipants that implement only one or more DataWrit- | bool true
writer and Sub- | ers,i.e. do notimplement DataReaders. It allows the creation of only DataReader

scription reader discovery related EDP endpoints.

Publication It is intended for DomainParticipants that implement only one or more | bool true
reader and | DataReaders, i.e. do not implement DataWriters. It allows the creation of only

Subscription DataWriter discovery related EDP endpoints.

writer

186 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol,
—= true;

pgos.wire_protocol () .builtin.discovery_config.m_simpleEDP.use_
—PublicationWriterANDSubscriptionReader = true;

pgos.wire_protocol () .builtin.discovery_config.m_simpleEDP.use_
—PublicationReaderANDSubscriptionWriter = false;
XML

<participant profile_name="participant_profile_gos_discovery_edp">
<rtps>
<builtin>
<discovery_ config>
<EDP>SIMPLE</EDP>
<simpleEDP>
<PUBWRITER SUBREADER>true</PUBWRITER SUBREADER>
<PUBREADER_SUBWRITER>false</PUBREADER SUBWRITER>
</simpleEDP>
</discovery_config>
</builtin>
</rtps>
</participant>

Initial peers

According to the RTPS standard (Section 9.6.1.1), each RTPSParticipant must listen for incoming Participant
Discovery Protocol (PDP) discovery metatraffic in two different ports, one linked with a multicast address, and another
one linked to a unicast address. Fast DDS allows for the configuration of an initial peers list which contains one or
more such IP-port address pairs corresponding to remote DomainParticipants PDP discovery listening resources, so
that the local DomainParticipant will not only send its PDP traffic to the default multicast address-port specified by its
domain, but also to all the IP-port address pairs specified in the initial peers list.

A DomainParticipant’s initial peers list contains the list of IP-port address pairs of all other DomainParticipants with
which it will communicate. It is a list of addresses that a DomainParticipant will use in the unicast discovery mecha-
nism, together or as an alternative to multicast discovery. Therefore, this approach also applies to those scenarios in
which multicast functionality is not available.

According to the RTPS standard (Section 9.6.1.1), the RTPSParticipants’ discovery traffic unicast listening ports are
calculated using the following equation: 7400 + 250 * domainID + 10 + 2 * participantID. Thus, if for example
a RTPSParticipant operates in Domain 0 (default domain) and its ID is 1, its discovery traffic unicast listening port
would be: 7400 + 250 * 0 + 10 + 2 * 1 = 7412. By default eProsima Fast DDS uses as initial peers the Metatraffic
Multicast Locators.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with Do-
mainParticipant ID 1 in domain 0.

6.17. Discovery 187

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// configure an initial peer on host 192.168.10.13.

// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID '1° and domain "0

Locator_t initial_peer;

IPLocator::setIPv4 (initial_peer, "192.168.10.13");

initial_peer.port = 7412;

gos.wire_protocol () .builtin.initialPeersList.push_back (initial_peer);

XML

<‘/7,
<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS _Profiles">
—-—>
<participant profile_name="initial_ peers_example_profile" is_default_profile=
—"true">
<rtps>
<builtin>
<initialPeersList>
<locator>
<udpv4>
<address>192.168.10.13</address>
<port>7412</port>
</udpvd>
</locator>
</initialPeersList>
</builtin>
</rtps>
</participant>

STATIC Discovery Settings

Fast DDS allows for the substitution of the SEDP protocol for the EDP phase with a static version that completely
eliminates EDP meta traffic. This can become useful when dealing with limited network bandwidth and a well-known
schema of DataWriters and DataReaders. 1f all DataWriters and DataReaders, and their 7opics and data types, are
known beforehand, the EDP phase can be replaced with a static configuration of peers. It is important to note that by
doing this, no EDP discovery meta traffic will be generated, and only those peers defined in the configuration will be
able to communicate. The STATIC discovery related settings are:

Name Description

STATIC EDP It activates the STATIC discovery protocol.

STATIC EDP XML Files Specifi- | Specifies an XML file containing a description of the remote DataWriters and
cation DataReaders.

Initial Announcements It defines the behavior of the DomainParticipant initial announcements (PDP
phase).

188 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

STATIC EDP

To activate the STATIC EDP, the SEDP must be disabled on the WireProtocolConfigQos. This can be done
either by code or using an XML configuration file:

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol
—= false;
pgos.wire_protocol () .builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol,
—= true;

XML

<participant profile name="participant_profile_static_edp">
<rtps>
<builtin>
<discovery_ config>
<EDP>STATIC</EDP>
</discovery_config>
</builtin>
</rtps>
</participant>

STATIC EDP XML Files Specification

Since activating STATIC EDP suppresses all EDP meta traffic, the information about the remote entities (DataWriters
and DataReaders) must be statically specified, which is done using dedicated XML files. A DomainParticipant may
load several of such configuration files so that the information about different entities can be contained in one file, or
split into different files to keep it more organized. Fast DDS provides a Static Discovery example that implements this
EDP discovery protocol.

The following table describes all the possible elements of a STATIC EDP XML configuration file. A full example of
such file can be found in STATIC EDP XML Example.

6.17. Discovery 189

https://github.com/eProsima/Fast-DDS/blob/master/examples/C%2B%2B/DDS/StaticHelloWorldExample

Fast DDS Documentation, Release 2.0.0

Name Description Values Default
<userId> | Mandatory. Uniquely identifies the | uintl6_t 0
DataReader/DataWriter.
<entityID>Entityld of the DataReader/DataWriter. uintlé_t 0
<expect s It indicatesif QOS is expected inline (DataReader only). | bool false
<topicNameMandatory. The topic of the remote | string_255
DataReader/DataWriter. ~ Should match with one of
the topics of the local DataReaders/DataWriters.
<topicDat aNMgpdatory. The data type of the topic. string_255
<topicKindbhe kind of topic. NO_KEY NO_KEY
WITH_KEY
<partitigrlChesprame of a partition of the remote peer. Repeat to | string
configure several partitions.
<unicastlddsitast ocator of the DomainParticipant. See Locators
definition.
<multicagtMaltieasttocator of the DomainParticipant. See Locators
definition.
<reliabiliSee@hesReliabilityQosPolicy section. BEST EFFORT REIBASTIHARORDSRELIABILITY (
RELIABLE_RELIABILITY QOS
<durabilitSeedke DurabilityQosPolicy section. VOLATILE DURARBIVAIATOUDE DURABILITY QOS
TRANSIENT LOCAL DURABILITY POS
TRANSIENT DURABILITY QOS
<ownershipgSee3wnership QoS.
<livelinesdBefines the liveliness of the remote peer. See Liveliness
QoS.

Locators definition

Locators for remote peers are configured using <unicastLocator> and <multicastLocator> tags. These
take no value, and the locators are defined using tag elements. Locators defined with <unicastLocator> and
<multicastLocator> are accumulative, so they can be repeated to assign several remote endpoints locators to

the same peer.

* address: amandatory st ring representing the locator address.

* port: anoptional uint16_t representing a port on that address.

Ownership QoS

The ownership of the topic can be configured using <ownershipQos> tag. It takes no value, and the configuration

is done using t

ag elements:

e kind: can be one of SHARED OWNERSHIP_QOS or EXCLUSIVE OWNERSHIP (Q0S. This element is
mandatory withing the tag.

* strength: an optional uint32_t specifying how strongly the remote DomainParticipant owns the 7opic.
This QoS can be set on DataWriters only. If not specified, default value is zero.

190

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Liveliness QoS

The LivelinessQosPolicy of the remote peer is configured using <livelinessQos> tag. It takes no value, and the
configuration is done using tag elements:

¢ kind: canbe any of AUTOMATIC_LIVELINESS_QOS, MANUAI_BY_PARTICIPANT_LIVELINESS_QOS
or MANUAIL,_BY TOPIC_LIVELINESS_QOS. This element is mandatory withing the tag.

* leaseDuration_ms: an optional uint32 specifying the lease duration for the remote peer. The special
value INF can be used to indicate infinite lease duration. If not specified, default value is INF

STATIC EDP XML Example

The following is a complete example of a configuration XML file for two remote DomainParticipant, a DataWriter and
a DataReader. This configuration must agree with the configuration used to create the remote DataReader/DataWriter.
Otherwise, communication between DataReaders and DataWriters may be affected. If any non-mandatory element
is missing, it will take the default value. As a rule of thumb, all the elements that were specified on the remote
DataReader/DataWriter creation should be configured.

6.17. Discovery 191

Fast DDS Documentation, Release 2.0.0

XML

<staticdiscovery>
<participant>
<name>HelloWorldSubscriber</name>
<reader>
<userId>3</userId>
<entityID>4</entityID>
<expectsInlineQos>true</expectsInlineQos>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<unicastLocator address="192.168.0.128" port="5000"/>
<unicastLocator address="10.47.8.30" port="6000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_ QOS" leaseDuration_ms="1000"/>
</reader>
</participant>
<participant>
<name>HelloWorldPublisher</name>
<writer>
<unicastLocator address="192.168.0.120" port="9000"/>
<unicastLocator address="10.47.8.31" port="8000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<userId>5</userId>
<entityID>6</entityID>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<reliabilityQos>BEST_EFFORT_REL IZ—\BILITY_QOS</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS" strength="50"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
</writer>
</participant>
</staticdiscovery>

192 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Loading STATIC EDP XML Files

Statically discovered remote DataReaders/DataWriters must define a unique userID on their profile, whose value
must agree with the one specified in the discovery configuration XML. This is done by setting the user ID on the
DataReaderQos/DataWriterQos:

C++

// Configure the DataWriter
DataWriterQos wqgos;
wgos.endpoint () .user_defined_id = 1;

// Configure the DataReader
DataReaderQos rgos;
rgos.endpoint () .user_defined_id = 3;

XML

<publisher profile_name="publisher_xml_conf_static_discovery">
<userDefinedID>3</userDefinedID>
</publisher>

<subscriber profile_name="subscriber_xml_conf_static_discovery">
<userDefinedID>5</userDefinedID>
</subscriber>

On the local DomainParticipant, loading STATIC EDP configuration files is done by:

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.setStaticEndpointXMLFilename (
—"RemotePublisher.xml");
pgos.wire_protocol () .builtin.discovery_config.setStaticEndpointXMLFilename (
—"RemoteSubscriber.xml") ;

XML

<participant profile name="participant_profile_static_load_ xml">
<rtps>
<builtin>
<discovery_ config>
<staticEndpointXMLFilename>RemotePublisher.xml</
—staticEndpointXMLFilename>
<staticEndpointXMLFilename>RemoteSubscriber.xml</
—staticEndpointXMLFilename>
</discovery_config>
</builtin>
</rtps>
</participant>

6.17. Discovery 193

Fast DDS Documentation, Release 2.0.0

Server-Client Discovery Settings

This mechanism is based on a client-server discovery paradigm, i.e. the metatraffic (message exchange among Do-
mainParticipants to identify each other) is managed by one or several server DomainParticipants (left figure), as
opposed to simple discovery (right figure), where metatraffic is exchanged using a message broadcast mechanism like
an IP multicast protocol. A Discovery-Server tool is available to ease client-server setup and testing.

Fig. 8: Comparison of Server-Client discovery and Simple discovery mechanisms

Key concepts

In this architecture there are several key concepts to understand:

* The Server-Client discovery mechanism reuses the RTPS discovery messages structure, as well as the standard

DDS DataWriters and DataReaders.

Discovery server DomainParticipants may be clients or servers. The only difference between them is how they
handle meta-traffic. The user traffic, that is, the traffic among the DataWriters and DataReaders they create, is
role-independent.

All server and client discovery information will be shared with linked clients. Note that a server may act as a
client for other servers.

Clients require a beforehand knowledge of the servers to which they want to link. Basically it is reduced to the
server identity (henceforth called GuidPrefix t) and a list of locators where the server is listening. These
locators also define the transport protocol (UDP or TCP) the client will use to contact the server.

— The GuidPrefix_t isthe RTPS standard RTPSParticipant unique identifier, a 12-byte chain. This iden-
tifier allows clients to assess whether they are receiving messages from the right server, as each standard
RTPS message contains this piece of information.

The GuidPrefix_t is used because the server’s IP address may not be a reliable enough server iden-
tifier, since several servers can be hosted in the same machine, thus having the same IP, and also because
multicast addresses are acceptable addresses.

Servers do not require any beforehand knowledge of their clients, but their GuidPrefix_t and locator list
(where they are listening) must match the one provided to the clients. In order to gather client discovery infor-
mation, the following handshake strategy is followed:

— Clients send discovery messages to the servers at regular intervals (ping period) until they receive message
reception acknowledgement.

— Servers receive discovery messages from the clients, but they do not start processing them until a time
interval has elapsed, which starts at the moment the server is instantiated.

In order to clarify this discovery setup, either on compile time (sources) or runtime (XML files), this explanation is
divided into two sections: on focusing on the main concepts (setup by concept), and another one focusing on the main
setting structures and XML tags (setup by QoS).

194

Chapter 6. Structure of the documentation

https://eprosima-discovery-server.readthedocs.io/en/latest/index.html

Fast DDS Documentation, Release 2.0.0

Server-Client setup by concept

Concept

Description

Discovery protocol

Make a participant a client or a server.

Server unique id

Link a clients to servers.

Seting up transport

Specify which transport to use and make servers reachable.

Pinging period

Fine tune server-client handshake.

Matching period

Fine tune server deliver efficiency.

Choosing between Client and Server

It is set by the Discovery Protocol general setting. A participant can only play a role (despite the fact that a server may
act as a client of other server). It’s mandatory to fill this value because it defaults to simple. The values associated with
the Server-Client discovery are specified in discovery settings section. The examples below show how to manage the

corresponding enum and XML tag.

C++

DomainParticipantQos pgos;

pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol
DiscoveryProtocol_t:
pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t:
pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol
DiscoveryProtocol_t:

:CLIENT;

: SERVER;

:BACKUP;

XML

<rtps>
<builtin>
<discovery_config>

<!-- alternatives

-—>
</discovery_config>
</builtin>
</rtps>
</participant>

<participant profile_name="participant_discovery_protocol_alt" >

<discoveryProtocol>CLIENT</discoveryProtocol>

<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryProtocol>BACKUP</discoveryProtocol>

6.17. Discovery

195

Fast DDS Documentation, Release 2.0.0

The GuidPrefix as the server unique identifier

The GuidPrefix_t attribute belongs to the RTPS specification and univocally identifies each RTPSParticipant. It
consists on 12 bytes and in Fast DDS is a key for the DomainParticipant used in the DDS domain. Fast DDS defines
the DomainParticipant GuidPrefix_t as a public data member of the WireProtocolConfigQos class. In the
Server-Client discovery, it has the purpose to link a server to its clients. It must be mandatorily specified in: server
and client setups.

Server side setup

The examples below show how to manage the corresponding enum data member and XML tag.

C++ - Option 1: Manual setting of the unsigned char in ASCII format.

using namespace eprosima::fastrtps::rtps;

GuidPrefix_t serverGuidPrefix;

serverGuidPrefix.value[0] = octet (0x77);
serverGuidPrefix.value[l] = octet (0x73);
serverGuidPrefix.value[2] = octet (0x71);
serverGuidPrefix.value[3] = octet (0x85);
serverGuidPrefix.value[4] = octet (0x69);
serverGuidPrefix.value[5] = octet (0x76);
serverGuidPrefix.value[6] = octet (0x95);
serverGuidPrefix.value[7] = octet (0x66);
serverGuidPrefix.value[8] = octet (0x65);
serverGuidPrefix.value[9] = octet (0x82);
serverGuidPrefix.value[10] = octet (0x82);
serverGuidPrefix.value[ll] = octet (0x79);
DomainParticipantQos serverQos;
serverQos.wire_protocol () .prefix = serverGuidPrefix;

C++ - Option 2: Using the >> operator and the std: : ostream type.

DomainParticipantQos serverQos;
std::istringstream("4d.49.47.55.45.4c.5£.42.41.52.52.4£f") >> serverQos.wire_
—protocol () .prefix;

XML

<participant profile name="participant_server_guidprefix" >
<rtps>
<prefix>
4D.49.47.55.45.4c.5f£.42.41.52.52.4¢f
</prefix>
</rtps>
</participant>

Note that a server can act as a client of other servers. Thus, the following section may also apply.

196 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Client side setup

Each client must keep a list of the servers to which it wants to link. Each single element represents an individual server
and a GuidPrefix_t must be provided. The server list must be populated with RemoteServerAttributes
objects with a valid GuidPrefix t data member. In XML the server list and its elements are simultaneously
specified. Note that prefix is an element of the RemoteServer tag.

C++

RemoteServerAttributes server;
server.ReadguidPrefix ("4D.49.47.55.45.4c.5f£.42.41.52.52.4€f");

DomainParticipantQos clientQos;
clientQos.wire_protocol () .builtin.discovery_config.m_DiscoveryServers.push_
—back (server) ;

XML

<participant profile_name="participant_profile_discovery_client_prefix">
<rtps>
<builtin>
<discovery_ config>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>
<locator/>
</metatrafficUnicastLocatorList>
</RemoteServer>
</discoveryServersList>
</discovery_config>
</builtin>
</rtps>
</participant>

The server locator list

Each server must specify valid locators where it can be reached. Any client must be given proper locators to reach
each of its servers. As in the above section, here there is a server and a client side setup.

6.17. Discovery 197

Fast DDS Documentation, Release 2.0.0

Server side setup

The examples below show how to setup the server locator list and XML tag.

C++

Locator_t locator;
IPLocator: :setIPv4 (locator, 192, 168, 1, 133);
locator.port = 64863;

DomainParticipantQos serverQos;
serverQos.wire_protocol () .builtin.metatrafficUnicastLocatorList.push_back (locator);

XML

<participant profile_name="participant_profile_discovery_server_server_metatraffic">
<rtps>
<builtin>
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address ——>
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</builtin>
</rtps>
</participant>

Note that a server can act as a client of other servers, thus, the following section may also apply.

Client side setup

Each client must keep a list of locators associated to the servers to which it wants to link. Each server
specifies its own locator list and must be populated with RemoteServerAttributes objects with a valid
metatrafficUnicastLocatorList or metatrafficMulticastLocatorList. In XML the server
list and its elements are simultaneously specified. Note the metatrafficUnicastLocatorList or
metatrafficMulticastLocatorList are elements of the RemoteServer tag.

198 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

Locator_t locator;

IPLocator: :setIPv4 (locator, 192, 168, 1, 133);
locator.port = 64863;

RemoteServerAttributes server;
server.metatrafficUnicastLocatorList.push_back (locator);

DomainParticipantQos clientQos;
clientQos.wire_protocol () .builtin.discovery_config.m_DiscoveryServers.push_
—back (server) ;

XML

<participant profile name="participant_profile_discovery_server_client_metatraffic">
<rtps>
<builtin>
<discovery_ config>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address —-—>
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</RemoteServer>
</discoveryServersList>
</discovery_config>
</builtin>
</rtps>
</participant>

Client ping period

As explained above the clients send discovery messages to the servers at regular intervals (ping period) until they
receive message reception acknowledgement.

6.17. Discovery 199

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos clientQos;
clientQos.wire_protocol () .builtin.discovery_config.discoveryServer_client_
—syncperiod =

Duration_t (0, 250000000);

XML

<participant profile name="participant_profile_client_ping" >
<rtps>
<builtin>
<discovery config>
<clientAnnouncementPeriod>
<!-- change default to 250 ms —-->
<nanosec>250000000</nanosec>
</clientAnnouncementPeriod>
</discovery_config>
</builtin>
</rtps>
</participant>

Server match period

As explained above, the servers receive discovery messages from new clients to join the communication. However,
the servers do not start processing them until a time interval, defined by this period, has elapsed, which starts at the
moment the server is instantiated. Therefore, this member specifies a time interval in which the server’s DataReaderl
is disabled and incoming messages are not processed. It is a time interval intended to allow the server to initialize its
resources.

C++

DomainParticipantQos serverQos;
serverQos.wire_protocol () .builtin.discovery_config.discoveryServer_client_
—syncperiod =

Duration_t (0, 250000000);

XML

<participant profile_name="participant_profile_server_ping" >
<rtps>
<builtin>
<discovery_config>
<clientAnnouncementPeriod>
<!-- change default to 250 ms —-—>
<nanosec>250000000</nanosec>
</clientAnnouncementPeriod>
</discovery_config>
</builtin>
</rtps>
</participant>

200 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Server-Client setup by Qos

The settings related with server-client discovery are:

Name Description

WireProto- Specifies wire protocol settings for a DomainParticipant. Some of it data members must be

colConfigQos modified in order to properly configure a Server. An example is the prefix data member.

(WireProtocoldonfigQos)

RTPS Builti- | It is a public data member of the above WireProtocolConfigQos class. Allows to

nAttributes specify some mandatory server discovery settings like the addresses were it listens for clients

(builtin) discovery information.

DiscoverySettings | It is a member of the above BuiltinAttributes structure. Allows to specify some
mandatory and optional Server-Client discovery settings such as whether the DomainPartic-
ipant is a client or a server, the list of servers it is linked to, the client-ping, and the server-
match frequencies.

WireProtocolConfigQos

The prefix data member of the WireProtocolConfigQos class specifies the server’s identity. This member
has only significance if discovery_config.discoveryProtocol is SERVER or BACKUP.

6.17. Discovery 201

Fast DDS Documentation, Release 2.0.0

C++

using namespace eprosima::fastrtps::rtps;

GuidPrefix_t serverGuidPrefix;

serverGuidPrefix.value[0] octet (0x77);
serverGuidPrefix.value[1] octet (0x73);
serverGuidPrefix.value[2] octet (0x71);
serverGuidPrefix.value[3] octet (0x85) ;
serverGuidPrefix.value[4] octet (0x69);
serverGuidPrefix.value[5] octet (0x76) ;
serverGuidPrefix.value[6] octet (0x95);
serverGuidPrefix.value[7] octet (0x66) ;
serverGuidPrefix.value[8] octet (0x65) ;
serverGuidPrefix.value[9] octet (0x82);
serverGuidPrefix.value[10] = octet (0x82);
serverGuidPrefix.value[ll] = octet (0x79);

’

DomainParticipantQos serverQos;
serverQos.wire_protocol () .prefix = serverGuidPrefix;

XML

<participant profile name="participant_profile_discovery_client_prefix">
<rtps>
<builtin>
<discovery_ config>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>
<locator/>
</metatrafficUnicastLocatorList>
</RemoteServer>
</discoveryServersList>
</discovery_config>
</builtin>
</rtps>
</participant>

RTPS BuiltinAttributes

All discovery related information is gathered in the BuiltinAttributes discovery config data member.

In order to receive client metatraffic, metatrafficUnicastLocatorList or
metatrafficMulticastLocatorList must be populated with the addresses (IP and port) that were
given to the clients.

202 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

Locator_t locator;
IPLocator::setIPv4d (locator, 192, 168, 1, 133);
locator.port = 64863;

DomainParticipantQos serverQos;
serverQos.wire_protocol () .builtin.metatrafficUnicastLocatorList.push_back (locator);

XML

<participant profile_name="participant_profile_discovery_server_metatraffic">
<rtps>
<builtin>
<discovery_ config>
<discoveryProtocol>SERVER</discoveryProtocol>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>
<!-- placeholder server UDP address ——>
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</builtin>
</rtps>
</participant>

DiscoverySettings

The DiscoveryProtocol_t enum data member (discoveryProtocol) specifies the participant’s discovery
kind. As was explained before, to setup the Server-Client discovery it may be:

enum Description
value
SERVER Generates a client DomainParticipant, which relies on a server (or servers) to be notified of other

clients presence. This DomainParticipant can create DataWriters and DataReaders of any topic
(static or dynamic) as ordinary DomainParticipants do.

CLIENT Generates a server DomainParticipant, which receives, manages and spreads its matched client’s
metatraffic assuring any single one is aware of the others. This DomainParticipant can create
DataWriters and DataReaders of any topic (static or dynamic) as ordinary DomainParticipants do.
Servers can link to other servers in order to share its clients information.

BACKUP Generates a server DomainParticipant with additional functionality over SERVER. Specifically,
it uses a database to backup its client information, so that this information can be automatically
restored at any moment and continue spreading metatraffic to late joiners. A SERVER in the same
scenario ought to collect client information again, introducing a recovery delay.

A m DiscoveryServers lists the servers linked to a client DomainParticipant. ~This member has only
significance if discoveryProtocol is CLIENT, SERVER or BACKUP. These member elements are
RemoteServerAttributes objects that identify each server and report where the servers can be reached:

6.17. Discovery 203

Fast DDS Documentation, Release 2.0.0

Data mem- | Description
bers

guidPrefix | Is the RTPS unique identifier of the remote server DomainParticipant.

metatrafficUAfeardinaryadtoaf.esEist_t (see LocatorListType) where the server’s locators must be spec-
metatrafficifiedi Ableastone ob thermsshould be populated.

discoverySerHas onlyisignificance ifedi sdoveryProtocol is CLIENT, SERVER or BACKUP. For a
client it specifies the pinging period as explained in key concepts. When a client has not yet
established a reliable connection to a server it pings until the server notices him and establishes
the connection. For a server it specifies the match period as explained in key concepts. When a
server discovers new clients it only starts exchanging information with them at regular intervals
as a mechanism to bundle discovery information and optimize delivery. The default value is half
a second.

204 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

RemoteServerAttributes server;
server.ReadguidPrefix ("4D.49.47.55.45.4c.5f£.42.41.52.52.4f");

Locator_t locator;

IPLocator: :setIPv4 (locator, 192, 168, 1, 133);
locator.port = 64863;
server.metatrafficUnicastLocatorList.push_back (locator);

DomainParticipantQos clientQos;
clientQos.wire_protocol () .builtin.discovery_config.discoveryProtocol =

eprosima: :fastrtps::rtps::DiscoveryProtocol_t::CLIENT;
clientQos.wire_protocol () .builtin.discovery_config.m_DiscoveryServers.push_
—back (server) ;
clientQos.wire_protocol () .builtin.discovery_config.discoveryServer_client_
—syncperiod =

Duration_t (0, 250000000);

XML

<participant profile name="participant_profile_client" >
<rtps>
<builtin>
<discovery config>
<discoveryProtocol>CLIENT</discoveryProtocol>
<discoveryServersList>
<RemoteServer prefix="4D.49.47.55.45.4c.5f.42.41.52.52.4f">
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address —-—>
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</RemoteServer>
</discoveryServersList>
<clientAnnouncementPeriod>
<!-- change default to 250 ms —-—->
<nanosec>250000000</nanosec>
</clientAnnouncementPeriod>
</discovery_config>
</builtin>
</rtps>
</participant>

6.17. Discovery 205

Fast DDS Documentation, Release 2.0.0

DomainParticipantListener Discovery Callbacks

As stated in DomainParticipantListener, the DomainParticipantListener is an abstract class defining
the callbacks that will be triggered in response to state changes on the DomainParticipant. Fast DDS de-
fines four callbacks attached to events that may occur during discovery: on_participant_discovery (),
on_subscriber _discovery (), on_publisher discovery (), on_type_ discovery (). Further in-
formation about the DomainParticipantListener is provided in the DomainParticipantListener section. The following
is an example of the implementation of DomainParticipantListener discovery callbacks.

class DiscoveryDomainParticipantListener : public DomainParticipantListener
{
/#* Custom Callback on_participant_discovery */
virtual void on_participant_discovery (
DomainParticipant* participant,
eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&& info)

(void) participant;
switch (info.status) {
case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo: :DISCOVERED__
—PARTICIPANT:
/+ Process the case when a new DomainParticipant was found in the_

—domain */

std::cout << "New DomainParticipant '" << info.info.m participantName
<<
"' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '
o<
info.info.m_guid.guidPrefix << "' discovered." << std::endl;
break;

case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::CHANGED_QOS__
—PARTICIPANT:
/* Process the case when a DomainParticipant changed its QOS x/
break;
case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo: :REMOVED_
—PARTICIPANT:
/#* Process the case when a DomainParticipant was removed from the_,

—~domain */

std::cout << "New DomainParticipant '" << info.info.m_participantName
<<
"' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '
oo
info.info.m_guid.guidPrefix << "' left the domain." << std::endl;
break;

/* Custom Callback on_subscriber_discovery */
virtual void on_subscriber_discovery (
DomainParticipant+ participant,
eprosima: :fastrtps::rtps::ReaderDiscoveryInfo&s& info)

(void)participant;
switch (info.status) {
case eprosima::fastrtps::rtps::ReaderDiscoveryInfo: :DISCOVERED_ READER:
/% Process the case when a new subscriber was found in the domain */
std::cout << "New DataReader subscribed to topic '" << info.info.
—topicName () <<
"' of type '" << info.info.typeName () << "' discovered";

(continues on next page)

206 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

break;
case eprosima::fastrtps::rtps::ReaderDiscoveryInfo: :CHANGED_QOS_READER:

/+ Process the case when a subscriber changed its QO0S #*/
break;
case eprosima::fastrtps::rtps::ReaderDiscoveryInfo: :REMOVED_READER:
/* Process the case when a subscriber was removed from the domain #*/
std::cout << "New DataReader subscribed to topic '" << info.info.

—topicName () <<
"' of type '" << info.info.typeName () << "' left the domain.";

break;

/* Custom Callback on_publisher_discovery */
virtual void on_publisher_discovery (
DomainParticipant+ participant,
eprosima: :fastrtps::rtps::WriterDiscoveryInfo&s& info)

(void) participant;
switch (info.status) {
case eprosima::fastrtps::rtps::WriterDiscoveryInfo: :DISCOVERED_WRITER:

/* Process the case when a new publisher was found in the domain #*/
std::cout << "New DataWriter publishing under topic '" << info.info.

—topicName () <<
"' of type '" << info.info.typeName () << "' discovered";

break;
case eprosima::fastrtps::rtps::WriterDiscoveryInfo: :CHANGED_ QOS_WRITER:
/* Process the case when a publisher changed its Q0S */

break;
case eprosima::fastrtps::rtps::WriterDiscoveryInfo: :REMOVED_ WRITER:

/* Process the case when a publisher was removed from the domain #*/
std::cout << "New DataWriter publishing under topic '" << info.info.
—topicName () <<
"' of type '" << info.info.typeName () << "' left the domain.";

break;

/* Custom Callback on_type discovery #*/
virtual void on_type_discovery (
DomainParticipant* participant,
const eprosima::fastrtps::rtps::Sampleldentity& request_sample_id,
const eprosima::fastrtps::string_255& topic,
const eprosima::fastrtps::types::Typeldentifier+ identifier,
const eprosima::fastrtps::types::TypeObject* object,
eprosima: :fastrtps::types: :DynamicType_ptr dyn_type)

(void)participant, (wvoid)request_sample_id, (void)topic, (void)identifier, |

— (void) object, (wvoid)dyn_type;
std::cout << "New data type of topic '" << topic << "' discovered." <<,

—std::endl;
}

}i

To use the previously implemented discovery callbacks in DiscoveryDomainParticipantListener class,
which inherits from the DomainParticipantListener, an object of this class is created and registered as a listener of the

DomainParticipant.

6.17. Discovery 207

Fast DDS Documentation, Release 2.0.0

// Create the participant QoS and configure values
DomainParticipantQos pgos;

// Create a custom user DomainParticipantListener
DiscoveryDomainParticipantListener+ plistener = new_
—DiscoveryDomainParticipantListener();
// Pass the listener on DomainParticipant creation.
DomainParticipant+ participant =
DomainParticipantFactory: :get_instance () —>create_participant (
0, pgos, plistener);

6.18 Transport Layer

The transport layer provides communication services between DDS entities, being responsible of actually sending and
receiving messages over a physical transport. The DDS layer uses this service for both user data and discovery traffic
communication. However, the DDS layer itself is transport independent, it defines a transport API and can run over
any transport plugin that implements this API. This way, it is not restricted to a specific transport, and applications can
choose the one that best suits their requirements, or create their own.

eProsima Fast DDS comes with five transports already implemented:

« UDPv4: UDP Datagram communication over IPv4. This is the default transport created on a new DomainPar-
ticipant if no specific transport configuration is given (see UDP Transport).

UDPv6: UDP Datagram communication over IPv6 (see UDP Transport).

TCPv4: TCP communication over IPv4 (see TCP Transport).

TCPv6: TCP communication over IPv6 (see TCP Transport).

SHM: Shared memory communication among entities running on the same host (see Shared Memory Trans-
port).

Although it is not part of the transport module, intraprocess data delivery is also available to send messages between
entities within the same process.

6.18.1 Transport API

The following diagram presents the classes defined on the transport API of eProsima Fast DDS. It shows the abstract
API interfaces, and the classes required to implement a transport.

Fig. 9: Transport API diagram

» TransportDescriptorlnterface

* Transportlnterface

e Locator

208 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

TransportDescriptorinterface

Any class that implements the TransportDescriptorInterface is known as a TransportDescriptor.
It acts as a builder for a given transport, meaning that is allows to configure the transport, and then a new Transport
can be built according to this configuration using its create_transport () factory member function.

Data members

The TransportDescriptorInterface defines the following data members:

Member Data type Description
maxMessageSize uint32_t | Maximum size of a single message in the transport.
maxInitialPeersRange | uint32_t | Number of channels opened with each initial remote peer

Any implementation of TransportDescriptorinterface should add as many data members as required to full configure
the transport it describes.

Transportinterface

A Transport is any class that implements the TransportInterface. Itis the object that actually performs the
message distribution over a physical transport.

Each Transport class defines its own t ransport_kind, a unique identifier that is used to check the compatibility
of a Locator with a Transport, i.e., determine whether a Locator refers to a Transport or not.

Applications do not create the Transport instance themselves. Instead, applications use a
TransportDescriptor instance to configure the desired transport, and add this configured instance to the
list of user-defined transports of the DomainParticipant. The DomainParticipant will use the factory function on the
TransportDescriptor to create the Transport when required.

DomainParticipantQos gos;

// Create a descriptor for the new transport.

auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (udp_transport) ;

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

6.18. Transport Layer 209

Fast DDS Documentation, Release 2.0.0

Data members

The TransportInterface defines the following data members:

Member Data type | Description
transport_kind_ | int32_t | Unique identifier of the transport type.

Note: transport_kind_ is a protected data member for internal use. It cannot be accessed nor modified from
the public API. However, users that are implementing a custom Transport need to fill it with a unique constant value
in the new implementation.

Currently the following identifiers are used in Fast DDS:

Identifier Value | Transport type
LOCATOR_KIND_RESERVED-api | O None. Reserved value for internal use.
LOCATOR_KIND_UDPv4-api 1 UDP Transport over IPv4.
LOCATOR_KIND_UDPv6-api 2 UDP Transport over IPv6.
LOCATOR_KIND_TCPvi-api 4 TCP Transport over IPv4.
LOCATOR_KIND_TCPvb6-api 8 TCP Transport over IPv6.
LOCATOR_KIND_SHM-api 16 Shared Memory Transport.

Locator
A Locator_t uniquely identifies a communication channel with a remote peer for a particular transport. For exam-
ple, on UDP transports, the Locator will contain the information of the IP address and port of the remote peer.

The Locator class is not abstract, and no specializations are implemented for each transport type. Instead, transports
should map the data members of the Locator class to their own channel identification concepts. For example, on
Shared Memory Transport the address contains a unique ID for the local host, and the port represents the shared
ring buffer used to communicate buffer descriptors.

Please refer to Listening Locators for more information about how to configure DomainParticipant to listen to incom-
ing traffic.

Data members

The Locator defines the following data members:

Member | Data type Description

kind int32_¢t Unique identifier of the transport type.
port uint32_t The channel port.

address | octet [16] | The channel address.

In TCP, the port of the locator is divided into a physical and a logical port.

* The physical port is the port used by the network device, the real port that the operating system understands. It
is stored in the two least significant bytes of the member port.

* The logical port is the RTPS port. It is stored in the two most significant bytes of the member port.

210 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

In UDP there is only the physical port, which is also the RTPS port, and is stored in the two least significant bytes of
the member port.

Configuring IP locators with IPLocator

IPLocator is an auxiliary static class that offers methods to manipulate IP based locators. It is convenient when
setting up a new UDP Transport or TCP Transport, as it simplifies setting IPv4 and IPv6 addresses, or manipulating
ports.

For example, normally users configure the physical port and do not need to worry about logical ports. However,
IPLocator allows to manage them if needed.

// We will configure a TCP locator with IPLocator
Locator_t locator;

// Get & set the physical port
uintl6_t physical_port = IPLocator::getPhysicalPort (locator);
IPLocator::setPhysicalPort (locator, 5555);

// On TCP locators, we can get & set the logical port
uintl6_t logical_port = IPLocator::getLogicalPort (locator);
IPLocator::setlLogicalPort (locator, 7400);

// Set WAN address
IPLocator: :setWan (locator, "80.88.75.55");

6.18.2 UDP Transport

UDP is a connectionless transport, where the receiving DomainParticipant must open a UDP port listening for incom-
ing messages, and the sending DomainParticipant sends messages to this port.

Warning: This documentation assumes the reader has basic knowledge of UDP/IP concepts, since terms like
Time To Live (TTL), socket buffers, and port numbering are not explained in detail. However, it is possible to
configure a basic UDP transport on Fast DDS without this knowledge.

UDPTransportDescriptor

eProsima Fast DDS implements UDP transport for both UDPv4 and UDPv6. Each of these transports is independent
from the other, and has its own TransportDescriptor. However, all their TransportDescriptor data
members are common.

The following table describes the common data members for both UDPv4 and UDPv6.

Member Data type De- Description

fault
sendBufferSize uint32_t 0 Size of the sending buffer of the socket (octets).
receiveBufferSize uint32_t 0 Size of the receiving buffer of the socket (octets).
interfaceWhitelist | vector<string> | empty List of allowed interfaces. See Interface

Whitelist

TTL uint8_t 1 Time to live, in number of hops.
m_output_udp_socket | uintl6_t 0 Port number for the outgoing messages.
non_blocking_send bool false | Do notblock on send operations (*).

6.18. Transport Layer 211

Fast DDS Documentation, Release 2.0.0

Note: When non_blocking_send is set to true, send operations will return immediately if the buffer is full, but
no error will be returned to the upper layer. This means that the application will behave as if the datagram is sent and
lost. This value is specially useful on high-frequency best-effort writers.

When set to false, send operations will block until the network buffer has space for the datagram. This may hinder
performance on high-frequency writers.

UDPv4TransportDescriptor

UDPv4TransportDescriptor has no additional data members from the common ones described in UDPTrans-
portDescriptor.

Note: The kind value for a UDPv4TransportDescriptor is given by the value
eprosima::fastrtps::rtps: :LOCATOR_KIND_UDPv4

UDPv6TransportDescriptor

UDPv6TransportDescriptor has no additional data members from the common ones described in UDPTrans-
portDescriptor.

Note: The kind wvalue for a UDPv6TransportDescriptor is given by the value
eprosima::fastrtps::rtps::LOCATOR_KIND_UDPv6

Enabling UDP Transport

Fast DDS enables a UDPv4 transport by default. Nevertheless, the application can enable other UDP transports if
needed. To enable a new UDP transport in a DomainParticipant, first create an instance of UDPv4TransportDescriptor
(for UDPv4) or UDPv6TransportDescriptor (for UDPv6), and add it to the user transport list of the DomainPartici-
pant.

The examples below show this procedure in both C++ code and XML file.

212 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.

auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (udp_transport);

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>udp_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<non_blocking_send>true</non_blocking_send>
</transport_descriptor>
</transport_descriptors>

<participant profile name="UDPParticipant">
<rtps>
<userTransports>
<transport_id>udp_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>
</profiles>

6.18.3 TCP Transport

TCP is a connection oriented transport, so the DomainParticipant must establish a TCP connection to the remote peer
before sending data messages. Therefore, one of the communicating DomainParticipants (the one acting as server)
must open a TCP port listening for incoming connections, and the other one (the one acting as client) must connect to
this port.

Note: The server and client concepts are independent from the DDS concepts of Publisher, Subscriber, DataWriter,
and DataReader. Any of them can act as a TCP Server or TCP Client when establishing the connection, and the DDS
communication will work over this connection.

6.18. Transport Layer 213

Fast DDS Documentation, Release 2.0.0

Warning: This documentation assumes the reader has basic knowledge of TCP/IP concepts, since terms like
Time To Live (TTL), Cyclic Redundancy Check (CRC), Transport Layer Security (TLS), socket buffers, and port
numbering are not explained in detail. However, it is possible to configure a basic TCP transport on Fast DDS
without this knowledge.

TCPTransportDescriptor

eProsima Fast DDS implements TCP transport for both TCPv4 and TCPv6. Each of these transports is independent
from the other, and has its own TransportDescriptor. However, they share many of their features, and most of
the TransportDescriptor data members are common.

The following table describes the common data members for both TCPv4 and TCPv6.

Member Data type De- | Description
fault

sendBufferSize uint32_t 0 Size of the sending buffer of the socket (octets).

receiveBufferSize uint32_t 0 Size of the receiving buffer of the socket (octets).

interfaceWhitelListvector<stringempty| List of allowed interfaces. See Interface Whitelist

TTL uint8_t 1 Time to live, in number of hops.

listening_ports | vector<uintleempty| List of ports to listen as server.

keep_alive_frequencinti?_t 5000 | Frequency of RTCP keep alive requests (in ms).

keep_alive_timeoutumrst32_t 15000| Time since sending the last keep alive request to consider a
connection as broken (in ms).

max_logical_port | uintlé_t 100 Maximum number of logical ports to try during RTCP nego-
tiation.

logical_port_rangeuintl6_t 20 Maximum number of logical ports per request to try during
RTCP negotiation.

logical_port_incrementl 6_t 2 Increment between logical ports to try during RTCP negoti-
ation.

enable_tcp_nodelaybool false | Enables the TCP_NODELAY socket option.

calculate_crc bool true True to calculate and send CRC on message headers.

check_crc bool true True to check the CRC of incoming message headers.

apply_security bool false | True to use TLS. See TLS over TCP.

tls_config TLSConfig Configuration for TLS. See TLS over TCP.

Note: If 1istening_ ports is left empty, the participant will not be able to receive incoming connections but will
be able to connect to other participants that have configured their listening ports.

TCPv4TransportDescriptor

The following table describes the data members that are exclusive for TCPv4TransportDescriptor.

Member Data type | De- Description
fault
wan_addr | octet[4] | empty Configuration for TLS. See WAN or Internet Communication over TCPv4.

Note: The kind value for a TCPv4TransportDescriptor is given by the value

214 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

eprosima::fastrtps::rtps: :LOCATOR_KIND_TCPv4

TCPv6TransportDescriptor

TCPv6TransportDescriptor has no additional data members from the common ones described in TCPTrans-
portDescriptor.

Note: The kind value for a TCPv6TransportDescriptor is given by the value
eprosima::fastrtps::rtps: :LOCATOR_KIND_TCPvV6

Enabling TCP Transport

To enable TCP transport in a DomainParticipant, you need to create an instance of TCPv4TransportDescriptor (for
TCPv4) or TCPv6TransportDescriptor (for TCPv6), and add it to the user transport list of the DomainParticipant.

If you provide 1istening_ports on the descriptor, the DomainParticipant will act as TCP server, listening for
incoming remote connections on the given ports. The examples below show this procedure in both C++ code and
XML file.

6.18. Transport Layer 215

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.

auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port (5100);
tcp_transport->set_WAN_address ("80.80.99.45");

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (tcp_transport);

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tcp_transport</transport_id>
<type>TCPvi</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening ports>
<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>
<userTransports>
<transport_id>tcp_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>
</profiles>

If you provide initialPeersList to the DomainParticipant, it will act as TCP client, trying to connect to the
remote servers at the given addresses and ports. The examples below show this procedure in both C++ code and XML
file. See Initial peers for more information about their configuration.

216 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Disable the built-in Transport Layer.
gos.transport () .use_builtin_transports = false;

// Create a descriptor for the new transport.

// Do not configure any listener port

auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
gos.transport () .user_transports.push_back (tcp_transport);

// Set initial peers.

Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4 (initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

gos.wire_protocol () .builtin.initialPeersList.push_back (initial_peer_locator);

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tcp2_transport</transport_id>
<type>TCPvi</type>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>
<userTransports>
<transport_id>tcp2_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
<builtin>
<initialPeersList>
<locator>
<tcpvi4d>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>
</tcpvd>
</locator>
</initialPeersList>
</builtin>
</rtps>
</participant>
</profiles>

HelloWorldExampleTCP shows how to use and configure a TCP transport.

6.18. Transport Layer 217

Fast DDS Documentation, Release 2.0.0

WAN or Internet Communication over TCPv4

Fast DDS is able to connect through the Internet or other WAN networks when configured properly. To achieve
this kind of scenarios, the involved network devices such as routers and firewalls must add the rules to allow the
communication.

For example, imagine we have the scenario represented on the following figure:

TCP Client TCP Server

/" 192.168.1.40) /” 80.80.99.45 \

INITIAL PEERS LISTENING PORTS

80.80.99.45:5100 I 5100

e / Na >

* A DomainParticipant acts as a TCP server listening on port 5100 and is connected to the WAN through a router
with public IP 80.80.99.45.

* Another DomainParticipant acts as a TCP client and has configured the server’s IP address and port in its
initial_peer list.

On the server side, the router must be configured to forward to the TCP server all traffic incoming to port 5100.
Typically, a NAT routing of port 5100 to our machine is enough. Any existing firewall should be configured as well.

In addition, to allow incoming connections through a WAN, the TCPv4TransportDescriptor must indicate its public
IP address in the wan_addr data member. The following examples show how to configure the DomainParticipant
both in C++ and XML.

218 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.

auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port (5100);
tcp_transport->set_WAN_address ("80.80.99.45");

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (tcp_transport);

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tcp_transport</transport_id>
<type>TCPvi</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening ports>
<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>
<userTransports>
<transport_id>tcp_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>
</profiles>

On the client side, the DomainParticipant must be configured with the public IP address and 1istening_port of
the TCP server as initial_peer

6.18. Transport Layer 219

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Disable the built-in Transport Layer.
gos.transport () .use_builtin_transports = false;

// Create a descriptor for the new transport.

// Do not configure any listener port

auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
gos.transport () .user_transports.push_back (tcp_transport);

// Set initial peers.

Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4 (initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

gos.wire_protocol () .builtin.initialPeersList.push_back (initial_peer_locator);

// Avoid using the default transport
gos.transport () .use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tcp2_transport</transport_id>
<type>TCPvi</type>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>
<userTransports>
<transport_id>tcp2_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
<builtin>
<initialPeersList>
<locator>
<tcpvi4d>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>
</tcpvd>
</locator>
</initialPeersList>
</builtin>
</rtps>
</participant>
</profiles>

220 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

HelloWorldExampleTCP

A TCP version of helloworld example can be found in the examples/C++/DDS/HelloWorldExampleTCP
folder. It shows a publisher and a subscriber that communicate through TCP. The publisher is configured as TCP
server while the Subscriber is acting as TCP client.

6.18.4 Shared Memory Transport

The shared memory (SHM) transport enables fast communications between entities running in the same processing
unit/machine, relying on the shared memory mechanisms provided by the host operating system.

SHM transport provides better performance than other network transports like UDP / TCP, even when these transports
use loopback interface. This is mainly due to the following reasons:

» Large message support: Network protocols need to fragment data in order to comply with the specific protocol
and network stacks requirements, increasing communication overhead. SHM transport allows the copy of full
messages where the only size limit is the machine’s memory capacity.

* Reduce the number of memory copies: When sending the same message to different endpoints, SHM transport
can directly share the same memory buffer with all the destination endpoints. Other protocols require to perform
one copy of the message per endpoint.

* Less operating system overhead: Once initial setup is completed, shared memory transfers require much less
system calls than the other protocols. Therefore, there is a performance/time consume gain by using SHM.

Definition of Concepts

This section describes basic concepts that will help understanding how the Shared Memory Transport works in order
to deliver the data messages to the appropriate DomainParticipant. The purpose is not to be a exhaustive reference of
the implementation, but to be a comprehensive explanation of each concept, so that users can configure the transport
to their needs.

Many of the descriptions in this section will be made following the example use case depicted in the following figure,
where Participant I sends a data message to Participant 2. Please, refer to the figure when following the definitions.

Fig. 10: Sequence diagram for Shared Memory Transport

Segment

A Segment is a block of shared memory that can be accessed from different processes. Every DomainParticipant that
has been configured with Shared Memory Transport creates a segment of shared memory. The DomainParticipant
writes to this segment any data it needs to deliver to other DomainParticipants, and the remote DomainParticipants are
able to read it directly using the shared memory mechanisms.

Every segment has a segmentld, a 16 character UUID that uniquely identifies each shared memory segment. These
segmentlds are used to identify and access the segment of each DomainParticipant.

6.18. Transport Layer 221

Fast DDS Documentation, Release 2.0.0

Segment Buffer

A buffer allocated in the shared memory Segment. It works as a container for a DDS message that is placed in the
Segment. In other words, each message that the DomainParticipant writes on the Segment will be placed in a different
buffer.

Buffer Descriptor

It acts as a pointer to a specific Segment Buffer in a specific Segment. It contains the segmentld and the offset of the
Segment Buffer from the base of the Segment. When communicating a message to other DomainParticipants, Shared
Memory Transport only distributes the Buffer Descriptor, avoiding the copy of the message from a DomainParticipant
to another. With this descriptor, the receiving DomainParticipant can access the message written in the buffer, as is
uniquely identifies the Segment (through the segmentld) and the Segment Buffer (through its offset).

Port

Represents a channel to communicate Buffer Descriptors. It is implemented as a ring-buffer in shared memory, so
that any DomainParticipant can potentially read or write information on it. Each port has a unique identifier, a 32 bit
number that can be used to refer to the port. Every DomainParticipant that has been configured with Shared Memory
Transport creates a port to receive Buffer Descriptors. The identifier of this port is shared during the Discovery, so that
remote peers know which port to use when they want to communicate with each DomainParticipant.

DomainParticipants create a listener to their receiving port, so that they can be notified when a new Buffer Descriptor
is pushed to the port.

Port Health Check

Every time a DomainParticipant opens a Port (for reading or writing), a health check is performed to assess its correct-
ness. The reason is that if one of the processes involved crashes while using a Port, that port can be left inoperative.
If the attached listeners do not respond in a given timeout, the Port is considered damaged, and it is destroyed and
created again.

SharedMemTransportDescriptor

In addition to the data members defined in the TransportDescriptorinterface, the TransportDescriptor for Shared
Memory defines the following ones:

Member Data Accessor / Mutator Description
type
segment_size_ uint32_|tsegment_size () The size of the shared memory segment

(in octets).
port_queue_capacity| uint32_|tport_queue_capacity () The size of the listening port (in mes-

sages).
healthy_check_timeoptuim$32_|thealthy_ check_timeoujt Timseput for the health check of ports (in
milliseconds).
rtps_dump_file_ string | rtps_dump_file () Full path of the protocol dump_file.

If rtps_dump_file_ is not empty, all the shared memory traffic on the DomainParticipant (sent and received) is
traced to a file. The output file format is tcpdump hexadecimal text, and can be processed with protocol analyzer
applications such as Wireshark.

222 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Note: The kind value for a SharedMemTransportDescriptor is given by the value
eprosima::fastrtps::rtps::LOCATOR_KIND_SHM

Enabling Shared Memory Transport

SHM transport is not enabled by default. To enable SHM transport in a DomainParticipant, you need to create an in-
stance of SharedMemTransportDescriptor and add it to the user transport list of the DomainParticipant. The examples
below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.
std: :shared_ptr<SharedMemTransportDescriptor> shm_transport = std::make_shared
—<SharedMemTransportDescriptor> () ;

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (shm_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<!-- Create a descriptor for the new transport -->
<transport_descriptor>
<transport_id>shm_transport</transport_id>
<type>SHM</type>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="SHMParticipant">

<rtps>
<!-- Link the Transport Layer to the Participant —-->
<userTransports>

<transport_id>shm_transport</transport_id>
</userTransports>
</rtps>
</participant>
</profiles>

6.18. Transport Layer 223

Fast DDS Documentation, Release 2.0.0

HelloWorldExampleSharedMem

A Shared Memory version of helloworld example can be found in the examples/C++/DDS/
HelloWorldExampleSharedMem folder. It shows a publisher and a subscriber that communicate through
Shared Memory.

6.18.5 Intra-process delivery

eProsima Fast DDS allows to speed up communications between entities within the same process by avoiding any
of the overhead involved in the transport layer. Instead, the Publisher directly calls the reception functions of the
Subscriber. This not only avoids the copy or send operations of the transport, but also ensures the message is received
by the Subscriber, avoiding the acknowledgement mechanism.

This feature is enabled by default, and can be configured using XML profiles. Currently the following options are
available:

« INTRAPROCESS_OFF: The feature is disabled.
* INTRAPROCESS_USER_DATA_ONLY: Discovery metadata keeps using ordinary transport.
e INTRAPROCESS_FULL: Default value. Both user data and discovery metadata using Intra-process delivery.

XML

<library_ settings>

<intraprocess_delivery>FULL</intraprocess_delivery> </-- OFF | USER _DATA ONLY |_,
—FULL —-—>
</library_settings>

6.18.6 TLS over TCP

Warning: This documentation assumes the reader has basic knowledge of TLS concepts since terms like Certifi-
cate Authority (CA), Private Key, Rivest—Shamir-Adleman (RSA) cryptosystem, and Diffie-Hellman encryption
protocol are not explained in detail.

Fast DDS allows configuring TCP Transports to use TLS (Transport Layer Security). In order to set up TLS, the
TCPTransportDescriptor must have its apply_security data member set to true, and its t1s_config data
member filled with the desired configuration on the TransportDescriptor. The following is an example of configuration
of TLS on the TCP server.

224 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.

auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();
tls_transport->sendBufferSize = 9216;
tls_transport->receiveBufferSize = 9216;
tls_transport->add_listener_port (5100);
tls_transport->set_WAN_address ("80.80.99.45");

// Create the TLS configuration

using TLSOptions =

—eprosima: :fastdds: :rtps::TCPTransportDescriptor: :TLSConfig: :TLSOptions;
tls_transport->apply_security = true;

tls_transport->tls_config.password = "test";
tls_transport->tls_config.cert_chain_file = "server.pen";
tls_transport->tls_config.private_key_file = "serverkey.pem";
tls_transport->tls_config.tmp_dh_file = "dh2048.pen";

tls_transport->tls_config.add_option (TLSOptions: :DEFAULT_WORKAROUNDS) ;
tls_transport->tls_config.add_option (TLSOptions::SINGLE_DH_USE) ;
tls_transport->tls_config.add_option (TLSOptions: :NO_SSLV2);

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tls_transport_server</transport_id>
<type>TCPvi</type>
<tls>
<password>test</password>
<private_key file>serverkey.pem</private_key file>
<cert_chain_file>server.pem</cert_chain_file>
<tmp_dh_file>dh2048.pem</tmp_dh_file>
<options>
<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSILV2</option>
</options>
</tls>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening ports>
<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>
</transport_descriptor>
</transport_descriptors>

<participant profile name="TLSServerParticipant">
<rtps>
<userTransports>
<transport_id>tls_transport_server</transport_id>
</userTransports>

6.18. Traoseort Laver 225

</profiles>

Fast DDS Documentation, Release 2.0.0

The corresponding configuration on the TCP client is shown in the following example.

226 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Set initial peers.

Locator_t initial_peer_locator;

initial_peer_locator.kind = LOCATOR_KIND_TCPv4;

IPLocator::setIPv4 (initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

gos.wire_protocol () .builtin.initialPeersList.push_back (initial_peer_locator);

// Create a descriptor for the new transport.
auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

// Create the TLS configuration

using TLSOptions =_

—eprosima: :fastdds: :rtps::TCPTransportDescriptor: :TLSConfig: :TLSOptions;
using TLSVerifyMode =

—eprosima: :fastdds::rtps::TCPTransportDescriptor: :TLSConfig: :TLSVerifyMode;
tls_transport->apply_security = true;

tls_transport->tls_config.verify file = "ca.pen";
tls_transport->tls_config.add_verify_mode (TLSVerifyMode: :VERIFY_PEER) ;
tls_transport->tls_config.add_verify_mode (TLSVerifyMode: :VERIFY_ FAIL_TIF_NO_PEER_
,CERT) ;
tls_transport->tls_config.add_option (TLSOptions: :DEFAULT_WORKAROUNDS) ;
tls_transport->tls_config.add_option (TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option (TLSOptions: :NO_SSLV2);

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>tls_transport_client</transport_id>
<type>TCPv4</type>
<tls>
<verify file>ca.pem</verify file>
<verify mode>
<verify>VERIFY_PEER</verify>
<verify>VERIFY_FAIL_IF_NO_PEER_CERT</verify>
</verify mode>
<options>
<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSILV2</option>
</options>
</tls>
</transport_descriptor>
</transport_descriptors>

<participant profile name="TLSClientParticipant">
<rtps>
<userTransports>
<transport_id>tls_transport_client</transport_id>

</userTransports>
uiltin>
ays{nitialPeersList>

<locator>
<tcpv4d>
<address>80.80.99.45</address>

6.18. Transport< 227

Fast DDS Documentation, Release 2.0.0

The following table describes the data members that are configurable on TLSConfig.

Member Data type Default | Description

password string empty Password of the private_key_ file or
rsa_private_key_file.

private_key_file| string empty Path to the private key certificate file.

rsa_private_key_[fBteing empty Path to the private key RSA certificate file.

cert_chain_file | string empty Path to the public certificate chain file.

tmp_dh_file string empty Path to the Diffie-Hellman parameters file.

verify_file string empty Path to the CA (Certification- Authority) file.

verify_mode TLSVerifyMode| empty Establishes the verification mode mask. See TLS Verifi-
cation Mode

options TLSOptions empty Establishes the SSL Context options mask. See 7LS Op-
tions

verify paths vector<stringpempty Paths where the system will look for verification files.

verify_depth int32_t empty Maximum allowed depth for verifying intermediate cer-
tificates.

default_verify_ppblol empty Look for verification files on the default paths.

handshake_role TLSHandShakeRoD&FAULT Role that the transport will take on handshaking. See
TLS Handshake Role

Note: Fast DDS uses the Boost.Asio library to handle TLS secure connections. These data members are used to build
the asio library context, and most of them are mapped directly into this context without further manipulation. You can
find more information about the implications of each member on the Boost.Asio context documentation.

TLS Verification Mode

The verification mode defines how the peer node will be verified. The following table describes the available

verification options.

add_verify_mode () member function.

Several verification options can be combined in the same TransportDescriptor using the

Value

Description

VERIFY_NONE

Perform no verification.

VERIFY_PEER

Perform verification of the peer.

VERIFY_FATL_TIF_NO_PEER_C(

is also set.

HRdil verification if the peer has no certificate. Ignored unless VERIFY_PEER

VERIFY_CLIENT_ON

CE

Do not request client certificate on renegotiation.

Ignored unless

VERIFY_ PEER is also set.

Note: For a complete description of the different verification modes, please refer to the OpenSSL documentation.

228

Chapter 6. Structure of the documentation

https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html
https://www.openssl.org/docs/man1.0.2/man3/SSL_CTX_set_verify.html

Fast DDS Documentation, Release 2.0.0

TLS Options

These options define which TLS features are to be supported. The following table describes the available options.
Several options can be combined in the same TransportDescriptor using the add_option () member function.

Value Description

DEFAULT_WORKAROUNDS | Implement various bug workarounds. See Boost.Asio context
NO_COMPRESSION Disable compression.

NO_SSLV2 Disable SSL v2.

NO_SSLV3 Disable SSL v3.

NO_TLSV1 Disable TLS v1.

NO_TLSV1_1 Disable TLS v1.1.

NO_TLSV1 2 Disable TLS v1.2.

NO_TLSV1_3 Disable TLS v1.3.

SINGLE_DH_USE Always create a new key when using Diffie-Hellman parameters.

TLS Handshake Role

The role can take the following values:

Value Description

DEFAULT | Configured as client if connector, and as server if acceptor
CLIENT Configured as client.

SERVER Configured as server.

6.18.7 Listening Locators
Listening Locators are used to receive incoming traffic on the DomainParticipant. These Locators can be classified
according to the communication type and to the nature of the data.
According to the communication type we have:
* Multicast locators: Listen to multicast communications.
* Unicast locators: Listen to unicast communications.
According to the nature of the data we have:

* Metatraffic locators: Used to receive metatraffic information, usually used by built-in endpoints to perform
discovery.

* User locators: Used by the endpoints created by the user to receive user 7opic data changes.

Applications can provide their own Listening Locators, or use the Default Listening Locators provided by eProsima
Fast DDS.

6.18. Transport Layer 229

https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html

Fast DDS Documentation, Release 2.0.0

Adding Listening Locators

Users can add custom Listening Locators to the DomainParticipant using the DomainParticipantQos. Depending on
the field where the Locator is added, it will be treated as a multicast, unicast, user or metatraffic Locator.

Note: Both UDP and TCP unicast Locators support to have a null address. In that case, Fast DDS automatically gets
and uses local network addresses.

Note: Both UDP and TCP Locators support to have a zero port. In that case, Fast DDS automatically calculates and
uses well-known ports for that type of traffic. See Well Known Ports for details about the well-known ports.

Warning: TCP does not support multicast scenarios, so the network architecture must be carefully planned.

Metatraffic Multicast Locators

Users can set their own metatraffic multicast locators using the field wire_protocol () .builtin.
metatrafficMulticastLocatorList.

230 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22222 over multicast address 239.255.0.1
eprosima: :fastrtps::rtps::Locator_t locator;

IPLocator: :setIPv4 (locator, 239, 255, 0, 1);

locator.port = 22222;

// Add the locator to the DomainParticipantQos
gos.wire_protocol () .builtin.metatrafficMulticastLocatorList.push_back (locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="CustomMetatrafficMulticastParticipant">

<rtps>
<builtin>
<metatrafficMulticastLocatorList>
<!-—- LOCATOR_LIST —->
<locator>
<udpvi4>
<address>239.255.0.1</address>
<port>22222</port>
</udpv4>
</locator>
</metatrafficMulticastLocatorList>
</builtin>
</rtps>
</participant>
</profiles>

Metatraffic Unicast Locators

Users can set their own metatraffic unicast locators using the field wire_protocol () .builtin.
metatrafficUnicastLocatorList.

6.18. Transport Layer 231

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22223 over address 192.168.0.1

eprosima: :fastrtps::rtps::Locator_t locator;

IPLocator: :setIPv4 (locator, 192, 168, 0, 1);

locator.port = 22223;

// Add the locator to the DomainParticipantQos
gos.wire_protocol () .builtin.metatrafficUnicastLocatorList.push_back (locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="CustomMetatrafficUnicastParticipant">

<rtps>
<builtin>
<metatrafficUnicastLocatorList>
<!-—- LOCATOR_LIST —->
<locator>
<udpvi4>
<address>192.168.0.1</address>
<port>22223</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</builtin>
</rtps>
</participant>
</profiles>

User-traffic Multicast Locators

Users can set their own user-traffic multicast locators wusing the field wire protocol().

default_multicast_locator_list.

232 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22224 over multicast address 239.255.0.1
eprosima: :fastrtps::rtps::Locator_t locator;

IPLocator: :setIPv4 (locator, 239, 255, 0, 1);

locator.port = 22224;

// Add the locator to the DomainParticipantQos
gos.wire_protocol () .default_multicast_locator_list.push_back (locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="CustomUsertrafficMulticastParticipant">

<rtps>
<defaultMulticastLocatorList>
<!-— LOCATOR_LIST ——>
<locator>
<udpv4>
<address>239.255.0.1</address>
<port>22224</port>
</udpv4>
</locator>
</defaultMulticastLocatorList>
</rtps>
</participant>
</profiles>

User-traffic Unicast Locators

Users can set their own user-traffic unicast locators wusing the field wire_protocol().
default_unicast_locator_list.

6.18. Transport Layer 233

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22225 over address 192.168.0.1

eprosima: :fastrtps::rtps::Locator_t locator;

IPLocator: :setIPv4 (locator, 192, 168, 0, 1);

locator.port = 22225;

// Add the locator to the DomainParticipantQos
gos.wire_protocol () .default_unicast_locator_list.push_back (locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="CustomUsertrafficUnicastParticipant">

<rtps>
<defaultUnicastLocatorList>
<!-— LOCATOR_LIST ——>
<locator>
<udpv4>
<address>192.168.0.1</address>
<port>22225</port>
</udpv4>
</locator>
</defaultUnicastLocatorList>
</rtps>
</participant>
</profiles>

Default Listening Locators

If the application does not define any Listening Locators, eProsima Fast DDS automatically enables a set of listening
UDPv4 locators by default. This allows out-of-the-box communication in most cases, without the need of further

configuring the Transport Layer.

* If the application does not define any metatraffic Locator (neither unicast nor multicast), Fast DDS enables one
multicast Locator that will be used during Discovery, and one unicast Locator that will be used for peer-to-peer

communication with already discovered DomainParticipants.

« If the application does not define any user-traffic Locator (neither unicast nor multicast), Fast DDS enables one

unicast Locator that will be used for peer-to-peer communication of 7opic data.

For example, it is possible to prevent multicast traffic adding a single user-traffic unicast Locator as described in

Disabling all Multicast Traffic.

Default Listening Locators always use Well Known Ports.

234 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Well Known Ports

The DDSI-RTPS V2.2 standard (Section 9.6.1.1) defines a set of rules to calculate well-known ports for default Lo-
cators, so that DomainParticipants can communicate with these default Locators. Well-known ports are also selected
automatically by Fast DDS when a Locator is configured with port number 0.

Well-known ports are calculated using the following predefined rules:

Table 1: Rules to calculate ports on default listening locators

Traffic type

Well-known port expression

Metatraffic multicast

PB + DG * domainld + offsetd0

Metatraffic unicast

PB + DG * domainld + offsetd1 + PG * participantld

User multicast

PB + DG * domainld + offsetd2

User unicast

PB + DG * domainld + offsetd3 + PG * participantld

The values used in these rules are explained on the following table. The default values can be modified using the
corresponding field on the DomainParticipantQos.

Table 2: Values used in the rules to calculate well-known ports

Symbol Meaning Default value | QoS field

DG DomainID gain 250 wire_protocol () .port.domainIDGain

PG Participantld gain | 2 wire_protocol () .port.participantIDGain
PB Port Base number | 7400 wire_protocol () .port.portBase

offsetd0 | Additional offset 0 wire_protocol () .port.offsetd0

offsetdl | Additional offset | 10 wire_protocol () .port.offsetdl

offsetd2 | Additional offset 1 wire_protocol () .port.offsetd2

offsetd3 | Additional offset | 11 wire_protocol () .port.offsetd3

6.18.8 Interface Whitelist

It is possible to block some network interfaces on the TCP Transport or UDP Transport to avoid Fast DDS using them.
To block an interface, just add the IP address of assigned to the interface to the interfaceWhiteList field in the
TCPTransportDescriptor or UDPTransportDescriptor. The values on this list should match the IPs of your machine
in that networks. For example:

6.18. Transport Layer

235

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();

// Add loopback to the whitelist
tcp_transport->interfaceWhitelist.emplace_back ("127.0.0.1");

// Link the Transport Layer to the Participant.
gos.transport () .user_transports.push_back (tcp_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<transport_descriptors>
<transport_descriptor>
<transport_id>CustomTcpTransport</transport_id>
<type>TCPvi</type>
<interfaceWhiteList>
<address>127.0.0.1</address>
</interfaceWhiteList>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="CustomTcpTransportParticipant">
<rtps>
<userTransports>
<transport_id>CustomTcpTransport</transport_id>
</userTransports>
</rtps>
</participant>
</profiles>

Warning: The interface whitelist feature applies to network interfaces. Therefore, it is only available on TCP
Transport and UDP Transport.

6.18.9 Disabling all Multicast Traffic

If all the peers are known beforehand and have been configured on the Initial Peers List, all multicast traffic can be
completely disabled.

By defining a custom Metatraffic Unicast Locators, the local DomainParticipant creates a unicast meta traffic receiving
resource for each address-port pair specified in the list, avoiding the creation of the default metatraffic multicast and
unicast locators. This prevents the DomainParticipant from listening to any discovery data from multicast sources.

Consideration should be given to the assignment of the ports in the metatrafficUnicastLocatorList, avoid-
ing the assignment of ports that are not available or do not match the address-port listed in the publisher participant
Initial Peers List.

The following is an example of how to disable all multicast traffic configuring one metatraffic unicast locator.

236 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos gos;

// Metatraffic Multicast Locator List will be empty.

// Metatraffic Unicast Locator List will contain one locator, with null address and
—null port.

// Then Fast DDS will use all network interfaces to receive network messages using,
—a well-known port.

Locator_t default_unicast_locator;

gos.wire_protocol () .builtin.metatrafficUnicastLocatorList.push_back (default_unicast_
—locator);

// Initial peer will be UDPv4 address 192.168.0.1. The port will be a well-known_,
—port.

// Initial discovery network messages will be sent to this UDPv4 address.
Locator_t initial_peer;

IPLocator::setIPv4 (initial_peer, 192, 168, 0, 1);

gos.wire_protocol () .builtin.initialPeersList.push_back (initial_peer);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="disable_multicast" is_default_profile="true">

<rtps>
<builtin>
<metatrafficUnicastLocatorList>
<locator/>
</metatrafficUnicastLocatorList>
<initialPeersList>
<locator>
<udpvi4>
<address>192.168.0.1</address>
</udpv4>
</locator>
</initialPeersList>
</builtin>
</rtps>
</participant>
</profiles>

6.19 Persistence Service

Using default QoS, the DataWriter history is only available for DataReader throughout the DataWriter’s life. This
means that the history does not persist between DataWriter initializations and therefore it is on an empty state on
DataWriter creation. Similarly, the DataReader history does not persist the DataReader’s life, thus also being empty
on DataReader creation. However, eProsima Fast DDS offers the possibility to configure the DataWriter’s history
to be stored in a persistent database, so that the DataWriter can load its history from it on creation. Furthermore,
DataReaders can be configured to store the last notified change in the database, so that they can recover their state on
creation.

This mechanism allows recovering a previous state on starting the Data Distribution Service, thus adding robustness
to applications in the case of, for example, unexpected shutdowns. Configuring the persistence service, DataWriters

6.19. Persistence Service 237

Fast DDS Documentation, Release 2.0.0

and DataReaders can resume their operation from the state in which they were when the shutdown occurred.

Note: Mind that DataReaders do not store their history into the database, but rather the last notified change from
the DataWriter. This means that they will resume operation where they left, but they will not have the previous
information, since that was already notified to the application.

6.19.1 Configuration

The configuration of the persistence service is accomplished by setting of the appropriate DataWriter and DataReader
DurabilityQosPolicy, and by specifying the suitable properties for each entity’s (DomainParticipant,
DataWriter, or DataReader) PropertyPolicyQos.

* For the Persistence Service to have any effect, the DurabilityQosPolicyKind needs to be set to
TRANSIENT DURABILITY QOS.

* A persistence identifier (Guid_t) must be set for the entity using the property dds.persistence.guid.
This identifier is used to load the appropriate data from the database, and also to synchronize DataWriter and
DataReader between restarts. The GUID consists of 16 bytes separated into two groups:

— The first 12 bytes correspond to the GuidPrefix_t.
— The last 4 bytes correspond to the EntityTd t.

The persistence identifier is specified using a string of 12 dot-separated bytes, expressed in hexadecimal base,
followed by a vertical bar separator (|) and another 4 dot-separated bytes, also expressed in hexadecimal base
(see Example). For selecting an appropriate GUID for the DataReader and DataWriter, please refer to RTPS
standard (section 9.3.1 The Globally Unique Identifier (GUID)).

* A persistence plugin must be configured for managing the database using property dds.persistence.
plugin (see PERSISTENCE:SQLITE3 built-in plugin):

6.19.2 PERSISTENCE:SQLITES3 built-in plugin

This plugin provides persistence through a local database file using SQLite3 APIL. To activate the plugin, dds.
persistence.plugin property must be added to the PropertyPolicyQos of the DomainParticipant, DataWriter,
or DataReader with value builtin.SQLITE3. Furthermore, dds.persistence.sqglite3.filename prop-
erty must be added to the entities PropertyPolicyQos, specifying the database file name. These properties are summa-
rized in the following table:

Table 3: Persistence::SQLITE3 configuration properties

Property name Property value

dds.persistence.plugin builtin.SQLITE3

dds.persistence.sqglite3. Name of the file used for persistent storage. Default value:
filename persistence.db

Note: To avoid undesired delays caused by concurrent access to the SQLite3 database, it is advisable to specify a
different database file for each DataWriter and DataReader.

Important: The plugin set in the PropertyPolicyQos of DomainParticipant only applies if that of the
DataWriter/DataReader does no exist or is invalid.

238 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.0.0

6.19.3 Example

This example shows how to configure the persistence service using PERSISTENCE:SQLITE3 built-in plugin plugin
both from C++ and using eProsima Fast DDS XML profile files (see XML profiles).

6.19. Persistence Service 239

Fast DDS Documentation, Release 2.0.0

C++

/%

* In order for this example to be self-contained, all the entities are created_
—programatically, including the data

* type and type support. This has been done using Fast DDS Dynamic Types API, but,,
—1it could be substituted with a

* Fast DDS—-Gen generated type support 1f an IDL file is available. The Dynamic Type_,
—created here is the equivalent

* of the following IDL:

*

* struct persistence_topic_type
* {

* unsigned long index;

* string message;

* };

*/

// Configure persistence service plugin for DomainParticipant
DomainParticipantQos pgos;

pgos.properties () .properties () .emplace_back ("dds.persistence.plugin”, "builtin.
< SQLITE3");
pgos.properties () .properties () .emplace_back ("dds.persistence.sqglite3.filename",

—"persistence.db");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_
—participant (0, pgos);

/
(NS B i i b b b i b b e b g b g b b b b b b b b i
* CREATE TYPE AND TYPE SUPPORT
Kok ok ok ok k k ok ok ok ok ok ok b ok ok ok b ok ok ok b ok ok ok ok ok ok ok b ok ok ok b b ok ok b ok ok ok b b ok ok ok b ok ok ok b ok ok ok b ok ok ok b ok ok ok b b ok ok ok b ok ok ok ok ok ok ok b ok ok ok ok ok ok ok o ok A
* This part could be replaced if IDL file and Fast DDS-Gen are available.
* The type 1is created with name "persistence topic_type"
* Additionally, create a data object and populate it, just to show how to do it

AAAAAAAA A AL A AL A A A A AL A A A A AL AL A A A A A A A A A A A A A A A F A kA A

—
// Create a struct builder for a type with name "persistence_topic_type"
const std::string topic_type_name = "persistence_topic_type";

eprosima: :fastrtps::types::DynamicTypeBuilder_ptr struct_type_builder (
eprosima: :fastrtps::types: :DynamicTypeBuilderFactory: :get_instance()->

—create_struct_builder());

struct_type_builder->set_name (topic_type_name) ;

// The type consists of two members, and index and a message. Add members to the

—sStruct.

struct_type_builder->add_member (0, "index",
eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->

—create_uint32_type());

struct_type_builder->add_member (1, "message",
eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance () ->

—create_string_type());

// Build the type
eprosima::fastrtps::types::DynamicType_ptr dyn_type_ptr = struct_type_builder->
—build();

// Create type support and register the type
TypeSupport type_support (new eprosima::fastrtps::types::DynamicPubSubType (dyn_type_
—ptr));

type_support.register_typet{participant); -
246 Chapter 6. Structure of the documentation

// Create data sample a populate data. This is to be used when calling ‘writer—>
wwrite ()’

eprosima::fastrtps::types::DynamicDatax dyn_helloworld;

Kok A Ak A Ak Ak kA K

LR i i i b

Kok A Ak A Ak Ak kA K

Fast DDS Documentation, Release 2.0.0

Note: For instructions on how to create DomainParticipants, DataReaders, and DataWriters, please refer to Pro-
file based creation of a DomainParticipant, Profile based creation of a DataWriter, and Profile based creation of a
DataReader respectively.

6.20 Security

The DDS Security specification includes five security builtin plugins.

1. Authentication plugin: DDS:Auth:PKI-DH. This plugin provides authentication for each DomainParticipant
joining a DDS Domain using a trusted Certificate Authority (CA). Support mutual authentication between Do-
mainParticipants and establish a shared secret.

2. Access Control plugin: DDS:Access:Permissions. This plugin provides access control to DomainParticipants
which perform protected operations.

3. Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC. This plugin provides authenticated encryption using
Advanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

4. Logging plugin: DDS:Logging:DDS_LogTopic. This plugin logs security events.

5. Data Tagging: DDS:Tagging:DDS_Discovery. This plugin enables the addition of security labels to the data.
Thus it is possible to specify classification levels of the data. In the DDS context it can be used as a complement
to access control, creating an access control based on data tagging; for message prioritization; and to prevent its
use by the middleware to be used instead by the application or service.

Note: Currently the DDS:Tagging:DDS_Discovery plugin is not implemented in Fast DDS. Its implementation is
expected for future release of Fast DDS.

In compliance with the DDS Security specification, Fast DDS provides secure communication by implement-
ing pluggable security at three levels: a) DomainParticipants authentication (DDS:Auth:PKI-DH), b) access con-
trol of Entities (DDS:Access:Permissions), and c¢) data encryption (DDS:Crypto:AES-GCM-GMAC). Furthermore,
for the monitoring of the security plugins and logging relevant events, Fast DDS implements the logging plugin
(DDS:Logging:DDS_LogTopic).

By default, Fast DDS does not compile any security support, but it can be activated adding ~-DSECURITY=ON at
CMake configuration step. For more information about Fast DDS compilation, see Linux installation from sources
and Windows installation from sources.

Security plugins can be activated through the DomainParticipantQos properties. A Property is defined by its name
(std::string)andits value (std: : string).

Warning: For the full understanding of this documentation it is required the user to have basic knowledge of
network security since terms like Certificate Authority (CA), Public Key Infrastructure (PKI), and Diffie-Hellman
encryption protocol are not explained in detail. However, it is possible to configure basic system security settings,
i.e. authentication, access control and encryption, to Fast DDS without this knowledge.

The following sections describe how to configure each of these properties to set up the Fast DDS security plugins.

6.20. Security 241

https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.0.0

6.20.1 Authentication plugin: DDS:Auth:PKI-DH

This is the starting point for all the security mechanisms. The authentication plugin provides the mechanisms and
operations required for DomainParticipants authentication at discovery. If the security module was activated at Fast
DDS compilation, when a DomainParticipant is either locally created or discovered, it needs to be authenticated in
order to be able to communicate in a DDS Domain. Therefore, when a DomainParticipant detects a remote Domain-
Participant, both try to authenticate themselves using the activated authentication plugin. If the authentication process
finishes successfully both DomainParticipant match and the discovery mechanism continues. On failure, the remote
DomainParticipant is rejected.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Auth:PKI-DH”, in compliance with the
DDS Security specification. The DDS: Auth:PKI-DH plugin uses a trusted Certificate Authority (CA) and the ECDSA
Digital Signature Algorithms to perform the mutual authentication. It also establishes a shared secret using Elliptic
Curve Diffie-Hellman (ECDH) Key Agreement Methods. This shared secret can be used by other security plugins as
Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC.

The DDS:Auth:PKI-DH authentication plugin, can be activated setting the DomainParticipantQos properties ()
dds.sec.auth.plugin with the value builtin.PKI-DH. The following table outlines the properties used for
the DDS:Auth:PKI-DH plugin configuration.

Property Property value

name

identity_ca URI to the X.509 v3 certificate of the Identity CA in PEM format. Supported URI schemes: file.
iden- URI to an X.509 v3 certificate signed by the Identity CA in PEM format containing the signed

tity_certificate public key for the Participant. Supported URI schemes: file.

identity_crl | URIto a X.509 Certificate Revocation List (CRL). Supported URI schemes: file.
(optional)
private_key | URI to access the private Private Key for the Participant. Supported URI schemes: file.

password A password used to decrypt the private_key. If the password property is not present, then the value
(optional) supplied in the private_key property must contain the decrypted private key.

Note: All listed properties have “dds.sec.auth.builtin. PKI-DH.” prefix. For example: dds.sec.auth.builtin.
PKI-DH.identity_ca.

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Auth:PKI-DH plugin
configuration.

242 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

// Activate DDS:Auth:PKI-DH plugin
pgos.properties () .properties () .emplace_back ("dds.sec.auth.plugin",
"builtin.PKI-DH") ;

// Configure DDS:Auth:PKI-DH plugin
pgos.properties () .properties () .emplace_back (
"dds.sec.auth.builtin.PKI-DH.identity_ca",
"file://maincacert.pen");
pgos.properties () .properties () .emplace_back (
"dds.sec.auth.builtin.PKI-DH.identity_certificate",
"file://partcert.pem");
pgos.properties () .properties () .emplace_back (
"dds.sec.auth.builtin.PKI-DH.identity_crl",
"file://crl.pem");
pgos.properties () .properties () .emplace_back (
"dds.sec.auth.builtin.PKI-DH.private_key",
"file://partkey.pem");
pgos.properties () .properties () .emplace_back (
"dds.sec.auth.builtin.PKI-DH.password",
"domainParticipantPassword");

XML

<participant profile_name="secure_domainparticipant_conf_auth_plugin_xml_profile">

<rtps>
<propertiesPolicy>
<properties>
<!-- Activate DDS:Auth:PKI-DH plugin —-->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>
</property>
<!-- Configure DDS:Auth:PKI-DH plugin —->
<property>
<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>
</property>
<property>
<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://partcert.pem</value>
</property>
<property>
<name>dds.sec.auth.builtin.PKI-DH.identity_crl</name>
<value>file://crl.pem</value>
</property>
<property>
<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://partkey.pem</value>
</property>
<property>
<name>dds.sec.auth.builtin.PKI-DH.password</name>
<value>domainParticipantPassword</value>
</property>
</properties>
</propertiesPolicy>

o 28 S

Fast DDS Documentation, Release 2.0.0

Generation of X.509 certificates

An X.509 digital certificate is a document that has been encrypted and/or digitally signed according to RFC 5280.
The X.509 certificate refers to the Public Key Infrastructure (PKI) certificate of the IETF , and specifies the standard
formats for public-key certificates and a certification route validation algorithm. A simple way to generate these
certificates for a proprietary PKI structure is through the OpenSSL toolkit. This section explains how to build a
certificate infrastructure from the trusted CA certificate to the end-entity certificate, i.e. the DomainParticipant.

Generating the CA certificate for self-signing

First, since multiple certificates will need to be issued, one for each of the DomainParticipants, a dedicated CA is set
up, and the CA’s certificate is installed as the root key of all DomainParticipants. Thus, the DomainParticipants will
accept all certificates issued by our own CA. To create a proprietary CA certificate, a configuration file must first be
written with the CA information. An example of the CA configuration file is shown below. The OpenSSL commands
shown in this example are compatible with both Linux and Windows Operating Systems (OS). However, all other
commands are only compatible with Linux OS.

File: maincaconf.cnf
OpenSSL example Certificate Authority configuration file

FARAARFAAHARRHARAFAARFAAAA AR AR AR AR AR AR H AR A AR F AR AR AR AR AAAA
[ca]
default_ca = CA_default # The default ca section

FAARFAAHAAAAAAHAAAAFAHAAFHARHF A HAAHHAARA A H AR A AR A A A H AR A
[CA_default]

dir = . # Where everything is kept
certs = S$dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir

certificate = $dir/maincacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/maincakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days= 1825 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = sha256 # which md to use.

preserve = no # keep passed DN ordering

policy = policy_match
For the CA policy

[policy match]
countryName = match

(continues on next page)

244 Chapter 6. Structure of the documentation

https://tools.ietf.org/html/rfc5280
https://ietf.org/
https://www.openssl.org/

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy

At this point in time, you must list all acceptable 'object'
types.

[policy_anything]

countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]

prompt = no

#default_bits = 1024

#default_keyfile = privkey.pem

distinguished_name= req_distinguished_name

#attributes = req_attributes

#x509_extensions = v3 _ca # The extentions to add to the self signed cert
string_mask = utf8only

[req distinguished name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
0.organizationName = eProsima
commonName = eProsima Main Test CA
emailAddress = maincal@eprosima.com

After writing the configuration file, next commands generate the certificate using the Elliptic Curve Digital Signature
Algorithm (ECDSA).

openssl ecparam —-name prime256v1l > ecdsaparam

openssl req -nodes -x509 \
—days 3650 \
-newkey ec:ecdsaparam \
-keyout maincakey.pem \
—out maincacert.pem \
—config maincaconf.cnf

6.20. Security 245

Fast DDS Documentation, Release 2.0.0

Generating the DomainParticipant certificate

As was done for the CA, a DomainParticipant certificate configuration file needs to be created first.

File: partconf.cnf

prompt = no
string_mask = utf8only
distinguished_name = req_distinguished_name

[req distinguished name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
organizationName = eProsima
emailAddress = example@eprosima.com
commonName = DomainParticipantName

After writing the DomainParticipant certificate configuration file, next commands generate the X.509 certificate, using
ECDSA, for a DomainParticipant.

openssl ecparam —-name prime256v1l > ecdsaparam

openssl req -nodes -new \
-newkey ec:ecdsaparam \
-config partconf.cnf \
-keyout partkey.pem \
—out partreq.pem

openssl ca -batch -create_serial \
-config maincaconf.cnf \
—days 3650 \
-in partreqg.pem \
—out partcert.pem

Generating the Certificate Revocation List (CRL)

Finally, the CRL is created. This is a list of the X.509 certificates revoked by the certificate issuing CA before they
reach their expiration date. Any certificate that is on this list will no longer be trusted. To create a CRL using OpenSSL
just run the following commands.

echo -ne '00' > crlnumber

openssl ca —gencrl \
-config maincaconf.cnf \
—-cert maincacert.pem \
-keyfile maincakey.pem \
—-out crl.pem

As an example, below is shown how to add the X.509 certificate of a DomainParticipant to the CRL.

openssl ca \
-config maincaconf.cnf \
—cert maincacert.pem \
-keyfile maincakey.pem \

(continues on next page)

246 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

—revoke partcert.pem

openssl ca —gencrl \
-config maincaconf.cnf \
—cert maincacert.pem \
-keyfile maincakey.pem \
—out crl.pem

6.20.2 Access control plugin: DDS:Access:Permissions

The access control plugin provides the mechanisms and operations required for validating the DomainParticipant
permissions. If the security module was activated at Fast DDS compilation, after a remote DomainParticipant is
authenticated, its permissions need to be validated and enforced.

Access rights that each DomainParticipant has over a resource are defined using the access control plugin. For the
proper functioning of a DomainParticipant in a DDS Domain, the DomainParticipant must be authorized to operate
in that specific domain. The DomainParticipant is responsible for creating the DataWriters and DataReaders that
communicate over a certain 7opic. Hence, a DomainParticipant must have the permissions needed to create a Topic,
to publish through its DataWriters under defined Topics, and to subscribe via its DataReaders to other Topics. Access
control plugin can configure the Cryptographic plugin as its usage is based on the DomainParticipant’s permissions.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Access:Permissions”, in compliance with
the DDS Security specification. This plugin is explained in detail below.

This builtin plugin provides access control using a permissions document signed by a trusted CA. The
DDS:Access:Permissions plugin requires three documents for its configuration which contents are explained in de-
tail below.

1. The Permissions CA certificate.
2. The Domain governance signed by the Permissions CA.
3. The DomainParticipant permissions signed by the Permissions CA.

The DDS:Access:Permissions authentication plugin, can be activated setting the DomainParticipantQos
properties () dds.sec.auth.plugin with the value builtin.Access-Permissions. The following
table outlines the properties used for the DDS:Access:Permissions plugin configuration.

Property Property value

name

permis- URI to the X509 certificate of the Permissions CA. Supported URI schemes: file. The file schema
sions_ca shall refer to an X.509 v3 certificate in PEM format.

gover- URI to shared Governance Document signed by the Permissions CA in S/MIME format. Supported
nance URI schemes: file.

permis- URI to the Participant permissions document signed by the Permissions CA in S/MIME format.
sions Supported URI schemes: file.

Note: Al listed properties have “dds.sec.access.builtin.Access-Permissions.” prefix. For example: dds.sec.
access.builtin.Access-Permissions.permissions_ca.

The following is an example of how to set the properties of DomainParticipantQos for the DDS:Access:Permissions
configuration.

6.20. Security 247

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

// Activate DDS:Access:Permissions plugin
pgos.properties () .properties () .emplace_back ("dds.sec.access.plugin",
"builtin.Access-Permissions");

// Configure DDS:Access:Permissions plugin
pgos.properties () .properties () .emplace_back (
"dds.sec.access.builtin.Access-Permissions.permissions_ca",
"file://certs/maincacert.pem") ;
pgos.properties () .properties () .emplace_back (
"dds.sec.access.builtin.Access-Permissions.governance",
"file://certs/governance.smime") ;
pgos.properties () .properties () .emplace_back (
"dds.sec.access.builtin.Access-Permissions.permissions",
"file://certs/permissions.smime");

XML

<participant profile_name="secure_domainparticipant_conf_access_control_plugin_xml_
—profile">

<rtps>
<propertiesPolicy>
<properties>
<!-- Activate DDS:Access:Permissions plugin —->
<property>
<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>
</property>
<!-- Configure DDS:Access:Permissions plugin —-->
<property>
<name>dds.sec.access.builtin.Access-Permissions.permissions_ca</
—>name>
<value>file://maincacet .pem</value>
</property>
<property>
<name>dds.sec.access.builtin.Access-Permissions.governance</
—name>
<value>file://governance.smime</value>
</property>
<property>
<name>dds.sec.access.builtin.Access-Permissions.permissions</
—name>
<value>file://permissions.smime</value>
</property>
</properties>
</propertiesPolicy>
</rtps>
</participant>

248 Chapter 6. Structure of the documentation

24

25

26

27

28

29

Fast DDS Documentation, Release 2.0.0

Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain Governance
Document and the DomainParticipant Permissions Document.

Domain Governance Document

Domain Governance document is an XML document that specifies the mechanisms to secure the DDS Domain. It
shall be signed by the Permissions CA in S/MIME format. The XML scheme of this document is defined in Domain
Governance XSD. The following is an example of the Domain Governance XML file contents.

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="omg_shared_ca_domain_governance.xsd">
<domain access_rules>
<domain_rule>
<domains>
<id_range>
<min>0</min>
<max>230</max>
</id_range>
</domains>
<allow_unauthenticated participants>false</allow_unauthenticated
—participants>
<enable_join_access_control>true</enable_join_access_control>
<discovery_ protection_kind>ENCRYPT</discovery_ protection_kind>
<liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
<rtps_protection_ kind>ENCRYPT</rtps_protection_kind>
<topic_access_rules>
<topic_rule>
<topic_expression>HelloWorldTopic</topic_expression>
<enable_discovery_ protection>true</enable_discovery protection>
<enable_liveliness_protection>false</enable_liveliness_protection>
<enable_read_access_control>true</enable_read_access_control>
<enable_ write_access_control>true</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_ protection_kind>
</topic_rule>
</topic_access_rules>
</domain_rule>
</domain_access_rules>
</dds>

The Governance XSD file and the Governance XML example can also be downloaded from the eProsima Fast DDS
Github repository.

Domain Rules

It allows the application of rules to the DDS Domain. The domain rules define aspects of the DDS Domain such as:

* Whether the discovery data should be protected and the type of protection: MAC only or encryption followed
by MAC.

* Whether the whole RTPS message should be encrypted.

e Whether the liveliness of the messages should be protected.

6.20. Security 249

https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-DDS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.0.0

* Whether a non-authenticated DomainParticipant can access or not to the unprotected discovery metatraffic and
unprotected Topics.

* Whether an authenticated DomainParticipant can access the domain without evaluating the access control poli-
cies.

* Whether discovery information on a certain Topic should be sent with secure DataWriters.

* Whether or not the access to Topics should be restricted to DomainParticipants with the appropriate permission
to read them.

* Whether the metadata sent on a certain Topic should be protected and the type of protection.
* Whether payload data on a certain Topic should be protected and the type of protection.

The domain rules are evaluated in the same order as they appear in the document. A rule only applies to a particular
DomainParticipant if the domain section matches the DDS Domain_Id to which the DomainParticipant belongs. If
multiple rules match, the first rule that matches is the only one that applies. Each domain rule is delimited by the
<domain_rule> XML element tag.

Some domain rules may have an additional configuration if enabled. This configuration defines the level of protection
that the rule applies to the domain:

* NONE: no cryptographic transformation is applied.

* SIGN: cryptographic transformation based on Message Authentication Code (MAC) is applied, without addi-
tional encryption.

* ENCRYPT: the data is encrypted and followed by a MAC computed on the ciphertext, also known as Encrypt-
then-MAC.

The following table summarizes the elements and sections that each domain rule may contain.

Type Name XML element tag Values
Element | Domains <domains> false
true
Allow Unauthenticated Partici- <allow_unauthenticated_participantsfalse
pants true
Enable Join Access Control <enable_join_access_control> SIGN
ENCRYPT
NONE
Discovery Protection Kind <discovery_protection_kind> SIGN
ENCRYPT
NONE
Liveliness Protection Kind <liveliness_protection_kind> SIGN
ENCRYPT
NONE
RTPS Protection Kind <rtps_protection_kind> SIGN
ENCRYPT
NONE
Section | Topic Access Rules <topic_access_rules> <topic_rule

The following describes the possible configurations of each of the elements and sections listed above that are contained
in the domain rules.

250 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Domains

This element is delimited by the <domains> XML element tag. The value in this element identifies the collection of
DDS Domains to which the rule applies. The <domains> element can contain:

* A single domain identifier:

<domains>
<id>1</id>
</domains>

* A range of domain identifiers:

<domains>
<id_range>
<min>1</min>
<max>10</max>
</id_range>
</domains>

Or a combination of both, a list of domain identifiers and ranges of domain identifiers.

Allow Unauthenticated Participants

This element is delimited by the <allow_unauthenticated_participants> XML element tag. It indicates
whether the matching of a DomainParticipant with a remote DomainParticipant requires authentication. The possible
values for this element are:

* false: the DomainParticipant shall enforce the authentication of remote DomainParticipants and disallow
matching those that cannot be successfully authenticated.

e true: the DomainParticipant shall allow matching other DomainParticipants (event if the remote DomainPar-
ticipant cannot authenticate) as long as there is not an already valid authentication with the same DomainPartic-
ipant’s GUID.

Enable Join Access Control

This element is delimited by the <enable_join_access_control> XML element tag. Indicates whether the
matching of the participant with a remote DomqainParticipant requires authorization by the DDS:Access:Permissions
plugin. Its possible values are:

e false: the DomainParticipant shall not check the permissions of the authenticated remote DomainParticipant.

e true: the DomainParticipant shall check the permissions of the authenticated remote DomainParticipant.

6.20. Security 251

Fast DDS Documentation, Release 2.0.0

Discovery Protection Kind

This element is delimited by the <discovery_protection_kind> XML element tag. Indicates whether the
secure channel of the endpoint discovery phase needs to be encrypted. The possible values are:

* NONE: the secure channel shall not be protected.
* SIGN: the secure channel shall be protected by MAC.

* ENCRYPT: the secure channel shall be encrypted.

Liveliness Protection Kind

This element is delimited by the <liveliness_protection_kind> XML element tag. Indicates whether the
secure channel of the liveliness mechanism needs to be encrypted. The possible values are:

* NONE: the secure channel shall not be protected.
* SIGN: the secure channel shall be protected by MAC.

e ENCRYPT: the secure channel shall be encrypted.

RTPS Protection Kind

This element is delimited by the <rtps_protection_kind> XML element tag. Indicates whether the whole
RTPS Message needs to be encrypted. The possible values are:

* NONE: whole RTPS Messages shall not be protected.
* SIGN: whole RTPS Messages shall be protected by MAC.

* ENCRYPT: whole RTPS Messages shall be encrypted.

Topic Rule

This element is delimited by the <topic_rule> XML element tag and appears within the Topic Access Rules
Section whose XML element tag is <topic_access_rules>. The following table summarizes the elements and
sections that each domain rule may contain.

Elements XML element tag Values
Topic expression <topic_expression> Topic name
Enable Discovery Protection | <enable_discovery_protection> false
true
Enable Liveliness Protection | <enable_liveliness_protection> | false
true
Enable Read Access Control | <enable_read_access_control> false
true
Enable Write Access Control | <enable write_ access_control> false
true
Metadata protection Kind <metadata_protection_kind> true
false
Data protection Kind <data_protection_kind> true
false

252 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

The topic expression within the rules selects a set of Topic names. The rule applies to any DataReader or DataWriter
associated with a Topic whose name matches the Topic expression name. The topic access rules are evaluated in the
same order as they appear within the <topic_access_rules> section. If multiple rules match, the first rule that
matches is the only one that applies.

Topic expression

This element is delimited by the <topic_expression> XML element tag. The value in this element identifies
the set of Topic names to which the rule applies. The rule applies to any DataReader or DataWriter associated with a
Topic whose name matches the value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch () function
as specified in IEEE 1003.1-2017.

Enable Discovery Protection

This element is delimited by the <enable_discovery_protection> XML element tag. Indicates whether the
entity related discovery information shall go through the secure channel of endpoint discovery phase.

* false: the entity discovery information shall be sent by an unsecured channel of discovery.

* true: the information shall be sent by the secure channel.

Enable Liveliness Protection

This element is delimited by the <enable_liveliness_protection> XML element tag. Indicates whether
the entity related liveliness information shall go through the secure channel of liveliness mechanism.

» false: the entity liveliness information shall be sent by an unsecured channel of liveliness.

* true: the information shall be sent by the secure channel.

Enable Read Access Control

This element is delimited by the <enable_read_access_control> XML element tag. Indicates whether read
access to the Topic is protected.

e false: then local Subscriber creation and remote Subscriber matching can proceed without further access-
control mechanisms imposed.

e true: they shall be checked using Access control plugin.

Enable Write Access Control

This element is delimited by the <enable_write_access_control> XML element tag. Indicates whether
write access to the Topic is protected.

* false: then local Publisher creation and remote Publisher matching can proceed without further access-control
mechanisms imposed.

* true: they shall be checked using Access control plugin.

6.20. Security 253

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

20

21

22

23

24

25

26

27

28

29

Fast DDS Documentation, Release 2.0.0

Metadata Protection Kind

This element is delimited by the <metadata_protection_kind> XML element tag. Indicates whether the
entity’s RTPS submessages shall be encrypted by the Cryptographic plugin.

* false: the RTPS submessages shall not be encrypted.

* true: the RTPS submessages shall be encrypted.

Data Protection Kind

This element is delimited by the <data_protection_kind> XML element tag. Indicates whether the data pay-
load shall be encrypted by the Cryptographic plugin.

» false: the data payload shall not be encrypted.

e true: the data payload shall be encrypted.

Domain Governance XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="dds" type="DomainAccessRulesNode" />
<xs:complexType name="DomainAccessRulesNode">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="domain_access_rules"
type="DomainAccessRules" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="DomainAccessRules">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="domain_rule" type="DomainRule" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="DomainRule">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="domains" type="DomainIdSet" />
<xs:element name="allow_unauthenticated_participants"
type="xs:boolean" />
<xs:element name="enable_join_access_control"
type="xs:boolean" />
<xs:element name="discovery_ protection_kind"
type="ProtectionKind" />
<xs:element name="liveliness_protection_kind"
type="ProtectionKind" />
<xs:element name="rtps_protection_kind"
type="ProtectionKind" />
<xs:element name="topic_access_rules"
type="TopicAccessRules" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="DomainIdSet">
<xs:choice minOccurs="1" maxOccurs="unbounded">
<xs:element name="id" type="DomainId" />

(continues on next page)

254 Chapter 6. Structure of the documentation

36

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

82

83

85

86

88

89

90

91

92

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<xs:element name="id_range" type="DomainIdRange" />
</xs:choice>
</xs:complexType>
<xs:simpleType name="DomainId">
<xs:restriction base="xs:nonNegativeInteger" />
</xs:simpleType>
<xs:complexType name="DomainIdRange">
<xs:choice>
<Xs:sequence>
<xs:element name="min" type="DomainId" />
<xs:element name="max" type="DomainId" minOccurs="0" />
</xs:sequence>
<xs:element name="max" type="DomainId" />
</xs:choice>
</xs:complexType>
<xs:simpleType name="ProtectionKind">
<xs:restriction base="xs:string">
<xs:enumeration value="ENCRYPT WITH_ORIGIN_AUTHENTICATION" />
<xs:enumeration value="SIGN_WITH ORIGIN_AUTHENTICATION" />
<xs:enumeration value="ENCRYPT" />
<xs:enumeration value="SIGN" />
<xs:enumeration value="NONE" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="BasicProtectionKind">
<xs:restriction base="ProtectionKind">
<xs:enumeration value="ENCRYPT" />
<xs:enumeration value="SIGN" />
<xs:enumeration value="NONE" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="TopicAccessRules">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="topic_rule" type="TopicRule" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="TopicRule">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="topic_ expression" type="TopicExpression" />
<xs:element name="enable_ discovery_protection”
type="xs:boolean" />
<xs:element name="enable liveliness_protection"
type="xs:boolean" />
<xs:element name="enable_ read_access_control"
type="xs:boolean" />
<xs:element name="enable_write_access_control"
type="xs:boolean" />
<xs:element name="metadata_protection_kind"
type="ProtectionKind" />
<xs:element name="data_protection_kind"
type="BasicProtectionKind" />
</xs:sequence>
</xs:complexType>
<xs:simpleType name="TopicExpression">
<xs:restriction base="xs:string" />
</xs:simpleType>
</xs:schema>

6.20. Security 255

20

21

22

23

24

25

26

27

28

29

30

40

41

42

43

44

45

Fast DDS Documentation, Release 2.0.0

Back to the Domain Governance Document.

DomainParticipant Permissions Document

The permissions document is an XML file which contains the permissions of a DomainParticipant and binds them to
the DomainParticipant distinguished name defined in the DDS: Auth:PKI-DH plugin. The permissions document shall
be signed by the Permissions CA in S/MIME format. The XML scheme of this document is defined in DomainPartic-
ipant Permissions XSD. The following is an example of the DomainParticipant Permissions XML file contents.

<dds xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www.omg.org/spec/DDS-Security/20170801/omg_
—shared_ca_permissions.xsd">
<permissions>
<grant name="PublisherPermissions">
<subject_name>emailAddress=mainpub@eprosima.com, CN=Main Publisher,
—0U=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
<validity>
<not_before>2013-06-01T13:00:00</not_before>
<not_after>2038-06-01T13:00:00</not_after>
</validity>
<allow_rule>
<domains>
<id_range>
<min>0</min>
<max>230</max>
</id_range>
</domains>
<publish>
<topics>
<topic>HelloWorldTopic</topic>
</topics>
</publish>
</allow_rule>
<default>DENY</default>
</grant>
<grant name="SubscriberPermissions">
<subject_name> emailAddress=mainsub@eprosima.com, CN=Main Subscriber,
—0OU=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
<validity>
<not_before>2013-06-01T13:00:00</not_before>
<not_after>2038-06-01T13:00:00</not_after>
</validity>
<allow_rule>
<domains>
<id_range>
<min>0</min>
<max>230</max>
</id_range>
</domains>
<subscribe>
<topics>
<topic>HelloWorldTopic</topic>
</topics>
</subscribe>
</allow_rule>
<default>DENY</default>
</grant>

(continues on next page)

256 Chapter 6. Structure of the documentation

46

47

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

</permissions>
</dds>

The Permissions XSD file and the Permissions XML example can also be downloaded from the eProsima Fast DDS
Github repository.

Grant Section

This section is delimited by the <grant> XML element tag. Each grant section contains three sections:
* Subject name
 Validity

¢ Rules

Subject name

This section is delimited by XML element <subject_name>. The subject name identifies the DomainParticipant
to which the permissions apply. Each subject name can only appear in a single <permissions> section within
the XML Permissions document. The contents of the subject name element shall be the X.509 subject name of the
DomainParticipant that was given in the authorization X.509 Certificate.

Validity

This section is delimited by the XML element <validity>. It reflects the valid dates for the permissions.

Rules

This section contains the permissions assigned to the DomainParticipant. The rules are applied in the same order that
appears in the document. If the criteria for the rule matched the Domain join, publish or subscribe operation that is
being attempted, then the allow or deny decision is applied. If the criteria for a rule does not match the operation
being attempted, the evaluation shall proceed to the next rule. If all rules have been examined without a match, then
the decision specified by the <default> rule is applied. The default rule, if present, must appear after all allow and
deny rules. If the default rule is not present, the implied default decision is DENY.

For the grant to match there shall be a match of the topics and partitions criteria.

Allow rules are delimited by the XML element <allow_rule>. Deny rules are delimited by the XML ele-
ment "<deny_rule>"". Both contain the same element children.

6.20. Security 257

https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-DDS/blob/master/examples/C%2B%2B/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.0.0

Domains Section

This section is delimited by the XML element <domains>. The value in this element identifies the collection of DDS
Domains to which the rule applies. The syntax is the same as for the Domains of the Domain Governance Document.

Format of the Allowed/Denied Actions sections

The sections for each of the three actions have a similar format. The only difference is the name of the XML element
used to delimit the action:

Action XML element tag
Allow/Deny Publish <publish>
Allow/Deny Subscribe | <subscribe>
Allow/Deny Relay <relay>

Each action contains two conditions.
* Allowed/Denied Topics Condition

¢ Allowed/Denied Partitions Condition

Topics Condition

This section is delimited by the <topics> XML element. It defines the Topic names that must be matched for the
allow/deny rule to apply. Topic names may be given explicitly or by means of Topic name expressions. Each explicit
topic name or Topic name expressions appears separately in a <t opic> sub-element within the <t opics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch () function
as specified in

<topics>
<topic>Plane</topic>
<topic>Helx</topic>
</topics>

Partitions Condition

This section is delimited by the <partitions> XML element. It limits the set Partitions names that may be
associated with the (publish, subscribe, relay) action for the rule to apply. Partition names expression syntax and
matching shall use the syntax and rules of the POSIX fnmatch () function as specified in IEEE 1003.1-2017. If
there is no <partitions> section within a rule, then the default “empty string” partition is assumed.

<partitions>
<partition>A</partition>
<partition>B*</partition>
</partitions>

258 Chapter 6. Structure of the documentation

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Fast DDS Documentation, Release 2.0.0

DomainParticipant Permissions XSD

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="dds" type="PermissionsNode" />
<xs:complexType name="PermissionsNode">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="permissions" type="Permissions" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Permissions">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="grant" type="Grant" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Grant">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="subject_name" type="xs:string" />
<xs:element name="validity" type="vValidity" />
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="allow_rule" minOccurs="0" type="Rule" />
<xs:element name="deny_rule" minOccurs="0" type="Rule" />
</xs:choice>
</xs:sequence>
<xs:element name="default" type="DefaultAction" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>
<xs:complexType name="Validity">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="not_before" type="xs:dateTime" />
<xs:element name="not_after" type="xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Rule">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="domains" type="DomainIdSet" />
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="publish" type="Criteria" />
</xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="subscribe" type="Criteria" />
</xs:sequence>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="relay" type="Criteria" />
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="DomainIdSet">
<xs:choice minOccurs="1" maxOccurs="unbounded">
<xs:element name="id" type="DomainId" />
<xs:element name="id_range" type="DomainIdRange" />
</xs:choice>
</xs:complexType>
<xs:simpleType name="DomainId">

(continues on next page)

6.20. Security

259

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Fast DDS Documentation, Release 2.0.0

(continued from previous page)

<xs:restriction base="xs:nonNegativeInteger" />
</xs:simpleType>
<xs:complexType name="DomainIdRange">
<xs:choice>
<Xs:sequence>
<xs:element name="min" type="DomainId" />
<xs:element name="max" type="DomainId" minOccurs="0" />
</xs:sequence>
<xs:element name="max" type="DomainId" />
</xs:choice>
</xs:complexType>
<xs:complexType name="Criteria">
<xs:all minOccurs="1">
<xs:element name="topics" minOccurs="1"
type="TopicExpressionList" />
<xs:element name="partitions" minOccurs="0"
type="PartitionExpressionList" />
<xs:element name="data tags" minOccurs="0" type="DataTags" />
</xs:all>
</xs:complexType>
<xs:complexType name="TopicExpressionList">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="topic" type="TopicExpression" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="PartitionExpressionList">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="partition" type="PartitionExpression" />
</xs:sequence>
</xs:complexType>
<xs:simpleType name="TopicExpression">
<xs:restriction base="xs:string" />
</xs:simpleType>
<xs:simpleType name="PartitionExpression">
<xs:restriction base="xs:string" />
</xs:simpleType>
<xs:complexType name="DataTags">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="tag" type="TagNameValuePair" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="TagNameValuePair">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="name" type="xs:string" />
<xs:element name="value" type="xs:string" />
</xs:sequence>
</xs:complexType>
<xs:simpleType name="DefaultAction">
<xs:restriction base="xs:string">
<xs:enumeration value="ALLOW" />
<xs:enumeration value="DENY" />
</xs:restriction>
</xs:simpleType>
</xs:schema>

Back to the DomainParticipant Permissions Document.

260 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Signing documents using x509 certificate

Domain Governance Document and DomainParticipant Permissions Document have to be signed using an X.509
certificate. Generation of an X.509 certificate is explained in Generation of X.509 certificates. Next commands sign
the necessary documents for its use by the DDS:Access:Permissions plugin.

Governance document: governance.xml
openssl smime -sign —-in governance.xml -text -out governance.smime -signer maincacert.
—pem —-inkey maincakey.pem

Permissions document: permissions.xml
openssl smime -sign -in permissions.xml -text -out permissions.smime -signer
—maincacert.pem —-inkey maincakey.pem

6.20.3 Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC

The cryptographic plugin provides the tools and operations required to support encryption and decryption, digests
computation, message authentication codes computation and verification, key generation, and key exchange for Do-
mainParticipants, DataWriters and DataReaders. Encryption can be applied over three different levels of DDS proto-
col:

* The whole RTPS messages.
* The RTPS submessages of a specific DDS Entity (DataWriter or DataReader).
* The payload (user data) of a particular DataWriter.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Crypto:AES-GCM-GMAC”, in compli-
ance with the DDS Security specification. This plugin is explained in detail below.

The DDS:Crypto: AES-GCM-GMAC plugin provides authentication encryption using Advanced Encryption Standard
(AES) in Galois Counter Mode (AES-GCM). It supports 128 bits and 256 bits AES key sizes. It may also provide
additional DataReader-specific Message Authentication Codes (MACs) using Galois MAC (AES-GMAC).

The DDS:Crypto:AES-GCM-GMAC authentication plugin, can be activated setting the DomainParticipantQos
properties () dds.sec.crypto.plugin with the value builtin.AES-GCM-GMAC. Moreover, this plu-
gin needs the activation of the Authentication plugin: DDS:Auth:PKI-DH. The DDS:Crypto:AES-GCM-GMAC plu-
gin is configured using the Access control plugin: DDS:Access:Permissions, i.e the cryptography plugin is con-
figured through the properties and configuration files of the access control plugin. If the Access control plugin:
DDS:Access: Permissions plugin will not be used, you can configure the DDS:Crypto:AES-GCM-GMAC plugin man-
ually with the properties outlined in the following table.

Property name Description Property
Value
rtps.participant.rtps_protection_kind Encrypt whole RTPS messages ENCRYPT
rtps.endpoint.submessage_protection_kind | Encrypt RTPS submessages of a particular entity | ENCRYPT
rtps.endpoint.payload_protection_kind Encrypt payload of a particular Writer ENCRYPT

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Crypto:AES-GCM-
GMAC configuration.

6.20. Security 261

https://www.omg.org/spec/DDS-SECURITY/1.1/
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

// Activate DDS:Crypto:AES-GCM-GMAC plugin

pgos.properties () .properties () .emplace_back ("dds.sec.crypto.plugin",
"builtin.AES—-GCM-GMAC") ;

// Only if DDS:Access:Permissions plugin 1is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin

pgos.properties () .properties () .emplace_back (
"rtps.participant.rtps_protection_kind",
"ENCRYPT") ;

XML

<participant profile_name="secure_domainparticipant_conf_crypto_plugin_xml_profile">

<rtps>
<propertiesPolicy>
<properties>
<!-- Activate DDS:Crypto:AES-GCM-GMAC plugin —->
<property>
<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>
</property>
<!-- Only if DDS:Access:Permissions plugin is not enabled -->
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin ——>
<property>
<name>rtps.participant.rtps_protection_kind</name>
<value>ENCRYPT</value>
</property>
</properties>
</propertiesPolicy>
</rtps>
</participant>

Next example shows how to configure DataWriters to encrypt their RTPS submessages and the RTPS message pay-
load, i.e. the user data. This is done by setting the DDS:Crypto:AES-GCM-GMAC properties (properties ())
corresponding to the DataWriters in the DataWriterQos.

262 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

C++

DataWriterQos wqgos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin

wqgos .properties () .properties () .emplace_back (
"rtps.endpoint.submessage_protection_kind",
"ENCRYPT") ;

wqgos .properties () .properties () .emplace_back (
"rtps.endpoint.payload_protection_kind",
"ENCRYPT") ;

XML

<publisher profile_name="secure_datawriter_conf_crypto_plugin_xml_profile">
<propertiesPolicy>

<properties>
<!—— Only if DDS:Access:Permissions plugin is not enabled ——>
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin ——>
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>

<property>
<name>rtps.endpoint.payload_protection_kind</name>
<value>ENCRYPT</value>

</property>

</properties>
</propertiesPolicy>
</publisher>

The last example shows how to configure DataReader to encrypt their RTPS submessages. This is done by setting the
DDS:Crypto:AES-GCM-GMAC properties (properties ()) corresponding to the DataReaders in the DataRead-
erQos.

6.20. Security 263

Fast DDS Documentation, Release 2.0.0

C++

DataWriterQos rqgos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin

rgos.properties () .properties () .emplace_back(
"rtps.endpoint.submessage_protection_kind",
"ENCRYPT") ;

XML

<subscriber profile_name="secure_datareader_conf_crypto_plugin_xml_profile">
<propertiesPolicy>

<properties>
<!—— Only if DDS:Access:Permissions plugin is not enabled ——>
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin ——>
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>
</property>
</properties>
</propertiesPolicy>
</subscriber>

6.20.4 Logging plugin: DDS:Logging:DDS_LogTopic

The logging plugin provides the necessary operations to log the security events triggered by the other security plugins
supported by Fast DDS (Authentication plugin: DDS:Auth:PKI-DH, Access control plugin: DDS:Access:Permissions,
and Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC). Therefore, the aforementioned security plugins will use
the logging plugin to log their events. These events can be reporting of expected behavior, as well as security breaches
and errors.

The logging plugin implemented in Fast DDS collects all security event data of a DomainParticipant and saves them
in a local file. The log messages generated by the logging plugin include an ID that uniquely identifies the Do-
mainParticipant that triggered the event, the DDS Domain identifier to which the DomainParticipant belongs, and a
time-stamp.

The logging plugin implemented in Fast DDS is referred to as “DDS:Logging:DDS_LogTopic”, in compliance with
the DDS Security specification. This plugin is explained in detail below. This plugin can be configured to filter
according to up to eight levels of severity of the messages.

The DDS:Logging:DDS_LogTopic authentication plugin, can be activated setting the DomainParticipantQos
properties () dds.sec.log.plugin with the value builtin.DDS_LogTopic. The following table out-
lines the properties used for the DDS:Logging:DDS_LogTopic plugin configuration.

264 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.0.0

Property name | Property value
Value Definition

logging_level EMERGENCY_LEVEL System is unusable. Should not continue use.
ALERT_LEVEL Should be corrected immediately.
CRITICAL_LEVEL A failure in primary application.
ERROR_LEVEL General error conditions. Default value.
WARNING_LEVEL May indicate future error if action not taken.
NOTICE_ LEVEL Unusual, but nor erroneous event or condition.
INFORMATIONAL_LEVEL | Normal operational. Requires no action.
DEBUG_LEVEL Normal operational.

log_file Path of the file in which the log messages are to be saved.

Note: All listed properties have “dds.sec.log.builtin.DDS_LogTopic.” prefix. For example: dds.sec.log.
builtin.DDS_LogTopic.logging_level.

The following is an example of how to set the properties of DomainParticipantQoS for the
DDS:Logging:DDS_LogTopic plugin configuration.

6.20. Security 265

Fast DDS Documentation, Release 2.0.0

C++

DomainParticipantQos pgos;

// Activate DDS:Logging:DDS_LogTopic plugin
pgos.properties () .properties () .emplace_back ("dds.sec.log.plugin”,
"builtin.DDS_LogTopic");

// Configure DDS:Logging:DDS_LogTopic plugin

pgos.properties () .properties () .emplace_back (
"dds.sec.log.builtin.DDS_LogTopic.logging_level",
"EMERGENCY_LEVEL") ;

pgos.properties () .properties () .emplace_back (
"dds.sec.log.builtin.DDS_LogTopic.log_file",
"myLogFile.log");

XML

<participant profile_name="secure_domainparticipant_conf_logging_plugin_xml_profile
o>
<rtps>
<propertiesPolicy>
<properties>
<!-— Activate DDS:Auth:PKI-DH plugin —->
<property>
<name>dds.sec.log.plugin</name>
<value>builtin.DDS_LogTopic</value>
</property>
<!-- Configure DDS:Auth:PKI-DH plugin —-->
<property>
<name>dds.sec.log.builtin.DDS_LogTopic.logging_level</name>
<value>EMERGENCY_LEVEL</value>
</property>
<property>
<name>dds.sec.log.builtin.DDS_LogTopic.log_file</name>
<value>myLogFile.log</value>
</property>
</properties>
</propertiesPolicy>
</rtps>
</participant>

6.21 Logging

eProsima Fast DDS provides an extensible built-in logging module that exposes the following main functionalities:

¢ Three different logging levels: Log: :Kind: : Info, Log: :Kind: :Warning,and Log: :Kind: :Error
(see Logging Messages).

* Message filtering according to different criteria: category, content, or source file (see Filters).
e Qutput to STDOUT and/or log files (see Consumers).

This section is devoted to explain the use, configuration, and extensibility of Fast DDS’ logging module.

266 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

6.21.1 Module Structure

The logging module provides the following classes:

* Log is the core class of the logging module. This singleton is not only in charge of the logging operations
(see Logging Messages), but it also provides configuration APIs to set different logging configuration aspects
(see Module Configuration), as well as logging filtering at various levels (see Filters). It contains zero or more
LogConsumer objects. The singleton’s consuming thread feeds the log entries added to the logging queue
using the macros defined in Logging Messages to the log consumers sequentially (see Logging Thread).

Warning: Log API exposes member function Log: : QueueLog (). However, this function is not in-
tended to be used directly. To add messages to the log queue, use the methods described in Logging Mes-
sages.

* LogConsumer is the base class for all the log consumers (see Consumers). Includes the member functions
that derived classes should overload to consume log entries.

— StdoutConsumer derives from LogConsumer. It defines how to consume log entries for outputting
to STDOUT (see StdoutConsumer).

— FileConsumer derives from LogConsumer. It defines how to consume log entries for outputting to a
user specified file (see FileConsumer).
Fig. 11: Logging module class diagram

The module can be further extended by creating new consumer classes deriving from LogConsumer. To enable a
custom consumer just follow the instructions on Register Consumers.

6.21.2 Log Entry Specification

Log entries created by StdoutConsumer and FileConsumer (eProsima Fast DDS built-in Consumers) adhere to the
following structure:

<Timestamp> [<Category> <Verbosity Level>] <Message> (<File Name>:<Line Number>) ->
—Function <Function Name>

An example of such log entry is given by:

2020-05-27 11:45:47.447 [DOCUMENTATION_CATEGORY Error] This is an error message,,
— (example.cpp:50) -> Function main

Note: File Name and Line Number, as well as Function Name are only present when enabled. See Module Configu-
ration for details.

6.21. Logging 267

Fast DDS Documentation, Release 2.0.0

6.21.3 Logging Thread

Calls to the macros presented in Logging Messages merely add the log entry to a ready-to-consume queue. Upon
creation, the logging module spawns a thread that awakes every time an entry is added to the queue. When awaken,
this thread feeds all the entries in the queue to all the registered Consumers. Once the work is done, the thread falls
back into idle state. This strategy prevents the module from blocking the application thread when a logging operation
is performed. However, sometimes applications may want to wait until the logging routine is done to continue their
operation. The logging module provides this capability via the member function Log: : F1ush (). Furthermore, it is
possible to completely eliminate the thread and its resources using member function Log: : KillThread().

// Block current thread until the log queue is empty.
Log::Flush{();

// Stop the loggin thread and free its resources.
Log::KillThread();

Warning: A call to any of the macros present in Logging Messages will spawn the logging thread even if it has
been previously killed with Log: : Ki11Thread().

6.21.4 Logging Messages
The logging of messages is handled by three dedicated macros, one for each available verbosity level (see Verbosity
Level):

* logInfo: Logs messages with Log: : Kind: : Info verbosity.

* logWarning: Logs messages with Log: : Kind: : Warning verbosity.

* logError: Logs messages with Log: : Kind: : Error verbosity.

Said macros take exactly two arguments, a category and a message, and produce a log entry showing the message itself
plus some meta information depending on the module’s configuration (see Log Entry Specification and Log Entry).

logInfo (DOCUMENTATION_CATEGORY, "This is an info message");
logWarning (DOCUMENTATION_CATEGORY, "This is an warning message");
logError (DOCUMENTATION_CATEGORY, "This is an error message");

Warning: Note that 1ogInfo is deactivated when compiled with CMAKE_BUILD_TYPE other than Debug.
More more information about how to enable and disable each individual logging macro, please refer to Disable
Logging Module.

6.21.5 Module Configuration

The logging module offers a variety of configuration options. The different components of a log entry (see Log Entry
Specification) can be configured as explained in Log Entry. Furthermore, the logging module allows for registering
several log consumer, allowing applications to direct the logging output to different destinations (see Register Con-
sumers). In addition, some of the logging features can be configured using eProsima Fast DDS XML configuration
files (see XML Configuration).

268 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

* Log Entry
* Register Consumers

* Reset Configuration

XML Configuration

Log Entry

All the different components of a log entry are summarized in the following table (please refer to each component’s
section for further explanation):

Component Optional | Default
Timestamp NO ENABLED
Category NO ENABLED
Verbosity Level | NO ENABLED
Message NO ENABLED
File Context YES DISABLED
Function Name | YES ENABLED

Timestamp

The log timestamp follows the ISO 8601 standard for local timestamps, i.e. YYYY-MM-DD hh:mm:ss.sss. This com-
ponent cannot be further configured or disabled.

Category

Log entries have a category assigned when producing the log via the macros presented in Logging Messages. The
category component can be used to filter log entries so that only those categories specified in the filter are consumed
(see Filters). This component cannot be further configured or disabled.

Verbosity Level

eProsima Fast DDS logging module provides three verbosity levels defined by the Log: : Kind enumeration, those
are:

* Log::Kind: :Error: Used to log error messages.
* Log::Kind: :Warning: Used to log error and warning messages.
* Log::Kind::Info: Used to log error, warning, and info messages.

The logging module’s verbosity level defaults to Log: : Kind: : Error, which means that only messages logged
with logError would be consumed. The verbosity level can be set and retrieved using member functions
Log: :SetVerbosity () and Log: :GetVerbosity () respectively.

// Set log verbosity level to Log::Kind::Info
Log: :SetVerbosity (Log: :Kind: :Info);

// Get log verbosity level
Log: :Kind verbosity_level = Log::GetVerbosity();

6.21. Logging 269

https://www.iso.org/iso-8601-date-and-time-format.html

Fast DDS Documentation, Release 2.0.0

Message

This component constitutes the body of the log entry. It is specified when producing the log via the macros presented in
Logging Messages. The message component can be used to filter log entries so that only those entries whose message
pattern-matches the filter are consumed (see Filters). This component cannot be further configured or disabled.

File Context

This component specifies the origin of the log entry in terms of file name and line number (see Logging Messages for
a log entry example featuring this component). This is useful when tracing code flow for debugging purposes. The file
context component can be enabled/disabled using the member function Log: : ReportFilenames ().

// Enable file name and line number reporting
Log: :ReportFilenames (true);

// Disable file name and line number reporting
Log: :ReportFilenames (false);

Function Name

This component specifies the origin of the log entry in terms of the function name (see Logging Messages for a log
entry example featuring this component). This is useful when tracing code flow for debugging purposes. The function
name component can be enabled/disabled using the member function Log: : ReportFunctions ().

// Enable function name reporting
Log: :ReportFunctions (true);

// Disable function name reporting
Log: :ReportFunctions (false);

Register Consumers

eProsima Fast DDS logging module supports zero or more consumers logging the entries registered in the logging
queue with the methods described in Logging Messages. To register a consumer, the Log class exposes member
function Log: :RegisterConsumer ()

// Create a FileConsumer consumer that logs entries in "archive.log"
std::unique_ptr<FileConsumer> file_consumer (new FileConsumer ("archive.log"));

// Register the consumer. Log entries will be logged to STDOUT and "archive.log"
Log: :RegisterConsumer (std: :move (file_consumer)) ;

The consumers list can be emptied with member function Log: : ClearConsumers ().

// Clear all the consumers. Log entries are discarded upon consumption.
Log::ClearConsumers () ;

Note: Registering and configuring consumers can also be done using Fast DDS XML configuration files. Please refer
to XML Configuration for details.

270 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.0.0

Warning: Log::ClearConsumers () empties the consumers lists. All log entries are discarded until a new
consumer is register via Log: : RegisterConsumer (),oruntl Log: : Reset () is called.

Reset Configuration

The logging module’s configuration can be reset to default settings with member function Log: : Reset ().

Warning: Resetting the module’s configuration entails:
 Setting Verbosity Level to Log: : Kind: :Error.
* Disabling File Context component.

* Enabling Function Name component.

Clear all Filters.

¢ Clear all consumers and set a STDOUT consumer.

XML Configuration

eProsima Fast DDS allows for registering and configuring log consumers using XML configuration files. Please refer
to Log profiles for details.

6.21.6 Filters

eProsima Fast DDS logging module allows for log entry filtering when consuming the logs, so that an application
execution output can be limited to specific areas of interest. Beside the Verbosity Level, Fast DDS provides three
different filtering possibilities.

* Category Filtering
* File Name Filtering

* Content Filtering

* Reset Logging Filters

It is worth mentioning that filters are applied in the specific order presented above, meaning that file name filtering is
only applied to the entries that pattern-match the category filter, and content filtering is only applied to the entries that
pattern-match both category and file name filters.

6.21. Logging 271

Fast DDS Documentation, Release 2.0.0

Category Filtering

Log entries can be filtered upon consumption according to their Category component using regular expressions. Each
time an entry is ready to be consumed, the category filter is applied using std: :regex_search (). To set a
category filter, member function Log: : SetCategoryFilter () isused:

//