Fast DDS Documentation
Release 2.6.1

eProsima

Jun 09, 2022

INTRODUCTION

Fast DDS-Gen 3
RTPS Wire Protocol S
Main Features 7
Contacts and Commercial support 9
Contributing to the documentation 11
Structure of the documentation 13
6.1 DDSAPI . . . 13
6.2 FastDDS-Gen e e e e e e e 14
6.3 RTPS Wire Protocol e e e e e e 14
6.4 Main Features e e e e e e 14
6.5 Contacts and Commercial support oL e 16
6.6 Contributing to the documentation L e 16
6.7 Structure of the documentation e e e e e e 16
6.8 Linuxinstallation from binaries e e 16
6.9 Windows installation from binaries Lo 18
6.10 Linux installation from sources e 19
6.11 Windows installation from SOUrces v i it e e e e e e e e e 29
6.12 Mac OS installation from SOUICES v v i v i e e e e e e e e e e 35
6.13 CMake options v v v it e e e e e e e e e e e e e e e e 41
6.14 Getting Started L L e e e e e e e 45
6.15 Library Overview L e e e 81
6.16 DDSLayer e 85
6.17 RTPSLayer. e 242
6.18 DISCOVEIY . . o v o o e e e e e e e e e e e e e e 250
6.19 Transport Layer. e e e e e e e e e e 279
6.20 Persistence Service L e e e e e e e e e e e e e e e e 313
6.21 Security L L e e 317
6.22 Logging e 344
6.23 Statistics Module L. e e e e e e 353
6.24 XML profiles o o e e e e e e e e e e e e e 361
6.25 Environment variables L L. oL L e e e e e e e e 417
6.26 PropertyPolicyQos Options L e 419
6.27 Dynamic Topic Types e 428
6.28 Typical Use-Cases o v v vt ettt e e e e e e e e e 447
6.29 ROS 2 using Fast DDS middleware e e 498
6.30 C++ APIReference. e e e e e 512

6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40

Index

Python APT Reference e e e e e 774
Introduction e e e e 905
USAZE . o v o o e e e e e e e e e 906
Building a publish/subscribe application oo 907
Building Python auxiliary libraries o oo oo 912
Definingadatatype viaIDL 913
CLI . . e e 923
eProsima Docker Image L e e e 927
Version 2.6.1 L e e 930
Previous versions e e e e e 930

955

Fast DDS Documentation, Release 2.6.1

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LT'S releases.

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

INTRODUCTION 1

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.6.1

2 INTRODUCTION

CHAPTER
ONE

FAST DDS-GEN

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/

Fast DDS Documentation, Release 2.6.1

4 Chapter 1. Fast DDS-Gen

CHAPTER
TWO

RTPS WIRE PROTOCOL

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.6.1

6 Chapter 2. RTPS Wire Protocol

CHAPTER
THREE

MAIN FEATURES

Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

Fast DDS Documentation, Release 2.6.1

* High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

» Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

* Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

* Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

* Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

8 Chapter 3. Main Features

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

CHAPTER
FOUR

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.
Support available at:
e Email: support@eprosima.com

e Phone: +34 91 804 34 48

https://eprosima.com/
mailto:support@eprosima.com

Fast DDS Documentation, Release 2.6.1

10 Chapter 4. Contacts and Commercial support

CHAPTER
FIVE

CONTRIBUTING TO THE DOCUMENTATION

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

11

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

Fast DDS Documentation, Release 2.6.1

12 Chapter 5. Contributing to the documentation

CHAPTER
SIX

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.
e Installation Manual
e Fast DDS
* Fast DDS-Gen

e Release Notes

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.
2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.
3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LTS releases.

6.1 DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that

13

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.6.1

want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

6.2 Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

6.3 RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

6.4 Main Features

* Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

* Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

* Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

* Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

14 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.6.1

Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

Low resources consumption. eProsima Fast DDS:
— Allows to preallocate resources, to minimize dynamic resource allocation.
— Avoids the use of unbounded resources.
— Minimizes the need to copy data.

Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

6.4.

Main Features 15

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

Fast DDS Documentation, Release 2.6.1

6.5 Contacts and Commercial support

Find more about us at eProsima’s webpage.
Support available at:
e Email: support@eprosima.com

e Phone: +34 91 804 34 48

6.6 Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

6.7 Structure of the documentation

This documentation is organized into the sections below.
e [Installation Manual
* Fast DDS
* Fast DDS-Gen

e Release Notes

6.8 Linux installation from binaries

The instructions for installing eProsima Fast DDS in a Linux environment from binaries are provided in this page.

e Install
— Contents
— Run an application

— Including Fast-DDS in a CMake project

e Uninstall

6.8.1 Install

The latest release of eProsima Fast DDS for Linux is available at the eProsima website Downloads tab. Once down-
loaded, extract the contents in your preferred directory. Then, to install eProsima Fast DDS and all its dependencies in
the system, execute the install. sh script with administrative privileges:

cd <extraction_directory>
sudo ./install.sh

16 Chapter 6. Structure of the documentation

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://eprosima.com/index.php/downloads-all

Fast DDS Documentation, Release 2.6.1

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Linux installation
Jrom sources page.

Contents

The src folder contains the following packages:
» foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library for data serialization according to the CDR standard (Section 10.2.1.2 OMG CDR).
e fastrtps, the core library of eProsima Fast DDS library.
» fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

In case any of these components is unwanted, it can be simply renamed or removed from the src directory.

Run an application
When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, /usr/local/lib/. There are two possibilities:

* Prepare the environment locally by typing in the console used for running the eProsima Fast DDS instance the
command:

export LD_LIBRARY_PATH=/usr/local/lib/

¢ Add it permanently to the PATH by executing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

Including Fast-DDS in a CMake project
The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake APL

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

$ cmake -Bbuildexample -DFASTDDS_STATIC=ON .
$ cmake --build buildexample --target install

6.8. Linux installation from binaries 17

https://github.com/foonathan/memory
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.6.1

6.8.2 Uninstall

To uninstall all installed components, execute the uninstall.sh script (with administrative privileges):

cd <extraction_directory>
sudo ./uninstall.sh

Warning: If any of the other components were already installed in some other way in the system, they will be
removed as well. To avoid it, edit the script before executing it.

6.9 Windows installation from binaries

The instructions for installing eProsima Fast DDS in a Windows environment from binaries are provided in this page.
It is organized as follows:

* Requirements

— Visual Studio
* Install

— Contents

— Environment variables

— Including Fast-DDS in a CMake project

First of all, the Requirements detailed below need to be met.

6.9.1 Requirements
The installation of eProsima Fast DDS in a Windows environment from binaries requires the following tools to be
installed in the system:

e Visual Studio

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features andinthe Workloads tab enable Desktop development with C++. Finally,
click Modi fy at the bottom right.

18 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/

Fast DDS Documentation, Release 2.6.1

6.9.2 Install

The latest release of eProsima Fast DDS for Windows is available at the company website downloads page. Once down-
loaded, execute the installer and follow the instructions, choosing the preferred Visual Studio version and architecture
when prompted.

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Windows installation
Jrom sources page.

Contents

By default, the installation will download all the available packages, namely:
e foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

» fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

Environment variables

eProsima Fast DDS requires the following environment variable setup in order to function properly:
e FASTRTPSHOME: Root folder where eProsima Fast DDS is installed.
 Additions to the PATH: The location of eProsima Fast DDS scripts and libraries should be appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

Including Fast-DDS in a CMake project
The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake API.

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

> cmake -Bbuildexample -DFASTDDS_STATIC=ON .
> cmake --build buildexample --target install

6.10 Linux installation from sources

The instructions for installing the Fast DDS library, the Fast DDS Python bindings and the Fast DDS-Gen generation
tool from sources are provided in this page. It is organized as follows:

* Fast DDS library installation

— Requirements

6.10. Linux installation from sources 19

https://eprosima.com/index.php/downloads-all
https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.6.1

— Dependencies
— Colcon installation
— CMake installation
* Fast DDS Python bindings installation

— Requirements

Dependencies

Colcon installation

— CMake installation
e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.10.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Linux environment from sources. The
following packages will be installed:

e foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
e fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima Fast DDS in a Linux environment from sources requires the following tools to be installed
in the system:

* CMake, g++, pip3, wget and git

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, g++, pip3, wget and git using the package manager of the appropriate Linux distribution. For example,
on Ubuntu use the command:

sudo apt install cmake g++ python3-pip wget git

20 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51
https://cmake.org
https://gcc.gnu.org/
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/

Fast DDS Documentation, Release 2.6.1

Dependencies

eProsima Fast DDS has the following dependencies, when installed from sources in a Linux environment:
* Asio and TinyXML?2 libraries
* OpenSSL
* Libpll and SoftHSM libraries

* Gtest [optional]

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Install libp11 using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libpll-dev libengine-pkcsll-openssl

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Install SoftHSM using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the
command:

sudo apt install softhsm2

Note that the softhsm2 package creates a new group called softhsm. In order to grant access to the HSM module a user
must belong to this group.

sudo usermod -a -G softhsm <user>

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files (usually /etc/ssl/openssl.cnf) must be updated specifying the libp1 1 and hardware module
(here SoftHSM) dynamic libraries location.

6.10. Linux installation from sources 21

https://www.openssl.org/
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/

Fast DDS Documentation, Release 2.6.1

This configuration step can be avoided using pl1kit which allows OpenSSL to find PKCS#11 devices on runtime
without static configuration. This kit is often available through the Linux distribution package manager. On Ubuntu,
for example:

sudo apt install libengine-pkcsll-openssl

Once installed, to check p11kit is able to find the SoftHSM module use:

pll-kit list-modules

In order to check if OpenSSL is able to access PKCS#11 engine use:

openssl engine pkcsll -t

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: Mind that under non-root users, pip3 may install python colcon and vcs executables in $HOME/ . 1local/
bin, for instance when running with --user. To be able to run these applications, make sure that pip3 binary
installation directory is in your $PATH ($HOME/ . local/bin is normally introduced while login on an interactive
non-root shell).

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

mkdir ~/Fast-DDS

cd ~/Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

3. Build the packages:

colcon build

22 Chapter 6. Structure of the documentation

https://github.com/p11-glue/p11-kit
https://github.com/p11-glue/p11-kit
https://www.opendnssec.org/softhsm/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.6.1

Note: Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

» Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

¢ Foonathan memory

cd ~/Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=0N
cmake --build . --target install
¢ Fast CDR

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

6.10. Linux installation from sources 23

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.6.1

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/1lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

* Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.2 Fast DDS Python bindings installation

This section provides the instructions for installing Fast DDS Python bindings in a Linux environment from sources.
Fast DDS Python bindings is an extension of Fast DDS which provides access to the Fast DDS API through Python.
Therefore, its installation is an extension of the installation of Fast DDS.

Fast DDS Python bindings source code consists on several .i files which will be processed by SWIG. Then C++ files
(for connecting C++ and Python) and Python files (Python module for Fast DDS) will be generated.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

24 Chapter 6. Structure of the documentation

https://github.com/google/googletest
http://www.swig.org/

Fast DDS Documentation, Release 2.6.1

Requirements
The installation of Fast DDS Python bindings in a Linux environment from sources requires the following tools to be
installed in the system:

» Fast DDS requirements

e SWIG

* Header files and static library for Python

SWIG

SWIG is a development tool that allows connecting programs written in C/C++ with a variety of other programming
languages, among them Python. SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG can be installed directly from the package manager of the appropriate Linux distribution. For Ubuntu, please
run:

sudo apt install swig

Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG. They can be installed
directly from the package manager of the appropriate Linux distribution. For Ubuntu, please run:

sudo apt install libpython3-dev

Dependencies

Fast DDS Python bindings has the following dependencies, when installed from sources in a Linux environment:
* Fast DDS dependencies

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile Fast DDS Python bindings and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2. Create a Fast-DDS-python directory and download the repos file that will be used to install Fast DDS Python
bindings and its dependencies:

6.10. Linux installation from sources 25

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.6.1

mkdir ~/Fast-DDS-python

cd ~/Fast-DDS-python

wget https://raw.githubusercontent.com/eProsima/Fast-DDS-python/main/fastdds_python.
-, repos

mkdir src

vcs import src < fastdds_python.repos

3. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using Fast DDS Python bindings, the colcon overlay built in the dedicated
Fast-DDS-python directory must be sourced. There are two possibilities:

» Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS-python/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS-python/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile Fast DDS Python bindings with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS-python directory where to download and build Fast DDS Python bindings and its depen-
dencies:

mkdir ~/Fast-DDS-python

2. Clone the following dependencies and compile them using CMake.

» Foonathan memory

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install
¢ Fast CDR

26 Chapter 6. Structure of the documentation

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.6.1

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install
¢ Fast DDS

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-DDS.git

mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

3. Once all dependencies are installed, install Fast DDS Python bindings:

cd ~/Fast-DDS-python

git clone https://github.com/eProsima/Fast-DDS-python.git
mkdir -p Fast-DDS-python/fastdds_python/build

cd Fast-DDS-python/fastdds_python/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

Global installation

To install Fast DDS Python bindings system-wide instead of locally, remove all the flags that appear in the con-
figuration steps of Fast-CDR, Fast-DDS and Fast-DDS-python, and change the first in the configuration step of
foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

Run an application

When running an instance of an application using Fast DDS Python bindings, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/1lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

* Add it permanently it to the PATH, by typing:

6.10. Linux installation from sources 27

https://github.com/eProsima/Fast-DDS.git

Fast DDS Documentation, Release 2.6.1

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.3 Fast DDS-Gen installation
This section provides the instructions for installing Fast DDS-Gen in a Linux environment from sources. Fast DDS-Gen

is a Java application that generates source code using the data types defined in an IDL file. Please refer to Introduction
for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:
e Java JDK
* Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. To install
Java JDK, run:

sudo apt install openjdk-8-jdk

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

Note: If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s repository,
as it can be already be found under the src directory within the colcon workspace.

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradle assemble

Note: If errors occur during compilation or you do not wish to install gradle, an executable script is included which
will download a gradle temporarily for the compilation step.

./gradlew assemble

28 Chapter 6. Structure of the documentation

https://gradle.org/install

Fast DDS Documentation, Release 2.6.1

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable.

6.11 Windows installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

* Fast DDS library installation

Requirements

Dependencies

Colcon installation

CMake installation

e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.11.1 Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS in a Windows environment from sources. The
following packages will be installed:

» foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

6.11. Windows installation from sources 29

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.6.1

Requirements
The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

* Visual Studio

* Chocolatey

* CMake, pip3, wget and git

* Gtest [optional]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools ->Get Tools and Features andinthe Workloads tab enable Desktop development with C++. Finally,
click Modi fy at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

and add next argument to the colcon call

colcon build --cmake-args -Dgtest_force_shared_crt=0N

30 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest

Fast DDS Documentation, Release 2.6.1

Dependencies

eProsima Fast RTPS has the following dependencies, when installed from sources in a Windows environment:
* Asio and TinyXML?2 libraries
e OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML?2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

¢ Asio
e TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Download the latest libp11 version for Windows from this repository and follow the installation instructions

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Download the SoftHSM for Windows installer from this repository. Execute the installer and follow the installation
instructions.

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files must be updated specifying the libpl1 and hardware module (here SoftHSM) dynamic
libraries location.

OpenSSL on Windows references its default configuration file through the OPENSSL_CONF environment variable.
By default OpenSSL installs two identical default configuration files:

e C:\Program Files\OpenSSL-Win64\bin\cnfiopenssl.cnf mimics the Linux distributions one.
e C:\Program Files\OpenSSL-Win64\bin\openssl.cfg kept for backward compatibility.

6.11. Windows installation from sources 31

https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html
https://github.com/OpenSC/libp11/
https://github.com/OpenSC/libp11
https://github.com/OpenSC/libp11/blob/master/INSTALL.md
https://www.opendnssec.org/softhsm/
https://github.com/disig/SoftHSM2-for-Windows
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/

Fast DDS Documentation, Release 2.6.1

Neither of them are loaded by default. In order to direct OpenSSL to load one of them or any other we must set the
variable:

cmd> set OPENSSL_CONF=C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf
powershell> $Env:OPENSSL_CONF="C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf"

Once we have hinted OpenSSL the configuration file to use we must modify it to set up the new PKCS#11 engine
following the OpenSSL guidelines replacing the binaries path with the proper ones. For example, before any section
in the configuration file we introduce:

openssl_conf = openssl_init

at the end of the file we include the engine devoted sections. Note to use POSIX path separator instead of the windows
one.

[openssl_init]
engines = engine_section

[engine_section]
pkcsll = pkcsll_section

[pkcs1l_section]

engine_id = pkcsll

dynamic_path = C:/Program Files/libpll/src/pkcsl11.dll

MODULE_PATH = C:/Program Files (x86)/SoftHSM2/1lib/softhsm2-x64.d11
init = 0

A proper set up can be verified using OpenSSL command line tool:

openssl engine pkcsll -t

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

and add the path to the vcs executable to the PATH from the Edit the system environment variables control panel.

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

32 Chapter 6. Structure of the documentation

https://www.openssl.org/docs/man1.1.1/man5/config.html#Engine-Configuration-Module
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.6.1

mkdir ~\Fast-DDS

cd ~\Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos -
—output fastrtps.repos

mkdir src

vcs import src --input fastrtps.repos

Finally, use colcon to compile all software:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

* Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control
panel, and adding ~/Fast-DDS/install/setup.bat to the PATH.

CMake installation
This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.
Local installation

1. Open a command prompt, and create a Fast-DDS directory where to download and build eProsima Fast DDS
and its dependencies:

mkdir %USERPROFILEX%\Fast-DDS

2. Clone the following dependencies and compile them using CMake.

» Fast DDS depends on Foonathan memory. To ease the dependency management, eProsima provides a
vendor package Foonathan memory vendor, which downloads and builds a specific revision of Foonathan
memory if the library is not found in the system.

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

¢ Fast CDR

6.11. Windows installation from sources 33

https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.6.1

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git

cd Fast-CDR

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd %USERPROFILE%\Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git

cd Fast-DDS

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove the CMAKE_INSTALL_PREFIX flags that appear
in the configuration steps of Fast-CDR and Fast-DDS.

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the Fast DDS and Fast CDR installation directories:

e Fast DDS: C:\Program Files\fastrtps
» Fast CDR: C:\Program Files\fastcdr

6.11.2 Fast DDS-Gen installation

This section outlines the instructions for installing Fast DDS-Gen in a Windows environment from sources. Fast
DDS-Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to
Introduction for more information.

34 Chapter 6. Structure of the documentation

https://github.com/google/googletest

Fast DDS Documentation, Release 2.6.1

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:
* Java JDK
e Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, install Fast DDS-Gen by following the steps below:

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradle assemble

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any directory, add the scripts folder path to the PATH environment
variable.

6.12 Mac OS installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

* Fast DDS library installation

— Requirements

— Dependencies

6.12. Mac OS installation from sources 35

https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install

Fast DDS Documentation, Release 2.6.1

— Colcon installation
— CMake installation
e Fast DDS-Gen installation

— Requirements

— Compiling Fast DDS-Gen

6.12.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Mac OS environment from sources. The
following packages will be installed:

¢ foonathan_memory_vendor, an STL compatible C++ memory allocator library.
e fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.
» fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

Requirements
The installation of eProsima Fast DDS in a MacOS environment from sources requires the following tools to be installed
in the system:

e Homebrew

e Xcode Command Line Tools

e CMake, g++, pip3, wget and git

* Gtest [optional]

Homebrew

Homebrew is a macOS package manager, it is needed to install some of eProsima Fast DDS’s dependencies. To install
it open a terminal window and run the following command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install.sh)"

Xcode Command Line Tools

The Xcode command line tools package is separate from Xcode and allows for command line development in mac.
The previous step should have installed Xcode CLI, to check the correct installation run the following command:

gcc --version

36 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.6.1

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, pip3 and wget using the Homebrew package manager:

brew install cmake python3 wget

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Linux environment:
* Asio and TinyXML2 libraries
* OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using Homebrew:

brew install asio tinyxml2

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using Homebrew:

brew install openssl@l.l

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

6.12. Mac OS installation from sources 37

https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://www.openssl.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.6.1

mkdir ~/Fast-DDS

cd ~/Fast-DDS

wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src

vcs import src < fastrtps.repos

3. Build the packages:

colcon build

Note: The --cmake-args option allows to pass the CMake configuration options to the colcon build
command. In Mac OS the location of OpenSSL is not found automatically and therefore has to be passed
explicitly: --cmake-args -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl -DOPENSSL_LIBRARIES=/usr/
local/opt/openssl/lib. This is only required when building with Security. For more information on the specific
syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

* Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

touch ~/.bash_profile
echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bash_profile

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

¢ Foonathan memory

cd ~/Fast-DDS

git clone https://github.com/eProsima/foonathan_memory_vendor.git

mkdir foonathan_memory_vendor/build

cd foonathan_memory_vendor/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=0N
sudo cmake --build . --target install

38 Chapter 6. Structure of the documentation

https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

Fast DDS Documentation, Release 2.6.1

e Fast CDR

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build

cd Fast-CDR/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
sudo cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS

git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build

cd Fast-DDS/build

cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_PATH=~/Fast-DDS/
—install
sudo cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/1lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

* Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

Add it permanently it to the PATH, by typing:

touch ~/.bash_profile
echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bash_profile

6.12. Mac OS installation from sources 39

https://github.com/eProsima/Fast-CDR.git
https://github.com/google/googletest

Fast DDS Documentation, Release 2.6.1

6.12.2 Fast DDS-Gen installation
This section provides the instructions for installing Fast DDS-Gen in a Mac OS environment from sources. Fast DDS-

Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to /ntro-
duction for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:
* Java JDK
e Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way. with Homebrew it would be running the command:

brew install gradle

Note: If errors occur during compilation or you do not wish to install gradle, an executable script is included which
will download gradle temporarily for the compilation step.

./gradlew assemble

Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

cd ~

git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen

gradle assemble

40 Chapter 6. Structure of the documentation

https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install

Fast DDS Documentation, Release 2.6.1

Contents

The Fast-DDS-Gen folder contains the following packages:
* share/fastddsgen, where the generated Java application is.

e scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable using the method described above.

6.13 CMake options

eProsima Fast DDS provides numerous CMake options for changing the behavior and configuration of Fast DDS.
These options allow the user to enable/disable certain Fast DDS settings by defining these options to ON/OFF at the
CMake execution. This section is structured as follows: first, the CMake options for the general configuration of Fast
DDS are described; then, the options related to the third party libraries are presented; finally, the possible options for
the building of Fast DDS tests are defined.

6.13.1 General options

The Fast DDS CMake options for configuring general settings are shown below, together with their description and
dependency on other options.

6.13. CMake options 41

Fast DDS Documentation, Release 2.6.1

Option

Description

Possible values

Default

EPROSIMA_INSTALLER

Creates a build for
Windows binary in-
stallers. Specifically
it adds to the list of
components to install
(CPACK_COMPONENTS_ALL
the libraries correspond-
ing to the Microsoft
Visual C++ com-
piler (MSVC). Setting
EPROSIMA_INSTALLER
to ON has the following
effects on other options:

* EPROSIMA_BUILD

is set to ON.

BUILD_DOCUMENTATION

is set to ON.

INSTALL_EXAMPLES
is set to ON.

ON OFF

OFF

EPROSIMA_BUILD

Activates internal Fast
DDS builds. It is set to ON
if EPROSIMA_INSTALLER
is ON. Setting
EPROSIMA_BUILD to
ON has the following
effects on other options:

* INTERNAL_DEBUG

is set to ON.

COMPILE_EXAMPLES
is set to ON if
EPROSIMA_INSTALLI
is OFF.

THIRDPARTY_fastc
is set to ON if it was
not set to FORCE.

e THIRDPARTY_Asio
is set to ON if it was
not set to FORCE.

THIRDPARTY_TinyXMNL2

is set to ON if it was
not set to FORCE.

THIRDPARTY_andro
is set to ON if it was
not set to FORCE.

EPROSIMA_BUILD_TESTS

is set to ON if

ON OFF

FR

dr

id-ifaddrs

OFF

42

EPROSIMA_INSTALLER

is OFF.

Chapter 6. Structt

ure of the documentation

BUILD_SHARED_LIBS

Builds internal libraries as

ON OFF

ON

https://github.com/eProsima/Fast-DDS/tree/master/examples
https://github.com/eProsima/Fast-DDS/tree/master/examples

Fast DDS Documentation, Release 2.6.1

6.13.2 Log

options

Fast DDS uses its own configurable Log module with different verbosity levels. Please, refer to Logging section for
more information.

This module can be configured using Fast DDS CMake arguments regarding the following options.

Option Description Possible | De-
values fault
LOG_CONSUMERSAIEFAUKE default log consumer for the logging module. AUTO has the same | AUTO AUTO
behavior as STDOUT. For more information, please refer to Log consumers. STDOUT
STDOUTERR
LOG_NO_INFOQ Deactivates Info Log level. If Fast DDS is built in debug mode for Single-Config | ON OFF ON
generators, the default value will be OFF.
FASTDDS_ENFARCIIEOTGIfONEEY level even on non Debug configurations. This option only takes | ON OFF OFF
action if LOG_NO_INFO is set to OFF (see Disable Logging Module). Mind that
this may entail a significant performance hit.
LOG_NO_WARNINGactivates Warning Log level. ON OFF OFF
LOG_NO_ERRQRDeactivates Error Log level. ON OFF OFF
INTERNAL_DERAGivates compilation of log messages (See Disable Logging Module). More- | ON OFF OFF
over, INTERNAL_DEBUG is set to ON if EPROSIMA_BUILD is ON.

6.13.3 Third-party libraries options

Fast DDS relies on the eProsima FastCDR library for serialization mechanisms. Moreover, Fast DDS requires two
external dependencies for its proper operation: Asio and TinyXML2. Asio is a cross-platform C++ library for network
and low-level I/O programming, while TinyXML2 parses the XML profile files, so Fast DDS can use them (see XML
profiles). These three libraries (eProsima FastCDR, Asio and TinyXML?2) can be installed by the user, or downloaded
on the Fast DDS build. In the latter case, they are referred to as Fast DDS internal third-party libraries. This can be

done by setting

These libraries

either THIRDPARTY or EPROSIMA_BUILD to ON.

can also be configured using Fast DDS CMake options.

6.13. CMake options

43

https://github.com/eProsima/Fast-CDR

Fast DDS Documentation, Release 2.6.1

Op- Description Pos-| De-

tion si- | fault

ble
val-
ues

THIRDPARNYacfasitexdthe use of the internal Fast CDR third-party library if it is not found elsewhere | ON | OFF
in the system. FORCE activates the use of the internal Fast CDR third-party library regardless | OFF
of whether it can be found elsewhere in the system. OFF deactivates the use of the internal | FORC
Fast CDR third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is
ON.

THIRDPARNYadtsdates the use of the internal Asio third-party library if it is not found elsewhere in | ON | OFF
the system. FORCE activates the use of the internal Asio third-party library regardless of | OFF
whether it can be found elsewhere in the system. OFF deactivates the use of the internal Asio | FORC
third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

THIRDPARNYacTivaydih2 use of the internal TinyXML?2 third-party library if it is not found elsewhere | ON | OFF
in the system. FORCE activates the use of the internal TinyXML?2 third-party library regard- | OFF
less of whether it can be found elsewhere in the system. OFF deactivates the use of the internal | FORC
TinyXML2 third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD
is ON.

THIRDPARTHr@iddifaddls ifaddmnplementation of getifaddrs() for Android. Only used if ANDROID | ON OFF
is 1. ON activates the use of the internal android-ifaddrs third-party library if it is not found | OFF
elsewhere in the system. FORCE activates the use of the internal android-ifaddrs third-party | FORC
library regardless of whether it can be found elsewhere in the system. OFF deactivates the
use of the internal android-ifaddrs third-party library. If it is not set to FORCE, it is set to ON
if EPROSIMA_BUILD is ON.

THIRDPARTiless they are otherwise specified, sets value of all third-party git submod- | ON | OFF
ules THIRDPARTY_fastcdr, THIRDPARTY_Asio, THIRDPARTY_TinyXML2, and | OFF
THIRDPARTY_android-ifaddrs. FORC

THIRDPARTX I VAPBAME update of all third-party git submodules. ON | ON

OFF

Note: ANDROID is a CMake environment variable that is set to 1 if the target system (CMAKE_SYSTEM_NAME) is Android.

6.13.4

Test options

eProsima Fast DDS comes with a full set of tests for continuous integration. The types of tests are: unit tests, black-box
tests, performance tests, profiling tests, and XTypes tests. The building and execution of these tests is specified by the
Fast DDS CMake options shown in the table below.

44

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Option | Description Pos- | De-
si- fault
ble
val-
ues

GTEST_INDAMIRHALthe individual building of GoogleTest tests, since Fast DDS tests are | ON OFF
implemented using the GoogleTest framework. —However, the test are compiled | OFF
if EPROSIMA_BUILD is set to ON. Therefore, if GTEST_INDIVIDUAL is OFF and
EPROSIMA_BUILD is ON, the tests are processed as a single major test.

FASTRTPS RARbl3ESEDilding of black-box tests for the verification of RTPS communications using | ON OFF

the Fast DDS RTPS-layer API. OFF
FASTDDS| HhMETtHERSTiking of black-box tests for the verification of DDS communications using | ON OFF
the Fast DDS DDS-layer APIL. OFF
PERFORMANCEEEST the building of performance tests, except for the video test, which requires both | ON OFF
PERFORMANCE_TESTS and VIDEO_TESTS to be set to ON. OFF
PROFILINGAGF&IESs the building of profiling tests using Valgrind. ON OFF
OFF

EPROSIMA_ANDeTHETBuilding of black-box, unit, xtypes, RTPS communication and DDS com- | ON OFF
munication tests. It is set to ON if EPROSIMA_BUILD is ON and EPROSIMA_INSTALLERis | OFF

OFF.
VIDEO_TEST®ERFORMANCE_TESTS is ON, it will activate the building of video performance tests. ON OFF
OFF
DISABLE| UDRYbIEASDPVO tests. ON OFF
OFF

6.14 Getting Started

This section defines the concepts of DDS and RTPS. It also provides a step-by-step tutorial on how to write a simple
Fast DDS (formerly Fast RTPS) publish/subscribe application.

6.14.1 What is DDS?

The Data Distribution Service (DDS) is a data-centric communication protocol used for distributed software application
communications. It describes the communications Application Programming Interfaces (APIs) and Communication
Semantics that enable communication between data providers and data consumers.

Since it is a Data-Centric Publish Subscribe (DCPS) model, three key application entities are defined in its implemen-
tation: publication entities, which define the information-generating objects and their properties; subscription entities,
which define the information-consuming objects and their properties; and configuration entities that define the types
of information that are transmitted as topics, and create the publisher and subscriber with its Quality of Service (QoS)
properties, ensuring the correct performance of the above entities.

DDS uses QoS to define the behavioral characteristics of DDS Entities. QoS are comprised of individual QoS policies
(objects of type deriving from QoSPolicy). These are described in Policy.

6.14. Getting Started 45

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.6.1

The DCPS conceptual model

In the DCPS model, four basic elements are defined for the development of a system of communicating applications.

* Publisher. It is the DCPS entity in charge of the creation and configuration of the DataWriters it implements.
The DataWriter is the entity in charge of the actual publication of the messages. Each one will have an assigned
Topic under which the messages are published. See Publisher for further details.

¢ Subscriber. It is the DCPS Entity in charge of receiving the data published under the topics to which it sub-
scribes. It serves one or more DataReader objects, which are responsible for communicating the availability of
new data to the application. See Subscriber for further details.

* Topic. It is the entity that binds publications and subscriptions. It is unique within a DDS domain. Through the
TopicDescription, it allows the uniformity of data types of publications and subscriptions. See Topic for further
details.

e Domain. This is the concept used to link all publishers and subscribers, belonging to one or more applications,
which exchange data under different topics. These individual applications that participate in a domain are called
DomainParticipant. The DDS Domain is identified by a domain ID. The DomainParticipant defines the domain
ID to specify the DDS domain to which it belongs. Two DomainParticipants with different IDs are not aware of
each other’s presence in the network. Hence, several communication channels can be created. This is applied in
scenarios where several DDS applications are involved, with their respective DomainParticipants communicating
with each other, but these applications must not interfere. The DomainParticipant acts as a container for other
DCPS Entities, acts as a factory for Publisher, Subscriber and Topic Entities, and provides administrative
services in the domain. See Domain for further details.

These elements are shown in the figure below.

Fig. 2: DCPS model entities in the DDS Domain.

6.14.2 What is RTPS?

The Real-Time Publish Subscribe (RTPS) protocol, developed to support DDS applications, is a publication-
subscription communication middleware over best-effort transports such as UDP/IP. Furthermore, Fast DDS provides
support for TCP and Shared Memory (SHM) transports.

It is designed to support both unicast and multicast communications.

At the top of RTPS, inherited from DDS, the Domain can be found, which defines a separate plane of communication.
Several domains can coexist at the same time independently. A domain contains any number of RTPSParticipants,
that is, elements capable of sending and receiving data. To do this, the RTPSParticipants use their Endpoints:

¢ RTPSWriter: Endpoint able to send data.
* RTPSReader: Endpoint able to receive data.

A RTPSParticipant can have any number of writer and reader endpoints.

Fig. 3: RTPS high-level architecture

Communication revolves around Topics, which define and label the data being exchanged. The topics do not belong to a
specific participant. The participant, through the RTPSWriters, makes changes in the data published under a topic, and
through the RTPSReaders receives the data associated with the topics to which it subscribes. The communication unit
is called Change, which represents an update in the data that is written under a Topic. RTPSReaders/RTPSWriters
register these changes on their History, a data structure that serves as a cache for recent changes.

46 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.6.1

In the default configuration of eProsima Fast DDS, when you publish a change through a RTPSWriter endpoint, the
following steps happen behind the scenes:

1. The change is added to the RTPSWriter’s history cache.
2. The RTPSWriter sends the change to any RTPSReaders it knows about.
3. After receiving data, RTPSReaders update their history cache with the new change.

However, Fast DDS supports numerous configurations that allow you to change the behavior of RTPSWrit-
ers/RTPSReaders. A modification in the default configuration of the RTPS entities implies a change in the data exchange
flow between RTPSWriters and RTPSReaders. Moreover, by choosing Quality of Service (QoS) policies, you can af-
fect how these history caches are managed in several ways, but the communication loop remains the same. You can
continue reading section R7TPS Layer to learn more about the implementation of the RTPS protocol in Fast DDS.

6.14.3 Writing a simple C++ publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using C++ API
step by step. It is also possible to self-generate a similar example to the one implemented in this section by using the
eProsima Fast DDS-Gen tool. This additional approach is explained in Building a publish/subscribe application.

Background
* Prerequisites

* Create the application workspace

Import linked libraries and its dependencies
— Installation from binaries and manual installation

— Colcon installation

Configure the CMake project

Build the topic data type

— CMakeLists.txt
» Write the Fast DDS publisher
— Examining the code

— CMakeLists.txt

Write the Fast DDS subscriber
— Examining the code
— CMakeLists.txt

* Putting all together

* Summary

* Next steps

6.14. Getting Started 47

Fast DDS Documentation, Release 2.6.1

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files build/
DDSHelloWorldPublisher and build/DDSHelloWorldSubscriber are the Publisher application and Subscriber
application respectively.

L— workspace_DDSHelloWorld

— build
CMakeCache. txt
CMakeFiles
cmake_install.cmake
DDSHelloWorldPublisher
DDSHelloWorldSubscriber
Makefile

— CMakeLists.txt

L— src

— HelloWorld.cxx

— HelloWorld.h

—— HelloWorld.idl

— HelloWorldPublisher.cpp

— HelloWorldPubSubTypes.cxx

— HelloWorldPubSubTypes.h

L— HelloWorldSubscriber.cpp

Let’s create the directory tree first.

mkdir workspace_DDSHelloWorld && cd workspace_DDSHelloWorld
mkdir src build

48 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries. Depending on the installation procedure followed
the process of making these libraries available for our DDS application will be slightly different.

Installation from binaries and manual installation

If we have followed the installation from binaries or the manual installation, these libraries are already accessible from
the workspace. On Linux, the header files can be found in directories /usr/include/fastrtps/ and /usr/include/fastcdr/
for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory /usr/lib/.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Configure the CMake project

We will use the CMake tool to manage the building of the project. With your preferred text editor, create a new file called
CMakeLists.txt and copy and paste the following code snippet. Save this file in the root directory of your workspace.
If you have followed these steps, it should be workspace_DDSHelloWorld.

cmake_minimum_required(VERSION 3.12.4)

if(NOT CMAKE_VERSION VERSION_LESS 3.0)
cmake_policy(SET CMP0O048 NEW)
endif()

project(DDSHellolorld)

Find requirements

if(NOT fastcdr_FOUND)
find_package(fastcdr REQUIRED)

endif()

if(NOT fastrtps_FOUND)
find_package(fastrtps REQUIRED)
endif()

Set C++11
include (CheckCXXCompilerFlag)
1f(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_COMPILER_IS_CLANG OR

(continues on next page)

6.14. Getting Started 49

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

CMAKE_CXX_COMPILER_ID MATCHES "Clang")
check_cxx_compiler_flag(-std=c++11 SUPPORTS_CXX11)
if (SUPPORTS_CXX11)
add_compile_options(-std=c++11)
else()
message (FATAL_ERROR "Compiler doesn't support C++11")
endif(Q)
endif()

In each section we will complete this file to include the specific generated files.

Build the topic data type
eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate a functional example that uses your topic data.

It will be the former that will be followed in this tutorial. To see an example of application of the latter you can check
this other example. See Introduction for further details. For this project, we will use the Fast DDS-Gen application to
define the data type of the messages that will be sent by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

cd src && touch HelloWorld.idl

This creates the HelloWorld.idl file in the src directory. Open the file in a text editor and copy and paste the following
snippet of code.

struct HelloWorld
{

unsigned long index;
string message;

};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and
a message of type std: :string. All that remains is to generate the source code that implements this data type in
C++11. To do this, run the following command from the src directory.

<path/to/Fast DDS-Gen>/scripts/fastddsgen HelloWorld.idl

This must have generated the following files:
* HelloWorld.cxx: HelloWorld type definition.
* HelloWorld.h: Header file for HelloWorld.cxx.
* HelloWorldPubSubTypes.cxx: Serialization and Deserialization code for the HelloWorld type.
* HelloWorldPubSubTypes.h: Header file for HelloWorldPubSubTypes.cxx.

50 Chapter 6. Structure of the documentation

20

21

22

23

24

25

26

27

28

29

30

31

33

Fast DDS Documentation, Release 2.6.1

CMakelLists.txt

Include the following code snippet at the end of the CMakeList.txt file you created earlier. This includes the files we
have just created.

message (STATUS "Configuring HelloWorld publisher/subscriber example...™)
file(GLOB DDS_HELLOWORLD_SOURCES_CXX "src/*.cxx")

Write the Fast DDS publisher

From the src directory in the workspace, run the following command to download the HelloWorldPublisher.cpp file.

wget -0 HelloWorldPublisher.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/
—.DDSHelloWorld/src/HelloWorldPublisher.cpp

This is the C++ source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License'");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/-.’r;’.‘
* @file HelloWorldPublisher.cpp

:':/
#include "HelloWorldPubSubTypes.h"

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

#include <fastdds/dds/publisher/Dataliriter.hpp>

#include <fastdds/dds/publisher/DataliriterListener.hpp>

using namespace eprosima::fastdds::dds;
class HelloWorldPublisher

{

private:

(continues on next page)

6.14. Getting Started 51

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

HelloWorld hello_;

DomainParticipant® participant_;

Publisher* publisher_;

Topic* topic_;

DatalWlriter® writer_;

TypeSupport type_;

class PubListener : public DataWriterListener

PubListener()

: matched_(0)

~PubListener() override

{
public:
{
}
{
}

void on_publication_matched(

DataWriter®,
const PublicationMatchedStatus& info) override

if (info.current_count_change == 1)
{
matched_ = info.total_count;
std: :cout << "Publisher matched." << std::endl;
}
else if (info.current_count_change == -1)
{
matched_ = info.total_count;
std::cout << "Publisher unmatched." << std::endl;
}
else
{

std: :cout << info.current_count_change
<< "

—count change." << std::endl;

}

std::atomic_int matched_;

} listener_;

is not a valid value for PublicationMatchedStatus current.,

(continues on next page)

52

Chapter 6. Structure of the documentation

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

public:

HelloWorldPublisher()
: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, writer_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldPublisher()
! if (writer_ != nullptr)
! publisher_->delete_datawriter(writer_);
if (publisher_ !'= nullptr)
! participant_->delete_publisher(publisher_);
if (topic_ !'= nullptr)
! participant_->delete_topic(topic_);
%omainParticipantFactory::get_instance()—>de1ete_participant(participant_);
3

//!Initialize the publisher

bool init()

{
hello_.index(0);
hello_.message("HelloWorld");

DomainParticipantQos participantQos;

participantQos.name("Participant_publisher");

participant_ = DomainParticipantFactory: :get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{

return false;
// Register the Type
type_.register_type(participant_);
// Create the publications Topic
topic_ = participant_->create_topic("HellolWorldTopic", "HelloWorld", TOPIC_QOS_

—DEFAULT) ;

if (topic_ == nullptr)

(continues on next page)

6.14. Getting Started 53

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

{

return false;

}

// Create the Publisher
publisher_ = participant_->create_publisher (PUBLISHER_QOS_DEFAULT, nullptr);

if (publisher_ == nullptr)
{
return false;

}

// Create the Dataliriter
writer_ = publisher_->create_datawriter(topic
—listener_);

DATAWRITER_QOS_DEFAULT, &

if (writer_ == nullptr)
{

return false;

}

return true;

3

//!Send a publication
bool publish()

{
if (listener_.matched_ > 0)
{
hello_.index(hello_.index() + 1);
writer_->write(&hello_);
return true;
}
return false;
}

//!Run the Publisher
void run(
uint32_t samples)

{
uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publish(Q))
{
samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_
—.index()
<< " SENT" << std::endl;
}
std: :this_thread: :sleep_for(std: :chrono: :milliseconds(1000));
}
}

(continues on next page)

54 Chapter 6. Structure of the documentation

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

};
int main(
int argc,
char** argv)
{
std::cout << "Starting publisher." << std::endl;
int samples = 10;
HelloWorldPublisher® mypub = new HelloWorldPublisher();
if (mypub->init(Q))
{
mypub->run(static_cast<uint32_t>(samples));
}
delete mypub;
return 0;
}

Examining the code

At the beginning of the file we have a Doxygen style comment block with the @file field that tells us the name of the
file.

/:’r:’:
* @file HelloWorldPublisher.cpp

7’:/

Below are the includes of the C++ headers. The first one includes the HelloWorldPubSubTypes.h file with the serial-
ization and deserialization functions of the data type that we have defined in the previous section.

#include "HelloliorldPubSubTypes.h"

The next block includes the C++ header files that allow the use of the Fast DDS API.
e DomainParticipantFactory. Allows for the creation and destruction of DomainParticipant objects.

e DomainParticipant. Acts as a container for all other Entity objects and as a factory for the Publisher, Sub-
scriber, and Topic objects.

» TypeSupport. Provides the participant with the functions to serialize, deserialize and get the key of a specific
data type.

» Publisher. It is the object responsible for the creation of DataWriters.
e Dataliriter. Allows the application to set the value of the data to be published under a given Topic.

e DataliriterListener. Allows the redefinition of the functions of the DataWriterListener.

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>

#include <fastdds/dds/publisher/Publisher.hpp>

(continues on next page)

6.14. Getting Started 55

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

#include <fastdds/dds/publisher/Dataliriter.hpp>
#include <fastdds/dds/publisher/DataliriterListener.hpp>

Next, we define the namespace that contains the eProsima Fast DDS classes and functions that we are going to use in
our application.

using namespace eprosima::fastdds::dds;

The next line creates the HelloWorldPublisher class that implements a publisher.

class HelloWorldPublisher

Continuing with the private data members of the class, the hello_ data member is defined as an object of the
HelloWorld class that defines the data type we created with the IDL file. Next, the private data members correspond-
ing to the participant, publisher, topic, DataWriter and data type are defined. The type_ object of the TypeSupport
class is the object that will be used to register the topic data type in the DomainParticipant.

private:
HelloWorld hello_;
DomainParticipant® participant_;
Publisher® publisher_;
Topic* topic_;
DataWriter® writer_;

TypeSupport type_;

Then, the PubListener class is defined by inheriting from the DataliriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions. Finally, the 1istener_ object of the class is defined as an
instance of PubListener.

class PubListener : public DataWriterListener

{
public:
PubListener()
: matched_(0)
{
}
~PubListener() override
{
3

void on_publication_matched(

(continues on next page)

56 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

DatalWriter®,
const PublicationMatchedStatus& info) override
{
if (info.current_count_change == 1)
{
matched_ = info.total_count;
std: :cout << "Publisher matched." << std::endl;
}
else if (info.current_count_change == -1)
{
matched_ = info.total_count;
std::cout << "Publisher unmatched." << std::endl;
}
else
{

std: :cout << info.current_count_change
<< " is not a valid value for PublicationMatchedStatus current count.
—.change." << std::endl;

}
}

std::atomic_int matched_;

} listener_;

The public constructor and destructor of the HelloWorldPublisher class are defined below. The constructor initial-
izes the private data members of the class to nullptr, with the exception of the TypeSupport object, that is initialized
as an instance of the Hel1loWorldPubSubType class. The class destructor removes these data members and thus cleans
the system memory.

HelloWorldPublisher()
: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, writer_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldPublisher()
! if (writer_ != nullptr)
' publisher_->delete_datawriter(writer_);
if (publisher_ != nullptr)
' participant_->delete_publisher(publisher_);
if (topic_ !'= nullptr)
{

participant_->delete_topic(topic_);

(continues on next page)

6.14. Getting Started 57

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

}

DomainParticipantFactory::get_instance()->delete_participant(participant_);

Continuing with the public member functions of the HelloWorldPublisher class, the next snippet of code defines
the public publisher’s initialization member function. This function performs several actions:

1. Initializes the content of the HelloWorld type hello_ structure members.
Assigns a name to the participant through the QoS of the DomainParticipant.
Uses the DomainParticipantFactory to create the participant.

Registers the data type defined in the IDL.

Creates the topic for the publications.

Creates the publisher.

A T o

Creates the DataWriter with the listener previously created.

As you can see, the QoS configuration for all entities, except for the participant’s name, is the default configuration
(PARTICIPANT_QOS_DEFAULT, PUBLISHER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAWRITER_QOS_DEFAULT).
The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the publisher

bool init()

{
hello_.index(0);
hello_.message("HelloWorld");

DomainParticipantQos participantQos;

participantQos.name("Participant_publisher");

participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{

return false;

// Register the Type
type_.register_type(participant_);

// Create the publications Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Publisher
publisher_ = participant_->create_publisher (PUBLISHER_QOS_DEFAULT, nullptr);

(continues on next page)

58 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

if (publisher_ == nullptr)
{

return false;

}

// Create the Dataliriter
writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &listener_);

if (writer_ == nullptr)
{

return false;

}

return true;

}

To make the publication, the public member function publish() is implemented. In the DataWriter’s listener callback
which states that the DataWriter has matched with a DataReader that listens to the publication topic, the data member
matched_ is updated. It contains the number of DataReaders discovered. Therefore, when the first DataReader has
been discovered, the application starts to publish. This is simply the writing of a change by the DataWriter object.

//!Send a publication
bool publish()

{
if (listener_.matched_ > 0)
{
hello_.index(hello_.index() + 1);
writer_->write(&hello_);
return true;
}
return false;
}

The public run function executes the action of publishing a given number of times, waiting for 1 second between
publications.

//!Run the Publisher
void run(
uint32_t samples)

{
uint32_t samples_sent = 0;
while (samples_sent < samples)
{
if (publishQ))
{
samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.
—index()
<< " SENT" << std::endl;
}
std: :this_thread: :sleep_for(std: :chrono: :milliseconds(1000));
}
}

6.14. Getting Started 59

Fast DDS Documentation, Release 2.6.1

Finally, the HelloWorldPublisher is initialized and run in main.

int main(
int argc,
char** argv)
{
std::cout << "Starting publisher." << std::endl;
int samples = 10;
HelloWorldPublisher* mypub = new HelloWorldPublisher();
if (mypub->init())
{
mypub->run(static_cast<uint32_t>(samples));
}
delete mypub;
return 0;
}
CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldPublisher src/HelloWorldPublisher.cpp ${DDS_HELLOWORLD_
< SOURCES_CXX})
target_link libraries(DDSHelloWorldPublisher fastrtps fastcdr)

At this point the project is ready for building, compiling and running the publisher application. From the build directory
in the workspace, run the following commands.

cmake ..
make
./DDSHelloWorldPublisher

Write the Fast DDS subscriber

From the src directory in the workspace, execute the following command to download the HelloWorldSubscriber.cpp
file.

wget -0 HelloWorldSubscriber.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/
—.DDSHelloWorld/src/HelloWorldSubscriber. cpp

This is the C++ source code for the subscriber application. The application runs a subscriber until it receives 10 samples
under the topic HelloWorldTopic. At this point the subscriber stops.

// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
//

// Licensed under the Apache License, Version 2.0 (the "License'");
// you may not use this file except in compliance with the License.

(continues on next page)

60 Chapter 6. Structure of the documentation

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

// You may obtain a copy of the License at

/7

// http://www.apache.org/licenses/LICENSE-2.0

/7

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

// See the License for the specific language governing permissions and

// limitations under the License.

/:’: %

* @file HelloWorldSubscriber.cpp

:'.-/
#include

#include
#include
#include
#include
#include
#include
#include
#include

"HelloWorldPubSubTypes.h"

<fastdds/dds/domain/DomainParticipantFactory.hpp>
<fastdds/dds/domain/DomainParticipant.hpp>
<fastdds/dds/topic/TypeSupport.hpp>
<fastdds/dds/subscriber/Subscriber.hpp>
<fastdds/dds/subscriber/DataReader. hpp>
<fastdds/dds/subscriber/DataReaderListener.hpp>
<fastdds/dds/subscriber/qos/DataReaderQos. hpp>
<fastdds/dds/subscriber/SampleInfo.hpp>

using namespace eprosima::fastdds::dds;

class HelloWorldSubscriber

{

private:

DomainParticipant® participant_;

Subscriber* subscriber_;

DataReader* reader_;

Topic* topic_;

TypeSupport type_;

class SubListener : public DataReaderListener

{

public:

SubListener()

: samples_(0)

~SubListener() override

(continues on next page)

6.14. Getting Started

61

57

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

{
}

void on_subscription_matched(
DataReader¥,
const SubscriptionMatchedStatus& info) override

{
if (info.current_count_change == 1)
{
std: :cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{
std::cout << "Subscriber unmatched." << std::endl;
}
else
{

std::cout << info.current_count_change
<< " is not a valid value for SubscriptionMatchedStatus current.,

—count change" << std::endl;

}
}

void on_data_available(
DataReader* reader) override

SampleInfo info;
if (reader->take_next_sample(&hello_, &info) == ReturnCode_t: :RETCODE_OK)

{
if (info.valid_data)

{
samples_++;
std::cout << "Message:

<< hello_.message() << with index: <<

—hello_.index()

<< " RECEIVED." << std::endl;

}
HelloWorld hello_;

std::atomic_int samples_;

} listener_;

public:

HelloWorldSubscriber ()

: participant_(nullptr)
, subscriber_(nullptr)
, topic_(nullptr)

, reader_(nullptr)

(continues on next page)

62

Chapter 6. Structure of the documentation

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldSubscriber()
' if (reader_ !'= nullptr)
! subscriber_->delete_datareader(reader_);
if (topic_ != nullptr)
! participant_->delete_topic(topic_);
if (subscriber_ != nullptr)
' participant_->delete_subscriber(subscriber_);
éomainParticipantFactory::get_instance()—>de1ete_participant(participant_);
}

//!Initialize the subscriber
bool init(Q)
{
DomainParticipantQos participantQos;
participantQos.name("Participant_subscriber");
participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)
{
return false;

}

// Register the Type
type_.register_type(participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)
{

return false;

(continues on next page)

6.14. Getting Started

63

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

}

// Create the DataReader
reader_ = subscriber_->create_datareader(topic
—listener_);

DATAREADER_QOS_DEFAULT, &

if (reader_ == nullptr)
{

return false;

return true;

//!Run the Subscriber
void run(
uint32_t samples)
{
while(listener_.samples_ < samples)

{
std: :this_thread: :sleep_for(std: :chrono::milliseconds(100));

};

int main(
int argc,
char** argv)

std::cout << "Starting subscriber." << std::endl;

int samples = 10;

HelloWorldSubscriber® mysub = new HelloWorldSubscriber();
if(mysub->init())
{

mysub->run(static_cast<uint32_t>(samples));

}

delete mysub;
return 0;

64 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the includes of the C++ header files. In
these, the files that include the publisher class are replaced by the subscriber class and the data writer class by the data
reader class.

» Subscriber. It is the object responsible for the creation and configuration of DataReaders.

* DataReader. It is the object responsible for the actual reception of the data. It registers in the application the
topic (TopicDescription) that identifies the data to be read and accesses the data received by the subscriber.

* DataReaderListener. This is the listener assigned to the data reader.
e DataReaderQoS. Structure that defines the QoS of the DataReader.

e SampleInfo. Itis the information that accompanies each sample that is ‘read’ or ‘taken.’

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

The next line defines the HelloWorldSubscriber class that implements a subscriber.

class HelloWorldSubscriber

Starting with the private data members of the class, it is worth mentioning the implementation of the data reader listener.
The private data members of the class will be the participant, the subscriber, the topic, the data reader, and the data
type. As it was the case with the data writer, the listener implements the callbacks to be executed in case an event
occurs. The first overridden callback of the SubListener is the on_subscription_matched(), which is the analog of
the on_publication_matched() callback of the DataWriter.

void on_subscription_matched(
DataReader¥,
const SubscriptionMatchedStatus& info) override

{
if (info.current_count_change == 1)
{
std: :cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{
std: :cout << "Subscriber unmatched." << std::endl;
}
else
{

std: :cout << info.current_count_change
<< " is not a valid value for SubscriptionMatchedStatus current count,
—»change" << std::endl;
}
3

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampIleInfo class is defined,
which determines whether a sample has already been read or taken. Each time a sample is read, the counter of samples
received is increased.

6.14. Getting Started 65

Fast DDS Documentation, Release 2.6.1

void on_data_available(
DataReader* reader) override

{
SampleInfo info;
if (reader->take_next_sample(&hello_, &info) == ReturnCode_t: :RETCODE_OK)
{
if (info.valid_data)
{
samples_++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.
—index()
<< " RECEIVED." << std::endl;
}
}
}

The public constructor and destructor of the class is defined below.

HelloWorldSubscriber ()
: participant_(nullptr)
, subscriber_(nullptr)
, topic_(nullptr)
, reader_(nullptr)
, type_(new HelloWorldPubSubType())

{
}
virtual ~HelloWorldSubscriber()
k if (reader_ !'= nullptr)
! subscriber_->delete_datareader(reader_);
if (topic_ !'= nullptr)
! participant_->delete_topic(topic_);
if (subscriber_ != nullptr)
! participant_->delete_subscriber(subscriber_);
;omainParticipantFactory::get_instance()—>de1ete_participant(participant_);
3

Next comes the subscriber initialization public member function. This is the same as the initialization public mem-
ber function defined for the HelloWorldPublisher. The QoS configuration for all entities, except for the partici-
pant’s name, is the default QoS (PARTICIPANT_QOS_DEFAULT, SUBSCRIBER_QOS_DEFAULT, TOPIC_QOS_DEFAULT,
DATAREADER_QOS_DEFAULT). The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the subscriber
bool init()
{

DomainParticipantQos participantQos;

(continues on next page)

66 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

participantQos.name("Participant_subscriber");

participant_ = DomainParticipantFactory::get_instance()->create_participant(0,.
—participantQos);

if (participant_ == nullptr)

{

return false;

}

// Register the Type
type_.register_type(participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_
—DEFAULT) ;

if (topic_ == nullptr)
{

return false;

}

// Create the Subscriber
subscriber_ = participant_->create_subscriber (SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)

{

return false;

}

// Create the DataReader
reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &listener_);

if (reader_ == nullptr)
{

return false;

}

return true;

The public member function run() ensures that the subscriber runs until all the samples have been received. This
member function implements an active wait of the subscriber, with a 100ms sleep interval to ease the CPU.

//!Run the Subscriber
void run(
uint32_t samples)

{
while(listener_.samples_ < samples)
{
std: :this_thread: :sleep_for(std::chrono::milliseconds(100));
}
}

6.14. Getting Started 67

Fast DDS Documentation, Release 2.6.1

Finally, the participant that implements a subscriber is initialized and run in main.

int main(
int argc,
char** argv)
{
std::cout << "Starting subscriber." << std::endl;
int samples = 10;
HelloWorldSubscriber® mysub = new HelloWorldSubscriber();
if(mysub->init())
{
mysub->run(static_cast<uint32_t>(samples));
}
delete mysub;
return 0;
}
CMakelLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable (DDSHelloWorldSubscriber src/HelloWorldSubscriber.cpp ${DDS_HELLOWORLD_
< SOURCES_CXX})
target_link libraries(DDSHelloWorldSubscriber fastrtps fastcdr)

At this point the project is ready for building, compiling and running the subscriber application. From the build direc-
tory in the workspace, run the following commands.

cmake ..
make clean && make
./DDSHelloWorldSubscriber

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

./DDSHelloWorldPublisher
./DDSHelloWorldSubscriber

68 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Summary
In this tutorial you have built a publisher and a subscriber DDS application. You have also learned how to build the

CMake file for source code compilation, and how to include and use the Fast DDS and Fast CDR libraries in your
project.

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.14.4 Writing a simple Python publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using Python API
step by step.

* Background
* Prerequisites
* Create the application workspace
» Import linked libraries and its dependencies
— Colcon installation
* Build the topic data type
— CMakeLists.txt
» Write the Fast DDS publisher
— Examining the code
» Write the Fast DDS subscriber
— Examining the code
* Putting all together

e Summar y

* Next steps

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

6.14. Getting Started 69

https://github.com/eProsima/Fast-DDS/tree/master/examples/C%2B%2B/DDS

Fast DDS Documentation, Release 2.6.1

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files HelloWorldPublisher.py
and HelloWorldSubscriber.py are the Publisher application and Subscriber application respectively.

—— CMakeCache. txt

— CMakeFiles

— CMakeLists.txt

—— HelloWorld.cxx

—— HelloWorld.h

— HelloWorld.i

— HelloWorld.idl

— HelloWorld.py

—— HelloWorldPubSubTypes.cxx
—— HelloWorldPubSubTypes.h
—— HelloWorldPubSubTypes.i
— HelloWorldPublisher.py
—— HelloWorldSubscriber.py
—— Makefile

—— _HelloWorldWrapper.so
— cmake_install.cmake

L— libHelloWorld.so

Let’s create the directory tree first.

mkdir workspace_HelloWorld && cd workspace_HelloWorld

Import linked libraries and its dependencies
The DDS application requires the Fast DDS, Fast CDR and Fast DDS Python bindings libraries. Depending on the

installation procedure followed the process of making these libraries available for our DDS application will be slightly
different.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS-python/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

70 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

echo 'source <path/to/Fast-DDS-python/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Build the topic data type
eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate SWIG interface files to generate the Python bindings for your custom topic.

For this project, we will use the Fast DDS-Gen application to define the data type of the messages that will be sent by
the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

touch HelloWorld.idl

This creates the HelloWorld.idl file. Open the file in a text editor and copy and paste the following snippet of code.

struct HelloWorld

{
unsigned long index;
string message;

}s

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and a
message of type std: :string. All that remains is to generate the source code that implements this data type in C++11
and the SWIG interface files for the Python bindings. To do this, run the following command.

<path/to/Fast DDS-Gen>/scripts/fastddsgen -python HelloWorld.idl

This must have generated the following files:
* HelloWorld.cxx: HelloWorld C++ type definition.
¢ HelloWorld.h: C++ header file for HelloWorld.cxx.
* HelloWorld.i: SWIG interface file for HelloWorld C++ type definition.
* HelloWorldPubSubTypes.cxx: C+ Serialization and Deserialization code for the HelloWorld type.
* HelloWorldPubSubTypes.h: C++ header file for HelloWorldPubSubTypes.cxx.
* HelloWorldPubSubTypes.i: SWIG interface file for C++ Serialization and Deserialization code.

* CMakeLists.txt: CMake file to generate C++ source code and Python module from the SWIG interface files,
compile and generate C++ libraries.

* HelloWorld.py: Python module to be imported by your Python example.

6.14. Getting Started 71

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/

20

21

22

23

24

25

26

27

28

29

30

31

33

Fast DDS Documentation, Release 2.6.1

CMakelLists.txt

At this point the project is ready for building, compiling and generating Python bindings for this data type. From the
workspace, run the following commands.

cmake .
make

Write the Fast DDS publisher

From the workspace, run the following command to download the HelloWorldPublisher.py file.

wget -0 HelloWorldPublisher.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
—Python/HelloWorld/HelloWorldPublisher.py

This is the Python source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).

Licensed under the Apache License, Version 2.0 (the "License'");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

i

HelloWorld Publisher

i

o O W O W R R R R W™ R

from threading import Condition
import time

import fastdds
import HelloWorld

DESCRIPTION = """HelloWorld Publisher example for Fast DDS python bindings"""
USAGE = ('python3 HelloWorldPublisher.py')

class WriterListener (fastdds.DatalWriterListener)
def __init__(self, writer)
self._writer = writer
super().__init__Q

def on_publication_matched(self, datawriter, info)
if (0 < info.current_count_change)

(continues on next page)

72 Chapter 6. Structure of the documentation

34

41

42

43

44

45

46

47

48

49

50

51

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

print ("Publisher matched subscriber ".format(info.last_subscription_
—handle))

self._writer._cvDiscovery.acquire()

self._writer._matched_reader += 1

self._writer._cvDiscovery.notify()

self._writer._cvDiscovery.release()

else :

print ("Publisher unmatched subscriber ".format(info.last_subscription_

—handle))

self._writer._cvDiscovery.acquire()
self._writer._matched_reader -= 1

self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

class Writer:

def

__init__(self):
self._matched_reader = 0
self._cvDiscovery = Condition()
self.index = 0

factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qgos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_gos)
self.participant = factory.create_participant(®, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()
self.participant.get_default_topic_qos(self.topic_gos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_

—type.getName(), self.topic_qgos)

self.publisher_qos = fastdds.PublisherQos()
self.participant.get_default_publisher_qgos(self.publisher_qos)
self.publisher = self.participant.create_publisher(self.publisher_gos)

self.listener = WriterListener(self)

self.writer_gos = fastdds.DataWriterQos()
self.publisher.get_default_datawriter_qos(self.writer_qos)

self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.

—listener)

def

write(self):
data = HelloWorld.HelloWorld()
data.message("Hello World")

(continues on next page)

6.14. Getting Started 73

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

data.index(self.index)

self.writer.write(data)

print("Sending : ".format (message=data.message(), index=data.
—index()))

self.index = self.index + 1

def wait_discovery(self)
self._cvDiscovery.acquire()

print ("Writer is waiting discovery...'")
self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
self._cvDiscovery.release()

print("Writer discovery finished...")

def run(self):
self.wait_discovery()
for x in range(10)
time.sleep(1)
self.write()
self.delete()

def delete(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant.delete_contained_entities()
factory.delete_participant(self.participant)

if __name__ == '__main__':
print('Starting publisher.")
writer = Writer()
writer.run()
exit(Q)

Examining the code

At the beginning of the file we import the Fast DDS Python bindings.

import fastdds

and also the Python module generated by Fast-DDS-Gen as described in Build the topic data type section.

import HelloWorld

Then, the WriterListener class is defined by inheriting from the DataliriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions.

74 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

class WriterListener (fastdds.DataWriterListener)
def __init__(self, writer)
self._writer = writer
super().__init__Q

def on_publication_matched(self, datawriter, info)
if (0 < info.current_count_change)

print ("Publisher matched subscriber ".format(info.last_subscription_
—handle))

self._writer._cvDiscovery.acquire()

self._writer._matched_reader += 1

self._writer._cvDiscovery.notify()

self._writer._cvDiscovery.release()

else :

print ("Publisher unmatched subscriber ".format(info.last_subscription_

—handle))

self._writer._cvDiscovery.acquire()
self._writer._matched_reader -= 1
self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

The next block creates the Writer class that implements a publisher.

class Writer:

The publisher’s initialization member function of the Writer class are defined below. This function performs several
actions:

1. Uses the DomainParticipantFactory to create the participant.
Registers the data type defined in the IDL.
Creates the topic for the publications.

Creates the publisher.

A

Creates the DataWriter with the listener previously created.

def __init__(self):
self._matched_reader = 0
self._cvDiscovery = Condition()
self.index = 0

factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_gos(self.participant_gos)
self.participant = factory.create_participant(0, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_gos = fastdds.TopicQos()

(continues on next page)

6.14. Getting Started 75

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

self.participant.get_default_topic_qos(self.topic_qgos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.
—getName(), self.topic_gos)

self.publisher_qos = fastdds.PublisherQos()
self.participant.get_default_publisher_qgos(self.publisher_qos)
self.publisher = self.participant.create_publisher(self.publisher_gos)

self.listener = WriterListener(self)

self.writer_gos = fastdds.DataWriterQos()

self.publisher.get_default_datawriter_qos(self.writer_qos)

self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.
—listener)

To make the publication, the public member function write () is implemented. This is simply the writing of a change
by the DataWriter object.

def write(self):
data = HelloWorld.HelloWorld()
data.message("Hello World")
data.index(self.index)
self.writer.write(data)
print("Sending : ".format(message=data.message(), index=data.
—index()))
self.index = self.index + 1

To detect when a DataReader has matched, the public member function wait_discovery() is implemented. In
the DataWriter’s listener callback which states that the DataWriter has matched with a DataReader that listens to the
publication topic, the data member _matched_reader is updated. It contains the number of DataReaders discovered.
Therefore, when the first DataReader has been discovered, the application starts to publish.

def wait_discovery(self)
self._cvDiscovery.acquire()

print ("Writer is waiting discovery...'")
self._cvDiscovery.wait_for(lambda : self._matched_reader !'= 0)
self._cvDiscovery.release()

print("Writer discovery finished...")

The public run function waits until a DataReader is discovered and executes the action of publishing 10 samples.

def run(self):
self.wait_discovery()
for x in range(10)
time.sleep(1)
self.write()
self.delete()

Finally, the Writer is initialized and run in main.

if __name__ == '__main__"':
print('Starting publisher.")
writer = Writer()

(continues on next page)

76 Chapter 6. Structure of the documentation

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

writer.run()
exit(Q)

Write the Fast DDS subscriber

From the workspace, run the following command to download the HelloWorldPublisher.py file.

wget -0 HelloWorldPublisher.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/
—Python/HelloWorld/HelloWorldSubscriber.py

This is the Python source code for the subscriber application. The application runs a subscriber until the user press
Ctrl+C receiving samples under the topic HelloWorldTopic.

Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

i

HelloWorld Subscriber

i

HFHOoR R T W W OH R R R W™ W R

import signal

import fastdds
import HelloWorld

DESCRIPTION = """HelloWorld Subscriber example for Fast DDS python bindings"""
USAGE = ('python3 HelloWorldSubscriber.py')

To capture ctrl+C

def signal_handler(sig, frame):
print('Interrupted!")

class ReaderListener(fastdds.DataReaderListener):

def __init__(self):
super() .__init__Q)

def on_subscription_matched(self, datareader, info)
if (0 < info.current_count_change)

(continues on next page)

6.14. Getting Started 77

38

39

40

41

42

43

44

45

46

47

48

58

59

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

print ("Subscriber matched publisher ".format(info.last_publication_
—handle))
else :
print ("Subscriber unmatched publisher ".format(info.last_publication_
—handle))

def on_data_available(self, reader):
info = fastdds.SampleInfo()
data = HelloWorld.HelloWorld()
reader.take_next_sample(data, info)

print("Received : ".format(message=data.message(), index=data.
—index()))

class Reader:

def __init__(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_gos = fastdds.DomainParticipantQos()
factory.get_default_participant_gos(self.participant_gos)
self.participant = factory.create_participant(0, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld™)

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()

self.participant.get_default_topic_qos(self.topic_qgos)

self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_
—type.getName(), self.topic_qgos)

self.subscriber_qgos = fastdds.SubscriberQos()
self.participant.get_default_subscriber_qos(self.subscriber_qos)
self.subscriber = self.participant.create_subscriber(self.subscriber_qos)

self.listener = ReaderListener()

self.reader_qos = fastdds.DataReaderQos()

self.subscriber.get_default_datareader_qos(self.reader_qos)

self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos,..
—self.listener)

def delete(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant.delete_contained_entities()
factory.delete_participant(self.participant)

(continues on next page)

78 Chapter 6. Structure of the documentation

93

94

95

96

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

def run(self):
signal.signal(signal.SIGINT, signal_handler)
print('Press Ctrl+C to stop')
signal.pause()
self.delete()

if __name__ == '__main__":
print('Creating subscriber.')
reader = Reader()
reader.run()

exit(Q)

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the implementation of the data reader
listener. The first overridden callback of the ReaderListener is the on_subscription_matched (), which is the analog
of the on_publication_matched() callback of the DataWriter.

def on_subscription_matched(self, datareader, info)
if (0 < info.current_count_change)
print ("Subscriber matched publisher ".format(info.last_publication_handle))
else :
print ("Subscriber unmatched publisher ".format(info.last_publication_handle))

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampleInfo class is defined, which
determines whether a sample has already been read or taken.

def on_data_available(self, reader):
info = fastdds.SampleInfo()
data = HelloWorld.HelloWorld()
reader.take_next_sample(data, info)

The next line defines the Reader class that implements a subscriber.

class Reader:

Next comes the subscriber initialization public member function. This is the same as the initialization public member
function defined for the Writer.

def __init__(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_qos)

self.participant = factory.create_participant(®, self.participant_gos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

(continues on next page)

6.14. Getting Started 79

Fast DDS Documentation, Release 2.6.1

(continued from previous page)

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()

self.participant.get_default_topic_qos(self.topic_qgos)

self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.
—.getName(), self.topic_qgos)

self.subscriber_gos = fastdds.SubscriberQos()
self.participant.get_default_subscriber_qos(self.subscriber_qgos)
self.subscriber = self.participant.create_subscriber(self.subscriber_qos)

self.listener = ReaderListener()

self.reader_qos = fastdds.DataReaderQos()

self.subscriber.get_default_datareader_qgos(self.reader_qgos)

self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos, self.
—listener)

The public member function run() ensures that the subscriber runs until the user press Ctri+C.

def run(self):
signal.signal(signal.SIGINT, signal_handler)
print('Press Ctrl+C to stop')
signal.pause()
self.delete()

Finally, the participant that implements a subscriber is initialized and run in main.

if __name__ == '__main__"':
print('Creating subscriber.")
reader = Reader()
reader.run()
exit()

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

python3 HelloWorldPublisher.py
python3 HelloWorldSubscriber.py

Summary

In this tutorial you have built a Python publisher and a subscriber DDS application. You have also learned how to
generate from an IDL file the specific Python module for your Topic data type.

80 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.15 Library Overview

Fast DDS (formerly Fast RTPS) is an efficient and high-performance implementation of the DDS specification, a data-
centric communications middleware (DCPS) for distributed application software. This section reviews the architecture,
operation and key features of Fast DDS.

6.15.1 Architecture

The architecture of Fast DDS is shown in the figure below, where a layer model with the following different environ-
ments can be seen.

» Application layer. The user application that makes use of the Fast DDS API for the implementation of commu-
nications in distributed systems.

« Fast DDS layer. Robust implementation of the DDS communications middleware. It allows the deployment
of one or more DDS domains in which DomainParticipants within the same domain exchange messages by
publishing/subscribing under a domain topic.

* RTPS layer. Implementation of the Real-Time Publish-Subscribe (RTPS) protocol for interoperability with DDS
applications. This layer acts an abstraction layer of the transport layer.

e Transport Layer. Fast DDS can be used over various transport protocols such as unreliable transport protocols
(UDP), reliable transport protocols (TCP), or shared memory transport protocols (SHM).

Fig. 4: Fast DDS layer model architecture

DDS Layer

Several key elements for communication are defined in the DDS layer of Fast DDS. The user will create these elements
in their application, thus incorporating DDS application elements and creating a data-centric communication system.
Fast DDS, following the DDS specification, defines these elements involved in communication as Entities. A DDS
Entity is any object that supports Quality of Service configuration (QoS), and that implements a listener.

* QoS. The mechanism by which the behavior of each of the entities is defined.

* Listener. The mechanism by which the entities are notified of the possible events that arise during the applica-
tion’s execution.

Below are listed the DDS Entities together with their description and functionality. For a more detailed explanation of
each entity, their QoS, and their listeners, please refer to DDS Layer section.

* Domain. A positive integer which identifies the DDS domain. Each DomainParticipant will have an assigned
DDS domain, so that DomainParticipants in the same domain can communicate, as well as isolate commu-
nications between DDS domains. This value must be given by the application developer when creating the
DomainParticipants.

* DomainParticipant. Object containing other DDS entities such as publishers, subscribers, topics and multi-
topics. It is the entity that allows the creation of the previous entities it contains, as well as the configuration of
their behavior.

6.15. Library Overview 81

https://github.com/eProsima/Fast-DDS-python/tree/master/fastdds_python_example
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.6.1

Publisher. The Publisher publishes data under a topic using a DataWriter, which reads the data from the trans-
port. It is the entity that creates and configures the DataWriter entities it contains, and may contain one or more
of them.

DataWriter. It is the entity in charge of publishing messages. The user must provide a Topic when creating
this entity which will be the Topic under which the data will be published. Publication is done by writing the
data-objects as a change in the DataWriterHistory.

DataWriterHistory. This is a list of changes to the data-objects. When the DataWriter proceeds to publish data
under a specific Topic, it actually creates a change in this data. It is this change that is registered in the History.
These changes are then sent to the DataReader that subscribes to that specific topic.

Subscriber. The Subscriber subscribes to a topic using a DataReader, which reads the data from the transport.
It is the entity that creates and configures the DataReader entities it contains, and may contain one or more
DataReader entities.

DataReader. It is the entity that subscribes to the topics for the reception of publications. The user must
provide a subscription Topic when creating this entity. A DataReader receives the messages as changes in its
HistoryDataReader.

DataReaderHistory. It contains the changes in the data-objects that the DataReader receives as a result of
subscribing to a certain Topic.

Topic. Entity that binds Publishers’ DataWriters with Subscribers’ DataReaders.

RTPS layer

As mentioned above, the RTPS protocol in Fast DDS allows the abstraction of DDS application entities from the
transport layer. According to the graph shown above, the RTPS layer has four main Entities.

RTPSDomain. It is the extension of the DDS domain to the RTPS protocol.

RTPSParticipant. Entity containing other RTPS entities. It allows the configuration and creation of the entities
it contains.

RTPSWriter. The source of the messages. It reads the changes written in the DataWriterHistory and transmits
them to all the RTPSReaders to which it has previously matched.

RTPSReader. Receiving entity of the messages. It writes the changes reported by the RTPSWriter into the
DataReaderHistory.

For a more detailed explanation of each entity, their attributes, and their listeners, please refer to RTPS Layer section.

Transport layer

Fast DDS supports the implementation of applications over various transport protocols. Those are UDPv4, UDPv6,
TCPv4, TCPv6 and Shared Memory Transport (SHM). By default, a DomainParticipant implements a UDPv4 and
a SHM transport protocol. The configuration of all supported transport protocols is detailed in the Transport Layer
section.

82

Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

6.15.2 Programming and execution model

Fast DDS is concurrent and event-based. The following explains the multithreading model that governs the operation
of Fast DDS as well as the possible events.

Concurrency and multithreading

Fast DDS implements a concurrent multithreading system. Each DomainParticipant spawns a set of threads to take care
of background tasks such as logging, message reception, and asynchronous communication. This should not impact
the way you use the library, i.e. the Fast DDS API is thread safe, so you can fearlessly call any methods on the same
DomainParticipant from different threads. However, this multithreading implementation must be taken into account
when external functions access to resources that are modified by threads running internally in the library. An example
of this is the modified resources in the entity listener callbacks. The following is a brief overview of how Fast DDS
multithreading schedule work:

¢ Main thread: Managed by the application.
 Event thread: Each DomainParticipant owns one of these. It processes periodic and triggered time events.

* Asynchronous writer thread: This thread manages asynchronous writes for all DomainParticipants. Even for
synchronous writers, some forms of communication must be initiated in the background.

* Reception threads: DomainParticipants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

Event-driven architecture

There is a time-event system that enables Fast DDS to respond to certain conditions, as well as schedule periodic
operations. Few of them are visible to the user since most are related to DDS and RTPS metadata. However, the user
can define in their application periodic time-events by inheriting from the TimedEvent class.

6.15.3 Functionalities

Fast DDS has some added features that can be implemented and configured by the user in their application. These are
outlined below.

Discovery Protocols

The discovery protocols define the mechanisms by which DataWriters publishing under a given Topic, and DataRead-
ers subscribing to that same Topic are matched, so that they can start sharing data. This applies at any point in the
communication process. Fast DDS provides the following discovery mechanisms:

» Simple Discovery. This is the default discovery mechanism, which is defined in the RTPS standard and provides
compatibility with other DDS implementations. Here the DomainParticipants are discovered individually at an
early stage to subsequently match the DataWriter and DataReader they implement.

* Discovery Server. This discovery mechanism uses a centralized discovery architecture, where servers act as
hubs for meta traffic discovery.

« Static Discovery. This implements the discovery of DomainParticipants to each other but it is possible to skip
the discovery of the entities contained in each DomainParticipant (DataReader/DataWriter) if these entities are
known in advance by the remote DomainParticipants.

6.15. Library Overview 83

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.6.1

e Manual Discovery. This mechanism is only compatible with the RTPS layer. It allows the user to man-
ually match and unmatch RTPSParticipants, RTPSWriters, and RTPSReaders using whatever external meta-
information channel of its choice.

The detailed explanation and configuration of all the discovery protocols implemented in Fast DDS can be seen in the
Discovery section.

Security

Fast DDS can be configured to provide secure communications by implementing pluggable security at three levels:

* Authentication of remote DomainParticipants. The DDS:Auth:PKI-DH plugin provides authentication using a
trusted Certificate Authority (CA) and ECDSA Digital Signature Algorithms to perform the mutual authentica-
tion. It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement protocol.

 Access control of entities. The DDS:Access:Permissions plugin provides access control to DomainParticipants
at the DDS Domain and Topic level.

* Encryption of data. The DDS:Crypto:AES-GCM-GMAC plugin provides authenticated encryption using Ad-
vanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

More information about security configuration in Fast DDS is available in the Security section.

Logging

Fast DDS provides an extensible Logging system. Log class is the entry point of the Logging system. It exposes
three macro definitions to ease its usage: logInfo, logWarning and logError. Moreover, it allows the definition of
new categories, in addition to those already available (INFO_MSG, WARN_MSG and ERROR_MSG). It provides filtering by
category using regular expressions, as well as control of the verbosity of the Logging system. Details of the possible
Logging system configurations can be found in the Logging section.

XML profiles configuration

Fast DDS offers the possibility to make changes in its default settings by using XML profile configuration files. Thus,
the behavior of the DDS Entities can be modified without the need for the user to implement any program source code
or re-build an existing application.

The user has XML tags for each of the API functionalities. Therefore, it is possible to build and configure DomainPar-
ticipant profiles through the <participant> tag, or the DataWriter and DataReader profiles with the <data_writer>
and <data_reader> tags respectively.

For a better understanding of how to write and use these XML profiles configuration files you can continue reading the
XML profiles section.

Environment variables

Environment variables are those variables that are defined outside the scope of the program, through operating system
functionalities. Fast DDS relies on environment variables so that the user can easily customize the default settings
of DDS applications. Please, refer to the Environment variables section for a complete list and description of the
environment variables affecting Fast DDS.

84 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

6.16 DDS Layer

eProsima Fast DDS exposes two different APIs to interact with the communication service at different levels. The
main APl is the Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model
(PIM) API, or DDS DCPS PIM for short, which is defined by the Data Distribution Service (DDS) version 1.4 speci-
fication, to which Fast DDS complies. This section is devoted to explain the main characteristics and modes-of-use of
this API under Fast DDS, providing an in depth explanation of the five modules into which it is divided:

* Core: It defines the abstract classes and interfaces that are refined by the other modules. It also provides the
Quality of Service (QoS) definitions, as well as support for the notification-based interaction style with the mid-
dleware.

e Domain: It contains the DomainParticipant class that acts as an entry-point of the Service, as well as a factory
for many of the classes. The DomainParticipant also acts as a container for the other objects that make up the
Service.

e Publisher: It describes the classes used on the publication side, including Publisher and Dataliriter classes,
as well as the PublisherListener and DataliriterListener interfaces.

* Subscriber: It describes the classes used on the subscription side, including Subscriber and DataReader
classes, as well as the SubscriberListener and DataReaderListener interfaces.

e Topic: Tt describes the classes used to define communication topics and data types, including Topic and
TopicDescription classes, as well as TypeSupport, and the TopicListener interface.

6.16.1 Core

This module defines the infrastructure classes and types that will be used by the other ones. It contains the definition
of Entity class, QoS policies, and Statuses.

* Entity: An Entity is a DDS communication object that has a Status and can be configured with Policies.
* Policy: Each of the configuration objects that govern the behavior of an Entity.

 Status: Each of the objects associated with an Entity, whose values represent the communication status of that
Entity.

Entity

Entity is the abstract base class for all the DDS entities, meaning an object that supports QoS policies, a listener, and
statuses.

Types of Entities

* DomainParticipant: This entity is the entry-point of the Service and acts as a factory for Publishers, Subscribers,
and Topics. See DomainParticipant for further details.

* Publisher: It acts as a factory that can create any number of DataWriters. See Publisher for further details.
¢ Subscriber: It acts as a factory that can create any number of DataReaders. See Subscriber for further details.

» Topic: This entity fits between the publication and subscription entities and acts as a channel. See Topic for
further details.

» DataWriter: Is the object responsible for the data distribution. See DataWriter for further details.

* DataReader: Is the object used to access the received data. See DataReader for further details.

6.16. DDS Layer 85

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.6.1

The following figure shows the hierarchy between all DDS entities:

Common Entity Characteristics

All entity types share some characteristics that are common to the concept of an entity. Those are:

Entity Identifier

Each entity is identified by a unique ID, which is shared between the DDS entity and its corresponding RTPS entity if
it exists. That ID is stored on an Instance Handle object declared on Entity base class, which can be accessed using the
getter function get_instance_handle().

QoS policy

The behavior of each entity can be configured with a set of configuration policies. For each entity type, there
is a corresponding Quality of Service (QoS) class that groups all the policies that affect said entity type. Users
can create instances of these QoS classes, modify the contained policies to their needs, and use them to configure
the entities, either during their creation or at a later time with the set_qos() function that every entity exposes
(DomainParticipant::set_qos(), Publisher: :set_qos(), Subscriber::set_qos(), Topic::set_qos(),
Dataliriter::set_qos(), DataReader: :set_qos()). See Policy for a list of the available policies and their de-
scription. The QoS classes and the policies they contain are explained in the documentation for each entity type.

Listener

A listener is an object with functions that an entity will call in response to events. Therefore, the listener acts as an
asynchronous notification system that allows the entity to notify the application about the Status changes in the entity.

All entity types define an abstract listener interface, which contains the callback functions that the entity will trigger to
communicate the Status changes to the application. Users can implement their own listeners inheriting from these in-
terfaces and implementing the callbacks that are needed on their application. Then they can link these listeners to each
entity, either during their creation or at a later time with the set_listener() function that every entity exposes
(DomainParticipant::set_listener(), Publisher::set_listener(), Subscriber::set_listener(),
Topic::set_listener(), Dataliriter::set_listener(), DataReader: :set_listener()). The listener in-
terfaces that each entity type and their callbacks are explained in the documentation for each entity type. When an
event occurs it is handled by the lowest level entity with a listener that is non-null and has the corresponding callback
enabled in its StatusMask. Higher level listeners inherit from the lower level ones as shown in the following diagram:

Fig. 5: Listeners inheritance diagram.

Note: The on_data_on_readers() callback intercepts messages before on_data_available(). This implies
that if DomainParticipantListener is enabled, users should take into account that by default the listener uses
StatusMask::all(). As the callback entity hierarchy is kept, the on_data_on_readers () is going to be called in
this case. If an application wants to use on_data_available() instead, the corresponding bit of StatusMask should
be disabled.

86 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

Important: Using StatusMask: :none () when creating the Entity only disables the DDS standard callbacks. Any
callback specific to Fast DDS is always enabled.

Warning: Only one thread is created to listen for every listener implemented, so it is encouraged to keep listener
functions simple, leaving the process of such information to the proper class.

Warning: Do not create or delete any Entity within the scope of a Listener member function, since it could lead
to an undefined behavior. It is recommended instead to use the Listener class as an information channel and the
upper Entity class to encapsulate such behaviour.

Status

Each entity is associated with a set of status objects whose values represent the communication status of that entity.
The changes on these status values are the ones that trigger the invocation of the appropriate Listener callback to
asynchronously inform the application. See Status for a list of all the status objects and a description of their content.
There you can also find which status applies to which entity type.

StatusCondition

Every entity owns a StatusCondition that will be notified whenever its enabled statuses change. The StatusCondition
provides the link between an Entity and a Wait-set. See section Conditions and Wait-sets for more information.

Enabling Entities

All the entities can be created either enabled or not enabled. By default, the factories are configured to create the
entities enabled, but it can be changed using the EntityFactoryQosPolicy on enabled factories. A disabled factory
creates disabled entities regardless of its QoS. A disabled entity has its operations limited to the following ones:

* Set/Get the entity QoS Policy.

 Set/Get the entity Listener.

* Create/Delete subentities.

 Get the Status of the entity, even if they will not change.
* Lookup operations.

Any other function called in this state will return NOT_ENABLED.

6.16. DDS Layer 87

Fast DDS Documentation, Release 2.6.1

Policy

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
entity will behave. To increase the flexibility of the system, the QoS is decomposed in several QoS Policies that can be
configured independently. However, there may be cases where several policies conflict. Those conflicts are notified to
the user through the ReturnCodes that the QoS setter functions returns.

Each Qos Policy has a unique ID defined in the QosPolicyId_t enumerator. This ID is used in some Status instances
to identify the specific Qos Policy to which the Status refers.

There are QoS Policies that are immutable, which means that only can be specified either at the entity creation or before
calling the enable operation.

Each DDS Entity has a specific set of QoS Policies that can be a mix of Standard QoS Policies, XTypes Extensions and
eProsima Extensions.

Standard QoS Policies

This section explains each of the DDS standard QoS Policies:

* DeadlineQosPolicy

* DestinationOrderQosPolicy
* DurabilityQosPolicy

* DurabilityServiceQosPolicy
* EntityFactoryQosPolicy

* GroupDataQosPolicy

* HistoryQosPolicy

* LatencyBudgetQosPolicy

* LifespanQosPolicy

* LivelinessQosPolicy

* OwnershipQosPolicy

* OwnershipStrengthQosPolicy
* PartitionQosPolicy

* PresentationQosPolicy

* ReaderDataLifecycleQosPolicy
* ReliabilityQosPolicy

* ResourceLimitsQosPolicy

* TimeBasedFilterQosPolicy

» TopicDataQosPolicy

» TransportPriorityQosPolicy

» UserDataQosPolicy

» WriterDataLifecycleQosPolicy

88 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.6.1

DeadlineQosPolicy

This QoS policy raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically (see DeadlineQosPolicy).

On the publishing side, the deadline defines the maximum period in which the application is expected to supply a new
sample. On the subscribing side, it defines the maximum period in which new samples should be received.

For Topics with keys, this QoS is applied by key. Suppose that the positions of some vehicles have to be published
periodically. In that case, it is possible to set the ID of the vehicle as the key of the data type and the deadline QoS to
the desired publication period.

List of QoS Policy data members:

Data Member Na