Fast DDS Documentation
Release 2.10.2

eProsima

Sep 01, 2023

INTRODUCTION

Fast DDS-Gen 3
RTPS Wire Protocol S
Main Features 7
Contacts and Commercial support 9
Contributing to the documentation 11
Structure of the documentation 13
6.1 DDS APIL e e e e e e 13
6.2 FastDDS-Gen e e e e e e e 14
6.3 RTPS Wire Protocol e e e e e e 14
6.4 Main Features e e e e e e 14
6.5 Contacts and Commercial support oL e 16
6.6 Contributing to the documentation L e 16
6.7 Structure of the documentation e e e e e e 16
6.8 Linuxinstallation from binaries e e 16
6.9 Windows installation from binaries e 18
6.10 Linux installation from sources e 20
6.11 Windows installation from SOUrces v i it e e e e e e e e e 30
6.12 Mac OS installation from SOUICES v v i v i e e e e e e e e e e 37
6.13 QNX 7.1 installation from SOUICeS o . v i v i e e e e e e e e 43
6.14 CMake options v v v i i e e e e e e e e e e e e e e e 48
6.15 Getting Started L e e e e e e e 52
6.16 Library Overview e 88
6.17 DDSLayer e 92
6.18 RTPS Layer. o e e e e e e e e e e e e 254
6.19 DISCOVETY . . o o v i e e e e e e e e e e e e e 262
6.20 TransportLayer. L e e e e e e e 293
6.21 Persistence Service e e e e e e e 329
6.22 SeCUrity o i e e 333
6.23 Logging e e e 361
6.24 Statistics Module L L e e e e e e e 370
6.25 XML profiles e e e e e e e 382
6.26 Environment variables L L e 450
6.27 PropertyPolicyQos Options L e 453
6.28 Dynamic Topic Types o o o i e e 462
6.29 Typical Use-Cases v v v v v v e i e e e e e e e e e e e e e e e e e e 481
6.30 ROS 2 using Fast DDS middleware e 536

6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41

Index

C++ API Reference e e e e 550

Python APT Reference e e e e e 826
Introduction e e e 959
USAZe . . . o o e e e e e 960
Building a publish/subscribe application 0oL oo 961
Building Python auxiliary libraries 966
Definingadatatype viaIDL L e e e e 967
CLI . . e 977
Docker Images o e e e e e e e 984
Version 2.10.2 . . . L L e e e e 988
Previous versions L. oL e e e e 989

1029

Fast DDS Documentation, Release 2.10.2

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LT'S releases.

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

INTRODUCTION 1

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.10.2

2 INTRODUCTION

CHAPTER
ONE

FAST DDS-GEN

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/

Fast DDS Documentation, Release 2.10.2

4 Chapter 1. Fast DDS-Gen

CHAPTER
TWO

RTPS WIRE PROTOCOL

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.10.2

6 Chapter 2. RTPS Wire Protocol

CHAPTER
THREE

MAIN FEATURES

Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

Flow controllers. We support user-configurable flow controllers, that can be used to limit the amount of data to
be sent under certain conditions.

Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

Fast DDS Documentation, Release 2.10.2

* High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

» Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

* Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

* Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

* Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

8 Chapter 3. Main Features

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

CHAPTER
FOUR

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.
Support available at:
e Email: support@eprosima.com

e Phone: +34 91 804 34 48

https://eprosima.com/
mailto:support@eprosima.com

Fast DDS Documentation, Release 2.10.2

10 Chapter 4. Contacts and Commercial support

CHAPTER
FIVE

CONTRIBUTING TO THE DOCUMENTATION

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

11

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

Fast DDS Documentation, Release 2.10.2

12 Chapter 5. Contributing to the documentation

CHAPTER
SIX

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.
e Installation Manual
e Fast DDS
* Fast DDS-Gen

e Release Notes

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LTS releases.

6.1 DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that

13

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.10.2

want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

6.2 Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

6.3 RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

6.4 Main Features

* Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

* Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

* Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

* Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

14 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.10.2

Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

Flow controllers. We support user-configurable flow controllers, that can be used to limit the amount of data to
be sent under certain conditions.

Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

6.4.

Main Features 15

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

Fast DDS Documentation, Release 2.10.2

6.5 Contacts and Commercial support

Find more about us at eProsima’s webpage.
Support available at:
e Email: support@eprosima.com

e Phone: +34 91 804 34 48

6.6 Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

6.7 Structure of the documentation

This documentation is organized into the sections below.
e [Installation Manual
* Fast DDS
* Fast DDS-Gen

e Release Notes

6.8 Linux installation from binaries

The instructions for installing eProsima Fast DDS in a Linux environment from binaries are provided in this page.

e Install
— Contents
— Run an application

— Including Fast-DDS in a CMake project

e Uninstall

6.8.1 Install

The latest release of eProsima Fast DDS for Linux is available at the eProsima website Downloads tab. Once down-
loaded, extract the contents in your preferred directory. Then, to install eProsima Fast DDS and all its dependencies in
the system, execute the install. sh script with administrative privileges:

cd <extraction_directory>
sudo ./install.sh

16 Chapter 6. Structure of the documentation

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://eprosima.com/index.php/downloads-all

Fast DDS Documentation, Release 2.10.2

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Linux installation
Jrom sources page.

To use the xm!/ validation tool, please refer to the Linux installation from sources page.

Contents

The src folder contains the following packages:
* foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library for data serialization according to the CDR standard (Section 10.2.1.2 OMG CDR).
e fastrtps, the core library of eProsima Fast DDS library.
» fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

In case any of these components is unwanted, it can be simply renamed or removed from the src directory.

Run an application
When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, /usr/local/1lib/. There are two possibilities:

* Prepare the environment locally by typing in the console used for running the eProsima Fast DDS instance the
command:

export LD_LIBRARY_ PATH=/usr/local/lib/

* Add it permanently to the PATH by executing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

Including Fast-DDS in a CMake project
The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake APIL

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

$ cmake -Bbuildexample -DFASTDDS_STATIC=ON .
$ cmake --build buildexample --target install

6.8. Linux installation from binaries 17

https://github.com/foonathan/memory
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.10.2

6.8.2 Uninstall

To uninstall all installed components, execute the uninstall.sh script (with administrative privileges):

cd <extraction_directory>
sudo ./uninstall.sh

Warning: If any of the other components were already installed in some other way in the system, they will be
removed as well. To avoid it, edit the script before executing it.

6.9 Windows installation from binaries

The instructions for installing eProsima Fast DDS in a Windows environment from binaries are provided in this page.
It is organized as follows:

* Requirements

— Visual Studio
* Install

— Contents

— Environment variables

— Including Fast-DDS in a CMake project

First of all, the Requirements detailed below need to be met.

6.9.1 Requirements
The installation of eProsima Fast DDS in a Windows environment from binaries requires the following tools to be
installed in the system:

e Visual Studio

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features andinthe Workloads tab enable Desktop development with C++. Finally,
click Modi fy at the bottom right.

18 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/

Fast DDS Documentation, Release 2.10.2

6.9.2 Install

The latest release of eProsima Fast DDS for Windows is available at the company website downloads page. Once down-
loaded, execute the installer and follow the instructions, choosing the preferred Visual Studio version and architecture
when prompted.

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Windows installation
Jrom sources page.

To use the xm!/ validation tool, please refer to the Windows installation from sources page.

Contents

By default, the installation will download all the available packages, namely:
e foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

» fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

Environment variables

eProsima Fast DDS requires the following environment variable setup in order to function properly:
* FASTRTPSHOME: Root folder where eProsima Fast DDS is installed.
* Additions to the PATH: The location of eProsima Fast DDS scripts and libraries should be appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

Including Fast-DDS in a CMake project
The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake APL

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

> cmake -Bbuildexample -DFASTDDS_STATIC=ON .
> cmake --build buildexample --target install

6.9. Windows installation from binaries 19

https://eprosima.com/index.php/downloads-all
https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.10.2

6.10 Linux installation from sources

The instructions for installing the Fast DDS library, the Fast DDS Python bindings and the Fast DDS-Gen generation
tool from sources are provided in this page. It is organized as follows:

» Fast DDS library installation
— Requirements
— Dependencies
— Colcon installation
— CMake installation
* Fast DDS Python bindings installation

— Requirements

Dependencies

Colcon installation

— CMake installation
e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.10.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Linux environment from sources. The
following packages will be installed:

» foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
e fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima Fast DDS in a Linux environment from sources requires the following tools to be installed
in the system:

* CMake, g++, pip3, wget and git

20 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.10.2

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, g++, pip3, wget and git using the package manager of the appropriate Linux distribution. For example,
on Ubuntu use the command:

sudo apt install cmake g++ python3-pip wget git

Dependencies

eProsima Fast DDS has the following dependencies, when installed from sources in a Linux environment:
* Asio and TinyXML?2 libraries
* OpenSSL
* Libpll and SoftHSM libraries
* Gtest [optional]

* XML validation tool [optional]

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML?2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Install libp1 1 using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libpll-dev libengine-pkcsll-openssl

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Install SoftHSM using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the
command:

6.10. Linux installation from sources 21

https://cmake.org
https://gcc.gnu.org/
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://www.openssl.org/
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/

Fast DDS Documentation, Release 2.10.2

sudo apt install softhsm2

Note that the softhsm2 package creates a new group called softhsm. In order to grant access to the HSM module a user
must belong to this group.

sudo usermod -a -G softhsm <user>

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files (usually /etc/ssl/openssl.cnf) must be updated specifying the libp1 1 and hardware module
(here SoftHSM) dynamic libraries location.

This configuration step can be avoided using pl1kit which allows OpenSSL to find PKCS#11 devices on runtime
without static configuration. This kit is often available through the Linux distribution package manager. On Ubuntu,
for example:

sudo apt install libengine-pkcsll-openssl

Once installed, to check p11kit is able to find the SoftHSM module use:

pll-kit list-modules

In order to check if OpenSSL is able to access PKCS#11 engine use:

openssl engine pkcsll -t

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

XML validation tool

XML validation is a new command introduced to validate the XML profiles against an XSD schema through Fast DDS
CLI. That ensures the proper characterization of the entities using the xml profiles.

For more details, please refer to the xm/ section.

Install the xmlschema dependency to be able to use this optional tool.

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

22 Chapter 6. Structure of the documentation

https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/
https://github.com/p11-glue/p11-kit
https://github.com/p11-glue/p11-kit
https://www.opendnssec.org/softhsm/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://pypi.org/project/xmlschema/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.10.2

Note: Mind that under non-root users, pip3 may install python colcon and vcs executables in $HOME/ . local/
bin, for instance when running with --user. To be able to run these applications, make sure that pip3 binary
installation directory is in your $PATH ($HOME/ . 1local/bin is normally introduced while login on an interactive
non-root shell).

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

mkdir ~/Fast-DDS

cd ~/Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

3. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

» Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

* Foonathan memory

6.10. Linux installation from sources 23

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

Fast DDS Documentation, Release 2.10.2

cd ~/Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=0N
cmake --build . --target install
e Fast CDR

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

24 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-CDR.git
https://github.com/google/googletest

Fast DDS Documentation, Release 2.10.2

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/1lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.2 Fast DDS Python bindings installation

This section provides the instructions for installing Fast DDS Python bindings in a Linux environment from sources.
Fast DDS Python bindings is an extension of Fast DDS which provides access to the Fast DDS API through Python.
Therefore, its installation is an extension of the installation of Fast DDS.

Fast DDS Python bindings source code consists on several .i files which will be processed by SWIG. Then C++ files
(for connecting C++ and Python) and Python files (Python module for Fast DDS) will be generated.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements
The installation of Fast DDS Python bindings in a Linux environment from sources requires the following tools to be
installed in the system:

» Fast DDS requirements

e SWIG

* Header files and static library for Python

SWIG

SWIG is a development tool that allows connecting programs written in C/C++ with a variety of other programming
languages, among them Python. SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG can be installed directly from the package manager of the appropriate Linux distribution. For Ubuntu, please
run:

sudo apt install swig

6.10. Linux installation from sources 25

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/

Fast DDS Documentation, Release 2.10.2

Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG. They can be installed
directly from the package manager of the appropriate Linux distribution. For Ubuntu, please run:

sudo apt install libpython3-dev

Dependencies

Fast DDS Python bindings has the following dependencies, when installed from sources in a Linux environment:

* Fast DDS dependencies

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile Fast DDS Python bindings and its dependencies.

1.

Install the ROS 2 development tools (colcon and vestool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

Create a Fast-DDS-python directory and download the repos file that will be used to install Fast DDS Python
bindings and its dependencies:

mkdir ~/Fast-DDS-python

cd ~/Fast-DDS-python

wget https://raw.githubusercontent.com/eProsima/Fast-DDS-python/main/fastdds_python.
—,repos

mkdir src

vcs import src < fastdds_python.repos

Build the packages:

colcon build

Note:

Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.

For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

26

Chapter 6. Structure of the documentation

http://www.swig.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/

Fast DDS Documentation, Release 2.10.2

Run an application

When running an instance of an application using Fast DDS Python bindings, the colcon overlay built in the dedicated
Fast-DDS-python directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS-python/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS-python/install/setup.bash' >> ~/.bashrc

CMake installation
This section explains how to compile Fast DDS Python bindings with CMake, either locally or globally.
Local installation

1. Create a Fast-DDS-python directory where to download and build Fast DDS Python bindings and its depen-
dencies:

mkdir ~/Fast-DDS-python

2. Clone the following dependencies and compile them using CMake.

¢ Foonathan memory

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install
e Fast CDR

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install
e Fast DDS

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-DDS.git

mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

3. Once all dependencies are installed, install Fast DDS Python bindings:

6.10. Linux installation from sources 27

https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git
https://github.com/eProsima/Fast-DDS.git

Fast DDS Documentation, Release 2.10.2

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-DDS-python.git
mkdir -p Fast-DDS-python/fastdds_python/build

cd Fast-DDS-python/fastdds_python/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

Global installation

To install Fast DDS Python bindings system-wide instead of locally, remove all the flags that appear in the con-
figuration steps of Fast-CDR, Fast-DDS and Fast-DDS-python, and change the first in the configuration step of
foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

Run an application

When running an instance of an application using Fast DDS Python bindings, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

* Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.3 Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Linux environment from sources. Fast DDS-Gen
is a Java application that generates source code using the data types defined in an IDL file. Please refer to /ntroduction
for more information.

28 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Requirements

Fast DDS-Gen is built using Gradle. Gradle is an open-source build automation tool which requires a Java version to
be executed (see Gradle-Java compatibility matrix).

Important: Even though earlier versions of Gradle support Java 8, Fast DDS-Gen stopped supporting Java versions
previous to Java 11 since release v2.4.0.

Important: Fast DDS-Gen introduced support for Gradle 7 in release v2.2.0. Gradle 8 is not yet supported.

Java JDK

The JDK is a development environment for building applications and components using the Java language. There are
several versions of Java available. For instance, to install Java 11 JDK, run the following command:

sudo apt install openjdk-11-jdk

Note: Fast DDS-Gen supports Java versions from 11 to 19.

Compiling Fast DDS-Gen

In order to compile Fast DDS-Gen, an executable script is included in the repository which will download Gradle
temporarily for the compilation step. Please, follow the steps below to build Fast DDS-Gen:

Note: If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s repository,
as it can already be found under the src directory within the colcon workspace.

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

./gradlew assemble

Note: In case that a supported Gradle version is already installed in the system, Fast DDS-Gen can also be built
running directly:

gradle assemble

6.10. Linux installation from sources 29

https://docs.gradle.org/current/userguide/compatibility.html

Fast DDS Documentation, Release 2.10.2

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable.

6.11 Windows installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

* Fast DDS library installation

Requirements

Dependencies

Colcon installation

CMake installation

e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.11.1 Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS in a Windows environment from sources. The
following packages will be installed:

» foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

30 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.10.2

Requirements
The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

* Visual Studio

* Chocolatey

* CMake, pip3, wget and git

* Gtest [optional]

* XML validation tool [optional]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features andinthe Workloads tab enable Desktop development with C++. Finally,
click Modi fy at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

and add next argument to the colcon call

colcon build --cmake-args -Dgtest_force_shared_crt=0N

6.11. Windows installation from sources 31

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest

Fast DDS Documentation, Release 2.10.2

XML validation tool

XML validation is a new command introduced to validate the XML profiles against an XSD schema through Fast DDS
CLI. That ensures the proper characterization of the entities using the xml profiles.

For more details, please refer to the xm/ section.

Install the xmlschema dependency to be able to use this optional tool.

Dependencies

eProsima Fast RTPS has the following dependencies, when installed from sources in a Windows environment:
* Asio and TinyXML2 libraries
* OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

e Asio
e TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Download the latest libp11 version for Windows from this repository and follow the installation instructions

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Download the SoftHSM for Windows installer from this repository. Execute the installer and follow the installation
instructions.

32 Chapter 6. Structure of the documentation

https://pypi.org/project/xmlschema/
https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html
https://github.com/OpenSC/libp11/
https://github.com/OpenSC/libp11
https://github.com/OpenSC/libp11/blob/master/INSTALL.md
https://www.opendnssec.org/softhsm/
https://github.com/disig/SoftHSM2-for-Windows

Fast DDS Documentation, Release 2.10.2

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files must be updated specifying the libpl1 and hardware module (here SoftHSM) dynamic
libraries location.

OpenSSL on Windows references its default configuration file through the OPENSSL_CONF environment variable.
By default OpenSSL installs two identical default configuration files:

e C:\Program Files\OpenSSL-Win64\bin\cnfiopenssl.cnf mimics the Linux distributions one.
e C:\Program Files\OpenSSL-Win64\bin\openssl.cfg kept for backward compatibility.

Neither of them are loaded by default. In order to direct OpenSSL to load one of them or any other we must set the
variable:

cmd> set OPENSSL_CONF=C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf
powershell> $Env:OPENSSL_CONF="C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf"

Once we have hinted OpenSSL the configuration file to use we must modify it to set up the new PKCS#11 engine
following the OpenSSL guidelines replacing the binaries path with the proper ones. For example, before any section
in the configuration file we introduce:

openssl_conf = openssl_init

at the end of the file we include the engine devoted sections. Note to use POSIX path separator instead of the windows
one.

[openssl_init]
engines = engine_section

[engine_section]
pkcsll = pkcsll_section

[pkcs1l_section]

engine_id = pkcsll

dynamic_path = C:/Program Files/libpll/src/pkcsll.dll

MODULE_PATH = C:/Program Files (x86)/SoftHSM2/lib/softhsm2-x64.d11
init = 0

A proper set up can be verified using OpenSSL command line tool:

openssl engine pkcsll -t

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

6.11. Windows installation from sources 33

https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/
https://www.openssl.org/docs/man1.1.1/man5/config.html#Engine-Configuration-Module
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.10.2

and add the path to the vcs executable to the PATH from the Edit the system environment variables control panel.

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

mkdir ~\Fast-DDS

cd ~\Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos -
—output fastrtps.repos

mkdir src

vcs import src --input fastrtps.repos

Finally, use colcon to compile all software:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

» Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

¢ Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control
panel, and adding ~/Fast-DDS/install/setup.bat to the PATH.

CMake installation
This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.
Local installation

1. Open a command prompt, and create a Fast-DDS directory where to download and build eProsima Fast DDS
and its dependencies:

mkdir %USERPROFILE%\Fast-DDS

2. Clone the following dependencies and compile them using CMake.

» Fast DDS depends on Foonathan memory. To ease the dependency management, eProsima provides a
vendor package Foonathan memory vendor, which downloads and builds a specific revision of Foonathan
memory if the library is not found in the system.

34 Chapter 6. Structure of the documentation

https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/foonathan_memory_vendor

Fast DDS Documentation, Release 2.10.2

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

e Fast CDR

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git

cd Fast-CDR

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git

cd Fast-DDS

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove the CMAKE_INSTALL_PREFIX flags that appear
in the configuration steps of Fast-CDR and Fast-DDS.

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the Fast DDS and Fast CDR installation directories:

 Fast DDS: C:\Program Files\fastrtps
 Fast CDR: C:\Program Files\fastcdr

6.11. Windows installation from sources 35

https://github.com/eProsima/Fast-CDR.git
https://github.com/google/googletest

Fast DDS Documentation, Release 2.10.2

6.11.2 Fast DDS-Gen installation

This section outlines the instructions for installing Fast DDS-Gen in a Windows environment from sources. Fast
DDS-Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to
Introduction for more information.

Requirements

Fast DDS-Gen is built using Gradle. Gradle is an open-source build automation tool which requires a Java version to
be executed (see Gradle-Java compatibility matrix).

Important: Even though earlier versions of Gradle support Java 8, Fast DDS-Gen stopped supporting Java versions
previous to Java 11 since release v2.4.0.

Important: Fast DDS-Gen introduced support for Gradle 7 in release v2.2.0. Gradle 8 is not yet supported.

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it following the steps given in the Oracle website.

Note: Fast DDS-Gen supports Java versions from 11 to 19.

Compiling Fast DDS-Gen

In order to compile Fast DDS-Gen, an executable script is included in the repository which will download Gradle
temporarily for the compilation step. Please, follow the steps below to build Fast DDS-Gen:

Note: If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s repository,
as it can already be found under the src directory within the colcon workspace.

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradlew.bat assemble

Note: In case that a supported Gradle version is already installed in the system, Fast DDS-Gen can also be built
running directly:

gradle assemble

36 Chapter 6. Structure of the documentation

https://docs.gradle.org/current/userguide/compatibility.html
https://www.oracle.com/java/technologies/javase-downloads.html

Fast DDS Documentation, Release 2.10.2

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any directory, add the scripts folder path to the PATH environment
variable.

6.12 Mac OS installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

* Fast DDS library installation

Requirements

Dependencies

Colcon installation

CMake installation

e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.12.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Mac OS environment from sources. The
following packages will be installed:

* foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

6.12. Mac OS installation from sources 37

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.10.2

Requirements
The installation of eProsima Fast DDS in a MacOS environment from sources requires the following tools to be installed
in the system:

e Homebrew

* Xcode Command Line Tools

* CMake, g++, pip3, wget and git

* Gtest [optional]

* XML validation tool [optional]

Homebrew

Homebrew is a macOS package manager, it is needed to install some of eProsima Fast DDS’s dependencies. To install
it open a terminal window and run the following command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install.sh)"

Xcode Command Line Tools

The Xcode command line tools package is separate from Xcode and allows for command line development in mac.
The previous step should have installed Xcode CLI, to check the correct installation run the following command:

gcc --version

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, pip3 and wget using the Homebrew package manager:

brew install cmake python3 wget

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

38 Chapter 6. Structure of the documentation

https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest

Fast DDS Documentation, Release 2.10.2

XML validation tool

XML validation is a new command introduced to validate the XML profiles against an XSD schema through Fast DDS
CLI. That ensures the proper characterization of the entities using the xml profiles.

For more details, please refer to the xm/ section.

Install the xmlschema dependency to be able to use this optional tool.

Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Linux environment:
* Asio and TinyXML2 libraries
* OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using Homebrew:

brew install asio tinyxml2

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using Homebrew:

brew install openssl@l.l

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

mkdir ~/Fast-DDS

cd ~/Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

3. Build the packages:

colcon build

6.12. Mac OS installation from sources 39

https://pypi.org/project/xmlschema/
https://www.openssl.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.10.2

Note: The --cmake-args option allows to pass the CMake configuration options to the colcon build
command. In Mac OS the location of OpenSSL is not found automatically and therefore has to be passed
explicitly: --cmake-args -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl -DOPENSSL_LIBRARIES=/usr/
local/opt/openssl/lib. This is only required when building with Security. For more information on the specific
syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

touch ~/.bash_profile
echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bash_profile

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

* Foonathan memory

cd ~/Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=0N
sudo cmake --build . --target install
¢ Fast CDR

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
sudo cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

40 Chapter 6. Structure of the documentation

https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.10.2

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_ PATH=~/Fast-DDS/
—install
sudo cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/1lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

Add it permanently it to the PATH, by typing:

touch ~/.bash_profile
echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bash_profile

6.12.2 Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Mac OS environment from sources. Fast DDS-
Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to /ntro-
duction for more information.

6.12. Mac OS installation from sources 41

https://github.com/google/googletest

Fast DDS Documentation, Release 2.10.2

Requirements

Fast DDS-Gen is built using Gradle. Gradle is an open-source build automation tool which requires a Java version to
be executed (see Gradle-Java compatibility matrix).

Important: Even though earlier versions of Gradle support Java 8, Fast DDS-Gen stopped supporting Java versions
previous to Java 11 since release v2.4.0.

Important: Fast DDS-Gen introduced support for Gradle 7 in release v2.2.0. Gradle 8 is not yet supported.

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it following the steps given in the Oracle website.

Note: Fast DDS-Gen supports Java versions from 11 to 19.

Compiling Fast DDS-Gen

In order to compile Fast DDS-Gen, an executable script is included in the repository which will download Gradle
temporarily for the compilation step. Please, follow the steps below to build Fast DDS-Gen:

Note: If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s repository,
as it can already be found under the src directory within the colcon workspace.

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

./gradlew assemble

Note: In case that a supported Gradle version is already installed in the system, Fast DDS-Gen can also be built
running directly:

gradle assemble

42 Chapter 6. Structure of the documentation

https://docs.gradle.org/current/userguide/compatibility.html
https://www.oracle.com/java/technologies/javase-downloads.html

Fast DDS Documentation, Release 2.10.2

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable using the method described above.

6.13 QNX 7.1 installation from sources

The instructions for installing Fast DDS library and running examples and tests on QNX 7.1 are provided in this page.
It is organized as follows:

* Fast DDS library installation
— Requirements
— Build and Installation
* Run Examples and Tests on a QNX 7.1 Target
— Move Libraries, Examples, and Tests to the QNX Target
— Run DDSHelloWorldExample

— Run a Test

6.13.1 Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS for QNX 7.1 in a Ubuntu environment from
sources. The following packages will be installed:

» foonathan_memory_vendor, an STL compatible C++ memory allocator library.
» fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

The Requirements detailed below needs to be met first.

Requirements

Users must be in a Ubuntu environment to cross-compile for QNX 7.1. It is recommended that users use Ubuntu
20.04. The installation of eProsima Fast DDS in a Ubuntu environment from sources requires the following tools to
be installed in the system:

* ONX SDP 7.1

* CMake, pip3, git, dos2unix, and automake

6.13. QNX 7.1 installation from sources 43

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.10.2

QNX SDP 7.1

QNX SDP 7.1 is required to be installed in the user’s Ubuntu environment. QNX SDP is QNX’s Software Development
Platform which contains tools and files which are needed to cross-compile for QNX.

QNX SDP Installation Guide

For the purpose of these instructions, QNX SDP 7.1 is assumed to be installed at ~/qnx710. If this is not the case,
please adjust the paths accordingly.

CMake, pip3, git, dos2unix, and automake

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.

sudo apt install cmake python3-pip git dos2unix automake

Build and Installation

1. Open a terminal and clone eProsima Fast DDS:

git clone https://github.com/eProsima/Fast-DDS.git && cd Fast-DDS
WORKSPACE=$PWD

2. Initialize git submodules for Asio, Fast-CDR and TinyXML2 and apply QNX patches to them:

Note: OpenSSL is already installed in the QNX SDP 7.1.

cd $WORKSPACE

Initialize git submodules
git submodule update --init $WORKSPACE/thirdparty/asio/ $WORKSPACE/thirdparty/
- fastcdr $WORKSPACE/thirdparty/tinyxml2/

Apply QNX patch to Asio.
cd $WORKSPACE/thirdparty/asio
git apply S$WORKSPACE/build_gnx/qnx_patches/asio_gnx.patch

Apply QNX patch to Fast-CDR.
cd $WORKSPACE/thirdparty/fastcdr
git apply S$WORKSPACE/build_gnx/qnx_patches/fastcdr_gnx.patch

Apply QNX patch to TinyXML2.

TinyXML2's CMakelLists.txt has CRLF, so use unix2dos to convert the patch to CRLF.
cd $WORKSPACE/thirdparty/tinyxml2

unix2dos $WORKSPACE/build_gnx/gnx_patches/tinyxml2_gnx.patch

git apply S$WORKSPACE/build_gnx/qnx_patches/tinyxml2_qgnx.patch

3. Get foonathan_memory_vendor:

cd $WORKSPACE
git clone https://github.com/eProsima/foonathan_memory_vendor.git

44 Chapter 6. Structure of the documentation

https://www.qnx.com/download/
https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.qnxsdp.quickstart/topic/install_host.html

Fast DDS Documentation, Release 2.10.2

4. Optional: clone GoogleTest and apply QNX patch to it:

Note: GoogleTest is required for building Fast-DDS tests.

cd $WORKSPACE

git clone https://github.com/google/googletest.git && cd googletest
git checkout v1.13.0

git apply S$WORKSPACE/build_gnx/qnx_patches/googletest_qgnx.patch

5. Source the QNX environment script:

source ~/qnx710/gnxsdp-env.sh

6. Build and install Fast-DDS and its dependencies:

Note:

To build examples, set COMPILE_EXAMPLES to ON in $WORKSPACE/build_gnx/common.mk.
To build tests, set EPROSIMA_BUILD_TESTS to ON in $WORKSPACE/build_gnx/common.mk.

Note:

All libraries will be installed to $(QNX_TARGET)/$(CPUVARDIR)/usr/lib.
All examples will be installed to $(QNX_TARGET)/$(CPUVARDIR)/usr/examples.
All tests will be installed to $(QNX_TARGET)/$(CPUVARDIR)/usr/bin/Fast-DDS_test.

QNX_TARGET is where the QNX SDP 7.1 installation’s target folder is.
If QNX SDP 7.1 is installed at ~/qnx710, the QNX_TARGET will be at ~/qnx710/target/qnx7.
CPUVARDIR is a directory for a specific target architecture e.g. aarch64le and x86_64.

For example, libraries compiled for an aarch64 target will be at
~/qnx710/target/qnx7/aarch64le/usr/lib assuming QNX SDP 7.1 is installed at ~/qnx710.

cd $WORKSPACE/build_gnx
make install -j 4

6.13. QNX 7.1 installation from sources 45

Fast DDS Documentation, Release 2.10.2

6.13.2 Run Examples and Tests on a QNX 7.1 Target

Because examples and tests are compiled for QNX, they can only be run on a QNX target, not Ubuntu.

Move Libraries, Examples, and Tests to the QNX Target

1. Move the built libraries to the QNX target:

The following steps assume that $(QNX_TARGET) is ~/qnx710/target/qnx7 and that $(CPU-
VARDIR) is aarch64le. Adjust the values if this is not the case.

Move Fast-CDR library to the QNX target
scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libfastcdr.so* root@<target-ip-address>:/
—usr/1ib

Move Fast-DDS library to the QNX target
scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libfastrtps.so* root@<target-ip-address>
—:/usr/1lib

Move Foonathan Memory library to the QNX target
scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libfoonathan_memory* root@<target-ip-
—address>: /usr/1lib

Move TinyXML2 library to the QNX target
scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libtinyxml2.so* root@<target-ip-address>
—:/usr/lib

Move GoogleTest library to the QNX target

scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libgtest* root@<target-ip-address>:/usr/
~1ib

scp ~/qnx710/target/qnx7/aarch64le/usr/lib/libgmock* root@<target-ip-address>:/usr/
~1ib

2. Move examples and tests to the QNX target:

Move Fast-CDR library to the QNX target
scp -r ~/qnx710/target/qnx7/aarch64le/usr/examples root@<target-ip-address>
< :/var

Move Fast-DDS library to the QNX target
scp -r ~/qnx710/target/qnx7/aarch64le/usr/bin/Fast-DDS_test root@<target-ip-
—.address>:/var

46

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Run DDSHelloWorldExample

1. Open a terminal and run a subscriber:

ssh into the QNX target
ssh root@<target-ip-address>

Run a subscriber
/var/examples/cpp/dds/HelloWorldExample/bin/DDSHelloWorldExample subscriber

2. Open another terminal and run a publisher:

ssh into the QNX target
ssh root@<target-ip-address>

Run a publisher
/var/examples/cpp/dds/HelloWorldExample/bin/DDSHelloWorldExample publisher

The following output will be shown in the subscriber terminal:

Starting

Subscriber running. Please press enter to stop the Subscriber
Subscriber matched.
Message HelloWorld
Message HelloWorld
Message HelloWorld 3 RECEIVED
Message HelloWorld 4 RECEIVED

1 RECEIVED
2
3
4
Message HelloWorld 5 RECEIVED
6
7
8

RECEIVED

Message HelloWorld 6 RECEIVED
Message HelloWorld 7 RECEIVED
Message HelloWorld 8 RECEIVED
Message HelloWorld 9 RECEIVED
Message HelloWorld 10 RECEIVED
Subscriber unmatched.

The following output will be shown for the publisher:

Starting
Publisher running 10 samples.
Publisher matched.

Message: HelloWorld with index: 1 SENT
Message: HelloWorld with index: 2 SENT
Message: HelloWorld with index: 3 SENT
Message: HelloWorld with index: 4 SENT
Message: HelloWorld with index: 5 SENT
Message: HelloWorld with index: 6 SENT
Message: HelloWorld with index: 7 SENT
Message: HelloWorld with index: 8 SENT
Message: HelloWorld with index: 9 SENT

Message: HelloWorld with index: 10 SENT

6.13. QNX 7.1 installation from sources 47

Fast DDS Documentation, Release 2.10.2

Run a Test

Because test binaries compiled for QNX cannot be run on Ubuntu, test binaries must be run on a target
which is running QNX.

ssh into the QNX target
ssh root@<target-ip-address>

Run a test
cd /var/Fast-DDS_test/unittest/dds/core/entity
./EntityTests

The following test output for EntityTests will be shown:

[==========] Running 5 tests from 1 test suite.
[---————---] Global test environment set-up.
[--—===——--] 5 tests from EntityTests

[] EntityTests.entity_constructor

[] EntityTests.entity_constructor (0 ms)

[] EntityTests.entity_enable

[] EntityTests.entity_enable (0 ms)

[RUN] EntityTests.entity_get_instance_handle

[] EntityTests.entity_get_instance_handle (0 ms)
[] EntityTests.entity_equal_operator

[] EntityTests.entity_equal_operator (0 ms)
[] EntityTests.get_statuscondition

[] EntityTests.get_statuscondition (0 ms)
[----=------] 5 tests from EntityTests (0 ms total)

[--—---——--] Global test environment tear-down
[==========] 5 tests from 1 test suite ran. (0 ms total)
[PASSED] 5 tests.

6.14 CMake options

eProsima Fast DDS provides numerous CMake options for changing the behavior and configuration of Fast DDS.
These options allow the user to enable/disable certain Fast DDS settings by defining these options to ON/OFF at the
CMake execution. This section is structured as follows: first, the CMake options for the general configuration of Fast
DDS are described; then, the options related to the third party libraries are presented; finally, the possible options for
the building of Fast DDS tests are defined.

6.14.1 General options

The Fast DDS CMake options for configuring general settings are shown below, together with their description and
dependency on other options.

48 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Option

Description

Possible values Default

EPROSIMA_INSTALLER

Creates a build for | ON OFF

Windows binary in-
stallers. Specifically
it adds to the list of
components to install
(CPACK_COMPONENTS_ALL
the libraries correspond-
ing to the Microsoft
Visual C++ com-
piler (MSVC). Setting
EPROSIMA_INSTALLER
to ON has the following
effects on other options:

* EPROSIMA_BUILD

is set to ON.

BUILD_DOCUMENTATION

is set to ON.

INSTALL_EXAMPLES
is set to ON.

OFF

EPROSIMA_BUILD

Activates internal Fast | ON OFF

DDS builds. It is set to ON
if EPROSIMA_INSTALLER
is ON. Setting
EPROSIMA_BUILD to
ON has the following
effects on other options:

* INTERNAL_DEBUG

is set to ON.

COMPILE_EXAMPLES
is set to ON if
EPROSIMA_INSTALLER
is OFF.

THIRDPARTY_fastcdr
is set to ON if it was
not set to FORCE.

e THIRDPARTY_Asio
is set to ON if it was
not set to FORCE.

THIRDPARTY_TinyXMNL2

is set to ON if it was
not set to FORCE.

THIRDPARTY_android-ifaddrs

is set to ON if it was
not set to FORCE.

EPROSIMA_BUILD_TESTS

is set to ON if

OFF

6.14. CMake options

EPROSIMA_INSTALLER
is OFF.

T

49

BUILD_SHARED_LIBS

Builds internal libraries as | ON OFF

ON

https://github.com/eProsima/Fast-DDS/tree/master/examples
https://github.com/eProsima/Fast-DDS/tree/master/examples
https://man7.org/linux/man-pages/man3/pthread_rwlockattr_setkind_np.3.html

Fast DDS Documentation, Release 2.10.2

6.14.2 Log options

Fast DDS uses its own configurable Log module with different verbosity levels. Please, refer to Logging section for

more information.

This module can be configured using Fast DDS CMake arguments regarding the following options.

Option Description Possible | De-
values fault
LOG_CONSUMERSAIEFAUKE default log consumer for the logging module. AUTO has the same | AUTO AUTO
behavior as STDOUT. For more information, please refer to Log consumers. STDOUT
STDOUTERR
LOG_NO_INFOQ Deactivates Info Log level. If Fast DDS is built in debug mode for Single-Config | ON OFF ON
generators, the default value will be OFF.
FASTDDS_ENFARCIIEOTGIfONEEY level even on non Debug configurations. This option only takes | ON OFF OFF
action if LOG_NO_INFO is set to OFF (see Disable Logging Module). Mind that
this may entail a significant performance hit.
LOG_NO_WARNINGactivates Warning Log level. ON OFF OFF
LOG_NO_ERRQRDeactivates Error Log level. ON OFF OFF
INTERNAL_DERAGivates compilation of log messages (See Disable Logging Module). More- | ON OFF OFF
over, INTERNAL_DEBUG is set to ON if EPROSIMA_BUILD is ON.
ENABLE_OLD] IldGalMa@R@Sog macros (See Old Log macros disable). ON OFF ON

6.14.3 Third-party libraries options

Fast DDS relies on the eProsima FastCDR library for serialization mechanisms. Moreover, Fast DDS requires two
external dependencies for its proper operation: Asio and TinyXML2. Asio is a cross-platform C++ library for network
and low-level I/O programming, while TinyXML2 parses the XML profile files, so Fast DDS can use them (see XML
profiles). These three libraries (eProsima FastCDR, Asio and TinyXML2) can be installed by the user, or downloaded
on the Fast DDS build. In the latter case, they are referred to as Fast DDS internal third-party libraries. This can be

done by setting either THIRDPARTY or EPROSIMA_BUILD to ON.

These libraries can also be configured using Fast DDS CMake options.

50 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-CDR

Fast DDS Documentation, Release 2.10.2

Op- Description Pos-| De-

tion si- | fault

ble
val-
ues

THIRDPARNYacfasitexdthe use of the internal Fast CDR third-party library if it is not found elsewhere | ON | OFF
in the system. FORCE activates the use of the internal Fast CDR third-party library regardless | OFF
of whether it can be found elsewhere in the system. OFF deactivates the use of the internal | FORC
Fast CDR third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is
ON.

THIRDPARNYadtsdates the use of the internal Asio third-party library if it is not found elsewhere in | ON | OFF
the system. FORCE activates the use of the internal Asio third-party library regardless of | OFF
whether it can be found elsewhere in the system. OFF deactivates the use of the internal Asio | FORC
third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

THIRDPARNYacTivaydih2 use of the internal TinyXML?2 third-party library if it is not found elsewhere | ON | OFF
in the system. FORCE activates the use of the internal TinyXML?2 third-party library regard- | OFF
less of whether it can be found elsewhere in the system. OFF deactivates the use of the internal | FORC
TinyXML2 third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD
is ON.

THIRDPARTHr@iddifaddls ifaddmnplementation of getifaddrs() for Android. Only used if ANDROID | ON OFF
is 1. ON activates the use of the internal android-ifaddrs third-party library if it is not found | OFF
elsewhere in the system. FORCE activates the use of the internal android-ifaddrs third-party | FORC
library regardless of whether it can be found elsewhere in the system. OFF deactivates the
use of the internal android-ifaddrs third-party library. If it is not set to FORCE, it is set to ON
if EPROSIMA_BUILD is ON.

THIRDPARTiless they are otherwise specified, sets value of all third-party git submod- | ON | OFF
ules THIRDPARTY_fastcdr, THIRDPARTY_Asio, THIRDPARTY_TinyXML2, and | OFF
THIRDPARTY_android-ifaddrs. FORC

THIRDPARTX I VAPBAME update of all third-party git submodules. ON | ON

OFF

Note: ANDROID is a CMake environment variable that is set to 1 if the target system (CMAKE_SYSTEM_NAME) is Android.

6.14.4

Test options

eProsima Fast DDS comes with a full set of tests for continuous integration. The types of tests are: unit tests, black-box
tests, performance tests, profiling tests, and XTypes tests. The building and execution of these tests is specified by the
Fast DDS CMake options shown in the table below.

6.14. CMake options

51

Fast DDS Documentation, Release 2.10.2

Option | Description Possible De-
values fault
GTEST_INBEYilBtALthe individual building of GoogleTest tests, since Fast DDS tests are | ON OFF OFF

implemented using the GoogleTest framework. However, the test are compiled
if EPROSIMA_BUILD is set to ON. Therefore, if GTEST_INDIVIDUAL is OFF and
EPROSIMA_BUILD is ON, the tests are processed as a single major test.

FASTRTRSEARBIEFER Building of black-box tests for the verification of RTPS communications | ON OFF OFF
using the Fast DDS RTPS-layer API.

FASTDDS_PiMbkBEh&BH1lHing of black-box tests for the verification of DDS communications | ON OFF OFF
using the Fast DDS DDS-layer API.

PERFORMANCEYEIESTEe building of performance tests, except for the video test, which requires | ON OFF OFF
both PERFORMANCE_TESTS and VIDEO_TESTS to be set to ON.

PROFILINACTRSAES the building of profiling tests using Valgrind. ON OFF OFF

EPROSIMAARUTARRSTHET Duilding of black-box, unit, xtypes, RTPS communication and | ON OFF OFF

DDS communication tests. It is set to ON if EPROSIMA_BUILD is ON and
EPROSIMA_INSTALLER is OFF.

VIDEO_TENTBERFORMANCE_TESTS is ON, it will activate the building of video performance | ON OFF OFF
tests.
DISABLE_UDPMEeTENTBVO tests. ON OFF OFF
INSTALL_ANRROEDcTEST®mpilation only. Marks the tests for installation on the connected | ON OFF OFF
device/emulator.
ANDROID_RESFaNGeRBOTompilation only. Path on the Android device/emulator to use for | Valid "
installing and running the tests. Unix
filesysten
path
string

6.15 Getting Started

This section defines the concepts of DDS and RTPS. It also provides a step-by-step tutorial on how to write a simple
Fast DDS (formerly Fast RTPS) publish/subscribe application.

6.15.1 What is DDS?

The Data Distribution Service (DDS) is a data-centric communication protocol used for distributed software application
communications. It describes the communications Application Programming Interfaces (APIs) and Communication
Semantics that enable communication between data providers and data consumers.

Since it is a Data-Centric Publish Subscribe (DCPS) model, three key application entities are defined in its implemen-
tation: publication entities, which define the information-generating objects and their properties; subscription entities,
which define the information-consuming objects and their properties; and configuration entities that define the types
of information that are transmitted as topics, and create the publisher and subscriber with its Quality of Service (QoS)
properties, ensuring the correct performance of the above entities.

DDS uses QoS to define the behavioral characteristics of DDS Entities. QoS are comprised of individual QoS policies
(objects of type deriving from QoSPolicy). These are described in Policy.

52 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.10.2

The DCPS conceptual model

In the DCPS model, four basic elements are defined for the development of a system of communicating applications.

* Publisher. It is the DCPS entity in charge of the creation and configuration of the DataWriters it implements.
The DataWriter is the entity in charge of the actual publication of the messages. Each one will have an assigned
Topic under which the messages are published. See Publisher for further details.

¢ Subscriber. It is the DCPS Entity in charge of receiving the data published under the topics to which it sub-
scribes. It serves one or more DataReader objects, which are responsible for communicating the availability of
new data to the application. See Subscriber for further details.

* Topic. It is the entity that binds publications and subscriptions. It is unique within a DDS domain. Through the
TopicDescription, it allows the uniformity of data types of publications and subscriptions. See Topic for further
details.

e Domain. This is the concept used to link all publishers and subscribers, belonging to one or more applications,
which exchange data under different topics. These individual applications that participate in a domain are called
DomainParticipant. The DDS Domain is identified by a domain ID. The DomainParticipant defines the domain
ID to specify the DDS domain to which it belongs. Two DomainParticipants with different IDs are not aware of
each other’s presence in the network. Hence, several communication channels can be created. This is applied in
scenarios where several DDS applications are involved, with their respective DomainParticipants communicating
with each other, but these applications must not interfere. The DomainParticipant acts as a container for other
DCPS Entities, acts as a factory for Publisher, Subscriber and Topic Entities, and provides administrative
services in the domain. See Domain for further details.

These elements are shown in the figure below.

Fig. 2: DCPS model entities in the DDS Domain.

6.15.2 What is RTPS?

The Real-Time Publish Subscribe (RTPS) protocol, developed to support DDS applications, is a publication-
subscription communication middleware over best-effort transports such as UDP/IP. Furthermore, Fast DDS provides
support for TCP and Shared Memory (SHM) transports.

It is designed to support both unicast and multicast communications.

At the top of RTPS, inherited from DDS, the Domain can be found, which defines a separate plane of communication.
Several domains can coexist at the same time independently. A domain contains any number of RTPSParticipants,
that is, elements capable of sending and receiving data. To do this, the RTPSParticipants use their Endpoints:

¢ RTPSWriter: Endpoint able to send data.
* RTPSReader: Endpoint able to receive data.

A RTPSParticipant can have any number of writer and reader endpoints.

Fig. 3: RTPS high-level architecture

Communication revolves around Topics, which define and label the data being exchanged. The topics do not belong to a
specific participant. The participant, through the RTPSWriters, makes changes in the data published under a topic, and
through the RTPSReaders receives the data associated with the topics to which it subscribes. The communication unit
is called Change, which represents an update in the data that is written under a Topic. RTPSReaders/RTPSWriters
register these changes on their History, a data structure that serves as a cache for recent changes.

6.15. Getting Started 53

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

In the default configuration of eProsima Fast DDS, when you publish a change through a RTPSWriter endpoint, the
following steps happen behind the scenes:

1. The change is added to the RTPSWriter’s history cache.
2. The RTPSWriter sends the change to any RTPSReaders it knows about.
3. After receiving data, RTPSReaders update their history cache with the new change.

However, Fast DDS supports numerous configurations that allow you to change the behavior of RTPSWrit-
ers/RTPSReaders. A modification in the default configuration of the RTPS entities implies a change in the data exchange
flow between RTPSWriters and RTPSReaders. Moreover, by choosing Quality of Service (QoS) policies, you can af-
fect how these history caches are managed in several ways, but the communication loop remains the same. You can
continue reading section R7TPS Layer to learn more about the implementation of the RTPS protocol in Fast DDS.

6.15.3 Writing a simple C++ publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using C++ API
step by step. It is also possible to self-generate a similar example to the one implemented in this section by using the
eProsima Fast DDS-Gen tool. This additional approach is explained in Building a publish/subscribe application.

Background
* Prerequisites

* Create the application workspace

Import linked libraries and its dependencies
— Installation from binaries and manual installation

— Colcon installation

Configure the CMake project

Build the topic data type

— CMakeLists.txt
» Write the Fast DDS publisher
— Examining the code

— CMakeLists.txt

Write the Fast DDS subscriber
— Examining the code
— CMakeLists.txt

* Putting all together

* Summary

* Next steps

54 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files build/
DDSHelloWorldPublisher and build/DDSHelloWorldSubscriber are the Publisher application and Subscriber
application respectively.

L— workspace_DDSHelloWorld

— build

CMakeCache. txt
CMakeFiles
cmake_install.cmake
DDSHelloWorldPublisher
DDSHelloWorldSubscriber
Makefile

— CMakeLists.txt

L— src

— HelloWorld.cxx

— HelloWorld.h

—— HelloWorld.idl

— HelloWorldPublisher.cpp
— HelloWorldPubSubTypes.cxx
— HelloWorldPubSubTypes.h
L— HelloWorldSubscriber.cpp

Let’s create the directory tree first.

mkdir workspace_DDSHelloWorld && cd workspace_DDSHelloWorld
mkdir src build

6.15. Getting Started 55

Fast DDS Documentation, Release 2.10.2

Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries. Depending on the installation procedure followed
the process of making these libraries available for our DDS application will be slightly different.

Installation from binaries and manual installation

If we have followed the installation from binaries or the manual installation, these libraries are already accessible from
the workspace. On Linux, the header files can be found in directories /usr/include/fastrtps/ and /usr/include/fastcdr/
for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory /usr/lib/.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Configure the CMake project

We will use the CMake tool to manage the building of the project. With your preferred text editor, create a new file called
CMakeLists.txt and copy and paste the following code snippet. Save this file in the root directory of your workspace.
If you have followed these steps, it should be workspace_DDSHelloWorld.

cmake_minimum_required(VERSION 3.12.4)

if(NOT CMAKE_VERSION VERSION_LESS 3.0)
cmake_policy(SET CMP0O048 NEW)
endif()

project(DDSHellolorld)

Find requirements

if(NOT fastcdr_FOUND)
find_package(fastcdr REQUIRED)

endif()

if(NOT fastrtps_FOUND)
find_package(fastrtps REQUIRED)
endif()

Set C++11
include (CheckCXXCompilerFlag)
1f(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_COMPILER_IS_CLANG OR

(continues on next page)

56 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

CMAKE_CXX_COMPILER_ID MATCHES "Clang")
check_cxx_compiler_flag(-std=c++11 SUPPORTS_CXX11)
if (SUPPORTS_CXX11)
add_compile_options(-std=c++11)
else()
message (FATAL_ERROR "Compiler doesn't support C++11")
endif(Q)
endif()

In each section we will complete this file to include the specific generated files.

Build the topic data type
eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate a functional example that uses your topic data.

It will be the former that will be followed in this tutorial. To see an example of application of the latter you can check
this other example. See Introduction for further details. For this project, we will use the Fast DDS-Gen application to
define the data type of the messages that will be sent by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

cd src && touch HelloWorld.idl

This creates the HelloWorld.idl file in the src directory. Open the file in a text editor and copy and paste the following
snippet of code.

struct HelloWorld
{

unsigned long index;
string message;

};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and
a message of type std: :string. All that remains is to generate the source code that implements this data type in
C++11. To do this, run the following command from the src directory.

<path/to/Fast DDS-Gen>/scripts/fastddsgen HelloWorld.idl

This must have generated the following files:
* HelloWorld.cxx: HelloWorld type definition.
* HelloWorld.h: Header file for HelloWorld.cxx.
* HelloWorldPubSubTypes.cxx: Serialization and Deserialization code for the HelloWorld type.
* HelloWorldPubSubTypes.h: Header file for HelloWorldPubSubTypes.cxx.

6.15. Getting Started 57

20

21

22

23

24

25

26

27

28

29

30

31

33

Fast DDS Documentation, Release 2.10.2

CMakelLists.txt

Include the following code snippet at the end of the CMakeList.txt file you created earlier. This includes the files we
have just created.

message (STATUS "Configuring HelloWorld publisher/subscriber example...™)
file(GLOB DDS_HELLOWORLD_SOURCES_CXX "src/*.cxx")

Write the Fast DDS publisher

From the src directory in the workspace, run the following command to download the HelloWorldPublisher.cpp file.

wget -0 HelloWorldPublisher.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/
—.DDSHelloWorld/src/HelloWorldPublisher.cpp

This is the C++ source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License'");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/-.’r;’.‘
* @file HelloWorldPublisher.cpp

:':/
#include "HelloWorldPubSubTypes.h"

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

#include <fastdds/dds/publisher/Dataliriter.hpp>

#include <fastdds/dds/publisher/DataliriterListener.hpp>

using namespace eprosima::fastdds::dds;
class HelloWorldPublisher

{

private:

(continues on next page)

58 Chapter 6. Structure of the documentation

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

HelloWorld hello_;
DomainParticipant® participant_;

Publisher* publisher_;

Topic* topic_;

DataWriter® writer_;
TypeSupport type_;

class PubListener

: matched_(0)

~PubListener() override

void on_publication_matched(
DataWriter¥®,

: public DataWriterListener

const PublicationMatchedStatus& info) override

if (info.current_count_change

matched_

else if (info.current_count_change ==

matched_

{
public:
PubListener()
{
}
{
}
{
{
}
{
}
else
{

std

}

std::atomic_int matched_;

} listener_;

info.total_count;
std::cout << "Publisher matched."

info.total_count;
std::cout << "Publisher unmatched.

<< std::endl;

-1

" << std::endl;

::cout << info.current_count_change
is not a valid value for PublicationMatchedStatus current..
—count change." << std::endl;

(continues on next page)

6.15. Getting Started

59

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

public:

HelloWorldPublisher()
: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, writer_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldPublisher()
! if (writer_ != nullptr)
! publisher_->delete_datawriter(writer_);
if (publisher_ !'= nullptr)
! participant_->delete_publisher(publisher_);
if (topic_ !'= nullptr)
! participant_->delete_topic(topic_);
%omainParticipantFactory::get_instance()—>de1ete_participant(participant_);
3

//!Initialize the publisher

bool init()

{
hello_.index(0);
hello_.message("HelloWorld");

DomainParticipantQos participantQos;

participantQos.name("Participant_publisher");

participant_ = DomainParticipantFactory: :get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{

return false;
// Register the Type
type_.register_type(participant_);
// Create the publications Topic
topic_ = participant_->create_topic("HellolWorldTopic", "HelloWorld", TOPIC_QOS_

—DEFAULT) ;

if (topic_ == nullptr)

(continues on next page)

60 Chapter 6. Structure of the documentation

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

{

return false;

}

// Create the Publisher
publisher_ = participant_->create_publisher (PUBLISHER_QOS_DEFAULT, nullptr);

if (publisher_ == nullptr)
{
return false;

}

// Create the Dataliriter
writer_ = publisher_->create_datawriter(topic
—listener_);

DATAWRITER_QOS_DEFAULT, &

if (writer_ == nullptr)
{

return false;

}

return true;

3

//!Send a publication
bool publish()

{
if (listener_.matched_ > 0)
{
hello_.index(hello_.index() + 1);
writer_->write(&hello_);
return true;
}
return false;
}

//!Run the Publisher
void run(
uint32_t samples)

{
uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publish(Q))
{
samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_
—.index()
<< " SENT" << std::endl;
}
std: :this_thread: :sleep_for(std: :chrono: :milliseconds(1000));
}
}

(continues on next page)

6.15. Getting Started 61

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

};
int main(
int argc,
char** argv)
{
std::cout << "Starting publisher." << std::endl;
int samples = 10;
HelloWorldPublisher® mypub = new HelloWorldPublisher();
if (mypub->init(Q))
{
mypub->run(static_cast<uint32_t>(samples));
}
delete mypub;
return 0;
}

Examining the code

At the beginning of the file we have a Doxygen style comment block with the @file field that tells us the name of the
file.

/:’r:’:
* @file HelloWorldPublisher.cpp

7’:/

Below are the includes of the C++ headers. The first one includes the HelloWorldPubSubTypes.h file with the serial-
ization and deserialization functions of the data type that we have defined in the previous section.

#include "HelloliorldPubSubTypes.h"

The next block includes the C++ header files that allow the use of the Fast DDS API.
e DomainParticipantFactory. Allows for the creation and destruction of DomainParticipant objects.

e DomainParticipant. Acts as a container for all other Entity objects and as a factory for the Publisher, Sub-
scriber, and Topic objects.

» TypeSupport. Provides the participant with the functions to serialize, deserialize and get the key of a specific
data type.

» Publisher. It is the object responsible for the creation of DataWriters.
e Dataliriter. Allows the application to set the value of the data to be published under a given Topic.

e DataliriterListener. Allows the redefinition of the functions of the DataWriterListener.

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

(continues on next page)

62 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

#include <fastdds/dds/publisher/Dataliriter.hpp>
#include <fastdds/dds/publisher/DataliriterListener.hpp>

Next, we define the namespace that contains the eProsima Fast DDS classes and functions that we are going to use in
our application.

using namespace eprosima::fastdds::dds;

The next line creates the HelloWorldPublisher class that implements a publisher.

class HelloWorldPublisher

Continuing with the private data members of the class, the hello_ data member is defined as an object of the
HelloWorld class that defines the data type we created with the IDL file. Next, the private data members correspond-
ing to the participant, publisher, topic, DataWriter and data type are defined. The type_ object of the TypeSupport
class is the object that will be used to register the topic data type in the DomainParticipant.

private:
HelloWorld hello_;
DomainParticipant® participant_;
Publisher® publisher_;
Topic* topic_;
DataWriter® writer_;

TypeSupport type_;

Then, the PubListener class is defined by inheriting from the DataliriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions. Finally, the 1istener_ object of the class is defined as an
instance of PubListener.

class PubListener : public DataWriterListener

{
public:
PubListener()
: matched_(0)
{
}
~PubListener() override
{
3

void on_publication_matched(

(continues on next page)

6.15. Getting Started 63

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

DatalWriter®,
const PublicationMatchedStatus& info) override
{
if (info.current_count_change == 1)
{
matched_ = info.total_count;
std: :cout << "Publisher matched." << std::endl;
}
else if (info.current_count_change == -1)
{
matched_ = info.total_count;
std::cout << "Publisher unmatched." << std::endl;
}
else
{

std: :cout << info.current_count_change
<< " is not a valid value for PublicationMatchedStatus current count.
—.change." << std::endl;

}
}

std::atomic_int matched_;

} listener_;

The public constructor and destructor of the HelloWorldPublisher class are defined below. The constructor initial-
izes the private data members of the class to nullptr, with the exception of the TypeSupport object, that is initialized
as an instance of the Hel1loWorldPubSubType class. The class destructor removes these data members and thus cleans
the system memory.

HelloWorldPublisher()
: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, writer_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldPublisher()
! if (writer_ != nullptr)
' publisher_->delete_datawriter(writer_);
if (publisher_ != nullptr)
' participant_->delete_publisher(publisher_);
if (topic_ !'= nullptr)
{

participant_->delete_topic(topic_);

(continues on next page)

64 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

DomainParticipantFactory::get_instance()->delete_participant(participant_);

Continuing with the public member functions of the HelloWorldPublisher class, the next snippet of code defines
the public publisher’s initialization member function. This function performs several actions:

1. Initializes the content of the HelloWorld type hello_ structure members.
Assigns a name to the participant through the QoS of the DomainParticipant.
Uses the DomainParticipantFactory to create the participant.

Registers the data type defined in the IDL.

Creates the topic for the publications.

Creates the publisher.

A T o

Creates the DataWriter with the listener previously created.

As you can see, the QoS configuration for all entities, except for the participant’s name, is the default configuration
(PARTICIPANT_QOS_DEFAULT, PUBLISHER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAWRITER_QOS_DEFAULT).
The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the publisher

bool init()

{
hello_.index(0);
hello_.message("HelloWorld");

DomainParticipantQos participantQos;

participantQos.name("Participant_publisher");

participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{

return false;

}

// Register the Type
type_.register_type(participant_);

// Create the publications Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Publisher
publisher_ = participant_->create_publisher (PUBLISHER_QOS_DEFAULT, nullptr);

(continues on next page)

6.15. Getting Started 65

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (publisher_ == nullptr)
{

return false;

}

// Create the Dataliriter
writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &listener_);

if (writer_ == nullptr)
{

return false;

}

return true;

}

To make the publication, the public member function publish() is implemented. In the DataWriter’s listener callback
which states that the DataWriter has matched with a DataReader that listens to the publication topic, the data member
matched_ is updated. It contains the number of DataReaders discovered. Therefore, when the first DataReader has
been discovered, the application starts to publish. This is simply the writing of a change by the DataWriter object.

//!Send a publication
bool publish()

{
if (listener_.matched_ > 0)
{
hello_.index(hello_.index() + 1);
writer_->write(&hello_);
return true;
}
return false;
}

The public run function executes the action of publishing a given number of times, waiting for 1 second between
publications.

//!Run the Publisher
void run(
uint32_t samples)

{
uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publishQ))
{
samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.
—index()
<< " SENT" << std::endl;
}
std: :this_thread: :sleep_for(std: :chrono: :milliseconds(1000));
}
}

66 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Finally, the HelloWorldPublisher is initialized and run in main.

int main(
int argc,
char** argv)
{
std::cout << "Starting publisher." << std::endl;
int samples = 10;
HelloWorldPublisher* mypub = new HelloWorldPublisher();
if (mypub->init())
{
mypub->run(static_cast<uint32_t>(samples));
}
delete mypub;
return 0;
}
CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldPublisher src/HelloWorldPublisher.cpp ${DDS_HELLOWORLD_
< SOURCES_CXX})
target_link libraries(DDSHelloWorldPublisher fastrtps fastcdr)

At this point the project is ready for building, compiling and running the publisher application. From the build directory
in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldPublisher

Write the Fast DDS subscriber

From the src directory in the workspace, execute the following command to download the HelloWorldSubscriber.cpp
file.

wget -0 HelloWorldSubscriber.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/
—.DDSHelloWorld/src/HelloWorldSubscriber. cpp

This is the C++ source code for the subscriber application. The application runs a subscriber until it receives 10 samples
under the topic HelloWorldTopic. At this point the subscriber stops.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License'");
// you may not use this file except in compliance with the License.

(continues on next page)

6.15. Getting Started 67

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// You may obtain a copy of the License at

/7

// http://www.apache.org/licenses/LICENSE-2.0

Vs

// Unless required by applicable law or agreed to in writing, software

// distributed under the License is distributed on an "AS IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and

// limitations under the License.

/:’: %

* @file HelloWorldSubscriber.cpp

:'.-/
#include

#include
#include
#include
#include
#include
#include
#include
#include

"HelloWorldPubSubTypes.h"

<fastdds/dds/domain/DomainParticipantFactory.hpp>
<fastdds/dds/domain/DomainParticipant.hpp>
<fastdds/dds/topic/TypeSupport.hpp>
<fastdds/dds/subscriber/Subscriber.hpp>
<fastdds/dds/subscriber/DataReader. hpp>
<fastdds/dds/subscriber/DataReaderListener.hpp>
<fastdds/dds/subscriber/qos/DataReaderQos. hpp>
<fastdds/dds/subscriber/SampleInfo.hpp>

using namespace eprosima::fastdds::dds;

class HelloWorldSubscriber

{
private:
DomainParticipant® participant_;
Subscriber® subscriber_;
DataReader* reader_;
Topic* topic_;
TypeSupport type_;
class SubListener : public DataReaderListener
{
public:
SubListener()
: samples_(0)
~SubListener() override
(continues on next page)
68 Chapter 6. Structure of the documentation

57

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

{
}

void on_subscription_matched(
DataReader¥,
const SubscriptionMatchedStatus& info) override

{
if (info.current_count_change == 1)
{
std: :cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{
std::cout << "Subscriber unmatched." << std::endl;
}
else
{
std::cout << info.current_count_change
<< " is not a valid value for SubscriptionMatchedStatus current.,
—count change" << std::endl;
}
}

void on_data_available(
DataReader* reader) override

SampleInfo info;
if (reader->take_next_sample(&hello_, &info) == ReturnCode_t: :RETCODE_OK)
{
if (info.valid_data)
{
samples_++;
std::cout << "Message:

<< hello_.message() << with index: <<

—hello_.index()
<< " RECEIVED." << std::endl;

}
HelloWorld hello_;
std::atomic_int samples_;
} listener_;
public:
HelloWorldSubscriber ()
: participant_(nullptr)
, subscriber_(nullptr)

, topic_(nullptr)
, reader_(nullptr)

(continues on next page)

6.15. Getting Started 69

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldSubscriber()
' if (reader_ !'= nullptr)
! subscriber_->delete_datareader(reader_);
if (topic_ != nullptr)
! participant_->delete_topic(topic_);
if (subscriber_ != nullptr)
' participant_->delete_subscriber(subscriber_);
éomainParticipantFactory::get_instance()—>de1ete_participant(participant_);
}

//!Initialize the subscriber
bool init(Q)
{
DomainParticipantQos participantQos;
participantQos.name("Participant_subscriber");
participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{
return false;

}

// Register the Type
type_.register_type(participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)
{

return false;

(continues on next page)

70 Chapter 6. Structure of the documentation

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

// Create the DataReader
reader_ = subscriber_->create_datareader(topic
—listener_);

DATAREADER_QOS_DEFAULT, &

if (reader_ == nullptr)
{

return false;

return true;

//!Run the Subscriber
void run(
uint32_t samples)
{
while(listener_.samples_ < samples)

{
std: :this_thread: :sleep_for(std: :chrono::milliseconds(100));

};

int main(
int argc,
char** argv)

std::cout << "Starting subscriber." << std::endl;

int samples = 10;

HelloWorldSubscriber® mysub = new HelloWorldSubscriber();
if(mysub->init())
{

mysub->run(static_cast<uint32_t>(samples));

}

delete mysub;
return 0;

6.15. Getting Started 71

Fast DDS Documentation, Release 2.10.2

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the includes of the C++ header files. In
these, the files that include the publisher class are replaced by the subscriber class and the data writer class by the data
reader class.

» Subscriber. It is the object responsible for the creation and configuration of DataReaders.

* DataReader. It is the object responsible for the actual reception of the data. It registers in the application the
topic (TopicDescription) that identifies the data to be read and accesses the data received by the subscriber.

* DataReaderListener. This is the listener assigned to the data reader.
e DataReaderQoS. Structure that defines the QoS of the DataReader.

e SampleInfo. Itis the information that accompanies each sample that is ‘read’ or ‘taken.’

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

The next line defines the HelloWorldSubscriber class that implements a subscriber.

class HelloWorldSubscriber

Starting with the private data members of the class, it is worth mentioning the implementation of the data reader listener.
The private data members of the class will be the participant, the subscriber, the topic, the data reader, and the data
type. As it was the case with the data writer, the listener implements the callbacks to be executed in case an event
occurs. The first overridden callback of the SubListener is the on_subscription_matched(), which is the analog of
the on_publication_matched() callback of the DataWriter.

void on_subscription_matched(
DataReader¥,
const SubscriptionMatchedStatus& info) override

{
if (info.current_count_change == 1)
{
std: :cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{
std: :cout << "Subscriber unmatched." << std::endl;
}
else
{

std: :cout << info.current_count_change
<< " is not a valid value for SubscriptionMatchedStatus current count,
—»change" << std::endl;
}
3

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampIleInfo class is defined,
which determines whether a sample has already been read or taken. Each time a sample is read, the counter of samples
received is increased.

72 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

void on_data_available(
DataReader* reader) override

{
SampleInfo info;
if (reader->take_next_sample(&hello_, &info) == ReturnCode_t: :RETCODE_OK)
{
if (info.valid_data)
{
samples_++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.
—index()
<< " RECEIVED." << std::endl;
}
}
}

The public constructor and destructor of the class is defined below.

HelloWorldSubscriber ()
: participant_(nullptr)
, subscriber_(nullptr)
, topic_(nullptr)
, reader_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldSubscriber()
k if (reader_ !'= nullptr)
! subscriber_->delete_datareader(reader_);
if (topic_ !'= nullptr)
! participant_->delete_topic(topic_);
if (subscriber_ != nullptr)
! participant_->delete_subscriber(subscriber_);
;omainParticipantFactory::get_instance()—>de1ete_participant(participant_);
3

Next comes the subscriber initialization public member function. This is the same as the initialization public mem-
ber function defined for the HelloWorldPublisher. The QoS configuration for all entities, except for the partici-
pant’s name, is the default QoS (PARTICIPANT_QOS_DEFAULT, SUBSCRIBER_QOS_DEFAULT, TOPIC_QOS_DEFAULT,
DATAREADER_QOS_DEFAULT). The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the subscriber
bool init()
{

DomainParticipantQos participantQos;

(continues on next page)

6.15. Getting Started 73

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

participantQos.name("Participant_subscriber");

participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)

{

return false;

}

// Register the Type
type_.register_type(participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)

{

return false;

}

// Create the DataReader

reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &listener_);

if (reader_ == nullptr)
{

return false;

}

return true;

The public member function run() ensures that the subscriber runs until all the samples have been received. This

member function implements an active wait of the subscriber, with a 100ms sleep interval to ease the CPU.

//!Run the Subscriber
void run(
uint32_t samples)

{
while(listener_.samples_ < samples)
{
std: :this_thread: :sleep_for(std::chrono::milliseconds(100));
}
}

74 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Finally, the participant that implements a subscriber is initialized and run in main.

int main(
int argc,
char** argv)
{
std::cout << "Starting subscriber." << std::endl;
int samples = 10;
HelloWorldSubscriber® mysub = new HelloWorldSubscriber();
if(mysub->init())
{
mysub->run(static_cast<uint32_t>(samples));
}
delete mysub;
return 0;
}
CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldSubscriber src/HelloWorldSubscriber.cpp ${DDS_HELLOWORLD_
< SOURCES_CXX})
target_link libraries(DDSHelloWorldSubscriber fastrtps fastcdr)

At this point the project is ready for building, compiling and running the subscriber application. From the build direc-
tory in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldSubscriber

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

./DDSHelloWorldPublisher
./DDSHelloWorldSubscriber

6.15. Getting Started 75

Fast DDS Documentation, Release 2.10.2

Summary
In this tutorial you have built a publisher and a subscriber DDS application. You have also learned how to build the

CMake file for source code compilation, and how to include and use the Fast DDS and Fast CDR libraries in your
project.

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.15.4 Writing a simple Python publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using Python API
step by step.

* Background

Prerequisites

Create the application workspace

Import linked libraries and its dependencies

— Colcon installation

Build the topic data type
— CMakeLists.txt

Write the Fast DDS publisher

— Examining the code

Write the Fast DDS subscriber

— Examining the code

Putting all together

Summar y

Next steps

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

76 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds

Fast DDS Documentation, Release 2.10.2

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files HelloWorldPublisher.py
and HelloWorldSubscriber.py are the Publisher application and Subscriber application respectively.

—— CMakeCache. txt

— CMakeFiles

— CMakeLists.txt

—— HelloWorld.cxx

—— HelloWorld.h

— HelloWorld.i

— HelloWorld.idl

— HelloWorld.py

—— HelloWorldPubSubTypes.cxx
—— HelloWorldPubSubTypes.h
—— HelloWorldPubSubTypes.i
— HelloWorldPublisher.py
—— HelloWorldSubscriber.py
—— Makefile

—— _HelloWorldWrapper.so
— cmake_install.cmake

L— libHelloWorld.so

Let’s create the directory tree first.

mkdir workspace_HelloWorld && cd workspace_HelloWorld

Import linked libraries and its dependencies
The DDS application requires the Fast DDS, Fast CDR and Fast DDS Python bindings libraries. Depending on the

installation procedure followed the process of making these libraries available for our DDS application will be slightly
different.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS-python/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

6.15. Getting Started 77

Fast DDS Documentation, Release 2.10.2

echo 'source <path/to/Fast-DDS-python/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Build the topic data type
eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate SWIG interface files to generate the Python bindings for your custom topic.

For this project, we will use the Fast DDS-Gen application to define the data type of the messages that will be sent by
the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

touch HelloWorld.idl

This creates the HelloWorld.idl file. Open the file in a text editor and copy and paste the following snippet of code.

struct HelloWorld

{
unsigned long index;
string message;

}s

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and a
message of type std: :string. All that remains is to generate the source code that implements this data type in C++11
and the SWIG interface files for the Python bindings. To do this, run the following command.

<path/to/Fast DDS-Gen>/scripts/fastddsgen -python HelloWorld.idl

This must have generated the following files:
* HelloWorld.cxx: HelloWorld C++ type definition.
¢ HelloWorld.h: C++ header file for HelloWorld.cxx.
* HelloWorld.i: SWIG interface file for HelloWorld C++ type definition.
* HelloWorldPubSubTypes.cxx: C+ Serialization and Deserialization code for the HelloWorld type.
* HelloWorldPubSubTypes.h: C++ header file for HelloWorldPubSubTypes.cxx.
* HelloWorldPubSubTypes.i: SWIG interface file for C++ Serialization and Deserialization code.

* CMakeLists.txt: CMake file to generate C++ source code and Python module from the SWIG interface files,
compile and generate C++ libraries.

* HelloWorld.py: Python module to be imported by your Python example.

78 Chapter 6. Structure of the documentation

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/

20

21

22

23

24

25

26

27

28

29

30

31

33

Fast DDS Documentation, Release 2.10.2

CMakelLists.txt

At this point the project is ready for building, compiling and generating Python bindings for this data type. From the
workspace, run the following commands.

cmake .
make

Write the Fast DDS publisher

From the workspace, run the following command to download the HelloWorldPublisher.py file.

wget -0 HelloWorldPublisher.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
—Python/HelloWorld/HelloWorldPublisher.py

This is the Python source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).

Licensed under the Apache License, Version 2.0 (the "License'");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

i

HelloWorld Publisher

i

o O W O W R R R R W™ R

from threading import Condition
import time

import fastdds
import HelloWorld

DESCRIPTION = """HelloWorld Publisher example for Fast DDS python bindings"""
USAGE = ('python3 HelloWorldPublisher.py')

class WriterListener (fastdds.DatalWriterListener)
def __init__(self, writer)
self._writer = writer
super().__init__Q

def on_publication_matched(self, datawriter, info)
if (0 < info.current_count_change)

(continues on next page)

6.15. Getting Started 79

34

41

42

43

44

45

46

47

48

49

50

51

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

print ("Publisher matched subscriber ".format(info.last_subscription_
—handle))

self._writer._cvDiscovery.acquire()

self._writer._matched_reader += 1

self._writer._cvDiscovery.notify()

self._writer._cvDiscovery.release()

else :

print ("Publisher unmatched subscriber ".format(info.last_subscription_

—handle))

self._writer._cvDiscovery.acquire()
self._writer._matched_reader -= 1

self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

class Writer:

def

__init__(self):
self._matched_reader = 0
self._cvDiscovery = Condition()
self.index = 0

factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qgos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_gos)
self.participant = factory.create_participant(®, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()
self.participant.get_default_topic_qos(self.topic_gos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_

—type.getName(), self.topic_qgos)

self.publisher_qos = fastdds.PublisherQos()
self.participant.get_default_publisher_qgos(self.publisher_qos)
self.publisher = self.participant.create_publisher(self.publisher_gos)

self.listener = WriterListener(self)

self.writer_gos = fastdds.DataWriterQos()
self.publisher.get_default_datawriter_qos(self.writer_qos)

self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.

—listener)

def

write(self):
data = HelloWorld.HelloWorld()
data.message("Hello World")

(continues on next page)

80

Chapter 6. Structure of the documentation

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

data.index(self.index)

self.writer.write(data)

print("Sending : ".format (message=data.message(), index=data.
—index()))

self.index = self.index + 1

def wait_discovery(self)
self._cvDiscovery.acquire()

print ("Writer is waiting discovery...'")
self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
self._cvDiscovery.release()

print("Writer discovery finished...")

def run(self):
self.wait_discovery()
for x in range(10)
time.sleep(1)
self.write()
self.delete()

def delete(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant.delete_contained_entities()
factory.delete_participant(self.participant)

if __name__ == '__main__':
print('Starting publisher.")
writer = Writer()
writer.run()
exit(Q)

Examining the code

At the beginning of the file we import the Fast DDS Python bindings.

import fastdds

and also the Python module generated by Fast-DDS-Gen as described in Build the topic data type section.

import HelloWorld

Then, the WriterListener class is defined by inheriting from the DataliriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions.

6.15. Getting Started 81

Fast DDS Documentation, Release 2.10.2

class WriterListener (fastdds.DataWriterListener)
def __init__(self, writer)
self._writer = writer
super().__init__Q

def on_publication_matched(self, datawriter, info)
if (0 < info.current_count_change)

print ("Publisher matched subscriber ".format(info.last_subscription_
—handle))

self._writer._cvDiscovery.acquire()

self._writer._matched_reader += 1

self._writer._cvDiscovery.notify()

self._writer._cvDiscovery.release()

else :

print ("Publisher unmatched subscriber ".format(info.last_subscription_

—handle))

self._writer._cvDiscovery.acquire()
self._writer._matched_reader -= 1
self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

The next block creates the Writer class that implements a publisher.

class Writer:

The publisher’s initialization member function of the Writer class are defined below. This function performs several
actions:

1. Uses the DomainParticipantFactory to create the participant.
Registers the data type defined in the IDL.
Creates the topic for the publications.

Creates the publisher.

A

Creates the DataWriter with the listener previously created.

def __init__(self):
self._matched_reader = 0
self._cvDiscovery = Condition()
self.index = 0

factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_gos(self.participant_gos)
self.participant = factory.create_participant(0, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_gos = fastdds.TopicQos()

(continues on next page)

82 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

self.participant.get_default_topic_qos(self.topic_qgos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.
—getName(), self.topic_gos)

self.publisher_qos = fastdds.PublisherQos()
self.participant.get_default_publisher_qgos(self.publisher_qos)
self.publisher = self.participant.create_publisher(self.publisher_gos)

self.listener = WriterListener(self)

self.writer_gos = fastdds.DataWriterQos()

self.publisher.get_default_datawriter_qos(self.writer_qos)

self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.
—listener)

To make the publication, the public member function write () is implemented. This is simply the writing of a change
by the DataWriter object.

def write(self):
data = HelloWorld.HelloWorld()
data.message("Hello World")
data.index(self.index)
self.writer.write(data)
print("Sending : ".format(message=data.message(), index=data.
—index()))
self.index = self.index + 1

To detect when a DataReader has matched, the public member function wait_discovery() is implemented. In
the DataWriter’s listener callback which states that the DataWriter has matched with a DataReader that listens to the
publication topic, the data member _matched_reader is updated. It contains the number of DataReaders discovered.
Therefore, when the first DataReader has been discovered, the application starts to publish.

def wait_discovery(self)
self._cvDiscovery.acquire()

print ("Writer is waiting discovery...'")
self._cvDiscovery.wait_for(lambda : self._matched_reader !'= 0)
self._cvDiscovery.release()

print("Writer discovery finished...")

The public run function waits until a DataReader is discovered and executes the action of publishing 10 samples.

def run(self):
self.wait_discovery()
for x in range(10)
time.sleep(1)
self.write()
self.delete()

Finally, the Writer is initialized and run in main.

if __name__ == '__main__"':
print('Starting publisher.")
writer = Writer()

(continues on next page)

6.15. Getting Started 83

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

writer.run()
exit(Q)

Write the Fast DDS subscriber

From the workspace, run the following command to download the HelloWorldSubscriber.py file.

wget -0 HelloWorldSubscriber.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
—Python/HelloWorld/HelloWorldSubscriber.py

This is the Python source code for the subscriber application. The application runs a subscriber until the user press
Ctrl+C receiving samples under the topic HelloWorldTopic.

Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

i

HelloWorld Subscriber

i

HFHOoR R T W W OH R R R W™ W R

import signal

import fastdds
import HelloWorld

DESCRIPTION = """HelloWorld Subscriber example for Fast DDS python bindings"""
USAGE = ('python3 HelloWorldSubscriber.py')

To capture ctrl+C

def signal_handler(sig, frame):
print('Interrupted!")

class ReaderListener(fastdds.DataReaderListener):

def __init__(self):
super() .__init__Q)

def on_subscription_matched(self, datareader, info)
if (0 < info.current_count_change)

(continues on next page)

84 Chapter 6. Structure of the documentation

38

39

40

41

42

43

44

45

46

47

48

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

print ("Subscriber matched publisher ".format(info.last_publication_
—handle))
else :
print ("Subscriber unmatched publisher ".format(info.last_publication_
—handle))

def on_data_available(self, reader):

info
data

= fastdds.SampleInfo()
= HelloWorld.HelloWorld()

reader.take_next_sample(data, info)

print("Received : ".format(message=data.message(), index=data.

—index()))

class Reader:

def __init__(self):
factory = fastdds.DomainParticipantFactory.get_instance()

self.

participant_qos = fastdds.DomainParticipantQos()

factory.get_default_participant_gos(self.participant_gos)

self

self.
self.
self.
self.

self.
self.
self.

.participant = factory.create_participant(®, self.participant_gos)

topic_data_type = HelloWorld.HelloWorldPubSubType()
topic_data_type.setName("HelloWorld")

type_support = fastdds.TypeSupport(self.topic_data_type)
participant.register_type(self.type_support)

topic_qos = fastdds.TopicQos()
participant.get_default_topic_qos(self.topic_qgos)
topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_

—type.getName(), self.topic_qgos)

self.
self.
self.

self.
self.
self.
self.

subscriber_qos = fastdds.SubscriberQos()
participant.get_default_subscriber_qos(self.subscriber_qos)
subscriber = self.participant.create_subscriber(self.subscriber_qgos)

listener = ReaderListener()

reader_qgos = fastdds.DataReaderQos()
subscriber.get_default_datareader_qos(self.reader_qos)

reader = self.subscriber.create_datareader(self.topic, self.reader_qos,..

—self.listener)

def delete(self):
factory = fastdds.DomainParticipantFactory.get_instance()

self.

participant.delete_contained_entities()

factory.delete_participant(self.participant)

(continues on next page)

6.15. Getting Started 85

93

94

95

96

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

def run(self):
signal.signal(signal.SIGINT, signal_handler)
print('Press Ctrl+C to stop')
signal.pause()
self.delete()

if __name__ == '__main__":
print('Creating subscriber.')
reader = Reader()
reader.run()

exit(Q)

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the implementation of the data reader
listener. The first overridden callback of the ReaderListener is the on_subscription_matched (), which is the analog
of the on_publication_matched() callback of the DataWriter.

def on_subscription_matched(self, datareader, info)
if (0 < info.current_count_change)
print ("Subscriber matched publisher ".format(info.last_publication_handle))
else :
print ("Subscriber unmatched publisher ".format(info.last_publication_handle))

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampleInfo class is defined, which
determines whether a sample has already been read or taken.

def on_data_available(self, reader):
info = fastdds.SampleInfo()
data = HelloWorld.HelloWorld()
reader.take_next_sample(data, info)

The next line defines the Reader class that implements a subscriber.

class Reader:

Next comes the subscriber initialization public member function. This is the same as the initialization public member
function defined for the Writer.

def __init__(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_qos)

self.participant = factory.create_participant(®, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

(continues on next page)

86 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()

self.participant.get_default_topic_qos(self.topic_qgos)

self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.
—.getName(), self.topic_qgos)

self.subscriber_gos = fastdds.SubscriberQos()
self.participant.get_default_subscriber_qos(self.subscriber_qgos)
self.subscriber = self.participant.create_subscriber(self.subscriber_qos)

self.listener = ReaderListener()

self.reader_qos = fastdds.DataReaderQos()

self.subscriber.get_default_datareader_qgos(self.reader_qgos)

self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos, self.
—listener)

The public member function run() ensures that the subscriber runs until the user press Ctri+C.

def run(self):
signal.signal(signal.SIGINT, signal_handler)
print('Press Ctrl+C to stop')
signal.pause()
self.delete()

Finally, the participant that implements a subscriber is initialized and run in main.

if __name__ == '__main__"':
print('Creating subscriber.")
reader = Reader()
reader.run()
exit()

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

python3 HelloWorldPublisher.py
python3 HelloWorldSubscriber.py

Summary

In this tutorial you have built a Python publisher and a subscriber DDS application. You have also learned how to
generate from an IDL file the specific Python module for your Topic data type.

6.15. Getting Started 87

Fast DDS Documentation, Release 2.10.2

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.16 Library Overview

Fast DDS (formerly Fast RTPS) is an efficient and high-performance implementation of the DDS specification, a data-
centric communications middleware (DCPS) for distributed application software. This section reviews the architecture,
operation and key features of Fast DDS.

6.16.1 Architecture

The architecture of Fast DDS is shown in the figure below, where a layer model with the following different environ-
ments can be seen.

» Application layer. The user application that makes use of the Fast DDS API for the implementation of commu-
nications in distributed systems.

« Fast DDS layer. Robust implementation of the DDS communications middleware. It allows the deployment
of one or more DDS domains in which DomainParticipants within the same domain exchange messages by
publishing/subscribing under a domain topic.

* RTPS layer. Implementation of the Real-Time Publish-Subscribe (RTPS) protocol for interoperability with DDS
applications. This layer acts an abstraction layer of the transport layer.

e Transport Layer. Fast DDS can be used over various transport protocols such as unreliable transport protocols
(UDP), reliable transport protocols (TCP), or shared memory transport protocols (SHM).

Fig. 4: Fast DDS layer model architecture

DDS Layer

Several key elements for communication are defined in the DDS layer of Fast DDS. The user will create these elements
in their application, thus incorporating DDS application elements and creating a data-centric communication system.
Fast DDS, following the DDS specification, defines these elements involved in communication as Entities. A DDS
Entity is any object that supports Quality of Service configuration (QoS), and that implements a listener.

* QoS. The mechanism by which the behavior of each of the entities is defined.

* Listener. The mechanism by which the entities are notified of the possible events that arise during the applica-
tion’s execution.

Below are listed the DDS Entities together with their description and functionality. For a more detailed explanation of
each entity, their QoS, and their listeners, please refer to DDS Layer section.

* Domain. A positive integer which identifies the DDS domain. Each DomainParticipant will have an assigned
DDS domain, so that DomainParticipants in the same domain can communicate, as well as isolate commu-
nications between DDS domains. This value must be given by the application developer when creating the
DomainParticipants.

* DomainParticipant. Object containing other DDS entities such as publishers, subscribers, topics and multi-
topics. It is the entity that allows the creation of the previous entities it contains, as well as the configuration of
their behavior.

88 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS-python/tree/master/fastdds_python_examples
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.10.2

Publisher. The Publisher publishes data under a topic using a DataWriter, which writes the data to the transport.
It is the entity that creates and configures the DataWriter entities it contains, and may contain one or more of
them.

DataWriter. It is the entity in charge of publishing messages. The user must provide a Topic when creating
this entity which will be the Topic under which the data will be published. Publication is done by writing the
data-objects as a change in the DataWriterHistory.

DataWriterHistory. This is a list of changes to the data-objects. When the DataWriter proceeds to publish data
under a specific Topic, it actually creates a change in this data. It is this change that is registered in the History.
These changes are then sent to the DataReader that subscribes to that specific topic.

Subscriber. The Subscriber subscribes to a topic using a DataReader, which reads the data from the transport.
It is the entity that creates and configures the DataReader entities it contains, and may contain one or more
DataReader entities.

DataReader. It is the entity that subscribes to the topics for the reception of publications. The user must
provide a subscription Topic when creating this entity. A DataReader receives the messages as changes in its
HistoryDataReader.

DataReaderHistory. It contains the changes in the data-objects that the DataReader receives as a result of
subscribing to a certain Topic.

Topic. Entity that binds Publishers’ DataWriters with Subscribers’ DataReaders.

RTPS layer

As mentioned above, the RTPS protocol in Fast DDS allows the abstraction of DDS application entities from the
transport layer. According to the graph shown above, the RTPS layer has four main Entities.

RTPSDomain. It is the extension of the DDS domain to the RTPS protocol.

RTPSParticipant. Entity containing other RTPS entities. It allows the configuration and creation of the entities
it contains.

RTPSWriter. The source of the messages. It reads the changes written in the DataWriterHistory and transmits
them to all the RTPSReaders to which it has previously matched.

RTPSReader. Receiving entity of the messages. It writes the changes reported by the RTPSWriter into the
DataReaderHistory.

For a more detailed explanation of each entity, their attributes, and their listeners, please refer to RTPS Layer section.

Transport layer

Fast DDS supports the implementation of applications over various transport protocols. Those are UDPv4, UDPv6,
TCPv4, TCPv6 and Shared Memory Transport (SHM). By default, a DomainParticipant implements a UDPv4 and
a SHM transport protocol. The configuration of all supported transport protocols is detailed in the Transport Layer
section.

6.16.

Library Overview 89

Fast DDS Documentation, Release 2.10.2

6.16.2 Programming and execution model

Fast DDS is concurrent and event-based. The following explains the multithreading model that governs the operation
of Fast DDS as well as the possible events.

Concurrency and multithreading

Fast DDS implements a concurrent multithreading system. Each DomainParticipant spawns a set of threads to take care
of background tasks such as logging, message reception, and asynchronous communication. This should not impact
the way you use the library, i.e. the Fast DDS API is thread safe, so you can fearlessly call any methods on the same
DomainParticipant from different threads. However, this multithreading implementation must be taken into account
when external functions access to resources that are modified by threads running internally in the library. An example
of this is the modified resources in the entity listener callbacks. The following is a brief overview of how Fast DDS
multithreading schedule work:

¢ Main thread: Managed by the application.
 Event thread: Each DomainParticipant owns one of these. It processes periodic and triggered time events.

* Asynchronous writer thread: This thread manages asynchronous writes for all DomainParticipants. Even for
synchronous writers, some forms of communication must be initiated in the background.

* Reception threads: DomainParticipants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

Event-driven architecture

There is a time-event system that enables Fast DDS to respond to certain conditions, as well as schedule periodic
operations. Few of them are visible to the user since most are related to DDS and RTPS metadata. However, the user
can define in their application periodic time-events by inheriting from the TimedEvent class.

6.16.3 Functionalities

Fast DDS has some added features that can be implemented and configured by the user in their application. These are
outlined below.

Discovery Protocols

The discovery protocols define the mechanisms by which DataWriters publishing under a given Topic, and DataRead-
ers subscribing to that same Topic are matched, so that they can start sharing data. This applies at any point in the
communication process. Fast DDS provides the following discovery mechanisms:

» Simple Discovery. This is the default discovery mechanism, which is defined in the RTPS standard and provides
compatibility with other DDS implementations. Here the DomainParticipants are discovered individually at an
early stage to subsequently match the DataWriter and DataReader they implement.

* Discovery Server. This discovery mechanism uses a centralized discovery architecture, where servers act as
hubs for meta traffic discovery.

« Static Discovery. This implements the discovery of DomainParticipants to each other but it is possible to skip
the discovery of the entities contained in each DomainParticipant (DataReader/DataWriter) if these entities are
known in advance by the remote DomainParticipants.

90 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.10.2

e Manual Discovery. This mechanism is only compatible with the RTPS layer. It allows the user to man-
ually match and unmatch RTPSParticipants, RTPSWriters, and RTPSReaders using whatever external meta-
information channel of its choice.

The detailed explanation and configuration of all the discovery protocols implemented in Fast DDS can be seen in the
Discovery section.

Security

Fast DDS can be configured to provide secure communications by implementing pluggable security at three levels:

* Authentication of remote DomainParticipants. The DDS:Auth:PKI-DH plugin provides authentication using a
trusted Certificate Authority (CA) and ECDSA Digital Signature Algorithms to perform the mutual authentica-
tion. It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement protocol.

 Access control of entities. The DDS:Access:Permissions plugin provides access control to DomainParticipants
at the DDS Domain and Topic level.

* Encryption of data. The DDS:Crypto:AES-GCM-GMAC plugin provides authenticated encryption using Ad-
vanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

More information about security configuration in Fast DDS is available in the Security section.

Logging

Fast DDS provides an extensible Logging system. Log class is the entry point of the Logging system. It exposes three
macro definitions to ease its usage: EPROSIMA_LOG_INFO, EPROSIMA_LOG_WARNING and EPROSIMA_LOG_ERROR.
Moreover, it allows the definition of new categories, in addition to those already available (INFO_MSG, WARN_MSG and
ERROR_MSG). It provides filtering by category using regular expressions, as well as control of the verbosity of the
Logging system. Details of the possible Logging system configurations can be found in the Logging section.

XML profiles configuration

Fast DDS offers the possibility to make changes in its default settings by using XML profile configuration files. Thus,
the behavior of the DDS Entities can be modified without the need for the user to implement any program source code
or re-build an existing application.

The user has XML tags for each of the API functionalities. Therefore, it is possible to build and configure DomainPar-
ticipant profiles through the <participant> tag, or the DataWriter and DataReader profiles with the <data_writer>
and <data_reader> tags respectively.

For a better understanding of how to write and use these XML profiles configuration files you can continue reading the
XML profiles section.

Environment variables

Environment variables are those variables that are defined outside the scope of the program, through operating system
functionalities. Fast DDS relies on environment variables so that the user can easily customize the default settings
of DDS applications. Please, refer to the Environment variables section for a complete list and description of the
environment variables affecting Fast DDS.

6.16. Library Overview 91

Fast DDS Documentation, Release 2.10.2

6.17 DDS Layer

eProsima Fast DDS exposes two different APIs to interact with the communication service at different levels. The
main APl is the Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model
(PIM) API, or DDS DCPS PIM for short, which is defined by the Data Distribution Service (DDS) version 1.4 speci-
fication, to which Fast DDS complies. This section is devoted to explain the main characteristics and modes-of-use of
this API under Fast DDS, providing an in depth explanation of the five modules into which it is divided:

* Core: It defines the abstract classes and interfaces that are refined by the other modules. It also provides the
Quality of Service (QoS) definitions, as well as support for the notification-based interaction style with the mid-
dleware.

e Domain: It contains the DomainParticipant class that acts as an entry-point of the Service, as well as a factory
for many of the classes. The DomainParticipant also acts as a container for the other objects that make up the
Service.

e Publisher: It describes the classes used on the publication side, including Publisher and Dataliriter classes,
as well as the PublisherListener and DataliriterListener interfaces.

* Subscriber: It describes the classes used on the subscription side, including Subscriber and DataReader
classes, as well as the SubscriberListener and DataReaderListener interfaces.

e Topic: Tt describes the classes used to define communication topics and data types, including Topic and
TopicDescription classes, as well as TypeSupport, and the TopicListener interface.

6.17.1 Core

This module defines the infrastructure classes and types that will be used by the other ones. It contains the definition
of Entity class, QoS policies, and Statuses.

* Entity: An Entity is a DDS communication object that has a Status and can be configured with Policies.
* Policy: Each of the configuration objects that govern the behavior of an Entity.

 Status: Each of the objects associated with an Entity, whose values represent the communication status of that
Entity.

Entity

Entity is the abstract base class for all the DDS entities, meaning an object that supports QoS policies, a listener, and
statuses.

Types of Entities

* DomainParticipant: This entity is the entry-point of the Service and acts as a factory for Publishers, Subscribers,
and Topics. See DomainParticipant for further details.

* Publisher: It acts as a factory that can create any number of DataWriters. See Publisher for further details.
¢ Subscriber: It acts as a factory that can create any number of DataReaders. See Subscriber for further details.

» Topic: This entity fits between the publication and subscription entities and acts as a channel. See Topic for
further details.

» DataWriter: Is the object responsible for the data distribution. See DataWriter for further details.

* DataReader: Is the object used to access the received data. See DataReader for further details.

92 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.10.2

The following figure shows the hierarchy between all DDS entities:

Common Entity Characteristics

All entity types share some characteristics that are common to the concept of an entity. Those are:

Entity Identifier

Each entity is identified by a unique ID, which is shared between the DDS entity and its corresponding RTPS entity if
it exists. That ID is stored on an Instance Handle object declared on Entity base class, which can be accessed using the
getter function get_instance_handle().

QoS policy

The behavior of each entity can be configured with a set of configuration policies. For each entity type, there
is a corresponding Quality of Service (QoS) class that groups all the policies that affect said entity type. Users
can create instances of these QoS classes, modify the contained policies to their needs, and use them to configure
the entities, either during their creation or at a later time with the set_qgos() function that every entity exposes
(DomainParticipant::set_qgos(), Publisher: :set_qos(), Subscriber: :set_qos(), Topic::set_qgos(),
Dataliriter: :set_qos(), DataReader: :set_qgos()). See Policy for a list of the available policies and their de-
scription. The QoS classes and the policies they contain are explained in the documentation for each entity type.

Listener

A listener is an object with functions that an entity will call in response to events. Therefore, the listener acts as an
asynchronous notification system that allows the entity to notify the application about the Szarus changes in the entity.

All entity types define an abstract listener interface, which contains the callback functions that the entity will trigger to
communicate the Status changes to the application. Users can implement their own listeners inheriting from these in-
terfaces and implementing the callbacks that are needed on their application. Then they can link these listeners to each
entity, either during their creation or at a later time with the set_listener() function that every entity exposes
(DomainParticipant::set_listener(), Publisher::set_listener(), Subscriber::set_listener(),
Topic::set_listener(), Dataliriter::set_listener(), DataReader: :set_listener()). The listener in-
terfaces that each entity type and their callbacks are explained in the documentation for each entity type. When an
event occurs it is handled by the lowest level entity with a listener that is non-null and has the corresponding callback
enabled in its StatusMask. Higher level listeners inherit from the lower level ones as shown in the following diagram:

Fig. 5: Listeners inheritance diagram.

Note: The on_data_on_readers() callback intercepts messages before on_data_available(). This implies
that if DomainParticipantListener is enabled, users should take into account that by default the listener uses
StatusMask::all(). As the callback entity hierarchy is kept, the on_data_on_readers () is going to be called in
this case. If an application wants to use on_data_available() instead, the corresponding bit of StatusMask should
be disabled.

Important: Using StatusMask: :none () when creating the Entity only disables the DDS standard callbacks:

6.17. DDS Layer 93

Fast DDS Documentation, Release 2.10.2

Any callback specific to Fast DDS is always enabled:

on_sample_rejected()
on_liveliness_changed()
on_requested_deadline_missed()
on_requested_incompatible_gos()
on_data_available()
on_subscription_matched()
on_sample_lost()
on_offered_incompatible_qgos()
on_offered_deadline_missed()
on_liveliness_lost()
on_publication_matched()
on_inconsistent_topic()

on_data_on_readers()

on_participant_discovery()
onParticipantAuthentication()
on_subscriber_discovery()
on_publisher_discovery()
on_type_discovery()
on_type_dependencies_reply()

on_type_information_received()

on_unacknowledged_sample_removed()

Warning: Only one thread is created to listen for every listener implemented, so it is encouraged to keep listener
functions simple, leaving the process of such information to the proper class.

Warning: Do not create or delete any Entity within the scope of a Listener member function, since it could lead
to an undefined behavior. It is recommended instead to use the Listener class as an information channel and the
upper Entity class to encapsulate such behaviour.

94

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Status

Each entity is associated with a set of status objects whose values represent the communication status of that entity.
The changes on these status values are the ones that trigger the invocation of the appropriate Listener callback to
asynchronously inform the application. See Status for a list of all the status objects and a description of their content.
There you can also find which status applies to which entity type.

StatusCondition

Every entity owns a StatusCondition that will be notified whenever its enabled statuses change. The StatusCondition
provides the link between an Entity and a Wait-set. See section Conditions and Wait-sets for more information.

Enabling Entities

All the entities can be created either enabled or not enabled. By default, the factories are configured to create the
entities enabled, but it can be changed using the EntityFactoryQosPolicy on enabled factories. A disabled factory
creates disabled entities regardless of its QoS. A disabled entity has its operations limited to the following ones:

* Set/Get the entity QoS Policy.

* Set/Get the entity Listener.

* Create/Delete subentities.

* Get the Status of the entity, even if they will not change.
* Lookup operations.

Any other function called in this state will return NOT_ENABLED.

Policy

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
entity will behave. To increase the flexibility of the system, the QoS is decomposed in several QoS Policies that can be
configured independently. However, there may be cases where several policies conflict. Those conflicts are notified to
the user through the ReturnCodes that the QoS setter functions returns.

Each Qos Policy has a unique ID defined in the QosPolicyId_t enumerator. This ID is used in some Status instances
to identify the specific Qos Policy to which the Status refers.

There are QoS Policies that are immutable, which means that only can be specified either at the entity creation or before
calling the enable operation.

Each DDS Entity has a specific set of QoS Policies that can be a mix of Standard QoS Policies, XTypes Extensions and
eProsima Extensions.

6.17. DDS Layer 95

Fast DDS Documentation, Release 2.10.2

Standard QoS Policies

This section explains each of the DDS standard QoS Policies:

* DeadlineQosPolicy

* DestinationOrderQosPolicy
* DurabilityQosPolicy

* DurabilityServiceQosPolicy
* EntityFactoryQosPolicy

* GroupDataQosPolicy

* HistoryQosPolicy

* LatencyBudgetQosPolicy

* LifespanQosPolicy

* LivelinessQosPolicy

* OwnershipQosPolicy

* OwnershipStrengthQosPolicy
* PartitionQosPolicy

* PresentationQosPolicy

* ReaderDatalLifecycleQosPolicy
* ReliabilityQosPolicy

* ResourceLimitsQosPolicy

» TimeBasedFilterQosPolicy
* TopicDataQosPolicy

* TransportPriorityQosPolicy
» UserDataQosPolicy

» WriterDataLifecycleQosPolicy

DeadlineQosPolicy

This QoS policy raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically (see DeadlineQosPolicy).

On the publishing side, the deadline defines the maximum period in which the application is expected to supply a new
sample. On the subscribing side, it defines the maximum period in which new samples should be received.

For Topics with keys, this QoS is applied by key. Suppose that the positions of some vehicles have to be published
periodically. In that case, it is possible to set the ID of the vehicle as the key of the data type and the deadline QoS to
the desired publication period.

List of QoS Policy data members:

96 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Data Member Name | Type Default Value
period Duration_t | c_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

Compatibility Rule

To maintain the compatibility between DeadlineQosPolicy in DataReaders and DataWriters, the offered deadline pe-
riod (configured on the DataWriter) must be less than or equal to the requested deadline period (configured on the
DataReader), otherwise, the entities are considered to be incompatible.

The DeadlineQosPolicy must be set consistently with the 7imeBasedFilterQosPolicy, which means that the deadline
period must be higher or equal to the minimum separation.

Example

C++

DeadlineQosPolicy deadline;

//The DeadlineQosPolicy is default constructed with an infinite period.
//Change the period to 1 second

deadline.period.seconds = 1;

deadline.period.nanosec = 0;

XML

<data_writer profile_name="writer_xml_conf_deadline_profile">
<qos>
<deadline>
<period>
<sec>1</sec>
</period>
</deadline>
</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_deadline_profile">
<gos>
<deadline>
<period>

(continues on next page)

6.17. DDS Layer 97

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<sec>1</sec>
</period>
</deadline>
</qos>
</data_reader>

DestinationOrderQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Multiple DataWriters can send messages in the same 7opic using the same key, and on the DataReader side all those
messages are stored within the same instance of data (see DestinationOrderQosPolicy). This QoS policy controls
the criteria used to determine the logical order of those messages. The behavior of the system depends on the value of
the DestinationOrderQosPolicyKind.

List of QoS Policy data members:

Data Member | Type Default Value

Name

kind DestinationOrderQosPoli- BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS
cyKind

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

DestinationOrderQosPolicyKind

There are two possible values (see DestinationOrderQosPolicyKind):

e BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the
reception time at each DataReader, which means that the last received value should be the one kept. This option
may cause that each DataReader ends up with a different final value, since the DataReaders may receive the data
at different times.

e BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the
DataWriter timestamp at the time the message is sent. This option guarantees the consistency of the final value.

Both options depend on the values of the OwnershipQosPolicy and OwnershipStrengthQosPolicy, meaning that if the
Ownership is set to EXCLUSIVE and the last value came from a DataWriter with low ownership strength, it will be
discarded.

98 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Compatibility Rule

To maintain the compatibility between DestinationOrderQosPolicy in DataReaders and DataWriters when they have
different kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the
different kinds is:

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS < BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Table with the possible combinations:

DataWriter kind DataReader kind Compati-
bility
BY_RECEPTION_TIMESTAMP_DESTINATIONORDERBYORECEPTION_TIMESTAMP_DESTINATIONORDERYEOS
BY_RECEPTION_TIMESTAMP_DESTINATIONORDERBYQSOURCE_TIMESTAMP_DESTINATIONORDER_(QONo
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOBY_RECEPTION_TIMESTAMP_DESTINATIONORDERYEOS
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOBY_SOURCE_TIMESTAMP_DESTINATIONORDER_(QOY¥es

DurabilityQosPolicy

A DataWriter can send messages throughout a Topic even if there are no DataReaders on the network. Moreover, a
DataReader that joins to the Topic after some data has been written could be interested in accessing that information
(see DurabilityQosPolicy).

The DurabilityQoSPolicy defines how the system will behave regarding those samples that existed on the Topic before
the DataReader joins. The behavior of the system depends on the value of the DurabilityQosPolicyKind.

List of QoS Policy data members:

Data Member | Type Default Value

Name

kind Durabili- VOLATILE_DURABILITY_QOS for DataReaders
tyQosPolicyKind TRANSIENT_LOCAL_DURABILITY_QOS for DataWriters

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Important: In order to receive past samples in the DataReader, besides setting this Qos Policy, it is required that the
ReliabilityQosPolicy is set to RELTABLE_RELTABILITY_QOS.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

6.17. DDS Layer 99

Fast DDS Documentation, Release 2.10.2

DurabilityQosPolicyKind

There are four possible values (see DurabilityQosPolicyKind):

Compatibility Rule

To maintain the compatibility between DurabilityQosPolicy in DataReaders and DataWriters when they have different
kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the different
kinds is:

VOLATILE_DURABILITY_QOS < TRANSIENT_LOCAL_DURABILITY_QOS < TRANSIENT_DURABILITY_QOS <

PERSISTENT_DURABILITY_QOS

Table with the possible combinations:

VOLATILE_DURABILITY_QOS: Past samples are ignored and a joining DataReader receives samples generated
after the moment it matches.

TRANSIENT_LOCAL_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples.

TRANSIENT_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples, which are
stored on persistent storage (see Persistence Service).

PERSISTENT_DURABILITY_QOS: (Not Implemented): All the samples are stored on a permanent storage, so that
they can outlive a system session.

DataWriter kind DataReader kind Compatibility
VOLATILE_DURABILITY_QOS VOLATILE_DURABILITY_QOS Yes
VOLATILE_DURABILITY_QOS TRANSIENT_LOCAL_DURABILITY_QOS | No
VOLATILE_DURABILITY_QOS TRANSIENT_DURABILITY_QOS No
TRANSIENT_LOCAL_DURABILITY_QOS | VOLATILE_DURABILITY_QOS Yes
TRANSIENT_LOCAL_DURABILITY_QOS | TRANSIENT_LOCAL_DURABILITY_QOS | Yes
TRANSIENT_LOCAL_DURABILITY_QOS | TRANSIENT_DURABILITY_QOS No

TRANSIENT _DURABILITY_QOS VOLATILE_DURABILITY_QOS Yes
TRANSIENT_DURABILITY_QOS TRANSIENT_LOCAL_DURABILITY_QOS | Yes
TRANSIENT_DURABILITY_QOS TRANSIENT_DURABILITY_QOS Yes

Example

C++

DurabilityQosPolicy durability;
//The DurabilityQosPolicy is default constructed with kind = VOLATILE_DURABILITY_QOS
//Change the kind to TRANSIENT_LOCAL_DURABILITY_QOS
durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

100

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

XML

<data_writer profile_name="writer_xml_conf_durability_profile">
<qos>
<durability>
<kind>TRANSIENT_LOCAL</kind>
</durability>
</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_durability_profile">
<gos>
<durability>
<kind>VOLATILE</kind>
</durability>
</qos>
</data_reader>

DurabilityServiceQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy is used to configure the HistoryQosPolicy and ResourceLimitsQosPolicy of the fictitious
DataReader and DataWriter used when the DurabilityQosPolicy kind is set to TRANSIENT_DURABILITY_QOS or

PERSISTENT_DURABILITY_QOS (see DurabilityServiceQosPolicy).

Those entities are used to simulate the persistent storage. The fictitious DataReader reads the data written on the
Topic and stores it, so that if the user DataWriter does not have the information requested by the user DataReaders, the

fictitious DataWriter takes care of sending that information.

List of QoS Policy data members:

Data Member Name Type Default Value
service_cleanup_delay Duration_t c_TimeZero
history_kind HistoryQosPolicyKind | KEEP_LAST_HISTORY_QOS
history_depth int32_t 1

max_samples int32_t -1 (Length Unlimited)
max_instances int32_t -1 (Length Unlimited)
max_samples_per_instance | int32_t -1 (Length Unlimited)

» service_cleanup_delay: It controls when the service can remove all the information regarding a data in-
stance. That information is kept until all the following conditions are met:

— The instance has been explicitly disposed and its InstanceState = becomes
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

— There is not any alive DataWriter writing the instance, which means that all existing writers either unregister
the instance or lose their liveliness.

— A time interval longer than the one established on the service_cleanup_delay has elapsed since the
moment the service detected that the two previous conditions were met.

6.17. DDS Layer 101

Fast DDS Documentation, Release 2.10.2

history_kind: Controls the kind of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

history_depth: Controls the depth of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

max_samples: Controls the maximum number of samples of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities. This value must be higher than the maximum number of samples per
instance.

max_instances: Controls the maximum number of instances of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities.

max_samples_per_instance: Controls the maximum number of samples within an instance of the Resource-
LimitsQosPolicy associated with the Durability Service fictitious entities. This value must be lower than the
maximum number of samples.

Note: This QoS Policy concerns to Topic and DataWriter entities.

It cannot be changed on enabled entities.

EntityFactoryQosPolicy

This QoS Policy controls the behavior of an Entity when it acts as a factory for other entities. By default, all the entities
are created enabled, but if you change the value of the autoenable_created_entities to false, the new entities
will be created disabled (see EntityFactoryQosPolicy).

List of QoS Policy data members:

Data Member Name Type | Default Value
autoenable_created_entities | bool | true

Note: This QoS Policy concerns to DomainParticipantFactory (as factory for DomainParticipant), DomainParticipant
(as factory for Publisher, Subscriber and Topic), Publisher (as factory for DataWriter) and Subscriber (as factory for
DataReader).

It can be changed on enabled entities, but it only affects those entities created after the change.

Example

C++

EntityFactoryQosPolicy entity_factory;

//The EntityFactoryQosPolicy is default constructed with autoenable_created_entities =,
—true

//Change it to false

entity_factory.autoenable_created_entities = false;

102

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

XML

This QoS Policy cannot be configured using XML for the moment.

GroupDataQosPolicy

Allows the application to attach additional information to created Publishers or Subscribers. This data is common to
all DataWriters/DataReaders belonging to the Publisher/Subscriber and it is propagated by means of the built-in topics
(see GroupDataQosPolicy).

This QoS Policy can be used in combination with DataWriter and DataReader listeners to implement a matching policy
similar to the PartitionQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It can be changed on enabled entities.

Example

C++

GroupDataQosPolicy group_data;

//The GroupDataQosPolicy is default constructed with an empty collection
//Collection is a private member so you need to use getters and setters to access
//Add data to the collection

std: :vector<eprosima::fastrtps: :rtps::octet> vec;

vec = group_data.data_vec(); // Getter function

//Add two new octets to group data vector
eprosima: :fastrtps::rtps::octet val = 3;
vec.push_back(val);

val = 10;

vec.push_back(val);
group_data.data_vec(vec); //Setter function

XML

<data_writer profile_name="writer_xml_conf_groupdata_profile">
<gos>
<groupData>
<value>3.a</value>
</groupData>
</qos>
</data_writer>

(continues on next page)

6.17. DDS Layer 103

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<data_reader profile_name="reader_xml_conf_groupdata_profile">
<gos>
<groupData>
<value>3.a</value>
</groupData>
</qos>
</data_reader>

HistoryQosPolicy

This QoS Policy controls the behavior of the system when the value of an instance changes one or more times before
it can be successfully communicated to the existing DataReader entities.

List of QoS Policy data members:

Data Member Name | Type Default Value
kind HistoryQosPolicyKind | KEEP_LAST_HISTORY_QOS
depth int32_t 1

e kind: Controls if the service should deliver only the most recent values, all the intermediate values or do some-
thing in between. See HistoryQosPolicyKind for further details.

* depth: Establishes the maximum number of samples that must be kept on the history. It only has effect if the
kind is set to KEEP_LAST_HISTORY_QOS and it needs to be consistent with the ResourceLimitsQosPolicy, which
means that its value must be lower or equal to max_samples_per_instance.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

HistoryQosPolicyKind

There are two possible values (see HistoryQosPolicyKind):

e KEEP_LAST_HISTORY_QOS: The service will only attempt to keep the most recent values of the instance and
discard the older ones. The maximum number of samples to keep and deliver is defined by the depth of the
HistoryQosPolicy, which needs to be consistent with the ResourceLimitsQosPolicy settings. If the limit defined
by depth is reached, the system will discard the oldest sample to make room for a new one.

e KEEP_ALL_HISTORY_QOS: The service will attempt to keep all the values of the instance until it can be delivered
to all the existing Subscribers. If this option is selected, the depth will not have any effect, so the history is
only limited by the values set in ResourceLimitsQosPolicy. If the limit is reached, the behavior of the system
depends on the ReliabilityQosPolicy, if its kind is BEST_EFFORT the older values will be discarded, but if it is
RELIABLE the service blocks the DataWriter until the old values are delivered to all existing Subscribers.

104 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

HistoryQosPolicy history;

//The HistoryQosPolicy is default constructed with kind = KEEP_LAST and depth = 1.

//Change the depth to 20
history.depth = 20;

//You can also change the kind to KEEP_ALL but after that the depth will not have effect.

history.kind = KEEP_ALL_HISTORY_QOS;

XML
<topic>
<historyQos>
<kind>KEEP_LAST</kind> <!/-- string -->
<depth>20</depth> <!/-- uint32 -->
</historyQos>
</topic>

LatencyBudgetQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the maximum acceptable delay from the time the data is written until the data is inserted
on the DataReader History and notified of the fact. That delay by default is set to 0 in order to optimize the internal

operations (see LatencyBudgetQosPolicy).

List of QoS Policy data members:

Data Member Name

Type

Default Value

duration

Duration_t

c_TimeZero

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It can be changed on enabled entities.

Rule for further details.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility

6.17. DDS Layer

105

Fast DDS Documentation, Release 2.10.2

Compatibility Rule

To maintain the compatibility between LatencyBudgetQosPolicy in DataReaders and DataWriters, the DataWriter du-
ration must be lower or equal to the DataReader duration.

LifespanQosPolicy

Each data sample written by a DataWriter has an associated expiration time beyond which the data is removed
from the DataWriter and DataReader history as well as from the transient and persistent information caches (see
LifespanQosPolicy).

By default, the duration is infinite, which means that there is not a maximum duration for the validity of the samples
written by the DataWriter.

The expiration time is computed by adding the duration to the source timestamp, which can be calculated automatically
if write () member function is called or supplied by the application by means of write_w_timestamp() member
function. The DataReader is allowed to use the reception timestamp instead of the source timestamp.

List of QoS Policy data members:

Data Member Name | Type Default Value
duration Duration_t | c_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Example

C++

LifespanQosPolicy lifespan;

//The LifespanQosPolicy is default constructed with duration set to infinite.
//Change the duration to 5 s

lifespan.duration = {5, 0};

XML

<data_writer profile_name="writer_xml_conf_lifespan_profile">
<gos>
<lifespan>
<duration>
<sec>5</sec>
</duration>
</lifespan>
</qos>
</data_writer>

(continues on next page)

106 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<data_reader profile_name="reader_xml_conf_lifespan_profile">
<gos>
<lifespan>
<duration>
<sec>5</sec>
</duration>
</lifespan>
</qos>
</data_reader>

LivelinessQosPolicy

This QoS Policy controls the mechanism used by the service to ensure that a particular entity on the network is still
alive. There are different settings that allow distinguishing between applications where data is updated periodically
and applications where data is changed sporadically. It also allows customizing the application regarding the kind of
failures that should be detected by the liveliness mechanism (see LivelinessQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value

kind LivelinessQosPolicyKind | AUTOMATIC_LIVELINESS_QOS
lease_duration Duration_t c_TimeInfinite
announcement_period | Duration_t c_TimeInfinite

* kind: This data member establishes if the service needs to assert the liveliness automatically or if it needs to
wait until the liveliness is asserted by the publishing side. See LivelinessQosPolicyKind for further details.

e Jease_duration: Amount of time to wait since the last time the DataWriter asserts its liveliness to consider
that it is no longer alive.

e announcement_period: Amount of time between consecutive liveliness messages sent by the
DataWriter. This data member only takes effect if the kind is AUTOMATIC_LIVELINESS_QOS or
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS and needs to be lower than the lease_duration.

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

6.17. DDS Layer 107

Fast DDS Documentation, Release 2.10.2

LivelinessQosPolicyKind

There are three possible values (see LivelinessQosPolicyKind):

e AUTOMATIC_LIVELINESS_QOS: The service takes the responsibility for renewing the leases at the required rates,
as long as the local process where the participant is running and the link connecting it to remote participants exists,
the entities within the remote participant will be considered alive. This kind is suitable for applications that only

need to detect whether a remote application is still running.

* The two Manual modes require that the application on the publishing side asserts the liveliness periodically before
the lease_duration timer expires. Publishing any new data value implicitly asserts the DataWriter’s liveliness,

but it can be done explicitly by calling the assert_liveliness member function.

— MANUAL_BY_PARTICIPANT_LIVELINESS_QOS: If one of the entities in the publishing side asserts its live-

liness, the service deduces that all other entities within the same DomainParticipant are also alive.

— MANUAL_BY_TOPIC_LIVELINESS_QOS: This mode is more restrictive and requires that at least one instance

within the DataWriter is asserted to consider that the DataWriter is alive.

Compatibility Rule

To maintain the compatibility between LivelinessQosPolicy in DataReaders and DataWriters, the DataWriter kind must

be higher or equal to the DataReader kind. And the order between the different kinds is:

| AUTOMATIC_LIVELINESS_QOS-api| < |MANUAL_BY_PARTICIPANT_LIVELINESS_QOS-api| < |MANUAL_BY_

—TOPIC_LIVELINESS_QOS-api |

Table with the possible combinations:

DataWriter kind DataReader kind Compatibil-
ity
AUTOMATIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
AUTOMATIC_LIVELINESS_QOS MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | No
AUTOMATIC_LIVELINESS_QOS MANUAL_BY_TOPIC_LIVELINESS_QOS No
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | AUTOMATIC_LIVELINESS_QOS Yes
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | Yes
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | MANUAL_BY_TOPIC_LIVELINESS_QOS No
MANUAL_BY_TOPIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
MANUAL_BY_TOPIC_LIVELINESS_QOS MANUAL_BY_PARTICIPANT_LIVELINESS_QOS | Yes
MANUAL_BY_TOPIC_LIVELINESS_QOS MANUAL_BY_TOPIC_LIVELINESS_QOS Yes

Additionally, the lease_duration of the DataWriter must not be greater than the Iease_duration of the

DataReader.

108

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

LivelinessQosPolicy liveliness;

//The LivelinessQosPolicy is default constructed with kind = AUTOMATIC

//Change the kind to MANUAL_BY_PARTICIPANT

liveliness.kind = MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;

//The LivelinessQosPolicy is default constructed with lease_duration set to infinite
//Change the lease_duration to 1 second

liveliness.lease_duration = {1, 0};

//The LivelinessQosPolicy is default constructed with announcement_period set to infinite
//Change the announcement_period to 1 ms

liveliness.announcement_period = {0, 1000000};

XML

<data_writer profile_name="writer_xml_conf_liveliness_profile'">
<gos>
<liveliness>
<announcement_period>
<nanosec>1000000</nanosec>
</announcement_period>
<lease_duration>
<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>
</liveliness>
</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_liveliness_profile">

<gos>
<liveliness>
<lease_duration>
<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>
</liveliness>
</qos>

</data_reader>

6.17. DDS Layer 109

Fast DDS Documentation, Release 2.10.2

OwnershipQosPolicy

This QoS Policy specifies whether it is allowed for multiple DataWriters to update the same instance of data, and if so,
how these modifications should be arbitrated (see OwnershipQosPolicy).

List of QoS Policy data members:

Data Member Name | Type Default Value
kind OwnershipQosPolicyKind | SHARED_OWNERSHIP_QOS

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

OwnershipQosPolicyKind

There are two possible values (see OwnershipQosPolicyKind):

* SHARED_OWNERSHIP_QOS: This option indicates that the service does not enforce unique ownership for each
instance. In this case, multiple DataWriters are allowed to update the same data instance and all the updates are
made available to the existing DataReaders. Those updates are also subject to the TimeBasedFilterQosPolicy or
HistoryQosPolicy settings, so they can be filtered.

* EXCLUSIVE_OWNERSHIP_QOS: This option indicates that each instance can only be updated by one DataWriter,
meaning that at any point in time a single DataWriter owns each instance and is the only one whose modifi-
cations will be visible for the existing DataReaders. The owner can be changed dynamically according to the
highest strength between the alive DataWriters, which has not violated the deadline contract concerning the data
instances. That strength can be changed using the OwnershipStrengthQosPolicy. In case two DataWriters have
the same strength value, the DataWriter with a lower GUID value would be the owner of the topic.

Compatibility Rule

To maintain the compatibility between OwnershipQosPolicy in DataReaders and DataWriters, the DataWriter kind
must be equal to the DataReader kind.

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
SHARED_OWNERSHIP_QOS SHARED_OWNERSHIP_QOS Yes
SHARED_OWNERSHIP_QOS EXCLUSIVE_OWNERSHIP_QOS | No
EXCLUSIVE_OWNERSHIP_QOS | SHARED_OWNERSHIP_QOS No
EXCLUSIVE_OWNERSHIP_QOS | EXCLUSIVE_OWNERSHIP_QOS | Yes

110 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

OwnershipQosPolicy ownership;

//The OwnershipQosPolicy is default constructed with kind = SHARED.
//Change the kind to EXCLUSIVE

ownership.kind = EXCLUSIVE_OWNERSHIP_QOS;

XML

<data_writer profile_name="writer_xml_conf_ownership_profile">
<gos>
<ownership>
<kind>EXCLUSIVE</kind>
</ownership>
</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_ownership_profile">
<gos>
<ownership>
<kind>EXCLUSIVE</kind>
</ownership>
</qos>
</data_reader>

OwnershipStrengthQosPolicy

This QoS Policy specifies the value of the strength used to arbitrate among multiple DataWriters that attempt to modify
the same data instance. It is only applicable if the OwnershipQosPolicy kind is set to EXCLUSIVE_OWNERSHIP_QOS.
See OwnershipStrengthQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
value uint32_t | 0

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

6.17. DDS Layer 111

Fast DDS Documentation, Release 2.10.2

Example

C++

OwnershipStrengthQosPolicy ownership_strength;

//The OwnershipStrengthQosPolicy is default constructed with value 0
//Change the strength to 10

ownership_strength.value = 10;

XML

<data_writer profile_name="writer_xml_conf_ownership_strength_profile">
<gos>
<ownershipStrength>
<value>10</value>
</ownershipStrength>
</qos>
</data_writer>

PartitionQosPolicy

This Qos Policy allows the introduction of a logical partition inside the physical partition introduced by a domain. For
a DataReader to see the changes made by a DataWriter, not only the Topic must match, but also they have to share at
least one logical partition (see PartitionQosPolicy).

The empty string is also considered as a valid partition and it matches with other partition names using the same rules
of string matching and regular-expression matching used for any other partition name.

List of QoS Policy data members:

Data Member Name | Type Default Value
max_size uint32_t 0 (Length Unlimited)
names SerializedPayload_t | Empty List

» max_size: Maximum size for the list of partition names.

» names: List of partition names.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

Partitions can also be explicitly defined at the endpoint level to override this configuration. Information to do so can
be found /ere.

It can be changed on enabled Publishers and Subscribers.

112 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

PartitionQosPolicy partitions;

//The PartitionsQosPolicy is default constructed with max_size = 0.

//Max_size is a private member so you need to use getters and setters to access
//Change the max_size to 20

partitions.set_max_size(20); //Setter function

//The PartitionsQosPolicy is default constructed with an empty list of partitions
//Partitions is a private member so you need to use getters and setters to access
//Add new partitions

std: :vector<std::string> part = partitions.names(); //Getter function
part.push_back("partl");

part.push_back("part2");

partitions.names(part); //Setter function

XML

<data_writer profile_name="pub_partition_example">

<gos>
<partition>
<names>
<name>part1</name>
<name>part2</name>
</names>
</partition>
</qos>

</data_writer>

<data_reader profile_name="sub_partition_example">

<gos>
<partition>
<names>
<name>part1l</name>
<name>part2</name>
</names>
</partition>
</qos>

</data_reader>

6.17. DDS Layer 113

Fast DDS Documentation, Release 2.10.2

PresentationQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies how the samples representing changes to data instances are presented to the subscribing
application. It controls the extent to which changes to data instances can be made dependent on each other, as well as
the kind of dependencies that can be propagated and maintained. See PresentationQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value

access_scope PresentationQosPolicyAccessScopeKind | INSTANCE_PRESENTATION_QOS
coherent_access bool false

ordered_access bool false

* access_scope: Determines the largest scope spanning the entities for which the order and coherency can be
preserved. See PresentationQosPolicyAccessScopeKind for further details.

* coherent_access: Controls whether the service will preserve grouping of changes made on the publishing
side, such that they are received as a unit on the subscribing side.

* ordered_access: Controls whether the service supports the ability of the subscriber to see changes in the same
order as they occurred on the publishing side.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

PresentationQosPolicyAccessScopeKind

There are three possible values, which have different behaviors depending on the values of coherent_access and or-
dered_access variables (see PresentationQosPolicyAccessScopeKind):

e INSTANCE_PRESENTATION_QOS: The changes to a data instance do not need to be coherent nor ordered with
respect to the changes to any other instance, which means that the order and coherent changes apply to each
instance separately.

— Enabling the coherent_access, in this case, has no effect on how the subscriber can access the data as the
scope is limited to each instance, changes to separate instances are considered independent and thus cannot
be grouped by a coherent change.

— Enabling the ordered_access, in this case, only affects to the changes within the same instance. There-
fore, the changes made to two instances are not necessarily seen in the order they occur even if the same
application thread and DataWriter made them.

e TOPIC_PRESENTATION_QOS: The scope spans to all the instances within the same DataWriter.

— Enabling the coherent_access makes that the grouping made with changes within the same DataWriter
will be available as coherent with respect to other changes to instances in that DataWriter, but will not be
grouped with changes made to instances belonging to different DataWriters.

114 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

— Enabling the ordered_access means that the changes made by a single DataWriter are made available to
the subscribers in the same order that they occur, but the changes made to instances through different
DataWriters are not necessarily seen in order.

* GROUP_PRESENTATION_QOS: The scope spans to all the instances belonging to DataWriters within the same
Publisher.

— Enabling the coherent_access, means that the coherent changes made to instances through DataWriters
attached to a common Publisher are made available as a unit to remote subscribers.

— Enabling the ordered_access with this scope makes that the changes done by any of the DataWriters attached
to the same Publisher are made available to the subscribers in the same order they occur.

Compatibility Rule

To maintain the compatibility between PresentationQosPolicy in DataReaders and DataWriters, the Publisher
access_scope must be higher or equal to the Subscriber access_scope. And the order between the different access
scopes is:

| INSTANCE_PRESENTATION_QOS-api| < |TOPIC_PRESENTATION_QOS-api| < |GROUP_PRESENTATION_QOS-
—api|

Table with the possible combinations:

Publisher scope Subscriber scope Compatibility
INSTANCE_PRESENTATION_QOS | INSTANCE_PRESENTATION_QOS | Yes
INSTANCE_PRESENTATION_QOS | TOPIC_PRESENTATION_QOS No
INSTANCE_PRESENTATION_QOS | GROUP_PRESENTATION_QOS No
TOPIC_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS | Yes
TOPIC_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
TOPIC_PRESENTATION_QOS GROUP_PRESENTATION_QOS No
GROUP_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS | Yes
GROUP_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
GROUP_PRESENTATION_QOS GROUP_PRESENTATION_QOS Yes

Additionally, the coherent_access and ordered_access of the Subscriber can only be enabled if they are also enabled on
the Publisher.

ReaderDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataReader with respect to the lifecycle of the data instances it manages,
that is, the instances that have been received and for which the DataReader maintains some internal resources. The
DataReader maintains the samples that have not been taken by the application, subject to the constraints imposed by
HistoryQosPolicy and ResourceLimitsQosPolicy. See ReaderDatalifecycleQosPolicy.

Under normal circumstances, the DataReader can only reclaim the resources associated with data instances if there
are no writers and all the samples have been taken. But this fact can cause problems if the application does not take
those samples as the service will prevent the DataReader from reclaiming the resources and they will remain in the
DataReader indefinitely. This QoS exist to avoid that situation.

6.17. DDS Layer 115

Fast DDS Documentation, Release 2.10.2

List of QoS Policy data members:

Data Member Name Type Default Value
autopurge_no_writer_samples_delay | Duration_t | c_TimeInfinite
autopurge_disposed_samples_delay Duration_t | c_TimeInfinite

e autopurge_no_writer_samples_delay: Defines the maximum duration the DataReader
must retain the information regarding an instance once its instance_state becomes
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. After this time elapses, the DataReader purges all the in-
ternal information of the instance, including the untaken samples that will be lost.

e autopurge_disposed_samples_delay: Defines the maximum duration the DataReader must retain the infor-
mation regarding an instance once its instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE.
After this time elapses, the DataReader purges all the samples for the instance.

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

ReliabilityQosPolicy

This QoS Policy indicates the level of reliability offered and requested by the service. See ReliabilityQosPolicy.

List of QoS Policy data members:

Data Member | Type Default Value

Name

kind ReliabilityQosPol- | BEST_EFFORT_RELIABILITY_QOS for DataReaders
icyKind RELTABLE_RELIABILITY_QOS for DataWriters

max_blocking_tileration_t 100 ms

* kind: Specifies the behavior of the service regarding delivery of the samples. See ReliabilityQosPolicyKind for
further details.

* max_blocking_time: Configures the maximum duration that the write operation can be blocked.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Important: Setting this QoS Policy to BEST_EFFORT_RELIABILITY_QOS affects to the DurabilityQosPolicy, making
the endpoints behave as VOLATILE_DURABILITY_QOS.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

116 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

ReliabilityQosPolicyKind

There are two possible values ():

e BEST_EFFORT_RELIABILITY_QOS: It indicates that it is acceptable not to retransmit the missing samples, so
the messages are sent without waiting for an arrival confirmation. Presumably new values for the samples are
generated often enough that it is not necessary to re-send any sample. However, the data samples sent by the
same DataWriter will be stored in the DataReader history in the same order they occur. In other words, even if
the DataReader misses some data samples, an older value will never overwrite a newer value.

e RELTABLE_RELTABILITY_QOS: It indicates that the service will attempt to deliver all samples of the
DataWriter’s history expecting an arrival confirmation from the DataReader. The data samples sent by the same
DataWriter cannot be made available to the DataReader if there are previous samples that have not been received
yet. The service will retransmit the lost data samples in order to reconstruct a correct snapshot of the DataWriter
history before it is accessible by the DataReader.

This option may block the write operation, hence the max_blocking_time is set that will unblock it once the
time expires. But if the max_blocking_time expires before the data is sent, the write operation will return an
error.

Compatibility Rule

To maintain the compatibility between ReliabilityQosPolicy in DataReaders and DataWriters, the DataWriter kind must
be higher or equal to the DataReader kind. And the order between the different kinds is:

|BEST_EFFORT_RELIABILITY_QOS-api| < |RELIABLE_RELIABILITY_QOS-api|

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
BEST_EFFORT_RELIABILITY_QOS | BEST_EFFORT_RELTABILITY_QOS | Yes
BEST_EFFORT_RELIABILITY_QOS | RELIABLE_RELIABILITY_QOS No
RELTABLE_RELTABILITY_QOS BEST_EFFORT_RELIABILITY_QOS | Yes
RELTABLE_RELTABILITY_QOS RELTABLE_RELIABILITY_QOS Yes

Example

C++

ReliabilityQosPolicy reliability;

//The ReliabilityQosPolicy is default constructed with kind = BEST_EFFORT
//Change the kind to RELIABLE

reliability.kind = RELIABLE_RELIABILITY_QOS;

//The ReliabilityQosPolicy is default constructed with max_blocking_ time = 100ms
//Change the max_blocking_time to 1s

reliability.max_blocking_time = {1, 0};

6.17. DDS Layer 117

Fast DDS Documentation, Release 2.10.2

XML

<data_writer profile_name="writer_xml_conf_reliability_profile">

<gos>
<reliability>
<kind>RELIABLE</kind>
<max_blocking_time>
<sec>1</sec>
</max_blocking_time>
</reliability>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_reliability_profile">
<qos>
<reliability>
<kind>BEST_EFFORT</kind>
</reliability>
</qos>
</data_reader>

ResourceLimitsQosPolicy

This QoS Policy controls the resources that the service can use in order to meet the requirements imposed by the
application and other QoS Policies. See ResourceLimitsQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
max_samples int32_t | 5000
max_instances int32_t | 10
max_samples_per_instance | int32_t | 400
allocated_samples int32_t | 100
extra_samples int32_t | 1

» max_samples: Controls the maximum number of samples that the DataWriter or DataReader can manage across
all the instances associated with it. In other words, it represents the maximum samples that the middleware can
store for a DataReader or DataWriter. Value 0 means infinite resources.

* max_instances: Controls the maximum number of instances that a DataWriter or DataReader can manage.
Value 0 means infinite resources.

» max_samples_per_instance: Controls the maximum number of samples within an instance that the
DataWriter or DataReader can manage. Value 0 means infinite resources.

* allocated_samples: States the number of samples that will be allocated on initialization.

» extra_samples: States the number of extra samples that will be allocated on the pool, so the maximum number
of samples on the pool will be max_samples plus extra_samples. These extra samples act as a reservoir of
samples even when the history is full.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

118 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

It cannot be changed on enabled entities.

Consistency Rule

To maintain the consistency within the ResourceLimitsQosPolicy, the values of the data members must follow the next
conditions:

* The value of max_samples must be higher or equal to the value of max_samples_per_instance.

e The value established for the HistoryQosPolicy depth must be lower or equal to the value stated for
max_samples_per_instance.

Example

C++

ResourcelLimitsQosPolicy resource_limits;

//The ResourcelLimitsQosPolicy is default constructed with max_samples = 5000
//Change max_samples to 200

resource_limits.max_samples = 200;

//The ResourceLimitsQosPolicy is default constructed with max_instances = 10
//Change max_instances to 20

resource_limits.max_instances = 20;

//The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance = 400
//Change max_samples_per_instance to 100 as it must be lower than max_samples
resource_limits.max_samples_per_instance = 100;

//The ResourceLimitsQosPolicy is default constructed with allocated_samples = 100
//Change allocated_samples to 50

resource_limits.allocated_samples = 50;

XML

<data_writer profile_name="writer_xml_conf_resource_limits_profile">
<topic>
<resourceLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_instance>100</max_samples_per_instance>
<allocated_samples>50</allocated_samples>
</resourceLimitsQos>
</topic>
</data_writer>

<data_reader profile_name="reader_xml_conf_resource_limits_profile">
<topic>
<resourceLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_instance>100</max_samples_per_instance>

(continues on next page)

6.17. DDS Layer 119

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<allocated_samples>50</allocated_samples>
</resourceLimitsQos>
</topic>
</data_reader>

TimeBasedFilterQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Filter that allows a DataReader to specify that it is interested only in a subset of the values of the data. This filter states
that the DataReader does not want to receive more than one value each minimum_separation, regardless of how fast
the changes occur. See TimeBasedFilterQosPolicy.

The minimum_separation must be lower than the DeadlineQosPolicy period. By default, the
minimum_separation is zero, which means that the DataReader is potentially interested in all the values.

List of QoS Policy data members:

Data Member Name | Type Default Value
minimum_separation | Duration_t | c_TimeZero

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

TopicDataQosPolicy

Allows the application to attach additional information to a created Topic so that when it is discovered by a remote
application, it can access the data and use it. See TopicDataQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

Note: This QoS Policy concerns to Topic entities.

It can be changed even if it is already created.

120 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
TopicDataQosPolicy topic_data;

std: :vector<eprosima::fastrtps::rtps::octet> vec;

vec = topic_data.data_vec(); // Getter Function

//Add two new octets to topic data vector
eprosima: : fastrtps::rtps::octet val = 3;
vec.push_back(val);

val = 10;

vec.push_back(val);
topic_data.data_vec(vec); //Setter Function

XML
<data_writer profile_name="writer_xml_conf_topicdata_profile">
<qos>
<topicData>
<value>3.a</value>
</topicData>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_topicdata_profile'">
<gos>
<topicData>
<value>3.a</value>
</topicData>
</qos>
</data_reader>

TransportPriorityQosPolicy

Warning: This QoS Policy will be implemented in future releases.

The purpose of this QoS Policy is to allow the service to take advantage of those transports capable of sending
messages with different priorities. It establishes the priority of the underlying transport used to send the data. See
TransportPriorityQosPolicy

You can choose any value within the 32-bit range for the priority. The higher the value, the higher the priority.

List of QoS Policy data members:

Data Member Name | Type Default Value
value uint32_t | O

Note: This QoS Policy concerns to Topic and DataWriter entities.

6.17. DDS Layer 121

Fast DDS Documentation, Release 2.10.2

It can be changed on enabled entities.

UserDataQosPolicy

Allows the application to attach additional information to the Entity object so that when the entity is discovered the
remote application can access the data and use it. For example, it can be used to attach the security credentials to
authenticate the source from the remote application. See UserDataQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
collection std::vector<octet> | Empty vector

Note: This QoS Policy concerns to all DDS entities.

It can be changed on enabled entities.

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
UserDataQosPolicy user_data;

std: :vector<eprosima::fastrtps::rtps::octet> vec;

vec = user_data.data_vec(); // Getter Function

//Add two new octets to user data vector
eprosima: : fastrtps::rtps::octet val = 3;
vec.push_back(val);

val = 10;

vec.push_back(val);
user_data.data_vec(vec); //Setter Function

XML

<participant profile_name="participant_xml_conf_userdata_profile">
<rtps>
<userData>
<value>3.a</value>
</userData>
</rtps>
</participant>

<data_writer profile_name="writer_xml_conf_userdata_profile">
<qos>
<userData>
<value>3.a</value>
</userData>
</qos>

(continues on next page)

122 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

</data_writer>

<data_reader profile_name="reader_xml_conf_userdata_profile'">
<gos>
<userData>
<value>3.a</value>
</userData>
</qos>
</data_reader>

WriterDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataWriter with respect to the lifecycle of the data instances it manages
, that is, the instance that has been either explicitly registered with the DataWriter using the register operations or
implicitly by directly writing data.

The autodispose_unregistered_instances controls whether a DataWriter will automatically dispose an instance
each time it is unregistered. Even if it is disabled, the application can still get the same result if it uses the dispose
operation before unregistering the instance.

List of QoS Policy data members:

Data Member Name Type | Default Value
autodispose_unregistered_instances | bool | true

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

eProsima Extensions

The eProsima QoS Policies extensions are those that allow changing the values of the RTPS layer configurable settings.

* DataSharingQosPolicy

* DisablePositiveACKsQosPolicy
* FlowControllersQos

* ParticipantResourceLimitsQos
* PropertyPolicyQos

* PublishModeQosPolicy

e ReaderResourceLimitsQos

* RTPSEndpointQos

6.17. DDS Layer 123

Fast DDS Documentation, Release 2.10.2

* RTPSReliableReaderQos
e RTPSReliableWriterQos
» TransportConfigQos
* TypeConsistencyQos

* WireProtocolConfigQos

o WriterResourceLimitsQos

DataSharingQosPolicy

This additional QoS allows configuring the data-sharing delivery communication between a writer and a reader. Please,
see Data-sharing delivery for a description of the data-sharing delivery functionality.

List of QoS Policy data members:

Data Member Type Accessor Default Value
Data-sharing kind DataSharingKind kind(O) AUTO

Shared memory directory | string shm_directory() | Empty string
Maximum domain number | uint32_t max_domains () 0 (unlimited)
Data-sharing domain IDs vector<uint64_t> | domain_ids() Empty

* Data-sharing kind: Specifies the behavior of data-sharing delivery. See DataSharingKind for a description of
possible values and their effect.

* Shared memory directory: The directory that will be used for the memory-mapped files. If none is configured,
then the system default directory will be used.

¢ Maximum domain number: Establishes the maximum number of data-sharing domain IDs in the local or remote
endpoints. Domain IDs are exchanged between data-sharing delivery compatible endpoints. If this value is lower
that the size of the list for any remote endpoint, the matching may fail. A value of zero represents unlimited
number of IDs.

e Data sharing domain IDs: The list of data-sharing domain IDs configured for the current DataWriter or
DataReader. If no ID is provided, the system will create a unique one for the current machine.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

DataSharingKind

There are three possible values (see DataSharingKind):

e OFF: The data-sharing delivery is disabled. No communication will be performed using data-sharing delivery
functionality.

* ON: The data-sharing delivery is manually enabled. An error will occur if the current topic is not compatible
with data-sharing delivery. Communication with remote entities that share at least one data-sharing domain ID
will be done using data-sharing delivery functionality.

* AUTO: data-sharing delivery will be activated if the current topic is compatible with data-sharing, and deactivated
if not.

124 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Data-sharing configuration helper functions

In order to set the data-sharing delivery configuration, one of the following helper member functions must be used.
There is one for each DataSharingKind flavor:

Function Resulting DataSharingKind | Shared memory directory | Data sharing domain IDs
automatic() | AUTO Optional Optional

on() ON Mandatory Optional

off(OFF N/A N/A

Instead of defining the data-sharing domain IDs on these helper functions, you can add them later with the
add_domain_id() function. Beware that adding a new domain ID counts as modifying the QosPolicy, so it must
be done before the entity is enabled.

Example

C++

DataSharingQosPolicy datasharing;

// Configure the DataSharing as AUTO with two user-defined IDs
std: :vector<uintl6_t> ids;

ids.push_back(0x1234);

ids.push_back (0xABCD);

datasharing.automatic(ids);

// Alternatively, configure with no IDs and add them afterwards
datasharing.automatic();
datasharing.add_domain_id(uintl6_t(0x1234));
datasharing.add_domain_id(uint16_t (0xABCD));

// Or you can leave the IDs empty and the system will create one for you
// unique for the current machine
datasharing.automatic();

XML

<data_writer profile_name="writer_profile_qgos_datasharing">
<gos>
<data_sharing>
<kind>AUTOMATIC</kind>
<domain_ids>
<domainId>123</domainId>
<domainId>098</domainId>
</domain_ids>
</data_sharing>
</qos>
</data_writer>

(continues on next page)

6.17. DDS Layer 125

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<data_reader profile_name="reader_profile_qgos_datasharing">
<gos>
<data_sharing>
<kind>AUTOMATIC</kind>
<domain_ids>
<domainId>123</domainId>
<domainId>098</domainId>
</domain_ids>
</data_sharing>
</qos>
</data_reader>

DisablePositive ACKsQosPolicy

This additional QoS allows reducing network traffic when strict reliable communication is not required and bandwidth
is limited. It consists in changing the default behavior by which positive acks are sent from readers to writers. Instead,
only negative acks will be sent when a reader is missing a sample, but writers will keep data for a sufficient time before
considering it as acknowledged. See DisablePositiveACKsQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
enabled bool false
duration Duration_t | c_TimeInfinite

* enabled: Specifies if the QoS is enabled or not. If it is true means that the positive acks are disabled and the
DataReader only sends negative acks. Otherwise, both positive and negative acks are sent.

e duration: State the duration that the DataWriters keep the data before considering it as acknowledged. This
value does not apply to DataReaders.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

Compatibility Rule

To maintain the compatibility between DisablePositiveACKsQosPolicy in DataReaders and DataWriters, the
DataReader cannot have this QoS enabled if the DataWriter have it disabled.

Table with the possible combinations:

126 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

DataWriter enabled value | DataReader enabled value | Compatibility
true true Yes
true false Yes
false true No
false false Yes

Example

C++

DisablePositiveACKsQosPolicy disable_acks;

//The DisablePositiveACKsQosPolicy is default constructed with enabled = false
//Change enabled to true

disable_acks.enabled = true;

//The DisablePositiveACKsQosPolicy is default constructed with infinite duration
//Change the duration to 1 second

disable_acks.duration = {1, 0};

XML

<data_writer profile_name="writer_xml_conf_disable_positive_acks_profile">
<gos>
<disablePositiveAcks>
<enabled>true</enabled>
<duration>
<sec>1</sec>
</duration>
</disablePositiveAcks>
</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_disable_positive_acks_profile">
<gos>
<disablePositiveAcks>
<enabled>true</enabled>
</disablePositiveAcks>
</qos>
</data_reader>

6.17. DDS Layer 127

Fast DDS Documentation, Release 2.10.2

FlowControllersQos

This QoS configures the list of flow controllers of a participant, so they can later be used on its DataWriters. It is a
vector of shared pointers to FlowControllerDescriptor, which has the following fields:

Data Member Name Type Default Value
name const char *

scheduler FlowControllerSchedulerPolicy | FIFO
max_bytes_per_period | int32_t 0 (i.e. infinite)
period_ms uint64_t 100

Please refer to Flow Controllers section for more information.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

ParticipantResourceLimitsQos

This QoS configures allocation limits and the use of physical memory for internal resources. See
ParticipantResourceLimitsQos.

List of QoS Policy data members:

Data Member Name | Type

locators RemoteLocatorsAllocationAttributes
participants ResourceLimitedContainerConfig

readers ResourceLimitedContainerConfig

writers ResourceLimitedContainerConfig
send_buffers SendBuffersAllocationAttributes

data_limits VariableLengthDataLimits

content_filter ContentFilterProperty::AllocationConfiguration

e Jocators: Defines the limits for collections of remote locators.

e participants: Specifies the allocation behavior and limits for collections dependent on the total number of
participants.

e readers: Specifies the allocation behavior and limits for collections dependent on the total number of readers
per participant.

e writers: Specifies the allocation behavior and limits for collections dependent on the total number of writers
per participant.

* send_buffers: Defines the allocation behavior and limits for the send buffer manager.
e data_limits: States the limits for variable-length data.

e content_filter: States the limits for content-filter discovery information.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

128 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

RemoteLocatorsAllocationAttributes

This structure holds the limits for the remote locators’ collections. See RemoteLocatorsAllocationAttributes.

List of structure members:

Member Name Type Default Value
max_unicast_locators size_t | 4
max_multicast_locators | size_t | 1

e max_unicast_locators: This member controls the maximum number of unicast locators to keep for each
discovered remote entity. It is recommended to use the highest number of local addresses found on all the
systems belonging to the same domain.

e max_multicast_locators: This member controls the maximum number of multicast locators to keep for each
discovered remote entity. The default value is usually enough, as it does not make sense to add more than one
multicast locator per entity.

ResourceLimitedContainerConfig

This structure holds the limits of a resource limited collection, as well as the allocation configuration, which can be
fixed size or dynamic size.

List of structure members:

Member Name | Type Default Value

initial size_t | O

maximum size_t | std::numeric_limits<size_t>::max()
increment size_t | 1 (dynamic size), O (fixed size)

e initial: Indicates the number of elements to preallocate in the collection.
e maximum: Specifies the maximum number of elements allowed in the collection.

e increment: States the number of items to add when the reserved capacity limit is reached. This member has a
different default value depending on the allocation configuration chosen.

SendBuffersAllocationAttributes

This structure holds the limits for the allocations of the send buffers. See SendBuffersAllocationAttributes.

List of structure members:

Member Name Type Default Value
preallocated_number | size_t | 0
dynamic bool false

e preallocated_number: This member controls the initial number of send buffers to be allocated. The default
value will perform an initial guess of the number of buffers required, based on the number of threads from which
a send operation could be started.

e dynamic: This member controls how the buffer manager behaves when a send buffer is not available. When
true, a new buffer will be created. Otherwise, it will wait for a buffer to be returned.

6.17. DDS Layer 129

Fast DDS Documentation, Release 2.10.2

VariableLengthDataLimits

This structure holds the limits for variable-length data. See VariableLengthDatalimits.

List of structure members:

Member Name Type Default Value
max_properties | size_t | 0
max_user_data size_t | O
max_partitions | size_t | 0

* max_properties: Defines the maximum size, in octets, of the properties data in the local or remote participant.
» max_user_data: Establishes the maximum size, in octets, of the user data in the local or remote participant.

* max_partitions: States the maximum size, in octets, of the partitions data in the local or remote participant.

ContentFilterProperty::AllocationConfiguration

This structure holds the limits for content-filter related discovery information. See
ContentFilterProperty::AllocationConfiguration.

List of structure members:

Member Name Type Default Value
expression_initial _size | size_t 0
expression_parameters ResourceLimitedContainerConfig | {0, 100, 1}

* expression_initial_size: Preallocated size of the filter expression.

* expression_parameters: Allocation configuration for the list of expression parameters.

Example

C++

ParticipantResourcelLimitsQos participant_limits;
//Set the maximum size of participant resource limits collection to 3 and it allocation.
—sconfiguration to fixed size
participant_limits.participants =.
—.eprosima: :fastrtps: :ResourcelLimitedContainerConfig: : fixed_size_configuration(

3uw;
//Set the maximum size of reader's resource limits collection to 2 and its allocation.,
—sconfiguration to fixed size
participant_limits.readers = eprosima::fastrtps::ResourcelLimitedContainerConfig::fixed_
-»size_configuration(2u);
//Set the maximum size of writer's resource limits collection to 1 and its allocation.,
—configuration to fixed size
participant_limits.writers = eprosima::fastrtps::ResourcelimitedContainerConfig::fixed_
—»size_configuration(lu);
//Set the maximum size of the partition data to 256
participant_limits.data_limits.max_partitions = 256u;

(continues on next page)

130 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

//Set the maximum size of the user data to 256
participant_limits.data_limits.max_user_data = 256u;
//Set the maximum size of the properties data to 512
participant_limits.data_limits.max_properties = 512u;
//Set the preallocated filter expression size to 512
participant_limits.content_filter.expression_initial_size = 512u;
//Set the maximum number of expression parameters to 4 and its allocation configuration.,
—to fixed size
participant_limits.content_filter.expression_parameters =

eprosima: : fastrtps: :ResourcelLimitedContainerConfig: : fixed_size_configuration(4u);

XML

<l--
<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-—>
<participant profile_name="participant_alloc_gos_example">
<rtps>
<allocation>
<!-- We know we have 3 participants on the domain -->
<total_participants>
<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>
</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_readers>
<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>
</total_readers>
<!-- lWe know we have at most 1 writer on each participant -->
<total_writers>
<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>
</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

<!-- content_filter cannot be configured using XML (yet) -->
</allocation>
</rtps>
</participant>

6.17. DDS Layer 131

Fast DDS Documentation, Release 2.10.2

PropertyPolicyQos

This additional QoS Policy (PropertyPolicyQos) stores name/value pairs that can be used to configure certain DDS
settings that cannot be configured directly using an standard QoS Policy. For the complete list of settings that can be
configured with this QoS Policy, please refer to PropertyPolicyQos Options.

This QoS also allows to add custom user properties that could be sent to the external entities. This could be done by
setting as true the propagate value of the Property.

Example

C++

PropertyPolicyQos property_policy;
//Add new property for the Auth:PKI-DH plugin
property_policy.properties().emplace_back("dds.sec.auth.plugin", "builtin.PKI-DH");
//Add new property for the Access:Permissions plugin
property_policy.properties().emplace_back(eprosima::fastrtps: :rtps: :Property('dds.sec.
—access.plugin”,

"builtin.Access-Permissions™));

//Add new user custom property to send to external Participants
property_policy.properties().emplace_back("Custom Property Name", "Custom value", true);

XML

<participant profile_name="secure_participant_conf_all_plugin_xml_profile">

<rtps>
<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->

<property>
<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Activate Access:Permissions plugin -->

<property>
<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>

<!-- User Custom Property to send externally -->

<property>
<name>Custom Property Name</name>
<value>Custom value</value>
<propagate>true</propagate>

</property>

</properties>
</propertiesPolicy>

(continues on next page)

132 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

</rtps>
</participant>

PublishModeQosPolicy

This QoS Policy configures how the DataWriter sends the data. See PublishModeQosPolicy.

It also configures the name of the flow controller to use when asynchronous publishing is used. It should be the name
of a flow controller registered on the creation of the DomainParticipant. See FlowControllersQos.

List of QoS Policy data members:

Data Member Name Type Default Value
kind PublishModeQosPolicyKind | SYNCHRONOUS_PUBLISH_MODE
flow_controller_name | const char * FASTDDS_FLOW_CONTROLLER_DEFAULT

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

PublishModeQosPolicyKind

There are two possible values (see PublishModeQosPolicyKind):
e SYNCHRONOUS_PUBLISH_MODE: The data is sent in the context of the user thread that calls the write operation.

* ASYNCHRONOUS_PUBLISH_MODE: An internal thread takes the responsibility of sending the data asynchronously.
The write operation returns before the data is actually sent.

Example

C++

PublishModeQosPolicy publish_mode;

//The PublishModeQosPolicy is default constructed with kind = SYNCHRONOUS
//Change the kind to ASYNCHRONOUS

publish_mode.kind = ASYNCHRONOUS_PUBLISH_MODE;

6.17. DDS Layer 133

Fast DDS Documentation, Release 2.10.2

XML

<data_writer profile_name="writer_profile_qgos_publishmode">
<qos>
<publishMode>
<kind>ASYNCHRONOUS</kind>
</publishMode>
</qos>
</data_writer>

ReaderResourceLimitsQos

This QoS Policy states the limits for the matched DataWriters’ resource limited collections based on the maximum
number of DataWriters that are going to match with the DataReader. See ReaderResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type
matched_publisher_allocation | ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

ReaderResourcelLimitsQos reader_limits;
//Set the maximum size for writer matched resource limits collection to 1 and its.
—allocation configuration to fixed size
reader_limits.matched_publisher_allocation =
eprosima: : fastrtps: :ResourcelLimitedContainerConfig: :fixed_size_configuration(lu);

XML

<data_reader profile_name="alloc_gos_example_sub">

<!-- we know we will only have one matching publisher -->
<matchedPublishersAllocation>

<initial>l</initial>

<maximum>1</maximum>

<increment>0</increment>
</matchedPublishersAllocation>
</data_reader>

134 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

RTPSEndpointQos

This QoS Policy configures the aspects of an RTPS endpoint, such as the list of locators, the identifiers, and the history
memory policy. See RTPSEndpointQos.

List of QoS Policy data members:

Data Member Name Type Default Value

unicast_locator_list LocatorList Empty List

multicast_locator_list LocatorList Empty List

remote_locator_list LocatorList Empty List

external_unicast_locators Externallocators Empty

ignore_non_matching_locators bool false

user_defined_id intl6_t -1

entity_id intl6_t -1

history_memory_policy MemoryManagementPol- PREALLOCATED_WITH_REALLOC_MEMORY_MODE
icy

e unicast_locator_list: Defines the list of unicast locators associated to the DDS Entity. DataReaders and
DataWriters inherit the list of unicast locators set in the DomainParticipant, but it can be changed by means of
this QoS.

e multicast_locator_list: Stores the list of multicast locators associated to the DDS Entity. By default,
DataReaders and DataWriters do not use any multicast locator, but it can be changed by means of this QoS.

e remote_locator_list: States the list of remote locators associated to the DDS Entity.

e external_unicast_locators: Defines the External Locators to announce for the communication with this
DDS Entity.

» ignore_non_matching_locators: Defines whether to ignore locators received on announcements from other
DDS entities when they don’t match with any of the locators announced by this DDS Entity.

» user_defined_id: Establishes the unique identifier used for StaticEndpointDiscovery.
e entity_id: The user can specify the identifier for the endpoint.

e history_memory_policy: Indicates the way the memory is managed in terms of dealing with the
CacheChanges.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

MemoryManagementPolicy

There are four possible values (see MemoryManagementPolicy):

e PREALLOCATED_MEMORY_MODE: This option sets the size to the maximum of each data type. It produces the
largest memory footprint but the smallest allocation count.

* PREALLOCATED_WITH_REALLOC_MEMORY_MODE: This option set the size to the default for each data type and
it requires reallocation when a bigger message arrives. It produces a lower memory footprint at the expense of
increasing the allocation count.

e DYNAMIC_RESERVE_MEMORY_MODE: This option allocates the size dynamically at the time of message arrival. It
produces the least memory footprint but the highest allocation count.

6.17. DDS Layer 135

Fast DDS Documentation, Release 2.10.2

e DYNAMIC_REUSABLE_MEMORY_MODE: This option is similar to DYNAMIC_RESERVE_MEMORY_MODE, but the allo-
cated memory is reused for future messages.

Example

C++

RTPSEndpointQos endpoint;

//Add new unicast locator with port 7800

eprosima: : fastrtps: :rtps::Locator_t new_unicast_locator;

new_unicast_locator.port = 7800;
endpoint.unicast_locator_list.push_back(new_unicast_locator);

//Add new multicast locator with IP 239.255.0.4 and port 7900

eprosima: : fastrtps: :rtps::Locator_t new_multicast_locator;

eprosima: : fastrtps: :rtps::IPLocator: :setIPv4(new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
endpoint.multicast_locator_list.push_back(new_multicast_locator);

// Add an external locator with IP 100.100.100.10, port 12345, mask 24, externality 1,.
—and cost 0

eprosima: : fastdds: :rtps: :LocatorWithMask external_locator;

external_locator.kind = LOCATOR_KIND_UDPv4;

external_locator.port = 12345;

external_locator.mask(24);
endpoint.external_unicast_locators[1][0].push_back(external_locator);

// Drop non matching locators

endpoint.ignore_non_matching_locators = true;

//Set 3 as user defined id

endpoint.user_defined_id = 3;

//Set 4 as entity id

endpoint.entity_id = 4;

//The RTPSEndpointQos is default constructed with history_memory_policy = PREALLOCATED
//Change the history_memory_policy to DYNAMIC_RESERVE

endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_RESERVE_MEMORY_MODE;

XML

<data_writer profile_name="writer_xml_conf_unicast_locators_profile">
<userDefinedID>3</userDefinedID>
<entityID>2</entityID> </-- Intl6 -->
<unicastLocatorList>
<locator>
<udpv4>
<port>7800</port>
</udpv4>
</locator>
</unicastLocatorList>
<multicastLocatorList>
<locator>
<udpv4>
<address>239.255.0.4</address>

(continues on next page)

136 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<port>7900</port>
</udpv4>
</locator>
</multicastLocatorList>
<external_unicast_locators>
<udpv4 externality="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>12345</port>
</udpv4>
</external_unicast_locators>
<ignore_non_matching_locators>true</ignore_non_matching_locators>
<!-- The history memory policy is changed to DYNAMIC_RESERVE -->
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_writer>

<data_reader profile_name="reader_xml_conf_unicast_locators_profile">
<userDefinedID>5</userDefinedID>
<entityID>4</entityID> </-- Intl6 -->
<unicastLocatorList>
<locator>
<udpv4>
<port>7800</port>
</udpv4>
</locator>
</unicastLocatorList>
<multicastLocatorList>
<locator>
<udpv4>
<address>239.255.0.4</address>
<port>7900</port>
</udpv4>
</locator>
</multicastLocatorList>
<external_unicast_locators>
<udpv4 externality="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>12345</port>
</udpv4>
</external_unicast_locators>
<ignore_non_matching_locators>true</ignore_non_matching_locators>
<historyMemoryPolicy>PREALLOCATED_WITH_REALLOC</historyMemoryPolicy>
</data_reader>

6.17. DDS Layer

137

Fast DDS Documentation, Release 2.10.2

RTPSReliableReaderQos

This RTPS QoS Policy allows the configuration of several RTPS reliable reader’s aspects. See
RTPSReliableReaderQos.

List of QoS Policy data members:

Data Member Name Type
times ReaderTimes
disable_positive_ACKs | DisablePositiveACKsQosPolicy

e times: Defines the duration of the RTPSReader events. See ReaderTimes for further details.

e disable_positive_ACKs: Configures the settings to disable the positive acks. See DisablePositiveACK-
sQosPolicy for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

ReaderTimes

This structure defines the times associated with the Reliable Readers’ events. See ReaderTimes.

List of structure members:

Member Name Type Default Value
initialAcknackDelay Duration_t | 70 ms
heartbeatResponseDelay | Duration_t | 5 ms

e initialAcknackDelay: Defines the duration of the initial acknack delay.

* heartbeatResponseDelay: Establishes the duration of the delay applied when a heartbeat message is received.

Example

C++

RTPSReliableReaderQos reliable_reader_qos;

//The RTPSReliableReaderQos is default constructed with initialAcknackDelay = 70 ms
//Change the initialAcknackDelay to 70 nanoseconds
reliable_reader_qgos.times.initialAcknackDelay = {0, 70};

//The RTPSReliableliriterQos is default constructed with heartbeatResponseDelay = 5 ms
//Change the heartbeatResponseDelay to 5 nanoseconds
reliable_reader_qos.times.heartbeatResponseDelay = {0, 5};

//You can also change the DisablePositiveACKsQosPolicy. For further details see.
—»DisablePositiveACKsQosPolicy section.
reliable_reader_qos.disable_positive_ACKs.enabled = true;

138 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

XML

<data_reader profile_name="sub_profile_name">
<times> <!-- readerTimesType -->
<initialAcknackDelay> </-- DURATION -->
<nanosec>70</nanosec>
</initialAcknackDelay>
<heartbeatResponseDelay> <!/-- DURATION -->
<nanosec>5</nanosec>
</heartbeatResponseDelay>
</times>
<!--You can also change the values of DisablePositiveACKsQosPolicy.-->
<!--See DisablePositiveACKsQosPolicy section for further details-->
</data_reader>

RTPSReliableWriterQos

This RTPS QoS Policy allows the configuration of several RTPS reliable writer’s aspects. See
RTPSReliableliriterQos.

List of QoS Policy data members:

Data Member Name Type

times WriterTimes
disable_positive_acks DisablePositiveACKsQosPolicy
disable_heartbeat_piggyback | DisableHeartbeatPiggyback

e times: Defines the duration of the RTPSWriter events. See WriterTimes for further details.

e disable_positive_acks: Configures the settings to disable the positive acks. See DisablePositiveACK-
sQosPolicy for further details.

e disable_heartbeat_piggyback: Configures the settings to disable the heartbeat piggyback mechanism. See
DisableHeartbeatPiggyback for further details.

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

WriterTimes

This structure defines the times associated with the Reliable Writers’ events.

List of structure members:

Member Name Type Default Value
initialHeartbeatDelay Duration_t | 12ms
heartbeatPeriod Duration_t | 3s
nackResponseDelay Duration_t | 5ms
nackSupressionDuration | Duration_t | Os

» initialHeartbeatDelay: Defines duration of the initial heartbeat delay.

6.17. DDS Layer 139

Fast DDS Documentation, Release 2.10.2

* heartbeatPeriod: Specifies the interval between periodic heartbeats.
* nackResponseDelay: Establishes the duration of the delay applied to the response of an ACKNACK message.

» nackSupressionDuration: The RTPSWriter ignores the nack messages received after sending the data until
the duration time elapses.

DisableHeartbeatPiggyback

Besides sending heartbeats periodically using the heartbeatPeriod (see WriterTimes), reliable DataWriters also use
a mechanism to append a heartbeat submessage in the same message where data is being delivered to the DataReaders.
This mechanism acts in specific situations where the reliable communication state must be up to date to maintain
optimal communication:

* When the DataWriter sends as many bytes to the socket as the length of the socket buffer, a heartbeat submessage
is appended after the last data.

* When the DataWriter’s history is full, the DataWriter starts to append heartbeat submessages after each data.

This mechanism can be disabled using this policy.

Example

C++

RTPSReliableliriterQos reliable_writer_qos;

//The RTPSReliablelWriterQos is default constructed with initialHeartbeatDelay = 12 ms
//Change the initialHeartbeatDelay to 20 nanoseconds
reliable_writer_qgos.times.initialHeartbeatDelay = {0, 20};

//The RTPSReliablelWriterQos is default constructed with heartbeatPeriod = 3 s
//Change the heartbeatPeriod to 5 seconds

reliable_writer_qos.times.heartbeatPeriod = {5, 0};

//The RTPSReliablelWriterQos is default constructed with nackResponseDelay = 5 ms
//Change the nackResponseDelay to 10 nanoseconds
reliable_writer_gos.times.nackResponseDelay = {0, 10};

//The RTPSReliablelWriterQos is default constructed with nackSupressionDuration = 0 s
//Change the nackSupressionDuration to 20 nanoseconds
reliable_writer_qgos.times.nackSupressionDuration = {0, 20};

//You can also change the DisablePositiveACKsQosPolicy. For further details see.
—DisablePositiveACKsQosPolicy section.
reliable_writer_qos.disable_positive_acks.enabled = true;

//The RTPSReliablelWriterQos is default constructed with disable_heartbeat_piggyback =.
—false

//Disable the heartbeat piggyback mechanism.
reliable_writer_qos.disable_heartbeat_piggyback = true;

140 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

XML

<data_writer profile_name="pub_profile_name">
<times> <!/-- writerTimesType -->
<initialHeartbeatDelay> </-- DURATION -->
<nanosec>20</nanosec>
</initialHeartbeatDelay>
<heartbeatPeriod> <!/-- DURATION -->
<sec>5</sec>
</heartbeatPeriod>
<nackResponseDelay> <!/-- DURATION -->
<nanosec>10</nanosec>
</nackResponseDelay>
<nackSupressionDuration> </-- DURATION -->
<nanosec>20</nanosec>
</nackSupressionDuration>
</times>

<!--You can also change the values of DisablePositiveACKsQosPolicy.-->
<!--See DisablePositiveACKsQosPolicy section for further details-->
<gos>
<!--Disable heartbeat piggyback mechanism.-->
<disable_heartbeat_piggyback>true</disable_heartbeat_piggyback>
</qos>
</data_writer>

TransportConfigQos

This QoS Policy allows the configuration of the transport layer settings. See TransportConfigQos.

List of QoS Policy data members:

Data Member Name Type Default
Value
user_transports std: :vector<std: :shared_ptr<TransportDescriptorInterfEapty
vector
use_builtin_transports | bool true
send_socket_buffer_size| uint32_t 0
listen_socket_buffer_sizaint32_t 0

* user_transports: This data member defines the list of transports to use alongside or in place of builtins.

e use_builtin_transports: It controls whether the built-in transport layer is enabled or disabled. If it is set to
false, the default UDPv4 implementation is disabled.

* send_socket_buffer_size: By default, Fast DDS creates socket buffers using the system default size. This
data member allows to change the send socket buffer size used to send data.

e listen_socket_buffer_size: The listen socket buffer size is also created with the system default size, but it
can be changed using this data member.

Note: This QoS Policy concerns to DomainParticipant entities.

6.17. DDS Layer 141

Fast DDS Documentation, Release 2.10.2

It cannot be changed on enabled entities.

TransportDescriptorinterface

This structure is the base for the data type used to define transport configuration.

List of structure members:

Member Name Type

maxMessageSize uint32_t

maxInitialPeersRange | uint32_t

* maxMessageSize: This member sets the maximum size in bytes of the

e maxInitialPeersRange: This member states the maximum number o

Example

C++

transport’s message buffer.

f guessed initial peers to try to connect.

TransportConfigQos transport;
//Add new transport to the list of user transports

std: :shared_ptr<eprosima: :fastdds: :rtps: :UDPv4TransportDescriptor> descriptor =
std: :make_shared<eprosima: : fastdds: :rtps: :UDPv4TransportDescriptor>();

descriptor->sendBufferSize = 9126;
descriptor->receiveBufferSize = 9126;
transport.user_transports.push_back(descriptor);
//Set use_builtin_transports to false
transport.use_builtin_transports = false;

XML

<transport_descriptors>
<transport_descriptor>
<transport_id>my_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
</transport_descriptor>
</transport_descriptors>

<participant profile_name="my_transport">
<rtps>
<userTransports>
<transport_id>my_transport</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>

142 Chapter 6

. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

TypeConsistencyQos

This QoS Policy allows the configuration of the X7ypes extension QoS on the DataReader. See TypeConsistencyQos.

List of QoS Policy data members:

Data Member Name | Type
type_consistency TypeConsistencyEnforcementQosPolicy
representation DataRepresentationQosPolicy

e type_consistency: It states the rules for the data types compatibility. See TypeConsistencyEnforcemen-
tQosPolicy for further details.

* representation: It specifies the data representations valid for the entities. See DataRepresentationQosPolicy
for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

TypeConsistencyQos consistency_qos;

//You can change the DataRepresentationQosPolicy. For further details see.
—DataRepresentationQosPolicySection section.
consistency_qos.representation.m_value.push_back(DataRepresentationId_t::XCDR2_DATA_
—.REPRESENTATION) ;

//You can change the TypeConsistencyEnforcementQosPolicy. For further details see.
- TypeConsistencyEnforcementQosPolicy section.
consistency_gos.type_consistency.m_kind = TypeConsistencyKind: :ALLOW_TYPE_COERCION;

XML

This QoS Policy cannot be configured using XML for the moment.

WireProtocolConfigQos

This QoS Policy allows the configuration of the wire protocol. See WireProtocolConfigQos.

List of QoS Policy data members:

6.17. DDS Layer 143

Fast DDS Documentation, Release 2.10.2

Data Member Name Type Default Value
prefix GuidPrefix_t 0
participant_id int32_t -1

builtin BuiltinAttributes

port PortParameters
default_unicast_locator_list LocatorList Empty List
default_multicast_locator_list LocatorList Empty List
default_external_unicast_locators | Externallocators Empty
ignore_non_matching_locators bool false

» prefix: This data member allows the user to set manually the GUID prefix.
e participant_id: It sets the participant identifier. By default, it will be automatically generated by the Domain.
e builtin: This data member allows the configuration of the built-in parameters.

 port: This data member allows the configuration of the port parameters and gains related to the RTPS protocol
(Well Known Ports).

e default_unicast_locator_Ilist: Statesthe defaultlist of unicast locators to be used for any endpoint defined
inside the RTPSParticipant in the case that it was defined without unicast locators. This list should include at
least one locator.

e default_multicast_locator_list: Stores the default list of multicast locators to be used for any endpoint
defined inside the RTPSParticipant in the case that it was defined without multicast locators. This list is usually
left empty.

e default_external_unicast_locators: Defines the External Locators to be used for any endpoint defined
inside the participant in the case that it was defined without unicast locators.

e ignore_non_matching_locators: Defines whether to ignore locators received on announcements from other
DDS participants when they don’t match with any of the locators announced by this DDS participant.

Note: This QoS Policy concerns to DomainParticipant entities.

Important: The only mutable field on enabled entities is m_DiscoveryServers, which is contained in
discovery_config within builtin (see Modifying remote servers list at run time).

Example

C++

WireProtocolConfigQos wire_protocol;
//Set the guid prefix
std::istringstream(""72.61.73.70.66.61.72.6d.74.65.73.74") >> wire_protocol.prefix;
//Configure Builtin Attributes
wire_protocol.builtin.discovery_config.discoveryProtocol =
eprosima: :fastrtps: :rtps: :DiscoveryProtocol_t: :SERVER;
//Add locator to unicast list
eprosima: : fastrtps::rtps::Locator_t server_locator;
eprosima: : fastrtps: :rtps::IPLocator: :setIPv4(server_locator, "192.168.10.57");

(continues on next page)

144 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

server_locator.port = 56542;
wire_protocol.builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Add a metatraffic external locator with IP 100.100.100.10, port 34567, mask 24,.
—externality 1, and cost 0

eprosima: : fastdds: :rtps::LocatorWithMask meta_external_locator;
meta_external_locator.kind = LOCATOR_KIND_UDPv4;

meta_external_locator.port = 34567;

meta_external_locator.mask(24);
wire_protocol.builtin.metatraffic_external_unicast_locators[1][0].push_back(meta_
—external_locator);

//Add locator to default unicast locator list

eprosima: : fastrtps: :rtps::Locator_t unicast_locator;

eprosima: : fastrtps: :rtps::IPLocator: :setIPv4(unicast_locator, 192, 168, 1, 41);
unicast_locator.port = 7400;
wire_protocol.default_unicast_locator_list.push_back(unicast_locator);

//Add locator to default multicast locator list

eprosima: : fastrtps: :rtps::Locator_t multicast_locator;

eprosima: : fastrtps: :rtps::IPLocator: :setIPv4(multicast_locator, 192, 168, 1, 41);
multicast_locator.port = 7400;
wire_protocol.default_multicast_locator_list.push_back(multicast_locator);

// Add a default external locator with IP 100.100.100.10, port 23456, mask 24,.
—externality 1, and cost 0

eprosima: : fastdds: :rtps::LocatorWithMask external_locator;

external_locator.kind = LOCATOR_KIND_UDPv4;

external_locator.port = 23456;

external_locator.mask(24);
wire_protocol.default_external_unicast_locators[1][0].push_back(external_locator);
// Drop non matching locators

wire_protocol.ignore_non_matching_locators = true;

XML

<participant profile_name="UDP SERVER WP" is_default_profile="true">
<rtps>
<prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>
<builtin>
<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>
</discovery_config>
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<address>192.168.10.57</address>
<port>56542</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
<metatraffic_external_unicast_locators>
<udpv4 externality="1" cost="0" mask="24">
<address>100.100.100.10</address>

(continues on next page)

6.17. DDS Layer 145

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

<port>34567</port>
</udpv4>
</metatraffic_external_unicast_locators>
</builtin>
<defaultUnicastLocatorList>
<locator>
<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>
</udpv4>
</locator>
</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<locator>
<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>
</udpv4>
</locator>
</defaultMulticastLocatorList>

<default_external_unicast_locators>
<udpv4 externality="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>23456</port>
</udpv4>
</default_external_unicast_locators>

<ignore_non_matching_locators>true</ignore_non_matching_locators>
</rtps>
</participant>

WriterResourceLimitsQos

This QoS Policy states the limits for the matched DataReaders’ resource limited collections based on the maximum
number of DataReaders that are going to match with the DataWriter. See lWriterResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type
matched_subscriber_allocation | ResourceLimitedContainerConfig
reader_filters_allocation ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

146 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Example

C++

WriterResourcelLimitsQos writer_limits;
//Set the maximum size for reader matched resource limits collection to 3 and its.
—allocation configuration to fixed size
writer_limits.matched_subscriber_allocation =

eprosima: : fastrtps: :ResourcelLimitedContainerConfig: :fixed_size_configuration(3u);
// Set the maximum number of writer side content filters to 1 and its allocation.,
—sconfiguration to fixed size
writer_limits.reader_filters_allocation =

eprosima: : fastrtps: :ResourcelLimitedContainerConfig: :fixed_size_configuration(lu);

XML

<data_writer profile_name="alloc_qos_example_pub_for_topic_1">

<!-- we know we will have three matching subscribers -->
<matchedSubscribersAllocation>

<initial>3</initial>

<maximum>3</maximum>

<increment>0</increment>
</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

XTypes Extensions

This section explain those QoS Policy extensions defined in the XTypes Specification:

* DataRepresentationQosPolicy

» TypeConsistencyEnforcementQosPolicy

DataRepresentationQosPolicy

This XTypes QoS Policy states which data representations will be used by the DataWriters and DataReaders.

The DataWriters offer a single data representation that will be used to communicate with the matched DataRead-
ers. The DataReaders can request one or more data representations and in order to have communication with
the DataWriter, the offered data representation needs to be contained within the DataReader request. See
DataRepresentationQosPolicy.

List of QoS Policy data members:

Data Member Name | Type Default Value
m_value std::vector<DataRepresentationld> | Empty vector

6.17. DDS Layer 147

https://www.omg.org/spec/DDS-XTypes/

Fast DDS Documentation, Release 2.10.2

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

DataRepresentationld

There are three possible values (see DataRepresentationId):

e XCDR_DATA_REPRESENTATION: This option corresponds to the first version of the Extended CDR Representation
encoding.

e XML_DATA_REPRESENTATION: This option corresponds to the XML Data Representation.

e XCDR2_DATA_REPRESENTATION: This option corresponds to the second version of the Extended CDR Repre-
sentation encoding.

Example

C++

DataRepresentationQosPolicy data_representation;

//Add XCDR v1 data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t: :XCDR_DATA_REPRESENTATION) ;
//Add XML data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t: :XML_DATA_REPRESENTATION);

XML

This QoS Policy cannot be configured using XML for the moment.

TypeConsistencyEnforcementQosPolicy

This XTypes QoS Policy extension defines the rules for determining whether the data type used in the DataWriter is
consistent with the one used in the DaraReader. See TypeConsistencyEnforcementQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value

m_kind TypeConsistencyKind | ALLOW_TYPE_COERCION
m_ignore_sequence_bounds | bool true
m_ignore_string_bounds bool true
m_ignore_member_names bool true
m_prevent_type_widening bool true
m_force_type_validation bool true

e m_kind: It determines whether the type in the DataWriter type must be equal to the type in the DataReader or
not. See TypeConsistencyKind for further details.

148 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

m_ignore_sequence_bounds: This data member controls whether the sequence bounds are taken into account
for type assignability or not. If its value is true, the sequences maximum lengths are not considered, which means
that a sequence T2 with length L2 would be assignable to a sequence T1 with length L1, even if L2 is greater
than L1. But if it is false, L1 must be higher or equal to L2 to consider the sequences as assignable.

m_ignore_string_bounds: It controls whether the string bounds are considered for type assignation or not.
If its value is true, the strings maximum lengths are not considered, which means that a string S2 with length L2
would be assignable to a string S1 with length L1, even if L2 is greater than L1. But if it is false, L1 must be
higher or equal to L2 to consider the strings as assignable.

m_ignore_member_names: This boolean controls whether the member names are taken into consideration for
type assignability or not. If it is true, apart from the member ID, the member names are considered as part of
assignability, which means that the members with the same ID must also have the same name. But if the value
is false, the member names are ignored.

m_prevent_type_widening: This data member controls whether the type widening is allowed or not. If it is
false, the type widening is permitted, but if true, a wider type cannot be assignable to a narrower type.

m_force_type_validation: It controls if the service needs the type information to complete the matching
between a DataWriter and a DataReader. If it is enabled, it must have the Complete Type Information, otherwise
it is not necessary.

Note:

This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

TypeConsistencyKind

There are two possible values:

DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same data type in order to
communicate.

ALLOW_TYPE_COERCION: The DataWriter and the DataReader do not need to support the same data type in order
to communicate as long as the DataReader’s type is assignable from the DataWriter’s type.

Example

C++

TypeConsistencyEnforcementQosPolicy type_enforcement;

//The TypeConsistencyEnforcementQosPolicy is default constructed with kind = ALLOW_TYPE_
—COERCION

//Change the kind to DISALLOW_TYPE_COERCION

type_enforcement.m_kind = TypeConsistencyKind: :DISALLOW_TYPE_COERCION;

//Configures the system to ignore the sequence sizes in assignations
type_enforcement .m_ignore_sequence_bounds = true;

//Configures the system to ignore the string sizes in assignations

type_enforcement .m_ignore_string_bounds = true;

//Configures the system to ignore the member names. Members with same ID could have.
—different names

type_enforcement.m_ignore_member_names = true;

(continues on next page)

6.17.

DDS Layer 149

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

//Configures the system to allow type widening

type_enforcement .m_prevent_type_widening = false;

//Configures the system to not use the complete Type Information in entities match.,
—process

type_enforcement .m_force_type_validation = false;

XML

This QoS Policy cannot be configured using XML for the moment.

Status

Each Entity is associated with a set of Status objects whose values represent the communication status of that Entity.
Changes on the status values occur due to communication events related to each of the entities, e.g., when new data
arrives, a new participant is discovered, or a remote endpoint is lost. The status is decomposed into several status objects,
each concerning a different aspect of the communication, so that each of these status objects can vary independently
of the others.

Changes on a status object trigger the corresponding Listener callbacks that allow the Entity to inform the application
about the event. For a given status object with name fooStatus, the entity listener interface defines a callback function
on_foo () that will be called when the status changes. Beware that some statuses have data members that are reset every
time the corresponding listener is called. The only exception to this rule is when the entity has no listener attached, so
the callback cannot be called. See the documentation of each status for details.

Conditions and Wait-sets provide the application with an alternative mechanism to make it aware of changes on status
objects, by means of a StatusCondition. The advantage of this mechanism is that the application can wait for changes
on several entities at the same time. It will also help the determinism of your system, as the notification is not processed
on an internal thread, as it is done when using listeners.

The entities expose functions to access the value of its statuses. For a given status with name fooStatus, the entity
exposes a member function get_foo() to access the data in its fooStatus. The only exceptions are DataOnReaders
and DataAvailable. These getter functions return a read-only struct where all data members are public and accessible
to the application. Beware that some statuses have data members that are reset every time the getter function is called
by the application. See the documentation of each status for details.

The following subsections describe each of the status objects, their data members, and to which Entity type they concern.
The next table offers a quick reference as well as the corresponding bit for each status in the StatusMask.

150 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Status Name Entity Listener callback Accessor Bit

InconsistentTopicStatus | Topic on_inconsistent_topic()| get_inconsistent_topic_status|(D

OfferedDeadline- DataWriter on_offered_deadline_missegH?) offered_deadline_missed_stdtusg

MissedStatus

RequestedDeadline- DataReadpron_requested_deadline_mj spetd @equested_deadline_missed| 2tat]

MissedStatus

OfferedIncompatible- DataWritdr on_offered_incompatible| gpasst(Joffered_incompatible_qos_sbaty

QosStatus

RequestedIncompati- DataReadpron_requested_incompatiblayeps@quested_incompatible_qolsbst4

bleQosStatus

SampleLostStatus DataReadpron_sample_lost () get_sample_lost_status() 7

SampleRejectedStatus DataReadpron_sample_rejected() get_sample_rejected_status() | 8

DataOnReaders Sub- on_data_on_readers() N/A 9
scriber

DataAvailable DataReadpron_data_available() N/A 10

LivelinessLostStatus DataWritdr on_liveliness_lost () get_liveliness_lost_status() | 11

LivelinessChangedSta- DataReadpron_liveliness_changed()| get_liveliness_changed_status|(12

tus

PublicationMatched- DataWritdr on_publication_matched() get_publication_matched_status(3

Status

SubscriptionMatched- DataReadpron_subscription_matched{)get_subscription_matched_statud®

Status

InconsistentTopicStatus

This status changes every time an inconsistent remote Topic is discovered, that is, one with the same name but different
characteristics than the current Topic. See InconsistentTopicStatus.

List of status data members:

Data Member Name | Type
total_count int32_t
total_count_change | int32_t

» total_count: Total cumulative count of inconsistent Topics discovered since the creation of the current Topic.

e total_count_change: The change in total_count since the last time on_inconsistent_topic() was
called or the status was read.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT_SUPPORTED and the corresponding listener will never be called.

6.17. DDS Layer

151

O

us()

sO

tus()

Fast DDS Documentation, Release 2.10.2

DataOnReaders

This status becomes active every time there is new data available for the application on any DataReader belonging to
the current Subscriber. There is no getter function to access this status, as it does not keep track of any information
related to the data itself. Its only purpose is to trigger the on_data_on_readers() callback on the listener attached
to the DataReader.

DataAvailable

This status becomes active every time there is new data available for the application on the DataReader. There is no
getter function to access this status, as it does not keep track of any information related to the data itself. Its only
purpose is to trigger the on_data_available () callback on the listener attached to the DataReader.

LivelinessChangedStatus

This status changes every time the liveliness status of a matched DataWriter has changed. Either because a DataWriter
that was inactive has become active or the other way around. See LivelinessChangedStatus.

List of status data members:

Data Member Name Type

alive_count int32_t
not_alive_count int32_t
alive_count_change int32_t
not_alive_count_change int32_t
last_publication_handle | InstanceHandle_t

e alive_count: Total number of currently active DataWriters. This count increases every time a newly matched
DataWriter asserts its liveliness or a DataWriter that was considered not alive reasserts its liveliness. It decreases
every time an active DataWriter becomes not alive, either because it failed to asserts its liveliness or because it
was deleted for any reason.

e not_alive_count: Total number of matched DataWriters that are currently considered not alive. This count
increases every time an active DataWriter becomes not alive because it fails to assert its liveliness. It decreases
every time a DataWriter that was considered not alive reasserts its liveliness. Normal matching and unmatching
of DataWriters does not affect this count.

e alive_count_change: The change in alive_count since the last time on_liveliness_changed() was
called or the status was read. It can have positive or negative values.

* not_alive_count_change: The change in not_alive_count since the last time
on_liveliness_changed () was called or the status was read. It can have positive or negative values.

e last_publication_handle: Handle to the last DataWriter whose liveliness status was changed. If no liveli-
ness has ever changed, it will have value c_InstanceHandle_Unknown.

152 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

RequestedDeadlineMissedStatus

This status changes every time the DataReader does not receive data within the deadline period configured on its
DataReaderQos. See RequestedDeadlineMissedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
last_instance_handle | InstanceHandle_t

e total_count: Total cumulative count of missed deadlines for any instance read by the current DataReader. As
the deadline period applies to each instance of the Topic independently, the count will will be incremented by
one for each instance for which data was not received in the deadline period.

e total_count_change: The change in total_count since the last time
on_requested_deadline_missed() was called or the status was read. It can only have zero or posi-
tive values.

e Jlast_instance_handle: Handle to the last instance that missed the deadline. If no deadline was ever missed,
it will have value c_InstanceHandle_Unknown.

RequestedincompatibleQosStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a com-
mon partition, but with a QoS configuration incompatible with the one defined on the DataReader. See
RequestedIncompatibleQosStatus.

List of status data members:

Data Member Name | Type

total_count int32_t
total_count_change | int32_t
last_policy_id QosPolicyId_t
policies QosPolicyCountSeq

e total_count: Total cumulative count of DataWriters found matching the Topic and with a common partition,
but with a QoS configuration that is incompatible with the one defined on the DataReader.

e total_count_change: The change in total_count since the last time
on_requested_incompatible_qgos() was called or the status was read. It can only have zero or posi-
tive values.

e Jast_policy_id: The policy ID of one of the policies that was found to be incompatible with the current
DataReader. If more than one policy happens to be incompatible, only one of them will be reported in this
member.

e policies: A collection that holds, for each policy, the total number of times that the policy was found to be
incompatible with the one offered by a remote DataWriter that matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for each policy.

6.17. DDS Layer 153

Fast DDS Documentation, Release 2.10.2

QosPolicyCountSeq

Holds a QosPolicyCount for each Policy, indexed by its QosPolicyId_t. Therefore, the Qos Policy with ID N will be
at position N in the sequence. See QosPolicyCountSeq.

DataReader* data_reader =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);

// Get how many times ReliabilityQosPolicy was not compatible with a remote writer
RequestedIncompatibleQosStatus status;
data_reader->get_requested_incompatible_qos_status(status);

uint32_t incompatible_reliability_count = status.policies[RELIABILITY_QOS_POLICY_ID].
—count;

QosPolicyCount

This structure holds a counter for a policy. See QosPolicyCount.

List of data members:

Data Member Name | Type
policy_id QosPolicyId_t
count int32_t

e policy_id: The ID of the policy.

» count: The counter value for the policy.

SampleLostStatus

This status changes every time a new data sample is lost and will never be received. See SampleLostStatus.
There are two different criteria for considering a sample as lost depending on the reliability ():

e When using BEST_EFFORT_RELIABILITY_QOS, a not yet received sample is considered lost whenever a sample
with a greater sequence number is received.

* When using RELIABLE_RELIABILITY_QOS, a not yet received sample is considered lost whenever the
DataWriter informs, through an RTPS HEARTBEAT submessage, that the sample is not available anymore.

List of status data members:

Data Member Name | Type
total_count int32_t
total_count_change | int32_t

e total_count: Total cumulative count of lost samples under the Topic of the current DataReader.

» total_count_change: The change in total_count since the last time on_sample_lost () was called or the
status was read. It can only be positive or zero.

154 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

SampleRejectedStatus

This status changes every time an incoming data sample is rejected by the DataReader. The reason for the rejection is
defined by SampleRejectedStatusKind. For further information see SampleRejectedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t

last_reason SampleRejectedStatusKind
last_instance_handle | InstanceHandle_t

total_count: Total cumulative count of rejected samples under the Topic of the current DataReader.

total_count_change: The change in total_count since the last time on_sample_rejected() was called
or the status was read. It can only be positive or zero.

last_reason: The reason for rejecting the last rejected sample. If no sample was ever rejected, it will have
value NOT_REJECTED. See SampleRejectedStatusKind for further details.

last_instance_handle: Handle to the last instance whose sample was rejected. If no sample was ever re-

jected, it will have value c_InstanceHandle_Unknown.

SampleRejectedStatusKind

In Fast DDS, samples can be rejected due to resource limit reasons. However, the fact that the samples are rejected
does not imply that they are lost, i.e. a rejected sample may be accepted in the future.

SampleRejectedStatusKind specifies the reason of the rejection:

NOT_REJECTED specifies that the samples were not rejected.

REJECTED_BY_SAMPLES_LIMIT specifies that the samples were rejected because there were not enough re-
sources to stored them. This can happen even when there are free resources if those resources must be guaran-
teed to be available for other samples. This situation, which arises in the RTPS layer, occurs when there are yet
to be received samples with lower sequence number and there is not enough resources for all of them (because
max_samples has been reached).

REJECTED_BY_INSTANCES_LIMIT specifies that the samples were rejected because there were not enough re-
sources to allocate the samples’ instances. This situation, which arises in the DDS layer, more precisely in the
in the DataReader’s history, occurs when the sample corresponds to a new instance for which the middleware
should reserve resources but the history’s number of instances has already reached max_instances.

REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT specifies that the samples were rejected because there were
not enough resources within their instance to stored them. This situation, which arises in the DDS layer, more pre-
cisely in the DataReader’s history, occurs when the DataReader is configured with KEEP_ALL_HISTORY_QOS
and the instance’s number of samples has reached max_samples_per_instance.

6.17.

DDS Layer 155

Fast DDS Documentation, Release 2.10.2

SubscriptionMatchedStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataWriter that was previously considered to be matched.

See SubscriptionMatchedStatus.

List of status data members:

Data Member Name

Type

total_count

int32_t

total_count_change

int32_t

current_count

int32_t

current_count_change

int32_t

last_publication_handle

InstanceHandle_t

» total_count: Total cumulative count of remote DataWriters that have been discovered publishing on the same
Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

e total_count_change: The change in total_count since the last time on_subscription_matched() was
called or the status was read. It can only have zero or positive values.

e current_count: The number of remote DataWriters currently matched to the DataReader.

e current_count_change: The change in current_count since the last time on_subscription_matched()
was called or the status was read. It can have positive or negative values.

e last_publication_handle: Handle to the last DataWriter that matched the DataReader. If no matching ever
happened, it will have value c_InstanceHandle_Unknown.

LivelinessLostStatus

This status changes every time the DataWriter failed to assert its liveliness during the period configured on its
DataWriterQos. This means that matched DataReader entities will consider the DataWriter as no longer alive. See

LivelinessLostStatus.

List of status data members:

Data Member Name

Type

total_count

int32_t

total_count_change

int32_t

e total_count: Total cumulative count of times that the

DataWriter failed to assert its liveliness during the

period configured on its DataWriterQos, becoming considered not alive. This count does not change when the

DataWriter is already considered not alive and simply rem

ains not alive for another liveliness period.

» total_count_change: The change in total_count since the last time on_Iliveliness_lost () was called
or the status was read. It can only have zero or positive values.

156

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

OfferedDeadlineMissedStatus

This status changes every time the DataWriter fails to provide data within the deadline period configured on its

DataWriterQos. See OfferedDeadlineMissedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
last_instance_handle | InstanceHandle_t

e total_count: Total cumulative count of missed deadlines for any instance written by the current DataWriter.
As the deadline period applies to each instance of the Topic independently, the count will will be incremented
by one for each instance for which data was not sent in the deadline period.

e total_count_change: The change in total_count since the last time on_offered_deadline_missed()
was called or the status was read. It can only have zero or positive values.

e Jlast_instance_handle: Handle to the last instance that missed the deadline. If no deadline was ever missed,

it will have value c_InstanceHandle_Unknown.

OfferedincompatibleQosStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a common

partition, but with a QoS configuration that is incompatible with the one defined on the DataWriter.

OfferedIncompatibleQosStatus.

List of status data members:

Data Member Name | Type

total_count int32_t
total_count_change | int32_t
last_policy_id QosPolicyId_t
policies QosPolicyCountSeq

See

* total_count: Total cumulative count of DataReaders found matching the Topic and with a common partition,

but with a QoS configuration that is incompatible with the one defined on the DataWriter.

e total_count_change: The change in total_count since the last time on_offered_incompatible_qos()
was called or the status was read. It can only have zero or positive values.

e last_policy_id: The policy ID of one of the policies that was found to be incompatible with the current
DataWriter. If more than one policy happens to be incompatible, only one of them will be reported in this

member.

e policies: A collection that holds, for each policy, the total number of times that the policy was found to be
incompatible with the one requested by a remote DataReader that matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for each policy.

6.17. DDS Layer

157

Fast DDS Documentation, Release 2.10.2

PublicationMatchedStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataReader that was previously considered to be matched.
See PublicationMatchedStatus.

List of status data members:

Data Member Name Type

total_count int32_t
total_count_change int32_t
current_count int32_t
current_count_change int32_t
last_subscription_handle | InstanceHandle_t

* total_count: Total cumulative count of remote DataReaders that have been discovered publishing on the same
Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

e total_count_change: The change in total_count since the last time on_publication_matched() was
called or the status was read. It can only have zero or positive values.

e current_count: The number of remote DataReaders currently matched to the DataWriter.

e current_count_change: The change in current_count since the last time on_publication_matched()
was called or the status was read. It can have positive or negative values.

e last_subscription_handle: Handle to the last DataReader that matched the DataWriter. If no matching ever
happened, it will have value c_InstanceHandle_Unknown.

Conditions and Wait-sets

Conditions (in conjunction with wait-sets) provide an alternative mechanism to allow the middleware to notify com-
munication status changes (including arrival of data) to the application.

This mechanism is wait-based. Its general use pattern is as follows:

» The application indicates which relevant information it wants to get, by means of Condition objects (Guard-
Condition, StatusCondition, or ReadCondition) and attaching them to a Wait-set via the attach_condition()
call.

e It then waits on that Waiz-set via the wait () call until the trigger value of one or several Condition objects
become true.

* It then uses the result of the wait () (i.e., the list of Condition objects with trigger_value == true) to actually get
the information by calling:

— get_status_changes(), then checking if any of the changes is relevant using the
StatusMask::is_active() method on the result and finally calling get_<communication_status>
on the relevant Entity, when the condition is a StatusCondition and the status changes refer to plain
communication status. Refer to Status for additional information on the different statuses that can be
queried.

— get_status_changes() and then Subscriber::get_datareaders() on the relevant Subscriber,
when the condition is a StatusCondition and the status changes refer to DataOnReaders.

— get_status_changes() and then DataReader::read()/DataReader::take() on the relevant
DataReader, when the condition is a StatusCondition and the status changes refer to DataAvailable.

158 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

— Directly DataReader::read_w_condition()/DataReader: :take_w_condition() on the
DataReader with the Condition as a parameter, when it is a ReadCondition

* When a Condition is no longer relevant it can be detached from a Wait-set via the detach_condition() call.

The first step is usually done in an initialization phase, while the others are put in the application main loop.

class Application]ob
{

WaitSet wait_set_;
GuardCondition terminate_condition_;
std: :thread thread_;

void main_loop()

{
// Main loop is repeated until the terminate condition is triggered
while (false == terminate_condition_.get_trigger_value())
{

// Wait for any of the conditions to be triggered
ReturnCode_t ret_code;
ConditionSeq triggered_conditions;
ret_code = wait_set_.wait(triggered_conditions, eprosima::fastrtps::c_
—TimeInfinite);
if (ReturnCode_t::RETCODE_OK != ret_code)
{
// ... handle error
continue;

}

// Process triggered conditions
for (Condition* cond : triggered_conditions)
{
StatusCondition* status_cond = dynamic_cast<StatusCondition*>(cond);
if (nullptr != status_cond)
{
Entity* entity = status_cond->get_entity();
StatusMask changed_statuses = entity->get_status_changes();

// Process status. Liveliness changed and data available are.
—depicted as an example
if (changed_statuses.is_active(StatusMask::liveliness_changed()))
{
std::cout << "Liveliness changed reported for entity "
—>get_instance_handle() <<

std: :endl;

<< entity-

}

if (changed_statuses.is_active(StatusMask: :data_available()))

{

std::cout << "Data avilable on reader " << entity->get_instance_

—handle() << std::endl;

FooSeq data_seq;
SampleInfoSeq info_seq;

(continues on next page)

6.17. DDS Layer 159

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

DataReader* reader = static_cast<DataReader*>(entity);

// Process all the samples until no one is returned
while (ReturnCode_t::RETCODE_OK == reader->take(data_seq, info_
-.seq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE))

// Both info_seq.length() and data_seq.length() will have,
—the number of samples returned

for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)

{
// Only samples for which valid data is true should be.
—accessed
if (info_seq[n].valid_data)
{
// Process sample on data_seq[n]
}
}
// must return the loaned sequences when done processing
reader->return_loan(data_seq, info_seq);
}
}
}
}
}
}
public:
ApplicationJob(

const std::vector<DataReader*>& readers,
const std::vector<DataWriter*>& writers)

{
// Add a GuardCondition, so we can signal the processing thread to stop
wait_set_.attach_condition(terminate_condition_);
// Add the status condition of every reader and writer
for (DataReader*® reader : readers)
{
wait_set_.attach_condition(reader->get_statuscondition());
}
for (DataWriter® writer : writers)
{
wait_set_.attach_condition(writer->get_statuscondition());
}
thread_ = std::thread(&ApplicationJob::main_loop, this);
}
~ApplicationJob()

(continues on next page)

160 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

{
// Signal the GuardCondition to force the WaitSet to wake up
terminate_condition_.set_trigger_value(true);
// Wait for the thread to finish
thread_. join(Q);
}

};

// Application initialization

ReturnCode_t ret_code;

std: :vector<DataReader*> application_readers;
std: :vector<DataWriter*> application_writers;

// Create the participant, topics, readers, and writers.
ret_code = create_dds_application(application_readers, application_writers);
if (ReturnCode_t::RETCODE_OK != ret_code)

{
// ... handle error
return;
}
{
Application]ob main_loop_thread(application_readers, application_writers);
// ... wait for application termination signaling (signal handler, user input, etc)
// ... Destructor of ApplicationJob takes care of stopping the processing thread
}

// Destroy readers, writers, topics, and participant
destroy_dds_application();

Calling the wait () operation on the Wait-set will block the calling thread if the trigger value of all the conditions
attached to it are false. The thread will wake up, and the wait () operation will return RETCODE_OK, whenever the
trigger value of any of the attached conditions becomes true.

GuardCondition

A condition for which the trigger value is completely controlled by the application via its set_trigger_value()
operation.

6.17. DDS Layer 161

Fast DDS Documentation, Release 2.10.2

StatusCondition

A condition that triggers whenever there are changes on the communication statuses of an Entity.

The sensitivity of the StatusCondition to a particular communication status is controlled by the list of enabled_statuses
set on the condition by means of the set_enabled_statuses () operation.

ReadCondition

A condition that triggers whenever the DataReader that created it contains at least a sample with SampleState, View-
State, and InstanceState matching those of the ReadCondition.

The fact that the trigger value of a ReadCondition is dependent on the presence of samples on the associated DataReader
implies that a single take operation can potentially change the trigger value of several ReadCondition conditions. For
example, if all samples are taken, any ReadCondition associated with the DataReader that were triggered before, will
see their trigger value changed to false. Note that this does not guarantee that WaitSet objects that were separately
attached to those conditions will not be woken up. Once we have trigger_value == true on a condition, it may wake up
the attached Wait-set. The condition transitioning to trigger_value == false does not necessarily ‘unwakeup’ the Wait-
set, as ‘unwakening’ may not be possible in general. The consequence is that an application blocked on a Wait-set may
return from the wait with a list of conditions, some of which are no longer triggered. This also may be the consequence
of user actions. A user manually calling set_trigger_value() could potentially trigger the same behavior. This is
unavoidable if multiple threads are concurrently waiting on separate Waiz-set objects and taking data associated with
the same DataReader entity.

To elaborate further, consider the following example: A ReadCondition that has a sample_state_mask = {NOT_READ}
will have trigger_value == true whenever a new sample arrives and will transition to false as soon as all the newly-arrived
samples are either read (so their status changes to READ) or taken (so they are no longer managed by the DataReader).
However, if the same ReadCondition had a sample_state_mask = {READ, NOT_READ}, then the trigger_value would
only become false once all the newly-arrived samples are taken (it is not sufficient to read them as that would only
change the SampleState to READ which overlaps the mask on the ReadCondition).

6.17.2 Domain

A domain represents a separate communication plane. It creates a logical separation among the Entities that share
a common communication infrastructure. Conceptually, it can be seen as a virtual network linking all applications
running on the same domain and isolating them from applications running on different domains. This way, several
independent distributed applications can coexist in the same physical network without interfering, or even being aware
of each other.

Every domain has a unique identifier, called domainld, that is implemented as a uint32 value. Applications that share
this domainld belong to the same domain and will be able to communicate.

For an application to be added to a domain, it must create an instance of DomainParticipant with the appropriate
domainld. Instances of DomainParticipant are created through the DomainParticipantFactory singleton.

Partitions introduce another entity isolation level within the domain. While DomainParticipant will be able to com-
municate with each other if they are in the same domain, it is still possible to isolate their Publishers and Subscribers
assigning them to different Partitions.

Fig. 6: Domain class diagram

162 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

DomainParticipant

A DomainParticipant is the entry point of the application to a domain. Every DomainParticipant is linked to a single
domain from its creation, and contains all the Entities related to that domain. It also acts as a factory for Publisher,
Subscriber and Topic.

The behavior of the DomainParticipant can be modified with the QoS values specified on DomainPartici-
pantQos. The QoS values can be set at the creation of the DomainParticipant, or modified later with
DomainParticipant: :set_qos () member function.

As an Entity, DomainParticipant accepts a DomainParticipantListener that will be notified of status changes on the
DomainParticipant instance.

DomainParticipantQos

DomainParticipantQos controls the behavior of the DomainParticipant. Internally it contains the following
QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
UserDataQosPolicy user_data() Yes
EntityFactoryQosPolicy entity_factory() Yes
FarticipantResourceLimitsQos | allocation() No
PropertyPolicyQos properties() No
WireProtocolConfigQos wire_protocol() No*
TransportConfigQos transport() No
FlowControllersQos flow_controllers() | No

Important: The only mutable field in WireProtocolConfigQos is m_DiscoveryServers, which is contained in
discovery_config within builtin (see Modifying remote servers list at run time).

Important: Upon the callto create_participant (), if Fast DDS is compiled with statistics support (enabled by de-
fault, see CMake options), the internal DomainParticipantQos may differ from the input DomainParticipantQos
(see Statistics Module Settings). This entails that applications willing to further modify the DomainParticipantQos
after DomainParticipant creation should:

1. Retrieve the internal DomainParticipantQos by the means of DomainParticipant: :get_qos().
2. Perform the desired modifications.

3. Update the DomainParticipantQos by the means of DomainParticipant::set_qgos().

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created DomainParticipant can be modified using the
DomainParticipant::set_gos() member function. Trying to modify an immutable QosPolicy on an already
enabled DomainParticipant will result on an error. In such case, no changes will be applied and the DomainParticipant
will keep its previous DomainParticipantQos.

// Create a DomainParticipant with default DomainParticipantQos
DomainParticipant® participant =

DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;

(continues on next page)

6.17. DDS Layer 163

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (nullptr == participant)

{
// Error
return;

}

// Get the current QoS or create a new one from scratch
DomainParticipantQos gos = participant->get_qos();

// Modify QoS attributes
gos.entity_factory().autoenable_created_entities = false;

// Assign the new Qos to the object
participant->set_gos(qos);

Default DomainParticipantQos

The default DomainParticipantQos refers to the value returned by the get_default_participant_gos() member
function on the DomainParticipantFactory singleton. The special value PARTICIPANT_QOS_DEFAULT can be used as
QoS argument on create_participant () or DomainParticipant: :set_qgos () member functions to indicate that
the current default DomainParticipantQos should be used.

When the system starts, the default DomainParticipantQos is equivalent to the default constructed value
DomainParticipantQos(). The default DomainParticipantQos can be modified at any time using the
set_default_participant_gos() member function on the DomainParticipantFactory singleton. Modifying the
default DomainParticipantQos will not affect already existing DomainParticipant instances.

// Get the current QoS or create a new one from scratch
DomainParticipantQos gos_typel = DomainParticipantFactory::get_instance()->get_default_
—participant_gos(Q);

// Modify QoS attributes
/7)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_gos(qos_typel) !=
ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// Create a DomainParticipant with the new default DomainParticipantQos.
DomainParticipant® participant_with_gos_typel =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant_with_qgos_typel)
{
// Error
return;

(continues on next page)

164 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos_type2;

// Modify QoS attributes
/7 Con)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_gos(qos_type2) !=
ReturnCode_t: :RETCODE_OK)
{
// Error
return;

// Create a Topic with the new default TopicQos.
DomainParticipant® participant_with_qos_type2 =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant_with_qos_type2)

{
// Error
return;

// Resetting the default DomainParticipantQos to the original default constructed values
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(PARTICIPANT_
-»QOS_DEFAULT)
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (DomainParticipantFactory::get_instance()->set_default_participant_
—gos (DomainParticipantQos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

set_default_participant_qgos() member function also accepts the value PARTICIPANT_QOS_DEFAULT as
input argument. This will reset the current default DomainParticipantQos to the default constructed value
DomainParticipantQos().

// Create a custom DomainParticipantQos
DomainParticipantQos custom_gos;

// Modify QoS attributes
// (o)

(continues on next page)

6.17. DDS Layer 165

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Create a DomainParticipant with a custom DomainParticipantQos

DomainParticipant® participant = DomainParticipantFactory::get_instance()->create_

—participant(®, custom_qgos);

if (nullptr == participant)

{
// Error
return;

}

// Set the QoS on the participant to the default

if (participant->set_qos(PARTICIPANT_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

}

// The previous instruction is equivalent to the following:
if (participant->set_qgos(DomainParticipantFactory::get_instance()->get_default_
—participant_gos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value PARTICIPANT_QOS_DEFAULT has different meaning depending on where it is used:

* On create_participant () and DomainParticipant::set_qos() it refers to the default DomainPartici-
pantQos as returned by get_default_participant_gos().

e On set_default_participant_qos() it refers to the default constructed DomainParticipantQos().

DomainParticipantListener

DomainParticipantListener is an abstract class defining the callbacks that will be triggered in response to state
changes on the DomainParticipant. By default, all these callbacks are empty and do nothing. The user should imple-
ment a specialization of this class overriding the callbacks that are needed on the application. Callbacks that are not
overridden will maintain their empty implementation.

DomainParticipantListener inherits from TopicListener, PublisherListener, and SubscriberListener. Therefore, it has
the ability to react to every kind of event that is reported to any of its attached Entities. Since events are always notified
to the most specific Entity Listener that can handle the event, callbacks that DomainParticipantListener inherits from
other Listeners will only be called if no other Entity was able to handle the event, either because it has no Listener
attached, or because the callback is disabled by the StatusMask on the Entity.

Additionally, DomainParticipantListener adds the following non-standard callbacks:

e on_participant_discovery(): A new DomainParticipant is discovered in the same domain, a previously
known DomainParticipant has been removed, or some DomainParticipant has changed its QoS. This method
provides an overload with an additional boolean output parameter so a discovery callback can tell the middle-

166 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

ware if a newly discovered participant has to be ignored via the use of the ignore_participant(). This
overload should be used when there is a need to ignore participants inside the discovery callback, since calling
ignore_participant () inside the listener might deadlock.

» on_subscriber_discovery(): A new Subscriber is discovered in the same domain, a previously known Sub-
scriber has been removed, or some Subscriber has changed its QoS.

e on_publisher_discovery(): A new Publisher is discovered in the same domain, a previously known Pub-
lisher has been removed, or some Publisher has changed its QoS.

* on_type_discovery(): A new data Type is discovered in the same domain.

e on_type_dependencies_reply(): The Type lookup client received a replay to a getTypeDependencies()
request. This callback can be used to retrieve the new type using the getTypes() request and create a new
dynamic type using the retrieved type object.

e on_type_information_received(): A new TypeInformation has been received from a newly discovered
DomainParticipant.

e onParticipantAuthentication(): Informs about the result of the authentication process of a remote Do-
mainParticipant (either on failure or success).

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomDomainParticipantListener : public DomainParticipantListener

{
public:

CustomDomainParticipantListener()
: DomainParticipantListener()

{

}

virtual ~CustomDomainParticipantListener()
{
}

void on_participant_discovery(
DomainParticipant® /*participant®/,
eprosima: :fastrtps: :rtps: :ParticipantDiscoveryInfo&& info,
bool& should_be_ignored) override

should_be_ignored = false;
if (info.status ==,
—.eprosima: :fastrtps: :rtps::ParticipantDiscoveryInfo: :DISCOVERED_PARTICIPANT)
{
std::cout << "New participant discovered" << std::endl;
// The following line can be modified to evaluate whether the discovered.
—participant should be ignored
// (usually based on fields present in the discovery information)
bool ignoring_condition = false;
if (ignoring_condition)
{

should_be_ignored = true; // Request the ignoring of the discovered.

Sparticipant (continues on next page)

6.17. DDS Layer 167

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}
}
else if (info.status ==_
—,eprosima:: fastrtps: :rtps: :ParticipantDiscoveryInfo: :REMOVED_PARTICIPANT | |
info.status ==_
—,eprosima:: fastrtps: :rtps::ParticipantDiscoveryInfo: :DROPPED_PARTICIPANT)
{
std::cout << "New participant lost" << std::endl;
}
}

#1f HAVE_SECURITY
void onParticipantAuthentication(
DomainParticipant® /*participant®/,
eprosima: :fastrtps::rtps::ParticipantAuthenticationInfo&& info) override
{
if (info.status ==,
—,eprosima:: fastrtps: :rtps::ParticipantAuthenticationInfo: : AUTHORIZED_PARTICIPANT)
{
std::cout << "A participant was authorized" << std::endl;
}
else if (info.status ==.
—,eprosima::fastrtps: :rtps::ParticipantAuthenticationInfo: :UNAUTHORIZED_PARTICIPANT)
{

std::cout << "A participant failed authorization" << std::endl;

}
#endif // if HAVE_SECURITY

void on_subscriber_discovery(
DomainParticipant® /*participant®/,
eprosima: :fastrtps::rtps: :ReaderDiscoveryInfo&& info) override
{
if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo: :DISCOVERED_
—-READER)

{
std: :cout << "New subscriber discovered" << std::endl;
}
else if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo: :REMOVED_
—READER)
{
std: :cout << "New subscriber lost" << std::endl;
}

}

void on_publisher_discovery(
DomainParticipant® /*participant®/,
eprosima::fastrtps::rtps::WriterDiscoveryInfo&& info) override
{
if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERED_
—WRITER)

(continues on next page)

168 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

{
std: :cout << "New publisher discovered" << std::endl;
}
else if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo: :REMOVED_
—WRITER)
{
std: :cout << "New publisher lost" << std::endl;
}

void on_type_discovery(
DomainParticipant® participant,
const eprosima::fastrtps::rtps::Sampleldentity& request_sample_id,
const eprosima::fastrtps::string_255& topic,
const eprosima::fastrtps::types: :Typeldentifier* identifier,
const eprosima::fastrtps::types::TypeObject* object,
eprosima::fastrtps::types: :DynamicType_ptr dyn_type) override

static_cast<void>(participant);
static_cast<void>(request_sample_id);
static_cast<void>(topic);
static_cast<void>(identifier);
static_cast<void>(object);
static_cast<void>(dyn_type);

std: :cout << "New data type discovered" << std::endl;

void on_type_dependencies_reply(
DomainParticipant® participant,
const eprosima::fastrtps::rtps::Sampleldentity& request_sample_id,
const eprosima::fastrtps::types: :TypeldentifierWithSizeSeq& dependencies)..
—override
{
static_cast<void>(participant);
static_cast<void>(request_sample_id);
static_cast<void>(dependencies);
std::cout << "Answer to a request for type dependencies was received" <<,
—std::endl;
}

void on_type_information_received(
DomainParticipant® participant,
const eprosima::fastrtps::string_255 topic_name,
const eprosima::fastrtps::string_255 type_name,
const eprosima::fastrtps::types: :TypeInformation& type_information) override

static_cast<void>(participant);

static_cast<void>(topic_name);

static_cast<void>(type_name);
static_cast<void>(type_information);

std: :cout << "New data type information received" << std::endl;

(continues on next page)

6.17. DDS Layer 169

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

DomainParticipantFactory

The sole purpose of this class is to allow the creation and destruction of DomainParticipant objects.
DomainParticipantFactory itself has no factory, it is a singleton object that can be accessed through the
get_instance () static member function on the DomainParticipantFactory class.

The behavior of the DomainParticipantFactory can be modified with the QoS values specified on DomainPar-
ticipantFactoryQos. Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory: :set_qgos() member function.

DomainParticipantFactory does not accept any Listener, since it is not an Entity.

DomainParticipantFactoryQos

DomainParticipantFactoryQos controls the behavior of the DomainParticipantFactory. Internally it contains the fol-
lowing QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
EntityFactoryQosPolicy | entity_factory() | Yes

Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory: :set_qos () member function.

DomainParticipantFactoryQos qos;

// Setting autoenable_created_entities to true makes the created DomainParticipants
// to be enabled upon creation
gos.entity_factory().autoenable_created_entities = true;

if (DomainParticipantFactory::get_instance()->set_gos(qos) != ReturnCode_t: :RETCODE_OK)
{

// Error

return;
}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.

// The returned DomainParticipant is already enabled

DomainParticipant® enabled_participant =

DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == enabled_participant)

{
// Error
return;

// Setting autoenable_created_entities to false makes the created DomainParticipants

(continues on next page)

170 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// to be disabled upon creation

gos.entity_factory().autoenable_created_entities = false;

if (DomainParticipantFactory::get_instance()->set_gos(gos) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.

// The returned DomainParticipant is disabled and will need to be enabled explicitly

DomainParticipant® disabled_participant =

DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == disabled_participant)

{
// Error
return;

Loading profiles from an XML file

To create Entities based on XML profiles, the file containing such profiles must be loaded first.

If the profile is described in one of the default loaded files, it will be automatically available on initialization. Otherwise,
load_XML_profiles_file () member function can be used to load the profiles in the XML. See section XML profiles
for more information regarding XML profile format and automatic loading.

Once loaded, the name of the profiles can be used to create Entities that will have QoS settings according to the profile
specifications.

// Load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file("profiles.xml");

// Profiles can now be used to create Entities
DomainParticipant® participant_with_profile =
DomainParticipantFactory::get_instance()->create_participant_with_profile(0,

—"participant_profile");

if (nullptr == participant_with_profile)

{
// Error
return;

6.17. DDS Layer 171

Fast DDS Documentation, Release 2.10.2

Creating a DomainParticipant
Creation of a DomainParticipant is done with the create_participant () member function on the DomainPartici-
pantFactory singleton, that acts as a factory for the DomainParticipant.
Mandatory arguments are:
* The DomainId that identifies the domain where the DomainParticipant will be created.

* The DomainParticipantQos describing the behavior of the DomainParticipant. If the provided value is
TOPIC_QOS_DEFAULT, the value of the DomainParticipantQos is used.

Optional arguments are:

* A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantListener.
By default all events are enabled.

Warning: Following the DDSI-RTPS V2.2 standard (Section 9.6.1.1), the default ports are calculated depending
on the DomainId, as it is explained in section Well Known Ports. Thus, it is encouraged to use DomainId lower
than 200 (over DomainId 233 default port assign will fail consistently).

create_participant () will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant with default DomainParticipantQos and no Listener

// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.

DomainParticipant® participant_with_default_attributes =

DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant_with_default_attributes)

{
// Error
return;

}

// A custom DomainParticipantQos can be provided to the creation method
DomainParticipantQos custom_qos;

// Modify QoS attributes
/7 Con)

DomainParticipant® participant_with_custom_gos =
DomainParticipantFactory: :get_instance()->create_participant(®, custom_qos);
if (nullptr == participant_with_custom_qgos)
{
// Error
return;

}

// Create a DomainParticipant with default QoS and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.

(continues on next page)

172 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

CustomDomainParticipantListener custom_listener;
DomainParticipant® participant_with_default_gos_and_custom_listener =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT,
&custom_listener);

if (nullptr == participant_with_default_gos_and_custom_listener)
{

// Error

return;
}

Profile based creation of a DomainParticipant

Instead of using a DomainParticipantQos, the name of a profile can be used to create a DomainParticipant with the
create_participant_with_profile () member function on the DomainParticipantFactory singleton.

Mandatory arguments are:

* The DomainId that identifies the domain where the DomainParticipant will be created. Do not use DomainId
higher than 200 (see Creating a DomainParticipant).

* The name of the profile to be applied to the DomainParticipant.
Optional arguments are:

* A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantListener.
By default all events are enabled.

create_participant_with_profile() will return a null pointer if there was an error during the operation, e.g if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant using a profile and no Listener
DomainParticipant® participant_with_profile =
DomainParticipantFactory::get_instance()->create_participant_with_profile(0,

—"participant_profile");

if (nullptr == participant_with_profile)

{
// Error
return;

// Create a DomainParticipant using a profile and a custom Listener.

// CustomDomainParticipantListener inherits from DomainParticipantListener.
CustomDomainParticipantListener custom_listener;

DomainParticipant® participant_with_profile_and_custom_listener =

(continues on next page)

6.17. DDS Layer 173

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

DomainParticipantFactory::get_instance()->create_participant_with_profile(0,
<"participant_profile",

&custom_listener);
if (nullptr == participant_with_profile_and_custom_listener)
{
// Error
return;
}

Deleting a DomainParticipant

A DomainParticipant can be deleted with the delete_participant () member function on the DomainParticipant-
Factory singleton.

Note: A DomainParticipant can only be deleted if all Entities belonging to the participant (Publisher, Subscriber or
Topic) have already been deleted. Otherwise, the function will issue an error and the DomainParticipant will not be
deleted. This can be performed by using the delete_contained_entities() member function of the DomainPar-
ticipant.

// Create a DomainParticipant
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

// Use the DomainParticipant to communicate

/7 Con)

// Delete entities created by the DomainParticipant

if (participant->delete_contained_entities() != ReturnCode_t::RETCODE_OK)

{
// DomainParticipant failed to delete the entities it created.
return;

// Delete the DomainParticipant

if (DomainParticipantFactory::get_instance()->delete_participant(participant) !=_.

—ReturnCode_t: :RETCODE_OK)

{
// Error
return;

174 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Partitions

Partitions introduce a logical entity isolation level concept inside the physical isolation induced by a Domain. They
represent another level to separate Publishers and Subscribers beyond Domain and 7opic. For a Publisher to commu-
nicate with a Subscriber, they have to belong at least to one common partition. In this sense, partitions represent a light
mechanism to provide data separation among endpoints:

* Unlike Domain and Topic, Partitions can be changed dynamically during the life cycle of the endpoint with
little cost. Specifically, no new threads are launched, no new memory is allocated, and the change history is
not affected. Beware that modifying the Partition membership of endpoints will trigger the announcement of
the new QoS configuration, and as a result, new endpoint matching may occur, depending on the new Partition
configuration. Changes on the memory allocation and running threads may occur due to the matching of remote
endpoints.

* Unlike Domain and Topic, an endpoint can belong to several Partitions at the same time. For certain data to be
shared over different Topics, there must be a different Publisher for each Topic, each of them sharing its own
history of changes. On the other hand, a single Publisher can share the same data over different Partitions using
a single topic data change, thus reducing network overload.

The Partition membership of an endpoint can be configured on the PartitionQosPolicy data member of the PublisherQos
or SubscriberQos objects. This member holds a list of Partition name strings. If no Partition is defined for an entity, it
will be automatically included in the default nameless Partition. Therefore, a Publisher and a Subscriber that specify
no Partition will still be able to communicate through the default nameless Partition.

Warning: Partitions are linked to the endpoint and not to the changes. This means that the endpoint history is
oblivious to modifications in the Partitions. For example, if a Publisher switches Partitions and afterwards needs to
resend some older change again, it will deliver it to the new Partition set, regardless of which Partitions were defined
when the change was created. This means that a late joiner Subscriber may receive changes that were created when
another set of Partitions was active.

Wildcards in Partitions

Partition name entries can have wildcards following the naming conventions defined by the POSIX fnmatch API
(1003.2-1992 section B.6). Entries with wildcards can match several names, allowing an endpoint to easily be included
in several Partitions. Two Partition names with wildcards will match if either of them matches the other one according
to fnmatch. That is, the matching is checked both ways. For example, consider the following configuration:

¢ A Publisher with Partition part®
¢ A Subscriber with Partition partition*

Even though partition* does not match part*, these Publisher and Subscriber will communicate between them
because part* matches partition®.

Note that a Partition with name * will match any other partition except the default Partition.

6.17. DDS Layer 175

https://standards.ieee.org/standard/1003_2-1992.html

Fast DDS Documentation, Release 2.10.2

Full example

Given a system with the following Partition configuration:

Participant_1 | Pub_11 {“Partition_1", “Partition_2"}
Pub_12 {7}

Participant_2 | Pub_21 {}

Pub_22 {“Partition*”}

Participant_3 | Subs_31 | {“Partition_1"}

Subs_32 | {“Partition_2"}

Subs_33 | {“Partition_3"}

Subs_34 | {}

The endpoints will finally match the Partitions depicted on the following table. Note that Pub_12 does not match the
default Partition.

Participant_1 Participant_2 Participant_3
Pub_11 | Pub_12 | Pub_21 | Pub_22 | Subs_31 | Subs_32 | Subs_33 | Subs_34
Partition_1 | v v X v v X X X
Partition_2 | v/ v X v X Ve X X
Partition_3 | x v X v X X v X
{default} X X v X X X X v
The following table provides the communication matrix for the given example:
Participant_1 Participant_2
Pub_11 | Pub_12 | Pub_21 | Pub_22
Participant_3 | Subs_31 | v v X v
Subs_32 | vV v X v
Subs_33 | x v X v
Subs_34 | x X v X

The following piece of code shows the set of parameters needed for the use case depicted in this example.

176 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

C++

PublisherQos pub_11_gos;
pub_11_gos.partition() .push_back("Partition_1");
pub_11_gos.partition() .push_back("Partition_2");

PublisherQos pub_12_gos;
pub_12_gos.partition() .push_back("*");

PublisherQos pub_21_gos;
//No partitions defined for pub_21

PublisherQos pub_22_gos;
pub_22_gos.partition() .push_back("Partition*");

SubscriberQos subs_31_qos;
subs_31_qos.partition() .push_back("Partition_1");

SubscriberQos subs_32_qos;
subs_32_qos.partition() .push_back("Partition_2");

SubscriberQos subs_33_qos;
subs_33_qos.partition() .push_back("Partition_3");

SubscriberQos subs_34_qos;
//No partitions defined for subs_34

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<data_writer profile_name="pub_11">

<gos>
<partition>
<names>
<name>Partition_1</name>
<name>Partition_2</name>
</names>
</partition>
</qos>

</data_writer>

<data_writer profile_name="pub_12">
<qos>
<partition>
<names>
<name>*</name>
</names>
</partition>
</qos>
</data_writer>

<data_writer profile_name="pub_22">

<qos>
<partition>
6.17. DDS Layer <names> 177
<name>Partition*</name>
</names>

</partition>

Fast DDS Documentation, Release 2.10.2

6.17.3 Publisher

A publication is defined by the association of a DataWriter to a Publisher. To start publishing the values of a data
instance, the application creates a new DataWriter in a Publisher. This DataWriter will be bound to the Topic that
describes the data type that is being transmitted. Remote subscriptions that match with this Topic will be able to
receive the data value updates from the DataWriter.

Publisher

The Publisher acts on behalf of one or several DataWriter objects that belong to it. It serves as a container that allows
grouping different DataWriter objects under a common configuration given by the PublisherQos of the Publisher.

DataWriter objects that belong to the same Publisher do not have any other relation among each other beyond the
PublisherQos of the Publisher and act independently otherwise. Specifically, a Publisher can host DataWriter objects
for different 7opics and data types.

PublisherQos

PublisherQos controls the behavior of the Publisher. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy presentation() Yes
PartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data() Yes
EntityFactoryQosPolicy | entity_factory() | Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created Publisher can be modified using the Publisher: :set_qgos () member function.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Create a Publisher with default PublisherQos
Publisher® publisher =
participant->create_publisher (PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch

(continues on next page)

178 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

PublisherQos qos = publisher->get_gos(Q);

// Modify QoS attributes
/7 Con)

// Assign the new Qos to the object
publisher->set_qos(qos);

Default PublisherQos

The default PublisherQos refers to the value returned by the get_default_publisher_gos() member function
on the DomainParticipant instance. The special value PUBLISHER_QOS_DEFAULT can be used as QoS argument on
create_publisher() or Publisher: :set_qos() member functions to indicate that the current default Publish-
erQos should be used.

When the system starts, the default PublisherQos is equivalent to the default constructed value PublisherQos (). The
default PublisherQos can be modified at any time using the set_default_publisher_qos () member function on the
DomainParticipant instance. Modifying the default PublisherQos will not affect already existing Publisher instances.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Get the current QoS or create a new one from scratch
PublisherQos qos_typel = participant->get_default_publisher_qgos(Q);

// Modify QoS attributes
/7 Con)

// Set as the new default PublisherQos

if (participant->set_default_publisher_gos(qos_typel) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a Publisher with the new default PublisherQos.
Publisher® publisher_with_qos_typel =
participant->create_publisher (PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_typel)
{
// Error
return;

(continues on next page)

6.17. DDS Layer 179

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Get the current QoS or create a new one from scratch
PublisherQos qos_type2;

// Modify QoS attributes
// Coal)

// Set as the new default PublisherQos

if (participant->set_default_publisher_gos(qos_type2) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a Publisher with the new default PublisherQos.
Publisher® publisher_with_qos_type2 =
participant->create_publisher (PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_type2)
{
// Error
return;

¥

// Resetting the default PublisherQos to the original default constructed values
if (participant->set_default_publisher_qos(PUBLISHER_QOS_DEFAULT)
1= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_publisher_gos(PublisherQos())
!= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

set_default_publisher_qos () member function also accepts the special value PUBLISHER_QOS_DEFAULT as in-
put argument. This will reset the current default PublisherQos to default constructed value PublisherQos().

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Create a custom PublisherQos

(continues on next page)

180 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

PublisherQos custom_gos;

// Modify QoS attributes
/7 Con)

// Create a publisher with a custom PublisherQos

Publisher® publisher = participant->create_publisher(custom_qos);

if (nullptr == publisher)

{
// Error
return;

}

// Set the QoS on the publisher to the default

if (publisher->set_qos(PUBLISHER_QOS_DEFAULT) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// The previous instruction is equivalent to the following:
if (publisher->set_gos(participant->get_default_publisher_qgos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value PUBLISHER_QOS_DEFAULT has different meaning depending on where it is used:

e On create_publisher() and Publisher::set_qgos() it refers to the default PublisherQos. as returned by
get_default_publisher_qos().

e On set_default_publisher_qos() it refers to the default constructed PublisherQos().

PublisherListener

PublisherListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the Publisher. By default, all these callbacks are empty and do nothing. The user should implement a specialization of
this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

PublisherListener inherits from DataWriterListener. Therefore, it has the ability to react to all events that are re-
ported to the DataWriter. Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that PublisherListener inherits from DataWriterListener will only be called if the triggering DataWriter
has no Listener attached, or if the callback is disabled by the StatusMask on the DataWriter.

PublisherListener does not add any new callback. Please, refer to the DataWriterListener for the list of inherited
callbacks and override examples.

6.17. DDS Layer 181

Fast DDS Documentation, Release 2.10.2

Creating a Publisher

A Publisher always belongs to a DomainParticipant. Creation of a Publisher is done with the create_publisher()
member function on the DomainParticipant instance, that acts as a factory for the Publisher.

Mandatory arguments are:

e The PublisherQos describing the behavior of the Publisher. If the provided value is PUBLISHER_QOS_DEFAULT,
the value of the Default PublisherQos is used.

Optional arguments are:

* A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher () will return a null pointer if there was an error during the operation, e.g. if the provided QoS is
not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Create a Publisher with default PublisherQos and no Listener

// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.

Publisher® publisher_with_default_qos =

participant->create_publisher (PUBLISHER_QOS_DEFAULT);

if (nullptr == publisher_with_default_gos)

{
// Error
return;

}

// A custom PublisherQos can be provided to the creation method
PublisherQos custom_gos;

// Modify QoS attributes
// Conl)

Publisher® publisher_with_custom_gos =
participant->create_publisher(custom_qos);
if (nullptr == publisher_with_custom_qos)
{
// Error
return;

}

// Create a Publisher with default QoS and a custom Listener.

(continues on next page)

182 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// CustomPublisherListener inherits from PublisherListener.

// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.

CustomPublisherListener custom_listener;

Publisher® publisher_with_default_gos_and_custom_listener =

participant->create_publisher (PUBLISHER_QOS_DEFAULT, &custom_listener);

if (nullptr == publisher_with_default_gos_and_custom_listener)

{
// Error
return;

Profile based creation of a Publisher

Instead of using a PublisherQos, the name of a profile can be used to create a Publisher with the
create_publisher_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Publisher.
Optional arguments are:

* A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher_with_profile() will return a null pointer if there was an error during the operation, e.g. if the
provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file('"profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create a Publisher using a profile and no Listener
Publisher® publisher_with_profile =
participant->create_publisher_with_profile("publisher_profile");
if (nullptr == publisher_with_profile)
{
// Error

(continues on next page)

6.17. DDS Layer 183

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

return;

}

// Create a Publisher using a profile and a custom Listener.

// CustomPublisherListener inherits from PublisherListener.

CustomPublisherListener custom_listener;

Publisher® publisher_with_profile_and_custom_listener =

participant->create_publisher_with_profile("publisher_profile", &custom_

—1listener);

if (nullptr == publisher_with_profile_and_custom_listener)

{
// Error
return;

Deleting a Publisher

A Publisher can be deleted with the delete_publisher () member function on the DomainParticipant instance where
the Publisher was created.

Note: A Publisher can only be deleted if all Entities belonging to the Publisher (DataWriters) have already been
deleted. Otherwise, the function will issue an error and the Publisher will not be deleted. This can be performed by
using the delete_contained_entities () member function of the Publisher.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Create a Publisher
Publisher® publisher =
participant->create_publisher (PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{
// Error
return;

}

// Use the Publisher to communicate

/7))

// Delete the entities the Publisher created.
if (publisher->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{

(continues on next page)

184 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Publisher failed to delete the entities it created.
return;

}

// Delete the Publisher
if (participant->delete_publisher(publisher) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

DataWriter

A Dataliriter is attached to exactly one Publisher that acts as a factory for it. Additionally, each DataWriter is bound
to a single Topic since its creation. This Topic must exist prior to the creation of the DataWriter, and must be bound to
the data type that the DataWriter wants to publish.

The effect of creating a new DataWriter in a Publisher for a specific Topic is to initiate a new publication with the name
and data type described by the Topic.

Once the DataWriter is created, the application can inform of changes in the data value using the write () member
function on the DataWriter. These changes will be transmitted to all subscriptions matched with this publication.

DataWriterQos

DataliriterQos controls the behavior of the DataWriter. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability() No
DurabilityServiceQosPolicy durability_service() Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness() No
ReliabilityQosPolicy reliability() No (*)
DestinationOrderQosPolicy destination_order() No
HistoryQosPolicy history() Yes
ResourceLimitsQosPolicy resource_limits() Yes
TransportPriorityQosPolicy transport_priority() Yes
LifespanQosPolicy lifespan() Yes
UserDataQosPolicy user_data() Yes
OwnershipQosPolicy ownership() No
OwnershipStrengthQosPolicy ownership_strength() Yes
WriterDataLifecycleQosPolicy | writer_data_lifecycle() Yes
PublishModeQosPolicy publish_mode() Yes
DataRepresentationQosPolicy | representation() Yes
PropertyPolicyQos properties() Yes
RTPSReliableWriterQos reliable_writer_qos() Yes
RTPSEndpointQos endpoint () Yes
WriterResourceLimitsQos writer_resource_limits() | Yes
DataSharingQosPolicy data_sharing() No

6.17. DDS Layer

185

Fast DDS Documentation, Release 2.10.2

The following non-consolidated property-assigned QoS apply to DataWriters:

Property name Non-consolidated QoS
fastdds.push_mode | DataWriter operating mode QoS Policy
partitions Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataWriter can be modified using the Dataliriter: :set_gos() member
function.

// Create a DatalWriter with default DataWriterQos
DataWriter® data_writer =
publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DataWriterQos qos = data_writer->get_qos();

// Modify QoS attributes
/7 Con)

// Assign the new Qos to the object
data_writer->set_qos(qgos);

Default DataWriterQos

The default DataWriterQos refers to the value returned by the get_default_datawriter_qos() member func-
tion on the Publisher instance. The special value DATAWRITER_QOS_DEFAULT can be used as QoS argument
on create_datawriter() or Dataliriter::set_qgos() member functions to indicate that the current default
DataWriterQos should be used.

When the system starts, the default DataWriterQos is equivalent to the default constructed value DataliriterQos().
The default DataWriterQos can be modified at any time using the set_default_datawriter_gos() member func-
tion on the Publisher instance. Modifying the default DataWriterQos will not affect already existing DataWriter in-
stances.

// Get the current QoS or create a new one from scratch
DataWriterQos qos_typel = publisher->get_default_datawriter_qgosQ);

// Modify QoS attributes
// Coa)

// Set as the new default DataliriterQos

(continues on next page)

186 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (publisher->set_default_datawriter_qgos(gos_typel) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a DatalWriter with the new default DataliriterQos.
DataWriter® data_writer_with_qos_typel =
publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DataWriterQos qos_type2;

// Modify QoS attributes
/7 Con)

// Set as the new default DataliriterQos

if (publisher->set_default_datawriter_qgos(gos_type2) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

}

// Create a DatalWriter with the new default DatalWriterQos.
DataWriter® data_writer_with_qos_type2 =
publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_type2)
{
// Error
return;

}

// Resetting the default DataWriterQos to the original default constructed values
if (publisher->set_default_datawriter_qos(DATAWRITER_QOS_DEFAULT)
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (publisher->set_default_datawriter_gos(DataWriterQos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

6.17. DDS Layer 187

Fast DDS Documentation, Release 2.10.2

set_default_datawriter_qgos() member function also accepts the special value DATAWRITER_QOS_DEFAULT as
input argument. This will reset the current default DataWriterQos to default constructed value DataliriterQos().

// Create a custom DataliriterQos
DataWriterQos custom_gos;

// Modify QoS attributes
/7 Con)

// Create a DatalWriter with a custom DataliriterQos

DataWriter® data_writer = publisher->create_datawriter(topic, custom_gos);

if (nullptr == data_writer)

{
// Error
return;

}

// Set the QoS on the Datallriter to the default

if (data_writer->set_qos(DATAWRITER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

// The previous instruction is equivalent to the following:
if (data_writer->set_qos(publisher->get_default_datawriter_qgos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value DATAWRITER_QOS_DEFAULT has different meaning depending on where it is used:

e On create_datawriter() and Dataliriter: :set_qos() it refers to the default DataWriterQos as returned
by get_default_datawriter_qos().

e On set_default_datawriter_qgos() it refers to the default constructed DataliriterQos().

DataWriterListener

DataliriterListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the DataWriter. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

DataliriterListener defines the following callbacks:

e on_publication_matched(): The DataWriter has found a DaraReader that matches the Topic and has a com-
mon partition and a compatible QoS, or has ceased to be matched with a DataReader that was previously con-
sidered to be matched.

e on_offered_deadline_missed(): The DataWriter failed to provide data within the deadline period config-
ured on its DataWriterQos. It will be called for each deadline period and data instance for which the DataWriter

188 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

failed to provide data.

e on_offered_incompatible_qgos(): The DataWriter has found a DataReader that matches the Topic and has
a common partition, but with a requested QoS that is incompatible with the one defined on the DataWriter.

e on_liveliness_lost(): The DataWriter did not respect the liveliness configuration on its DataWriterQos,
and therefore, DataReader entities will consider the DataWriter as no longer active.

e on_unacknowledged_sample_removed(): The Datawriter has removed a sample that has not been acknowl-
edged by every matched DataReader.

on_unacknowledged_sample_removed callback

on_unacknowledged_sample_removed () non-standard callback notifies the user when a sample has been removed
without being sent/received by the matched DataReaders. This could happen in constrained networks or if the publi-
cation throughput is too demanding. This callback can be used to detect these situations so the publishing application
can apply some solution to ease this issue like reducing the publication rate.

The criteria to consider that a sample has been removed without being acknowledged depends on the ReliabilityQosPol-
icy:

e BEST_EFFORT_RELIABILITY_QOS DataWriters will notify that a sample has been removed while unacknowl-
edged if the sample has not been sent through the transport.

e RELTABLE_RELTABILITY_QOS DataWriters consider samples to have been removed unacknowledged if not ev-
ery matched DataReader has confirmed its reception by sending the corresponding meta-traffic ACK message.
Consequently, a sample that is notified as removed unacknowledged might be received by one or more DataRead-
ers, but not by every matched one, or at least, the ACK message has not been received at the moment of sample
removal. A race condition is inevitable in this case, because when the sample is removed, the ACK from some
matched DataReader is missing, but that means that it might have been lost in the transmission or that the mes-
sage is still coming through and it will be received after the sample removal. Thus, this criteria may include
false positives, but from the user’s point of view, it is more meaningful to know when the sample has not been
acknowledged by every matched DataReader even if some samples are erroneously notified.

A specific case must be considered for reliable DataWriters with Disable PositiveACKsQosPolicy enabled. This policy
disables the sending of positive ACK messages, unless the sample has been lost in which case the matched DataReader
notifies the loss with a negative NACK message. If no NACK has been received in the time defined in the QoS policy,
the sample is considered to be received. Again, this is prone to race conditions because the NACK message might be on
its way or have been lost in the network. For this specific case, where ACK messages are not going to be received, the
reliable DataWriter uses the same criteria as the best effort DataWriter.

class CustomDataWriterListener : public DataliriterListener

{
public:

CustomDataWriterListener()
: DataliriterListener()

{

}

virtual ~CustomDataWriterListener()
{
}

void on_publication_matched(

(continues on next page)

6.17. DDS Layer 189

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

Dataliriter* writer,
const PublicationMatchedStatus& info) override

static_cast<void>(writer);
if (info.current_count_change == 1)

{

std: :cout << "Matched a remote Subscriber for one of our Topics" <<.
—std::endl;

}
else if (info.current_count_change == -1)
{
std::cout << "Unmatched a remote Subscriber" << std::endl;
}

void on_offered_deadline_missed(
DataWriter* writer,
const OfferedDeadlineMissedStatus& status) override

{

static_cast<void>(writer);

static_cast<void>(status);

std: :cout << "Some data could not be delivered on time" << std::endl;
}

void on_offered_incompatible_qgos(
DataWriter* /*writer¥®/,
const OfferedIncompatibleQosStatus& status) override

std::cout << "Found a remote Topic with incompatible QoS (QoS ID: << status.

—last_policy_id <<
")" << std::endl;

void on_liveliness_lost(
DataWriter* writer,
const LivelinessLostStatus& status) override

static_cast<void>(writer);
static_cast<void>(status);
std::cout << "Liveliness lost. Matched Subscribers will consider us offline" <<
—std: :endl;
}

void on_unacknowledged_sample_removed(
DataWriter* writer,
const InstanceHandle_t& instance) override

{

static_cast<void>(writer);

static_cast<void>(instance);

std::cout << "Sample removed unacknowledged" << std::endl;
}

(continues on next page)

190 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

1

Creating a DataWriter
A DataWriter always belongs to a Publisher. Creation of a DataWriter is done with the create_datawriter()
member function on the Publisher instance, that acts as a factory for the DataWriter.
Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.

e The DataWriterQos describing the behavior of the DataWriter. If the provided value is
DATAWRITER_QOS_DEFAULT, the value of the Default DataWriterQos is used.

Optional arguments are:

* A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter () will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DatalWriter with default DataWriterQos and no Listener

// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.

DataWriter® data_writer_with_default_qos =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);

if (nullptr == data_writer_with_default_qgos)

{
// Error
return;

// A custom DataliriterQos can be provided to the creation method
DataWriterQos custom_gos;

// Modify QoS attributes
// Coal)

DataWriter® data_writer_with_custom_qgos =
publisher->create_datawriter(topic, custom_gos);
if (nullptr == data_writer_with_custom_gos)
{
// Error
return;

// Create a DatalWriter with default QoS and a custom Listener.

// CustomDatalWWriterListener inherits from DataliriterListener.

// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.
CustomDataWriterListener custom_listener;

DataWriter® data_writer_with_default_qgos_and_custom_listener =

(continues on next page)

6.17. DDS Layer 191

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT, &custom_listener);

if (nullptr == data_writer_with_default_gos_and_custom_listener)
{

// Error

return;
3

Profile based creation of a DataWriter

Instead of using a DataWriterQos, the name of a profile can be used to create a DataWriter with the
create_datawriter_with_profile() member function on the Publisher instance.

Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.
* A string with the name that identifies the DataWriter.
Optional arguments are:

* A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DatalWriter using a profile and no Listener
DataWriter* data_writer_with_profile =
publisher->create_datawriter_with_profile(topic, "data_writer_profile");
if (nullptr == data_writer_with_profile)
{
// Error
return;

}

// Create a DatalWriter using a profile and a custom Listener.

// CustomDatalWriterListener inherits from DataliriterListener.

CustomDatallriterListener custom_listener;

DataWriter® data_writer_with_profile_and_custom_listener =

publisher->create_datawriter_with_profile(topic, "data_writer_profile", &custom_

—listener);

if (nullptr == data_writer_with_profile_and_custom_listener)

{
// Error

(continues on next page)

192 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

return;

Deleting a DataWriter

A DataWriter can be deleted with the delete_datawriter () member function on the Publisher instance where the
DataWriter was created.

// Create a Dataliriter
DataWriter® data_writer =
publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
// Error
return;

// Use the Dataliriter to communicate

/7 Con)

// Delete the Dataliriter
if (publisher->delete_datawriter(data_writer) != ReturnCode_t: :RETCODE_OK)
{

// Error

return;

Publishing data

The user informs of a change in the value of a data instance with the write () member function on the DataWriter. This
change will then be communicated to every DataReader matched with the DataWriter. As a side effect, this operation
asserts liveliness on the DataWriter itself, the Publisher and the DomainParticipant.

The function takes two arguments:
* A pointer to the data instance with the new values.
* The handler to the instance.

An empty (i.e., default constructed InstanceHandle_t) instance handler can be used for the argument handle. This
indicates that the identity of the instance should be automatically deduced from the key of the instance data. Alter-
natively, the member function write() is overloaded to take only the pointer to the data instance, which will always
deduced the identity from the key of the instance data.

If the handle is not empty, then it must correspond to the value obtained with the getKey () of the TypeSupport
instance. Otherwise the write function will fail with RETCODE_PRECONDITION_NOT_MET.

// Register the data type in the DomainParticipant.
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.

(continues on next page)

6.17. DDS Layer 193

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

Topic* custom_topic =
participant->create_topic("topic_name", custom_type_support.get_type_name(),.
—TOPIC_QOS_DEFAULT);
if (nullptr == custom_topic)
{
// Error
return;

// Create a Dataliriter
DataWriter® data_writer =
publisher->create_datawriter(custom_topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
// Error
return;

}

// Get a data instance
void* data = custom_type_support->createData();

// Fill the data values
/7 Con)

// Publish the new value, deduce the instance handle

if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) != ReturnCode_

<t : :RETCODE_OK)

{
// Error
return;

// The data instance can be reused to publish new values,
// but delete it at the end to avoid leaks
custom_type_support->deleteData(data);

Blocking of the write operation

If the reliability kind is set to RELIABLE on the DataWriterQos, the write() operation may block. Specifically, if
the limits specified in the configured resource limits have been reached, the write () operation will block waiting for
space to become available. Under these circumstances, the reliability max_blocking_time configures the maximum
time the write operation may block waiting. If max_blocking_time elapses before the DataWriter is able to store the
modification without exceeding the limits, the write operation will fail and return TIMEOUT.

194 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Borrowing a data buffer

When the user calls write() with a new sample value, the data is copied from the given sample to the DataWriter’s
memory. For large data types this copy can consume significant time and memory resources. Instead, the DataWriter
can loan a sample from its memory to the user, and the user can fill this sample with the required values. When write ()
is called with such a loaned sample, the DataWriter does not copy its contents, as it already owns the buffer.

To use loaned data samples in publications, perform the following steps:
1. Get a reference to a loaned sample using loan_sample().
2. Use the reference to build the data sample.
3. Write the sample using write().

Once write () has been called with a loaned sample, the loan is considered returned, and it is not safe to make any
changes on the contents of the sample.

If function 1oan_sample () is called but the sample is never written, the loan must be returned to the DataWriter using
discard_loan(). Otherwise the DataWriter may run out of samples.

// Borrow a data instance

void* data = nullptr;

if (ReturnCode_t::RETCODE_OK == data_writer->loan_sample(data))
{

bool error = false;

// Fill the data values
/7 o)

if (error)

{
// Return the loan without publishing
data_writer->discard_loan(data);
return;

3

// Publish the new value
if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) !=.
—ReturnCode_t: : RETCODE_OK)
{
// Error
return;

}

// The data instance can be reused to publish new values,
// but delete it at the end to avoid leaks
custom_type_support->deleteData(data);

6.17. DDS Layer 195

Fast DDS Documentation, Release 2.10.2

6.17.4 Subscriber

A subscription is defined by the association of a DataReader to a Subscriber. To start receiving updates of a publication,
the application creates a new DataReader in a Subscriber. This DataReader will be bound to the Topic that describes
the data type that is going to be received. The DataReader will then start receiving data value updates from remote
publications that match this Topic.

When the Subscriber receives data, it informs the application that new data is available. Then, the application can use
the DataReader to get the received data.

Fig. 7: Subscriber class diagram

Subscriber

The Subscriber acts on behalf of one or several DataReader objects that belong to it. It serves as a container that
allows grouping different DataReader objects under a common configuration given by the SubscriberQos of the Sub-
scriber.

DataReader objects that belong to the same Subscriber do not have any other relation among each other beyond the
SubscriberQos of the Subscriber and act independently otherwise. Specifically, a Subscriber can host DataReader
objects for different topics and data types.

SubscriberQos

SubscriberQos controls the behavior of the Subscriber. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy | presentation() Yes
FartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data() Yes
EntityFactoryQosPolicy | entity_factory() | Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created Subscriber can be modified using the Subscriber: :set_qgos () member func-
tion.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
-.DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Create a Subscriber with default SubscriberQos
Subscriber* subscriber =

participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)

(continues on next page)

196 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos qos = subscriber->get_qos(Q);

// Modify QoS attributes
gos.entity_factory().autoenable_created_entities = false;

// Assign the new Qos to the object
subscriber->set_qgos(qos);

Default SubscriberQos

The default SubscriberQos refers to the value returned by the get_default_subscriber_qgos() member function
on the DomainParticipant instance. The special value SUBSCRIBER_QOS_DEFAULT can be used as QoS argument
on create_subscriber() or Subscriber: :set_qos () member functions to indicate that the current default Sub-
scriberQos should be used.

When the system starts, the default SubscriberQos is equivalent to the default constructed value SubscriberQos().
The default SubscriberQos can be modified at any time using the set_default_subscriber_qos () member function
on the DomainParticipant instance. Modifying the default SubscriberQos will not affect already existing Subscriber
instances.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos qos_typel = participant->get_default_subscriber_qgos(Q);

// Modify QoS attributes
// Coa)

// Set as the new default SubscriberQos

if (participant->set_default_subscriber_gos(qos_typel) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_gos_typel =

(continues on next page)

6.17. DDS Layer 197

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qgos_typel)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos gqos_type2;

// Modify QoS attributes
/7 Con)

// Set as the new default SubscriberQos

if (participant->set_default_subscriber_qos(qos_type2) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

// Create a Subscriber with the new default SubscriberQos.
Subscriber® subscriber_with_qos_type2 =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qgos_type2)
{
// Error
return;

}

// Resetting the default SubscriberQos to the original default constructed values
if (participant->set_default_subscriber_qos(SUBSCRIBER_QOS_DEFAULT)
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_subscriber_gos(SubscriberQos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

set_default_subscriber_qos () member function also accepts the special value SUBSCRIBER_QOS_DEFAULT as
input argument. This will reset the current default SubscriberQos to default constructed value SubscriberQos ().

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =

DomainParticipantFactory: :get_instance()->create_participant(0, PARTICIPANT_QOS_
—DEFAULT) ;

(continues on next page)

198 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (nullptr == participant)
{

// Error

return;

}

// Create a custom SubscriberQos
SubscriberQos custom_qos;

// Modify QoS attributes
// Coal)

// Create a subscriber with a custom SubscriberQos
Subscriber®* subscriber = participant->create_subscriber(custom_gos);
if (nullptr == subscriber)
{
// Error
return;

}

// Set the QoS on the subscriber to the default

if (subscriber->set_qos(SUBSCRIBER_QOS_DEFAULT) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// The previous instruction is equivalent to the following:
if (subscriber->set_qgos(participant->get_default_subscriber_gos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value SUBSCRIBER_QOS_DEFAULT has different meaning depending on where it is used:

¢ On create_subscriber() and Subscriber: :set_qgos() it refers to the default SubscriberQos as returned
by get_default_subscriber_qos().

e On set_default_subscriber_qos() it refers to the default constructed SubscriberQos().

6.17. DDS Layer 199

Fast DDS Documentation, Release 2.10.2

SubscriberListener

SubscriberListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the Subscriber. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

SubscriberListener inherits from DataReaderListener. Therefore, it has the ability to react to all events that are reported
to the DataReader. Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that SubscriberListener inherits from DataReaderListener will only be called if the triggering DataReader
has no Listener attached, or if the callback is disabled by the StatusMask on the DataReader.

Additionally, SubscriberListener adds the following callback:

e on_data_on_readers(): New data is available on any DataReader belonging to this Subscriber. There is no
queuing of invocations to this callback, meaning that if several new data changes are received at once, only one
callback invocation may be issued for all of them, instead of one per change. If the application is retrieving the
received data on this callback, it must keep reading data until no new changes are left.

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomSubscriberListener : public SubscriberListener

{
public:
CustomSubscriberListener()
: SubscriberListener()
{
3
virtual ~CustomSubscriberListener()
{
}
virtual void on_data_on_readers(
Subscriber® sub)
{
static_cast<void>(sub);
std: :cout << "New data available" << std::endl;
1
};

200 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Creating a Subscriber
A Subscriber always belongs to a DomainParticipant. Creation of a Subscriber is done with the
create_subscriber () member function on the DomainParticipant instance, that acts as a factory for the Subscriber.
Mandatory arguments are:

e The SubscriberQos describing the behavior of the Subscriber. If the provided value is
SUBSCRIBER_QOS_DEFAULT, the value of the Default SubscriberQos is used.

Optional arguments are:

* A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

create_subscriber () will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Create a Subscriber with default SubscriberQos and no Listener

// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.

Subscriber® subscriber_with_default_gos =

participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);

if (nullptr == subscriber_with_default_gos)

{
// Error
return;

}

// A custom SubscriberQos can be provided to the creation method
SubscriberQos custom_qos;

// Modify QoS attributes
// Conl)

Subscriber® subscriber_with_custom_gos =
participant->create_subscriber(custom_qgos);

if (nullptr == subscriber_with_custom_qos)
{

// Error

return;
}

// Create a Subscriber with default QoS and a custom Listener.

(continues on next page)

6.17. DDS Layer 201

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// CustomSubscriberListener inherits from SubscriberListener.

// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.

CustomSubscriberListener custom_listener;

Subscriber* subscriber_with_default_gos_and_custom_listener =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT, &custom_listener);

if (nullptr == subscriber_with_default_gos_and_custom_listener)
{

// Error

return;
}

Profile based creation of a Subscriber

Instead of using a SubscriberQos, the name of a profile can be used to create a Subscriber with the
create_subscriber_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Subscriber.
Optional arguments are:

* A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

create_subscriber_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file('"profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create a Subscriber using a profile and no Listener
Subscriber®* subscriber_with_profile =
participant->create_subscriber_with_profile("subscriber_profile");
if (nullptr == subscriber_with_profile)
{
// Error

(continues on next page)

202 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

return;

// Create a Subscriber using a profile and a custom Listener.

// CustomSubscriberListener inherits from SubscriberListener.

CustomSubscriberListener custom_listener;

Subscriber®* subscriber_with_profile_and_custom_listener =
participant->create_subscriber_with_profile("subscriber_profile", &custom_

—1listener);

if (nullptr == subscriber_with_profile_and_custom_listener)
{

// Error

return;
}

Deleting a Subscriber

A Subscriber can be deleted with the delete_subscriber () member function on the DomainParticipant instance
where the Subscriber was created.

Note: A Subscriber can only be deleted if all Entities belonging to the Subscriber (DataReaders) have already been
deleted. Otherwise, the function will issue an error and the Subscriber will not be deleted. This can be performed by
using the delete_contained_entities () member function of the Subscriber.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

// Create a Subscriber
Subscriber® subscriber =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
// Error
return;

// Use the Subscriber to communicate

/7))

// Delete the entities the subscriber created
if (subscriber->delete_contained_entities() != ReturnCode_t: :RETCODE_OK)

{

(continues on next page)

6.17. DDS Layer 203

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Subscriber failed to delete the entities it created
return;

}

// Delete the Subscriber
if (participant->delete_subscriber(subscriber) != ReturnCode_t: :RETCODE_OK)
{

// Error
return;

}

DataReader

A DataReader is attached to exactly one Subscriber that acts as a factory for it. Additionally, each DataReader is
bound to a single 7opic since its creation. This Topic must exist prior to the creation of the DataReader, and must be
bound to the data type that the DataReader wants to publish.

The effect of creating a new DataReader in a Subscriber for a specific Topic is to initiate a new subscription with the
name and data type described by the Topic.

Once the DataReader is created, the application will be informed when changes in the data value are received
from remote publications. These changes can then be retrieved using the DataReader: :read_next_sample() or
DataReader: : take_next_sample () member functions of the DataReader.

DataReaderQos

DataReaderQoS controls the behavior of the DataReader. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability() No
DurabilityServiceQosPolicy durability_service() Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness() No
ReliabilityQosPolicy reliability() No (¥)
DestinationOrderQosPolicy destination_order() No
HistoryQosPolicy history() No
ResourceLimitsQosPolicy resource_limits() No
LifespanQosPolicy lifespan() Yes
UserDataQosPolicy user_data() Yes
OwnershipQosPolicy ownership() No
PropertyPolicyQos properties() Yes
RTPSEndpointQos endpoint () Yes
ReaderResourceLimitsQos reader_resource_limits() | Yes
RTPSEndpointTimeBasedFilterQosPolicy | time_based_filter() Yes
ReaderDataLifecycleQosPolicy reader_data_lifecycle() Yes
RTPSReliableReaderQos reliable_reader_qos() Yes
TypeConsistencyQos type_consistency() Yes
DataSharingQosPolicy data_sharing() No
boolean expects_inline_qgos() Yes

204

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

The following non-consolidated property-assigned QoS apply to DataReaders:

Property name | Non-consolidated QoS
partitions Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataReader can be modified using the DataReader: :set_qos() member
function.

// Create a DataReader with default DataReaderQos
DataReader® data_reader =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
DataReaderQos qos = data_reader->get_qos();

// Modify QoS attributes
/7 Con)

// Assign the new Qos to the object
data_reader->set_qos(qos);

Default DataReaderQos

The default DataReaderQos refers to the value returned by the get_default_datareader_qos() member func-
tion on the Subscriber instance. The special value DATAREADER_QOS_DEFAULT can be used as QoS argument
on create_datareader() or DataReader: :set_qgos() member functions to indicate that the current default
DataReaderQos should be used.

When the system starts, the default DataReaderQos is equivalent to the default constructed value DataReaderQos ().
The default DataReaderQos can be modified at any time using the set_default_datareader_gos () member func-
tion on the Subscriber instance. Modifying the default DataReaderQos will not affect already existing DataReader
instances.

// Get the current QoS or create a new one from scratch
DataReaderQos qos_typel = subscriber->get_default_datareader_qos();

// Modify QoS attributes
/7 Con)

// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_gos(qos_typel) != ReturnCode_t::RETCODE_OK)

(continues on next page)

6.17. DDS Layer 205

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Error
return;

}

// Create a DataReader with the new default DataReaderQos.
DataReader® data_reader_with_qos_typel =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_typel)
{
// Error
return;

// Get the current QoS or create a new one from scratch
DataReaderQos qos_type2;

// Modify QoS attributes
/7 o)

// Set as the new default DataReaderQos

if (subscriber->set_default_datareader_gos(qos_type2) !'= ReturnCode_t: :RETCODE_OK)

{
// Error
return;

}

// Create a DataReader with the new default DataReaderQos.
DataReader® data_reader_with_qos_type2 =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_type2)
{
// Error
return;

// Resetting the default DataReaderQos to the original default constructed values
if (subscriber->set_default_datareader_gos(DATAREADER_QOS_DEFAULT)
= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (subscriber->set_default_datareader_gos(DataReaderQos())
1= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

set_default_datareader_qos () member function also accepts the special value DATAREADER_QOS_DEFAULT as

206 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

input argument. This will reset the current default DataReaderQos to default constructed value DataReaderQos ().

// Create a custom DataReaderQos
DataReaderQos custom_gos;

// Modify QoS attributes
/7 o)

// Create a DatalWriter with a custom DataReaderQos

DataReader* data_reader = subscriber->create_datareader(topic, custom_gos);

if (nullptr == data_reader)

{
// Error
return;

}

// Set the QoS on the Dataliriter to the default

if (data_reader->set_qos(DATAREADER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

}

// The previous instruction is equivalent to the following:
if (data_reader->set_qos(subscriber->get_default_datareader_gos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value DATAREADER_QOS_DEFAULT has different meaning depending on where it is used:

* On create_datareader() and DataReader: :set_qos () it refers to the default DataReaderQos as returned
by get_default_datareader_qos().

¢ On set_default_datareader_qos() it refers to the default constructed DataReaderQos ().

DataReaderListener

DataReaderListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the DataReader. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

DataReaderListener defines the following callbacks:

e on_data_available(): There is new data available for the application on the DataReader. There is no queuing
of invocations to this callback, meaning that if several new data changes are received at once, only one callback
invocation may be issued for all of them, instead of one per change. If the application is retrieving the received
data on this callback, it must keep reading data until no new changes are left.

e on_subscription_matched(): The DataReader has found a DataWriter that matches the Topic and has a
common partition and a compatible QoS, or has ceased to be matched with a DataWriter that was previously

6.17. DDS Layer 207

Fast DDS Documentation, Release 2.10.2

considered to be matched. It is also triggered when a matched DataWriter has changed its DataWriterQos.

e on_requested_deadline_missed(): The DataReader did not receive data within the deadline period config-
ured on its DataReaderQos. It will be called for each deadline period and data instance for which the DataReader
missed data.

e on_requested_incompatible_gos(): The DataReader has found a DataWriter that matches the Topic and
has a common partition, but with a QoS that is incompatible with the one defined on the DataReader.

* on_liveliness_changed(): The liveliness status of a matched DataWriter has changed. Either a DataWriter
that was inactive has become active or the other way around.

e on_sample_rejected(): A received data sample was rejected. See SampleRejectedStatus for further informa-
tion.

e on_sample_lost(): A data sample was lost and will never be received. See SampleLostStatus for further
information.

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomDataReaderListener : public DataReaderListener

{
public:

CustomDataReaderListener()
: DataReaderListener()

{
}

virtual ~CustomDataReaderListener()
{
}

void on_data_available(
DataReader* reader) override

static_cast<void>(reader);
std::cout << "Received new data message" << std::endl;

}

void on_subscription_matched(
DataReader* reader,
const SubscriptionMatchedStatus& info) override

{
static_cast<void>(reader);
if (info.current_count_change == 1)
{
std: :cout << "Matched a remote DataWriter" << std::endl;
}
else if (info.current_count_change == -1)
{
std: :cout << "Unmatched a remote DataWriter" << std::endl;
}

(continues on next page)

208 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

void on_requested_deadline_missed(
DataReader* reader,
const eprosima::fastrtps::RequestedDeadlineMissedStatus& info) override

{

static_cast<void>(reader);

static_cast<void>(info);

std::cout << "Some data was not received on time" << std::endl;
}

void on_liveliness_changed(
DataReader* reader,
const eprosima::fastrtps::LivelinessChangedStatus& info) override

{
static_cast<void>(reader);
if (info.alive_count_change == 1)
{
std: :cout << "A matched DataWriter has become active" << std::endl;
}
else if (info.not_alive_count_change == 1)
{
std::cout << "A matched DataWriter has become inactive" << std::endl;
}
}

void on_sample_rejected(
DataReader* reader,
const eprosima::fastrtps::SampleRejectedStatus& info) override

{

static_cast<void>(reader);

static_cast<void>(info);

std::cout << "A received data sample was rejected" << std::endl;
}

void on_requested_incompatible_gos(
DataReader* /*reader®/,
const RequestedIncompatibleQosStatus& info) override
std: :cout << "Found a remote Topic with incompatible QoS (QoS ID: "
—policy_id <<
")" << std::endl;

void on_sample_lost(
DataReader* reader,
const SampleLostStatus& info) override

{

static_cast<void>(reader);

static_cast<void>(info);

std::cout << "A data sample was lost and will not be received" << std::endl;
}

<< info.last_

(continues on next page)

6.17. DDS Layer

209

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

Creating a DataReader
A DataReader always belongs to a Subscriber. Creation of a DataReader is done with the create_datareader()
member function on the Subscriber instance, that acts as a factory for the DataReader.
Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.

e The DataReaderQos describing the behavior of the DataReader. If the provided value is
DATAREADER_QOS_DEFAULT, the value of the Default DataReaderQos is used.

Optional arguments are:

¢ A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader () will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DataReader with default DataReaderQos and no Listener

// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.

DataReader* data_reader_with_default_qos =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);

if (nullptr == data_reader_with_default_gos)

{
// Error
return;

// A custom DataReaderQos can be provided to the creation method
DataReaderQos custom_gos;

// Modify QoS attributes
/7 Con)

DataReader® data_reader_with_custom_qgos =
subscriber->create_datareader(topic, custom_qos);

if (nullptr == data_reader_with_custom_gos)
{

// Error

return;
}

// Create a DataReader with default QoS and a custom Listener.

// CustomDataReaderListener inherits from DataReaderListener.

// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.
CustomDataReaderListener custom_listener;

(continues on next page)

210 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

DataReader® data_reader_with_default_qgos_and_custom_listener =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT, &custom_listener);

if (nullptr == data_reader_with_default_gos_and_custom_listener)
{

// Error

return;
}

Profile based creation of a DataReader

Instead of using a DataReaderQos, the name of a profile can be used to create a DataReader with the
create_datareader_with_profile() member function on the Subscriber instance.

Mandatory arguments are:
* A Topic bound to the data type that will be transmitted.
* A string with the name that identifies the DataReader.
Optional arguments are:

* A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

* A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file('"profiles.xml");

// Create a DataReader using a profile and no Listener
DataReader® data_reader_with_profile =
subscriber->create_datareader_with_profile(topic, "data_reader_profile");
if (nullptr == data_reader_with_profile)
{
// Error
return;

}

// Create a DataReader using a profile and a custom Listener.

// CustomDataReaderListener inherits from DataReaderListener.

CustomDataReaderListener custom_listener;

DataReader® data_reader_with_profile_and_custom_listener =

subscriber->create_datareader_with_profile(topic, "data_reader_profile", &custom_

—1listener);

if (nullptr == data_reader_with_profile_and_custom_listener)

{
// Error

(continues on next page)

6.17. DDS Layer 211

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

return;

Deleting a DataReader

A DataReader can be deleted with the delete_datareader () member function on the Subscriber instance where the
DataReader was created.

Note: A DataReader can only be deleted if all Entities belonging to the DataReader (QueryConditions) have already
been deleted. Otherwise, the function will issue an error and the DataReader will not be deleted. This can be performed
by using the delete_contained_entities() member function of the DataReader.

// Create a DataReader
DataReader® data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
// Error
return;

// Use the DataReader to communicate

/7 Con)

// Delete the entities the DataReader created

if (data_reader->delete_contained_entities() != ReturnCode_t: :RETCODE_OK)

{
// DataReader failed to delete the entities it created.
return;

}

// Delete the DataReader
if (subscriber->delete_datareader(data_reader) != ReturnCode_t: :RETCODE_OK)

{

// Error
return;

}

Samplelnfo

When a sample is retrieved from the DataReader, in addition to the sample data, a SampleInfo instance is returned.
This object contains additional information that complements the returned data value and helps on it interpretation.
For example, if the valid_data value is false, the DataReader is not informing the application about a new value in
the data instance, but a change on its status, and the returned data value must be discarded.

Please, refer to the section Accessing received data for more information regarding how received data can be accessed
on the DataReader.

The following sections describe the data members of SampleInfo and the meaning of each one in relation to the
returned sample data.

212 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

* sample_state

* view_state

* instance_state

* disposed_generation_count
* no_writers_generation_count
e sample_rank

* generation_rank

* absolute_generation_rank
* source_timestamp

o nstance_handle

* publication_handle

e valid_data

* sample_identity

e related_sample_identity

sample_state

sample_state indicates whether or not the corresponding data sample has already been read previously. It can take
one of these values:

* READ: This is the first time this data sample has been retrieved.

* NOT_READ: The data sample has already been read or taken previously.

view_state

view_state indicates whether or not this is the very first sample of this data instance that the DataReader retrieves. It
can take one of these values:

* NEW: This is the first time a sample of this instance is retrieved.

* NOT_NEW: Other samples of this instance have been retrieved previously.

instance_state

instance_state indicates whether the instance is currently in existence or it has been disposed. In the latter case, it
also provides information about the reason for the disposal. It can take one of these values:

e ALIVE: The instance is currently in existence.
* NOT_ALIVE_DISPOSED: A remote DataWriter disposed the instance.

* NOT_ALIVE_NO_WRITERS: The DataReader disposed the instance because no remote DataWriter that was
publishing the instance is alive.

6.17. DDS Layer 213

Fast DDS Documentation, Release 2.10.2

disposed_generation_count

disposed_generation_count indicates the number of times the instance had become alive after it was disposed.

no_writers_generation_count

no_writers_generation_count indicates the number of times the instance had become alive after it was disposed
as NOT_ALIVE_NO_WRITERS.

sample_rank

sample_rank indicates the number of samples of the same instance that have been received after this one. For example,
a value of 5 means that there are 5 newer samples available on the DataReader.

Note: Currently the sample_rank is not implemented, and its value is always set to 0. It will be implemented on a
future release of Fast DDS.

generation_rank

generation_rank indicates the number of times the instance was disposed and become alive again between the time
the sample was received and the time the most recent sample of the same instance that is still held in the collection was
received.

Note: Currently the generation_rank is not implemented, and its value is always set to 8. It will be implemented
on a future release of Fast DDS.

absolute_generation_rank

absolute_generation_rank indicates the number of times the instance was disposed and become alive again be-
tween the time the sample was received and the time the most recent sample of the same instance (which may not be
in the collection) was received.

Note: Currently the absolute_generation_rank is not implemented, and its value is always set to 8. It will be
implemented on a future release of Fast DDS.

214 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

source_timestamp

source_timestamp holds the time stamp provided by the DataWriter when the sample was published.

instance_handle

instance_handle handles of the local instance.

publication_handle

publication_handle handles of the DataWriter that published the data change.

valid_data

valid_data is a boolean that indicates whether the data sample contains a change in the value or not. Samples with
this value set to false are used to communicate a change in the instance status, e.g., a change in the liveliness of the
instance. In this case, the data sample should be dismissed as all the relevant information is in the data members of
Samplelnfo.

sample_identity

sample_identity is an extension for requester-replier configuration. It contains the DataWriter and the sequence
number of the current message, and it is used by the replier to fill the related_sample_identity when it sends the reply.

related_sample_identity

related_sample_identity is an extension for requester-replier configuration. On reply messages, it contains the
sample_identity of the related request message. It is used by the requester to be able to link each reply to the appropriate
request.

Accessing received data

The application can access and consume the data values received on the DataReader by reading or taking.
* Reading is done with any of the following member functions:

— DataReader: :read_next_sample () reads the next, non-previously accessed data value available on the
DataReader, and stores it in the provided data buffer.

— DataReader: :read(),DataReader: :read_instance(), and DataReader: :read_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

» Taking is done with any of the following member functions:

— DataReader: :take_next_sample () reads the next, non-previously accessed data value available on the
DataReader, and stores it in the provided data buffer.

— DataReader: :take(),DataReader: : take_instance(),and DataReader: : take_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

When taking data, the returned samples are also removed from the DataReader, so they are no longer accessible.

6.17. DDS Layer 215

Fast DDS Documentation, Release 2.10.2

When there is no data in the DataReader matching the required conditions, all the operations will return NO_DATA and
output parameter will remain unchanged.

In addition to the data values, the data access operations also provide Samplelnfo instances with additional information
that help interpreting the returned data values, like the originating DataWriter or the publication time stamp. Please,
refer to the Samplelnfo section for an extensive description of its contents.

Loaning and Returning Data and Samplelnfo Sequences

The DataReader: :read() and DataReader: : take () operations (and their variants) return information to the ap-
plication in two sequences:

* Received DDS data samples in a sequence of the data type
* Corresponding information about each DDS sample in a SampleInfo sequence

These sequences are parameters that are passed by the application code into the DataReader::read() and
DataReader: :take () operations. When the passed sequences are empty (they are initialized but have a maximum
length of 0), the middleware will fill those sequences with memory directly loaned from the receive queue itself. There
is no copying of the data or SampleInfo when the contents of the sequences are loaned. This is certainly the most
efficient way for the application code to retrieve the data.

When doing so, however, the code must return the loaned sequences back to the middleware, so that they can be
reused by the receive queue. If the application does not return the loan by calling the DataReader: :return_Iloan()
operation, then Fast DDS will eventually run out of memory to store DDS data samples received from the network for
that DataReader. See the code below for an example of borrowing and returning loaned sequences.

// Sequences are automatically initialized to be empty (maximum == 0)
FooSeq data_seq;
SampleInfoSeq info_seq;

// with empty sequences, a take() or read() will return loaned

// sequence elements

ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);

// process the returned data

// must return the loaned sequences when done processing
data_reader->return_loan(data_seq, info_seq);

Processing returned data

After calling the DataReader: :read() or DataReader: :take() operations, accessing the data on the returned
sequences is quite easy. The sequences API provides a length() operation returning the number of elements in the
collections. The application code just needs to check this value and use the [] operator to access the corresponding
elements. Elements on the DDS data sequence should only be accessed when the corresponding element on the Sam-
pleInfo sequence indicate that valid data is present.

// Sequences are automatically initialized to be empty (maximum == @)
FooSeq data_seq;
SampleInfoSeq info_seq;

(continues on next page)

216 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// with empty sequences, a take() or read() will return loaned

// sequence elements

ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);

// process the returned data
if (ret_code == ReturnCode_t: :RETCODE_OK)
{
// Both info_seq.length() and data_seq.length() will have the number of samples.
—returned
for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)

{
// Only samples for which valid data is true should be accessed
if (info_seq[n].valid_data)
{
// Do something with data_seq[n]
}
}

// must return the loaned sequences when done processing
data_reader->return_loan(data_seq, info_seq);

Accessing data on callbacks

When the DataReader receives new data values from any matching DataWriter, it informs the application through two
Listener callbacks:

e on_data_available().
e on_data_on_readers().

These callbacks can be used to retrieve the newly arrived data, as in the following example.

class CustomizedDataReaderListener : public DataReaderListener

{
public:

CustomizedDataReaderListener()
: DataReaderListener()

{

}

virtual ~CustomizedDataReaderListener()
{
}

void on_data_available(
DataReader* reader) override

(continues on next page)

6.17. DDS Layer 217

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

// Keep taking data until there is nothing to take
while (reader->take_next_sample(&data, &info) == ReturnCode_t: :RETCODE_OK)

{
if (info.valid_data)
{
// Do something with the data
std::cout << "Received new data value for topic "
<< reader->get_topicdescription()->get_name()
<< std::endl;
}
else
{
std::cout << "Remote writer for topic "
<< reader->get_topicdescription()->get_name()
<< " is dead" << std::endl;
}
}

};

Note: If several new data changes are received at once, the callbacks may be triggered just once, instead of once per
change. The application must keep reading or taking until no new changes are available.

Accessing data with a waiting thread
Wait-sets and DataAvailable status condition

Instead of relying on the Listener to try and get new data values, the application can also dedicate a thread to wait until
any new data is available on the DataReader. This can be done using a wait-set to wait for a change on the DaraAvailable
status.

// Create a DataReader
DataReader”® data_reader =
subscriber->create_datareader (topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
// Error
return;

// Prepare a wait-set to wait for data on the DataReader
WaitSet wait_set;

StatusCondition& condition = data_reader->get_statuscondition();
condition.set_enabled_statuses(StatusMask::data_available());

(continues on next page)

218 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

wait_set.attach_condition(condition);

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima: : fastrtps: :Duration_t timeout (5, 0);

// Loop reading data as it arrives

// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote Dataliriter dies

while (true)

{
ConditionSeq active_conditions;
if (ReturnCode_t::RETCODE_OK == wait_set.wait(active_conditions, timeout))
{
while (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{
if (info.valid_data)
{
// Do something with the data
std::cout << "Received new data value for topic "
<< topic->get_name()
<< std::endl;
}
else
{
// If the remote writer is not alive, we exit the reading loop
std::cout << "Remote writer for topic "
<< topic->get_name()
<< " is dead" << std::endl;
break;
}
}
}
else
{
std::cout << "No data this time" << std::endl;
}
}

6.17. DDS Layer 219

Fast DDS Documentation, Release 2.10.2

DataReader non-blocking calls

The same could be achieved using the DataReader: :wait_for_unread_message() member function, that blocks
until a new data sample is available or the given timeout expires. If no new data was available after the timeout expired,
it will return with value false. This function returning with value true means there is new data available on the
DataReader ready for the application to retrieve.

// Create a DataReader
DataReader”® data_reader =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
// Error
return;

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima: : fastrtps: :Duration_t timeout (5, 0);

// Loop reading data as it arrives

// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote Dataliriter dies

while (true)

{
if (data_reader->wait_for_unread_message(timeout))
{
if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{
if (info.valid_data)
{
// Do something with the data
std::cout << "Received new data value for topic "
<< topic->get_name()
<< std::endl;
}
else
{
// If the remote writer is not alive, we exit the reading loop
std::cout << "Remote writer for topic "
<< topic->get_name()
<< " is dead" << std::endl;
break;
}
}
}
else
{
std::cout << "No data this time" << std::endl;
}

(continues on next page)

220 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

6.17.5 Topic

A Topic conceptually fits between publications and subscriptions. Each publication channel must be unambiguously
identified by the subscriptions in order to receive only the data flow they are interested in, and not data from other
publications. A Topic serves this purpose, allowing publications and subscriptions that share the same Topic to match
and start communicating. In that sense, the Topic acts as a description for a data flow.

Publications are always linked to a single 7opic, while subscriptions are linked to a broader concept of TopicDescription.

Fig. 8: Topic class diagram

Topics, keys and instances

By definition, a Topic is linked to a single data type, so each data sample related to a Topic could be understood as an
update on the information described by the data type. However, it is possible to include a logical separation and have,
within the same Topic, several instances referring to the same data type. Thus, the received data sample will be an
update for a specific instance of that Topic. Therefore, a Topic identifies data of a single type, ranging from one single
instance to a whole collection of instances of that given type, as shown in the figure below.

a_topicTopic N Instancel:Foo

key=key1

Instance?:Foo

key=key2

Instance3:Foo

key=key3

The different instances gathered under the same topic are distinguishable by means of one or more data fields that form
the key to that data set. The key description has to be indicated to the middleware. The rule is simple: different data
values with the same key value represent successive data samples for the same instance, while different data values
with different keys represent different topic instances. If no key is provided, the data set associated with the Topic is
restricted to a single instance. Please refer to Data types with a key for more information about how to set the key in
eProsima Fast DDS.

6.17. DDS Layer 221

Fast DDS Documentation, Release 2.10.2

Instance advantages

The advantage of using instances instead of creating a new DataWriter, DataReader, and Topic is that the corresponding
entity is already created and discovered. Consequently, there is less memory usage, and no new discovery (with the
related metatraffic involved as explained in Discovery) is necessary. Another advantage is that several QoS are applied
per topic instance; e.g. the HistoryQosPolicy is kept for each instance in the DataWriter. Thus, instances could be
tuned to a wide range of applications.

Instance lifecycle

When reading or taking data from the DaraReader (as explained in Accessing received data), a Samplelnfo is also re-
turned. This SampleInfo provides additional information about the instance lifecycle, specifically with the view_state,
instance_state, disposed_generation_count, and no_writers_generation_count. The diagram below shows the state-
chart of instance_state and view_state for a single instance.

-
samp le for mever seen' instance received/xoo_generation_count =0

sample received

sample received/disposed _generation_count++ ALIVE "live" writer detected/'no_writers_generation_count-++

no "live" writers
instance disposed by writer

/ NOT_ALIVE \

[instance_state = NOT_ALIVE]

NEW

read/take

sample received

DISPOSED NO_WRITERS
-)

read/take

I
|
|
|
|
I NOT_NEW
|
|
|
: [instance_state = ALIVE]

[no samples in the DataReader && | no "live" writers]

l i[no samples in the DataReader]

®

222 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Practical applications

This section provides a couple of examples to help clarify the use of DDS instances.

Commercial flights tracking

Airspace and the air traffic going through it are typically managed by the air traffic controllers that are in charge of
organizing the air traffic, preventing collisions, and providing information. In this scenario, each air traffic control
center takes responsibility for a specific flight area and delivers the data to the airspace traffic management system,
which unifies the flight information.

Any time an air traffic control center discovers a plane coming into its controlled flight zone, tracking information about
that specific flight is notified to the airspace traffic management center. Such a flow of information could be imple-
mented by means of DDS by creating a specific Topic where the information related to the flight location is published.
In that case, the management center would be required to create, if not existing previously, the corresponding Topic
and DataReader to have access to the flight information, with the corresponding memory consumption and discovery
metatraffic required. On the other hand, a cleverer implementation could leverage topic instances to relay the infor-
mation from the local air traffic control centers to the airspace traffic management center. The topic instances might
be identified using the airline name and the flight number (i.e. IBERIA 1234) as Topic instance key. The sample data
being relayed would be the location of each flight being tracked at any given time. The following IDL defines the data
described model:

struct FlightPosition

{
// Unique ID: airline name
@key string<256> airline_name;
// Unique ID: flight number
@key short flight_number;
// Coordinates
double latitude;
double longitude;
double altitude;

b

Once a new flight is discovered by a control center, the corresponding instance is registered into the system:

// Create data sample
FlightPosition first_flight_position;

// Specify the flight instance
first_flight_position.airline_name("IBERIA");
first_flight_position.flight_number(1234);

// Register instance
eprosima: : fastrtps: :rtps::InstanceHandle_t first flight_handle =
data_writer->register_instance(&first_flight_position);

register_instance() returns an InstanceHandle_t which can be used to efficiently call the next operations (i.e.
write(), dispose(), or unregister_instance()) over the instance. The returned InstanceHandle_t contains
the instance keyhash so it does not have to be recalculated again from the data sample. In case of following this
approach, the application must take charge of mapping the instance handles to the corresponding instances.

6.17. DDS Layer 223

Fast DDS Documentation, Release 2.10.2

// Update position value received from the plane
first_flight_position.latitude(39.08);
first_flight_position.longitude(-84.21);
first_flight_position.altitude(1500);

// Write sample to the instance
data_writer->write(&first_flight_position, first_flight_handle);

On the other hand, the user application could directly call the DataWriter instance operations with a NIL instance
handle. In this case, the instance handle would be calculated every time an operation is done over the instance, which
can be time consuming depending on the specific data type being used.

// New data sample
FlightPosition second_flight_position;

// New instance
second_flight_position.airline_name("'RYANAIR");
second_flight_position.flight_number(4321);

// Update plane location
second_flight_position.latitude(40.02);
second_flight_position.longitude(-84.32);
second_flight_position.altitude(5000);

// Write sample directly without registering the instance
data_writer->write(&second_flight_position);

Warning: The correct management of the instance handles in the user application is paramount. Otherwise, a
sample corresponding to a different instance could wrongly update the instance which handle the user has passed to
the operation (if a non NIL instance is provided, the instance handle is not recalculated, trusting that the one passed
by the user is the correct one). The following code updates the first instance of this example with the information
coming from the second instance.

data_writer->write(&second_flight_position, first_flight_handle);

Once the plane leaves the controlled area, the air traffic control center may unregister the instance. Unregistering
implies that the DataWriter for this specific center has no more information about the unregistered instance, and in this
way the matched DataReaders in the management center are notified. The flight is still in the air but out of scope of
this particular DataWriter. The instance is alive but no longer tracked by this center.

data_writer->unregister_instance(&first_flight_position, first_flight_handle);
data_writer->unregister_instance(&second_flight_position, HANDLE_NIL);

Finally, when the flight lands, the instance may be disposed. This means, in this specific example, that as far as the
DataWriter knows, the instance no longer exists and should be considered not alive. With this operation, the DataWriter
conveys this information to the matched DataReaders.

data_writer->dispose(&first_flight_position, first_flight_handle);
data_writer->dispose(&second_flight_position, HANDLE_NIL);

From the management center point of view, the samples are read using the same DataReader subscribed to the Topic
where the instances are being published. However, valid_data must be checked to ensure that the sample received

224 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

contains a data sample. Otherwise, a change of the instance state is being notified. /nstance lifecycle contains a diagram
showing the instance statechart.

if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
' if (info.valid_data)
k // Data sample has been received
ilse if (info.instance_state == NOT_ALIVE_DISPOSED_INSTANCE_STATE)
k // A remote Dataliriter has disposed the instance
ilse if (info.instance_state == NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
' // None of the matched DataWriters are writing in the instance.
// The instance can be safely disposed.

Relational databases

Consider now that the air traffic management center wants to keep a database with the flights being tracked. Using
DDS instances, maintaining a relational database is almost direct. The instance key (unique identifier of the instance)
is analogous to the primary key of the database. Thus, the airspace traffic management center can keep the latest update
for each instance in a table like the one below:

Instance handle [PK] | Data

1 Position]
2 Position2
3 Position3
4 Position4
5 Position5

In this case, every time a new sample is received, the corresponding instance entry in the database will be updated
with the latest known location. Disposing the instance may translate in erasing the corresponding data from the
database. In this scenario, registering and unregistering the instances does not reflect in the database, although if
the instance_state and view_state are also persisted, then the instance lifecycle could be tracked as well. A
DataWriter communicating that it is going to be publishing data about a specific instance is of no interest to the database
until a new data is received and then an insert is directly done with the new discovered instance.

Historical data can also be stored in the relational database, even though depending on the use case, a time series
database might be considered to improve efficiency. In the scenario being considered, the sample timestamp could be
used, besides the instance handle, as primary key to be able to access the historical tracking data of an specific flight.

Instance handle [PK] | Source Timestamp [PK] | Data

1 1 Position1
2 1 Position2
1 2 Position3
1 3 Position4
2 2 Position5

6.17. DDS Layer 225

Fast DDS Documentation, Release 2.10.2

In this case, looking for a specific instance handle would return the flight tracking information:

Instance handle [Fixed] | Source Timestamp | Data

1 1 Position1
1 2 Position3
1 3 Position4

Whereas looking for a specific timestamp would allow to have a picture of the different flight locations at a specific
time:

Instance handle | Source Timestamp [Fixed] | Data
1 2 Position3
2 2 Position5

TopicDescription

TopicDescription is an abstract class that serves as the base for all classes describing a data flow. Applications will
not create instances of TopicDescription directly, they must create instances of one of its specializations instead.
At the moment, the only specializations implemented are Topic, and ContentFilteredTopic.

Topic
A Topic is a specialization of the broader concept of TopicDescription. A Topic represents a single data flow between
Publisher and Subscriber, providing:

* The name to identify the data flow.

* The data type that is transmitted on that flow.

* The QoS values related to the data itself.

The behavior of the Topic can be modified with the QoS values specified on TopicQos. The QoS values can be set at
the creation of the Topic, or modified later with the Topic: :set_gos () member function.

Like other Entities, Topic accepts a Listener that will be notified of status changes on the Topic.

Please refer to Creating a Topic for more information about how to create a Topic.

TopicQos

TopicQos controls the behavior of the Topic. Internally it contains the following QosPolicy objects:

226 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

QosPolicy class Accessor Mutable
TopicDataQosPolicy topic_data() Yes
DurabilityQosPolicy durability () Yes
DurabilityServiceQosPolicy durability_service() | Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget () Yes
LivelinessQosPolicy liveliness() Yes
ReliabilityQosPolicy reliability() Yes
DestinationOrderQosPolicy destination_order() Yes
HistoryQosPolicy history() Yes
ResourceLimitsQosPolicy resource_limits() Yes
TransportPriorityQosPolicy transport_priority() | Yes
LifespanQosPolicy lifespan() Yes
OwnershipQosPolicy ownership() Yes
DataRepresentationQosPolicy | representation() Yes

Refer to the detailed description of each QosPolicy-api class for more information about their usage and default values.

The QoS value of a previously created Topic can be modified using the Topic: :set_qgos () member function.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =

DomainParticipantFactory::get_instance()->create_participant(0®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Create a Topic with default TopicQos
Topic* topic =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);

if (nullptr == topic)

{
// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos gos = topic->get_qos();

// Modify QoS attributes
/7 Con)

// Assign the new Qos to the object
topic->set_qos(qos);

6.17. DDS Layer

227

Fast DDS Documentation, Release 2.10.2

Default TopicQos

The default TopicQos refers to the value returned by the get_default_topic_gos() member function on the Do-
mainParticipant instance. The special value TOPIC_QOS_DEFAULT can be used as QoS argument on create_topic()
or Topic: :set_gos () member functions to indicate that the current default TopicQos should be used.

When the system starts, the default TopicQos is equivalent to the default constructed value TopicQos (). The default
TopicQos can be modified at any time using the get_default_topic_gos () member function on the DomainPartic-
ipant instance. Modifying the default TopicQos will not affect already existing Topic instances.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0, PARTICIPANT_QOS_
- DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos qos_typel = participant->get_default_topic_qos(Q);

// Modify QoS attributes
/7 Con)

// Set as the new default TopicQos

if (participant->set_default_topic_qos(qos_typel) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

// Create a Topic with the new default TopicQos.
Topic* topic_with_gos_typel =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_gos_typel)
{
// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos qos_type2;

// Modify QoS attributes
// o)

// Set as the new default TopicQos
if (participant->set_default_topic_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error

return;

(continues on next page)

228 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

// Create a Topic with the new default TopicQos.
Topic* topic_with_gos_type2 =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_gos_type2)
{
// Error
return;

}

// Resetting the default TopicQos to the original default constructed values
if (participant->set_default_topic_qos(TOPIC_QOS_DEFAULT)
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_topic_qos(TopicQos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

get_default_topic_gos() member function also accepts the value TOPIC_QOS_DEFAULT as input argument. This
will reset the current default TopicQos to default constructed value TopicQos ().

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create a custom TopicQos
TopicQos custom_qos;

// Modify QoS attributes

/7 Ca)
// Create a topic with a custom TopicQos
Topic* topic = participant->create_topic("TopicName", "DataTypeName", custom_qgos);
if (nullptr == topic)
{
// Error
return;

(continues on next page)

6.17. DDS Layer 229

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

// Set the QoS on the topic to the default

if (topic->set_qos(TOPIC_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)

{
// Error
return;

// The previous instruction is equivalent to the following:
if (topic->set_qos(participant->get_default_topic_gos())
I= ReturnCode_t: :RETCODE_OK)
{
// Error
return;

Note: The value TOPIC_QOS_DEFAULT has different meaning depending on where it is used:

* On create_topic() and Topic::set_qgos() it refers to the default TopicQos as returned by
get_default_topic_qos().

e On get_default_topic_qgos() it refers to the default constructed TopicQos ().

ContentFilteredTopic

A ContentFilteredTopic is a specialization of the broader concept of TopicDescription. A ContentFilteredTopic is
a Topic with filtering properties. It makes it possible to subscribe to a Topic while at the same time specify interest on
a subset of the Topic’s data.

Important: Note that a ContentFilteredTopic can only be used to create a DataReader, not a DataWriter.

A ContentFilteredTopic provides a relationship between a Topic, called the related topic, and some user-defined filtering
properties:

* A filter expression, which establishes a logical expression on the content of the related topic. It is similar to the
WHERE clause in a SQL statement.

* A list of expression parameters, which give values to the parameters present in the filter expression. There
must be one parameter string for each parameter in the filter expression.

Note that a ContentFilteredTopic is not an Entity, and thus it has neither QoS nor listener. A DataReader created with
a ContentFilteredTopic will use the QoS from the related topic. Multiple DataReaders can be created for the same
ContentFilteredTopic, and changing the filter properties of a ContentFilteredTopic will affect all DataReaders using it.

Please refer to Filtering data on a Topic and Where is filtering applied: writer vs reader side for more information
about how to use ContentFilteredTopic.

230 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

TopicListener

TopicListener is an abstract class defining the callbacks that will be triggered in response to state changes on the
Topic. By default, all these callbacks are empty and do nothing. The user should implement a specialization of this
class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain their
empty implementation.

TopicListener has the following callback:

e on_inconsistent_topic(): A remote Topic is discovered with the same name but different characteristics as
another locally created Topic.

Warning: Currently on_inconsistent_topic() is not implemented (it will never be called), and will be im-
plemented on a future release of Fast DDS.

class CustomTopicListener : public TopicListener

{
public:
CustomTopicListener()
: TopicListener()
{
}
virtual ~CustomTopicListener()
{
1
void on_inconsistent_topic(
Topic* topic,
InconsistentTopicStatus status) override
{
static_cast<void>(topic);
static_cast<void>(status);
std: :cout << "Inconsistent topic received discovered" << std::endl;
}
};

Definition of data types

The definition of the data type exchanged in a Topic is divided in two classes: the TypeSupport and the
TopicDataType.

TopicDataType describes the data type exchanged between a publication and a subscription, i.e., the data corresponding
to a Topic. The user has to create a specialized class for each specific type that will be used by the application.

Any specialization of TopicDataType must be registered in the DomainParticipant before it can be used to create Topic
objects. A TypeSupport object encapsulates an instance of TopicDataType, providing the functions needed to register
the type and interact with the publication and subscription. To register the data type, create a new TypeSupport with a
TopicDataType instance and use the register_type () member function on the TypeSupport. Then the Topic can be
created with the registered type name.

6.17. DDS Layer 231

Fast DDS Documentation, Release 2.10.2

Note: Registering two different data types on the same DomainParticipant with identical names is not allowed and
will issue an error. However, it is allowed to register the same data type within the same DomainParticipant, with the
same or different names. If the same data type is registered twice on the same DomainParticipant with the same name,
the second registering will have no effect, but will not issue any error.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
--DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

// Register the data type in the DomainParticipant.

// If nullptr is used as name argument, the one returned by the type itself is used
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, nullptr);

// The previous instruction is equivalent to the following one

// Even if we are registering the same data type with the same name twice, no error will,,
—be issued

custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topic* topic =
participant->create_topic("topic_name", custom_type_support.get_type_name(),.
—TOPIC_QOS_DEFAULT) ;
if (nullptr == topic)
{
// Error
return;

// Create an alias for the same data type using a different name.
custom_type_support.register_type(participant, "data_type_name");

// We can now use the aliased name to If no name is given, it uses the name returned by.
—the type itself
Topic* another_topic =

participant->create_topic("other_topic_name", "data_type_name", TOPIC_QOS_
—DEFAULT) ;
if (nullptr == another_topic)
{
// Error
return;
}

232 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Dynamic data types

Instead of directly writing the specialized TopicDataType class, it is possible to dynamically define data types follow-
ing the OMG Extensible and Dynamic Topic Types for DDS interface. Data types can also be described on an XML
file that is dynamically loaded.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

}

// Load the XML file with the type description
eprosima: : fastrtps::xmlparser: :XMLProfileManager: :1loadXMLFile("example_type.xml");

// Retrieve the an instance of the desired type and register it
eprosima: : fastrtps::types: :DynamicType_ptr dyn_type =
eprosima: : fastrtps: :xmlparser: :XMLProfileManager: : getDynamicTypeByName (
< "DynamicType")->build(Q);
TypeSupport dyn_type_support(new eprosima::fastrtps::types: :DynamicPubSubType (dyn_type));
dyn_type_support.register_type(participant, nullptr);

// Create a Topic with the registered type.
Topic* topic =
participant->create_topic(topic_name", dyn_type_support.get_type_name(), TOPIC_
—QOS_DEFAULT) ;
if (nullptr == topic)
{
// Error
return;

A complete description of the dynamic definition of types can be found on the Dynamic Topic Types section.

Data types with a key

Data types that define a set of fields to form a unique key can distinguish different data sets within the same data type.

To define a keyed Topic, the getKey () member function on the TopicDataType has to be overridden to return the
appropriate key value according to the data fields. Additionally, the m_isGetKeyDefined data member needs to be
set to true to let the entities know that this is a keyed Topic and that getKey () should be used. Types that do not
define a key will have m_isGetKeyDefined set to false.

There are three ways to implement keys on the TopicDataType:
* Adding a @ey annotation to the members that form the key in the IDL file when using Fast DDS-Gen.
* Adding the attribute Key to the member and its parents when using Dynamic Topic Types.

e Manually implementing the getKey() member function on the TopicDataType and setting the
m_isGetKeyDefined data member value to true.

6.17. DDS Layer 233

Fast DDS Documentation, Release 2.10.2

Data types with key are used to define data sub flows on a single Topic. Data values with the same key on the same
Topic represent data from the same sub-flow, while data values with different keys on the same Topic represent data
from different sub-flows. The middleware keeps these sub-flows separated, but all will be restricted to the same QoS
values of the Topic. If no key is provided, the data set associated with the Topic is restricted to a single flow.

Creating a Topic
A Topic always belongs to a DomainParticipant. Creation of a Topic is done with the create_topic() member
function on the DomainParticipant instance, that acts as a factory for the Topic.
Mandatory arguments are:
* A string with the name that identifies the Topic.
* The name of the registered data type that will be transmitted.

* The TopicQos describing the behavior of the Topic. If the provided value is TOPIC_QOS_DEFAULT, the value of
the Default TopicQos is used.

Optional arguments are:

* A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

e A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic() will return a null pointer if there was an error during the operation, e.g. if the provided QoS is not
compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Create a Topic with default TopicQos and no Listener
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
Topic* topic_with_default_qos =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_default_gos)
{
// Error
return;

// A custom TopicQos can be provided to the creation method
TopicQos custom_gos;

// Modify QoS attributes
// Conl)

Topic* topic_with_custom_qgos =

(continues on next page)

234 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

participant->create_topic("'TopicName", "DataTypeName", custom_gos);
if (nullptr == topic_with_custom_qos)
{
// Error
return;
}

// Create a Topic with default QoS and a custom Listener.

// CustomTopicListener inherits from TopicListener.

// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.

CustomTopicListener custom_listener;

Topic* topic_with_default_qgos_and_custom_listener =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT, &

—,custom_listener);

if (nullptr == topic_with_default_gos_and_custom_listener)

{
// Error
return;

Profile based creation of a Topic

Instead of using a TopicQos, the name of a profile can be used to create a Topic with the
create_topic_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:
* A string with the name that identifies the Topic.
* The name of the registered data type that will be transmitted.
¢ The name of the profile to be applied to the Topic.

Optional arguments are:

* A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

e A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic_with_profile() will return a null pointer if there was an error during the operation, e.g. if the
provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory: :get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =

DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;

(continues on next page)

6.17. DDS Layer 235

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (nullptr == participant)

{
// Error
return;

}

// Create a Topic using a profile and no Listener
Topic* topic_with_profile =

participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_
—profile");
if (nullptr == topic_with_profile)
{
// Error
return;
}

// Create a Topic using a profile and a custom Listener.
// CustomTopicListener inherits from TopicListener.
CustomTopicListener custom_listener;

Topic* topic_with_profile_and_custom_listener =

participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_
—profile", &custom_listener);
if (nullptr == topic_with_profile_and_custom_listener)
{
// Error
return;
}

Deleting a Topic

A Topic can be deleted with the delete_topic() member function on the DomainParticipant instance where the
Topic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create a Topic
Topic* topic =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
// Error
return;

(continues on next page)

236 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Use the Topic to communicate

/7 Con)

// Delete the Topic

if (participant->delete_topic(topic) != ReturnCode_t: :RETCODE_OK)

{
// Error
return;

Filtering data on a Topic

Creating a ContentFilteredTopic

A ContentFilteredTopic always belongs to a DomainParticipant. Creation of a ContentFilteredTopic is done with the
create_contentfilteredtopic() member function on the DomainParticipant instance, that acts as a factory
for the ContentFilteredTopic.

Mandatory arguments are:
* A string with the name that identifies the ContentFilteredTopic.
* The related Topic being filtered.
* A string with the filter expression indicating the conditions for a sample to be returned.
A list of strings with the value of the parameters present on the filter expression.
Optional arguments are:

* A string with the name of the filter class to use for the filter creation. This allows the user to create filters different
from the standard SQL like one (please refer to Using custom filters). Defaults to FASTDDS_SQLFILTER_NAME
(DDSSQL).

Important: Setting an empty string as filter expression results in the disabling of the filtering. This can be used to
enable/disable the DataReader filtering capabilities at any given time by simply updating the filter expression.

create_contentfilteredtopic () will return a null pointer if there was an error during the operation, e.g. if the
related Topic belongs to a different DomainParticipant, a Topic with the same name already exists, syntax errors on the
filter expression, or missing parameter values. It is advisable to check that the returned value is a valid pointer.

Note: Different filter classes may impose different requirements on the related Topic, the expression, or the parameters.
The default filter class, in particular, requires that a TypeObject for the related Topic’s type has been registered. When
using fastddsgen to generate your type support code, remember to include the -typeobject option so the TypeObject
registration code is generated.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
-.DEFAULT) ;
if (nullptr == participant)

(continues on next page)

6.17. DDS Layer 237

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Error
return;

// Create the Topic.
/* IDL

* struct HelloWorld
“o{
long index;
string message;

*/
Topic* topic =
participant->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
// Error
return;

}

// Create a ContentFilteredTopic using an expression with no parameters

std::string expression = "message like 'Hello*'";

std: :vector<std::string> parameters;

ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopicl", topic,.

—.expression, parameters);

if (nullptr == filter_topic)

{
// Error
return;

}

// Create a ContentFilteredTopic using an expression with parameters

expression = "message like %0 or index > %1";

parameters.push_back("'*world*"'");

parameters.push_back("20");

ContentFilteredTopic* filter_topic_with_parameters =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic2", topic,.

—,expression, parameters);

if (nullptr == filter_topic_with_parameters)

{
// Error
return;

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber® subscriber =

participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)

(continues on next page)

238 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Error
return;

DataReader® reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_

—QOS_DEFAULT) ;

if (nullptr == reader_on_filter)

{
// Error
return;

DataReader® reader_on_filter_with_parameters =
subscriber->create_datareader(filter_topic_with_parameters, DATAREADER_QOS_
-DEFAULT) ;

if (nullptr == reader_on_filter_with_parameters)
{

// Error

return;
}

Updating the filter expression and parameters

A ContentFilteredTopic provides several member functions for the management of the filter expression and the expres-
sion parameters:

* The filter expression can be retrieved with the get_filter_expression() member function.
* The expression parameters can be retrieved with the get_expression_parameters () member function.
¢ The expression parameters can be modified using the set_expression_parameters () member function.

e The filter expression can be modified along with the expression parameters using the
set_filter_expression() member function.

// This lambda prints all the information of a ContentFilteredTopic
auto print_filter_info = [](
const ContentFilteredTopic* filter_topic)
{

std::cout << "ContentFilteredTopic info for << filter_topic->get_name() <
""" << std::endl;
std: :cout <<

—name() << std::endl;

—<

- Related Topic: << filter_topic->get_related_topic()->get_

std::cout << " - Expression: " << filter_topic->get_filter_expression() <
< std::endl;
std::cout << " - Parameters:" << std::endl;

std: :vector<std: :string> parameters;
filter_topic->get_expression_parameters(parameters);
size_t i = 0;

for (const std::string& parameter : parameters)

{

(continues on next page)

6.17. DDS Layer 239

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

std: :cout << << 14+ << << parameter << std::endl;

1

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create a Topic
/% IDL
* struct HellolWorld
* f
g long index;
string message;

*/
Topic* topic =
participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_
—DEFAULT) ;
if (nullptr == topic)
{
// Error
return;

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =
participant->create_contentfilteredtopic("HellolWorldFilteredTopic", topic,

—"index > 10", {});

if (nullptr == filter_topic)

{
// Error
return;

}

// Print the information
print_filter_info(filter_topic);

// Use the ContentFilteredTopic on DataReader objects.
/7 Coal)

// Update the expression
if (ReturnCode_t::RETCODE_OK !=
filter_topic->set_filter_expression('message like %0 or index > %1", {"'Hello*'",

= 15U (continues on next page)

240 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Error
return;

}

// Print the updated information
print_filter_info(filter_topic);

// Update the parameters
if (ReturnCode_t::RETCODE_OK !=

filter_topic->set_expression_parameters({"'*world*'", "222"}))
{
// Error
return;
}

// Print the updated information
print_filter_info(filter_topic);

Deleting a ContentFilteredTopic

A ContentFilteredTopic can be deleted with the delete_contentfilteredtopic() member function on the Do-
mainParticipant instance where the ContentFilteredTopic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0®, PARTICIPANT_QOS_
—DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

// Create a Topic
/% IDL
* struct HelloWorld
* f
¢ long index;
string message;

*/
Topic* topic =
participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_

—DEFAULT) ;
if (nullptr == topic)
{

// Error

return;

(continues on next page)

6.17. DDS Layer 241

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =
participant->create_contentfilteredtopic("HelloWorldFilteredTopic", topic,

~"index > 10", {});

if (nullptr == filter_topic)

{
// Error
return;

}

// Use the ContentFilteredTopic on DataReader objects.
/7 Con)

// Delete the ContentFilteredTopic

if (ReturnCode_t::RETCODE_OK != participant->delete_contentfilteredtopic(filter_topic))

{
// Error
return;

The default SQL-like filter
Filter expressions used by ContentFilteredTopic API may use a subset of SQL syntax, extended with the possibility to
use program variables in the SQL expression. This section shows this default SQL-like syntax and how to use it.

e Grammar

e Like condition

* Match condition

* Type comparisons

e Example

Grammar

The allowed SQL expressions are defined with the BNF-grammar below.
The following conventions are made:
* “Terminals” are quoted.

» TOKENS are typeset in code block with black font color.

Expression = FilterExpression
FilterExpression = Condition
Condition = Predicate |

Condition "AND" Condition |
Condition "OR" Condition |
"NOT" Condition |

242 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

"(" Condition ")"

Predicate = ComparisonPredicate |
BetweenPredicate
ComparisonPredicate := FIELDNAME RelOp Parameter |

Parameter RelOp FIELDNAME |

FIELDNAME RelOp FIELDNAME
BetweenPredicate = FIELDNAME "BETWEEN" Range |

FIELDNAME "NOT BETWEEN" Range
RelOp = B R >k S B

"<>" | "1=" | like | match
Range = Parameter "AND" Parameter
Parameter = BOOLEANVALUE |

INTEGERVALUE |

CHARVALUE |

FLOATVALUE |

STRINGVALUE |

ENUMERATEDVALUE |

PARAMETER

“Terminals” and TOKENS are case sensitive but both uppercase and lowercase are supported.

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

* FIELDNAME: is a reference to a field in the data-structure. The dot . is used to navigate through nested
structures. The number of dots that may be used in a FIELDNAME is unlimited. The FIELDNAME can refer
to fields at any depth in the data structure. The names of the field are those specified in the IDL definition of the

corresponding structure.

FIELDNAME = FieldNamePart ("." FieldNamePart)*
FieldNamePart := Identifier ("[" Integer "]1")?

An example of FIELDNAMEs:

Filter expression

"points[0] = O AND color.red < 100"

Associated IDL
struct Color
{
octet red;
octet green;
octet blue;
b
struct Shape
{
long points[4];
Color color;
b

* BOOLEANVALUE: Can either be true of false, case sensitive.

6.17. DDS Layer

243

Fast DDS Documentation, Release 2.10.2

BOOLEANVALUE := ["TRUE", "true", "FALSE", "false"]

* INTEGERVALUE: Any series of digits, optionally preceded by a plus or minus sign, representing a decimal
integer value within the range of the system. A hexadecimal number is preceded by 8x and must be a valid
hexadecimal expression.

INTEGERVALUE c"+","-"1)? Integer
Integer ::= ([ll@ll_llgll])+ | ["@X","@X"](["0"—"9"’ |IAII_I|FII’ llall_llfll])+

An example of INTEGERVALUE:

value = -10

* CHARVALUE: A single character enclosed between single quotes.

CHARVALUE := "'" Character "'"
Character := ~["\n"]

An example of CHARVALUE:

value = 'c'

* FLOATVALUE: Any series of digits, optionally preceded by a plus or minus sign and optionally including
a floating point (.). A power-of-ten expression may be postfixed, which has the syntax e:sup:n, where n is a
number, optionally preceded by a plus or minus sign.

FLOATVALUE = (["+"1, "-"1)? (Integer Exponent | Integer Fractional | Integer Fractional Exponent)
Fractional := "." Integer
Exponent = ["e","E"] (["+"1, "-"1)? Integer

An example of FLOATVALUE:

value = 10.1e-10

* STRINGVALUE: Any series of characters encapsulated in single quotes, except a new-line character or a right
quote. A string starts with a left or right quote, but ends with a right quote.

STRINGVALUE := "1~y "\r", "\n"1 ["'""]

An example of STRINGVALUE:

value = 'This is a string'

« ENUMERATEDVALUE: An enumerated value is a reference to a value declared within an enumeration. Enu-
merated values consist of the name of the enumeration label enclosed in single quotes. The name used for the
enumeration label must correspond to the label names specified in the IDL definition of the enumeration.

ENUMERATEDVALUE

"7~ "\r", "\n"1 ["'"]

244 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

An example of ENUMERATEDVALUE:

Filter expression

value = "ENUM_VALUE_1'

Associated IDL
enum MyEnum
{
ENUM_VALUE_1,
ENUM_VALUE_2,
ENUM_VALUE_3
b
struct Enumerators
{
MyEnum value;
b

* PARAMETER: A parameter is of the form %n, where n represents a natural number (zero included) smaller
than 100. It refers tothen + 1 th argument in the given context.

PARAMETER = [ll%ll] [ll@ll_llg"] ([lloll_llgll])?

An example of PARAMETER:

value = %1

Like condition

The like operator is similar as the one defined by SQL. This operator can only be used with strings. There are two
wildcards that could be used in conjunction with this operator

* The percent sign % (or its alias *) represents zero, one, or multiple characters.
* The underscore sign _ (or its alias ?) represents one single character.

All wildcards can also be used in combinations.

An example of 1ike operator

Filter expression

"str like '%bird%'"

Associated IDL

struct Like

{
string str;

};

where string There are birds flying will return true.

6.17. DDS Layer 245

https://www.w3schools.com/sql/sql_like.asp

Fast DDS Documentation, Release 2.10.2

Match condition

The match operator performs a full-text search using a regular expression. This operator can only be used with strings.
It uses the Basic Regular Expression (BRE) defined by POSIX.

An example of match operator

Filter expression

"str match 'AThe'"

Associated IDL

struct Like

{

string str;

}s

where string There are birds flying will return true.

Type comparisons

For the supported operators in the grammar, next table shows the type compatibility.

Operator1 | Operator2 | BOOLEAN | INTEGER | FLOAT | CHAR | STRING | ENUM
BOOLEAN
INTEGER
FLOAT

CHAR

STRING
ENUM 8

(*) Only for the same enumerated type.

Example

Assuming Topic Shape has next IDL definition.

struct Shape

{
long x,
long vy,
long z,
long width,
long height
};

An example of filter expression would be:

"X < 23 AND y > 50 AND width BETWEEN %@ AND %1"

A ContentFilteredTopic may be created using this filter expression as explained in section Creating a ContentFiltered-
Topic.

246 Chapter 6. Structure of the documentation

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03

Fast DDS Documentation, Release 2.10.2

ContentFilteredTopic* sql_filter_topic =
participant->create_contentfilteredtopic('Shape", topic,
"X < 23 AND y > 50 AND width BETWEEN %0 AND %1",
{"10", "20"1);

In this example parameters are used. Internally the ContentFilteredTopic will be created with the filter expression
below, after setting the provided parameters.

"X < 23 AND y > 50 AND width BETWEEN 10 AND 20"

Using custom filters
Fast DDS API supports the creation and later registration of user’s custom filters to be used in the creation of a
ContentFilteredTopic. Required steps for using a Custom Filter are:

* Creating the Custom Filter

* Creating the Factory for the Custom Filter

* Registering the Factory

* Creating a ContentFilteredTopic using the Custom Filter

Creating the Custom Filter

A custom filter must be implemented by a class which inherits from IContentFilter. Only one function must be
implemented, overriding evaluate (). Each time a sample is received by a DataReader, this function is called with
next arguments.

* payload - The serialized payload of the sample which the custom filter has to evaluate.
* sample_info - The extra information which accompanies the sample.
e reader_guid - The GUID of the reader for which the filter is being evaluated.
The function returns a boolean where true implies the sample is accepted and false rejects the sample.

Next snippet code shows an example of Custom Filter which deserialize the index field from a serialized sample and
rejects samples where index > low_mark_ and index < high_mark_.

class MyCustomFilter : public IContentFilter

{
public:

MyCustomFilter(
int low_mark,
int high_mark)
: low_mark_(low_mark)
, high_mark_(high_mark)
{
}

bool evaluate(
const SerializedPayload& payload,
const FilterSampleInfo& sample_info,

(continues on next page)

6.17. DDS Layer 247

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

const GUID_t& reader_guid) const override

// Deserialize the ‘index” field from the serialized sample.
/* IDL
* struct HelloWorld
*
g long index;
string message;
* 1
*/
eprosima: :fastcdr: :FastBuffer fastbuffer(reinterpret_cast<char*>(payload.data),.
—payload.length);
eprosima: :fastcdr: :Cdr deser(fastbuffer, eprosima::fastcdr::Cdr::DEFAULT_ENDIAN,
eprosima: : fastcdr: :Cdr: :DDS_CDR) ;
// Deserialize encapsulation.
deser.read_encapsulation();
int index = 0;

// Deserialize ‘index" field.

try
{
deser >> index;
}
catch (eprosima::fastcdr::exception: :NotEnoughMemoryException& /*exception®/)
{
return false;
}

// Custom filter: reject samples where index > low_mark_ and index < high_mark .
if (index > low_mark_ && index < high_mark_)

{
return false;
}
return true;
3
private:

int low_mark_ = 0;
int high_mark_ = 0;

};

248 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Creating the Factory for the Custom Filter

Fast DDS creates filters through a factory. Therefore a factory which provides instantiating of a Custom Filter must be
implemented.

A Custom Filter’s factory has to inherit from IContentFilterFactory. This interface requires two functions to be
implemented.

Each time a Custom Filter has to be created or updated, create_contentfilteredtopic() calls internally
create_content_filter() with these arguments:

e filter_class_name - Filter class name for which the factory is being called. It allows using the same factory
for different filter classes.

¢ type_name - Type name of the topic being filtered.
» data_type - Type support object of the topic being filtered.
e filter_expression - Custom filter expression.

» filter_parameters - Values to set for the filter parameters (where custom filter expression has its pattern to
substitute them).

e filter_instance - When a filter is being created, it will be nullptr on input, and will have the pointer to
the created filter instance on output. When a filter is being updated, it will have a previously returned pointer on
input.

This function should return the result of the operation.

When a Custom Filter should be removed, delete_contentfilteredtopic() calls internally
delete_content_filter(). The factory must remove the provided Custom Filter’s instance.

Next snippet code shows an example of Custom Filter’s factory which manages instances of the Custom Filter imple-
mented in the previous section.

class MyCustomFilterFactory : public IContentFilterFactory

{
public:
ReturnCode_t create_content_filter(
const char* filter_class_name, // My custom filter class name is 'MY_CUSTOM_
FILTER'.

const char* type_name, // This custom filter only supports one type:
< 'HelloWorld'.
const TopicDataType* /*data_type®/, // Not used in this implementation.
const char* filter_expression, // This Custom Filter doesn't implement a.
—filter expression.
const ParameterSeq& filter_parameters, // Always need two parameters to be.
—set: low_mark and high_mark.
IContentFilter*& filter_instance) override
{
// Check the ContentFilteredTopic should be created by my factory.
if (0 != stramp(filter_class_name, "MY_CUSTOM_FILTER™))
{
return ReturnCode_t: :RETCODE_BAD_PARAMETER;
}

// Check the ContentFilteredTopic is created for the unique type this Custom.
—Filter supports.

(continues on next page)

6.17. DDS Layer 249

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

if (0 != strcmp(type_name, "HelloWorld"))
{

return ReturnCode_t: :RETCODE_BAD_PARAMETER;
}

// Check that the two mandatory filter parameters are set.
if (2 != filter_parameters.length())
{
return ReturnCode_t: :RETCODE_BAD_PARAMETER;
}

// If there is an update, delete previous instance.
if (nullptr != filter_instance)
{
delete(dynamic_cast<MyCustomFilter*>(filter_instance));

}

// Instantiation of the Custom Filter.
filter_instance = new MyCustomFilter(std::stoi(filter_parameters[0]),.
—std::stoi(filter_parameters[1]));

return ReturnCode_t: :RETCODE_OK;
}

ReturnCode_t delete_content_filter(
const char* filter_class_name,
IContentFilter* filter_instance) override

{
// Check the ContentFilteredTopic should be created by my factory.
if (0 != strcmp(filter_class_name, "MY_CUSTOM_FILTER"))
{
return ReturnCode_t: :RETCODE_BAD_PARAMETER;
}
// Deletion of the Custom Filter.
delete(dynamic_cast<MyCustomFilter*>(filter_instance));
return ReturnCode_t: :RETCODE_OK;
}

250 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Registering the Factory

To be able to use the Custom Filter in an application, the Custom Filter’s factory must be registered
in the DomainParticipant. Next snippet code shows how to register a factory through API function
register_content_filter_factory().

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory::get_instance()->create_participant(®, PARTICIPANT_QOS_

—DEFAULT) ;

if (nullptr == participant)

{
// Error
return;

// Create Custom Filter Factory
MyCustomFilterFactory” factory = new MyCustomFilterFactory();

// Registration of the factory
if (ReturnCode_t::RETCODE_OK !=
participant->register_content_filter_factory("MY_CUSTOM_FILTER", factory))

// Error
return;

Creating a ContentFilteredTopic using the Custom Filter

Creating a ContentFilteredTopic explains how to create a ContentFilteredTopic. In the case of using a Custom
Filter, create_contentfilteredtopic() has an overload adding an argument to select the Custom Filter.

Next snippet code shows how to create a ContentFilteredTopic using the Custom Filter.

// Create a DomainParticipant in the desired domain
DomainParticipant® participant =
DomainParticipantFactory: :get_instance()->create_participant(0, PARTICIPANT_QOS_
-DEFAULT) ;
if (nullptr == participant)
{
// Error
return;

}

// Create the Topic.
Topic* topic =
participant->create_topic("'HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
// Error
return;

(continues on next page)

6.17. DDS Layer 251

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

// Create a ContentFilteredTopic selecting the Custom Filter and using no expression.
—with two parameters
// Filter expression cannot be an empty one even when it is not used by the custom,
—filter, as that effectively
// disables any filtering
std::string expression =
std: :vector<std: :string> parameters;
parameters.push_back("10"); // Parameter for low_mark
parameters.push_back("20"); // Parameter for low_mark
ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopicl", topic,.
—.expression, parameters,

"MY_CUSTOM_FILTER");

if (nullptr == filter_topic)
{

// Error
return;

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber® subscriber =
participant->create_subscriber (SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
// Error
return;

}

DataReader* reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_

-»QOS_DEFAULT) ;

if (nullptr == reader_on_filter)

{
// Error
return;

Important: Even though this specific custom filtering example is not using the filter expression, mind that the expres-
sion cannot be an empty string as that disables filtering as explained in Creating a ContentFilteredTopic.

Note: Deleting a ContentFilteredTopic which uses a Custom Filter is done exactly in the same manner explained in
Deleting a ContentFilteredTopic.

252 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Where is filtering applied: writer vs reader side

Content filters may be evaluated on either side, as the DataWriter obtains the filter expression from the DataReader
during discovery. Filtering on the writer side can save network bandwidth at the cost of increasing CPU usage on the
writer.

Conditions for writer side filtering

A DataWriter will perform filter evaluation in the DataReader stead whenever all of the following conditions are met;
filtering will otherwise be performed by the DataReader.

e The DataWriter has infinite liveliness. See LivelinessQosPolicy.
* Communication with the DataReader is neither intra-process nor data-sharing.
* The DataReader is not using multicast.

e The DataWriter is filtering for no more DataReaders than the maximum value set on
reader_filters_allocation.

— There is a resource-limit policy on DataWriterQos that controls the allocation behavior of writer-side fil-
tering resources. Setting a maximum value of O disables filter evaluation on the writer side. A maximum
value of 32 (the default value) means the writer will perform filter evaluation for up to 32 readers.

— If the DataWriter is evaluating filters for writer_resource_limits.reader_filters_allocation.
maximum DataReaders, and a new filtered DataReader is created, then the filter for the newly created
DataReader will be evaluated on the reader side.

Discovery race condition

On applications where the filter expression and/or the expression parameters are updated, there may be a situation
where the DataWriter will apply the old version of the filter until it receives updated information through discovery.
This may imply that a publication made a short time after the DataReader updated the filter, but before the updated
discovery information is received by the DataWriter, may not be sent to the DataReader, even if the new filter would
have told otherwise. Publications made after the updated discovery information is received will use the updated filter.

If some critical application considers this race condition issue unbearable, filtering on the writer side can be disabled
by setting the maximum value on reader_filters_allocation to 0.

Fast DDS-Gen for data types source code generation

eProsima Fast DDS comes with a built-in source code generation tool, Fast DDS-Gen, which eases the process of
translating an IDL specification of a data type to a functional implementation. Thus, this tool automatically generates
the source code of a data type defined using IDL. A basic use of the tool is described below. To learn about all the
features that Fast DDS offers, please refer to Fast DDS-Gen section.

6.17. DDS Layer 253

Fast DDS Documentation, Release 2.10.2

Basic usage

Fast DDS can be executed by calling fastddsgen on Linux or fastddsgen.bat on Windows. The IDL file containing the
data type definition is given with the <IDLfile> argument.

Linux

fastddsgen [<options>] <IDLfile> [<IDLfile> ...]

Windows

fastddsgen.bat [<options>] <IDLfile> [<IDLfile> ...]

Among the available arguments defined in Usage, the main Fast DDS-Gen options for data type source code generation
are the following:

» -replace: It replaces existing files in case the data type files have been previously generated.
* -help: It lists the currently supported platforms and Visual Studio versions.
e -typeobject: It builds additional files for TypeObject generation and management (see 7ypeObject).

* -example: It generates a basic example of a DDS application and the files to build it for the given platform.
Thus, Fast DDS-Gen tool can generate a sample application using the provided data type, together with a Make-
file, to compile it on Linux distributions, and a Visual Studio project for Windows. To see an example of this
please refer to tutorial Building a publish/subscribe application.

Output files

Fast DDS-Gen outputs several files. Assuming the IDL file had the name “Mytype”, and none of the above options
have been defined, these files are:

* MyType.cxx/.h: Type definition.

* MyTypePubSubType.cxx/.h: Serialization and deserialization source code for the data type. It also defines the
getKey () member function of the MyTypePubSubType class in case the topic implements keys (see Data types
with a key).

If the -typeobject argument was used, MyType.cxx is modified to register the TypeObject representation in the
TypeObjectFactory, and these files will also be generated:

* MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

6.18 RTPS Layer

The lower level RTPS Layer of eprosima Fast DDS serves an implementation of the protocol defined in the RTPS
standard. This layer provides more control over the internals of the communication protocol than the DDS Layer, so
advanced users have finer control over the library’s functionalities.

254 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.10.2

6.18.1 Relation to the DDS Layer

Elements of this layer map one-to-one with elements from the DDS Layer, with a few additions. This correspondence
is shown in the following table:

DDS Layer RTPS Layer
Domain RTPSDomain
DomainParticipant | RTPSParticipant
DataWriter RTPSWriter
DataReader RTPSReader

6.18.2 How to use the RTPS Layer

We will now go over the use of the RTPS Layer like we did with the DDS Layer one, explaining the new features it
presents.

We recommend you to look at the two examples describing how to use the RTPS layer that come with the distribution
while reading this section. They are located in examples/cpp/rtps/AsSocket and examples/cpp/rtps/Registered

Managing the Participant

Creating a RTPSParticipant is done with RTPSDomain: :createParticipant ().
RTPSParticipantAttributes structure is used to configure the RTPSParticipant upon creation.

RTPSParticipantAttributes participant_attr;
participant_attr.setName("participant");
RTPSParticipant® participant = RTPSDomain::createParticipant(®, participant_attr);

Managing the Writers and Readers

As the RTPS standard specifies, RTPSIiiriters and RTPSReaders are always associated with a History element. In
the DDS Layer, its creation and management is hidden, but in the RTPS Layer, you have full control over its creation
and configuration.

Writers are created with RTPSDomain: : createRTPSliriter () and configured with a WriterAttributes structure.
They also need a liriterHistory which is configured with a HistoryAttributes structure.

HistoryAttributes history_attr;

WriterHistory* history = new WriterHistory(history_attr);

WriterAttributes writer_attr;

RTPSWriter”* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, history);

Similar to the creation of Writers, Readers are created with RTPSDomain: : createRTPSReader () and configured with
aReaderAttributes structure. A HistoryAttributes structure is used to configure the required ReaderHistory.
Note that in this case, you can provide a specialization of ReaderListener class that implements your callbacks:

class MyReaderListener : public ReaderListener

{
// Callbacks override

1

MyReaderListener listener;

(continues on next page)

6.18. RTPS Layer 255

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/AsSocket
https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/Registered

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

HistoryAttributes history_attr;

ReaderHistory* history = new ReaderHistory(history_attr);

ReaderAttributes reader_attr;

RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, history, &
—listener);

Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated Histories. Each piece of data
is represented by a Change, which eprosima Fast DDS implements as CacheChange_t. Changes are always managed
by the History.

You can add a new CacheChange_t to the History of the Writer to send data. The procedure is as follows:

1. Request a CacheChange_t from the Writer with RTPSWriter: :new_change (). In order to allocate enough
memory, you need to provide a callback that returns the maximum number bytes in the payload.

2. Fill the CacheChange_t with the data.
3. Add it to the History with WriterHistory: :add_change().

The Writer will take care of everything to communicate the data to the Readers.

//Request a change from the writer
CacheChange_t* change = writer->new_change([]() -> uint32_t

{

return 255;

}, ALIVE);
//Write serialized data into the change
change->serializedPayload.length = sprintf((char®) change->serializedPayload.data, "My.
—example string %d", 2) + 1;
//Insert change into the history. The Writer takes care of the rest.
history->add_change(change) ;

If your topic data type has several fields, you will have to provide functions to serialize and deserialize your data in and
out of the CacheChange_t. Fast DDS-Gen does this for you.

You can receive data from within the ReaderListener: :onNewCacheChangeAdded callback, as we did in the DDS
Layer:

1. The callback receives a CacheChange_t parameter containing the received data.
2. Process the data within the received CacheChange_t.

3. Inform the Reader’s History that the change is not needed anymore.

class MyReaderListener : public ReaderListener

{

public:
MyReaderListener()
{
}
~MyReaderListener()
{

(continues on next page)

256 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

}

void onNewCacheChangeAdded(
RTPSReader* reader,
const CacheChange_t* const change)

{
// The incoming message is enclosed within the ‘change’ in the function parameters
printf("%s\n", change->serializedPayload.data);
// Once done, remove the change
reader->getHistory() ->remove_change ((CacheChange_t*)change) ;
}

6.18.3 Configuring Readers and Writers

One of the benefits of using the RTPS Layer is that it provides new configuration possibilities while maintaining the
options from the DDS layer. For example, you can set a Writer or a Reader as a Reliable or Best-Effort endpoint as
previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

Setting the data durability kind

The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader matches.
eProsima Fast DDS offers three Durability options:

¢ VOLATILE (default): Messages are discarded as they are sent. If a new Reader matches after message n, it will
start received from message n+1.

* TRANSIENT_LOCAL: The Writer saves a record of the last k messages it has sent. If a new reader matches
after message n, it will start receiving from message n-k

* TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it
will be available if the writer is destroyed and recreated, or in case of an application crash.

To choose your preferred option:

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the RTPS Layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT modes the
Writer sends all changes you have not explicitly released from the History.

6.18. RTPS Layer 257

Fast DDS Documentation, Release 2.10.2

6.18.4 Configuring the History

The History has its own configuration structure, the HistoryAttributes.

Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t. Be sure to choose a size that
allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250;//Defaults to 500 bytes

Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as
they are needed until it reaches the maximum size.

6.18.5 Using a custom Payload Pool

A Payload is defined as the data the user wants to transmit between a Writer and a Reader. RTPS needs to add
some metadata to this Payload in order to manage the communication between the endpoints. Therefore, this Pay-
load is encapsulated inside the SerializedPayload_t field of the CacheChange_t, while the rest of the fields of the
CacheChange_t provide the required metadata.

WiriterHistory and ReaderHistory provide an interface for the user to interact with these changes: Changes to be
transmitted by the Writer are added to its WriterHistory, and changes already processed on the Reader can be removed
from the ReaderHistory. In this sense, the History acts as a buffer for changes that are not fully processed yet.

During a normal execution, new changes are added to the History and old ones are removed from it. In order to manage
the lifecycle of the Payloads contained in these changes, Readers and Writers use a pool object, an implementation of
the TPayloadPool interface. Different pool implementations allow for different optimizations. For example, Payloads
of different size could be retrieved from different preallocated memory chunks.

Writers and Readers can automatically select a default Payload pool implementation that best suits
the configuration given in HistoryAttributes. However, a custom Payload pool can be given to
RTPSDomain: :createRTPSWriter() and RTPSDomain: :createRTPSReader () functions. Writers and Readers
will use the provided pool when a new CacheChange_t is requested or released.

IPayloadPool interface

e IPayloadPool::get_payload overload with size parameter:

Ties an empty Payload of the requested size to a CacheChange_t instance. The Payload can then be filled with
the required data.

* IPayloadPool: :get_payload overload with SerializadPayload parameter:

Copies the given Payload data to a new Payload from the pool and ties it to the CacheChange_t instance. This
overload also takes a pointer to the pool that owns the original Payload. This allows certain optimizations, like
sharing the Payload if the original one comes form this same pool, therefore avoiding the copy operation.

258 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

e TPayloadPool: :release_payload:

Returns the Payload tied to a CacheChange_t to the pool, and breaks the tie.

Important: When implementing a custom Payload pool, make sure that the allocated Payloads fulfill the requirements
of standard RTPS serialization. Specifically, the Payloads must be large enough to accommodate the serialized user
data plus the 4 octets of the SerializedPayloadHeader as specified in section 10.2 of the RTPS standard.

For example, if we know the upper bound of the serialized user data, we may consider implementing a pool that always
allocates Payloads of a fixed size, large enough to hold any of this data. If the serialized user data has at most N octets,
then the allocated Payloads must have at least N+4 octets.

Note that the size requested to TPayloadPool: :get_payload already considers this 4 octet header.

Default Payload pool implementation

If no custom Payload pool is provided to the Writer or Reader, Fast DDS will automatically use the default implemen-
tation that best matches the memoryPolicy configuration of the History.

PREALLOCATED_MEMORY_MODE

All payloads will have a data buffer of fixed size, equal to the value of payloadMaxSize, regardless of the size requested
to IPayloadPool: :get_payload. Released Payloads can be reused for another CacheChange_t. This reduces
memory allocation operations at the cost of higher memory usage.

During the initialization of the History, initialReservedCaches Payloads are preallocated for the initially allocated
CacheChange_t.

PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Payloads are guaranteed to have a data buffer at least as large as the maximum between the requested size and
payloadMaxSize. Released Payloads can be reused for another CacheChange_t. If there is at least one free Pay-
load with a buffer size equal or larger to the requested one, no memory allocation is done.

During the initialization of the History, initialReservedCaches Payloads are preallocated for the initially allocated
CacheChange_t.

DYNAMIC_RESERVE_MEMORY_MODE

Every time a Payload is requested, a new one is allocated in memory with the appropriate size. payloadMaxSize is
ignored. The memory of released Payloads is always deallocated, so there are never free Payloads in the pool. This
reduces memory usage at the cost of frequent memory allocations.

No preallocation of Payloads is done in the initialization of the History,
DYNAMIC_REUSABLE_MEMORY_MODE
Payloads are guaranteed to have a data buffer at least as large as the requested size. payloadlaxSize is ignored.

Released Payloads can be reused for another CacheChange_t. If there is at least one free Payload with a buffer size
equal or larger to the requested one, no memory allocation is done.

6.18. RTPS Layer 259

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.10.2

Example using a custom Payload pool

// A simple payload pool that reserves and frees memory each time
class CustomPayloadPool : public IPayloadPool
{
bool get_payload(
uint32_t size,
CacheChange_t& cache_change) override

{
// Reserve new memory for the payload buffer
octet® payload = new octet[size];
// Assign the payload buffer to the CacheChange and update sizes
cache_change.serializedPayload.data = payload;
cache_change.serializedPayload.length = size;
cache_change.serializedPayload.max_size = size;
// Tell the CacheChange who needs to release its payload
cache_change.payload_owner(this);
return true;

}

bool get_payload(
SerializedPayload_t& data,
IPayloadPool*& /* data_owner */,
CacheChange_t& cache_change) override

// Reserve new memory for the payload buffer
octet® payload = new octet[data.length];

// Copy the data
memcpy (payload, data.data, data.length);

// Assign the payload buffer to the CacheChange and update sizes
cache_change.serializedPayload.data = payload;
cache_change.serializedPayload.length = data.length;
cache_change.serializedPayload.max_size = data.length;

// Tell the CacheChange who needs to release its payload
cache_change.payload_owner (this);

return true;

}

bool release_payload(
CacheChange_t& cache_change) override
{
// Ensure precondition
assert(this == cache_change.payload_owner());

// Dealloc the buffer of the payload
delete[] cache_change.serializedPayload.data;

(continues on next page)

260 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

// Reset sizes and pointers
cache_change.serializedPayload.data = nullptr;
cache_change.serializedPayload.length = 0;
cache_change.serializedPayload.max_size = 0;

// Reset the owner of the payload
cache_change.payload_owner (nullptr);

return true;

};
std: :shared_ptr<CustomPayloadPool> payload_pool = std::make_shared<CustomPayloadPool>();

// A writer using the custom payload pool

HistoryAttributes writer_history_attr;

WriterHistory* writer_history = new WriterHistory(writer_history_attr);

WriterAttributes writer_attr;

RTPSWriter”* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, payload_pool,
< Writer_history);

// A reader using the same instance of the custom payload pool

HistoryAttributes reader_history_attr;

ReaderHistory* reader_history = new ReaderHistory(reader_history_attr);

ReaderAttributes reader_attr;

RTPSReader® reader = RTPSDomain::createRTPSReader(participant, reader_attr, payload_pool,
< reader_history);

// Write and Read operations work as usual, but take the Payloads from the pool.
// Requesting a change to the Writer will provide one with an empty Payload taken from.,
—the pool
CacheChange_t* change = writer->new_change([]() -> uint32_t
{
return 255;
}, ALIVE);

// Write serialized data into the change and add it to the history
change->serializedPayload.length = sprintf((char®) change->serializedPayload.data, "My.
—example string %d", 2) + 1;

writer_history->add_change(change);

6.18. RTPS Layer 261

Fast DDS Documentation, Release 2.10.2

6.19 Discovery

Fast DDS, as a Data Distribution Service (DDS) implementation, provides discovery mechanisms that allow for au-
tomatically finding and matching DataWriters and DataReaders across DomainParticipants so they can start sharing
data. This discovery is performed, for all the mechanisms, in two phases.

6.19.1 Discovery phases

1.

Participant Discovery Phase (PDP): During this phase the DomainParticipants acknowledge each other’s
existence. To do that, each DomainParticipant sends periodic announcement messages, which specify, among
other things, unicast addresses (IP and port) where the DomainParticipant is listening for incoming meta and
user data traffic. Two given DomainParticipants will match when they exist in the same DDS Domain. By
default, the announcement messages are sent using well-known multicast addresses and ports (calculated using
the DomainId). Furthermore, it is possible to specify a list of addresses to send announcements using unicast (see
in Initial peers). Moreover, is is also possible to configure the periodicity of such announcements (see Discovery
Configuration).

Endpoint Discovery Phase (EDP): During this phase, the Dataliriters and DataReaders acknowledge each
other. To do that, the DomainParticipants share information about their DataWriters and DataReaders with each
other, using the communication channels established during the PDP. This information contains, among other
things, the Topic and data type (see Topic). For two endpoints to match, their topic and data type must coincide.
Once DataWriter and DataReader have matched, they are ready for sending/receiving user data traffic.

Important: It is possible to use the PDP phase to transmit information about the host, user, and process (physical
information) in which the DomainParticipant is running. Please refer to Physical Data in Discovery Information
for more information about how to configure the transmitted physical data.

6.19.2 Discovery mechanisms

Fast DDS provides the following discovery mechanisms:

e Simple Discovery: This is the default mechanism. It upholds the RTPS standard for both PDP and EDP, and

therefore provides compatibility with any other DDS and RTPS implementations.

e Static Discovery: This mechanisms uses the Simple Participant Discovery Protocol (SPDP) for the PDP phase

(as specified by the RTPS standard), but allows for skipping the Simple Endpoint Discovery Protocol (SEDP)
phase when all the DataWriters’ and DataReaders’ IPs and ports, data types, and Topics are known beforehand.

* Discovery Server: This discovery mechanism uses a centralized discovery architecture, where a DomainPartici-

pant, referred as Server, acts as a hub for meta traffic discovery.

e Manual Discovery: This mechanism is only compatible with the RTPS layer. It disables the PDP, letting the user

to manually match and unmatch RTPSParticipants, RTPSReaders, and RTPSIriters using whatever exter-
nal meta-information channel of its choice. Therefore, the user must access the RTPSParticipant implemented
by the DomainParticipant and directly match the RTPS Entities.

262

Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

6.19.3 Discovery settings

The following sections list and describe the settings available for each of the previously defined discovery mechanisms,
as well as how to define the DomainParticipantListener discovery callbacks.

General Discovery Settings

Some discovery settings are shared across the different discovery mechanisms. These settings are defined under the
builtin public data member of the WireProtocolConfigQos class. These are:

Name Description Type De-

fault
Discovery The discovery protocol to use (see Discovery mechanisms). DiscoveryProtoc¢lSIMPLE
Protocol

Ignore Par- | Filter discovery traffic for DomainParticipants in the same pro- | ParticipantFilteriGgFIE]

ment Period ments.

ticipant cess, in different processes, or in different hosts.

flags

Lease Dura- | Indicates for how much time should a remote DomainParticipant | Duration_t 20s
tion consider the local DomainParticipant to be alive.

Announce- The period for the DomainParticipant to send PDP announce- | Duration_t 3s

Discovery Protocol

Specifies the discovery

protocol to use (see Discovery mechanisms). The possible values are:

Dis- Pos- Description

covery sible

Mecha- | val-

nism ues

Simple SIMPLE| Simple discovery protocol as specified in RTPS standard.

Static STATIC| SPDP with manual EDP specified in XML files.

Dis- SERVER| The DomainParticipant acts as a hub for discovery traffic, receiving and distributing discov-

covery ery information.

Server CLIENT| The DomainParticipant acts as a client for discovery traffic. It sends its discovery information
to the server, and it receives only the information that is relevant to it.

SUPER_(ITh@MDomainParticipant acts as a client for discovery traffic. It sends its discovery information
to the server, and it receives all other discovery information from the server.

BACKUP| Creates a SERVER DomainParticipant which has a persistent sqlite database. A BACKUP
server can load the a database on start. This type of sever makes the Discovery Server
architecture resilient to server destruction.

Manual NONE Disables PDP phase, therefore the is no EDP phase. All matching must be done manually
through the addReaderLocator, addReaderProxy, addWriterProxy RTPS layer meth-
ods.

C++

DomainParticipantQos pqos;

pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t: :SIMPLE;

6.19. Discovery

263

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

XML

<?xml version="1.0" encoding="UTF-8" ?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<profiles>
<participant profile_name="participant_discovery_protocol">
<rtps>
<builtin>
<discovery_config>
<discoveryProtocol>SIMPLE</discoveryProtocol>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>
</dds>

Ignore Participant flags

Defines a filter to ignore some discovery traffic when received. This is useful to add an extra level of DomainParticipant
isolation. The possible values are:

Possible values Description

NO_FILTER All Discovery traffic is processed.

FILTER_DIFFERENT_HOST Discovery traffic from another host is discarded.

FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host is
discarded.

FILTER_SAME_PROCESS Discovery traffic from DomainParticipant’s own process is
discarded.

FILTER _DIFFERENT_PROCESS | | Discovery traffic from DomainParticipant’s own host is dis-

FILTER_SAME_PROCESS carded.

C++

DomainParticipantQos pqos;

pgos.wire_protocol() .builtin.discovery_config.ignoreParticipantFlags =
static_cast<eprosima::fastrtps::rtps::ParticipantFilteringFlags_t>(
ParticipantFilteringFlags_t: :FILTER_DIFFERENT_PROCESS |
ParticipantFilteringFlags_t::FILTER_SAME_PROCESS);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<profiles>
<participant profile_name="participant_discovery_ignore_flags">
<rtps>
<builtin>
<discovery_config>
<ignoreParticipantFlags>FILTER_DIFFERENT_PROCESS | FILTER_SAME_

-, PROCESS</ignoreParticipantFlags>

(continues on next page)

264 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

(continued from previous page)

</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>
</dds>

Note: To configure a DomainParticipant to not receive data from its own DataWriters, please refer to Ignore Local
Endpoints.

Lease Duration

Indicates for how much time should a remote DomainParticipant consider the local DomainParticipant to be alive. If
the liveliness of the local DomainParticipant has not being asserted within this time, the remote DomainParticipant
considers the local DomainParticipant dead and destroys all the information regarding the local DomainParticipant and
all its endpoints.

The local DomainParticipant’s liveliness is asserted on the remote DomainParticipant any time the remote DomainPar-
ticipant receives any kind of traffic from the local DomainParticipant.

The lease duration is specified as a time expressed in seconds and nanosecond using a Duration_t.

C++

DomainParticipantQos pqos;

pgos.wire_protocol () .builtin.discovery_config.leaseDuration = Duration_t(10, 20);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<profiles>
<participant profile_name="participant_discovery_lease_duration'">
<rtps>
<builtin>
<discovery_config>
<leaseDuration>
<sec>10</sec>
<nanosec>20</nanosec>
</leaseDuration>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>
</dds>

6.19. Discovery 265

Fast DDS Documentation, Release 2.10.2

Announcement Period

It specifies the periodicity of the DomainParticipant’s PDP announcements. For liveliness’ sake it is recommend that
the announcement period is shorter than the lease duration, so that the DomainParticipant’s liveliness is asserted even
when there is no data traffic. It is important to note that there is a trade-off involved in the setting of the announcement
period, i.e. too frequent announcements will bloat the network with meta traffic, but too scarce ones will delay the
discovery of late joiners.

DomainParticipant’s announcement period is specified as a time expressed in seconds and nanosecond using a
Duration_t.

C++

DomainParticipantQos pqos;

pgos.wire_protocol () .builtin.discovery_config.leaseDuration_announcementperiod =.
—Duration_t(l, 2);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<profiles>
<participant profile_name="participant_discovery_lease_announcement'>
<rtps>
<builtin>
<discovery_config>
<leaseAnnouncement>
<sec>1</sec>
<nanosec>2</nanosec>
</leaseAnnouncement>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>
</dds>

SIMPLE Discovery Settings

The SIMPLE discovery protocol resolves the establishment of the end-to-end connection between various DDS Entities.
eProsima Fast DDS implements the SIMPLE discovery protocol to provide compatibility with the RTPS standard. The
specification splits up the SIMPLE discovery protocol into two independent protocols:

¢ Simple Participant Discovery Protocol (SPDP): specifies how DomainParticipants discover each other in the
network; it announces and detects the presence of DomainParticipants within the same domain.

» Simple Endpoint Discovery Protocol (SEDP): defines the protocol adopted by the discovered DomainPartic-
ipants for the exchange of information in order to discover the DDS Entities contained in each of them, i.e. the
DataWriter and DataReader .

Name Description

Initial Announcements | It defines the behavior of the DomainParticipants initial announcements.

Simple EDP Attributes | It defines the use of the SIMPLE protocol as a discovery protocol.

Initial peers A list of DomainParticipant’s IP/port pairs to which the SPDP announcements are sent.

266 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

Initial Announcements

RTPS standard simple discovery mechanism requires the DomainParticipants to send announcements of their presence
in the domain. These announcements are not delivered in a reliable fashion, and can be disposed of by the network. In
order to avoid the discovery delay induced by message disposal, the initial announcement can be set up to make several
shots, in order to increase proper reception chances. See InitialAnnouncementConfig.

Initial announcements only take place upon participant creation. Once this phase is over, the only announcements
enforced are the standard ones based on the leaseDuration_announcementperiod period (not the period).

Name | Description Type Default
count | It defines the number of announcements to send at start-up. | uint32_t 5
period | It defines the specific period for initial announcements. Duration_t | 100ms

C++

DomainParticipantQos pqos;

pgos.wire_protocol() .builtin.discovery_config.initial_announcements.count = 5;
pgos.wire_protocol().builtin.discovery_config.initial_announcements.period = Duration_
-t (0, 100000000u);

XML

<participant profile_name="participant_profile_simple_discovery'">
<rtps>
<builtin>
<discovery_config>
<initialAnnouncements>
<count>5</count>
<period>
<nanosec>100000000</nanosec>
</period>
</initialAnnouncements>
</discovery_config>
</builtin>
</rtps>
</participant>

6.19. Discovery 267

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

Simple EDP Attributes

Name Description Type De-
fault

SIMPLE EDP It defines the use of the SIMPLE protocol as a discovery protocol for EDP phase. | bool| true
A DomainParticipant may create DataWriters, DataReaders, both or neither.

Publication It is intended for DomainParticipants that implement only one or more DataWrit- | bool| true

writer and Sub- | ers,i.e. donotimplement DataReaders. It allows the creation of only DataReader

scription reader discovery related EDP endpoints.

Publication It is intended for DomainParticipants that implement only one or more DataRead- | bool| true

reader and | ers, i.e. do not implement DataWriters. It allows the creation of only DataWriter

Subscription discovery related EDP endpoints.

writer

C++

DomainParticipantQos pqos;

pgos.wire_protocol() .builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol =.
—true;

pgos.wire_protocol() .builtin.discovery_config.m_simpleEDP.use_
—PublicationWriterANDSubscriptionReader = true;
pgos.wire_protocol().builtin.discovery_config.m_simpleEDP.use_
—PublicationReaderANDSubscriptionWriter = false;

XML

<participant profile_name="participant_profile_qos_discovery_edp">
<rtps>
<builtin>
<discovery_config>
<EDP>SIMPLE</EDP>
<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>false</PUBREADER_SUBWRITER>
</simpleEDP>
</discovery_config>
</builtin>
</rtps>
</participant>

268 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Initial peers

According to the RTPS standard (Section 9.6.1.1), each RTPSParticipant must listen for incoming Participant Dis-
covery Protocol (PDP) discovery metatraffic in two different ports, one linked with a multicast address, and another one
linked to a unicast address. Fast DDS allows for the configuration of an initial peers list which contains one or more
such IP-port address pairs corresponding to remote DomainParticipants PDP discovery listening resources, so that the
local DomainParticipant will not only send its PDP traffic to the default multicast address-port specified by its domain,
but also to all the IP-port address pairs specified in the initial peers list.

A DomainParticipant’s initial peers list contains the list of IP-port address pairs of all other DomainParticipants with
which it will communicate. Itis alist of addresses that a DomainParticipant will use in the unicast discovery mechanism,
together or as an alternative to multicast discovery. Therefore, this approach also applies to those scenarios in which
multicast functionality is not available.

According to the RTPS standard (Section 9.6.1.1), the RTPSParticipants’ discovery traffic unicast listening ports are
calculated using the following equation: 7400 + 250 * domainID + 10 + 2 * participantID. Thus, if for example a
RTPSParticipant operates in Domain O (default domain) and its ID is 1, its discovery traffic unicast listening port
would be: 7400 + 250 * 0 + 10 + 2 * 1 = 7412. By default eProsima Fast DDS uses as initial peers the Metatraffic
Multicast Locators.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with Do-
mainParticipant ID 1 in domain 0.

Note: There is also the possibility of not defining the initial peer port. In this case, the discovery information would
be sent to every port ranging from participantID zero to the maxInitialPeersRange value set in the TransportDe-
scriptorinterface. Consequently, setting this value to at least the maximum expected number of DomainParticipants
will ensure discovery and communication.

6.19. Discovery 269

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.10.2

C++

DomainParticipantQos gos;

// configure an initial peer on host 192.168.10.13.

// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID "1° and domain “0.

Locator_t initial_peer;

IPLocator: :setIPv4(initial_peer, "192.168.10.13");

initial_peer.port = 7412;
gos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

XML

<l--
<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-—>
<participant profile_name="initial_peers_example_profile" is_default_profile="true
o>
<rtps>
<builtin>
<initialPeersList>
<locator>
<udpv4>
<address>192.168.10.13</address>
<port>7412</port>
</udpv4>
</locator>
</initialPeersList>
</builtin>
</rtps>
</participant>

STATIC Discovery Settings

Fast DDS allows for the substitution of the SEDP protocol for the EDP phase with a static version that completely
eliminates EDP meta traffic. This can become useful when dealing with limited network bandwidth and a well-known
schema of DataWriters and DataReaders. If all DataWriters and DataReaders, and their Topics and data types, are
known beforehand, the EDP phase can be replaced with a static configuration of peers. It is important to note that by
doing this, no EDP discovery meta traffic will be generated, and only those peers defined in the configuration will be
able to communicate. The STATIC discovery related settings are:

Name Description

STATIC EDP It activates the STATIC discovery protocol.

STATIC EDP XML Configuration | Specifies an XML content with a description of the remote DataWriters

Specification and DataReaders.

Initial Announcements It defines the behavior of the DomainParticipant initial announcements
(PDP phase).

270 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

STATIC EDP

To activate the STATIC EDP, the SEDP must be disabled on the WireProtocolConfigQos. This can be done either
by code or using an XML configuration file:

C++

DomainParticipantQos pqos;

pgos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol =.
—false;
pgos.wire_protocol().builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol =.
—true;

XML

<participant profile_name="participant_profile_static_edp">
<rtps>
<builtin>
<discovery_config>
<EDP>STATIC</EDP>
</discovery_config>
</builtin>
</rtps>
</participant>

Currently two different formats of exchanging information in the Participant Discovery Phase (PDP) are supported: the
default one and another that reduces the network bandwidth used. Static Discovery’s Exchange Format explains how
to change this.

STATIC EDP XML Configuration Specification

Since activating STATIC EDP suppresses all EDP meta traffic, the information about the remote entities (DataWriters
and DataReaders) must be statically specified, which is done using dedicated XML files. A DomainParticipant may
load several of such configuration files so that the information about different entities can be contained in one file, or
split into different files to keep it more organized. Fast DDS provides a Static Discovery example that implements this
EDP discovery protocol.

The following table describes all the possible elements of a STATIC EDP XML configuration file. A full example of
such file can be found in STATIC EDP XML Example.

6.19. Discovery 271

https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/StaticHelloWorldExample

Fast DDS Documentation, Release 2.10.2

Name Description Values Default
<userId>| Mandatory. Uniquely identifies the | uintl6_t 0
DataReader/DataWriter.
<entityID>Entityld of the DataReader/DataWriter. uintl1l6_t 0
<expectsInltineqQasites if QOS 1is expected inline | bool false
(DataReader only).
<topicNameMandatory. The topic of the remote | string_255
DataReader/DataWriter. Should match
with one of the topics of the local DataRead-
ers/DataWriters.
<topicDataViapdatory. The data type of the topic. string_255
<topicKindPhe kind of topic. NO_KEY WITH_KEY NO_KEY
<partitiornBosname of a partition of the remote peer. Re- | string

peat to configure several partitions.

<unicastl

L.ddaioast-locator of the DomainParticipant. See
Locators definition.

<multicas

s tidddast tocator of the DomainParticipant. See
Locators definition.

<reliabil

| iSethe>ReliabilityQosPolicy section.

BEST_EFFORT_RELIABILITY_QOS
RELTABLE_RELTIABILITY_QOS

BEST_EFFORT_RELIABILITY_(

<durabilj

1 tS€Qote DurabilityQosPolicy section.

VOLATILE_DURABILITY_QOS
TRANSIENT_LOCAL_DURABILITY_Q
TRANSIENT_DURABILITY_QOS

VOLATILE_DURABILITY_QOS
DS

<ownersh]

| pRexesOwnership QoS.

<liveline

asl9ghses the liveliness of the remote peer. See
Liveliness QoS.

<disablel

P oSdet IveldkBesitiveACKsQosPolicy.

See DisablePositiveAcks

Locators d

Locators for remote peers are configured using <unicastLocator> and <multicastLocator> tags.

efinition

These

take no value, and the locators are defined using tag elements. Locators defined with <unicastLocator> and
<multicastLocator> are accumulative, so they can be repeated to assign several remote endpoints locators to the

same peer.

* address: a mandatory string representing the locator address.

e port: an optional uint16_t representing a port on that address.

Ownership QoS

The ownership of the topic can be configured using <ownershipQos> tag. It takes no value, and the configuration is
done using tag elements:

e kind: can be one of SHARED_OWNERSHIP_QOS or EXCLUSIVE_OWNERSHIP_QOS. This element is mandatory

within

g the tag.

* strength: an optional uint32_t specifying how strongly the remote DomainParticipant owns the 7opic. This
QoS can be set on DataWriters only. If not specified, default value is zero.

272

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Liveliness QoS

The LivelinessQosPolicy of the remote peer is configured using <livelinessQos> tag. It takes no value, and the
configuration is done using tag elements:

e kind: can be any of AUTOMATIC_LIVELINESS_QOS, MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS. This element is mandatory withing the tag.

¢ leaseDuration_ms: an optional uint32 specifying the lease duration for the remote peer. The special value
INF can be used to indicate infinite lease duration. If not specified, default value is INF

Checking STATIC EDP XML Files

Before loading a static EDP XML file, it would be useful to check its validity and make sure the
file will be successfully loaded. This verification can be performed on DomainParticipantFactory using
DomainParticipantFactory: :check_xml_static_discovery(), using either XML files or the configuration
directly, as in the examples below.

File

// The (file://) flag is optional.

std::string file = "file://static_Discovery.xml";

DomainParticipantFactory* factory = DomainParticipantFactory::get_instance();
if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(file))

{

std::cout << "Error parsing xml file " << file << std::endl;

}

Data

// The (data://) flag is required to load the configuration directly.
std::string fileData = "data://<?xml version=\"1.0\" encoding=\"utf-8\"7>" \

"<staticdiscovery>" \

"<participant>" \

"<name>HelloWorldPublisher</name>" \

"<writer>" \

"<userId>1</userId>" \

"<entityID>2</entityID>" \

"<topicName>HelloWorldTopic</topicName>" \

"<topicDataType>HelloWorld</topicDataType>" \

"</writer>" \

"</participant>" \

"</staticdiscovery>";
if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(fileData))
{

std::cout << "Error parsing xml file data:" << std::endl << fileData << std::endl;

}

6.19. Discovery 273

Fast DDS Documentation, Release 2.10.2

STATIC EDP XML Example

The following is a complete example of a configuration XML file for two remote DomainParticipant, a DataWriter and
a DataReader. This configuration must agree with the configuration used to create the remote DataReader/DataWriter.
Otherwise, communication between DataReaders and DataWriters may be affected. If any non-mandatory element
is missing, it will take the default value. As a rule of thumb, all the elements that were specified on the remote
DataReader/DataWriter creation should be configured.

274 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

XML
<staticdiscovery>
<participant>
<name>HelloWorldSubscriber</name>
<reader>
<userId>3</userId>
<entityID>4</entityID>
<expectsInlineQos>true</expectsInlineQos>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<unicastLocator address="192.168.0.128" port="5000"/>
<unicastLocator address="10.47.8.30" port="6000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QO0S</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
<disablePositiveAcks>
<enabled>true</enabled>
</disablePositiveAcks>
</reader>
</participant>
<participant>
<name>HelloWorldPublisher</name>
<writer>
<unicastLocator address="192.168.0.120" port="9000"/>
<unicastLocator address="10.47.8.31" port="8000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<userId>5</userId>
<entityID>6</entityID>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QO0S</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS" strength="50"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
<disablePositiveAcks>
<enabled>true</enabled>
<duration>
<sec>300</sec>
</duration>
</disablePositiveAcks>
</writer>
</participant>
</staticdiscovery>

6.19. Discovery

275

Fast DDS Documentation, Release 2.10.2

Loading STATIC EDP XML Files

Statically discovered remote DataReaders/DataWriters must define a unique userID on their profile, whose value must
agree with the one specified in the discovery configuration XML. This is done by setting the user ID on the DataRead-
erQos/DataWriterQos:

C++

// Configure the Dataliriter
DataWriterQos wqos;
wqos.endpoint() .user_defined_id = 1;

// Configure the DataReader
DataReaderQos rqos;
rqgos.endpoint() .user_defined_id

I
w

XML

<data_writer profile_name="writer_xml_conf_static_discovery">
<userDefinedID>3</userDefinedID>
</data_writer>

<data_reader profile_name="reader_xml_conf_static_discovery">
<userDefinedID>5</userDefinedID>
</data_reader>

On the local DomainParticipant, you can load STATIC EDP configuration content specifying the file containing it.

C++

DomainParticipantQos pqos;

pgos.wire_protocol () .builtin.discovery_config.static_edp_xml_config('file://
—RemotePublisher.xml");
pgos.wire_protocol().builtin.discovery_config.static_edp_xml_config("file://
—RemoteSubscriber.xml");

XML

<participant profile_name="participant_profile_static_load_xml">

<rtps>
<builtin>
<discovery_config>
<static_edp_xml_config>file://RemotePublisher.xml</static_edp_xml_
—config>
<static_edp_xml_config>file://RemoteSubscriber.xml</static_edp_xml_
—.config>
</discovery_config>
</builtin>
</rtps>
</participant>

276 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Or you can specify the STATIC EDP configuration content directly.

C++

DomainParticipantQos pqos;

pgos.wire_protocol().builtin.discovery_config.static_edp_xml_config(
"data://<?xml version=\"1.0\" encoding=\"utf-8\"7?>" \
"<staticdiscovery><participant><name>RTPSParticipant</name></participant></
—staticdiscovery>");

Discovery Server Settings

This mechanism is based on a client-server discovery paradigm, i.e. the metatraffic (message exchange among Domain-
Participants to identify each other) is managed by one or several server DomainParticipants (left figure), as opposed
to simple discovery (right figure), where metatraffic is exchanged using a message broadcast mechanism like an IP
multicast protocol. A Discovery-Server tool is available to ease Discovery Server setup and testing.

* Key concepts

* Choosing between Client and Server

» The GuidPrefix as the server unique identifier

* The server locator list

* Fine tuning discovery server handshake

* Modifying remote servers list at run time

* Configure Discovery Server locators using names

o Full example

o Security

Fig. 9: Comparison of Discovery Server and Simple discovery mechanisms

Key concepts

In this architecture there are several key concepts to understand:

* The Discovery Server mechanism reuses the RTPS discovery messages structure, as well as the standard DDS
DataWriters and DataReaders.

 Discovery Server DomainParticipants may be clients or servers. The only difference between them is on how
they handle discovery traffic. The user traffic, that is, the traffic among the DataWriters and DataReaders they
create, is role-independent.

* All server and client discovery information will be shared with linked clients. Note that a server may act as a
client for other servers.

e A SERVER is a participant to which the clients (and maybe other servers) send their discovery information. The
role of the server is to re-distribute the clients (and servers) discovery information to their known clients and

6.19. Discovery 277

https://eprosima-discovery-server.readthedocs.io/en/latest/index.html

Fast DDS Documentation, Release 2.10.2

servers. A server may connect to other servers to receive information about their clients. Known servers will
receive all the information known by the server. Known clients will only receive the information they need to
establish communication, i.e. the information about the DomainParticipants, DataWriters, and DataReaders to
which they match. This means that the server runs a “matching” algorithm to sort out which information is
required by which client.

A BACKUP server is a server that persists its discovery database into a file. This type of server can load the
network graph from a file on start-up without the need of receiving any client’s information. It can be used to
persist the server knowledge about the network between runs, thus securing the server’s information in case of
unexpected shutdowns. It is important to note that the discovery times will be negatively affected when using
this type of server, since periodically writing to a file is an expensive operation.

A CLIENT is a participant that connects to one or more servers from which it receives only the discovery infor-
mation they require to establish communication with matching endpoints.

Clients require a beforehand knowledge of the servers to which they want to link. Basically it is reduced to the
servers identity (henceforth called GuidPrefix_t) and a list of locators where the servers are listening. These
locators also define the transport protocol (UDP or TCP) the client will use to contact the server.

— The GuidPrefix_t is the RTPS standard RTPSParticipant unique identifier, a 12-byte chain. This iden-
tifier allows clients to assess whether they are receiving messages from the right server, as each standard
RTPS message contains this piece of information.

The GuidPrefix_t is used because the server’s IP address may not be a reliable enough server identifier,
since several servers can be hosted in the same machine, thus having the same IP, and also because multicast
addresses are acceptable addresses.

A SUPER_CLIENT is a client that receives all the discovery information known by the server, in opposition to
clients, which only receive the information they need.

Servers do not require any beforehand knowledge of their clients, but their GuidPrefix_t and locator list (Where
they are listening) must match the one provided to the clients. Clients send discovery messages to the servers at
regular intervals (ping period) until they receive message reception acknowledgement. From then on, the server
knows about the client and will inform it of the relevant discovery information. The same principle applies to a
server connecting to another server.

Choosing between Client and Server

It is set by the Discovery Protocol general setting. A participant can only play one role (despite the fact that a server
may connect to other servers). It is mandatory to fill this value because it defaults to STMPLE. The examples below
shows how to set this parameter both programmatically and using XML.

278

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

C++

DomainParticipantQos pqos;

pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol
DiscoveryProtocol_t: :CLIENT;

pgos.wire_protocol().builtin.discovery_config.discoveryProtocol
DiscoveryProtocol_t: :SUPER_CLIENT;

pgos.wire_protocol () .builtin.discovery_config.discoveryProtocol
DiscoveryProtocol_t: :SERVER;

pgos.wire_protocol() .builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t: :BACKUP;

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_discovery_protocol_alt" >

<rtps>
<builtin>
<discovery_config>
<discoveryProtocol>CLIENT</discoveryProtocol>
<!-- alternatives
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryProtocol>SUPER_CLIENT</discoveryProtocol>
<discoveryProtocol>BACKUP</discoveryProtocol>
-->
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>

The GuidPrefix as the server unique identifier

The GuidPrefix_t attribute belongs to the RTPS specification and univocally identifies each RTPSParticipant. It
consists on 12 bytes, and in Fast DDS is a key for the DomainParticipant used in the DDS domain. Fast DDS defines the
DomainParticipant GuidPrefix_t as a public data member of the WireProtocolConfigQos class. In the Discovery
Server, it has the purpose to link a server to its clients. It must be specified in server and client setups.

6.19. Discovery 279

Fast DDS Documentation, Release 2.10.2

Server side setup

The examples below show how to manage the corresponding enum data member and XML tag.

C++ - Option 1: Manual setting of the unsigned char in ASCII format.

eprosima: :fastrtps::rtps::GuidPrefix_t serverGuidPrefix;

serverGuidPrefix.value[0] = eprosima::fastrtps::rtps::octet(0x44);
serverGuidPrefix.value[1l] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[2] = eprosima::fastrtps::rtps::octet(0x00);
serverGuidPrefix.value[3] = eprosima::fastrtps::rtps::octet(0x5f);
serverGuidPrefix.value[4] = eprosima::fastrtps::rtps::octet(0x45);
serverGuidPrefix.value[5] = eprosima::fastrtps::rtps::octet(0x50);
serverGuidPrefix.value[6] = eprosima::fastrtps::rtps::octet(0x52);
serverGuidPrefix.value[7] = eprosima::fastrtps::rtps::octet(0x4f);
serverGuidPrefix.value[8] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[9] = eprosima::fastrtps::rtps::octet(0x49);
serverGuidPrefix.value[10] = eprosima::fastrtps::rtps::octet(0x4d);
serverGuidPrefix.value[11] = eprosima::fastrtps::rtps::octet(0x41);

DomainParticipantQos serverQos;
serverQos.wire_protocol () .prefix = serverGuidPrefix;

C++ - Option 2: Using the >> operator and the std: :istringstream type.

DomainParticipantQos serverQos;
std::istringstream("44.53.00.5f.45.50.52.4£.53.49.4d.41") >> serverQos.wire_protocol().
—prefix;

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_server_guidprefix" >
<rtps>
<prefix>44.53.00.5f.45.50.52.4£.53.49.4d.41</prefix>
</rtps>
</participant>
</profiles>

Note that a server can connect to other servers. Thus, the following section may also apply.

Important: When selecting a GUID prefix for the server, it is important to take into account that Fast DDS also uses
this parameter to identify participants in the same process and enable intra-process communications. Setting two Do-
mainParticipant GUID prefixes as intra-process compatible will result in no communication if the DomainParticipants
run in separate processes. For more information, please refer to GUID Prefix considerations for intra-process delivery.

Warning: Launching more than one server using the same GUID prefix is undefined behavior.

280 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Client side setup

Each client must keep a list of the servers to which it wants to link. Each single element represents an individual server,
and a GuidPrefix_t must be provided. The server list must be populated with RemoteServerAttributes objects
with a valid GuidPrefix_t data member. In XML the server list and its elements are simultaneously specified. Note
that prefix is an element of the RemoteServer tag.

C++

RemoteServerAttributes server;
server.ReadguidPrefix("44.53.00.5£.45.50.52.4£.53.49.4d.41");

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
—back(server) ;

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_profile_discovery_client_prefix">
<rtps>
<builtin>
<discovery_config>
<discoveryServersList>
<RemoteServer prefix="44.53.00.5f.45.50.52.4f£.53.49.4d.41">
<!-- Metatraffic locators -->
</RemoteServer>
</discoveryServersList>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>

The server locator list

Each server must specify valid locators where it can be reached. Any client must be given proper locators to reach
each of its servers. As in the above section, here there is a server and a client side setup.

6.19. Discovery 281

Fast DDS Documentation, Release 2.10.2

Server side setup

The examples below show how to setup the server locator list and XML tag.

C++

Locator_t locator;
IPLocator: :setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;

DomainParticipantQos serverQos;
serverQos.wire_protocol () .builtin.metatrafficUnicastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_profile_discovery_server_server_metatraffic
>
<rtps>
<builtin>
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address -->
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</builtin>
</rtps>
</participant>
</profiles>

Note that a server can connect to other servers, thus, the following section may also apply.

Client side setup

Each client must keep a list of locators associated to the servers to which it wants to link. Each
server specifies its own locator list which must be populated with RemoteServerAttributes objects
with a valid metatrafficUnicastLocatorList or metatrafficMulticastLocatorList. In XML the
server list and its elements are simultaneously specified. Note the metatrafficUnicastLocatorList or

metatrafficMulticastLocatorList are elements of the RemoteServer tag

282 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

C++

Locator_t locator;

IPLocator: :setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;

RemoteServerAttributes server;
server.metatrafficUnicastLocatorList.push_back(locator);

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
—back(server) ;

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_profile_discovery_server_client_metatraffic

o>
<rtps>
<builtin>
<discovery_config>
<discoveryServersList>
<RemoteServer prefix="44.53.00.5f.45.50.52.4£.53.49.4d.41">
<metatrafficUnicastLocatorList>
<locator>
<udpv4>
<!-- placeholder server UDP address -->
<address>192.168.1.113</address>
<port>64863</port>
</udpv4>
</locator>
</metatrafficUnicastLocatorList>
</RemoteServer>
</discoveryServersList>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>

Fine tuning discovery server handshake

As explained above the clients send discovery messages to the servers at regular intervals (ping period) until they
receive message reception acknowledgement. Mind that this period also applies for those servers which connect to
other servers. The default value for this period is 450 ms.

6.19. Discovery 283

Fast DDS Documentation, Release 2.10.2

C++

DomainParticipantQos participant_qos;
participant_gos.wire_protocol().builtin.discovery_config.discoveryServer_client_
—.syncperiod =

Duration_t (0, 250000000);

XML

<?xml version="1.0" encoding="UTF-8" 7>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<participant profile_name="participant_profile_ping" >
<rtps>
<builtin>
<discovery_config>
<clientAnnouncementPeriod>
<!-- change default to 250 ms -->
<nanosec>250000000</nanosec>
</clientAnnouncementPeriod>
</discovery_config>
</builtin>
</rtps>
</participant>
</profiles>

Modifying remote servers list at run time

Once a server or client is running, it is possible to programmatically modify the participant’s list of remote servers to
which the running server or client should connect. This is done by calling DomainParticipant: :set_qos() with
a DomainParticipantQos which has a modified WireProtocolConfigQos (see WireProtocolConfigQos). This
feature allows to include a new remote server into the Discovery Server network or modify the remote server locator in
case that the remote server is relaunched with a different listening locator.

Important: The list of remote servers can only be modified to either add more servers, or modify the re-
mote server locator, but not to remove any of the existing ones. This means that the new list passed to
DomainParticipant: :set_gos() must be a superset of the existing one.

Note: The remote server list can also be modified using the ROS_DISCOVERY_SERVER environment variable. Please
refer to FASTDDS ENVIRONMENT FILE for more information.

Warning: It is strongly advised to use either the API or the environment file. Using both at the same time may
cause undefined behavior.

284 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

C++

// Get existing QoS for the server or client
DomainParticipantQos client_or_server_qos;
client_or_server->get_qos(client_or_server_qos);

/* Create a new server entry to which the client or server should connect */
RemoteServerAttributes remote_server_att;

// Set server's GUID prefix
remote_server_att.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.42");

// Set server's listening locator for PDP

Locator_t locator;

IPLocator: :setIPv4(locator, 127, 0, 0, 1);

locator.port = 11812;
remote_server_att.metatrafficUnicastLocatorList.push_back(locator);

/* Update list of remote servers for this client or server */
client_or_server_gos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
—back(remote_server_att);

if (ReturnCode_t::RETCODE_OK != client_or_server->set_qgos(client_or_server_qos))
{

// Error

return;
}

Configure Discovery Server locators using names

All the examples provided in Discovery Server Settings use IPv4 addresses to specify the servers’ listening locators.
However, Fast DDS also allows to specify locator addresses using names.

Full example

The following constitutes a full example on how to configure server and client both programmatically and using XML.

6.19. Discovery 285

Fast DDS Documentation, Release 2.10.2

286 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.10.2

Server side setup

C++

// Get default participant QoS
DomainParticipantQos server_gos = PARTICIPANT_QOS_DEFAULT;

// Set participant as SERVER
server_gos.wire_pr