

 eProsima Fast DDS Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima Fast DDS is a C++ implementation of the
DDS (Data Distribution Service) Specification [https://www.omg.org/spec/DDS/About-DDS/], a protocol
defined by the Object Management Group (OMG) [https://www.omg.org/].
The eProsima Fast DDS library provides both an Application Programming Interface (API) and a communication protocol
that deploy
a Data-Centric Publisher-Subscriber (DCPS) model, with the purpose of establishing efficient and reliable
information distribution among Real-Time Systems.
eProsima Fast DDS is predictable, scalable, flexible, and efficient in resource handling.
For meeting these requirements, it makes use of typed interfaces and hinges on a many-to-many
distributed network paradigm that neatly allows separation of the publisher and subscriber sides of the communication.
eProsima Fast DDS comprises:

	The DDS API implementation.

	Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware
implementation.

	The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the
Robot Operating System 2 (ROS 2) [https://index.ros.org/doc/ros2/] in every long term (LTS) releases and most of the
non-LTS releases.

DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications that
produce the data publish it to the local caches of subscribers belonging to applications that consume the data.
The information flow is regulated by Quality of Service (QoS) policies established between the entities in
charge of the data exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers.
Each time a publisher posts new data into this space, the middleware propagates the information to all
interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications
able to communicate with each other.
Only entities belonging to a same domain can interact, and the matching between entities subscribing to data and
entities publishing them is mediated by topics. Topics are unambiguous identifiers that associate a
name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces.
The latter imply a more efficient resource handling as knowledge of the data
type prior to the execution allows allocating memory in advance rather than dynamically.

[image: _images/DDS_concept.svg]Conceptual diagram of how information flows within DDS domains.
Only entities belonging to the same domain can discover each
other through matching topics, and consequently exchange data between publishers and subscribers.

Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate
implementations that fill the gap between the interfaces and the middleware.
This task is carried out by a dedicated generation tool, Fast DDS-Gen, a Java application
that generates source code using the data types defined in an
Interface Definition Language (IDL) [https://www.omg.org/spec/IDL/About-IDL/] file.

RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time
Publish-Subscribe protocol (RTPS) [https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/], an interoperability wire
protocol for DDS defined and maintained by the OMG
consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees
compatibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the DDS
application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations.
All the RTPS core entities are associated with an RTPS domain, which represents an isolated communication plane where
endpoints match.
The entities specified in the RTPS protocol are in one-to-one correspondence with the DDS entities, thus allowing
the communication to occur.

Main Features

	Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

	Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

	Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers.
However, a Client-Server discovery as well as other discovery paradigms can also be configured.

	Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data publication.

	Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication paradigm
over Best Effort communications protocols
such as UDP. Furthermore, another way of setting a reliable communication is to use our TCP transport.

	Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

	Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it implements
pluggable security at three levels: authentication of remote participants, access control of entities and encryption
of data.

	Statistics Module. eProsima Fast DDS can be configured to gather and provide information
about the data being exchanged by the user application.

	Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the amount
of data to be sent under certain conditions.

	Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and leave
the network at any time without the
need for reconfiguration.

	Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

	Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an
application using DDS to switch among DDS implementations with only a re-compile.

	Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

	Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate in
the network.

	High performance. eProsima Fast DDS uses a static low-level serialization library,
Fast CDR [https://github.com/eProsima/Fast-CDR],
a C++ library that serializes according to the standard CDR serialization mechanism defined in the RTPS
Specification [https://www.omg.org/spec/DDSI-RTPS/] (see the Data Encapsulation chapter as a reference).

	Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld
(see Getting Started) that puts into communication a
publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world.
The DDS and the RTPS layers are thoroughly explained in the DDS Layer and
RTPS Layer sections.

	Low resources consumption. eProsima Fast DDS:

	Allows to preallocate resources, to minimize dynamic resource allocation.

	Avoids the use of unbounded resources.

	Minimizes the need to copy data.

	Multi-platform. The OS dependencies are treated as pluggable modules.
Users may easily implement platform modules using the eProsima Fast DDS library on their target platforms.
By default, the project can run over Linux, Windows and MacOS.

	Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Fast DDS

	Fast DDS-Gen

	Release Notes

 eProsima Fast DDS Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima Fast DDS is a C++ implementation of the
DDS (Data Distribution Service) Specification [https://www.omg.org/spec/DDS/About-DDS/], a protocol
defined by the Object Management Group (OMG) [https://www.omg.org/].
The eProsima Fast DDS library provides both an Application Programming Interface (API) and a communication protocol
that deploy
a Data-Centric Publisher-Subscriber (DCPS) model, with the purpose of establishing efficient and reliable
information distribution among Real-Time Systems.
eProsima Fast DDS is predictable, scalable, flexible, and efficient in resource handling.
For meeting these requirements, it makes use of typed interfaces and hinges on a many-to-many
distributed network paradigm that neatly allows separation of the publisher and subscriber sides of the communication.
eProsima Fast DDS comprises:

	The DDS API implementation.

	Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware
implementation.

	The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the
Robot Operating System 2 (ROS 2) [https://index.ros.org/doc/ros2/] in every long term (LTS) releases and most of the
non-LTS releases.

DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications that
produce the data publish it to the local caches of subscribers belonging to applications that consume the data.
The information flow is regulated by Quality of Service (QoS) policies established between the entities in
charge of the data exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers.
Each time a publisher posts new data into this space, the middleware propagates the information to all
interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications
able to communicate with each other.
Only entities belonging to a same domain can interact, and the matching between entities subscribing to data and
entities publishing them is mediated by topics. Topics are unambiguous identifiers that associate a
name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces.
The latter imply a more efficient resource handling as knowledge of the data
type prior to the execution allows allocating memory in advance rather than dynamically.

[image: ../_images/DDS_concept.svg]Conceptual diagram of how information flows within DDS domains.
Only entities belonging to the same domain can discover each
other through matching topics, and consequently exchange data between publishers and subscribers.

Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate
implementations that fill the gap between the interfaces and the middleware.
This task is carried out by a dedicated generation tool, Fast DDS-Gen, a Java application
that generates source code using the data types defined in an
Interface Definition Language (IDL) [https://www.omg.org/spec/IDL/About-IDL/] file.

RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time
Publish-Subscribe protocol (RTPS) [https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/], an interoperability wire
protocol for DDS defined and maintained by the OMG
consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees
compatibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the DDS
application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations.
All the RTPS core entities are associated with an RTPS domain, which represents an isolated communication plane where
endpoints match.
The entities specified in the RTPS protocol are in one-to-one correspondence with the DDS entities, thus allowing
the communication to occur.

Main Features

	Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

	Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

	Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers.
However, a Client-Server discovery as well as other discovery paradigms can also be configured.

	Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data publication.

	Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication paradigm
over Best Effort communications protocols
such as UDP. Furthermore, another way of setting a reliable communication is to use our TCP transport.

	Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

	Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it implements
pluggable security at three levels: authentication of remote participants, access control of entities and encryption
of data.

	Statistics Module. eProsima Fast DDS can be configured to gather and provide information
about the data being exchanged by the user application.

	Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the amount
of data to be sent under certain conditions.

	Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and leave
the network at any time without the
need for reconfiguration.

	Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

	Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an
application using DDS to switch among DDS implementations with only a re-compile.

	Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

	Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate in
the network.

	High performance. eProsima Fast DDS uses a static low-level serialization library,
Fast CDR [https://github.com/eProsima/Fast-CDR],
a C++ library that serializes according to the standard CDR serialization mechanism defined in the RTPS
Specification [https://www.omg.org/spec/DDSI-RTPS/] (see the Data Encapsulation chapter as a reference).

	Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld
(see Getting Started) that puts into communication a
publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world.
The DDS and the RTPS layers are thoroughly explained in the DDS Layer and
RTPS Layer sections.

	Low resources consumption. eProsima Fast DDS:

	Allows to preallocate resources, to minimize dynamic resource allocation.

	Avoids the use of unbounded resources.

	Minimizes the need to copy data.

	Multi-platform. The OS dependencies are treated as pluggable modules.
Users may easily implement platform modules using the eProsima Fast DDS library on their target platforms.
By default, the project can run over Linux, Windows and MacOS.

	Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Fast DDS

	Fast DDS-Gen

	Release Notes

1. Linux installation from binaries

The instructions for installing eProsima Fast DDS in a Linux environment from
binaries are provided in this page.

	Install

	Contents

	Run an application

	Including Fast-DDS in a CMake project

	Uninstall

1.1. Install

The latest release of eProsima Fast DDS for Linux is available at the eProsima website
Downloads tab [https://eprosima.com/index.php/downloads-all].
Once downloaded, extract the contents in your preferred directory.
Then, to install eProsima Fast DDS and all its dependencies in the system, execute
the install.sh script with administrative privileges:

cd <extraction_directory>
sudo ./install.sh

Note

By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Linux installation from sources
page.

1.1.1. Contents

The src folder contains the following packages:

	foonathan_memory_vendor, an STL compatible C++ memory allocator
library [https://github.com/foonathan/memory].

	fastcdr, a C++ library for data serialization according to the
CDR standard [https://www.omg.org/spec/DDSI-RTPS/2.2] (Section 10.2.1.2 OMG CDR).

	fastrtps, the core library of eProsima Fast DDS library.

	fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

In case any of these components is unwanted, it can be simply renamed or removed from the src
directory.

1.1.2. Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, /usr/local/lib/. There are two possibilities:

	Prepare the environment locally by typing in the console used for running the eProsima Fast DDS instance
the command:

export LD_LIBRARY_PATH=/usr/local/lib/

	Add it permanently to the PATH by executing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

1.1.3. Including Fast-DDS in a CMake project

The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via
the find_package CMake API.

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

$ cmake -Bbuildexample -DFASTDDS_STATIC=ON .
$ cmake --build buildexample --target install

1.2. Uninstall

To uninstall all installed components, execute the uninstall.sh script (with administrative privileges):

cd <extraction_directory>
sudo ./uninstall.sh

Warning

If any of the other components were already installed in some other way in the system, they will be
removed as well. To avoid it, edit the script before executing it.

2. Windows installation from binaries

The instructions for installing eProsima Fast DDS in a Windows environment from
binaries are provided in this page.
It is organized as follows:

	Requirements

	Visual Studio

	Install

	Contents

	Environment variables

	Including Fast-DDS in a CMake project

First of all, the Requirements detailed below need to be met.

2.1. Requirements

The installation of eProsima Fast DDS in a Windows environment from binaries requires the following tools to be
installed in the system:

	Visual Studio

2.1.1. Visual Studio

Visual Studio [https://visualstudio.microsoft.com/] is required to
have a C++ compiler in the system. For this purpose, make sure to check the
Desktop development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not,
open Visual Studio and go to Tools -> Get Tools and Features and in the Workloads tab enable
Desktop development with C++. Finally, click Modify at the bottom right.

2.2. Install

The latest release of eProsima Fast DDS for Windows is available at the company website
downloads page [https://eprosima.com/index.php/downloads-all].
Once downloaded, execute the installer and follow the instructions, choosing the preferred Visual Studio
version and architecture when prompted.

Note

By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the
Windows installation from sources page.

2.2.1. Contents

By default, the installation will download all the available packages, namely:

	foonathan_memory_vendor, an STL compatible C++ memory allocator
library [https://github.com/foonathan/memory].

	fastcdr, a C++ library that serializes according to the
standard CDR [https://www.omg.org/cgi-bin/doc?formal/02-06-51] serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

	fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

2.2.2. Environment variables

eProsima Fast DDS requires the following environment variable setup in order to function properly:

	FASTRTPSHOME: Root folder where eProsima Fast DDS is installed.

	Additions to the PATH: The location of eProsima Fast DDS scripts and libraries should be
appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

2.2.3. Including Fast-DDS in a CMake project

The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via
the find_package CMake API.

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

> cmake -Bbuildexample -DFASTDDS_STATIC=ON .
> cmake --build buildexample --target install

3. Linux installation from sources

The instructions for installing the Fast DDS library,
the Fast DDS Python bindings
and the Fast DDS-Gen generation tool from sources are provided in this page.
It is organized as follows:

	Fast DDS library installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Fast DDS Python bindings installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Fast DDS-Gen installation

	Requirements

	Compiling Fast DDS-Gen

3.1. Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Linux environment from
sources. The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocator
library [https://github.com/foonathan/memory].

	fastcdr, a C++ library that serializes according to the
standard CDR [https://www.omg.org/cgi-bin/doc?formal/02-06-51] serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon
or the CMake installation instructions.

3.1.1. Requirements

The installation of eProsima Fast DDS in a Linux environment from sources requires the following tools to be
installed in the system:

	CMake, g++, pip3, wget and git

3.1.1.1. CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake [https://cmake.org], g++ [https://gcc.gnu.org/], pip3 [https://docs.python.org/3/installing/index.html], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] using the package manager of the appropriate
Linux distribution. For example, on Ubuntu use the command:

sudo apt install cmake g++ python3-pip wget git

3.1.2. Dependencies

eProsima Fast DDS has the following dependencies, when installed from sources in a Linux environment:

	Asio and TinyXML2 libraries

	OpenSSL

	Libp11 and SoftHSM libraries

	Gtest [optional]

3.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent
asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
Install these libraries using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

3.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Install OpenSSL [https://www.openssl.org/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libssl-dev

3.1.2.3. Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency,
that is needed only when eprosima Fast DDS is used with security and PKCS#11 URIs.

Install libp11 [https://github.com/OpenSC/libp11/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libp11-dev libengine-pkcs11-openssl

SoftHSM is a software implementation of an HSM (Hardware Security Module).
If eProsima Fast DDS tests are activated and libp11 is installed
on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Install SoftHSM [https://www.opendnssec.org/softhsm/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install softhsm2

Note that the softhsm2 package creates a new group called softhsm. In order
to grant access to the HSM module a user must belong to this group.

sudo usermod -a -G softhsm <user>

OpenSSL access HSM and other hardware devices through its engine functionality.
In order to set up a new engine the OpenSSL configuration files (usually /etc/ssl/openssl.cnf)
must be updated specifying the libp11 [https://github.com/OpenSC/libp11/] and hardware module (here SoftHSM [https://www.opendnssec.org/softhsm/]) dynamic libraries
location.

This configuration step can be avoided using p11kit [https://github.com/p11-glue/p11-kit] which allows OpenSSL to find PKCS#11
devices on runtime without static configuration. This kit is often available through
the Linux distribution package manager. On Ubuntu, for example:

sudo apt install libengine-pkcs11-openssl

Once installed, to check p11kit [https://github.com/p11-glue/p11-kit] is able to find the SoftHSM [https://www.opendnssec.org/softhsm/] module use:

p11-kit list-modules

In order to check if OpenSSL is able to access PKCS#11 engine use:

openssl engine pkcs11 -t

3.1.2.4. Gtest

GTest is a unit testing library for C++.
By default, eProsima Fast DDS does not compile tests.
It is possible to activate them with the opportune
CMake configuration options [https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
Also add the Gtest repository [https://github.com/google/googletest] into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

3.1.3. Colcon installation

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
This section explains how to use it to compile eProsima Fast DDS and its dependencies.

	Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

Mind that under non-root users, pip3 may install python colcon and vcs executables in
$HOME/.local/bin, for instance when running with --user.
To be able to run these applications, make sure that pip3 binary installation directory is in your
$PATH ($HOME/.local/bin is normally introduced while login on an interactive non-root shell).

	Create a Fast-DDS directory and download the repos file that will be used to install
eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS
cd ~/Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src
vcs import src < fastrtps.repos

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

3.1.3.1. Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the
dedicated Fast-DDS directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the
command:

source ~/Fast-DDS/install/setup.bash

	Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bashrc

3.1.4. CMake installation

This section explains how to compile eProsima Fast DDS with CMake [https://cmake.org], either locally or
globally.

3.1.4.1. Local installation

	Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd ~/Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

	Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

Note

By default, eProsima Fast DDS does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest].

3.1.4.2. Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that
appear in the configuration steps of Fast-CDR and Fast-DDS, and change the first in the
configuration step of foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note

Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

3.1.4.3. Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local
installation is used, adjust for the correct directory).
There are two possibilities:

	Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

	Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

3.2. Fast DDS Python bindings installation

This section provides the instructions for installing Fast DDS Python bindings in a Linux environment from sources.
Fast DDS Python bindings is an extension of Fast DDS which provides access to the Fast DDS API through Python.
Therefore, its installation is an extension of the installation of Fast DDS.

Fast DDS Python bindings source code consists on several .i files which will be processed by SWIG [http://www.swig.org/].
Then C++ files (for connecting C++ and Python) and Python files (Python module for Fast DDS) will be generated.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon or the
CMake installation instructions.

3.2.1. Requirements

The installation of Fast DDS Python bindings in a Linux environment from sources requires the following tools to be
installed in the system:

	Fast DDS requirements

	SWIG

	Header files and static library for Python

3.2.1.1. SWIG

SWIG [http://www.swig.org/] is a development tool that allows connecting programs written in C/C++ with a variety of
other programming languages, among them Python.
SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG [http://www.swig.org/] can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install swig

3.2.1.2. Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG [http://www.swig.org/].
They can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install libpython3-dev

3.2.2. Dependencies

Fast DDS Python bindings has the following dependencies, when installed from sources in a Linux environment:

	Fast DDS dependencies

3.2.3. Colcon installation

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
This section explains how to use it to compile Fast DDS Python bindings and its dependencies.

	Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

	Create a Fast-DDS-python directory and download the repos file that will be used to install
Fast DDS Python bindings and its dependencies:

mkdir ~/Fast-DDS-python
cd ~/Fast-DDS-python
wget https://raw.githubusercontent.com/eProsima/Fast-DDS-python/main/fastdds_python.repos
mkdir src
vcs import src < fastdds_python.repos

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

3.2.3.1. Run an application

When running an instance of an application using Fast DDS Python bindings, the colcon overlay built in the
dedicated Fast-DDS-python directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the
command:

source ~/Fast-DDS-python/install/setup.bash

	Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS-python/install/setup.bash' >> ~/.bashrc

3.2.4. CMake installation

This section explains how to compile Fast DDS Python bindings with CMake [https://cmake.org], either
locally or globally.

3.2.4.1. Local installation

	Create a Fast-DDS-python directory where to download and build Fast DDS Python bindings and its
dependencies:

mkdir ~/Fast-DDS-python

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

	Fast DDS [https://github.com/eProsima/Fast-DDS.git]

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

	Once all dependencies are installed, install Fast DDS Python bindings:

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-DDS-python.git
mkdir -p Fast-DDS-python/fastdds_python/build
cd Fast-DDS-python/fastdds_python/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

3.2.4.2. Global installation

To install Fast DDS Python bindings system-wide instead of locally, remove all the flags that
appear in the configuration steps of Fast-CDR, Fast-DDS and Fast-DDS-python, and change the
first in the configuration step of foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note

Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

3.2.4.3. Run an application

When running an instance of an application using Fast DDS Python bindings, it must be linked with the library where
the packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local
installation is used, adjust for the correct directory).
There are two possibilities:

	Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

	Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

3.3. Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Linux environment from
sources.
Fast DDS-Gen is a Java application that generates source code using the data types defined in an IDL file.
Please refer to Introduction for more information.

3.3.1. Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

	Java JDK

	Gradle

3.3.1.1. Java JDK

The JDK is a development environment for building applications and components using the Java language.
To install Java JDK, run:

sudo apt install openjdk-8-jdk

3.3.1.2. Gradle

Gradle is an open-source build automation tool.
Download and install the last stable version of Gradle [https://gradle.org/install] in the preferred way.

3.3.2. Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

Note

If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s
repository, as it can be already be found under the src directory within the colcon workspace.

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

Note

If errors occur during compilation or you do not wish to install gradle, an executable script is included which will
download a gradle temporarily for the compilation step.

./gradlew assemble

3.3.2.1. Contents

The Fast-DDS-Gen folder contains the following packages:

	share/fastddsgen, where the generated Java application is.

	scripts, containing some user friendly scripts.

Note

To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable.

4. Windows installation from sources

The instructions for installing both the Fast DDS library
and the Fast DDS-Gen generation tool from sources are provided in this page.
It is organized as follows:

	Fast DDS library installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Fast DDS-Gen installation

	Requirements

	Compiling Fast DDS-Gen

4.1. Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS in a Windows environment from
sources. The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocator
library [https://github.com/foonathan/memory].

	fastcdr, a C++ library that serializes according to the
standard CDR [https://www.omg.org/cgi-bin/doc?formal/02-06-51] serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon)
or the CMake) installation instructions.

4.1.1. Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

	Visual Studio

	Chocolatey

	CMake, pip3, wget and git

	Gtest [optional]

4.1.1.1. Visual Studio

Visual Studio [https://visualstudio.microsoft.com/] is required to
have a C++ compiler in the system. For this purpose, make sure to check the
Desktop development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not,
open Visual Studio and go to Tools -> Get Tools and Features and in the Workloads tab enable
Desktop development with C++. Finally, click Modify at the bottom right.

4.1.1.2. Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies.
Download and install it directly from the website [https://chocolatey.org/].

4.1.1.3. CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake [https://cmake.org], pip3 [https://docs.python.org/3/installing/index.html], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] by following the instructions detailed in the respective
websites.
Once installed, add the path to the executables to the PATH from the
Edit the system environment variables control panel.

4.1.1.4. Gtest

GTest is a unit testing library for C++.
By default, eProsima Fast DDS does not compile tests.
It is possible to activate them with the opportune
CMake configuration options [https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
Also add the Gtest repository [https://github.com/google/googletest] into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

and add next argument to the colcon call

colcon build --cmake-args -Dgtest_force_shared_crt=ON

4.1.2. Dependencies

eProsima Fast RTPS has the following dependencies, when installed from sources in a Windows environment:

	Asio and TinyXML2 libraries

	OpenSSL

4.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent
asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
They can be downloaded directly from the links below:

	Asio [https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg]

	TinyXML2 [https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg]

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

4.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Download and install the latest OpenSSL version for Windows at this
link [https://slproweb.com/products/Win32OpenSSL.html].
After installing, add the environment variable OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

4.1.2.3. Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency,
that is needed only when eprosima Fast DDS is used with security and PKCS#11 URIs.

Download the latest libp11 [https://github.com/OpenSC/libp11/] version for Windows from this
repository [https://github.com/OpenSC/libp11]
and follow the installation instructions [https://github.com/OpenSC/libp11/blob/master/INSTALL.md]

SoftHSM is a software implementation of an HSM (Hardware Security Module).
If eProsima Fast DDS tests are activated and libp11 is installed
on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Download the SoftHSM [https://www.opendnssec.org/softhsm/] for Windows installer from this
repository [https://github.com/disig/SoftHSM2-for-Windows].
Execute the installer and follow the installation instructions.

OpenSSL access HSM and other hardware devices through its engine functionality. In order
to set up a new engine the OpenSSL configuration files must be updated specifying the
libp11 [https://github.com/OpenSC/libp11/] and hardware module (here SoftHSM [https://www.opendnssec.org/softhsm/]) dynamic libraries location.

OpenSSL on Windows references its default configuration file through the OPENSSL_CONF
environment variable. By default OpenSSL installs two identical default configuration files:

	C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf mimics the Linux distributions one.

	C:\Program Files\OpenSSL-Win64\bin\openssl.cfg kept for backward compatibility.

Neither of them are loaded by default. In order to direct OpenSSL to load one of them or
any other we must set the variable:

cmd> set OPENSSL_CONF=C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf
powershell> $Env:OPENSSL_CONF="C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf"

Once we have hinted OpenSSL the configuration file to use we must modify it to set up the
new PKCS#11 engine following the
OpenSSL guidelines [https://www.openssl.org/docs/man1.1.1/man5/config.html#Engine-Configuration-Module]
replacing the binaries path with the proper ones. For example, before any section in the
configuration file we introduce:

openssl_conf = openssl_init

at the end of the file we include the engine devoted sections. Note to use POSIX path
separator instead of the windows one.

[openssl_init]
 engines = engine_section

[engine_section]
 pkcs11 = pkcs11_section

 [pkcs11_section]
 engine_id = pkcs11
 dynamic_path = C:/Program Files/libp11/src/pkcs11.dll
 MODULE_PATH = C:/Program Files (x86)/SoftHSM2/lib/softhsm2-x64.dll
 init = 0

A proper set up can be verified using OpenSSL command line tool:

openssl engine pkcs11 -t

4.1.3. Colcon installation

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
This section explains how to use it to compile eProsima Fast DDS and its dependencies.

Important

Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

	Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

and add the path to the vcs executable to the PATH from the
Edit the system environment variables control panel.

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

	Create a Fast-DDS directory and download the repos file that will be used to install
eProsima Fast DDS and its dependencies:

mkdir ~\Fast-DDS
cd ~\Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos -output fastrtps.repos
mkdir src
vcs import src --input fastrtps.repos

Finally, use colcon [https://colcon.readthedocs.io/en/released/] to compile all software:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

4.1.3.1. Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the
dedicated Fast-DDS directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the
command:

setup.bat

	Add the sourcing of the colcon overlay permanently, by opening the
Edit the system environment variables control panel, and adding ~/Fast-DDS/install/setup.bat
to the PATH.

4.1.4. CMake installation

This section explains how to compile eProsima Fast DDS with CMake [https://cmake.org], either locally or
globally.

4.1.4.1. Local installation

	Open a command prompt, and create a Fast-DDS directory where to download and build eProsima Fast DDS and
its dependencies:

mkdir %USERPROFILE%\Fast-DDS

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Fast DDS depends on Foonathan memory [https://github.com/foonathan/memory].
To ease the dependency management, eProsima provides a vendor package
Foonathan memory vendor [https://github.com/eProsima/foonathan_memory_vendor], which downloads and builds a
specific revision of Foonathan memory if the library is not found in the system.

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
cd Fast-CDR
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

	Once all dependencies are installed, install eProsima Fast DDS:

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
cd Fast-DDS
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

4.1.4.2. Global installation

To install eProsima Fast DDS system-wide instead of locally, remove the CMAKE_INSTALL_PREFIX flags that
appear in the configuration steps of Fast-CDR and Fast-DDS.

Note

By default, eProsima Fast DDS does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest].

4.1.4.3. Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the Fast DDS and Fast CDR installation directories:

	Fast DDS: C:\Program Files\fastrtps

	Fast CDR: C:\Program Files\fastcdr

4.2. Fast DDS-Gen installation

This section outlines the instructions for installing Fast DDS-Gen in a Windows environment from
sources.
Fast DDS-Gen is a Java application that generates source code using the data types defined in an IDL file.
Please refer to Introduction for more information.

4.2.1. Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

	Java JDK

	Gradle

4.2.1.1. Java JDK

The JDK is a development environment for building applications and components using the Java language.
Download and install it at the following the steps given in the
Oracle website [https://www.oracle.com/java/technologies/javase-downloads.html].

4.2.1.2. Gradle

Gradle is an open-source build automation tool.
Download and install the last stable version of Gradle [https://gradle.org/install] in the preferred way.

4.2.2. Compiling Fast DDS-Gen

Once the requirements above are met, install Fast DDS-Gen by following the steps below:

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

4.2.2.1. Contents

The Fast-DDS-Gen folder contains the following packages:

	share/fastddsgen, where the generated Java application is.

	scripts, containing some user friendly scripts.

Note

To make these scripts accessible from any directory, add the scripts folder path to the
PATH environment variable.

5. Mac OS installation from sources

The instructions for installing both the Fast DDS library
and the Fast DDS-Gen generation tool from sources are provided in this page.
It is organized as follows:

	Fast DDS library installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Fast DDS-Gen installation

	Requirements

	Compiling Fast DDS-Gen

5.1. Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Mac OS environment from
sources. The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocator
library [https://github.com/foonathan/memory].

	fastcdr, a C++ library that serializes according to the
standard CDR [https://www.omg.org/cgi-bin/doc?formal/02-06-51] serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon)
or the CMake) installation instructions.

5.1.1. Requirements

The installation of eProsima Fast DDS in a MacOS environment from sources requires the following tools to be
installed in the system:

	Homebrew

	Xcode Command Line Tools

	CMake, g++, pip3, wget and git

	Gtest [optional]

5.1.1.1. Homebrew

Homebrew is a macOS package manager, it is needed to install some of eProsima Fast DDS’s dependencies.
To install it open a terminal window and run the following command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

5.1.1.2. Xcode Command Line Tools

The Xcode command line tools package is separate from Xcode and allows for command line development in mac.
The previous step should have installed Xcode CLI, to check the correct installation run the following command:

gcc --version

5.1.1.3. CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake [https://cmake.org], pip3 [https://docs.python.org/3/installing/index.html] and wget [https://www.gnu.org/software/wget/] using the Homebrew package manager:

brew install cmake python3 wget

5.1.1.4. Gtest

GTest is a unit testing library for C++.
By default, eProsima Fast DDS does not compile tests.
It is possible to activate them with the opportune
CMake configuration options [https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
Also add the Gtest repository [https://github.com/google/googletest] into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

5.1.2. Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Linux environment:

	Asio and TinyXML2 libraries

	OpenSSL

5.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent
asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
Install these libraries using Homebrew:

brew install asio tinyxml2

5.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Install OpenSSL [https://www.openssl.org/] using Homebrew:

brew install openssl@1.1

5.1.3. Colcon installation

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
This section explains how to use it to compile eProsima Fast DDS and its dependencies.

	Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

	Create a Fast-DDS directory and download the repos file that will be used to install
eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS
cd ~/Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src
vcs import src < fastrtps.repos

	Build the packages:

colcon build

Note

The --cmake-args option allows to pass the CMake configuration options to the colcon build command.
In Mac OS the location of OpenSSL is not found automatically and therefore has to be passed explicitly:
--cmake-args -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl -DOPENSSL_LIBRARIES=/usr/local/opt/openssl/lib.
This is only required when building with Security.
For more information on the specific syntax, please refer to the CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments] page of the colcon [https://colcon.readthedocs.io/en/released/]
manual.

5.1.3.1. Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the
dedicated Fast-DDS directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the
command:

source ~/Fast-DDS/install/setup.bash

	Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

touch ~/.bash_profile
echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bash_profile

5.1.4. CMake installation

This section explains how to compile eProsima Fast DDS with CMake [https://cmake.org], either locally or
globally.

5.1.4.1. Local installation

	Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd ~/Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=ON
sudo cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
sudo cmake --build . --target install

	Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_PATH=~/Fast-DDS/install
sudo cmake --build . --target install

Note

By default, eProsima Fast DDS does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest].

5.1.4.2. Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that
appear in the configuration steps of Fast-CDR and Fast-DDS, and change the first in the
configuration step of foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

5.1.4.3. Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local
installation is used, adjust for the correct directory).
There are two possibilities:

	Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

	Add it permanently it to the PATH, by typing:

touch ~/.bash_profile
echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bash_profile

5.2. Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Mac OS environment from
sources.
Fast DDS-Gen is a Java application that generates source code using the data types defined in an IDL file.
Please refer to Introduction for more information.

5.2.1. Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

	Java JDK

	Gradle

5.2.1.1. Java JDK

The JDK is a development environment for building applications and components using the Java language.
Download and install it at the following the steps given in the
Oracle website [https://www.oracle.com/java/technologies/javase-downloads.html].

5.2.1.2. Gradle

Gradle is an open-source build automation tool.
Download and install the last stable version of Gradle [https://gradle.org/install] in the preferred way.
with Homebrew it would be running the command:

brew install gradle

Note

If errors occur during compilation or you do not wish to install gradle, an executable script is included which will
download gradle temporarily for the compilation step.

./gradlew assemble

5.2.2. Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

5.2.2.1. Contents

The Fast-DDS-Gen folder contains the following packages:

	share/fastddsgen, where the generated Java application is.

	scripts, containing some user friendly scripts.

Note

To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable using the method described above.

6. CMake options

eProsima Fast DDS provides numerous CMake options for changing the behavior and configuration of Fast DDS.
These options allow the user to enable/disable certain Fast DDS settings by defining these options to ON/OFF at the
CMake execution.
This section is structured as follows:
first, the CMake options for the general configuration of Fast DDS are described;
then, the options related to the third party libraries are presented;
finally, the possible options for the building of Fast DDS tests are defined.

6.1. General options

The Fast DDS CMake options for configuring general settings are shown below, together with their description and
dependency on other options.

	Option

	Description

	Possible values

	Default

	EPROSIMA_INSTALLER

	Creates a build for Windows binary installers. Specifically it adds to the list of

components to install (CPACK_COMPONENTS_ALL) the libraries corresponding

to the Microsoft Visual C++ compiler (MSVC). Setting EPROSIMA_INSTALLER

to ON has the following effects on other options:

	EPROSIMA_BUILD is set to ON.

	BUILD_DOCUMENTATION is set to ON.

	INSTALL_EXAMPLES is set to ON.

	ON OFF

	OFF

	EPROSIMA_BUILD

	Activates internal Fast DDS builds.
It is set to ON if EPROSIMA_INSTALLER is

ON. Setting EPROSIMA_BUILD to ON has the following effects on other

options:

	INTERNAL_DEBUG is set to ON.

	COMPILE_EXAMPLES is set to ON if EPROSIMA_INSTALLER is OFF.

	THIRDPARTY_fastcdr is set to ON if it was not set to FORCE.

	THIRDPARTY_Asio is set to ON if it was not set to FORCE.

	THIRDPARTY_TinyXML2 is set to ON if it was not set to FORCE.

	THIRDPARTY_android-ifaddrs is set to ON if it was not set to FORCE.

	EPROSIMA_BUILD_TESTS is set to ON if EPROSIMA_INSTALLER is OFF.

	ON OFF

	OFF

	BUILD_SHARED_LIBS

	Builds internal libraries as shared libraries, i.e. cause add_library() CMake

function to create shared libraries if on. All libraries are built shared unless the

library was explicitly added as a static library.

	ON OFF

	ON

	SECURITY

	Activates the Fast DDS security module. Please refer to Security for more

information on security module.

	ON OFF

	OFF

	NO_TLS

	Disables Transport Layer Security (TLS) Support. Please refer to TLS over TCP

for more information on Fast DDS TLS configuration.

	ON OFF

	OFF

	SHM_TRANSPORT_DEFAULT

	Adds Shared Memory transport (SHM) to the default transports.
Please refer to

SHM section for more information on Fast DDS SHM transport.

	ON OFF

	ON

	FASTDDS_STATISTICS

	Enables the Fast DDS Statistics module. Please refer to Statistics Module for

more information on this module.

	ON OFF

	OFF

	COMPILE_EXAMPLES

	Builds the Fast DDS examples. It is set to ON if EPROSIMA_BUILD is ON and

EPROSIMA_INSTALLER is OFF. These examples can be found in the

eProsima Fast DDS [https://github.com/eProsima/Fast-DDS/tree/master/examples]
GitHub repository [https://github.com/eProsima/Fast-DDS/tree/master/examples].

	ON OFF

	OFF

	INSTALL_EXAMPLES

	Installs the Fast DDS examples, i.e. adds the Fast DDS examples to the list of

components to install (CPACK_COMPONENTS_ALL). It is set to ON if

EPROSIMA_INSTALLER is ON.

	ON OFF

	OFF

	BUILD_DOCUMENTATION

	Uses doxygen to create the Fast DDS API reference documentation. It is set to

ON if EPROSIMA_INSTALLER is ON or if CHECK_DOCUMENTATION is ON.

	ON OFF

	OFF

	CHECK_DOCUMENTATION

	Downloads Fast DDS documentation from Read the Docs media servers. The

documentation files are extracted in the doc/manual directory, updating

any previous version already downloaded.

If CHECK_DOCUMENTATION is ON, BUILD_DOCUMENTATION is set to ON.

	ON OFF

	OFF

	STRICT_REALTIME

	Enables a strict real-time behaviour. Please refer to the Real-Time Use Case for

more information on Fast DDS real-time configuration.

	ON OFF

	OFF

	SQLITE3_SUPPORT

	Builds the SQLITE3 Plugin, which enables the TRANSIENT_DURABILITY_QOS

and PERSISTENT_DURABILITY_QOS options for the DurabilityQosPolicyKind

and therefore the Persistence Service.

	ON OFF

	ON

	APPEND_PROJECT_NAME_TO_INCLUDEDIR

	When ON headers are installed to a path ending with a folder called fastrtps.

This avoids include directory search order issues when overriding this package

from a merged catkin, ament, or colcon workspace.

	ON OFF

	OFF

	USE_THIRDPARTY_SHARED_MUTEX

	When ON a Boost-like implementation of shared_mutex is used instead of the STL one.

This flag prevents thread sanitizer reports on GCC/Clang STL implementations.

	ON OFF

	OFF

6.2. Log options

Fast DDS uses its own configurable Log module with different verbosity levels.
Please, refer to Logging section for more information.

This module can be configured using Fast DDS CMake arguments regarding the following options.

	Option

	Description

	Possible values

	Default

	LOG_CONSUMER_DEFAULT

	Selects the default log consumer for the logging module.

AUTO has the same behavior as STDOUT.

For more information, please refer to Log consumers.

	AUTO STDOUT

STDOUTERR

	AUTO

	LOG_NO_INFO

	Deactivates Info Log level.

If Fast DDS is built in debug mode for Single-Config generators,

the default value will be OFF.

	ON OFF

	ON

	FASTDDS_ENFORCE_LOG_INFO

	Enables Info Log level even on non Debug configurations.

This option only takes action if LOG_NO_INFO is set to OFF

(see Disable Logging Module).

Mind that this may entail a significant performance hit.

	ON OFF

	OFF

	LOG_NO_WARNING

	Deactivates Warning Log level.

	ON OFF

	OFF

	LOG_NO_ERROR

	Deactivates Error Log level.

	ON OFF

	OFF

	INTERNAL_DEBUG

	Activates compilation of log messages (See Disable Logging Module).

Moreover, INTERNAL_DEBUG is set to ON if

EPROSIMA_BUILD is ON.

	ON OFF

	OFF

6.3. Third-party libraries options

Fast DDS relies on the eProsima FastCDR [https://github.com/eProsima/Fast-CDR] library for serialization
mechanisms.
Moreover, Fast DDS requires two external dependencies for its proper operation: Asio and TinyXML2.
Asio is a cross-platform C++ library for network and low-level I/O programming, while TinyXML2 parses the XML profile
files, so Fast DDS can use them (see XML profiles).
These three libraries (eProsima FastCDR, Asio and TinyXML2) can be installed by the user, or downloaded on the
Fast DDS build.
In the latter case, they are referred to as Fast DDS internal third-party libraries.
This can be done by setting either THIRDPARTY or EPROSIMA_BUILD to ON.

These libraries can also be configured using Fast DDS CMake options.

	Option

	Description

	Possible values

	Default

	THIRDPARTY_fastcdr

	ON activates the use of the internal Fast CDR third-party library if it is not

found elsewhere in the system.

FORCE activates the use of the internal Fast CDR third-party library

regardless of whether it can be found elsewhere in the system.

OFF deactivates the use of the internal Fast CDR third-party library.

If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

	ON OFF FORCE

	OFF

	THIRDPARTY_Asio

	ON activates the use of the internal Asio third-party library if it is not

found elsewhere in the system.

FORCE activates the use of the internal Asio third-party library

regardless of whether it can be found elsewhere in the system.

OFF deactivates the use of the internal Asio third-party library.

If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

	ON OFF FORCE

	OFF

	THIRDPARTY_TinyXML2

	ON activates the use of the internal TinyXML2 third-party library if it is not

found elsewhere in the system.

FORCE activates the use of the internal TinyXML2 third-party library

regardless of whether it can be found elsewhere in the system.

OFF deactivates the use of the internal TinyXML2 third-party library.

If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

	ON OFF FORCE

	OFF

	THIRDPARTY_android-ifaddrs

	android-ifaddrs is an implementation of getifaddrs() for Android.

Only used if ANDROID is 1.

ON activates the use of the internal android-ifaddrs third-party library if it is not

found elsewhere in the system.

FORCE activates the use of the internal android-ifaddrs third-party library

regardless of whether it can be found elsewhere in the system.

OFF deactivates the use of the internal android-ifaddrs third-party library.

If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

	ON OFF FORCE

	OFF

	THIRDPARTY

	Unless they are otherwise specified, sets value of all third-party

git submodules THIRDPARTY_fastcdr, THIRDPARTY_Asio,

THIRDPARTY_TinyXML2, and THIRDPARTY_android-ifaddrs.

	ON OFF FORCE

	OFF

	THIRDPARTY_UPDATE

	Activates the update of all third-party git submodules.

	ON OFF

	ON

Note

ANDROID is a CMake environment variable that is set to 1 if the target system
(CMAKE_SYSTEM_NAME) is Android.

6.4. Test options

eProsima Fast DDS comes with a full set of tests for continuous integration.
The types of tests are: unit tests, black-box tests, performance tests, profiling tests, and
XTypes tests.
The building and execution of these tests is specified by the Fast DDS CMake options shown in the table below.

	Option

	Description

	Possible values

	Default

	GTEST_INDIVIDUAL

	Activate the individual building of GoogleTest tests, since Fast DDS tests are

implemented using the GoogleTest framework. However, the test are compiled

if EPROSIMA_BUILD is set to ON. Therefore, if GTEST_INDIVIDUAL is OFF and

EPROSIMA_BUILD is ON, the tests are processed as a single major test.

	ON OFF

	OFF

	FASTRTPS_API_TESTS

	Enables the building of black-box tests for the verification of RTPS communications

using the Fast DDS RTPS-layer API.

	ON OFF

	OFF

	FASTDDS_PIM_API_TESTS

	Enables the building of black-box tests for the verification of DDS communications

using the Fast DDS DDS-layer API.

	ON OFF

	OFF

	PERFORMANCE_TESTS

	Activates the building of performance tests, except for the video test, which requires

both PERFORMANCE_TESTS and VIDEO_TESTS to be set to ON.

	ON OFF

	OFF

	PROFILING_TESTS

	Activates the building of profiling tests using Valgrind.

	ON OFF

	OFF

	EPROSIMA_BUILD_TESTS

	Activates the building of black-box, unit, xtypes, RTPS communication and

DDS communication tests. It is set to ON if EPROSIMA_BUILD is ON and

EPROSIMA_INSTALLER is OFF.

	ON OFF

	OFF

	VIDEO_TESTS

	If PERFORMANCE_TESTS is ON, it will activate the building of video performance tests.

	ON OFF

	OFF

	DISABLE_UDPV6_TESTS

	Disables UDPv6 tests.

	ON OFF

	OFF

1. Getting Started

This section defines the concepts of DDS and RTPS.
It also provides a step-by-step tutorial on how to write a simple Fast DDS (formerly Fast RTPS) publish/subscribe
application.

	1.1. What is DDS?
	1.1.1. The DCPS conceptual model

	1.2. What is RTPS?

	1.3. Writing a simple C++ publisher and subscriber application
	1.3.1. Background

	1.3.2. Prerequisites

	1.3.3. Create the application workspace

	1.3.4. Import linked libraries and its dependencies

	1.3.5. Configure the CMake project

	1.3.6. Build the topic data type

	1.3.7. Write the Fast DDS publisher

	1.3.8. Write the Fast DDS subscriber

	1.3.9. Putting all together

	1.3.10. Summary

	1.3.11. Next steps

	1.4. Writing a simple Python publisher and subscriber application
	1.4.1. Background

	1.4.2. Prerequisites

	1.4.3. Create the application workspace

	1.4.4. Import linked libraries and its dependencies

	1.4.5. Build the topic data type

	1.4.6. Write the Fast DDS publisher

	1.4.7. Write the Fast DDS subscriber

	1.4.8. Putting all together

	1.4.9. Summary

	1.4.10. Next steps

1.1. What is DDS?

The Data Distribution Service (DDS) [https://www.omg.org/spec/DDS/About-DDS/]
is a data-centric communication protocol used for distributed software
application communications.
It describes the communications Application Programming Interfaces (APIs) and Communication Semantics that enable
communication between data providers and data consumers.

Since it is a Data-Centric Publish Subscribe (DCPS) model, three key application entities are defined in its
implementation: publication entities, which define the information-generating objects and their properties;
subscription entities, which define the information-consuming objects and their properties; and configuration entities
that define the types of information that are transmitted as topics, and create the publisher and subscriber with
its Quality of Service (QoS) properties, ensuring the correct performance of the above entities.

DDS uses QoS to define the behavioral characteristics of DDS Entities. QoS are comprised of individual QoS policies
(objects of type deriving from QoSPolicy). These are described in Policy.

1.1.1. The DCPS conceptual model

In the DCPS model, four basic elements are defined for the development of a system of communicating applications.

	Publisher.
It is the DCPS entity in charge of the creation and configuration of the DataWriters it implements.
The DataWriter is the entity in charge of the actual publication of the messages.
Each one will have an assigned Topic under which the messages are published.
See Publisher for further details.

	Subscriber.
It is the DCPS Entity in charge of receiving the data published under the topics to which it subscribes.
It serves one or more DataReader objects, which are responsible for communicating the availability of new data
to the application.
See Subscriber for further details.

	Topic.
It is the entity that binds publications and subscriptions.
It is unique within a DDS domain.
Through the TopicDescription, it allows the uniformity of data types of publications and subscriptions.
See Topic for further details.

	Domain.
This is the concept used to link all publishers and subscribers, belonging to one or more applications,
which exchange data under different topics.
These individual applications that participate in a domain are called DomainParticipant.
The DDS Domain is identified by a domain ID.
The DomainParticipant defines the domain ID to specify the DDS domain to which it belongs.
Two DomainParticipants with different IDs are not aware of each other’s presence in the network.
Hence, several communication channels can be created.
This is applied in scenarios where several DDS applications are involved, with their respective DomainParticipants
communicating with each other, but these applications must not interfere.
The DomainParticipant acts as a container for other DCPS Entities, acts as a factory for
Publisher, Subscriber and Topic Entities, and provides administrative services in the domain.
See Domain for further details.

These elements are shown in the figure below.

[image: ../../_images/dds_domain.svg]DCPS model entities in the DDS Domain.

1.2. What is RTPS?

The Real-Time Publish Subscribe (RTPS) [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] protocol, developed to
support DDS applications, is a publication-subscription communication middleware
over best-effort transports such as UDP/IP. Furthermore, Fast DDS provides support for TCP and
Shared Memory (SHM) transports.

It is designed to support both unicast and multicast communications.

At the top of RTPS, inherited from DDS, the Domain can be found, which defines a separate plane of communication.
Several domains can coexist at the same time independently.
A domain contains any number of RTPSParticipants, that is, elements capable of sending and receiving data.
To do this, the RTPSParticipants use their Endpoints:

	RTPSWriter: Endpoint able to send data.

	RTPSReader: Endpoint able to receive data.

A RTPSParticipant can have any number of writer and reader endpoints.

[image: ../../_images/rtps_domain.svg]RTPS high-level architecture

Communication revolves around Topics, which define and label the data being exchanged.
The topics do not belong to a specific participant.
The participant, through the RTPSWriters, makes changes in the data published under a topic, and through the RTPSReaders
receives the data associated with the topics to which it subscribes.
The communication unit is called Change, which represents an update in the data that is written under a Topic.
RTPSReaders/RTPSWriters register these changes on their History, a data structure that serves as a cache for
recent changes.

In the default configuration of eProsima Fast DDS, when you publish a change through a RTPSWriter endpoint, the
following steps happen behind the scenes:

	The change is added to the RTPSWriter’s history cache.

	The RTPSWriter sends the change to any RTPSReaders it knows about.

	After receiving data, RTPSReaders update their history cache with the new change.

However, Fast DDS supports numerous configurations that allow you to change the behavior of RTPSWriters/RTPSReaders.
A modification in the default configuration of the RTPS entities implies a change in the data exchange flow between
RTPSWriters and RTPSReaders.
Moreover, by choosing Quality of Service (QoS) policies, you can affect how these history caches are managed in several
ways, but the communication loop remains the same.
You can continue reading section RTPS Layer to learn more about the implementation of the RTPS protocol in Fast
DDS.

1.3. Writing a simple C++ publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber
using C++ API step by step.
It is also possible to self-generate a similar example to the one implemented in this section by using the
eProsima Fast DDS-Gen tool.
This additional approach is explained in Building a publish/subscribe application.

	Background

	Prerequisites

	Create the application workspace

	Import linked libraries and its dependencies

	Installation from binaries and manual installation

	Colcon installation

	Configure the CMake project

	Build the topic data type

	CMakeLists.txt

	Write the Fast DDS publisher

	Examining the code

	CMakeLists.txt

	Write the Fast DDS subscriber

	Examining the code

	CMakeLists.txt

	Putting all together

	Summary

	Next steps

1.3.1. Background

DDS is a data-centric communications middleware that implements the DCPS model.
This model is based on the development of a publisher, a data generating element; and a subscriber, a
data consuming element.
These entities communicate by means of the topic, an element that binds both DDS entities.
Publishers generate information under a topic and subscribers subscribe to this same topic to receive information.

1.3.2. Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of
eProsima Fast DDS and all its dependencies.
You also need to have completed the steps outlined in the Installation Manual for the installation of the
eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

1.3.3. Create the application workspace

The application workspace will have the following structure at the end of the project.
Files build/DDSHelloWorldPublisher and build/DDSHelloWorldSubscriber are the Publisher application and
Subscriber application respectively.

.
└── workspace_DDSHelloWorld
 ├── build
 │ ├── CMakeCache.txt
 │ ├── CMakeFiles
 │ ├── cmake_install.cmake
 │ ├── DDSHelloWorldPublisher
 │ ├── DDSHelloWorldSubscriber
 │ └── Makefile
 ├── CMakeLists.txt
 └── src
 ├── HelloWorld.cxx
 ├── HelloWorld.h
 ├── HelloWorld.idl
 ├── HelloWorldPublisher.cpp
 ├── HelloWorldPubSubTypes.cxx
 ├── HelloWorldPubSubTypes.h
 └── HelloWorldSubscriber.cpp

Let’s create the directory tree first.

mkdir workspace_DDSHelloWorld && cd workspace_DDSHelloWorld
mkdir src build

1.3.4. Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries.
Depending on the installation procedure followed the process of making these libraries available for our DDS application
will be slightly different.

1.3.4.1. Installation from binaries and manual installation

If we have followed the installation from binaries or the manual installation, these libraries are already accessible
from the workspace.
On Linux, the header files can be found in directories /usr/include/fastrtps/ and
/usr/include/fastcdr/ for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in
the directory /usr/lib/.

1.3.4.2. Colcon installation

From a Colcon installation there are several ways to import the libraries.
If the libraries need to be available just for the current session, run the following command.

source <path/to/Fast-DDS/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH
variable in the shell configuration files for the current user running the following command.

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

1.3.5. Configure the CMake project

We will use the CMake tool to manage the building of the project.
With your preferred text editor, create a new file called CMakeLists.txt and copy and paste the following code snippet.
Save this file in the root directory of your workspace. If you have followed these steps, it should
be workspace_DDSHelloWorld.

cmake_minimum_required(VERSION 3.12.4)

if(NOT CMAKE_VERSION VERSION_LESS 3.0)
 cmake_policy(SET CMP0048 NEW)
endif()

project(DDSHelloWorld)

Find requirements
if(NOT fastcdr_FOUND)
 find_package(fastcdr REQUIRED)
endif()

if(NOT fastrtps_FOUND)
 find_package(fastrtps REQUIRED)
endif()

Set C++11
include(CheckCXXCompilerFlag)
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_COMPILER_IS_CLANG OR
 CMAKE_CXX_COMPILER_ID MATCHES "Clang")
 check_cxx_compiler_flag(-std=c++11 SUPPORTS_CXX11)
 if(SUPPORTS_CXX11)
 add_compile_options(-std=c++11)
 else()
 message(FATAL_ERROR "Compiler doesn't support C++11")
 endif()
endif()

In each section we will complete this file to include the specific generated files.

1.3.6. Build the topic data type

eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an
Interface Description Language (IDL) file. This application can do two different things:

	Generate C++ definitions for your custom topic.

	Generate a functional example that uses your topic data.

It will be the former that will be followed in this tutorial.
To see an example of application of the latter you can check this other example.
See Introduction for further details.
For this project, we will use the Fast DDS-Gen application to define the data type of the messages that will be sent
by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

cd src && touch HelloWorld.idl

This creates the HelloWorld.idl file in the src directory.
Open the file in a text editor and copy and paste the following snippet of code.

struct HelloWorld
{
 unsigned long index;
 string message;
};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t
and a message of type std::string.
All that remains is to generate the source code that implements this data type in C++11.
To do this, run the following command from the src directory.

<path/to/Fast DDS-Gen>/scripts/fastddsgen HelloWorld.idl

This must have generated the following files:

	HelloWorld.cxx: HelloWorld type definition.

	HelloWorld.h: Header file for HelloWorld.cxx.

	HelloWorldPubSubTypes.cxx: Serialization and Deserialization code for the HelloWorld type.

	HelloWorldPubSubTypes.h: Header file for HelloWorldPubSubTypes.cxx.

1.3.6.1. CMakeLists.txt

Include the following code snippet at the end of the CMakeList.txt file you created earlier.
This includes the files we have just created.

message(STATUS "Configuring HelloWorld publisher/subscriber example...")
file(GLOB DDS_HELLOWORLD_SOURCES_CXX "src/*.cxx")

1.3.7. Write the Fast DDS publisher

From the src directory in the workspace, run the following command to download the HelloWorldPublisher.cpp file.

wget -O HelloWorldPublisher.cpp \
 https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/DDSHelloWorld/src/HelloWorldPublisher.cpp

This is the C++ source code for the publisher application.
It is going to send 10 publications under the topic HelloWorldTopic.

 1// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
 2//
 3// Licensed under the Apache License, Version 2.0 (the "License");
 4// you may not use this file except in compliance with the License.
 5// You may obtain a copy of the License at
 6//
 7// http://www.apache.org/licenses/LICENSE-2.0
 8//
 9// Unless required by applicable law or agreed to in writing, software
 10// distributed under the License is distributed on an "AS IS" BASIS,
 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12// See the License for the specific language governing permissions and
 13// limitations under the License.
 14
 15/**
 16 * @file HelloWorldPublisher.cpp
 17 *
 18 */
 19
 20#include "HelloWorldPubSubTypes.h"
 21
 22#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
 23#include <fastdds/dds/domain/DomainParticipant.hpp>
 24#include <fastdds/dds/topic/TypeSupport.hpp>
 25#include <fastdds/dds/publisher/Publisher.hpp>
 26#include <fastdds/dds/publisher/DataWriter.hpp>
 27#include <fastdds/dds/publisher/DataWriterListener.hpp>
 28
 29using namespace eprosima::fastdds::dds;
 30
 31class HelloWorldPublisher
 32{
 33private:
 34
 35 HelloWorld hello_;
 36
 37 DomainParticipant* participant_;
 38
 39 Publisher* publisher_;
 40
 41 Topic* topic_;
 42
 43 DataWriter* writer_;
 44
 45 TypeSupport type_;
 46
 47 class PubListener : public DataWriterListener
 48 {
 49 public:
 50
 51 PubListener()
 52 : matched_(0)
 53 {
 54 }
 55
 56 ~PubListener() override
 57 {
 58 }
 59
 60 void on_publication_matched(
 61 DataWriter*,
 62 const PublicationMatchedStatus& info) override
 63 {
 64 if (info.current_count_change == 1)
 65 {
 66 matched_ = info.total_count;
 67 std::cout << "Publisher matched." << std::endl;
 68 }
 69 else if (info.current_count_change == -1)
 70 {
 71 matched_ = info.total_count;
 72 std::cout << "Publisher unmatched." << std::endl;
 73 }
 74 else
 75 {
 76 std::cout << info.current_count_change
 77 << " is not a valid value for PublicationMatchedStatus current count change." << std::endl;
 78 }
 79 }
 80
 81 std::atomic_int matched_;
 82
 83 } listener_;
 84
 85public:
 86
 87 HelloWorldPublisher()
 88 : participant_(nullptr)
 89 , publisher_(nullptr)
 90 , topic_(nullptr)
 91 , writer_(nullptr)
 92 , type_(new HelloWorldPubSubType())
 93 {
 94 }
 95
 96 virtual ~HelloWorldPublisher()
 97 {
 98 if (writer_ != nullptr)
 99 {
100 publisher_->delete_datawriter(writer_);
101 }
102 if (publisher_ != nullptr)
103 {
104 participant_->delete_publisher(publisher_);
105 }
106 if (topic_ != nullptr)
107 {
108 participant_->delete_topic(topic_);
109 }
110 DomainParticipantFactory::get_instance()->delete_participant(participant_);
111 }
112
113 //!Initialize the publisher
114 bool init()
115 {
116 hello_.index(0);
117 hello_.message("HelloWorld");
118
119 DomainParticipantQos participantQos;
120 participantQos.name("Participant_publisher");
121 participant_ = DomainParticipantFactory::get_instance()->create_participant(0, participantQos);
122
123 if (participant_ == nullptr)
124 {
125 return false;
126 }
127
128 // Register the Type
129 type_.register_type(participant_);
130
131 // Create the publications Topic
132 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
133
134 if (topic_ == nullptr)
135 {
136 return false;
137 }
138
139 // Create the Publisher
140 publisher_ = participant_->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);
141
142 if (publisher_ == nullptr)
143 {
144 return false;
145 }
146
147 // Create the DataWriter
148 writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &listener_);
149
150 if (writer_ == nullptr)
151 {
152 return false;
153 }
154 return true;
155 }
156
157 //!Send a publication
158 bool publish()
159 {
160 if (listener_.matched_ > 0)
161 {
162 hello_.index(hello_.index() + 1);
163 writer_->write(&hello_);
164 return true;
165 }
166 return false;
167 }
168
169 //!Run the Publisher
170 void run(
171 uint32_t samples)
172 {
173 uint32_t samples_sent = 0;
174 while (samples_sent < samples)
175 {
176 if (publish())
177 {
178 samples_sent++;
179 std::cout << "Message: " << hello_.message() << " with index: " << hello_.index()
180 << " SENT" << std::endl;
181 }
182 std::this_thread::sleep_for(std::chrono::milliseconds(1000));
183 }
184 }
185};
186
187int main(
188 int argc,
189 char** argv)
190{
191 std::cout << "Starting publisher." << std::endl;
192 int samples = 10;
193
194 HelloWorldPublisher* mypub = new HelloWorldPublisher();
195 if(mypub->init())
196 {
197 mypub->run(static_cast<uint32_t>(samples));
198 }
199
200 delete mypub;
201 return 0;
202}

1.3.7.1. Examining the code

At the beginning of the file we have a Doxygen style comment block with the @file field that tells us the name of
the file.

/**
 * @file HelloWorldPublisher.cpp
 *
 */

Below are the includes of the C++ headers.
The first one includes the HelloWorldPubSubTypes.h file with the serialization and deserialization functions of the
data type that we have defined in the previous section.

#include "HelloWorldPubSubTypes.h"

The next block includes the C++ header files that allow the use of the Fast DDS API.

	DomainParticipantFactory.
Allows for the creation and destruction of DomainParticipant objects.

	DomainParticipant.
Acts as a container for all other Entity objects and as a factory for the Publisher, Subscriber,
and Topic objects.

	TypeSupport.
Provides the participant with the functions to serialize, deserialize and get the key of a
specific data type.

	Publisher.
It is the object responsible for the creation of DataWriters.

	DataWriter.
Allows the application to set the value of the data to be published under a given Topic.

	DataWriterListener.
Allows the redefinition of the functions of the DataWriterListener.

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>
#include <fastdds/dds/publisher/Publisher.hpp>
#include <fastdds/dds/publisher/DataWriter.hpp>
#include <fastdds/dds/publisher/DataWriterListener.hpp>

Next, we define the namespace that contains the eProsima Fast DDS classes and functions that we are going to use in
our application.

using namespace eprosima::fastdds::dds;

The next line creates the HelloWorldPublisher class that implements a publisher.

class HelloWorldPublisher

Continuing with the private data members of the class, the hello_ data member is defined as an object of the
HelloWorld class that defines the data type
we created with the IDL file.
Next, the private data members corresponding to the participant, publisher, topic, DataWriter and data type are
defined.
The type_ object of the TypeSupport class is the object that will be used to register the topic data type
in the DomainParticipant.

private:

 HelloWorld hello_;

 DomainParticipant* participant_;

 Publisher* publisher_;

 Topic* topic_;

 DataWriter* writer_;

 TypeSupport type_;

Then, the PubListener class is defined by inheriting from the DataWriterListener class.
This class overrides the default DataWriter listener callbacks, which allows the execution of routines in case of an
event.
The overridden callback on_publication_matched()
allows the definition of a series of actions when a new DataReader
is detected listening to the topic under which the DataWriter is publishing.
The info.current_count_change() detects these changes of DataReaders that are matched to the
DataWriter.
This is a member in the MatchedStatus structure that allows tracking changes in the status of subscriptions.
Finally, the listener_ object of the class is defined as an instance of PubListener.

class PubListener : public DataWriterListener
{
public:

 PubListener()
 : matched_(0)
 {
 }

 ~PubListener() override
 {
 }

 void on_publication_matched(
 DataWriter*,
 const PublicationMatchedStatus& info) override
 {
 if (info.current_count_change == 1)
 {
 matched_ = info.total_count;
 std::cout << "Publisher matched." << std::endl;
 }
 else if (info.current_count_change == -1)
 {
 matched_ = info.total_count;
 std::cout << "Publisher unmatched." << std::endl;
 }
 else
 {
 std::cout << info.current_count_change
 << " is not a valid value for PublicationMatchedStatus current count change." << std::endl;
 }
 }

 std::atomic_int matched_;

} listener_;

The public constructor and destructor of the HelloWorldPublisher class are defined below.
The constructor initializes the private data members of the class to nullptr, with the exception of the TypeSupport
object, that is initialized as an instance of the HelloWorldPubSubType class.
The class destructor removes these data members and thus cleans the system memory.

HelloWorldPublisher()
 : participant_(nullptr)
 , publisher_(nullptr)
 , topic_(nullptr)
 , writer_(nullptr)
 , type_(new HelloWorldPubSubType())
{
}

virtual ~HelloWorldPublisher()
{
 if (writer_ != nullptr)
 {
 publisher_->delete_datawriter(writer_);
 }
 if (publisher_ != nullptr)
 {
 participant_->delete_publisher(publisher_);
 }
 if (topic_ != nullptr)
 {
 participant_->delete_topic(topic_);
 }
 DomainParticipantFactory::get_instance()->delete_participant(participant_);
}

Continuing with the public member functions of the HelloWorldPublisher class, the next snippet of code defines
the public publisher’s initialization member function.
This function performs several actions:

	Initializes the content of the HelloWorld type hello_ structure members.

	Assigns a name to the participant through the QoS of the DomainParticipant.

	Uses the DomainParticipantFactory to create the participant.

	Registers the data type defined in the IDL.

	Creates the topic for the publications.

	Creates the publisher.

	Creates the DataWriter with the listener previously created.

As you can see, the QoS configuration for all entities, except for the participant’s name, is the default configuration
(PARTICIPANT_QOS_DEFAULT, PUBLISHER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAWRITER_QOS_DEFAULT).
The default value of the QoS of each DDS Entity can be checked in the
DDS standard [https://www.omg.org/spec/DDS/About-DDS/].

//!Initialize the publisher
bool init()
{
 hello_.index(0);
 hello_.message("HelloWorld");

 DomainParticipantQos participantQos;
 participantQos.name("Participant_publisher");
 participant_ = DomainParticipantFactory::get_instance()->create_participant(0, participantQos);

 if (participant_ == nullptr)
 {
 return false;
 }

 // Register the Type
 type_.register_type(participant_);

 // Create the publications Topic
 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);

 if (topic_ == nullptr)
 {
 return false;
 }

 // Create the Publisher
 publisher_ = participant_->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);

 if (publisher_ == nullptr)
 {
 return false;
 }

 // Create the DataWriter
 writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &listener_);

 if (writer_ == nullptr)
 {
 return false;
 }
 return true;
}

To make the publication, the public member function publish() is implemented.
In the DataWriter’s listener callback which states that the DataWriter has matched with a DataReader
that listens to the publication topic, the data member matched_ is updated. It contains the number of DataReaders
discovered.
Therefore, when the first DataReader has been discovered, the application starts to publish.
This is simply the writing of a change by the DataWriter object.

//!Send a publication
bool publish()
{
 if (listener_.matched_ > 0)
 {
 hello_.index(hello_.index() + 1);
 writer_->write(&hello_);
 return true;
 }
 return false;
}

The public run function executes the action of publishing a given number of times, waiting for 1 second between
publications.

//!Run the Publisher
void run(
 uint32_t samples)
{
 uint32_t samples_sent = 0;
 while (samples_sent < samples)
 {
 if (publish())
 {
 samples_sent++;
 std::cout << "Message: " << hello_.message() << " with index: " << hello_.index()
 << " SENT" << std::endl;
 }
 std::this_thread::sleep_for(std::chrono::milliseconds(1000));
 }
}

Finally, the HelloWorldPublisher is initialized and run in main.

int main(
 int argc,
 char** argv)
{
 std::cout << "Starting publisher." << std::endl;
 int samples = 10;

 HelloWorldPublisher* mypub = new HelloWorldPublisher();
 if(mypub->init())
 {
 mypub->run(static_cast<uint32_t>(samples));
 }

 delete mypub;
 return 0;
}

1.3.7.2. CMakeLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source
files needed to build the executable, and links the executable and the library together.

add_executable(DDSHelloWorldPublisher src/HelloWorldPublisher.cpp ${DDS_HELLOWORLD_SOURCES_CXX})
target_link_libraries(DDSHelloWorldPublisher fastrtps fastcdr)

At this point the project is ready for building, compiling and running the publisher application.
From the build directory in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldPublisher

1.3.8. Write the Fast DDS subscriber

From the src directory in the workspace, execute the following command to download the HelloWorldSubscriber.cpp file.

wget -O HelloWorldSubscriber.cpp \
 https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/DDSHelloWorld/src/HelloWorldSubscriber.cpp

This is the C++ source code for the subscriber application.
The application runs a subscriber until it receives 10 samples under the topic HelloWorldTopic.
At this point the subscriber stops.

 1// Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
 2//
 3// Licensed under the Apache License, Version 2.0 (the "License");
 4// you may not use this file except in compliance with the License.
 5// You may obtain a copy of the License at
 6//
 7// http://www.apache.org/licenses/LICENSE-2.0
 8//
 9// Unless required by applicable law or agreed to in writing, software
 10// distributed under the License is distributed on an "AS IS" BASIS,
 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12// See the License for the specific language governing permissions and
 13// limitations under the License.
 14
 15/**
 16 * @file HelloWorldSubscriber.cpp
 17 *
 18 */
 19
 20#include "HelloWorldPubSubTypes.h"
 21
 22#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
 23#include <fastdds/dds/domain/DomainParticipant.hpp>
 24#include <fastdds/dds/topic/TypeSupport.hpp>
 25#include <fastdds/dds/subscriber/Subscriber.hpp>
 26#include <fastdds/dds/subscriber/DataReader.hpp>
 27#include <fastdds/dds/subscriber/DataReaderListener.hpp>
 28#include <fastdds/dds/subscriber/qos/DataReaderQos.hpp>
 29#include <fastdds/dds/subscriber/SampleInfo.hpp>
 30
 31using namespace eprosima::fastdds::dds;
 32
 33class HelloWorldSubscriber
 34{
 35private:
 36
 37 DomainParticipant* participant_;
 38
 39 Subscriber* subscriber_;
 40
 41 DataReader* reader_;
 42
 43 Topic* topic_;
 44
 45 TypeSupport type_;
 46
 47 class SubListener : public DataReaderListener
 48 {
 49 public:
 50
 51 SubListener()
 52 : samples_(0)
 53 {
 54 }
 55
 56 ~SubListener() override
 57 {
 58 }
 59
 60 void on_subscription_matched(
 61 DataReader*,
 62 const SubscriptionMatchedStatus& info) override
 63 {
 64 if (info.current_count_change == 1)
 65 {
 66 std::cout << "Subscriber matched." << std::endl;
 67 }
 68 else if (info.current_count_change == -1)
 69 {
 70 std::cout << "Subscriber unmatched." << std::endl;
 71 }
 72 else
 73 {
 74 std::cout << info.current_count_change
 75 << " is not a valid value for SubscriptionMatchedStatus current count change" << std::endl;
 76 }
 77 }
 78
 79 void on_data_available(
 80 DataReader* reader) override
 81 {
 82 SampleInfo info;
 83 if (reader->take_next_sample(&hello_, &info) == ReturnCode_t::RETCODE_OK)
 84 {
 85 if (info.valid_data)
 86 {
 87 samples_++;
 88 std::cout << "Message: " << hello_.message() << " with index: " << hello_.index()
 89 << " RECEIVED." << std::endl;
 90 }
 91 }
 92 }
 93
 94 HelloWorld hello_;
 95
 96 std::atomic_int samples_;
 97
 98 } listener_;
 99
100public:
101
102 HelloWorldSubscriber()
103 : participant_(nullptr)
104 , subscriber_(nullptr)
105 , topic_(nullptr)
106 , reader_(nullptr)
107 , type_(new HelloWorldPubSubType())
108 {
109 }
110
111 virtual ~HelloWorldSubscriber()
112 {
113 if (reader_ != nullptr)
114 {
115 subscriber_->delete_datareader(reader_);
116 }
117 if (topic_ != nullptr)
118 {
119 participant_->delete_topic(topic_);
120 }
121 if (subscriber_ != nullptr)
122 {
123 participant_->delete_subscriber(subscriber_);
124 }
125 DomainParticipantFactory::get_instance()->delete_participant(participant_);
126 }
127
128 //!Initialize the subscriber
129 bool init()
130 {
131 DomainParticipantQos participantQos;
132 participantQos.name("Participant_subscriber");
133 participant_ = DomainParticipantFactory::get_instance()->create_participant(0, participantQos);
134
135 if (participant_ == nullptr)
136 {
137 return false;
138 }
139
140 // Register the Type
141 type_.register_type(participant_);
142
143 // Create the subscriptions Topic
144 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
145
146 if (topic_ == nullptr)
147 {
148 return false;
149 }
150
151 // Create the Subscriber
152 subscriber_ = participant_->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);
153
154 if (subscriber_ == nullptr)
155 {
156 return false;
157 }
158
159 // Create the DataReader
160 reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &listener_);
161
162 if (reader_ == nullptr)
163 {
164 return false;
165 }
166
167 return true;
168 }
169
170 //!Run the Subscriber
171 void run(
172 uint32_t samples)
173 {
174 while(listener_.samples_ < samples)
175 {
176 std::this_thread::sleep_for(std::chrono::milliseconds(100));
177 }
178 }
179};
180
181int main(
182 int argc,
183 char** argv)
184{
185 std::cout << "Starting subscriber." << std::endl;
186 int samples = 10;
187
188 HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
189 if(mysub->init())
190 {
191 mysub->run(static_cast<uint32_t>(samples));
192 }
193
194 delete mysub;
195 return 0;
196}

1.3.8.1. Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the includes of the C++ header files.
In these, the files that include the publisher class are replaced by the subscriber class and the data writer class by
the data reader class.

	Subscriber.
It is the object responsible for the creation and configuration of DataReaders.

	DataReader.
It is the object responsible for the actual reception of the data.
It registers in the application the topic (TopicDescription) that identifies the data to be read and
accesses the data received by the subscriber.

	DataReaderListener.
This is the listener assigned to the data reader.

	DataReaderQoS.
Structure that defines the QoS of the DataReader.

	SampleInfo.
It is the information that accompanies each sample that is ‘read’ or ‘taken.’

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

The next line defines the HelloWorldSubscriber class that implements a subscriber.

class HelloWorldSubscriber

Starting with the private data members of the class, it is worth mentioning the implementation of the data reader
listener.
The private data members of the class will be the participant, the subscriber, the topic, the data reader, and the
data type.
As it was the case with the data writer, the listener implements the callbacks to be executed in case an event
occurs.
The first overridden callback of the SubListener is the on_subscription_matched(), which is the
analog of the on_publication_matched() callback of the DataWriter.

void on_subscription_matched(
 DataReader*,
 const SubscriptionMatchedStatus& info) override
{
 if (info.current_count_change == 1)
 {
 std::cout << "Subscriber matched." << std::endl;
 }
 else if (info.current_count_change == -1)
 {
 std::cout << "Subscriber unmatched." << std::endl;
 }
 else
 {
 std::cout << info.current_count_change
 << " is not a valid value for SubscriptionMatchedStatus current count change" << std::endl;
 }
}

The second overridden callback is on_data_available().
In this, the next received sample that the data reader can access is taken and processed to display its content.
It is here that the object of the SampleInfo class is defined, which determines whether a sample has already
been read or taken.
Each time a sample is read, the counter of samples received is increased.

void on_data_available(
 DataReader* reader) override
{
 SampleInfo info;
 if (reader->take_next_sample(&hello_, &info) == ReturnCode_t::RETCODE_OK)
 {
 if (info.valid_data)
 {
 samples_++;
 std::cout << "Message: " << hello_.message() << " with index: " << hello_.index()
 << " RECEIVED." << std::endl;
 }
 }
}

The public constructor and destructor of the class is defined below.

HelloWorldSubscriber()
 : participant_(nullptr)
 , subscriber_(nullptr)
 , topic_(nullptr)
 , reader_(nullptr)
 , type_(new HelloWorldPubSubType())
{
}

virtual ~HelloWorldSubscriber()
{
 if (reader_ != nullptr)
 {
 subscriber_->delete_datareader(reader_);
 }
 if (topic_ != nullptr)
 {
 participant_->delete_topic(topic_);
 }
 if (subscriber_ != nullptr)
 {
 participant_->delete_subscriber(subscriber_);
 }
 DomainParticipantFactory::get_instance()->delete_participant(participant_);
}

Next comes the subscriber initialization public member function.
This is the same as the initialization public member function defined for the HelloWorldPublisher.
The QoS configuration for all entities, except for the participant’s name, is the default QoS
(PARTICIPANT_QOS_DEFAULT, SUBSCRIBER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAREADER_QOS_DEFAULT).
The default value of the QoS of each DDS Entity can be checked in the
DDS standard [https://www.omg.org/spec/DDS/About-DDS/].

//!Initialize the subscriber
bool init()
{
 DomainParticipantQos participantQos;
 participantQos.name("Participant_subscriber");
 participant_ = DomainParticipantFactory::get_instance()->create_participant(0, participantQos);

 if (participant_ == nullptr)
 {
 return false;
 }

 // Register the Type
 type_.register_type(participant_);

 // Create the subscriptions Topic
 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);

 if (topic_ == nullptr)
 {
 return false;
 }

 // Create the Subscriber
 subscriber_ = participant_->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

 if (subscriber_ == nullptr)
 {
 return false;
 }

 // Create the DataReader
 reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &listener_);

 if (reader_ == nullptr)
 {
 return false;
 }

 return true;
}

The public member function run() ensures that the subscriber runs until all the samples have been received.
This member function implements an active wait of the subscriber, with a 100ms sleep interval to ease the CPU.

//!Run the Subscriber
void run(
 uint32_t samples)
{
 while(listener_.samples_ < samples)
 {
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 }
}

Finally, the participant that implements a subscriber is initialized and run in main.

int main(
 int argc,
 char** argv)
{
 std::cout << "Starting subscriber." << std::endl;
 int samples = 10;

 HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
 if(mysub->init())
 {
 mysub->run(static_cast<uint32_t>(samples));
 }

 delete mysub;
 return 0;
}

1.3.8.2. CMakeLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet.
This adds all the source
files needed to build the executable, and links the executable and the library together.

add_executable(DDSHelloWorldSubscriber src/HelloWorldSubscriber.cpp ${DDS_HELLOWORLD_SOURCES_CXX})
target_link_libraries(DDSHelloWorldSubscriber fastrtps fastcdr)

At this point the project is ready for building, compiling and running the subscriber application.
From the build directory in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldSubscriber

1.3.9. Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

./DDSHelloWorldPublisher
./DDSHelloWorldSubscriber

 1.4. Writing a simple Python publisher and subscriber application

1.4. Writing a simple Python publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber
using Python API step by step.

	Background

	Prerequisites

	Create the application workspace

	Import linked libraries and its dependencies

	Colcon installation

	Build the topic data type

	CMakeLists.txt

	Write the Fast DDS publisher

	Examining the code

	Write the Fast DDS subscriber

	Examining the code

	Putting all together

	Summary

	Next steps

1.4.1. Background

DDS is a data-centric communications middleware that implements the DCPS model.
This model is based on the development of a publisher, a data generating element; and a subscriber, a
data consuming element.
These entities communicate by means of the topic, an element that binds both DDS entities.
Publishers generate information under a topic and subscribers subscribe to this same topic to receive information.

1.4.2. Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of
eProsima Fast DDS and all its dependencies.
You also need to have completed the steps outlined in the Installation Manual for the installation of the
eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

1.4.3. Create the application workspace

The application workspace will have the following structure at the end of the project.
Files HelloWorldPublisher.py and HelloWorldSubscriber.py are the Publisher application and
Subscriber application respectively.

.
├── CMakeCache.txt
├── CMakeFiles
├── CMakeLists.txt
├── HelloWorld.cxx
├── HelloWorld.h
├── HelloWorld.i
├── HelloWorld.idl
├── HelloWorld.py
├── HelloWorldPubSubTypes.cxx
├── HelloWorldPubSubTypes.h
├── HelloWorldPubSubTypes.i
├── HelloWorldPublisher.py
├── HelloWorldSubscriber.py
├── Makefile
├── _HelloWorldWrapper.so
├── cmake_install.cmake
└── libHelloWorld.so

Let’s create the directory tree first.

mkdir workspace_HelloWorld && cd workspace_HelloWorld

1.4.4. Import linked libraries and its dependencies

The DDS application requires the Fast DDS, Fast CDR and Fast DDS Python bindings libraries.
Depending on the installation procedure followed the process of making these libraries available for our DDS application
will be slightly different.

1.4.4.1. Colcon installation

From a Colcon installation there are several ways to import the libraries.
If the libraries need to be available just for the current session, run the following command.

source <path/to/Fast-DDS-python/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH
variable in the shell configuration files for the current user running the following command.

echo 'source <path/to/Fast-DDS-python/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

1.4.5. Build the topic data type

eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an
Interface Description Language (IDL) file.
This application can do two different things:

	Generate C++ definitions for your custom topic.

	Generate SWIG [http://www.swig.org/] interface files to generate the Python bindings for your custom topic.

For this project, we will use the Fast DDS-Gen application to define the data type of the messages that will be sent
by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

touch HelloWorld.idl

This creates the HelloWorld.idl file.
Open the file in a text editor and copy and paste the following snippet of code.

struct HelloWorld
{
 unsigned long index;
 string message;
};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t
and a message of type std::string.
All that remains is to generate the source code that implements this data type in C++11 and the
SWIG [http://www.swig.org/] interface files for the Python bindings.
To do this, run the following command.

<path/to/Fast DDS-Gen>/scripts/fastddsgen -python HelloWorld.idl

This must have generated the following files:

	HelloWorld.cxx: HelloWorld C++ type definition.

	HelloWorld.h: C++ header file for HelloWorld.cxx.

	HelloWorld.i: SWIG [http://www.swig.org/] interface file for HelloWorld C++ type definition.

	HelloWorldPubSubTypes.cxx: C+`Serialization and Deserialization code for the HelloWorld type.

	HelloWorldPubSubTypes.h: C++ header file for HelloWorldPubSubTypes.cxx.

	HelloWorldPubSubTypes.i: SWIG [http://www.swig.org/] interface file for C++ Serialization and Deserialization code.

	CMakeLists.txt: CMake file to generate C++ source code and Python module from the SWIG [http://www.swig.org/] interface files,
compile and generate C++ libraries.

	HelloWorld.py: Python module to be imported by your Python example.

1.4.5.1. CMakeLists.txt

At this point the project is ready for building, compiling and generating Python bindings for this data type.
From the workspace, run the following commands.

cmake .
make

1.4.6. Write the Fast DDS publisher

From the workspace, run the following command to download the HelloWorldPublisher.py file.

wget -O HelloWorldPublisher.py \
 https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/Python/HelloWorld/HelloWorldPublisher.py

This is the Python source code for the publisher application.
It is going to send 10 publications under the topic HelloWorldTopic.

 1# Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).
 2#
 3# Licensed under the Apache License, Version 2.0 (the "License");
 4# you may not use this file except in compliance with the License.
 5# You may obtain a copy of the License at
 6#
 7# http://www.apache.org/licenses/LICENSE-2.0
 8#
 9# Unless required by applicable law or agreed to in writing, software
 10# distributed under the License is distributed on an "AS IS" BASIS,
 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12# See the License for the specific language governing permissions and
 13# limitations under the License.
 14"""
 15HelloWorld Publisher
 16"""
 17from threading import Condition
 18import time
 19
 20import fastdds
 21import HelloWorld
 22
 23DESCRIPTION = """HelloWorld Publisher example for Fast DDS python bindings"""
 24USAGE = ('python3 HelloWorldPublisher.py')
 25
 26class WriterListener (fastdds.DataWriterListener) :
 27 def __init__(self, writer) :
 28 self._writer = writer
 29 super().__init__()
 30
 31
 32 def on_publication_matched(self, datawriter, info) :
 33 if (0 < info.current_count_change) :
 34 print ("Publisher matched subscriber {}".format(info.last_subscription_handle))
 35 self._writer._cvDiscovery.acquire()
 36 self._writer._matched_reader += 1
 37 self._writer._cvDiscovery.notify()
 38 self._writer._cvDiscovery.release()
 39 else :
 40 print ("Publisher unmatched subscriber {}".format(info.last_subscription_handle))
 41 self._writer._cvDiscovery.acquire()
 42 self._writer._matched_reader -= 1
 43 self._writer._cvDiscovery.notify()
 44 self._writer._cvDiscovery.release()
 45
 46
 47class Writer:
 48
 49
 50 def __init__(self):
 51 self._matched_reader = 0
 52 self._cvDiscovery = Condition()
 53 self.index = 0
 54
 55 factory = fastdds.DomainParticipantFactory.get_instance()
 56 self.participant_qos = fastdds.DomainParticipantQos()
 57 factory.get_default_participant_qos(self.participant_qos)
 58 self.participant = factory.create_participant(0, self.participant_qos)
 59
 60 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
 61 self.topic_data_type.setName("HelloWorld")
 62 self.type_support = fastdds.TypeSupport(self.topic_data_type)
 63 self.participant.register_type(self.type_support)
 64
 65 self.topic_qos = fastdds.TopicQos()
 66 self.participant.get_default_topic_qos(self.topic_qos)
 67 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.getName(), self.topic_qos)
 68
 69 self.publisher_qos = fastdds.PublisherQos()
 70 self.participant.get_default_publisher_qos(self.publisher_qos)
 71 self.publisher = self.participant.create_publisher(self.publisher_qos)
 72
 73 self.listener = WriterListener(self)
 74 self.writer_qos = fastdds.DataWriterQos()
 75 self.publisher.get_default_datawriter_qos(self.writer_qos)
 76 self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.listener)
 77
 78
 79 def write(self):
 80 data = HelloWorld.HelloWorld()
 81 data.message("Hello World")
 82 data.index(self.index)
 83 self.writer.write(data)
 84 print("Sending {message} : {index}".format(message=data.message(), index=data.index()))
 85 self.index = self.index + 1
 86
 87
 88 def wait_discovery(self) :
 89 self._cvDiscovery.acquire()
 90 print ("Writer is waiting discovery...")
 91 self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
 92 self._cvDiscovery.release()
 93 print("Writer discovery finished...")
 94
 95
 96 def run(self):
 97 self.wait_discovery()
 98 for x in range(10) :
 99 time.sleep(1)
100 self.write()
101 self.delete()
102
103
104 def delete(self):
105 factory = fastdds.DomainParticipantFactory.get_instance()
106 self.participant.delete_contained_entities()
107 factory.delete_participant(self.participant)
108
109
110if __name__ == '__main__':
111 print('Starting publisher.')
112 writer = Writer()
113 writer.run()
114 exit()

1.4.6.1. Examining the code

At the beginning of the file we import the Fast DDS Python bindings.

import fastdds

and also the Python module generated by Fast-DDS-Gen as described in Build the topic data type section.

import HelloWorld

Then, the WriterListener class is defined by inheriting from the DataWriterListener class.
This class overrides the default DataWriter listener callbacks, which allows the execution of routines in case of an
event.
The overridden callback on_publication_matched()
allows the definition of a series of actions when a new DataReader
is detected listening to the topic under which the DataWriter is publishing.
The info.current_count_change() detects these changes of DataReaders that are matched to the
DataWriter.
This is a member in the MatchedStatus structure that allows tracking changes in the status of
subscriptions.

class WriterListener (fastdds.DataWriterListener) :
 def __init__(self, writer) :
 self._writer = writer
 super().__init__()

 def on_publication_matched(self, datawriter, info) :
 if (0 < info.current_count_change) :
 print ("Publisher matched subscriber {}".format(info.last_subscription_handle))
 self._writer._cvDiscovery.acquire()
 self._writer._matched_reader += 1
 self._writer._cvDiscovery.notify()
 self._writer._cvDiscovery.release()
 else :
 print ("Publisher unmatched subscriber {}".format(info.last_subscription_handle))
 self._writer._cvDiscovery.acquire()
 self._writer._matched_reader -= 1
 self._writer._cvDiscovery.notify()
 self._writer._cvDiscovery.release()

The next block creates the Writer class that implements a publisher.

class Writer:

The publisher’s initialization member function of the Writer class are defined below.
This function performs several actions:

	Uses the DomainParticipantFactory to create the participant.

	Registers the data type defined in the IDL.

	Creates the topic for the publications.

	Creates the publisher.

	Creates the DataWriter with the listener previously created.

def __init__(self):
 self._matched_reader = 0
 self._cvDiscovery = Condition()
 self.index = 0

 factory = fastdds.DomainParticipantFactory.get_instance()
 self.participant_qos = fastdds.DomainParticipantQos()
 factory.get_default_participant_qos(self.participant_qos)
 self.participant = factory.create_participant(0, self.participant_qos)

 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
 self.topic_data_type.setName("HelloWorld")
 self.type_support = fastdds.TypeSupport(self.topic_data_type)
 self.participant.register_type(self.type_support)

 self.topic_qos = fastdds.TopicQos()
 self.participant.get_default_topic_qos(self.topic_qos)
 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.getName(), self.topic_qos)

 self.publisher_qos = fastdds.PublisherQos()
 self.participant.get_default_publisher_qos(self.publisher_qos)
 self.publisher = self.participant.create_publisher(self.publisher_qos)

 self.listener = WriterListener(self)
 self.writer_qos = fastdds.DataWriterQos()
 self.publisher.get_default_datawriter_qos(self.writer_qos)
 self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.listener)

To make the publication, the public member function write() is implemented.
This is simply the writing of a change by the DataWriter object.

 def write(self):
 data = HelloWorld.HelloWorld()
 data.message("Hello World")
 data.index(self.index)
 self.writer.write(data)
 print("Sending {message} : {index}".format(message=data.message(), index=data.index()))
 self.index = self.index + 1

To detect when a DataReader has matched, the public member function wait_discovery() is implemented.
In the DataWriter’s listener callback which states that the DataWriter has matched with a DataReader
that listens to the publication topic, the data member _matched_reader is updated.
It contains the number of DataReaders discovered.
Therefore, when the first DataReader has been discovered, the application starts to publish.

def wait_discovery(self) :
 self._cvDiscovery.acquire()
 print ("Writer is waiting discovery...")
 self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
 self._cvDiscovery.release()
 print("Writer discovery finished...")

The public run function waits until a DataReader is discovered and executes the action of publishing 10 samples.

def run(self):
 self.wait_discovery()
 for x in range(10) :
 time.sleep(1)
 self.write()
 self.delete()

Finally, the Writer is initialized and run in main.

if __name__ == '__main__':
 print('Starting publisher.')
 writer = Writer()
 writer.run()
 exit()

1.4.7. Write the Fast DDS subscriber

From the workspace, run the following command to download the HelloWorldSubscriber.py file.

wget -O HelloWorldSubscriber.py \
 https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/Python/HelloWorld/HelloWorldSubscriber.py

This is the Python source code for the subscriber application.
The application runs a subscriber until the user press Ctrl+C receiving samples under the topic HelloWorldTopic.

 1# Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).
 2#
 3# Licensed under the Apache License, Version 2.0 (the "License");
 4# you may not use this file except in compliance with the License.
 5# You may obtain a copy of the License at
 6#
 7# http://www.apache.org/licenses/LICENSE-2.0
 8#
 9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""
15HelloWorld Subscriber
16"""
17import signal
18
19import fastdds
20import HelloWorld
21
22DESCRIPTION = """HelloWorld Subscriber example for Fast DDS python bindings"""
23USAGE = ('python3 HelloWorldSubscriber.py')
24
25# To capture ctrl+C
26def signal_handler(sig, frame):
27 print('Interrupted!')
28
29class ReaderListener(fastdds.DataReaderListener):
30
31
32 def __init__(self):
33 super().__init__()
34
35
36 def on_subscription_matched(self, datareader, info) :
37 if (0 < info.current_count_change) :
38 print ("Subscriber matched publisher {}".format(info.last_publication_handle))
39 else :
40 print ("Subscriber unmatched publisher {}".format(info.last_publication_handle))
41
42
43 def on_data_available(self, reader):
44 info = fastdds.SampleInfo()
45 data = HelloWorld.HelloWorld()
46 reader.take_next_sample(data, info)
47
48 print("Received {message} : {index}".format(message=data.message(), index=data.index()))
49
50
51class Reader:
52
53
54 def __init__(self):
55 factory = fastdds.DomainParticipantFactory.get_instance()
56 self.participant_qos = fastdds.DomainParticipantQos()
57 factory.get_default_participant_qos(self.participant_qos)
58 self.participant = factory.create_participant(0, self.participant_qos)
59
60 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
61 self.topic_data_type.setName("HelloWorld")
62 self.type_support = fastdds.TypeSupport(self.topic_data_type)
63 self.participant.register_type(self.type_support)
64
65 self.topic_qos = fastdds.TopicQos()
66 self.participant.get_default_topic_qos(self.topic_qos)
67 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.getName(), self.topic_qos)
68
69 self.subscriber_qos = fastdds.SubscriberQos()
70 self.participant.get_default_subscriber_qos(self.subscriber_qos)
71 self.subscriber = self.participant.create_subscriber(self.subscriber_qos)
72
73 self.listener = ReaderListener()
74 self.reader_qos = fastdds.DataReaderQos()
75 self.subscriber.get_default_datareader_qos(self.reader_qos)
76 self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos, self.listener)
77
78
79 def delete(self):
80 factory = fastdds.DomainParticipantFactory.get_instance()
81 self.participant.delete_contained_entities()
82 factory.delete_participant(self.participant)
83
84
85 def run(self):
86 signal.signal(signal.SIGINT, signal_handler)
87 print('Press Ctrl+C to stop')
88 signal.pause()
89 self.delete()
90
91
92if __name__ == '__main__':
93 print('Creating subscriber.')
94 reader = Reader()
95 reader.run()
96 exit()

1.4.7.1. Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus on
the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the implementation of the data reader
listener.
The first overridden callback of the ReaderListener is the on_subscription_matched(),
which is the analog of the on_publication_matched() callback of the DataWriter.

def on_subscription_matched(self, datareader, info) :
 if (0 < info.current_count_change) :
 print ("Subscriber matched publisher {}".format(info.last_publication_handle))
 else :
 print ("Subscriber unmatched publisher {}".format(info.last_publication_handle))

The second overridden callback is on_data_available().
In this, the next received sample that the data reader can access is taken and processed to display its content.
It is here that the object of the SampleInfo class is defined, which determines whether a sample has
already been read or taken.

def on_data_available(self, reader):
 info = fastdds.SampleInfo()
 data = HelloWorld.HelloWorld()
 reader.take_next_sample(data, info)

The next line defines the Reader class that implements a subscriber.

class Reader:

Next comes the subscriber initialization public member function.
This is the same as the initialization public member function defined for the Writer.

def __init__(self):
 factory = fastdds.DomainParticipantFactory.get_instance()
 self.participant_qos = fastdds.DomainParticipantQos()
 factory.get_default_participant_qos(self.participant_qos)
 self.participant = factory.create_participant(0, self.participant_qos)

 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
 self.topic_data_type.setName("HelloWorld")
 self.type_support = fastdds.TypeSupport(self.topic_data_type)
 self.participant.register_type(self.type_support)

 self.topic_qos = fastdds.TopicQos()
 self.participant.get_default_topic_qos(self.topic_qos)
 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.getName(), self.topic_qos)

 self.subscriber_qos = fastdds.SubscriberQos()
 self.participant.get_default_subscriber_qos(self.subscriber_qos)
 self.subscriber = self.participant.create_subscriber(self.subscriber_qos)

 self.listener = ReaderListener()
 self.reader_qos = fastdds.DataReaderQos()
 self.subscriber.get_default_datareader_qos(self.reader_qos)
 self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos, self.listener)

The public member function run() ensures that the subscriber runs until the user press Ctrl+C.

def run(self):
 signal.signal(signal.SIGINT, signal_handler)
 print('Press Ctrl+C to stop')
 signal.pause()
 self.delete()

Finally, the participant that implements a subscriber is initialized and run in main.

if __name__ == '__main__':
 print('Creating subscriber.')
 reader = Reader()
 reader.run()
 exit()

1.4.8. Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

python3 HelloWorldPublisher.py
python3 HelloWorldSubscriber.py

 2. Library Overview

2. Library Overview

Fast DDS (formerly Fast RTPS) is an efficient and high-performance implementation of the
DDS specification [https://www.omg.org/spec/DDS/1.4], a data-centric communications
middleware (DCPS) for distributed application software.
This section reviews the architecture, operation and key features of Fast DDS.

2.1. Architecture

The architecture of Fast DDS is shown in the figure below, where a layer model with the following different
environments can be seen.

	Application layer.
The user application that makes use of the Fast DDS API for the implementation of communications in
distributed systems.

	Fast DDS layer.
Robust implementation of the DDS communications middleware.
It allows the deployment of one or more DDS domains in which DomainParticipants within the same domain
exchange messages by publishing/subscribing under a domain topic.

	RTPS layer.
Implementation of the Real-Time Publish-Subscribe (RTPS) protocol [https://www.omg.org/spec/DDSI-RTPS/2.2]
for interoperability with DDS applications.
This layer acts an abstraction layer of the transport layer.

	Transport Layer.
Fast DDS can be used over various transport protocols such as unreliable transport protocols (UDP), reliable
transport protocols (TCP), or shared memory transport protocols (SHM).

[image: ../../_images/library_overview.svg]Fast DDS layer model architecture

2.1.1. DDS Layer

Several key elements for communication are defined in the DDS layer of Fast DDS.
The user will create these elements in their application, thus incorporating DDS application elements and creating a
data-centric communication system.
Fast DDS, following the DDS specification, defines these elements involved in communication as Entities.
A DDS Entity is any object that supports Quality of Service configuration (QoS), and that implements a listener.

	QoS.
The mechanism by which the behavior of each of the entities is defined.

	Listener.
The mechanism by which the entities are notified of the possible events that arise during the application’s execution.

Below are listed the DDS Entities together with their description and functionality.
For a more detailed explanation of each entity, their QoS, and their listeners, please refer to DDS Layer
section.

	Domain.
A positive integer which identifies the DDS domain.
Each DomainParticipant will have an assigned DDS domain, so that DomainParticipants in the same domain can
communicate, as well as isolate communications between DDS domains.
This value must be given by the application developer when creating the DomainParticipants.

	DomainParticipant.
Object containing other DDS entities such as publishers, subscribers, topics and multitopics.
It is the entity that allows the creation of the previous entities it contains, as well as the configuration of their
behavior.

	Publisher.
The Publisher publishes data under a topic using a DataWriter, which writes the data to the transport.
It is the entity that creates and configures the DataWriter entities it contains, and may contain one or more
of them.

	DataWriter.
It is the entity in charge of publishing messages.
The user must provide a Topic when creating this entity which will be the Topic under which the data will be
published.
Publication is done by writing the data-objects as a change in the DataWriterHistory.

	DataWriterHistory.
This is a list of changes to the data-objects.
When the DataWriter proceeds to publish data under a specific Topic, it actually creates a change in this data.
It is this change that is registered in the History.
These changes are then sent to the DataReader that subscribes to that specific topic.

	Subscriber.
The Subscriber subscribes to a topic using a DataReader, which reads the data from the transport.
It is the entity that creates and configures the DataReader entities it contains, and may contain one or more
DataReader entities.

	DataReader.
It is the entity that subscribes to the topics for the reception of publications.
The user must provide a subscription Topic when creating this entity.
A DataReader receives the messages as changes in its HistoryDataReader.

	DataReaderHistory.
It contains the changes in the data-objects that the DataReader receives as a result of subscribing to a certain
Topic.

	Topic. Entity that binds Publishers’ DataWriters with Subscribers’ DataReaders.

2.1.2. RTPS layer

As mentioned above, the RTPS protocol in Fast DDS allows the abstraction of DDS application entities from the
transport layer.
According to the graph shown above, the RTPS layer has four main Entities.

	RTPSDomain.
It is the extension of the DDS domain to the RTPS protocol.

	RTPSParticipant.
Entity containing other RTPS entities. It allows the configuration and creation of the entities it contains.

	RTPSWriter.
The source of the messages. It reads the changes written in the DataWriterHistory and transmits them to all
the RTPSReaders to which it has previously matched.

	RTPSReader.
Receiving entity of the messages. It writes the changes reported by the RTPSWriter into the DataReaderHistory.

For a more detailed explanation of each entity, their attributes, and their listeners, please refer to RTPS Layer
section.

2.1.3. Transport layer

Fast DDS supports the implementation of applications over various transport protocols.
Those are UDPv4, UDPv6, TCPv4, TCPv6 and Shared Memory Transport (SHM).
By default, a DomainParticipant implements a UDPv4 and a SHM transport protocol.
The configuration of all supported transport protocols is detailed in the Transport Layer section.

2.2. Programming and execution model

Fast DDS is concurrent and event-based.
The following explains the multithreading model that governs the operation of Fast DDS as well as the possible events.

2.2.1. Concurrency and multithreading

Fast DDS implements a concurrent multithreading system.
Each DomainParticipant spawns a set of threads to take care of background tasks such as logging, message reception, and
asynchronous communication.
This should not impact the way you use the library, i.e. the Fast DDS API is thread safe, so you can fearlessly call
any methods on the same DomainParticipant from different threads.
However, this multithreading implementation must be taken into account when external functions access to resources that
are modified by threads running internally in the library.
An example of this is the modified resources in the entity listener callbacks.
The following is a brief overview of how Fast DDS multithreading schedule work:

	Main thread: Managed by the application.

	Event thread: Each DomainParticipant owns one of these. It processes periodic and triggered time events.

	Asynchronous writer thread: This thread manages asynchronous writes for all DomainParticipants.
Even for synchronous writers, some forms of communication must be initiated in the background.

	Reception threads: DomainParticipants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

2.2.2. Event-driven architecture

There is a time-event system that enables Fast DDS to respond to certain conditions, as well as schedule periodic
operations.
Few of them are visible to the user since most are related to DDS and RTPS metadata.
However, the user can define in their application periodic time-events by inheriting from the TimedEvent
class.

2.3. Functionalities

Fast DDS has some added features that can be implemented and configured by the user in their application.
These are outlined below.

2.3.1. Discovery Protocols

The discovery protocols define the mechanisms by which DataWriters publishing under a given Topic, and DataReaders
subscribing to that same Topic are matched, so that they can start sharing data.
This applies at any point in the communication process.
Fast DDS provides the following discovery mechanisms:

	Simple Discovery.
This is the default discovery mechanism, which is defined in the
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2] and provides compatibility with other DDS implementations.
Here the DomainParticipants are discovered individually at an early stage to subsequently match the DataWriter and
DataReader they implement.

	Discovery Server.
This discovery mechanism uses a centralized discovery architecture, where servers act as hubs for meta traffic
discovery.

	Static Discovery.
This implements the discovery of DomainParticipants to each other but it is possible to skip the discovery of the
entities contained in each DomainParticipant (DataReader/DataWriter) if these entities are known in advance by the
remote DomainParticipants.

	Manual Discovery.
This mechanism is only compatible with the RTPS layer.
It allows the user to manually match and unmatch RTPSParticipants, RTPSWriters, and RTPSReaders using whatever
external meta-information channel of its choice.

The detailed explanation and configuration of all the discovery protocols implemented in Fast DDS can be seen in
the Discovery section.

2.3.2. Security

Fast DDS can be configured to provide secure communications by implementing pluggable security at three levels:

	Authentication of remote DomainParticipants.
The DDS:Auth:PKI-DH plugin provides authentication using a trusted Certificate
Authority (CA) and ECDSA Digital Signature Algorithms to perform the mutual authentication.
It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement protocol.

	Access control of entities.
The DDS:Access:Permissions plugin provides access control to DomainParticipants at the DDS Domain and Topic level.

	Encryption of data.
The DDS:Crypto:AES-GCM-GMAC plugin provides authenticated encryption using Advanced Encryption Standard (AES) in
Galois Counter Mode (AES-GCM).

More information about security configuration in Fast DDS is available in the Security section.

2.3.3. Logging

Fast DDS provides an extensible Logging system.
Log class is the entry point of the Logging system.
It exposes three macro definitions to ease its usage: logInfo, logWarning and logError.
Moreover, it allows the definition of new categories, in addition to those already available
(INFO_MSG, WARN_MSG and ERROR_MSG).
It provides filtering by category using regular expressions, as well as control of the verbosity of the Logging system.
Details of the possible Logging system configurations can be found in the Logging section.

2.3.4. XML profiles configuration

Fast DDS offers the possibility to make changes in its default settings by using XML profile configuration files.
Thus, the behavior of the DDS Entities can be modified without the need for the user to implement any program source
code or re-build an existing application.

The user has XML tags for each of the API functionalities.
Therefore, it is possible to build and configure DomainParticipant profiles through the <participant> tag, or
the DataWriter and DataReader profiles with the <data_writer> and <data_reader> tags respectively.

For a better understanding of how to write and use these XML profiles configuration files you can continue reading
the XML profiles section.

2.3.5. Environment variables

Environment variables are those variables that are defined outside the scope of the program, through operating system
functionalities.
Fast DDS relies on environment variables so that the user can easily customize the default settings of DDS
applications.
Please, refer to the Environment variables section for a complete list and description of the environment variables
affecting Fast DDS.

 3. DDS Layer

3. DDS Layer

eProsima Fast DDS exposes two different APIs to interact with the communication service at different levels.
The main API is the Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model
(PIM) API, or DDS DCPS PIM for short, which is defined by the
Data Distribution Service (DDS) version 1.4 specification [https://www.omg.org/spec/DDS/1.4], to which Fast DDS
complies.
This section is devoted to explain the main characteristics and modes-of-use of this API under Fast DDS, providing an
in depth explanation of the five modules into which it is divided:

	Core:
It defines the abstract classes and interfaces that are refined by the other modules.
It also provides the Quality of Service (QoS) definitions, as well as support for the notification-based interaction
style with the middleware.

	Domain:
It contains the DomainParticipant class that acts as an entry-point of the Service,
as well as a factory for many of the classes. The DomainParticipant also acts as a container for the other
objects that make up the Service.

	Publisher:
It describes the classes used on the publication side, including Publisher and
DataWriter classes, as well as the PublisherListener and
DataWriterListener interfaces.

	Subscriber:
It describes the classes used on the subscription side, including Subscriber and
DataReader classes, as well as the SubscriberListener
and DataReaderListener interfaces.

	Topic:
It describes the classes used to define communication topics and data types, including Topic
and TopicDescription classes, as well as TypeSupport, and the
TopicListener interface.

	3.1. Core
	3.1.1. Entity

	3.1.2. Policy

	3.1.3. Status

	3.1.4. Conditions and Wait-sets

	3.2. Domain
	3.2.1. DomainParticipant

	3.2.2. DomainParticipantListener

	3.2.3. DomainParticipantFactory

	3.2.4. Creating a DomainParticipant

	3.2.5. Partitions

	3.3. Publisher
	3.3.1. Publisher

	3.3.2. PublisherListener

	3.3.3. Creating a Publisher

	3.3.4. DataWriter

	3.3.5. DataWriterListener

	3.3.6. Creating a DataWriter

	3.3.7. Publishing data

	3.4. Subscriber
	3.4.1. Subscriber

	3.4.2. SubscriberListener

	3.4.3. Creating a Subscriber

	3.4.4. DataReader

	3.4.5. DataReaderListener

	3.4.6. Creating a DataReader

	3.4.7. SampleInfo

	3.4.8. Accessing received data

	3.5. Topic
	3.5.1. Topics, keys and instances

	3.5.2. TopicDescription

	3.5.3. Topic

	3.5.4. ContentFilteredTopic

	3.5.5. TopicListener

	3.5.6. Definition of data types

	3.5.7. Creating a Topic

	3.5.8. Filtering data on a Topic

	3.5.9. The default SQL-like filter

	3.5.10. Using custom filters

	3.5.11. Where is filtering applied: writer vs reader side

	3.5.12. Fast DDS-Gen for data types source code generation

 3.1. Core

3.1. Core

This module defines the infrastructure classes and types that will be used by the other ones. It contains the
definition of Entity class, QoS policies, and Statuses.

	Entity: An Entity is a DDS communication object that has a Status and can be configured with Policies.

	Policy: Each of the configuration objects that govern the behavior of an Entity.

	Status: Each of the objects associated with an Entity,
whose values represent the communication status of that Entity.

	3.1.1. Entity
	3.1.1.1. Types of Entities

	3.1.1.2. Common Entity Characteristics
	3.1.1.2.1. Entity Identifier

	3.1.1.2.2. QoS policy

	3.1.1.2.3. Listener

	3.1.1.2.4. Status

	3.1.1.2.5. StatusCondition

	3.1.1.2.6. Enabling Entities

	3.1.2. Policy
	3.1.2.1. Standard QoS Policies
	3.1.2.1.1. DeadlineQosPolicy

	3.1.2.1.2. DestinationOrderQosPolicy

	3.1.2.1.3. DurabilityQosPolicy

	3.1.2.1.4. DurabilityServiceQosPolicy

	3.1.2.1.5. EntityFactoryQosPolicy

	3.1.2.1.6. GroupDataQosPolicy

	3.1.2.1.7. HistoryQosPolicy

	3.1.2.1.8. LatencyBudgetQosPolicy

	3.1.2.1.9. LifespanQosPolicy

	3.1.2.1.10. LivelinessQosPolicy

	3.1.2.1.11. OwnershipQosPolicy

	3.1.2.1.12. OwnershipStrengthQosPolicy

	3.1.2.1.13. PartitionQosPolicy

	3.1.2.1.14. PresentationQosPolicy

	3.1.2.1.15. ReaderDataLifecycleQosPolicy

	3.1.2.1.16. ReliabilityQosPolicy

	3.1.2.1.17. ResourceLimitsQosPolicy

	3.1.2.1.18. TimeBasedFilterQosPolicy

	3.1.2.1.19. TopicDataQosPolicy

	3.1.2.1.20. TransportPriorityQosPolicy

	3.1.2.1.21. UserDataQosPolicy

	3.1.2.1.22. WriterDataLifecycleQosPolicy

	3.1.2.2. eProsima Extensions
	3.1.2.2.1. DataSharingQosPolicy

	3.1.2.2.2. DisablePositiveACKsQosPolicy

	3.1.2.2.3. FlowControllersQos

	3.1.2.2.4. ParticipantResourceLimitsQos

	3.1.2.2.5. PropertyPolicyQos

	3.1.2.2.6. PublishModeQosPolicy

	3.1.2.2.7. ReaderResourceLimitsQos

	3.1.2.2.8. RTPSEndpointQos

	3.1.2.2.9. RTPSReliableReaderQos

	3.1.2.2.10. RTPSReliableWriterQos

	3.1.2.2.11. TransportConfigQos

	3.1.2.2.12. TypeConsistencyQos

	3.1.2.2.13. WireProtocolConfigQos

	3.1.2.2.14. WriterResourceLimitsQos

	3.1.2.3. XTypes Extensions
	3.1.2.3.1. DataRepresentationQosPolicy

	3.1.2.3.2. TypeConsistencyEnforcementQosPolicy

	3.1.3. Status
	3.1.3.1. InconsistentTopicStatus

	3.1.3.2. DataOnReaders

	3.1.3.3. DataAvailable

	3.1.3.4. LivelinessChangedStatus

	3.1.3.5. RequestedDeadlineMissedStatus

	3.1.3.6. RequestedIncompatibleQosStatus
	3.1.3.6.1. QosPolicyCountSeq

	3.1.3.6.2. QosPolicyCount

	3.1.3.7. SampleLostStatus

	3.1.3.8. SampleRejectedStatus
	3.1.3.8.1. SampleRejectedStatusKind

	3.1.3.9. SubscriptionMatchedStatus

	3.1.3.10. LivelinessLostStatus

	3.1.3.11. OfferedDeadlineMissedStatus

	3.1.3.12. OfferedIncompatibleQosStatus

	3.1.3.13. PublicationMatchedStatus

	3.1.4. Conditions and Wait-sets
	3.1.4.1. GuardCondition

	3.1.4.2. StatusCondition

	3.1.4.3. ReadCondition

 3.1.1. Entity

3.1.1. Entity

Entity is the abstract base class for all the DDS entities, meaning an object that supports QoS policies,
a listener, and statuses.

3.1.1.1. Types of Entities

	DomainParticipant: This entity is the entry-point of the Service and acts as a factory for Publishers,
Subscribers, and Topics.
See DomainParticipant for further details.

	Publisher: It acts as a factory that can create any number of DataWriters.
See Publisher for further details.

	Subscriber: It acts as a factory that can create any number of DataReaders.
See Subscriber for further details.

	Topic: This entity fits between the publication and subscription entities and acts as a channel.
See Topic for further details.

	DataWriter: Is the object responsible for the data distribution.
See DataWriter for further details.

	DataReader: Is the object used to access the received data.
See DataReader for further details.

The following figure shows the hierarchy between all DDS entities:

[image: ../../../../_images/entity_diagram.svg]

3.1.1.2. Common Entity Characteristics

All entity types share some characteristics that are common to the concept of an entity.
Those are:

3.1.1.2.1. Entity Identifier

Each entity is identified by a unique ID, which is shared between the DDS entity and its corresponding RTPS entity
if it exists.
That ID is stored on an Instance Handle object declared on Entity base class, which can be accessed using the getter
function get_instance_handle().

3.1.1.2.2. QoS policy

The behavior of each entity can be configured with a set of configuration policies.
For each entity type, there is a corresponding Quality of Service (QoS) class that groups all the policies that affect
said entity type.
Users can create instances of these QoS classes, modify the contained policies to their needs,
and use them to configure the entities, either during their creation or at a later time with the set_qos()
function that every entity exposes (DomainParticipant::set_qos(), Publisher::set_qos(),
Subscriber::set_qos(), Topic::set_qos(), DataWriter::set_qos(), DataReader::set_qos()).
See Policy for a list of the available policies and their description.
The QoS classes and the policies they contain are explained in the documentation for each entity type.

3.1.1.2.3. Listener

A listener is an object with functions that an entity will call in response to events.
Therefore, the listener acts as an asynchronous notification system that allows the entity to notify the application
about the Status changes in the entity.

All entity types define an abstract listener interface, which contains the callback functions that the entity will
trigger to communicate the Status changes to the application.
Users can implement their own listeners inheriting from these interfaces and implementing the callbacks that
are needed on their application.
Then they can link these listeners to each entity, either during their creation or at a later time with the
set_listener() function that every entity exposes
(DomainParticipant::set_listener(), Publisher::set_listener(),
Subscriber::set_listener(), Topic::set_listener(), DataWriter::set_listener(),
DataReader::set_listener()).
The listener interfaces that each entity type and their callbacks are explained in the documentation
for each entity type.
When an event occurs it is handled by the lowest level entity with a listener that is non-null
and has the corresponding callback enabled in its StatusMask.
Higher level listeners inherit from the lower level ones as shown in the following
diagram:

[image: ../../../../_images/listeners_inheritance_diagram.svg]Listeners inheritance diagram.

Note

The on_data_on_readers() callback intercepts messages before
on_data_available().
This implies that if DomainParticipantListener is enabled, users should take into account that by default
the listener uses StatusMask::all().
As the callback entity hierarchy is kept, the on_data_on_readers() is going to be called
in this case.
If an application wants to use on_data_available() instead, the corresponding bit of
StatusMask should be disabled.

Important

Using StatusMask::none() when creating the Entity only disables the DDS standard callbacks.
Any callback specific to Fast DDS is always enabled.

Warning

Only one thread is created to listen for every listener implemented, so it is encouraged to
keep listener functions simple, leaving the process of such information to the proper class.

Warning

Do not create or delete any Entity within the scope of a Listener member function, since it could lead to an undefined
behavior. It is recommended instead to use the Listener class as an information channel and the upper
Entity class to encapsulate such behaviour.

3.1.1.2.4. Status

Each entity is associated with a set of status objects whose values represent the communication status
of that entity.
The changes on these status values are the ones that trigger the invocation of the appropriate
Listener callback to asynchronously inform the application.
See Status for a list of all the status objects and a description of their content.
There you can also find which status applies to which entity type.

3.1.1.2.5. StatusCondition

Every entity owns a StatusCondition that will be notified whenever its enabled statuses change.
The StatusCondition provides the link between an Entity and a Wait-set.
See section Conditions and Wait-sets for more information.

3.1.1.2.6. Enabling Entities

All the entities can be created either enabled or not enabled.
By default, the factories are configured to create the
entities enabled, but it can be changed using the EntityFactoryQosPolicy on enabled
factories.
A disabled factory creates disabled entities regardless of its QoS.
A disabled entity has its operations limited to the following ones:

	Set/Get the entity QoS Policy.

	Set/Get the entity Listener.

	Create/Delete subentities.

	Get the Status of the entity, even if they will not change.

	Lookup operations.

Any other function called in this state will return NOT_ENABLED.

 3.1.2. Policy

3.1.2. Policy

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
entity will behave.
To increase the flexibility of the system, the QoS is decomposed in several QoS Policies that can be configured
independently.
However, there may be cases where several policies conflict. Those conflicts are notified to the user through the
ReturnCodes that the QoS setter functions returns.

Each Qos Policy has a unique ID defined in the QosPolicyId_t enumerator.
This ID is used in some Status instances to identify the specific Qos Policy
to which the Status refers.

There are QoS Policies that are immutable, which means that only can be specified either at the entity creation or
before calling the enable operation.

Each DDS Entity has a specific set of QoS Policies that can be a mix of Standard QoS Policies, XTypes Extensions and
eProsima Extensions.

	3.1.2.1. Standard QoS Policies
	3.1.2.1.1. DeadlineQosPolicy

	3.1.2.1.2. DestinationOrderQosPolicy

	3.1.2.1.3. DurabilityQosPolicy

	3.1.2.1.4. DurabilityServiceQosPolicy

	3.1.2.1.5. EntityFactoryQosPolicy

	3.1.2.1.6. GroupDataQosPolicy

	3.1.2.1.7. HistoryQosPolicy

	3.1.2.1.8. LatencyBudgetQosPolicy

	3.1.2.1.9. LifespanQosPolicy

	3.1.2.1.10. LivelinessQosPolicy

	3.1.2.1.11. OwnershipQosPolicy

	3.1.2.1.12. OwnershipStrengthQosPolicy

	3.1.2.1.13. PartitionQosPolicy

	3.1.2.1.14. PresentationQosPolicy

	3.1.2.1.15. ReaderDataLifecycleQosPolicy

	3.1.2.1.16. ReliabilityQosPolicy

	3.1.2.1.17. ResourceLimitsQosPolicy

	3.1.2.1.18. TimeBasedFilterQosPolicy

	3.1.2.1.19. TopicDataQosPolicy

	3.1.2.1.20. TransportPriorityQosPolicy

	3.1.2.1.21. UserDataQosPolicy

	3.1.2.1.22. WriterDataLifecycleQosPolicy

	3.1.2.2. eProsima Extensions
	3.1.2.2.1. DataSharingQosPolicy

	3.1.2.2.2. DisablePositiveACKsQosPolicy

	3.1.2.2.3. FlowControllersQos

	3.1.2.2.4. ParticipantResourceLimitsQos

	3.1.2.2.5. PropertyPolicyQos

	3.1.2.2.6. PublishModeQosPolicy

	3.1.2.2.7. ReaderResourceLimitsQos

	3.1.2.2.8. RTPSEndpointQos

	3.1.2.2.9. RTPSReliableReaderQos

	3.1.2.2.10. RTPSReliableWriterQos

	3.1.2.2.11. TransportConfigQos

	3.1.2.2.12. TypeConsistencyQos

	3.1.2.2.13. WireProtocolConfigQos

	3.1.2.2.14. WriterResourceLimitsQos

	3.1.2.3. XTypes Extensions
	3.1.2.3.1. DataRepresentationQosPolicy

	3.1.2.3.2. TypeConsistencyEnforcementQosPolicy

 3.1.2.1. Standard QoS Policies

3.1.2.1. Standard QoS Policies

This section explains each of the DDS standard QoS Policies:

	DeadlineQosPolicy

	DestinationOrderQosPolicy

	DurabilityQosPolicy

	DurabilityServiceQosPolicy

	EntityFactoryQosPolicy

	GroupDataQosPolicy

	HistoryQosPolicy

	LatencyBudgetQosPolicy

	LifespanQosPolicy

	LivelinessQosPolicy

	OwnershipQosPolicy

	OwnershipStrengthQosPolicy

	PartitionQosPolicy

	PresentationQosPolicy

	ReaderDataLifecycleQosPolicy

	ReliabilityQosPolicy

	ResourceLimitsQosPolicy

	TimeBasedFilterQosPolicy

	TopicDataQosPolicy

	TransportPriorityQosPolicy

	UserDataQosPolicy

	WriterDataLifecycleQosPolicy

3.1.2.1.1. DeadlineQosPolicy

This QoS policy raises an alarm when the frequency of new samples falls below a certain threshold.
It is useful for cases where data is expected to be updated periodically (see DeadlineQosPolicy).

On the publishing side, the deadline defines the maximum period in which the application is expected to supply a new
sample.
On the subscribing side, it defines the maximum period in which new samples should be received.

For Topics with keys, this QoS is applied by key.
Suppose that the positions of some vehicles have to be published periodically.
In that case, it is possible to set the ID of the vehicle as the key of the data type and the deadline QoS to
the desired publication period.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	period

	Duration_t

	c_TimeInfinite

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

Compatibility Rule

To maintain the compatibility between DeadlineQosPolicy in DataReaders and DataWriters, the offered deadline period
(configured on the DataWriter) must be less than or equal to the requested deadline period (configured on the
DataReader), otherwise, the entities are considered to be incompatible.

The DeadlineQosPolicy must be set consistently with the TimeBasedFilterQosPolicy, which means that the deadline
period must be higher or equal to the minimum separation.

Example

C++

DeadlineQosPolicy deadline;
//The DeadlineQosPolicy is default constructed with an infinite period.
//Change the period to 1 second
deadline.period.seconds = 1;
deadline.period.nanosec = 0;

XML

<data_writer profile_name="writer_xml_conf_deadline_profile">
 <qos>
 <deadline>
 <period>
 <sec>1</sec>
 <nanosec>0</nanosec>
 </period>
 </deadline>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_deadline_profile">
 <qos>
 <deadline>
 <period>
 <sec>1</sec>
 <nanosec>0</nanosec>
 </period>
 </deadline>
 </qos>
</data_reader>

3.1.2.1.2. DestinationOrderQosPolicy

Warning

This QoS Policy will be implemented in future releases.

Multiple DataWriters can send messages in the same Topic using the same key, and on the DataReader side all those
messages are stored within the same instance of data (see DestinationOrderQosPolicy).
This QoS policy controls the criteria used to determine the logical order of those messages.
The behavior of the system depends on the value of the DestinationOrderQosPolicyKind.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	DestinationOrderQosPolicyKind

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

DestinationOrderQosPolicyKind

There are two possible values (see DestinationOrderQosPolicyKind):

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the reception
time at each DataReader,
which means that the last received value should be the one kept.
This option may cause that each DataReader ends up with a different final value, since the DataReaders may receive
the data at different times.

	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the DataWriter
timestamp at the time the message is sent.
This option guarantees the consistency of the final value.

Both options depend on the values of the OwnershipQosPolicy and OwnershipStrengthQosPolicy, meaning that
if the Ownership is set to EXCLUSIVE and the last value came from a DataWriter with low ownership strength, it will be
discarded.

Compatibility Rule

To maintain the compatibility between DestinationOrderQosPolicy in DataReaders and DataWriters when they have different
kind values, the DataWriter kind must be higher or equal to the DataReader kind.
And the order between the different kinds is:

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS < BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Table with the possible combinations:

	DataWriter kind

	DataReader kind

	Compatibility

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

	Yes

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

	No

	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

	Yes

	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

	Yes

3.1.2.1.3. DurabilityQosPolicy

A DataWriter can send messages throughout a Topic even if there are no DataReaders on the network.
Moreover, a DataReader that joins to the Topic after some data has been written could be interested in accessing
that information (see DurabilityQosPolicy).

The DurabilityQoSPolicy defines how the system will behave regarding those samples that existed on the Topic before
the DataReader joins.
The behavior of the system depends on the value of the DurabilityQosPolicyKind.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	DurabilityQosPolicyKind

	VOLATILE_DURABILITY_QOS for DataReaders

TRANSIENT_LOCAL_DURABILITY_QOS for DataWriters

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Important

In order to receive past samples in the DataReader, besides setting this Qos Policy, it is required that the
ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

DurabilityQosPolicyKind

There are four possible values (see DurabilityQosPolicyKind):

	VOLATILE_DURABILITY_QOS: Past samples are ignored and a joining DataReader receives samples generated after the
moment it matches.

	TRANSIENT_LOCAL_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples.

	TRANSIENT_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples, which are stored
on persistent storage (see Persistence Service).

	PERSISTENT_DURABILITY_QOS: (Not Implemented): All the samples are stored on a permanent storage, so that they
can outlive a system session.

Compatibility Rule

To maintain the compatibility between DurabilityQosPolicy in DataReaders and DataWriters when they have different kind
values, the DataWriter kind must be higher or equal to the DataReader kind.
And the order between the different kinds is:

VOLATILE_DURABILITY_QOS < TRANSIENT_LOCAL_DURABILITY_QOS < TRANSIENT_DURABILITY_QOS <
PERSISTENT_DURABILITY_QOS

Table with the possible combinations:

	DataWriter kind

	DataReader kind

	Compatibility

	VOLATILE_DURABILITY_QOS

	VOLATILE_DURABILITY_QOS

	Yes

	VOLATILE_DURABILITY_QOS

	TRANSIENT_LOCAL_DURABILITY_QOS

	No

	VOLATILE_DURABILITY_QOS

	TRANSIENT_DURABILITY_QOS

	No

	TRANSIENT_LOCAL_DURABILITY_QOS

	VOLATILE_DURABILITY_QOS

	Yes

	TRANSIENT_LOCAL_DURABILITY_QOS

	TRANSIENT_LOCAL_DURABILITY_QOS

	Yes

	TRANSIENT_LOCAL_DURABILITY_QOS

	TRANSIENT_DURABILITY_QOS

	No

	TRANSIENT_DURABILITY_QOS

	VOLATILE_DURABILITY_QOS

	Yes

	TRANSIENT_DURABILITY_QOS

	TRANSIENT_LOCAL_DURABILITY_QOS

	Yes

	TRANSIENT_DURABILITY_QOS

	TRANSIENT_DURABILITY_QOS

	Yes

Example

C++

DurabilityQosPolicy durability;
//The DurabilityQosPolicy is default constructed with kind = VOLATILE_DURABILITY_QOS
//Change the kind to TRANSIENT_LOCAL_DURABILITY_QOS
durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

XML

<data_writer profile_name="writer_xml_conf_durability_profile">
 <qos>
 <durability>
 <kind>TRANSIENT_LOCAL</kind>
 </durability>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_durability_profile">
 <qos>
 <durability>
 <kind>VOLATILE</kind>
 </durability>
 </qos>
</data_reader>

3.1.2.1.4. DurabilityServiceQosPolicy

Warning

This QoS Policy will be implemented in future releases.

This QoS Policy is used to configure the HistoryQosPolicy and ResourceLimitsQosPolicy of the fictitious
DataReader and DataWriter used when the DurabilityQosPolicy kind is set to TRANSIENT_DURABILITY_QOS or
PERSISTENT_DURABILITY_QOS (see DurabilityServiceQosPolicy).

Those entities are used to simulate the persistent storage.
The fictitious DataReader reads the data written on the Topic and stores it, so that if the user DataWriter does not
have the information requested by the user DataReaders, the fictitious DataWriter takes care of sending that
information.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	service_cleanup_delay

	Duration_t

	c_TimeZero

	history_kind

	HistoryQosPolicyKind

	KEEP_LAST_HISTORY_QOS

	history_depth

	int32_t

	1

	max_samples

	int32_t

	-1 (Length Unlimited)

	max_instances

	int32_t

	-1 (Length Unlimited)

	max_samples_per_instance

	int32_t

	-1 (Length Unlimited)

	service_cleanup_delay: It controls when the service can remove all the information regarding a data instance.
That information is kept until all the following conditions are met:

	The instance has been explicitly disposed and its InstanceState becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE.

	There is not any alive DataWriter writing the instance, which means that all existing writers either unregister the
instance or lose their liveliness.

	A time interval longer than the one established on the service_cleanup_delay has elapsed since the moment the
service detected that the two previous conditions were met.

	history_kind: Controls the kind of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

	history_depth: Controls the depth of the HistoryQosPolicy associated with the Durability Service
fictitious entities.

	max_samples: Controls the maximum number of samples of the ResourceLimitsQosPolicy associated with the
Durability Service fictitious entities.
This value must be higher than the maximum number of samples per instance.

	max_instances: Controls the maximum number of instances of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities.

	max_samples_per_instance: Controls the maximum number of samples within an instance of the
ResourceLimitsQosPolicy associated with the Durability Service fictitious entities.
This value must be lower than the maximum number of samples.

Note

This QoS Policy concerns to Topic and DataWriter entities.

It cannot be changed on enabled entities.

3.1.2.1.5. EntityFactoryQosPolicy

This QoS Policy controls the behavior of an Entity when it acts as a factory for other entities.
By default, all the entities are created enabled, but if you change the value of the autoenable_created_entities
to false, the new entities will be created disabled (see EntityFactoryQosPolicy).

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	autoenable_created_entities

	bool

	true

Note

This QoS Policy concerns to DomainParticipantFactory (as factory for DomainParticipant), DomainParticipant
(as factory for
Publisher, Subscriber and Topic), Publisher (as factory for DataWriter) and Subscriber (as factory for
DataReader).

It can be changed on enabled entities, but it only affects those entities created after the change.

Example

C++

EntityFactoryQosPolicy entity_factory;
//The EntityFactoryQosPolicy is default constructed with autoenable_created_entities = true
//Change it to false
entity_factory.autoenable_created_entities = false;

XML

This QoS Policy cannot be configured using XML for the moment.

3.1.2.1.6. GroupDataQosPolicy

Allows the application to attach additional information to created Publishers or Subscribers.
This data is common to all DataWriters/DataReaders belonging to the Publisher/Subscriber and it is propagated by
means of the built-in topics (see GroupDataQosPolicy).

This QoS Policy can be used in combination with DataWriter and DataReader listeners to implement a matching policy
similar to the PartitionQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	collection

	std::vector<octet>

	Empty vector

Note

This QoS Policy concerns to Publisher and Subscriber entities.

It can be changed on enabled entities.

Example

C++

GroupDataQosPolicy group_data;
//The GroupDataQosPolicy is default constructed with an empty collection
//Collection is a private member so you need to use getters and setters to access
//Add data to the collection
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = group_data.data_vec(); // Getter function

//Add two new octets to group data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;
vec.push_back(val);
group_data.data_vec(vec); //Setter function

XML

<data_writer profile_name="writer_xml_conf_groupdata_profile">
 <qos>
 <groupData>
 <value>3.a</value>
 </groupData>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_groupdata_profile">
 <qos>
 <groupData>
 <value>3.a</value>
 </groupData>
 </qos>
</data_reader>

3.1.2.1.7. HistoryQosPolicy

This QoS Policy controls the behavior of the system when the value of an instance changes one or more times before it
can be successfully communicated to the existing DataReader entities.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	HistoryQosPolicyKind

	KEEP_LAST_HISTORY_QOS

	depth

	int32_t

	1

	kind: Controls if the service should deliver only the most recent values, all the
intermediate values or do something in between.
See HistoryQosPolicyKind for further details.

	depth: Establishes the maximum number of samples that must be kept on the history.
It only has effect if the kind is set to KEEP_LAST_HISTORY_QOS and it needs to be consistent with the
ResourceLimitsQosPolicy, which means that its value must be lower or equal to max_samples_per_instance.

Note

This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

HistoryQosPolicyKind

There are two possible values (see HistoryQosPolicyKind):

	KEEP_LAST_HISTORY_QOS: The service will only attempt to keep the most recent values of the instance and discard
the older ones.
The maximum number of samples to keep and deliver is defined by the depth of the HistoryQosPolicy, which needs to
be consistent with the ResourceLimitsQosPolicy settings.
If the limit defined by depth is reached, the system will discard the oldest sample to make room for a new one.

	KEEP_ALL_HISTORY_QOS: The service will attempt to keep all the values of the instance until it can be delivered
to all the existing Subscribers.
If this option is selected, the depth will not have any effect, so the history is only limited by the values set in
ResourceLimitsQosPolicy.
If the limit is reached, the behavior of the system depends on the ReliabilityQosPolicy, if its kind is
BEST_EFFORT the older values will be discarded, but if it is RELIABLE the service blocks the DataWriter until the old
values are delivered to all existing Subscribers.

Example

C++

HistoryQosPolicy history;
//The HistoryQosPolicy is default constructed with kind = KEEP_LAST and depth = 1.
//Change the depth to 20
history.depth = 20;
//You can also change the kind to KEEP_ALL but after that the depth will not have effect.
history.kind = KEEP_ALL_HISTORY_QOS;

XML

<topic>
 <historyQos>
 <kind>KEEP_LAST</kind> <!-- string -->
 <depth>20</depth> <!-- uint32 -->
 </historyQos>
</topic>

3.1.2.1.8. LatencyBudgetQosPolicy

Warning

This QoS Policy will be implemented in future releases.

This QoS Policy specifies the maximum acceptable delay from the time the data is
written until the data is inserted on the DataReader History and notified of the fact.
That delay by default is set to 0 in order to optimize the internal operations (see LatencyBudgetQosPolicy).

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	duration

	Duration_t

	c_TimeZero

Note

This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It can be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

Compatibility Rule

To maintain the compatibility between LatencyBudgetQosPolicy in DataReaders and DataWriters, the DataWriter duration
must be lower or equal to the DataReader duration.

3.1.2.1.9. LifespanQosPolicy

Each data sample written by a DataWriter has an associated expiration time beyond which the data is removed from the
DataWriter and DataReader history as well as from the transient and persistent information caches
(see LifespanQosPolicy).

By default, the duration is infinite, which means that there is not a maximum duration for the validity of the
samples written by the DataWriter.

The expiration time is computed by adding the duration to the source timestamp, which can be calculated automatically
if write() member function is called or supplied by the application by means of
write_w_timestamp() member function.
The DataReader is allowed to use the reception timestamp instead of the source timestamp.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	duration

	Duration_t

	c_TimeInfinite

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Example

C++

LifespanQosPolicy lifespan;
//The LifespanQosPolicy is default constructed with duration set to infinite.
//Change the duration to 5 s
lifespan.duration = {5, 0};

XML

<data_writer profile_name="writer_xml_conf_lifespan_profile">
 <qos>
 <lifespan>
 <duration>
 <sec>5</sec>
 <nanosec>0</nanosec>
 </duration>
 </lifespan>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_lifespan_profile">
 <qos>
 <lifespan>
 <duration>
 <sec>5</sec>
 <nanosec>0</nanosec>
 </duration>
 </lifespan>
 </qos>
</data_reader>

3.1.2.1.10. LivelinessQosPolicy

This QoS Policy controls the mechanism used by the service to ensure that a particular entity on the network is still
alive.
There are different settings that allow distinguishing between applications where data is updated periodically and
applications where data is changed sporadically.
It also allows customizing the application regarding the kind of failures that should be detected by the liveliness
mechanism (see LivelinessQosPolicy).

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	LivelinessQosPolicyKind

	AUTOMATIC_LIVELINESS_QOS

	lease_duration

	Duration_t

	c_TimeInfinite

	announcement_period

	Duration_t

	c_TimeInfinite

	kind: This data member establishes if the service needs to assert the liveliness
automatically or if it needs to wait until the liveliness is asserted by the publishing side.
See LivelinessQosPolicyKind for further details.

	lease_duration: Amount of time to wait since the last time the DataWriter asserts its
liveliness to consider that it is no longer alive.

	announcement_period: Amount of time between consecutive liveliness messages sent by the
DataWriter.
This data member only takes effect if the kind is AUTOMATIC_LIVELINESS_QOS or
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS and needs to be lower than the
lease_duration.

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

LivelinessQosPolicyKind

There are three possible values (see LivelinessQosPolicyKind):

	AUTOMATIC_LIVELINESS_QOS: The service takes the responsibility for renewing the leases at the required rates, as
long as the local process where the participant is running and the link connecting it to remote participants exists,
the entities within the remote participant will be considered alive.
This kind is suitable for applications that only need to detect whether a remote application is still running.

	The two Manual modes require that the application on the publishing side asserts the liveliness periodically
before the lease_duration timer expires.
Publishing any new data value implicitly asserts the DataWriter’s liveliness, but it can be done explicitly
by calling the assert_liveliness member function.

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS: If one of the entities in the publishing side asserts its liveliness,
the service deduces that all other entities within the same DomainParticipant are also alive.

	MANUAL_BY_TOPIC_LIVELINESS_QOS: This mode is more restrictive and requires that at least one instance within
the DataWriter is asserted to consider that the DataWriter is alive.

Compatibility Rule

To maintain the compatibility between LivelinessQosPolicy in DataReaders and DataWriters, the DataWriter kind must be
higher or equal to the DataReader kind.
And the order between the different kinds is:

|AUTOMATIC_LIVELINESS_QOS-api| < |MANUAL_BY_PARTICIPANT_LIVELINESS_QOS-api| < |MANUAL_BY_TOPIC_LIVELINESS_QOS-api|

Table with the possible combinations:

	DataWriter kind

	DataReader kind

	Compatibility

	AUTOMATIC_LIVELINESS_QOS

	AUTOMATIC_LIVELINESS_QOS

	Yes

	AUTOMATIC_LIVELINESS_QOS

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	No

	AUTOMATIC_LIVELINESS_QOS

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	No

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	AUTOMATIC_LIVELINESS_QOS

	Yes

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	Yes

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	No

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	AUTOMATIC_LIVELINESS_QOS

	Yes

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	Yes

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	MANUAL_BY_TOPIC_LIVELINESS_QOS

	Yes

Additionally, the lease_duration of the DataWriter must not be greater than
the lease_duration of the DataReader.

Example

C++

LivelinessQosPolicy liveliness;
//The LivelinessQosPolicy is default constructed with kind = AUTOMATIC
//Change the kind to MANUAL_BY_PARTICIPANT
liveliness.kind = MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;
//The LivelinessQosPolicy is default constructed with lease_duration set to infinite
//Change the lease_duration to 1 second
liveliness.lease_duration = {1, 0};
//The LivelinessQosPolicy is default constructed with announcement_period set to infinite
//Change the announcement_period to 1 ms
liveliness.announcement_period = {0, 1000000};

XML

<data_writer profile_name="writer_xml_conf_liveliness_profile">
 <qos>
 <liveliness>
	<announcement_period>
	 <sec>0</sec>
	 <nanosec>1000000</nanosec>
	</announcement_period>
 <lease_duration>
 <sec>1</sec>
 </lease_duration>
	<kind>AUTOMATIC</kind>
 </liveliness>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_liveliness_profile">
 <qos>
 <liveliness>
 <lease_duration>
 <sec>1</sec>
 </lease_duration>
	 <kind>AUTOMATIC</kind>
 </liveliness>
 </qos>
</data_reader>

3.1.2.1.11. OwnershipQosPolicy

This QoS Policy specifies whether it is allowed for multiple DataWriters to update the same instance of data, and if
so, how these modifications should be arbitrated (see OwnershipQosPolicy).

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	OwnershipQosPolicyKind

	SHARED_OWNERSHIP_QOS

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

OwnershipQosPolicyKind

There are two possible values (see OwnershipQosPolicyKind):

	SHARED_OWNERSHIP_QOS: This option indicates that the service does not enforce unique ownership for each
instance.
In this case, multiple DataWriters are allowed to update the same data instance and all the updates are made
available to the existing DataReaders.
Those updates are also subject to the TimeBasedFilterQosPolicy or HistoryQosPolicy settings, so they
can be filtered.

	EXCLUSIVE_OWNERSHIP_QOS: This option indicates that each instance can only be updated by one DataWriter, meaning
that at any point in time a single DataWriter owns each instance and is the only one whose modifications will be
visible for the existing DataReaders.
The owner can be changed dynamically according to the highest strength between the alive DataWriters, which has not
violated the deadline contract concerning the data instances.
That strength can be changed using the OwnershipStrengthQosPolicy.

Compatibility Rule

To maintain the compatibility between OwnershipQosPolicy in DataReaders and DataWriters, the DataWriter kind must be
equal to the DataReader kind.

Table with the possible combinations:

	DataWriter kind

	DataReader kind

	Compatibility

	SHARED_OWNERSHIP_QOS

	SHARED_OWNERSHIP_QOS

	Yes

	SHARED_OWNERSHIP_QOS

	EXCLUSIVE_OWNERSHIP_QOS

	No

	EXCLUSIVE_OWNERSHIP_QOS

	SHARED_OWNERSHIP_QOS

	No

	EXCLUSIVE_OWNERSHIP_QOS

	EXCLUSIVE_OWNERSHIP_QOS

	Yes

Example

C++

OwnershipQosPolicy ownership;
//The OwnershipQosPolicy is default constructed with kind = SHARED.
//Change the kind to EXCLUSIVE
ownership.kind = EXCLUSIVE_OWNERSHIP_QOS;

XML

This QoS Policy cannot be configured using XML for the moment.

3.1.2.1.12. OwnershipStrengthQosPolicy

This QoS Policy specifies the value of the strength used to arbitrate among multiple DataWriters that attempt to
modify the same data instance. It is only applicable if the OwnershipQosPolicy kind is set to
EXCLUSIVE_OWNERSHIP_QOS.
See OwnershipStrengthQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	value

	uint32_t

	0

Note

This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

Example

C++

OwnershipStrengthQosPolicy ownership_strength;
//The OwnershipStrengthQosPolicy is default constructed with value 0
//Change the strength to 10
ownership_strength.value = 10;

XML

This QoS Policy cannot be configured using XML for the moment.

3.1.2.1.13. PartitionQosPolicy

This Qos Policy allows the introduction of a logical partition inside the physical partition introduced by a domain.
For a DataReader to see the changes made by a DataWriter, not only the Topic must match, but also they have to share
at least one logical partition (see PartitionQosPolicy).

The empty string is also considered as a valid partition and it matches with other partition names using the same rules
of string matching and regular-expression matching used for any other partition name.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	max_size

	uint32_t

	0 (Length Unlimited)

	names

	SerializedPayload_t

	Empty List

	max_size: Maximum size for the list of partition names.

	names: List of partition names.

Note

This QoS Policy concerns to Publisher and Subscriber entities.

Partitions can also be explicitly defined at the endpoint level to override this configuration. Information
to do so can be found here.

It can be changed on enabled Publishers and Subscribers.

Example

C++

PartitionQosPolicy partitions;
//The PartitionsQosPolicy is default constructed with max_size = 0.
//Max_size is a private member so you need to use getters and setters to access
//Change the max_size to 20
partitions.set_max_size(20); //Setter function
//The PartitionsQosPolicy is default constructed with an empty list of partitions
//Partitions is a private member so you need to use getters and setters to access
//Add new partitions
std::vector<std::string> part = partitions.names(); //Getter function
part.push_back("part1");
part.push_back("part2");
partitions.names(part); //Setter function

XML

<data_writer profile_name="pub_partition_example">
 <qos>
 <partition>
 <names>
 <name>part1</name>
 <name>part2</name>
 </names>
 </partition>
 </qos>
</data_writer>

<data_reader profile_name="sub_partition_example">
 <qos>
 <partition>
 <names>
 <name>part1</name>
 <name>part2</name>
 </names>
 </partition>
 </qos>
</data_reader>

3.1.2.1.14. PresentationQosPolicy

Warning

This QoS Policy will be implemented in future releases.

This QoS Policy specifies how the samples representing changes to data instances are presented to the subscribing
application.
It controls the extent to which changes to data instances can be made dependent on each other, as well as the kind
of dependencies that can be propagated and maintained.
See PresentationQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	access_scope

	PresentationQosPolicyAccessScopeKind

	INSTANCE_PRESENTATION_QOS

	coherent_access

	bool

	false

	ordered_access

	bool

	false

	access_scope: Determines the largest scope spanning the entities for which the order and coherency can be
preserved.
See PresentationQosPolicyAccessScopeKind for further details.

	coherent_access: Controls whether the service will preserve grouping of changes made on the publishing side,
such that they are received as a unit on the subscribing side.

	ordered_access: Controls whether the service supports the ability of the subscriber to see changes in the same
order as they occurred on the publishing side.

Note

This QoS Policy concerns to Publisher and Subscriber entities.

It cannot be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility Rule
for further details.

PresentationQosPolicyAccessScopeKind

There are three possible values, which have different behaviors depending on the values of coherent_access and
ordered_access variables (see PresentationQosPolicyAccessScopeKind):

	INSTANCE_PRESENTATION_QOS: The changes to a data instance do not need to be coherent nor ordered with respect to
the changes to any other instance, which means that the order and coherent changes apply to each instance separately.

	Enabling the coherent_access, in this case, has no effect on how the subscriber can access the data as the scope
is limited to each instance, changes to separate instances are considered independent and thus cannot be grouped
by a coherent change.

	Enabling the ordered_access, in this case, only affects to the changes within the same instance.
Therefore, the changes made to two instances are not necessarily seen in the order they occur even if the same
application thread and DataWriter made them.

	TOPIC_PRESENTATION_QOS: The scope spans to all the instances within the same DataWriter.

	Enabling the coherent_access makes that the grouping made with changes within the same DataWriter will be
available as coherent with respect to other changes to instances in that DataWriter, but will not be grouped with
changes made to instances belonging to different DataWriters.

	Enabling the ordered_access means that the changes made by a single DataWriter are made available to the
subscribers in the same order that they occur, but the changes made to instances through different DataWriters are
not necessarily seen in order.

	GROUP_PRESENTATION_QOS: The scope spans to all the instances belonging to DataWriters within the same Publisher.

	Enabling the coherent_access, means that the coherent changes made to instances through DataWriters attached to a
common Publisher are made available as a unit to remote subscribers.

	Enabling the ordered_access with this scope makes that the changes done by any of the DataWriters attached to the
same Publisher are made available to the subscribers in the same order they occur.

Compatibility Rule

To maintain the compatibility between PresentationQosPolicy in DataReaders and DataWriters, the Publisher
access_scope must be higher or equal to the Subscriber access_scope.
And the order between the different access scopes is:

|INSTANCE_PRESENTATION_QOS-api| < |TOPIC_PRESENTATION_QOS-api| < |GROUP_PRESENTATION_QOS-api|

Table with the possible combinations:

	Publisher scope

	Subscriber scope

	Compatibility

	INSTANCE_PRESENTATION_QOS

	INSTANCE_PRESENTATION_QOS

	Yes

	INSTANCE_PRESENTATION_QOS

	TOPIC_PRESENTATION_QOS

	No

	INSTANCE_PRESENTATION_QOS

	GROUP_PRESENTATION_QOS

	No

	TOPIC_PRESENTATION_QOS

	INSTANCE_PRESENTATION_QOS

	Yes

	TOPIC_PRESENTATION_QOS

	TOPIC_PRESENTATION_QOS

	Yes

	TOPIC_PRESENTATION_QOS

	GROUP_PRESENTATION_QOS

	No

	GROUP_PRESENTATION_QOS

	INSTANCE_PRESENTATION_QOS

	Yes

	GROUP_PRESENTATION_QOS

	TOPIC_PRESENTATION_QOS

	Yes

	GROUP_PRESENTATION_QOS

	GROUP_PRESENTATION_QOS

	Yes

Additionally, the coherent_access and ordered_access of the Subscriber can only be enabled if they are also enabled on
the Publisher.

3.1.2.1.15. ReaderDataLifecycleQosPolicy

Warning

This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataReader with respect to the lifecycle of the data instances it
manages, that is, the instances that have been received and for which the DataReader maintains some internal resources.
The DataReader maintains the samples that have not been taken by the application, subject to the constraints imposed by
HistoryQosPolicy and ResourceLimitsQosPolicy.
See ReaderDataLifecycleQosPolicy.

Under normal circumstances, the DataReader can only reclaim the resources associated with data instances if there are
no writers and all the samples have been taken. But this fact can cause problems if the application does not take those
samples as the service will prevent the DataReader from reclaiming the resources and they will remain in the DataReader
indefinitely. This QoS exist to avoid that situation.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	autopurge_no_writer_samples_delay

	Duration_t

	c_TimeInfinite

	autopurge_disposed_samples_delay

	Duration_t

	c_TimeInfinite

	autopurge_no_writer_samples_delay:
Defines the maximum duration the DataReader must retain the information
regarding an instance once its instance_state becomes NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.
After this time elapses, the DataReader purges all the internal information of the instance, including the untaken
samples that will be lost.

	autopurge_disposed_samples_delay:
Defines the maximum duration the DataReader must retain the information
regarding an instance once its instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE.
After this time elapses, the DataReader purges all the samples for the instance.

Note

This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

3.1.2.1.16. ReliabilityQosPolicy

This QoS Policy indicates the level of reliability offered and requested by the service.
See ReliabilityQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	ReliabilityQosPolicyKind

	BEST_EFFORT_RELIABILITY_QOS
for DataReaders

RELIABLE_RELIABILITY_QOS
for DataWriters

	max_blocking_time

	Duration_t

	100 ms

	kind: Specifies the behavior of the service regarding delivery of the samples.
See ReliabilityQosPolicyKind for further details.

	max_blocking_time: Configures the maximum duration that the write operation can be
blocked.

Note

This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Important

Setting this QoS Policy to BEST_EFFORT_RELIABILITY_QOS affects to the DurabilityQosPolicy, making the
endpoints behave as VOLATILE_DURABILITY_QOS.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

ReliabilityQosPolicyKind

There are two possible values ():

	BEST_EFFORT_RELIABILITY_QOS: It indicates that it is acceptable not to retransmit the missing samples, so the
messages are sent without waiting for an arrival confirmation.
Presumably new values for the samples are generated often enough that it is not necessary to re-send any sample.
However, the data samples sent by the same DataWriter will be stored in the DataReader history in the same order they
occur.
In other words, even if the DataReader misses some data samples, an older value will never overwrite a newer value.

	RELIABLE_RELIABILITY_QOS: It indicates that the service will attempt to deliver all samples of the DataWriter’s
history expecting an arrival confirmation from the DataReader.
The data samples sent by the same DataWriter cannot be made available to the DataReader if there are previous samples
that have not been received yet.
The service will retransmit the lost data samples in order to reconstruct a correct snapshot of the DataWriter
history before it is accessible by the DataReader.

This option may block the write operation, hence the max_blocking_time is set that
will unblock it once the time expires.
But if the max_blocking_time expires before the data is sent, the write operation will
return an error.

Compatibility Rule

To maintain the compatibility between ReliabilityQosPolicy in DataReaders and DataWriters, the DataWriter kind
must be higher or equal to the DataReader kind.
And the order between the different kinds is:

|BEST_EFFORT_RELIABILITY_QOS-api| < |RELIABLE_RELIABILITY_QOS-api|

Table with the possible combinations:

	DataWriter kind

	DataReader kind

	Compatibility

	BEST_EFFORT_RELIABILITY_QOS

	BEST_EFFORT_RELIABILITY_QOS

	Yes

	BEST_EFFORT_RELIABILITY_QOS

	RELIABLE_RELIABILITY_QOS

	No

	RELIABLE_RELIABILITY_QOS

	BEST_EFFORT_RELIABILITY_QOS

	Yes

	RELIABLE_RELIABILITY_QOS

	RELIABLE_RELIABILITY_QOS

	Yes

Example

C++

ReliabilityQosPolicy reliability;
//The ReliabilityQosPolicy is default constructed with kind = BEST_EFFORT
//Change the kind to RELIABLE
reliability.kind = RELIABLE_RELIABILITY_QOS;
//The ReliabilityQosPolicy is default constructed with max_blocking_time = 100ms
//Change the max_blocking_time to 1s
reliability.max_blocking_time = {1, 0};

XML

<data_writer profile_name="writer_xml_conf_reliability_profile">
 <qos>
 <reliability>
 <kind>RELIABLE</kind>
 <max_blocking_time>
 <sec>1</sec>
 <nanosec>0</nanosec>
 </max_blocking_time>
 </reliability>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_reliability_profile">
 <qos>
 <reliability>
 <kind>BEST_EFFORT</kind>
 </reliability>
 </qos>
</data_reader>

3.1.2.1.17. ResourceLimitsQosPolicy

This QoS Policy controls the resources that the service can use in order to meet the requirements imposed by the
application and other QoS Policies.
See ResourceLimitsQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	max_samples

	int32_t

	5000

	max_instances

	int32_t

	10

	max_samples_per_instance

	int32_t

	400

	allocated_samples

	int32_t

	100

	extra_samples

	int32_t

	1

	max_samples: Controls the maximum number of samples that the DataWriter or DataReader
can manage across all the
instances associated with it.
In other words, it represents the maximum samples that the middleware can store for a DataReader or DataWriter.

	max_instances: Controls the maximum number of instances that a DataWriter or
DataReader can manage.

	max_samples_per_instance: Controls the maximum number of samples within an instance
that the DataWriter or
DataReader can manage.

	allocated_samples: States the number of samples that will be allocated on
initialization.

	extra_samples: States the number of extra samples that will be allocated on
the pool, so the maximum number of samples on the pool will be
max_samples plus extra_samples.
These extra samples act as a reservoir of samples even when the history is full.

Note

This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Consistency Rule

To maintain the consistency within the ResourceLimitsQosPolicy, the values of the data members must follow the next
conditions:

	The value of max_samples must be higher or equal to the value of
max_samples_per_instance.

	The value established for the HistoryQosPolicy depth must be lower or equal to the
value stated for
max_samples_per_instance.

Example

C++

ResourceLimitsQosPolicy resource_limits;
//The ResourceLimitsQosPolicy is default constructed with max_samples = 5000
//Change max_samples to 200
resource_limits.max_samples = 200;
//The ResourceLimitsQosPolicy is default constructed with max_instances = 10
//Change max_instances to 20
resource_limits.max_instances = 20;
//The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance = 400
//Change max_samples_per_instance to 100 as it must be lower than max_samples
resource_limits.max_samples_per_instance = 100;
//The ResourceLimitsQosPolicy is default constructed with allocated_samples = 100
//Change allocated_samples to 50
resource_limits.allocated_samples = 50;

XML

<data_writer profile_name="writer_xml_conf_resource_limits_profile">
 <topic>
 <resourceLimitsQos>
 <max_samples>200</max_samples>
 <max_instances>20</max_instances>
 <max_samples_per_instance>100</max_samples_per_instance>
 <allocated_samples>50</allocated_samples>
 </resourceLimitsQos>
 </topic>
</data_writer>

<data_reader profile_name="reader_xml_conf_resource_limits_profile">
 <topic>
 <resourceLimitsQos>
 <max_samples>200</max_samples>
 <max_instances>20</max_instances>
 <max_samples_per_instance>100</max_samples_per_instance>
 <allocated_samples>50</allocated_samples>
 </resourceLimitsQos>
 </topic>
</data_reader>

3.1.2.1.18. TimeBasedFilterQosPolicy

Warning

This QoS Policy will be implemented in future releases.

Filter that allows a DataReader to specify that it is interested only in a subset of the values of the data.
This filter states that the DataReader does not want to receive more than one value each
minimum_separation, regardless of how fast the changes occur.
See TimeBasedFilterQosPolicy.

The minimum_separation must be lower than the DeadlineQosPolicy
period.
By default, the minimum_separation is zero, which means that the DataReader is
potentially interested in all the values.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	minimum_separation

	Duration_t

	c_TimeZero

Note

This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

3.1.2.1.19. TopicDataQosPolicy

Allows the application to attach additional information to a created Topic so that when it is discovered by a remote
application, it can access the data and use it.
See TopicDataQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	collection

	std::vector<octet>

	Empty vector

Note

This QoS Policy concerns to Topic entities.

It can be changed even if it is already created.

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
TopicDataQosPolicy topic_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = topic_data.data_vec(); // Getter Function

//Add two new octets to topic data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;
vec.push_back(val);
topic_data.data_vec(vec); //Setter Function

XML

<data_writer profile_name="writer_xml_conf_topicdata_profile">
 <qos>
 <topicData>
 <value>3.a</value>
 </topicData>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_topicdata_profile">
 <qos>
 <topicData>
 <value>3.a</value>
 </topicData>
 </qos>
</data_reader>

3.1.2.1.20. TransportPriorityQosPolicy

Warning

This QoS Policy will be implemented in future releases.

The purpose of this QoS Policy is to allow the service to take advantage of those transports capable of sending
messages with different priorities. It establishes the priority of the underlying transport used to send the data.
See TransportPriorityQosPolicy

You can choose any value within the 32-bit range for the priority. The higher the value, the higher the priority.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	value

	uint32_t

	0

Note

This QoS Policy concerns to Topic and DataWriter entities.

It can be changed on enabled entities.

3.1.2.1.21. UserDataQosPolicy

Allows the application to attach additional information to the Entity object so that when the entity is discovered
the remote application can access the data and use it.
For example, it can be used to attach the security credentials to authenticate the source from the remote application.
See UserDataQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	collection

	std::vector<octet>

	Empty vector

Note

This QoS Policy concerns to all DDS entities.

It can be changed on enabled entities.

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
UserDataQosPolicy user_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = user_data.data_vec(); // Getter Function

//Add two new octets to user data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;
vec.push_back(val);
user_data.data_vec(vec); //Setter Function

XML

<participant profile_name="participant_xml_conf_userdata_profile">
 <rtps>
 <userData>
 <value>3.a</value>
 </userData>
 </rtps>
</participant>

<data_writer profile_name="writer_xml_conf_userdata_profile">
 <qos>
 <userData>
 <value>3.a</value>
 </userData>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_userdata_profile">
 <qos>
 <userData>
 <value>3.a</value>
 </userData>
 </qos>
</data_reader>

3.1.2.1.22. WriterDataLifecycleQosPolicy

Warning

This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataWriter with respect to the lifecycle of the data instances it manages
, that is, the instance that has been either explicitly registered with the DataWriter using the register operations
or implicitly by directly writing data.

The autodispose_unregistered_instances
controls whether a DataWriter will automatically dispose an instance each time
it is unregistered. Even if it is disabled, the application can still get the same result if it uses the dispose
operation before unregistering the instance.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	autodispose_unregistered_instances

	bool

	true

Note

This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

 3.1.2.2. eProsima Extensions

3.1.2.2. eProsima Extensions

The eProsima QoS Policies extensions are those that allow changing the values of the RTPS layer configurable settings.

	DataSharingQosPolicy

	DisablePositiveACKsQosPolicy

	FlowControllersQos

	ParticipantResourceLimitsQos

	PropertyPolicyQos

	PublishModeQosPolicy

	ReaderResourceLimitsQos

	RTPSEndpointQos

	RTPSReliableReaderQos

	RTPSReliableWriterQos

	TransportConfigQos

	TypeConsistencyQos

	WireProtocolConfigQos

	WriterResourceLimitsQos

3.1.2.2.1. DataSharingQosPolicy

This additional QoS allows configuring the data-sharing delivery communication between a writer and a reader.
Please, see Data-sharing delivery for a description of the data-sharing delivery functionality.

List of QoS Policy data members:

	Data Member

	Type

	Accessor

	Default Value

	Data-sharing kind

	DataSharingKind

	kind()

	AUTO

	Shared memory directory

	string

	shm_directory()

	Empty string

	Maximum domain number

	uint32_t

	max_domains()

	0 (unlimited)

	Data-sharing domain IDs

	vector<uint64_t>

	domain_ids()

	Empty

	Data-sharing kind:
Specifies the behavior of data-sharing delivery.
See DataSharingKind for a description of possible values and their effect.

	Shared memory directory:
The directory that will be used for the memory-mapped files.
If none is configured, then the system default directory will be used.

	Maximum domain number:
Establishes the maximum number of data-sharing domain IDs in the local or remote endpoints.
Domain IDs are exchanged between data-sharing delivery compatible endpoints.
If this value is lower that the size of the list for any remote endpoint, the matching may fail.
A value of zero represents unlimited number of IDs.

	Data sharing domain IDs:
The list of data-sharing domain IDs configured for the current DataWriter or DataReader.
If no ID is provided, the system will create a unique one for the current machine.

Note

This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

DataSharingKind

There are three possible values (see DataSharingKind):

	OFF:
The data-sharing delivery is disabled.
No communication will be performed using data-sharing delivery functionality.

	ON:
The data-sharing delivery is manually enabled.
An error will occur if the current topic is not compatible
with data-sharing delivery.
Communication with remote entities that share at least one data-sharing domain ID
will be done using data-sharing delivery functionality.

	AUTO:
data-sharing delivery will be activated if the current topic is
compatible with data-sharing,
and deactivated if not.

Data-sharing configuration helper functions

In order to set the data-sharing delivery configuration, one of the following helper member functions must be used.
There is one for each DataSharingKind flavor:

	Function

	Resulting DataSharingKind

	Shared memory directory

	Data sharing domain IDs

	automatic()

	AUTO

	Optional

	Optional

	on()

	ON

	Mandatory

	Optional

	off()

	OFF

	N/A

	N/A

Instead of defining the data-sharing domain IDs on these helper functions,
you can add them later with the add_domain_id() function.
Beware that adding a new domain ID counts as modifying the QosPolicy,
so it must be done before the entity is enabled.

Example

C++

DataSharingQosPolicy datasharing;

// Configure the DataSharing as AUTO with two user-defined IDs
std::vector<uint16_t> ids;
ids.push_back(0x1234);
ids.push_back(0xABCD);
datasharing.automatic(ids);

// Alternatively, configure with no IDs and add them afterwards
datasharing.automatic();
datasharing.add_domain_id(uint16_t(0x1234));
datasharing.add_domain_id(uint16_t(0xABCD));

// Or you can leave the IDs empty and the system will create one for you
// unique for the current machine
datasharing.automatic();

XML

<data_writer profile_name="writer_profile_qos_datasharing">
 <qos>
 <data_sharing>
 <kind>AUTOMATIC</kind>
 <domain_ids>
 <domainId>0x1234</domainId>
 <domainId>0xABCD</domainId>
 </domain_ids>
 </data_sharing>
 </qos>
</data_writer>

<data_reader profile_name="reader_profile_qos_datasharing">
 <qos>
 <data_sharing>
 <kind>AUTOMATIC</kind>
 <domain_ids>
 <domainId>0x1234</domainId>
 <domainId>0xABCD</domainId>
 </domain_ids>
 </data_sharing>
 </qos>
</data_reader>

3.1.2.2.2. DisablePositiveACKsQosPolicy

This additional QoS allows reducing network traffic when strict reliable communication is not required and bandwidth is
limited.
It consists in changing the default behavior by which positive acks are sent from readers to writers.
Instead, only negative acks will be sent when a reader is missing a sample, but writers will keep data for a sufficient
time before considering it as acknowledged.
See DisablePositiveACKsQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	enabled

	bool

	false

	duration

	Duration_t

	c_TimeInfinite

	enabled:
Specifies if the QoS is enabled or not. If it is true means that the positive acks are disabled and the
DataReader only sends negative acks. Otherwise, both positive and negative acks are sent.

	duration:
State the duration that the DataWriters keep the data before considering it as acknowledged.
This value does not apply to DataReaders.

Note

This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Warning

For DataWriters and DataReaders to match, they must follow the compatibility rule.
See Compatibility Rule for further details.

Compatibility Rule

To maintain the compatibility between DisablePositiveACKsQosPolicy in DataReaders and DataWriters, the DataReader
cannot have this QoS enabled if the DataWriter have it disabled.

Table with the possible combinations:

	DataWriter enabled value

	DataReader enabled value

	Compatibility

	true

	true

	Yes

	true

	false

	Yes

	false

	true

	No

	false

	false

	Yes

Example

C++

DisablePositiveACKsQosPolicy disable_acks;
//The DisablePositiveACKsQosPolicy is default constructed with enabled = false
//Change enabled to true
disable_acks.enabled = true;
//The DisablePositiveACKsQosPolicy is default constructed with infinite duration
//Change the duration to 1 second
disable_acks.duration = {1, 0};

XML

<data_writer profile_name="writer_xml_conf_disable_positive_acks_profile">
 <qos>
 <disablePositiveAcks>
 <enabled>true</enabled>
 <duration>
 <sec>1</sec>
 </duration>
 </disablePositiveAcks>
 </qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_disable_positive_acks_profile">
 <qos>
 <disablePositiveAcks>
 <enabled>true</enabled>
 </disablePositiveAcks>
 </qos>
</data_reader>

3.1.2.2.3. FlowControllersQos

This QoS configures the list of flow controllers of a participant, so they can later be used on
its DataWriters.
It is a vector of shared pointers to FlowControllerDescriptor, which has the following fields:

	Data Member Name

	Type

	Default Value

	name

	const char *

	

	scheduler

	FlowControllerSchedulerPolicy

	FIFO

	max_bytes_per_period

	int32_t

	0 (i.e. infinite)

	period_ms

	uint64_t

	100

Please refer to Flow Controllers section for more information.

Note

This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

3.1.2.2.4. ParticipantResourceLimitsQos

This QoS configures allocation limits and the use of physical memory for internal resources.
See ParticipantResourceLimitsQos.

List of QoS Policy data members:

	Data Member Name

	Type

	locators

	RemoteLocatorsAllocationAttributes

	participants

	ResourceLimitedContainerConfig

	readers

	ResourceLimitedContainerConfig

	writers

	ResourceLimitedContainerConfig

	send_buffers

	SendBuffersAllocationAttributes

	data_limits

	VariableLengthDataLimits

	content_filter

	ContentFilterProperty::AllocationConfiguration

	locators:
Defines the limits for collections of remote locators.

	participants:
Specifies the allocation behavior and limits for collections dependent on the total number of
participants.

	readers:
Specifies the allocation behavior and limits for collections dependent on the total number of
readers per participant.

	writers:
Specifies the allocation behavior and limits for collections dependent on the total number of
writers per participant.

	send_buffers:
Defines the allocation behavior and limits for the send buffer manager.

	data_limits:
States the limits for variable-length data.

	content_filter:
States the limits for content-filter discovery information.

Note

This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

RemoteLocatorsAllocationAttributes

This structure holds the limits for the remote locators’ collections.
See RemoteLocatorsAllocationAttributes.

List of structure members:

	Member Name

	Type

	Default Value

	max_unicast_locators

	size_t

	4

	max_multicast_locators

	size_t

	1

	max_unicast_locators:
This member controls the maximum number of unicast locators to keep for each discovered
remote entity.
It is recommended to use the highest number of local addresses found on all the systems belonging to the same domain.

	max_multicast_locators:
This member controls the maximum number of multicast locators to keep for each discovered
remote entity.
The default value is usually enough, as it does not make sense to add more than one multicast locator per entity.

ResourceLimitedContainerConfig

This structure holds the limits of a resource limited collection, as well as the allocation configuration, which can be
fixed size or dynamic size.

List of structure members:

	Member Name

	Type

	Default Value

	initial

	size_t

	0

	maximum

	size_t

	std::numeric_limits<size_t>::max()

	increment

	size_t

	1 (dynamic size), 0 (fixed size)

	initial:
Indicates the number of elements to preallocate in the collection.

	maximum:
Specifies the maximum number of elements allowed in the collection.

	increment:
States the number of items to add when the reserved capacity limit is reached. This member has a
different default value depending on the allocation configuration chosen.

SendBuffersAllocationAttributes

This structure holds the limits for the allocations of the send buffers.
See SendBuffersAllocationAttributes.

List of structure members:

	Member Name

	Type

	Default Value

	preallocated_number

	size_t

	0

	dynamic

	bool

	false

	preallocated_number:
This member controls the initial number of send buffers to be allocated.
The default value will perform an initial guess of the number of buffers required, based on the number of threads
from which a send operation could be started.

	dynamic:
This member controls how the buffer manager behaves when a send buffer is not available.
When true, a new buffer will be created. Otherwise, it will wait for a buffer to be returned.

VariableLengthDataLimits

This structure holds the limits for variable-length data.
See VariableLengthDataLimits.

List of structure members:

	Member Name

	Type

	Default Value

	max_properties

	size_t

	0

	max_user_data

	size_t

	0

	max_partitions

	size_t

	0

	max_properties:
Defines the maximum size, in octets, of the properties data in the local or remote participant.

	max_user_data:
Establishes the maximum size, in octets, of the user data in the local or remote participant.

	max_partitions:
States the maximum size, in octets, of the partitions data in the local or remote participant.

ContentFilterProperty::AllocationConfiguration

This structure holds the limits for content-filter related discovery information.
See ContentFilterProperty::AllocationConfiguration.

List of structure members:

	Member Name

	Type

	Default Value

	expression_initial_size

	size_t

	0

	expression_parameters

	ResourceLimitedContainerConfig

	{0, 100, 1}

	expression_initial_size:
Preallocated size of the filter expression.

	expression_parameters:
Allocation configuration for the list of expression parameters.

Example

C++

ParticipantResourceLimitsQos participant_limits;
//Set the maximum size of participant resource limits collection to 3 and it allocation configuration to fixed size
participant_limits.participants = eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(
 3u);
//Set the maximum size of reader's resource limits collection to 2 and its allocation configuration to fixed size
participant_limits.readers = eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);
//Set the maximum size of writer's resource limits collection to 1 and its allocation configuration to fixed size
participant_limits.writers = eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);
//Set the maximum size of the partition data to 256
participant_limits.data_limits.max_partitions = 256u;
//Set the maximum size of the user data to 256
participant_limits.data_limits.max_user_data = 256u;
//Set the maximum size of the properties data to 512
participant_limits.data_limits.max_properties = 512u;
//Set the preallocated filter expression size to 512
participant_limits.content_filter.expression_initial_size = 512u;
//Set the maximum number of expression parameters to 4 and its allocation configuration to fixed size
participant_limits.content_filter.expression_parameters =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(4u);

XML

<!--
<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-->
 <participant profile_name="participant_alloc_qos_example">
 <rtps>
 <allocation>
 <!-- We know we have 3 participants on the domain -->
 <total_participants>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </total_participants>
 <!-- We know we have at most 2 readers on each participant -->
 <total_readers>
 <initial>2</initial>
 <maximum>2</maximum>
 <increment>0</increment>
 </total_readers>
 <!-- We know we have at most 1 writer on each participant -->
 <total_writers>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </total_writers>
 <max_partitions>256</max_partitions>
 <max_user_data>256</max_user_data>
 <max_properties>512</max_properties>

 <!-- content_filter cannot be configured using XML (yet) -->
 </allocation>
 </rtps>
 </participant>

3.1.2.2.5. PropertyPolicyQos

This additional QoS Policy (PropertyPolicyQos) stores name/value pairs that can be used to configure certain
DDS settings that cannot be configured directly using an standard QoS Policy.
For the complete list of settings that can be configured with this QoS Policy, please refer to PropertyPolicyQos Options.

Example

C++

PropertyPolicyQos property_policy;
//Add new property for the Auth:PKI-DH plugin
property_policy.properties().emplace_back("dds.sec.auth.plugin", "builtin.PKI-DH");
//Add new property for the Access:Permissions plugin
property_policy.properties().emplace_back(eprosima::fastrtps::rtps::Property("dds.sec.access.plugin",
 "builtin.Access-Permissions"));

XML

<participant profile_name="secure_participant_conf_all_plugin_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate Auth:PKI-DH plugin -->
 <property>
 <name>dds.sec.auth.plugin</name>
 <value>builtin.PKI-DH</value>
 </property>

 <!-- Activate Access:Permissions plugin -->
 <property>
 <name>dds.sec.access.plugin</name>
 <value>builtin.Access-Permissions</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

3.1.2.2.6. PublishModeQosPolicy

This QoS Policy configures how the DataWriter sends the data.
See PublishModeQosPolicy.

It also configures the name of the flow controller to use when asynchronous publishing is used.
It should be the name of a flow controller registered on the creation of the DomainParticipant.
See FlowControllersQos.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	kind

	PublishModeQosPolicyKind

	SYNCHRONOUS_PUBLISH_MODE

	flow_controller_name

	const char *

	FASTDDS_FLOW_CONTROLLER_DEFAULT

Note

This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

PublishModeQosPolicyKind

There are two possible values (see PublishModeQosPolicyKind):

	SYNCHRONOUS_PUBLISH_MODE: The data is sent in the context of the user thread that calls the write operation.

	ASYNCHRONOUS_PUBLISH_MODE: An internal thread takes the responsibility of sending the data asynchronously.
The write operation returns before the data is actually sent.

Example

C++

PublishModeQosPolicy publish_mode;
//The PublishModeQosPolicy is default constructed with kind = SYNCHRONOUS
//Change the kind to ASYNCHRONOUS
publish_mode.kind = ASYNCHRONOUS_PUBLISH_MODE;

XML

<data_writer profile_name="writer_profile_qos_publishmode">
 <qos>
 <publishMode>
 <kind>ASYNCHRONOUS</kind>
 </publishMode>
 </qos>
</data_writer>

3.1.2.2.7. ReaderResourceLimitsQos

This QoS Policy states the limits for the matched DataWriters’ resource limited collections based on the maximum
number of DataWriters that are going to match with the DataReader.
See ReaderResourceLimitsQos.

List of QoS Policy data members:

	Data Member Name

	Type

	matched_publisher_allocation

	ResourceLimitedContainerConfig

Note

This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

ReaderResourceLimitsQos reader_limits;
//Set the maximum size for writer matched resource limits collection to 1 and its allocation configuration to fixed size
reader_limits.matched_publisher_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<data_reader profile_name="alloc_qos_example_sub">
 <!-- we know we will only have one matching publisher -->
 <matchedPublishersAllocation>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </matchedPublishersAllocation>
</data_reader>

3.1.2.2.8. RTPSEndpointQos

This QoS Policy configures the aspects of an RTPS endpoint, such as the list of locators, the identifiers, and the
history memory policy.
See RTPSEndpointQos.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	unicast_locator_list

	LocatorList

	Empty List

	multicast_locator_list

	LocatorList

	Empty List

	remote_locator_list

	LocatorList

	Empty List

	user_defined_id

	int16_t

	-1

	entity_id

	int16_t

	-1

	history_memory_policy

	MemoryManagementPolicy

	PREALLOCATED_MEMORY_MODE

	unicast_locator_list:
Defines the list of unicast locators associated to the DDS Entity.
DataReaders and DataWriters inherit the list of unicast locators set in the DomainParticipant, but it can be
changed by means of this QoS.

	multicast_locator_list:
Stores the list of multicast locators associated to the DDS Entity.
By default, DataReaders and DataWriters do not use any multicast locator, but it can be changed by means of this QoS.

	remote_locator_list:
States the list of remote locators associated to the DDS Entity.

	user_defined_id:
Establishes the unique identifier used for StaticEndpointDiscovery.

	entity_id:
The user can specify the identifier for the endpoint.

	history_memory_policy:
Indicates the way the memory is managed in terms of dealing with the CacheChanges.

Note

This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

MemoryManagementPolicy

There are four possible values (see MemoryManagementPolicy):

	PREALLOCATED_MEMORY_MODE:
This option sets the size to the maximum of each data type. It produces the largest
memory footprint but the smallest allocation count.

	PREALLOCATED_WITH_REALLOC_MEMORY_MODE:
This option set the size to the default for each data type and it requires
reallocation when a bigger message arrives. It produces a lower memory footprint at the expense of increasing the
allocation count.

	DYNAMIC_RESERVE_MEMORY_MODE:
This option allocates the size dynamically at the time of message arrival. It
produces the least memory footprint but the highest allocation count.

	DYNAMIC_REUSABLE_MEMORY_MODE:
This option is similar to DYNAMIC_RESERVE_MEMORY_MODE, but the allocated memory
is reused for future messages.

Example

C++

RTPSEndpointQos endpoint;
//Add new unicast locator with port 7800
eprosima::fastrtps::rtps::Locator_t new_unicast_locator;
new_unicast_locator.port = 7800;
endpoint.unicast_locator_list.push_back(new_unicast_locator);
//Add new multicast locator with IP 239.255.0.4 and port 7900
eprosima::fastrtps::rtps::Locator_t new_multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
endpoint.multicast_locator_list.push_back(new_multicast_locator);
//Set 3 as user defined id
endpoint.user_defined_id = 3;
//Set 4 as entity id
endpoint.entity_id = 4;
//The RTPSEndpointQos is default constructed with history_memory_policy = PREALLOCATED
//Change the history_memory_policy to DYNAMIC_RESERVE
endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_RESERVE_MEMORY_MODE;

XML

<data_writer profile_name="writer_xml_conf_unicast_locators_profile">
 <userDefinedID>3</userDefinedID>
 <entityID>2</entityID> <!-- Int16 -->
 <unicastLocatorList>
 <locator>
 <udpv4>
 <port>7800</port>
 </udpv4>
 </locator>
 </unicastLocatorList>
 <multicastLocatorList>
 <locator>
 <udpv4>
 <address>239.255.0.4</address>
 <port>7900</port>
 </udpv4>
 </locator>
 </multicastLocatorList>
 <!-- The history memory policy is changed to DYNAMIC_RESERVE -->
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_writer>

<data_reader profile_name="reader_xml_conf_unicast_locators_profile">
 <userDefinedID>5</userDefinedID>
 <entityID>4</entityID> <!-- Int16 -->
 <unicastLocatorList>
 <locator>
 <udpv4>
 <port>7800</port>
 </udpv4>
 </locator>
 </unicastLocatorList>
 <multicastLocatorList>
 <locator>
 <udpv4>
 <address>239.255.0.4</address>
 <port>7900</port>
 </udpv4>
 </locator>
 </multicastLocatorList>
 <historyMemoryPolicy>PREALLOCATED_WITH_REALLOC</historyMemoryPolicy>
</data_reader>

3.1.2.2.9. RTPSReliableReaderQos

This RTPS QoS Policy allows the configuration of several RTPS reliable reader’s aspects.
See RTPSReliableReaderQos.

List of QoS Policy data members:

	Data Member Name

	Type

	times

	ReaderTimes

	disable_positive_ACKs

	DisablePositiveACKsQosPolicy

	times:
Defines the duration of the RTPSReader events. See ReaderTimes for further details.

	disable_positive_ACKs:
Configures the settings to disable the positive acks.
See DisablePositiveACKsQosPolicy for further details.

Note

This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

ReaderTimes

This structure defines the times associated with the Reliable Readers’ events.
See ReaderTimes.

List of structure members:

	Member Name

	Type

	Default Value

	initialAcknackDelay

	Duration_t

	70 ms

	heartbeatResponseDelay

	Duration_t

	5 ms

	initialAcknackDelay:
Defines the duration of the initial acknack delay.

	heartbeatResponseDelay:
Establishes the duration of the delay applied when a heartbeat message is received.

Example

C++

RTPSReliableReaderQos reliable_reader_qos;
//The RTPSReliableReaderQos is default constructed with initialAcknackDelay = 70 ms
//Change the initialAcknackDelay to 70 nanoseconds
reliable_reader_qos.times.initialAcknackDelay = {0, 70};
//The RTPSReliableWriterQos is default constructed with heartbeatResponseDelay = 5 ms
//Change the heartbeatResponseDelay to 5 nanoseconds
reliable_reader_qos.times.heartbeatResponseDelay = {0, 5};
//You can also change the DisablePositiveACKsQosPolicy. For further details see DisablePositiveACKsQosPolicy section.
reliable_reader_qos.disable_positive_ACKs.enabled = true;

XML

<data_reader profile_name="sub_profile_name">
 <times> <!-- readerTimesType -->
 <initialAcknackDelay> <!-- DURATION -->
 <sec>0</sec>
 <nanosec>70</nanosec>
 </initialAcknackDelay>
 <heartbeatResponseDelay> <!-- DURATION -->
 <sec>0</sec>
 <nanosec>5</nanosec>
 </heartbeatResponseDelay>
 </times>
 <!--You can also change the values of DisablePositiveACKsQosPolicy.-->
 <!--See DisablePositiveACKsQosPolicy section for further details-->
</data_reader>

3.1.2.2.10. RTPSReliableWriterQos

This RTPS QoS Policy allows the configuration of several RTPS reliable writer’s aspects.
See RTPSReliableWriterQos.

List of QoS Policy data members:

	Data Member Name

	Type

	times

	WriterTimes

	disable_positive_acks

	DisablePositiveACKsQosPolicy

	disable_heartbeat_piggyback

	DisableHeartbeatPiggyback

	times:
Defines the duration of the RTPSWriter events.
See WriterTimes for further details.

	disable_positive_acks:
Configures the settings to disable the positive acks.
See DisablePositiveACKsQosPolicy for further details.

	disable_heartbeat_piggyback:
Configures the settings to disable the heartbeat piggyback mechanism.
See DisableHeartbeatPiggyback for further details.

Note

This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

WriterTimes

This structure defines the times associated with the Reliable Writers’ events.

List of structure members:

	Member Name

	Type

	Default Value

	initialHeartbeatDelay

	Duration_t

	12ms

	heartbeatPeriod

	Duration_t

	3s

	nackResponseDelay

	Duration_t

	5ms

	nackSupressionDuration

	Duration_t

	0s

	initialHeartbeatDelay:
Defines duration of the initial heartbeat delay.

	heartbeatPeriod:
Specifies the interval between periodic heartbeats.

	nackResponseDelay:
Establishes the duration of the delay applied to the response of an ACKNACK message.

	nackSupressionDuration:
The RTPSWriter ignores the nack messages received after sending the data until the
duration time elapses.

DisableHeartbeatPiggyback

Besides sending heartbeats periodically using the heartbeatPeriod (see WriterTimes), reliable
DataWriters also use a mechanism to append a heartbeat submessage in the same message where data is being delivered to
the DataReaders.
This mechanism acts in specific situations where the reliable communication state must be up to date to maintain
optimal communication:

	When the DataWriter sends as many bytes to the socket as the length of the socket buffer, a heartbeat
submessage is appended after the last data.

	When the DataWriter’s history is full, the DataWriter starts to append heartbeat submessages after each data.

This mechanism can be disabled using this policy.

Example

C++

RTPSReliableWriterQos reliable_writer_qos;
//The RTPSReliableWriterQos is default constructed with initialHeartbeatDelay = 12 ms
//Change the initialHeartbeatDelay to 20 nanoseconds
reliable_writer_qos.times.initialHeartbeatDelay = {0, 20};
//The RTPSReliableWriterQos is default constructed with heartbeatPeriod = 3 s
//Change the heartbeatPeriod to 5 seconds
reliable_writer_qos.times.heartbeatPeriod = {5, 0};
//The RTPSReliableWriterQos is default constructed with nackResponseDelay = 5 ms
//Change the nackResponseDelay to 10 nanoseconds
reliable_writer_qos.times.nackResponseDelay = {0, 10};
//The RTPSReliableWriterQos is default constructed with nackSupressionDuration = 0 s
//Change the nackSupressionDuration to 20 nanoseconds
reliable_writer_qos.times.nackSupressionDuration = {0, 20};
//You can also change the DisablePositiveACKsQosPolicy. For further details see DisablePositiveACKsQosPolicy section.
reliable_writer_qos.disable_positive_acks.enabled = true;
//The RTPSReliableWriterQos is default constructed with disable_heartbeat_piggyback = false
//Disable the heartbeat piggyback mechanism.
reliable_writer_qos.disable_heartbeat_piggyback = true;

XML

<data_writer profile_name="pub_profile_name">
 <times> <!-- writerTimesType -->
 <initialHeartbeatDelay> <!-- DURATION -->
 <sec>0</sec>
 <nanosec>20</nanosec>
 </initialHeartbeatDelay>
 <heartbeatPeriod> <!-- DURATION -->
 <sec>5</sec>
 <nanosec>0</nanosec>
 </heartbeatPeriod>
 <nackResponseDelay> <!-- DURATION -->
 <sec>0</sec>
 <nanosec>10</nanosec>
 </nackResponseDelay>
 <nackSupressionDuration> <!-- DURATION -->
 <sec>0</sec>
 <nanosec>20</nanosec>
 </nackSupressionDuration>
 </times>

 <!--You can also change the values of DisablePositiveACKsQosPolicy.-->
 <!--See DisablePositiveACKsQosPolicy section for further details-->

 <!--Disable heartbeat piggyback mechanism.-->
 <disable_heartbeat_piggyback>true</disable_heartbeat_piggyback>
</data_writer>

3.1.2.2.11. TransportConfigQos

This QoS Policy allows the configuration of the transport layer settings.
See TransportConfigQos.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	user_transports

	std::vector<std::shared_ptr<TransportDescriptorInterface>>

	Empty vector

	use_builtin_transports

	bool

	true

	send_socket_buffer_size

	uint32_t

	0

	listen_socket_buffer_size

	uint32_t

	0

	user_transports:
This data member defines the list of transports to use alongside or in place of builtins.

	use_builtin_transports:
It controls whether the built-in transport layer is enabled or disabled. If it is set to
false, the default UDPv4 implementation is disabled.

	send_socket_buffer_size:
By default, Fast DDS creates socket buffers using the system default size. This data
member allows to change the send socket buffer size used to send data.

	listen_socket_buffer_size:
The listen socket buffer size is also created with the system default size, but it can
be changed using this data member.

Note

This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

TransportDescriptorInterface

This structure is the base for the data type used to define transport configuration.

List of structure members:

	Member Name

	Type

	maxMessageSize

	uint32_t

	maxInitialPeersRange

	uint32_t

	maxMessageSize:
This member sets the maximum size in bytes of the transport’s message buffer.

	maxInitialPeersRange:
This member states the maximum number of guessed initial peers to try to connect.

Example

C++

TransportConfigQos transport;
//Add new transport to the list of user transports
std::shared_ptr<eprosima::fastdds::rtps::UDPv4TransportDescriptor> descriptor =
 std::make_shared<eprosima::fastdds::rtps::UDPv4TransportDescriptor>();
descriptor->sendBufferSize = 9126;
descriptor->receiveBufferSize = 9126;
transport.user_transports.push_back(descriptor);
//Set use_builtin_transports to false
transport.use_builtin_transports = false;

XML

<transport_descriptors>
 <transport_descriptor>
 <transport_id>my_transport</transport_id>
 <type>UDPv4</type>
 <sendBufferSize>9216</sendBufferSize>
 <receiveBufferSize>9216</receiveBufferSize>
 </transport_descriptor>
</transport_descriptors>

<participant profile_name="my_transport">
 <rtps>
 <userTransports>
 <transport_id>my_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 </rtps>
</participant>

3.1.2.2.12. TypeConsistencyQos

This QoS Policy allows the configuration of the XTypes extension QoS on the DataReader.
See TypeConsistencyQos.

List of QoS Policy data members:

	Data Member Name

	Type

	type_consistency

	TypeConsistencyEnforcementQosPolicy

	representation

	DataRepresentationQosPolicy

	type_consistency:
It states the rules for the data types compatibility.
See TypeConsistencyEnforcementQosPolicy for further details.

	representation:
It specifies the data representations valid for the entities.
See DataRepresentationQosPolicy for further details.

Note

This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

TypeConsistencyQos consistency_qos;
//You can change the DataRepresentationQosPolicy. For further details see DataRepresentationQosPolicySection section.
consistency_qos.representation.m_value.push_back(DataRepresentationId_t::XCDR2_DATA_REPRESENTATION);
//You can change the TypeConsistencyEnforcementQosPolicy. For further details see TypeConsistencyEnforcementQosPolicy section.
consistency_qos.type_consistency.m_kind = TypeConsistencyKind::ALLOW_TYPE_COERCION;

XML

This QoS Policy cannot be configured using XML for the moment.

3.1.2.2.13. WireProtocolConfigQos

This QoS Policy allows the configuration of the wire protocol.
See WireProtocolConfigQos.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	prefix

	GuidPrefix_t

	0

	participant_id

	int32_t

	-1

	builtin

	BuiltinAttributes

	

	port

	PortParameters

	

	throughput_controller

	ThroughputControllerDescriptor

	

	default_unicast_locator_list

	LocatorList

	Empty List

	default_multicast_locator_list

	LocatorList

	Empty List

	prefix:
This data member allows the user to set manually the GUID prefix.

	participant_id:
It sets the participant identifier. By default, it will be automatically generated by the Domain.

	builtin:
This data member allows the configuration of the built-in parameters.

	port:
This data member allows the configuration of the port parameters and gains related to the RTPS protocol
(Well Known Ports).

	throughput_controller:
It allows the configuration of the throughput settings.

	default_unicast_locator_list:
States the default list of unicast locators to be used for any endpoint defined
inside the RTPSParticipant in the case that it was defined without unicast locators. This list should include at
least one locator.

	default_multicast_locator_list:
Stores the default list of multicast locators to be used for any endpoint defined
inside the RTPSParticipant in the case that it was defined without multicast locators. This list is usually left
empty.

Note

This QoS Policy concerns to DomainParticipant entities.

Important

The only mutable field on enabled entities is m_DiscoveryServers, which is contained in
discovery_config within builtin (see
Modifying remote servers list at run time).

ThroughputControllerDescriptor

This structure allows to limit the output bandwidth.
See ThroughputControllerDescriptor.

List of structure members:

	Member Name

	Type

	bytesPerPeriod

	uint32_t

	periodMillisecs

	uint32_t

	bytesPerPeriod:
This member states the number of bytes that this controller will allow in a given period.

	periodMillisecs:
It specifies the window of time in which no more than bytesPerPeriod bytes are allowed.

Warning

This has been deprecated in favor of FlowControllersQos

Example

C++

WireProtocolConfigQos wire_protocol;
//Set the guid prefix
std::istringstream("72.61.73.70.66.61.72.6d.74.65.73.74") >> wire_protocol.prefix;
//Configure Builtin Attributes
wire_protocol.builtin.discovery_config.discoveryProtocol =
 eprosima::fastrtps::rtps::DiscoveryProtocol_t::SERVER;
//Add locator to unicast list
eprosima::fastrtps::rtps::Locator_t server_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(server_locator, "192.168.10.57");
server_locator.port = 56542;
wire_protocol.builtin.metatrafficUnicastLocatorList.push_back(server_locator);
// Limit to 300kb per second.
eprosima::fastrtps::rtps::ThroughputControllerDescriptor slowPublisherThroughputController{300000, 1000};
wire_protocol.throughput_controller = slowPublisherThroughputController;
//Add locator to default unicast locator list
eprosima::fastrtps::rtps::Locator_t unicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(unicast_locator, 192, 168, 1, 41);
unicast_locator.port = 7400;
wire_protocol.default_unicast_locator_list.push_back(unicast_locator);
//Add locator to default multicast locator list
eprosima::fastrtps::rtps::Locator_t multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(multicast_locator, 192, 168, 1, 41);
multicast_locator.port = 7400;
wire_protocol.default_multicast_locator_list.push_back(multicast_locator);

XML

<participant profile_name="UDP SERVER" is_default_profile="true">
 <rtps>
 <prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 <throughputController>
 <bytesPerPeriod>300000</bytesPerPeriod>
 <periodMillisecs>1000</periodMillisecs>
 </throughputController>
 <defaultUnicastLocatorList>
 <locator>
 <udpv4>
 <!-- Access as physical, like UDP -->
 <port>7400</port>
 <address>192.168.1.41</address>
 </udpv4>
 </locator>
 </defaultUnicastLocatorList>

 <defaultMulticastLocatorList>
 <locator>
 <udpv4>
 <!-- Access as physical, like UDP -->
 <port>7400</port>
 <address>192.168.1.41</address>
 </udpv4>
 </locator>
 </defaultMulticastLocatorList>
 </rtps>
</participant>

3.1.2.2.14. WriterResourceLimitsQos

This QoS Policy states the limits for the matched DataReaders’ resource limited collections based on the maximum
number of DataReaders that are going to match with the DataWriter.
See WriterResourceLimitsQos.

List of QoS Policy data members:

	Data Member Name

	Type

	matched_subscriber_allocation

	ResourceLimitedContainerConfig

	reader_filters_allocation

	ResourceLimitedContainerConfig

Note

This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

Example

C++

WriterResourceLimitsQos writer_limits;
//Set the maximum size for reader matched resource limits collection to 3 and its allocation configuration to fixed size
writer_limits.matched_subscriber_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// Set the maximum number of writer side content filters to 1 and its allocation configuration to fixed size
writer_limits.reader_filters_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<data_writer profile_name="alloc_qos_example_pub_for_topic_1">
 <!-- we know we will have three matching subscribers -->
 <matchedSubscribersAllocation>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </matchedSubscribersAllocation>

 <!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

 3.1.2.3. XTypes Extensions

3.1.2.3. XTypes Extensions

This section explain those QoS Policy extensions defined in the XTypes Specification [https://www.omg.org/spec/DDS-XTypes/]:

	DataRepresentationQosPolicy

	TypeConsistencyEnforcementQosPolicy

3.1.2.3.1. DataRepresentationQosPolicy

This XTypes QoS Policy states which data representations will be used by the DataWriters and DataReaders.

The DataWriters offer a single data representation that will be used to communicate with the matched DataReaders.
The DataReaders can request one or more data representations and in order to have communication with the DataWriter,
the offered data representation needs to be contained within the DataReader request.
See DataRepresentationQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	m_value

	std::vector<DataRepresentationId>

	Empty vector

Note

This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

DataRepresentationId

There are three possible values (see DataRepresentationId):

	XCDR_DATA_REPRESENTATION:
This option corresponds to the first version of the Extended CDR Representation encoding.

	XML_DATA_REPRESENTATION:
This option corresponds to the XML Data Representation.

	XCDR2_DATA_REPRESENTATION:
This option corresponds to the second version of the Extended CDR Representation encoding.

Example

C++

DataRepresentationQosPolicy data_representation;
//Add XCDR v1 data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t::XCDR_DATA_REPRESENTATION);
//Add XML data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t::XML_DATA_REPRESENTATION);

XML

This QoS Policy cannot be configured using XML for the moment.

3.1.2.3.2. TypeConsistencyEnforcementQosPolicy

This XTypes QoS Policy extension defines the rules for determining whether the data type used in the
DataWriter is consistent with the one used in the DataReader.
See TypeConsistencyEnforcementQosPolicy.

List of QoS Policy data members:

	Data Member Name

	Type

	Default Value

	m_kind

	TypeConsistencyKind

	ALLOW_TYPE_COERCION

	m_ignore_sequence_bounds

	bool

	true

	m_ignore_string_bounds

	bool

	true

	m_ignore_member_names

	bool

	true

	m_prevent_type_widening

	bool

	true

	m_force_type_validation

	bool

	true

	m_kind:
It determines whether the type in the DataWriter type must be equal to the type in the DataReader or not.
See TypeConsistencyKind for further details.

	m_ignore_sequence_bounds:
This data member controls whether the sequence bounds are taken into account for type
assignability or not. If its value is true, the sequences maximum lengths are not considered, which means that a
sequence T2 with length L2 would be assignable to a sequence T1 with length L1, even if L2 is greater than L1.
But if it is false, L1 must be higher or equal to L2 to consider the sequences as assignable.

	m_ignore_string_bounds:
It controls whether the string bounds are considered for type assignation or not.
If its value is true, the strings maximum lengths are not considered, which means that a string S2 with length L2
would be assignable to a string S1 with length L1, even if L2 is greater than L1.
But if it is false, L1 must be higher or equal to L2 to consider the strings as assignable.

	m_ignore_member_names:
This boolean controls whether the member names are taken into consideration for
type assignability or not.
If it is true, apart from the member ID, the member names are considered as part of assignability, which means that
the members with the same ID must also have the same name. But if the value is false, the member names are ignored.

	m_prevent_type_widening:
This data member controls whether the type widening is allowed or not.
If it is false, the type widening is permitted, but if true, a wider type cannot be assignable to a narrower type.

	m_force_type_validation:
It controls if the service needs the type information to complete the matching between a
DataWriter and a DataReader.
If it is enabled, it must have the Complete Type Information, otherwise it is not necessary.

Note

This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

TypeConsistencyKind

There are two possible values:

	DISALLOW_TYPE_COERCION:
The DataWriter and the DataReader must support the same data type in order to
communicate.

	ALLOW_TYPE_COERCION:
The DataWriter and the DataReader do not need to support the same data type in order to
communicate as long as the DataReader’s type is assignable from the DataWriter’s type.

Example

C++

TypeConsistencyEnforcementQosPolicy type_enforcement;
//The TypeConsistencyEnforcementQosPolicy is default constructed with kind = ALLOW_TYPE_COERCION
//Change the kind to DISALLOW_TYPE_COERCION
type_enforcement.m_kind = TypeConsistencyKind::DISALLOW_TYPE_COERCION;
//Configures the system to ignore the sequence sizes in assignations
type_enforcement.m_ignore_sequence_bounds = true;
//Configures the system to ignore the string sizes in assignations
type_enforcement.m_ignore_string_bounds = true;
//Configures the system to ignore the member names. Members with same ID could have different names
type_enforcement.m_ignore_member_names = true;
//Configures the system to allow type widening
type_enforcement.m_prevent_type_widening = false;
//Configures the system to not use the complete Type Information in entities match process
type_enforcement.m_force_type_validation = false;

XML

This QoS Policy cannot be configured using XML for the moment.

 3.1.3. Status

3.1.3. Status

Each Entity is associated with a set of Status objects whose values represent
the communication status of that Entity.
Changes on the status values occur due to communication events related to each of the entities,
e.g., when new data arrives, a new participant is discovered, or a remote endpoint is lost.
The status is decomposed into several status objects, each concerning a different aspect of the communication,
so that each of these status objects can vary independently of the others.

Changes on a status object trigger the corresponding Listener callbacks
that allow the Entity to inform the application about the event.
For a given status object with name fooStatus, the entity listener interface defines a callback
function on_foo() that will be called when the status changes.
Beware that some statuses have data members that are reset every time the corresponding listener is called.
The only exception to this rule is when the entity has no listener attached, so the callback cannot be called.
See the documentation of each status for details.

Conditions and Wait-sets provide the application with an alternative mechanism to make it aware of changes
on status objects, by means of a StatusCondition.
The advantage of this mechanism is that the application can wait for changes on several entities at the same time.
It will also help the determinism of your system, as the notification is not processed on an internal thread, as
it is done when using listeners.

The entities expose functions to access the value of its statuses.
For a given status with name fooStatus, the entity exposes a member function get_foo() to
access the data in its fooStatus.
The only exceptions are DataOnReaders and DataAvailable.
These getter functions return a read-only struct where all data members are public and accessible to the application.
Beware that some statuses have data members that are reset every time the getter function is called by the application.
See the documentation of each status for details.

The following subsections describe each of the status objects, their data members, and to which
Entity type they concern.
The next table offers a quick reference as well as the corresponding bit for each status in the StatusMask.

	Status Name

	Entity

	Listener callback

	Accessor

	Bit

	InconsistentTopicStatus

	Topic

	on_inconsistent_topic()

	get_inconsistent_topic_status()

	0

	OfferedDeadlineMissedStatus

	DataWriter

	on_offered_deadline_missed()

	get_offered_deadline_missed_status()

	1

	RequestedDeadlineMissedStatus

	DataReader

	on_requested_deadline_missed()

	get_requested_deadline_missed_status()

	2

	OfferedIncompatibleQosStatus

	DataWriter

	on_offered_incompatible_qos()

	get_offered_incompatible_qos_status()

	5

	RequestedIncompatibleQosStatus

	DataReader

	on_requested_incompatible_qos()

	get_requested_incompatible_qos_status()

	6

	SampleLostStatus

	DataReader

	on_sample_lost()

	get_sample_lost_status()

	7

	SampleRejectedStatus

	DataReader

	on_sample_rejected()

	get_sample_rejected_status()

	8

	DataOnReaders

	Subscriber

	on_data_on_readers()

	N/A

	9

	DataAvailable

	DataReader

	on_data_available()

	N/A

	10

	LivelinessLostStatus

	DataWriter

	on_liveliness_lost()

	get_liveliness_lost_status()

	11

	LivelinessChangedStatus

	DataReader

	on_liveliness_changed()

	get_liveliness_changed_status()

	12

	PublicationMatchedStatus

	DataWriter

	on_publication_matched()

	get_publication_matched_status()

	13

	SubscriptionMatchedStatus

	DataReader

	on_subscription_matched()

	get_subscription_matched_status()

	14

3.1.3.1. InconsistentTopicStatus

This status changes every time an inconsistent remote Topic is discovered,
that is, one with the same name but different characteristics than the current Topic.
See InconsistentTopicStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	total_count:
Total cumulative count of inconsistent Topics discovered
since the creation of the current Topic.

	total_count_change:
The change in total_count since
the last time on_inconsistent_topic() was called or the status was read.

Warning

Currently this status is not supported and will be implemented in future releases.
As a result, trying to access this status will return NOT_SUPPORTED
and the corresponding listener will never be called.

3.1.3.2. DataOnReaders

This status becomes active every time there is new data available for the application on any
DataReader belonging to the current Subscriber.
There is no getter function to access this status, as it does not keep track of any information related to the
data itself.
Its only purpose is to trigger the on_data_on_readers() callback on the listener attached to the
DataReader.

3.1.3.3. DataAvailable

This status becomes active every time there is new data available for the application on the
DataReader.
There is no getter function to access this status, as it does not keep track of any information related to the
data itself.
Its only purpose is to trigger the on_data_available() callback on the listener attached to the
DataReader.

3.1.3.4. LivelinessChangedStatus

This status changes every time the liveliness status of a matched DataWriter has changed.
Either because a DataWriter that was inactive has become active or the other way around.
See LivelinessChangedStatus.

List of status data members:

	Data Member Name

	Type

	alive_count

	int32_t

	not_alive_count

	int32_t

	alive_count_change

	int32_t

	not_alive_count_change

	int32_t

	last_publication_handle

	InstanceHandle_t

	alive_count:
Total number of currently active DataWriters.
This count increases every time a newly matched DataWriter asserts its
liveliness or a DataWriter that was considered not alive reasserts its
liveliness.
It decreases every time an active DataWriter becomes not alive, either
because it failed to asserts its liveliness or because it was deleted for any reason.

	not_alive_count:
Total number of matched DataWriters
that are currently considered not alive.
This count increases every time an active DataWriter becomes not alive
because it fails to assert its liveliness.
It decreases every time a DataWriter that was considered not alive
reasserts its liveliness.
Normal matching and unmatching of DataWriters
does not affect this count.

	alive_count_change:
The change in alive_count since
the last time on_liveliness_changed() was called or the status was read.
It can have positive or negative values.

	not_alive_count_change:
The change in not_alive_count since
the last time on_liveliness_changed() was called or the status was read.
It can have positive or negative values.

	last_publication_handle:
Handle to the last DataWriter
whose liveliness status was changed.
If no liveliness has ever changed, it will have value c_InstanceHandle_Unknown.

3.1.3.5. RequestedDeadlineMissedStatus

This status changes every time the DataReader does not receive
data within the deadline period configured on its DataReaderQos.
See RequestedDeadlineMissedStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	last_instance_handle

	InstanceHandle_t

	total_count:
Total cumulative count of missed deadlines for any instance read by the
current DataReader.
As the deadline period applies to each instance of the Topic independently,
the count will will be incremented by one for each instance for which data
was not received in the deadline period.

	total_count_change:
The change in total_count since
the last time on_requested_deadline_missed() was called or the status was read.
It can only have zero or positive values.

	last_instance_handle:
Handle to the last instance that missed the deadline.
If no deadline was ever missed, it will have value c_InstanceHandle_Unknown.

3.1.3.6. RequestedIncompatibleQosStatus

This status changes every time the DataReader finds a
DataWriter that matches the Topic and has
a common partition, but with a QoS configuration incompatible with the one defined on the
DataReader.
See RequestedIncompatibleQosStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	last_policy_id

	QosPolicyId_t

	policies

	QosPolicyCountSeq

	total_count:
Total cumulative count of DataWriters found
matching the Topic and with a common partition, but with a QoS configuration
that is incompatible with the one defined on the DataReader.

	total_count_change:
The change in total_count since
the last time on_requested_incompatible_qos() was called or the status was read.
It can only have zero or positive values.

	last_policy_id:
The policy ID of one of the policies that was found to be incompatible with the
current DataReader.
If more than one policy happens to be incompatible, only one of them will be reported in this member.

	policies:
A collection that holds, for each policy, the total number of times that the policy was
found to be incompatible with the one offered by a remote DataWriter that
matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount
for more information the information that is stored for each policy.

3.1.3.6.1. QosPolicyCountSeq

Holds a QosPolicyCount for each Policy,
indexed by its QosPolicyId_t. Therefore, the Qos Policy with ID N will be at position N in the sequence.
See QosPolicyCountSeq.

DataReader* data_reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);

// Get how many times ReliabilityQosPolicy was not compatible with a remote writer
RequestedIncompatibleQosStatus status;
data_reader->get_requested_incompatible_qos_status(status);
uint32_t incompatible_reliability_count = status.policies[RELIABILITY_QOS_POLICY_ID].count;

3.1.3.6.2. QosPolicyCount

This structure holds a counter for a policy.
See QosPolicyCount.

List of data members:

	Data Member Name

	Type

	policy_id

	QosPolicyId_t

	count

	int32_t

	policy_id: The ID of the policy.

	count: The counter value for the policy.

3.1.3.7. SampleLostStatus

This status changes every time a new data sample is lost and will never be received.
See SampleLostStatus.

There are two different criteria for considering a sample as lost depending on the reliability():

	When using BEST_EFFORT_RELIABILITY_QOS, a not yet received sample is considered lost whenever a sample with a
greater sequence number is received.

	When using RELIABLE_RELIABILITY_QOS, a not yet received sample is considered lost whenever the
DataWriter informs, through an RTPS HEARTBEAT submessage, that the sample is not available anymore.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	total_count: Total cumulative count of lost samples under the Topic
of the current DataReader.

	total_count_change: The change in total_count since
the last time on_sample_lost() was called or the status was read.
It can only be positive or zero.

3.1.3.8. SampleRejectedStatus

This status changes every time an incoming data sample is rejected by the DataReader.
The reason for the rejection is defined by SampleRejectedStatusKind.
For further information see SampleRejectedStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	last_reason

	SampleRejectedStatusKind

	last_instance_handle

	InstanceHandle_t

	total_count:
Total cumulative count of rejected samples under the Topic
of the current DataReader.

	total_count_change:
The change in total_count since
the last time on_sample_rejected() was called or the status was read.
It can only be positive or zero.

	last_reason:
The reason for rejecting the last rejected sample.
If no sample was ever rejected, it will have value NOT_REJECTED.
See SampleRejectedStatusKind for further details.

	last_instance_handle:
Handle to the last instance whose sample was rejected.
If no sample was ever rejected, it will have value c_InstanceHandle_Unknown.

3.1.3.8.1. SampleRejectedStatusKind

In Fast DDS, samples can be rejected due to resource limit reasons.
However, the fact that the samples are rejected does not imply that they are lost, i.e. a rejected sample may be
accepted in the future.

SampleRejectedStatusKind specifies the reason of the rejection:

	NOT_REJECTED specifies that the samples were not rejected.

	REJECTED_BY_SAMPLES_LIMIT specifies that the samples were rejected because there were not enough resources to
stored them.
This can happen even when there are free resources if those resources must be guaranteed to be available for
other samples.
This situation, which arises in the RTPS layer, occurs when there are yet to be received samples with lower
sequence number and there is not enough resources for all of them (because max_samples has been
reached).

	REJECTED_BY_INSTANCES_LIMIT specifies that the samples were rejected because there were not enough resources
to allocate the samples’ instances.
This situation, which arises in the DDS layer, more precisely in the in the DataReader’s history,
occurs when the sample corresponds to a new instance for which the middleware should reserve resources but the
history’s number of instances has already reached max_instances.

	REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT specifies that the samples were rejected because there were not
enough resources within their instance to stored them.
This situation, which arises in the DDS layer, more precisely in the DataReader’s history, occurs
when the DataReader is configured with KEEP_ALL_HISTORY_QOS and the instance’s number of samples
has reached max_samples_per_instance.

3.1.3.9. SubscriptionMatchedStatus

This status changes every time the DataReader finds a DataWriter
that matches the Topic and has a common partition and a compatible QoS,
or has ceased to be matched with a DataWriter that was previously considered to be matched.
See SubscriptionMatchedStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	current_count

	int32_t

	current_count_change

	int32_t

	last_publication_handle

	InstanceHandle_t

	total_count:
Total cumulative count of remote DataWriters
that have been discovered publishing on the same Topic and has
a common partition and a compatible QoS.
They may not all be matched at the moment.

	total_count_change:
The change in total_count since
the last time on_subscription_matched() was called or the status was read.
It can only have zero or positive values.

	current_count:
The number of remote DataWriters
currently matched to the DataReader.

	current_count_change:
The change in current_count since
the last time on_subscription_matched() was called or the status was read.
It can have positive or negative values.

	last_publication_handle:
Handle to the last DataWriter
that matched the DataReader.
If no matching ever happened, it will have value c_InstanceHandle_Unknown.

3.1.3.10. LivelinessLostStatus

This status changes every time the DataWriter failed to assert its liveliness
during the period configured on its DataWriterQos.
This means that matched DataReader entities will consider the
DataWriter as no longer alive.
See LivelinessLostStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	total_count:
Total cumulative count of times that the DataWriter
failed to assert its liveliness during the period configured on its DataWriterQos,
becoming considered not alive.
This count does not change when the DataWriter is already considered not alive and
simply remains not alive for another liveliness period.

	total_count_change:
The change in total_count since
the last time on_liveliness_lost() was called or the status was read.
It can only have zero or positive values.

3.1.3.11. OfferedDeadlineMissedStatus

This status changes every time the DataWriter fails to provide
data within the deadline period configured on its DataWriterQos.
See OfferedDeadlineMissedStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	last_instance_handle

	InstanceHandle_t

	total_count:
Total cumulative count of missed deadlines for any instance written by the
current DataWriter.
As the deadline period applies to each instance of the Topic independently,
the count will will be incremented by one for each instance for which data
was not sent in the deadline period.

	total_count_change:
The change in total_count since
the last time on_offered_deadline_missed() was called or the status was read.
It can only have zero or positive values.

	last_instance_handle:
Handle to the last instance that missed the deadline.
If no deadline was ever missed, it will have value c_InstanceHandle_Unknown.

3.1.3.12. OfferedIncompatibleQosStatus

This status changes every time the DataWriter finds a
DataReader that matches the Topic and has
a common partition, but with a QoS configuration that is incompatible with the one defined on the
DataWriter.
See OfferedIncompatibleQosStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	last_policy_id

	QosPolicyId_t

	policies

	QosPolicyCountSeq

	total_count:
Total cumulative count of DataReaders found
matching the Topic and with a common partition, but with a QoS configuration
that is incompatible with the one defined on the DataWriter.

	total_count_change:
The change in total_count since
the last time on_offered_incompatible_qos() was called or the status was read.
It can only have zero or positive values.

	last_policy_id:
The policy ID of one of the policies that was found to be incompatible with the
current DataWriter.
If more than one policy happens to be incompatible, only one of them will be reported in this member.

	policies:
A collection that holds, for each policy, the total number of times that the policy was
found to be incompatible with the one requested by a remote DataReader that
matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount
for more information the information that is stored for each policy.

3.1.3.13. PublicationMatchedStatus

This status changes every time the DataWriter finds a DataReader
that matches the Topic and has a common partition and a compatible QoS,
or has ceased to be matched with a DataReader that was previously considered to be matched.
See PublicationMatchedStatus.

List of status data members:

	Data Member Name

	Type

	total_count

	int32_t

	total_count_change

	int32_t

	current_count

	int32_t

	current_count_change

	int32_t

	last_subscription_handle

	InstanceHandle_t

	total_count:
Total cumulative count of remote DataReaders
that have been discovered publishing on the same Topic and has
a common partition and a compatible QoS.
They may not all be matched at the moment.

	total_count_change:
The change in total_count since
the last time on_publication_matched() was called or the status was read.
It can only have zero or positive values.

	current_count:
The number of remote DataReaders
currently matched to the DataWriter.

	current_count_change:
The change in current_count since
the last time on_publication_matched() was called or the status was read.
It can have positive or negative values.

	last_subscription_handle:
Handle to the last DataReader
that matched the DataWriter.
If no matching ever happened, it will have value c_InstanceHandle_Unknown.

 3.1.4. Conditions and Wait-sets

3.1.4. Conditions and Wait-sets

Conditions (in conjunction with wait-sets) provide an alternative mechanism to allow the middleware
to notify communication status changes (including arrival of data) to the application.

This mechanism is wait-based. Its general use pattern is as follows:

	The application indicates which relevant information it wants to get, by means of Condition
objects (GuardCondition, StatusCondition, or ReadCondition)
and attaching them to a Wait-set via the attach_condition() call.

	It then waits on that Wait-set via the wait()
call until the trigger value of one or several Condition objects become true.

	It then uses the result of the wait() (i.e., the list of Condition objects with
trigger_value == true) to actually get the information by calling:

	get_status_changes(), then checking if any of the changes is relevant using the StatusMask::is_active()
method on the result and finally calling get_<communication_status> on the relevant Entity, when the condition is a StatusCondition and the status changes refer to plain communication status.
Refer to Status for additional information on the different statuses that can be queried.

	get_status_changes() and then Subscriber::get_datareaders() on the relevant Subscriber, when the condition is a
StatusCondition and the status changes refer to DataOnReaders.

	get_status_changes() and then DataReader::read()/DataReader::take() on the relevant DataReader, when the condition is a
StatusCondition and the status changes refer to DataAvailable.

	Directly DataReader::read_w_condition()/DataReader::take_w_condition() on the DataReader with the Condition as a parameter,
when it is a ReadCondition

	When a Condition is no longer relevant it can be detached from a Wait-set via the
detach_condition() call.

The first step is usually done in an initialization phase, while the others are put in the
application main loop.

class ApplicationJob
{
 WaitSet wait_set_;
 GuardCondition terminate_condition_;
 std::thread thread_;

 void main_loop()
 {
 // Main loop is repeated until the terminate condition is triggered
 while (false == terminate_condition_.get_trigger_value())
 {
 // Wait for any of the conditions to be triggered
 ReturnCode_t ret_code;
 ConditionSeq triggered_conditions;
 ret_code = wait_set_.wait(triggered_conditions, eprosima::fastrtps::c_TimeInfinite);
 if (ReturnCode_t::RETCODE_OK != ret_code)
 {
 // ... handle error
 continue;
 }

 // Process triggered conditions
 for (Condition* cond : triggered_conditions)
 {
 StatusCondition* status_cond = dynamic_cast<StatusCondition*>(cond);
 if (nullptr != status_cond)
 {
 Entity* entity = status_cond->get_entity();
 StatusMask changed_statuses = entity->get_status_changes();

 // Process status. Liveliness changed and data available are depicted as an example
 if (changed_statuses.is_active(StatusMask::liveliness_changed()))
 {
 std::cout << "Liveliness changed reported for entity " << entity->get_instance_handle() <<
 std::endl;
 }

 if (changed_statuses.is_active(StatusMask::data_available()))
 {
 std::cout << "Data avilable on reader " << entity->get_instance_handle() << std::endl;

 FooSeq data_seq;
 SampleInfoSeq info_seq;
 DataReader* reader = static_cast<DataReader*>(entity);

 // Process all the samples until no one is returned
 while (ReturnCode_t::RETCODE_OK == reader->take(data_seq, info_seq,
 LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
 ANY_VIEW_STATE, ANY_INSTANCE_STATE))
 {
 // Both info_seq.length() and data_seq.length() will have the number of samples returned
 for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)
 {
 // Only samples for which valid_data is true should be accessed
 if (info_seq[n].valid_data)
 {
 // Process sample on data_seq[n]
 }
 }

 // must return the loaned sequences when done processing
 reader->return_loan(data_seq, info_seq);
 }
 }
 }
 }
 }
 }

public:

 ApplicationJob(
 const std::vector<DataReader*>& readers,
 const std::vector<DataWriter*>& writers)
 {
 // Add a GuardCondition, so we can signal the processing thread to stop
 wait_set_.attach_condition(terminate_condition_);

 // Add the status condition of every reader and writer
 for (DataReader* reader : readers)
 {
 wait_set_.attach_condition(reader->get_statuscondition());
 }
 for (DataWriter* writer : writers)
 {
 wait_set_.attach_condition(writer->get_statuscondition());
 }

 thread_ = std::thread(&ApplicationJob::main_loop, this);
 }

 ~ApplicationJob()
 {
 // Signal the GuardCondition to force the WaitSet to wake up
 terminate_condition_.set_trigger_value(true);
 // Wait for the thread to finish
 thread_.join();
 }

};

// Application initialization
ReturnCode_t ret_code;
std::vector<DataReader*> application_readers;
std::vector<DataWriter*> application_writers;

// Create the participant, topics, readers, and writers.
ret_code = create_dds_application(application_readers, application_writers);
if (ReturnCode_t::RETCODE_OK != ret_code)
{
 // ... handle error
 return;
}

{
 ApplicationJob main_loop_thread(application_readers, application_writers);

 // ... wait for application termination signaling (signal handler, user input, etc)

 // ... Destructor of ApplicationJob takes care of stopping the processing thread
}

// Destroy readers, writers, topics, and participant
destroy_dds_application();

Calling the wait() operation on the Wait-set will block the calling thread
if the trigger value of all the conditions attached to it are false.
The thread will wake up, and the wait() operation will return RETCODE_OK, whenever the trigger value of any
of the attached conditions becomes true.

3.1.4.1. GuardCondition

A condition for which the trigger value is completely controlled by the application via its
set_trigger_value() operation.

3.1.4.2. StatusCondition

A condition that triggers whenever there are changes on the communication statuses of an Entity.

The sensitivity of the StatusCondition to a particular communication status is controlled by the
list of enabled_statuses set on the condition by means of the set_enabled_statuses() operation.

3.1.4.3. ReadCondition

A condition that triggers whenever the DataReader that created it contains at least a sample with
SampleState, ViewState, and InstanceState matching those of the ReadCondition.

The fact that the trigger value of a ReadCondition is dependent on the presence of samples on the
associated DataReader implies that a single take operation can potentially change the trigger value
of several ReadCondition conditions.
For example, if all samples are taken, any ReadCondition associated with the DataReader that were
triggered before, will see their trigger value changed to false.
Note that this does not guarantee that WaitSet objects that were separately attached to those
conditions will not be woken up.
Once we have trigger_value == true on a condition, it may wake up the attached Wait-set.
The condition transitioning to trigger_value == false does not necessarily ‘unwakeup’ the Wait-set,
as ‘unwakening’ may not be possible in general.
The consequence is that an application blocked on a Wait-set may return from the wait with a list
of conditions, some of which are no longer triggered.
This also may be the consequence of user actions.
A user manually calling set_trigger_value() could potentially trigger the same behavior.
This is unavoidable if multiple threads are concurrently waiting on separate Wait-set objects and
taking data associated with the same DataReader entity.

To elaborate further, consider the following example:
A ReadCondition that has a sample_state_mask = {NOT_READ} will have trigger_value == true whenever
a new sample arrives and will transition to false as soon as all the newly-arrived samples are
either read (so their status changes to READ) or taken (so they are no longer managed by the
DataReader).
However, if the same ReadCondition had a sample_state_mask = {READ, NOT_READ}, then the
trigger_value would only become false once all the newly-arrived samples are taken (it is not
sufficient to read them as that would only change the SampleState to READ which overlaps the mask
on the ReadCondition).

 3.2. Domain

3.2. Domain

A domain represents a separate communication plane.
It creates a logical separation among the Entities that share a common communication infrastructure.
Conceptually, it can be seen as a virtual network linking all applications running on the same domain
and isolating them from applications running on different domains.
This way, several independent distributed applications can coexist in the same physical network without interfering,
or even being aware of each other.

Every domain has a unique identifier, called domainId, that is implemented as a uint32 value.
Applications that share this domainId belong to the same domain and will be able to communicate.

For an application to be added to a domain, it must create an instance of
DomainParticipant with the appropriate domainId.
Instances of DomainParticipant are created through the
DomainParticipantFactory singleton.

Partitions introduce another entity isolation level within the domain.
While DomainParticipant will be able to communicate with each other if they
are in the same domain, it is still possible to isolate their Publishers and
Subscribers assigning them to different Partitions.

[image: ../../../_images/domain_class_diagram.svg]Domain class diagram

	3.2.1. DomainParticipant
	3.2.1.1. DomainParticipantQos
	3.2.1.1.1. Default DomainParticipantQos

	3.2.2. DomainParticipantListener

	3.2.3. DomainParticipantFactory
	3.2.3.1. DomainParticipantFactoryQos

	3.2.3.2. Loading profiles from an XML file

	3.2.4. Creating a DomainParticipant
	3.2.4.1. Profile based creation of a DomainParticipant

	3.2.4.2. Deleting a DomainParticipant

	3.2.5. Partitions
	3.2.5.1. Wildcards in Partitions

	3.2.5.2. Full example

 3.2.1. DomainParticipant

3.2.1. DomainParticipant

A DomainParticipant is the entry point of the application to a domain.
Every DomainParticipant is linked to a single domain from its creation,
and contains all the Entities related to that domain.
It also acts as a factory for Publisher, Subscriber
and Topic.

The behavior of the DomainParticipant can be modified with the QoS values
specified on DomainParticipantQos.
The QoS values can be set at the creation of the DomainParticipant,
or modified later with DomainParticipant::set_qos() member function.

As an Entity, DomainParticipant accepts a DomainParticipantListener
that will be notified of status changes on the DomainParticipant instance.

3.2.1.1. DomainParticipantQos

DomainParticipantQos controls the behavior of the DomainParticipant.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	UserDataQosPolicy

	user_data()

	Yes

	EntityFactoryQosPolicy

	entity_factory()

	Yes

	ParticipantResourceLimitsQos

	allocation()

	No

	PropertyPolicyQos

	properties()

	No

	WireProtocolConfigQos

	wire_protocol()

	No*

	TransportConfigQos

	transport()

	No

	FlowControllersQos

	flow_controllers()

	No

Important

The only mutable field in WireProtocolConfigQos is m_DiscoveryServers, which is contained in
discovery_config within builtin (see
Modifying remote servers list at run time).

Refer to the detailed description of each QosPolicy class for more information about their usage and
default values.

The QoS value of a previously created DomainParticipant can be modified using the
DomainParticipant::set_qos() member function.
Trying to modify an immutable QosPolicy on an already enabled DomainParticipant
will result on an error.
In such case, no changes will be applied and the DomainParticipant will keep its
previous DomainParticipantQos.

// Create a DomainParticipant with default DomainParticipantQos
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos = participant->get_qos();

// Modify QoS attributes
qos.entity_factory().autoenable_created_entities = false;

// Assign the new Qos to the object
participant->set_qos(qos);

3.2.1.1.1. Default DomainParticipantQos

The default DomainParticipantQos refers to the value returned by the
get_default_participant_qos() member function on the
DomainParticipantFactory singleton.
The special value PARTICIPANT_QOS_DEFAULT can be used as QoS argument on
create_participant()
or DomainParticipant::set_qos() member functions to indicate that the current default
DomainParticipantQos should be used.

When the system starts, the default DomainParticipantQos is equivalent to the default constructed
value DomainParticipantQos().
The default DomainParticipantQos can be modified at any time using the
set_default_participant_qos()
member function on the DomainParticipantFactory singleton.
Modifying the default DomainParticipantQos will not affect already existing
DomainParticipant instances.

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos_type1 = DomainParticipantFactory::get_instance()->get_default_participant_qos();

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(qos_type1) !=
 ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DomainParticipant with the new default DomainParticipantQos.
DomainParticipant* participant_with_qos_type1 =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(qos_type2) !=
 ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Topic with the new default TopicQos.
DomainParticipant* participant_with_qos_type2 =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default DomainParticipantQos to the original default constructed values
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(PARTICIPANT_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(DomainParticipantQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

set_default_participant_qos()
member function also accepts the value PARTICIPANT_QOS_DEFAULT
as input argument.
This will reset the current default DomainParticipantQos to the default constructed value
DomainParticipantQos().

// Create a custom DomainParticipantQos
DomainParticipantQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DomainParticipant with a custom DomainParticipantQos

DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_participant(0, custom_qos);
if (nullptr == participant)
{
 // Error
 return;
}

// Set the QoS on the participant to the default
if (participant->set_qos(PARTICIPANT_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (participant->set_qos(DomainParticipantFactory::get_instance()->get_default_participant_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value PARTICIPANT_QOS_DEFAULT has different meaning depending on where it is used:

	On create_participant() and DomainParticipant::set_qos() it refers to the
default DomainParticipantQos as returned by get_default_participant_qos().

	On set_default_participant_qos() it refers to the default constructed
DomainParticipantQos().

 3.2.2. DomainParticipantListener

3.2.2. DomainParticipantListener

DomainParticipantListener is an abstract class defining the callbacks that will be triggered
in response to state changes on the DomainParticipant.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

DomainParticipantListener inherits from TopicListener,
PublisherListener, and SubscriberListener.
Therefore, it has the ability to react to every kind of event that is
reported to any of its attached Entities.
Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that DomainParticipantListener inherits from other Listeners will only be called
if no other Entity was able to handle the event,
either because it has no Listener attached,
or because the callback is disabled by the StatusMask on the Entity.

Additionally, DomainParticipantListener adds the following callbacks:

	on_participant_discovery(): A new DomainParticipant is discovered in the same domain,
a previously known DomainParticipant has been removed, or some DomainParticipant
has changed its QoS.

	on_subscriber_discovery(): A new Subscriber is discovered in the same domain,
a previously known Subscriber has been removed,
or some Subscriber has changed its QoS.

	on_publisher_discovery(): A new Publisher is discovered in the same domain,
a previously known Publisher has been removed,
or some Publisher has changed its QoS.

	on_type_discovery(): A new data Type is discovered in the same domain.

	on_type_dependencies_reply(): The Type lookup client received a replay to a getTypeDependencies() request.
This callback can be used to retrieve the new type using the getTypes() request and create a new
dynamic type using the retrieved type object.

	on_type_information_received(): A new TypeInformation has been received from a newly discovered
DomainParticipant.

	onParticipantAuthentication(): Informs about the result of the authentication process
of a remote DomainParticipant (either on failure or success).

Important

For more information about callbacks and its hierarchy, please refer to
Listener.

class CustomDomainParticipantListener : public DomainParticipantListener
{

public:

 CustomDomainParticipantListener()
 : DomainParticipantListener()
 {
 }

 virtual ~CustomDomainParticipantListener()
 {
 }

 virtual void on_participant_discovery(
 DomainParticipant* /*participant*/,
 eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&& info)
 {
 if (info.status == eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERED_PARTICIPANT)
 {
 std::cout << "New participant discovered" << std::endl;
 }
 else if (info.status == eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::REMOVED_PARTICIPANT ||
 info.status == eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DROPPED_PARTICIPANT)
 {
 std::cout << "New participant lost" << std::endl;
 }
 }

#if HAVE_SECURITY
 virtual void onParticipantAuthentication(
 DomainParticipant* /*participant*/,
 eprosima::fastrtps::rtps::ParticipantAuthenticationInfo&& info)
 {
 if (info.status == eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::AUTHORIZED_PARTICIPANT)
 {
 std::cout << "A participant was authorized" << std::endl;
 }
 else if (info.status == eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::UNAUTHORIZED_PARTICIPANT)
 {
 std::cout << "A participant failed authorization" << std::endl;
 }
 }

#endif // if HAVE_SECURITY

 virtual void on_subscriber_discovery(
 DomainParticipant* /*participant*/,
 eprosima::fastrtps::rtps::ReaderDiscoveryInfo&& info)
 {
 if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_READER)
 {
 std::cout << "New subscriber discovered" << std::endl;
 }
 else if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_READER)
 {
 std::cout << "New subscriber lost" << std::endl;
 }
 }

 virtual void on_publisher_discovery(
 DomainParticipant* /*participant*/,
 eprosima::fastrtps::rtps::WriterDiscoveryInfo&& info)
 {
 if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERED_WRITER)
 {
 std::cout << "New publisher discovered" << std::endl;
 }
 else if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo::REMOVED_WRITER)
 {
 std::cout << "New publisher lost" << std::endl;
 }
 }

 virtual void on_type_discovery(
 DomainParticipant* participant,
 const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
 const eprosima::fastrtps::string_255& topic,
 const eprosima::fastrtps::types::TypeIdentifier* identifier,
 const eprosima::fastrtps::types::TypeObject* object,
 eprosima::fastrtps::types::DynamicType_ptr dyn_type)
 {
 (void)participant, (void)request_sample_id, (void)topic, (void)identifier, (void)object, (void)dyn_type;
 std::cout << "New data type discovered" << std::endl;

 }

 virtual void on_type_dependencies_reply(
 DomainParticipant* participant,
 const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
 const eprosima::fastrtps::types::TypeIdentifierWithSizeSeq& dependencies)
 {
 (void)participant, (void)request_sample_id, (void)dependencies;
 std::cout << "Answer to a request for type dependencies was received" << std::endl;
 }

 virtual void on_type_information_received(
 DomainParticipant* participant,
 const eprosima::fastrtps::string_255 topic_name,
 const eprosima::fastrtps::string_255 type_name,
 const eprosima::fastrtps::types::TypeInformation& type_information)
 {
 (void)participant, (void)topic_name, (void)type_name, (void)type_information;
 std::cout << "New data type information received" << std::endl;
 }

};

 3.2.3. DomainParticipantFactory

3.2.3. DomainParticipantFactory

The sole purpose of this class is to allow the creation and destruction of DomainParticipant objects.
DomainParticipantFactory itself has no factory, it is a singleton object that can be accessed
through the get_instance() static member function on the DomainParticipantFactory
class.

The behavior of the DomainParticipantFactory can be modified with the QoS values
specified on DomainParticipantFactoryQos.
Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory::set_qos() member function.

DomainParticipantFactory does not accept any Listener, since it is not an Entity.

3.2.3.1. DomainParticipantFactoryQos

DomainParticipantFactoryQos controls the behavior of the DomainParticipantFactory.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	EntityFactoryQosPolicy

	entity_factory()

	Yes

Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory::set_qos() member function.

DomainParticipantFactoryQos qos;

// Setting autoenable_created_entities to true makes the created DomainParticipants
// to be enabled upon creation
qos.entity_factory().autoenable_created_entities = true;
if (DomainParticipantFactory::get_instance()->set_qos(qos) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.
// The returned DomainParticipant is already enabled
DomainParticipant* enabled_participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == enabled_participant)
{
 // Error
 return;
}

// Setting autoenable_created_entities to false makes the created DomainParticipants
// to be disabled upon creation
qos.entity_factory().autoenable_created_entities = false;
if (DomainParticipantFactory::get_instance()->set_qos(qos) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.
// The returned DomainParticipant is disabled and will need to be enabled explicitly
DomainParticipant* disabled_participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == disabled_participant)
{
 // Error
 return;
}

3.2.3.2. Loading profiles from an XML file

To create Entities based on XML profiles, the file containing such profiles must be loaded first.

If the profile is described in one of the default loaded files, it will be automatically available on initialization.
Otherwise, load_XML_profiles_file() member function can be used to load the profiles in
the XML.
See section XML profiles for more information regarding XML profile format and automatic loading.

Once loaded, the name of the profiles can be used to create Entities that will have QoS settings according to
the profile specifications.

// Load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Profiles can now be used to create Entities
DomainParticipant* participant_with_profile =
 DomainParticipantFactory::get_instance()->create_participant_with_profile(0, "participant_profile");
if (nullptr == participant_with_profile)
{
 // Error
 return;
}

 3.2.4. Creating a DomainParticipant

3.2.4. Creating a DomainParticipant

Creation of a DomainParticipant is done with the create_participant()
member function on the
DomainParticipantFactory singleton, that acts as a factory for the DomainParticipant.

Mandatory arguments are:

	The DomainId that identifies the domain where the DomainParticipant will be created.

	The DomainParticipantQos describing the behavior of the DomainParticipant.
If the provided value is TOPIC_QOS_DEFAULT, the value of the DomainParticipantQos is used.

Optional arguments are:

	A Listener derived from DomainParticipantListener, implementing the callbacks
that will be triggered in response to events and state changes on the DomainParticipant.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DomainParticipantListener.
By default all events are enabled.

Warning

Following the DDSI-RTPS V2.2 [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] standard (Section 9.6.1.1), the default ports are calculated depending on the
DomainId, as it is explained in section Well Known Ports.
Thus, it is encouraged to use DomainId lower than 200
(over DomainId 233 default port assign will fail consistently).

create_participant()
will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant with default DomainParticipantQos and no Listener
// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.
DomainParticipant* participant_with_default_attributes =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant_with_default_attributes)
{
 // Error
 return;
}

// A custom DomainParticipantQos can be provided to the creation method
DomainParticipantQos custom_qos;

// Modify QoS attributes
// (...)

DomainParticipant* participant_with_custom_qos =
 DomainParticipantFactory::get_instance()->create_participant(0, custom_qos);
if (nullptr == participant_with_custom_qos)
{
 // Error
 return;
}

// Create a DomainParticipant with default QoS and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.
CustomDomainParticipantListener custom_listener;
DomainParticipant* participant_with_default_qos_and_custom_listener =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT,
 &custom_listener);
if (nullptr == participant_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.2.4.1. Profile based creation of a DomainParticipant

Instead of using a DomainParticipantQos, the name of a profile
can be used to create a DomainParticipant with the create_participant_with_profile()
member function on the DomainParticipantFactory singleton.

Mandatory arguments are:

	The DomainId that identifies the domain where the DomainParticipant will be created.
Do not use DomainId higher than 200 (see Creating a DomainParticipant).

	The name of the profile to be applied to the DomainParticipant.

Optional arguments are:

	A Listener derived from DomainParticipantListener, implementing the callbacks
that will be triggered in response to events and state changes on the DomainParticipant.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DomainParticipantListener.
By default all events are enabled.

create_participant_with_profile() will return a null pointer if there was an error during
the operation, e.g if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant using a profile and no Listener
DomainParticipant* participant_with_profile =
 DomainParticipantFactory::get_instance()->create_participant_with_profile(0, "participant_profile");
if (nullptr == participant_with_profile)
{
 // Error
 return;
}

// Create a DomainParticipant using a profile and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
CustomDomainParticipantListener custom_listener;
DomainParticipant* participant_with_profile_and_custom_listener =
 DomainParticipantFactory::get_instance()->create_participant_with_profile(0, "participant_profile",
 &custom_listener);
if (nullptr == participant_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.2.4.2. Deleting a DomainParticipant

A DomainParticipant can be deleted with the delete_participant() member function on the
DomainParticipantFactory singleton.

Note

A DomainParticipant can only be deleted if all Entities belonging to the participant
(Publisher, Subscriber or Topic) have already been deleted.
Otherwise, the function will issue an error and the DomainParticipant will not be deleted.
This can be performed by using the delete_contained_entities() member function of the
DomainParticipant.

// Create a DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Use the DomainParticipant to communicate
// (...)

// Delete entities created by the DomainParticipant
if (participant->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{
 // DomainParticipant failed to delete the entities it created.
 return;
}

// Delete the DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.2.5. Partitions

3.2.5. Partitions

Partitions introduce a logical entity isolation level concept inside the physical isolation induced by a
Domain.
They represent another level to separate Publishers and
Subscribers beyond Domain and
Topic.
For a Publisher to communicate with a Subscriber,
they have to belong at least to one common partition.
In this sense, partitions represent a light mechanism to provide data separation among endpoints:

	Unlike Domain and Topic, Partitions can be changed dynamically
during the life cycle of the endpoint with little cost.
Specifically, no new threads are launched, no new memory is allocated, and the change history is not affected.
Beware that modifying the Partition membership of endpoints will trigger the announcement
of the new QoS configuration, and as a result, new endpoint matching may occur,
depending on the new Partition configuration.
Changes on the memory allocation and running threads may occur due to the matching of remote endpoints.

	Unlike Domain and Topic, an endpoint can belong to several Partitions
at the same time.
For certain data to be shared over different Topics, there must be a different
Publisher for each Topic,
each of them sharing its own history of changes.
On the other hand, a single Publisher can share the same data over different Partitions
using a single topic data change, thus reducing network overload.

The Partition membership of an endpoint can be configured on the PartitionQosPolicy
data member of the PublisherQos or SubscriberQos objects.
This member holds a list of Partition name strings.
If no Partition is defined for an entity, it will be automatically included in the default nameless Partition.
Therefore, a Publisher and a Subscriber that specify no Partition will still
be able to communicate through the default nameless Partition.

Warning

Partitions are linked to the endpoint and not to the changes.
This means that the endpoint history is oblivious to modifications in the Partitions.
For example, if a Publisher switches Partitions and afterwards needs to resend some older change again,
it will deliver it to the new Partition set, regardless of which Partitions were defined
when the change was created.
This means that a late joiner Subscriber may receive changes that were created when another
set of Partitions was active.

3.2.5.1. Wildcards in Partitions

Partition name entries can have wildcards following the naming conventions defined by the
POSIX fnmatch API (1003.2-1992 section B.6 [https://standards.ieee.org/standard/1003_2-1992.html]).
Entries with wildcards can match several names, allowing an endpoint to easily be included in several Partitions.
Two Partition names with wildcards will match if either of them matches the other one according to fnmatch.
That is, the matching is checked both ways.
For example, consider the following configuration:

	A Publisher with Partition part*

	A Subscriber with Partition partition*

Even though partition* does not match part*, these Publisher and Subscriber
will communicate between them because part* matches partition*.

Note that a Partition with name * will match any other partition except the default Partition.

3.2.5.2. Full example

Given a system with the following Partition configuration:

	Participant_1

	Pub_11

	{“Partition_1”, “Partition_2”}

	Pub_12

	{“*”}

	Participant_2

	Pub_21

	{}

	Pub_22

	{“Partition*”}

	Participant_3

	Subs_31

	{“Partition_1”}

	Subs_32

	{“Partition_2”}

	Subs_33

	{“Partition_3”}

	Subs_34

	{}

The endpoints will finally match the Partitions depicted on the following table.
Note that Pub_12 does not match the default Partition.

	
	Participant_1

	Participant_2

	Participant_3

	Pub_11

	Pub_12

	Pub_21

	Pub_22

	Subs_31

	Subs_32

	Subs_33

	Subs_34

	Partition_1

	✓

	✓

	✕

	✓

	✓

	✕

	✕

	✕

	Partition_2

	✓

	✓

	✕

	✓

	✕

	✓

	✕

	✕

	Partition_3

	✕

	✓

	✕

	✓

	✕

	✕

	✓

	✕

	{default}

	✕

	✕

	✓

	✕

	✕

	✕

	✕

	✓

The following table provides the communication matrix for the given example:

	
	Participant_1

	Participant_2

	Pub_11

	Pub_12

	Pub_21

	Pub_22

	Participant_3

	Subs_31

	✓

	✓

	✕

	✓

	Subs_32

	✓

	✓

	✕

	✓

	Subs_33

	✕

	✓

	✕

	✓

	Subs_34

	✕

	✕

	✓

	✕

The following piece of code shows the set of parameters needed for the use case depicted in this example.

	C++

	PublisherQos pub_11_qos;
pub_11_qos.partition().push_back("Partition_1");
pub_11_qos.partition().push_back("Partition_2");

PublisherQos pub_12_qos;
pub_12_qos.partition().push_back("*");

PublisherQos pub_21_qos;
//No partitions defined for pub_21

PublisherQos pub_22_qos;
pub_22_qos.partition().push_back("Partition*");

SubscriberQos subs_31_qos;
subs_31_qos.partition().push_back("Partition_1");

SubscriberQos subs_32_qos;
subs_32_qos.partition().push_back("Partition_2");

SubscriberQos subs_33_qos;
subs_33_qos.partition().push_back("Partition_3");

SubscriberQos subs_34_qos;
//No partitions defined for subs_34

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_writer profile_name="pub_11">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>Partition_1</name>
 <name>Partition_2</name>
 </names>
 </partition>
 </qos>
 </data_writer>

 <data_writer profile_name="pub_12">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>*</name>
 </names>
 </partition>
 </qos>
 </data_writer>

 <data_writer profile_name="pub_21">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 </data_writer>

 <data_writer profile_name="pub_22">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>Partition*</name>
 </names>
 </partition>
 </qos>
 </data_writer>

 <data_reader profile_name="subs_31">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>Partition_1</name>
 </names>
 </partition>
 </qos>
 </data_reader>

 <data_reader profile_name="subs_32">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>Partition_2</name>
 </names>
 </partition>
 </qos>
 </data_reader>

 <data_reader profile_name="subs_33">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 <qos>
 <partition>
 <names>
 <name>Partition_3</name>
 </names>
 </partition>
 </qos>
 </data_reader>

 <data_reader profile_name="subs_34">
 <topic>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 </topic>
 </data_reader>
</profiles>

 3.3. Publisher

3.3. Publisher

A publication is defined by the association of a DataWriter
to a Publisher.
To start publishing the values of a data instance, the application creates a new
DataWriter in a Publisher.
This DataWriter will be bound to the Topic
that describes the data type that is being transmitted.
Remote subscriptions that match with this
Topic will be able to receive the data value updates from the DataWriter.

[image: ../../../_images/publisher_class_diagram.svg]

	3.3.1. Publisher
	3.3.1.1. PublisherQos
	3.3.1.1.1. Default PublisherQos

	3.3.2. PublisherListener

	3.3.3. Creating a Publisher
	3.3.3.1. Profile based creation of a Publisher

	3.3.3.2. Deleting a Publisher

	3.3.4. DataWriter
	3.3.4.1. DataWriterQos
	3.3.4.1.1. Default DataWriterQos

	3.3.5. DataWriterListener

	3.3.6. Creating a DataWriter
	3.3.6.1. Profile based creation of a DataWriter

	3.3.6.2. Deleting a DataWriter

	3.3.7. Publishing data
	3.3.7.1. Blocking of the write operation

	3.3.7.2. Borrowing a data buffer

 3.3.1. Publisher

3.3.1. Publisher

The Publisher acts on behalf of one or several DataWriter objects
that belong to it.
It serves as a container that allows grouping different DataWriter objects under
a common configuration given by the PublisherQos of the Publisher.

DataWriter objects that belong to the same Publisher do not have any other
relation among each other beyond the PublisherQos of the Publisher and act independently
otherwise.
Specifically, a Publisher can host DataWriter objects for different Topics
and data types.

3.3.1.1. PublisherQos

PublisherQos controls the behavior of the Publisher.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	PresentationQosPolicy

	presentation()

	Yes

	PartitionQosPolicy

	partition()

	Yes

	GroupDataQosPolicy

	group_data()

	Yes

	EntityFactoryQosPolicy

	entity_factory()

	Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and
default values.

The QoS value of a previously created Publisher can be modified using the
Publisher::set_qos() member function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Publisher with default PublisherQos
Publisher* publisher =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
PublisherQos qos = publisher->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
publisher->set_qos(qos);

3.3.1.1.1. Default PublisherQos

The default PublisherQos refers to the value returned by the
get_default_publisher_qos() member function on the DomainParticipant instance.
The special value PUBLISHER_QOS_DEFAULT can be used as QoS argument on
create_publisher() or Publisher::set_qos() member functions to indicate that the current
default PublisherQos should be used.

When the system starts, the default PublisherQos is equivalent to the default constructed
value PublisherQos().
The default PublisherQos can be modified at any time using the
set_default_publisher_qos() member function on the DomainParticipant instance.
Modifying the default PublisherQos will not affect already existing
Publisher instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
PublisherQos qos_type1 = participant->get_default_publisher_qos();

// Modify QoS attributes
// (...)

// Set as the new default PublisherQos
if (participant->set_default_publisher_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_qos_type1 =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
PublisherQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default PublisherQos
if (participant->set_default_publisher_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_qos_type2 =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default PublisherQos to the original default constructed values
if (participant->set_default_publisher_qos(PUBLISHER_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (participant->set_default_publisher_qos(PublisherQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

set_default_publisher_qos() member function also accepts the special value
PUBLISHER_QOS_DEFAULT as input argument.
This will reset the current default PublisherQos to default constructed
value PublisherQos().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a custom PublisherQos
PublisherQos custom_qos;

// Modify QoS attributes
// (...)

// Create a publisher with a custom PublisherQos
Publisher* publisher = participant->create_publisher(custom_qos);
if (nullptr == publisher)
{
 // Error
 return;
}

// Set the QoS on the publisher to the default
if (publisher->set_qos(PUBLISHER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (publisher->set_qos(participant->get_default_publisher_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value PUBLISHER_QOS_DEFAULT has different meaning depending on where it is used:

	On create_publisher() and Publisher::set_qos() it refers to the default
PublisherQos.
as returned by get_default_publisher_qos().

	On set_default_publisher_qos() it refers to the default constructed
PublisherQos().

 3.3.2. PublisherListener

3.3.2. PublisherListener

PublisherListener is an abstract class defining the callbacks that will be triggered
in response to state changes on the Publisher.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

PublisherListener inherits from DataWriterListener.
Therefore, it has the ability to react to all events that are reported to the
DataWriter.
Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that PublisherListener inherits from DataWriterListener
will only be called if the triggering DataWriter has
no Listener attached,
or if the callback is disabled by the StatusMask on the DataWriter.

PublisherListener does not add any new callback.
Please, refer to the DataWriterListener for the list of inherited callbacks
and override examples.

 3.3.3. Creating a Publisher

3.3.3. Creating a Publisher

A Publisher always belongs to a DomainParticipant.
Creation of a Publisher is done with the create_publisher() member function on the
DomainParticipant instance, that acts as a factory for the Publisher.

Mandatory arguments are:

	The PublisherQos describing the behavior of the Publisher.
If the provided value is PUBLISHER_QOS_DEFAULT,
the value of the Default PublisherQos is used.

Optional arguments are:

	A Listener derived from PublisherListener, implementing the callbacks
that will be triggered in response to events and state changes on the Publisher.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
PublisherListener.
By default all events are enabled.

create_publisher() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Publisher with default PublisherQos and no Listener
// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.
Publisher* publisher_with_default_qos =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_default_qos)
{
 // Error
 return;
}

// A custom PublisherQos can be provided to the creation method
PublisherQos custom_qos;

// Modify QoS attributes
// (...)

Publisher* publisher_with_custom_qos =
 participant->create_publisher(custom_qos);
if (nullptr == publisher_with_custom_qos)
{
 // Error
 return;
}

// Create a Publisher with default QoS and a custom Listener.
// CustomPublisherListener inherits from PublisherListener.
// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.
CustomPublisherListener custom_listener;
Publisher* publisher_with_default_qos_and_custom_listener =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT, &custom_listener);
if (nullptr == publisher_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.3.3.1. Profile based creation of a Publisher

Instead of using a PublisherQos, the name of a profile
can be used to create a Publisher with the create_publisher_with_profile()
member function on the DomainParticipant instance.

Mandatory arguments are:

	A string with the name that identifies the Publisher.

Optional arguments are:

	A Listener derived from PublisherListener, implementing the callbacks
that will be triggered in response to events and state changes on the Publisher.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
PublisherListener.
By default all events are enabled.

create_publisher_with_profile() will return a null pointer if there was an error during the
operation, e.g. if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Publisher using a profile and no Listener
Publisher* publisher_with_profile =
 participant->create_publisher_with_profile("publisher_profile");
if (nullptr == publisher_with_profile)
{
 // Error
 return;
}

// Create a Publisher using a profile and a custom Listener.
// CustomPublisherListener inherits from PublisherListener.
CustomPublisherListener custom_listener;
Publisher* publisher_with_profile_and_custom_listener =
 participant->create_publisher_with_profile("publisher_profile", &custom_listener);
if (nullptr == publisher_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.3.3.2. Deleting a Publisher

A Publisher can be deleted with the delete_publisher() member function on the
DomainParticipant instance where the Publisher was created.

Note

A Publisher can only be deleted if all Entities belonging to the Publisher
(DataWriters) have already been deleted.
Otherwise, the function will issue an error and the Publisher will not be deleted.
This can be performed by using the delete_contained_entities() member function of the
Publisher.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Publisher
Publisher* publisher =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{
 // Error
 return;
}

// Use the Publisher to communicate
// (...)

// Delete the entities the Publisher created.
if (publisher->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{
 // Publisher failed to delete the entities it created.
 return;
}

// Delete the Publisher
if (participant->delete_publisher(publisher) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.3.4. DataWriter

3.3.4. DataWriter

A DataWriter is attached to exactly one Publisher that acts as a factory for it.
Additionally, each DataWriter is bound to a single Topic since its creation.
This Topic must exist prior to the creation of the DataWriter,
and must be bound to the data type that the DataWriter wants to publish.

The effect of creating a new DataWriter in a Publisher for a specific
Topic is to initiate a new publication with the name and data type described
by the Topic.

Once the DataWriter is created, the application can inform of changes in the data value using the
write() member function on the DataWriter.
These changes will be transmitted to all subscriptions matched with this publication.

3.3.4.1. DataWriterQos

DataWriterQos controls the behavior of the DataWriter.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	DurabilityQosPolicy

	durability()

	No

	DurabilityServiceQosPolicy

	durability_service()

	Yes

	DeadlineQosPolicy

	deadline()

	Yes

	LatencyBudgetQosPolicy

	latency_budget()

	Yes

	LivelinessQosPolicy

	liveliness()

	No

	ReliabilityQosPolicy

	reliability()

	No (*)

	DestinationOrderQosPolicy

	destination_order()

	No

	HistoryQosPolicy

	history()

	Yes

	ResourceLimitsQosPolicy

	resource_limits()

	Yes

	TransportPriorityQosPolicy

	transport_priority()

	Yes

	LifespanQosPolicy

	lifespan()

	Yes

	UserDataQosPolicy

	user_data()

	Yes

	OwnershipQosPolicy

	ownership()

	No

	OwnershipStrengthQosPolicy

	ownership_strength()

	Yes

	WriterDataLifecycleQosPolicy

	writer_data_lifecycle()

	Yes

	PublishModeQosPolicy

	publish_mode()

	Yes

	DataRepresentationQosPolicy

	representation()

	Yes

	PropertyPolicyQos

	properties()

	Yes

	RTPSReliableWriterQos

	reliable_writer_qos()

	Yes

	RTPSEndpointQos

	endpoint()

	Yes

	WriterResourceLimitsQos

	writer_resource_limits()

	Yes

	ThroughputControllerDescriptor

	throughput_controller()

	Yes

	DataSharingQosPolicy

	data_sharing()

	No

The following non-consolidated property-assigned QoS apply to DataWriters:

	Property name

	Non-consolidated QoS

	fastdds.push_mode

	DataWriter operating mode QoS Policy

	partitions

	Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and
default values.

Note

Reliability kind (whether the publication is reliable or best effort) is not mutable.
However, the max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataWriter can be modified using the
DataWriter::set_qos() member function.

// Create a DataWriter with default DataWriterQos
DataWriter* data_writer =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DataWriterQos qos = data_writer->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
data_writer->set_qos(qos);

3.3.4.1.1. Default DataWriterQos

The default DataWriterQos refers to the value returned by the
get_default_datawriter_qos() member function on the Publisher instance.
The special value DATAWRITER_QOS_DEFAULT can be used as QoS argument on create_datawriter()
or DataWriter::set_qos() member functions to indicate that the current default
DataWriterQos should be used.

When the system starts, the default DataWriterQos is equivalent to the default constructed
value DataWriterQos().
The default DataWriterQos can be modified at any time using the
set_default_datawriter_qos() member function on the Publisher instance.
Modifying the default DataWriterQos will not affect already existing
DataWriter instances.

// Get the current QoS or create a new one from scratch
DataWriterQos qos_type1 = publisher->get_default_datawriter_qos();

// Modify QoS attributes
// (...)

// Set as the new default DataWriterQos
if (publisher->set_default_datawriter_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DataWriter with the new default DataWriterQos.
DataWriter* data_writer_with_qos_type1 =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DataWriterQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default DataWriterQos
if (publisher->set_default_datawriter_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DataWriter with the new default DataWriterQos.
DataWriter* data_writer_with_qos_type2 =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default DataWriterQos to the original default constructed values
if (publisher->set_default_datawriter_qos(DATAWRITER_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (publisher->set_default_datawriter_qos(DataWriterQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

set_default_datawriter_qos() member function also accepts the special value DATAWRITER_QOS_DEFAULT
as input argument.
This will reset the current default DataWriterQos to default constructed
value DataWriterQos().

// Create a custom DataWriterQos
DataWriterQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DataWriter with a custom DataWriterQos
DataWriter* data_writer = publisher->create_datawriter(topic, custom_qos);
if (nullptr == data_writer)
{
 // Error
 return;
}

// Set the QoS on the DataWriter to the default
if (data_writer->set_qos(DATAWRITER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (data_writer->set_qos(publisher->get_default_datawriter_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value DATAWRITER_QOS_DEFAULT has different meaning depending on where it is used:

	On create_datawriter() and DataWriter::set_qos() it refers to the default DataWriterQos
as returned by get_default_datawriter_qos().

	On set_default_datawriter_qos() it refers to the default constructed
DataWriterQos().

 3.3.5. DataWriterListener

3.3.5. DataWriterListener

DataWriterListener is an abstract class defining the callbacks that will be triggered
in response to state changes on the DataWriter.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

DataWriterListener defines the following callbacks:

	on_publication_matched(): The DataWriter has found a
DataReader that matches the Topic and has
a common partition and a compatible QoS, or has ceased to be matched with a
DataReader that was previously considered to be matched.

	on_offered_deadline_missed(): The DataWriter failed to provide
data within the deadline period configured on its DataWriterQos.
It will be called for each deadline period and data instance for which the
DataWriter failed to provide data.

	on_offered_incompatible_qos(): The DataWriter has found a
DataReader that matches the Topic and has
a common partition, but with a requested QoS that is incompatible with the one defined on the
DataWriter.

	on_liveliness_lost(): The DataWriter did not respect the
liveliness configuration on its DataWriterQos, and therefore,
DataReader entities will consider the DataWriter
as no longer active.

class CustomDataWriterListener : public DataWriterListener
{

public:

 CustomDataWriterListener()
 : DataWriterListener()
 {
 }

 virtual ~CustomDataWriterListener()
 {
 }

 virtual void on_publication_matched(
 DataWriter* writer,
 const PublicationMatchedStatus& info)
 {
 (void)writer
 ;
 if (info.current_count_change == 1)
 {
 std::cout << "Matched a remote Subscriber for one of our Topics" << std::endl;
 }
 else if (info.current_count_change == -1)
 {
 std::cout << "Unmatched a remote Subscriber" << std::endl;
 }
 }

 virtual void on_offered_deadline_missed(
 DataWriter* writer,
 const OfferedDeadlineMissedStatus& status)
 {
 (void)writer, (void)status;
 std::cout << "Some data could not be delivered on time" << std::endl;
 }

 virtual void on_offered_incompatible_qos(
 DataWriter* /*writer*/,
 const OfferedIncompatibleQosStatus& status)
 {
 std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << status.last_policy_id <<
 ")" << std::endl;
 }

 virtual void on_liveliness_lost(
 DataWriter* writer,
 const LivelinessLostStatus& status)
 {
 (void)writer, (void)status;
 std::cout << "Liveliness lost. Matched Subscribers will consider us offline" << std::endl;
 }

};

 3.3.6. Creating a DataWriter

3.3.6. Creating a DataWriter

A DataWriter always belongs to a Publisher.
Creation of a DataWriter is done with the create_datawriter() member function on the
Publisher instance, that acts as a factory for the DataWriter.

Mandatory arguments are:

	A Topic bound to the data type that will be transmitted.

	The DataWriterQos describing the behavior of the DataWriter.
If the provided value is DATAWRITER_QOS_DEFAULT,
the value of the Default DataWriterQos is used.

Optional arguments are:

	A Listener derived from DataWriterListener, implementing the callbacks
that will be triggered in response to events and state changes on the DataWriter.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DataWriterListener.
By default all events are enabled.

create_datawriter() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DataWriter with default DataWriterQos and no Listener
// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.
DataWriter* data_writer_with_default_qos =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_default_qos)
{
 // Error
 return;
}

// A custom DataWriterQos can be provided to the creation method
DataWriterQos custom_qos;

// Modify QoS attributes
// (...)

DataWriter* data_writer_with_custom_qos =
 publisher->create_datawriter(topic, custom_qos);
if (nullptr == data_writer_with_custom_qos)
{
 // Error
 return;
}

// Create a DataWriter with default QoS and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.
CustomDataWriterListener custom_listener;
DataWriter* data_writer_with_default_qos_and_custom_listener =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT, &custom_listener);
if (nullptr == data_writer_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.3.6.1. Profile based creation of a DataWriter

Instead of using a DataWriterQos, the name of a profile
can be used to create a DataWriter with the create_datawriter_with_profile()
member function on the Publisher instance.

Mandatory arguments are:

	A Topic bound to the data type that will be transmitted.

	A string with the name that identifies the DataWriter.

Optional arguments are:

	A Listener derived from DataWriterListener, implementing the callbacks
that will be triggered in response to events and state changes on the DataWriter.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DataWriterListener.
By default all events are enabled.

create_datawriter_with_profile() will return a null pointer if there was an error during the
operation, e.g. if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DataWriter using a profile and no Listener
DataWriter* data_writer_with_profile =
 publisher->create_datawriter_with_profile(topic, "data_writer_profile");
if (nullptr == data_writer_with_profile)
{
 // Error
 return;
}

// Create a DataWriter using a profile and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
CustomDataWriterListener custom_listener;
DataWriter* data_writer_with_profile_and_custom_listener =
 publisher->create_datawriter_with_profile(topic, "data_writer_profile", &custom_listener);
if (nullptr == data_writer_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.3.6.2. Deleting a DataWriter

A DataWriter can be deleted with the delete_datawriter() member function on the
Publisher instance where the DataWriter was created.

// Create a DataWriter
DataWriter* data_writer =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
 // Error
 return;
}

// Use the DataWriter to communicate
// (...)

// Delete the DataWriter
if (publisher->delete_datawriter(data_writer) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.3.7. Publishing data

3.3.7. Publishing data

The user informs of a change in the value of a data instance with the write() member function on the
DataWriter. This change will then be communicated to every
DataReader matched with the DataWriter.
As a side effect, this operation asserts liveliness on the DataWriter itself,
the Publisher and the DomainParticipant.

The function takes two arguments:

	A pointer to the data instance with the new values.

	The handler to the instance.

An empty (i.e., default constructed InstanceHandle_t) instance handler can be used for the argument handle.
This indicates that the identity of the instance should be automatically deduced from the key of the
instance data.
Alternatively, the member function write() is overloaded to take only the pointer to the data instance,
which will always deduced the identity from the key of the instance data.

If the handle is not empty, then it must correspond to the value obtained with the getKey() of the
TypeSupport instance.
Otherwise the write function will fail with RETCODE_PRECONDITION_NOT_MET.

// Register the data type in the DomainParticipant.
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topic* custom_topic =
 participant->create_topic("topic_name", custom_type_support.get_type_name(), TOPIC_QOS_DEFAULT);
if (nullptr == custom_topic)
{
 // Error
 return;
}

// Create a DataWriter
DataWriter* data_writer =
 publisher->create_datawriter(custom_topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{
 // Error
 return;
}

// Get a data instance
void* data = custom_type_support->createData();

// Fill the data values
// (...)

// Publish the new value, deduce the instance handle
if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The data instance can be reused to publish new values,
// but delete it at the end to avoid leaks
custom_type_support->deleteData(data);

3.3.7.1. Blocking of the write operation

If the reliability kind is set to RELIABLE on the DataWriterQos,
the write() operation may block.
Specifically, if the limits specified in the configured resource limits have been reached, the
write() operation will block waiting for space to become available.
Under these circumstances, the reliability max_blocking_time configures the maximum time
the write operation may block waiting.
If max_blocking_time elapses before the DataWriter is able to store
the modification without exceeding the limits, the write operation will fail and return TIMEOUT.

3.3.7.2. Borrowing a data buffer

When the user calls write() with a new sample value,
the data is copied from the given sample to the DataWriter’s memory.
For large data types this copy can consume significant time and memory resources.
Instead, the DataWriter can loan a sample from its memory to the user,
and the user can fill this sample with the required values.
When write() is called with such a loaned sample,
the DataWriter does not copy its contents, as it already owns the buffer.

To use loaned data samples in publications, perform the following steps:

	Get a reference to a loaned sample using loan_sample().

	Use the reference to build the data sample.

	Write the sample using write().

Once write() has been called with a loaned sample,
the loan is considered returned, and it is not safe to make any
changes on the contents of the sample.

If function loan_sample() is called but the sample is never written,
the loan must be returned to the DataWriter using discard_loan().
Otherwise the DataWriter may run out of samples.

 // Borrow a data instance
 void* data = nullptr;
 if (ReturnCode_t::RETCODE_OK == data_writer->loan_sample(data))
 {
 bool error = false;

 // Fill the data values
 // (...)

 if (error)
 {
 // Return the loan without publishing
 data_writer->discard_loan(data);
 return;
 }

 // Publish the new value
 if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) != ReturnCode_t::RETCODE_OK)
 {
 // Error
 return;
 }
 }

 // The data instance can be reused to publish new values,
 // but delete it at the end to avoid leaks
 custom_type_support->deleteData(data);

 3.4. Subscriber

3.4. Subscriber

A subscription is defined by the association of a DataReader
to a Subscriber.
To start receiving updates of a publication, the application creates a new
DataReader in a Subscriber.
This DataReader will be bound to the Topic
that describes the data type that is going to be received.
The DataReader will then start receiving data value updates from
remote publications that match this Topic.

When the Subscriber receives data, it informs the application that new data is available.
Then, the application can use the DataReader to get the received data.

[image: ../../../_images/subscriber_class_diagram.svg]Subscriber class diagram

	3.4.1. Subscriber
	3.4.1.1. SubscriberQos
	3.4.1.1.1. Default SubscriberQos

	3.4.2. SubscriberListener

	3.4.3. Creating a Subscriber
	3.4.3.1. Profile based creation of a Subscriber

	3.4.3.2. Deleting a Subscriber

	3.4.4. DataReader
	3.4.4.1. DataReaderQos
	3.4.4.1.1. Default DataReaderQos

	3.4.5. DataReaderListener

	3.4.6. Creating a DataReader
	3.4.6.1. Profile based creation of a DataReader

	3.4.6.2. Deleting a DataReader

	3.4.7. SampleInfo
	3.4.7.1. sample_state

	3.4.7.2. view_state

	3.4.7.3. instance_state

	3.4.7.4. disposed_generation_count

	3.4.7.5. no_writers_generation_count

	3.4.7.6. sample_rank

	3.4.7.7. generation_rank

	3.4.7.8. absolute_generation_rank

	3.4.7.9. source_timestamp

	3.4.7.10. instance_handle

	3.4.7.11. publication_handle

	3.4.7.12. valid_data

	3.4.7.13. sample_identity

	3.4.7.14. related_sample_identity

	3.4.8. Accessing received data
	3.4.8.1. Loaning and Returning Data and SampleInfo Sequences

	3.4.8.2. Processing returned data

	3.4.8.3. Accessing data on callbacks

	3.4.8.4. Accessing data with a waiting thread
	3.4.8.4.1. Wait-sets and DataAvailable status condition

	3.4.8.4.2. DataReader non-blocking calls

 3.4.1. Subscriber

3.4.1. Subscriber

The Subscriber acts on behalf of one or several DataReader objects
that belong to it.
It serves as a container that allows grouping different DataReader objects under
a common configuration given by the SubscriberQos of the Subscriber.

DataReader objects that belong to the same Subscriber
do not have any other relation among each other beyond the SubscriberQos of the Subscriber
and act independently otherwise.
Specifically, a Subscriber can host DataReader objects
for different topics and data types.

3.4.1.1. SubscriberQos

SubscriberQos controls the behavior of the Subscriber.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	PresentationQosPolicy

	presentation()

	Yes

	PartitionQosPolicy

	partition()

	Yes

	GroupDataQosPolicy

	group_data()

	Yes

	EntityFactoryQosPolicy

	entity_factory()

	Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and
default values.

The QoS value of a previously created Subscriber can be modified using the
Subscriber::set_qos() member function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Subscriber with default SubscriberQos
Subscriber* subscriber =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
SubscriberQos qos = subscriber->get_qos();

// Modify QoS attributes
qos.entity_factory().autoenable_created_entities = false;

// Assign the new Qos to the object
subscriber->set_qos(qos);

3.4.1.1.1. Default SubscriberQos

The default SubscriberQos refers to the value returned by the
get_default_subscriber_qos() member function
on the DomainParticipant instance.
The special value SUBSCRIBER_QOS_DEFAULT can be used as QoS argument on
create_subscriber() or Subscriber::set_qos()
member functions to indicate that the current default SubscriberQos
should be used.

When the system starts, the default SubscriberQos is equivalent to the default constructed
value SubscriberQos().
The default SubscriberQos can be modified at any time using the
set_default_subscriber_qos() member function on the
DomainParticipant instance.
Modifying the default SubscriberQos will not affect already existing
Subscriber instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
SubscriberQos qos_type1 = participant->get_default_subscriber_qos();

// Modify QoS attributes
// (...)

// Set as the new default SubscriberQos
if (participant->set_default_subscriber_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_qos_type1 =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
SubscriberQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default SubscriberQos
if (participant->set_default_subscriber_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_qos_type2 =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default SubscriberQos to the original default constructed values
if (participant->set_default_subscriber_qos(SUBSCRIBER_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (participant->set_default_subscriber_qos(SubscriberQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

set_default_subscriber_qos() member function also accepts
the special value SUBSCRIBER_QOS_DEFAULT as input argument.
This will reset the current default SubscriberQos to default constructed
value SubscriberQos().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a custom SubscriberQos
SubscriberQos custom_qos;

// Modify QoS attributes
// (...)

// Create a subscriber with a custom SubscriberQos
Subscriber* subscriber = participant->create_subscriber(custom_qos);
if (nullptr == subscriber)
{
 // Error
 return;
}

// Set the QoS on the subscriber to the default
if (subscriber->set_qos(SUBSCRIBER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (subscriber->set_qos(participant->get_default_subscriber_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value SUBSCRIBER_QOS_DEFAULT has different meaning depending on where it is used:

	On create_subscriber() and Subscriber::set_qos() it refers to the default
SubscriberQos as returned by get_default_subscriber_qos().

	On set_default_subscriber_qos() it refers to the default constructed
SubscriberQos().

 3.4.2. SubscriberListener

3.4.2. SubscriberListener

SubscriberListener is an abstract class defining the
callbacks that will be triggered in response to state changes on the
Subscriber.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

SubscriberListener inherits from DataReaderListener.
Therefore, it has the ability to react to all events that are reported to the
DataReader.
Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that SubscriberListener inherits from
DataReaderListener will only be called if the triggering DataReader has no Listener attached,
or if the callback is disabled by the StatusMask on the DataReader.

Additionally, SubscriberListener adds the following callback:

	on_data_on_readers():
New data is available on any DataReader
belonging to this Subscriber.
There is no queuing of invocations to this callback, meaning that if several new data changes are received
at once, only one callback invocation may be issued for all of them, instead of one per change.
If the application is retrieving the received data on this callback, it must keep
reading data until no new changes are left.

Important

For more information about callbacks and its hierarchy, please refer to
Listener.

class CustomSubscriberListener : public SubscriberListener
{

public:

 CustomSubscriberListener()
 : SubscriberListener()
 {
 }

 virtual ~CustomSubscriberListener()
 {
 }

 virtual void on_data_on_readers(
 Subscriber* sub)
 {
 (void)sub;
 std::cout << "New data available" << std::endl;
 }

};

 3.4.3. Creating a Subscriber

3.4.3. Creating a Subscriber

A Subscriber always belongs to a DomainParticipant.
Creation of a Subscriber is done with the create_subscriber() member function on the
DomainParticipant instance, that acts as a factory for the Subscriber.

Mandatory arguments are:

	The SubscriberQos describing the behavior of the Subscriber.
If the provided value is SUBSCRIBER_QOS_DEFAULT,
the value of the Default SubscriberQos is used.

Optional arguments are:

	A Listener derived from SubscriberListener, implementing the callbacks
that will be triggered in response to events and state changes on the Subscriber.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
SubscriberListener.
By default all events are enabled.

create_subscriber() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Subscriber with default SubscriberQos and no Listener
// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.
Subscriber* subscriber_with_default_qos =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_default_qos)
{
 // Error
 return;
}

// A custom SubscriberQos can be provided to the creation method
SubscriberQos custom_qos;

// Modify QoS attributes
// (...)

Subscriber* subscriber_with_custom_qos =
 participant->create_subscriber(custom_qos);
if (nullptr == subscriber_with_custom_qos)
{
 // Error
 return;
}

// Create a Subscriber with default QoS and a custom Listener.
// CustomSubscriberListener inherits from SubscriberListener.
// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_default_qos_and_custom_listener =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, &custom_listener);
if (nullptr == subscriber_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.4.3.1. Profile based creation of a Subscriber

Instead of using a SubscriberQos, the name of a profile
can be used to create a Subscriber with the create_subscriber_with_profile()
member function on the DomainParticipant instance.

Mandatory arguments are:

	A string with the name that identifies the Subscriber.

Optional arguments are:

	A Listener derived from SubscriberListener, implementing the callbacks
that will be triggered in response to events and state changes on the Subscriber.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
SubscriberListener.
By default all events are enabled.

create_subscriber_with_profile() will return a null pointer if there was an error during
the operation, e.g. if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Subscriber using a profile and no Listener
Subscriber* subscriber_with_profile =
 participant->create_subscriber_with_profile("subscriber_profile");
if (nullptr == subscriber_with_profile)
{
 // Error
 return;
}

// Create a Subscriber using a profile and a custom Listener.
// CustomSubscriberListener inherits from SubscriberListener.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_profile_and_custom_listener =
 participant->create_subscriber_with_profile("subscriber_profile", &custom_listener);
if (nullptr == subscriber_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.4.3.2. Deleting a Subscriber

A Subscriber can be deleted with the delete_subscriber() member function on the
DomainParticipant instance where the Subscriber was created.

Note

A Subscriber can only be deleted if all Entities belonging to the Subscriber
(DataReaders) have already been deleted.
Otherwise, the function will issue an error and the Subscriber will not be deleted.
This can be performed by using the delete_contained_entities() member function of the
Subscriber.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Subscriber
Subscriber* subscriber =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
 // Error
 return;
}

// Use the Subscriber to communicate
// (...)

// Delete the entities the subscriber created
if (subscriber->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{
 // Subscriber failed to delete the entities it created
 return;
}

// Delete the Subscriber
if (participant->delete_subscriber(subscriber) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.4.4. DataReader

3.4.4. DataReader

A DataReader is attached to exactly one
Subscriber that acts as a factory for it.
Additionally, each DataReader is bound to a single
Topic since its creation.
This Topic must exist prior to the creation of the
DataReader,
and must be bound to the data type that the DataReader wants to publish.

The effect of creating a new DataReader in a
Subscriber for a specific
Topic is to initiate a new subscription with the name and data type described
by the Topic.

Once the DataReader is created, the application will be informed
when changes in the data value are received from remote publications.
These changes can then be retrieved using the DataReader::read_next_sample() or DataReader::take_next_sample()
member functions of the DataReader.

3.4.4.1. DataReaderQos

DataReaderQoS controls the behavior of the DataReader.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor/Mutator

	Mutable

	DurabilityQosPolicy

	durability()

	No

	DurabilityServiceQosPolicy

	durability_service()

	Yes

	DeadlineQosPolicy

	deadline()

	Yes

	LatencyBudgetQosPolicy

	latency_budget()

	Yes

	LivelinessQosPolicy

	liveliness()

	No

	ReliabilityQosPolicy

	reliability()

	No (*)

	DestinationOrderQosPolicy

	destination_order()

	No

	HistoryQosPolicy

	history()

	No

	ResourceLimitsQosPolicy

	resource_limits()

	No

	LifespanQosPolicy

	lifespan()

	Yes

	UserDataQosPolicy

	user_data()

	Yes

	OwnershipQosPolicy

	ownership()

	No

	PropertyPolicyQos

	properties()

	Yes

	RTPSEndpointQos

	endpoint()

	Yes

	ReaderResourceLimitsQos

	reader_resource_limits()

	Yes

	RTPSEndpoinTimeBasedFilterQosPolicytQos

	time_based_filter()

	Yes

	ReaderDataLifecycleQosPolicy

	reader_data_lifecycle()

	Yes

	RTPSReliableReaderQos

	reliable_reader_qos()

	Yes

	TypeConsistencyQos

	type_consistency()

	Yes

	DataSharingQosPolicy

	data_sharing()

	No

	boolean

	expects_inline_qos()

	Yes

The following non-consolidated property-assigned QoS apply to DataReaders:

	Property name

	Non-consolidated QoS

	partitions

	Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and
default values.

Note

Reliability kind (whether the publication is reliable or best effort) is not mutable.
However, the max_blocking_time data member of ReliabilityQosPolicy can be modified
any time.

The QoS value of a previously created DataReader can be modified using the
DataReader::set_qos() member function.

// Create a DataReader with default DataReaderQos
DataReader* data_reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DataReaderQos qos = data_reader->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
data_reader->set_qos(qos);

3.4.4.1.1. Default DataReaderQos

The default DataReaderQos refers to the value returned by the
get_default_datareader_qos() member function on the
Subscriber instance.
The special value DATAREADER_QOS_DEFAULT can be used as QoS argument on
create_datareader() or
DataReader::set_qos() member functions to indicate that the current default
DataReaderQos should be used.

When the system starts, the default DataReaderQos is equivalent to
the default constructed value DataReaderQos().
The default DataReaderQos can be modified at any time using the
set_default_datareader_qos() member function on the
Subscriber instance.
Modifying the default DataReaderQos will not affect already existing
DataReader instances.

// Get the current QoS or create a new one from scratch
DataReaderQos qos_type1 = subscriber->get_default_datareader_qos();

// Modify QoS attributes
// (...)

// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DataReader with the new default DataReaderQos.
DataReader* data_reader_with_qos_type1 =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
DataReaderQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a DataReader with the new default DataReaderQos.
DataReader* data_reader_with_qos_type2 =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default DataReaderQos to the original default constructed values
if (subscriber->set_default_datareader_qos(DATAREADER_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (subscriber->set_default_datareader_qos(DataReaderQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

set_default_datareader_qos() member function also accepts
the special value DATAREADER_QOS_DEFAULT as input argument.
This will reset the current default DataReaderQos to default constructed
value DataReaderQos().

// Create a custom DataReaderQos
DataReaderQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DataWriter with a custom DataReaderQos
DataReader* data_reader = subscriber->create_datareader(topic, custom_qos);
if (nullptr == data_reader)
{
 // Error
 return;
}

// Set the QoS on the DataWriter to the default
if (data_reader->set_qos(DATAREADER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (data_reader->set_qos(subscriber->get_default_datareader_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value DATAREADER_QOS_DEFAULT has different meaning depending on where it is used:

	On create_datareader()
and DataReader::set_qos() it refers to the default
DataReaderQos as returned by
get_default_datareader_qos().

	On set_default_datareader_qos() it refers
to the default constructed DataReaderQos().

 3.4.5. DataReaderListener

3.4.5. DataReaderListener

DataReaderListener is an abstract class defining the callbacks
that will be triggered in response to state changes on the DataReader.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

DataReaderListener defines the following callbacks:

	on_data_available():
There is new data available for the application on the DataReader.
There is no queuing of invocations to this callback, meaning that if several new data changes are received
at once, only one callback invocation may be issued for all of them, instead of one per change.
If the application is retrieving the received data on this callback, it must keep
reading data until no new changes are left.

	on_subscription_matched():
The DataReader has found a
DataWriter that matches the Topic and has
a common partition and a compatible QoS, or has ceased to be matched with a
DataWriter that was previously considered to be matched.
It is also triggered when a matched DataWriter has changed its
DataWriterQos.

	on_requested_deadline_missed():
The DataReader did not receive
data within the deadline period configured on its DataReaderQos.
It will be called for each deadline period and data instance for which the
DataReader missed data.

	on_requested_incompatible_qos():
The DataReader has found a
DataWriter that matches the Topic and has
a common partition, but with a QoS that is incompatible with the one defined on the
DataReader.

	on_liveliness_changed():
The liveliness status of a matched DataWriter has changed.
Either a DataWriter that was inactive has become active or the other
way around.

	on_sample_rejected():
A received data sample was rejected.
See SampleRejectedStatus for further information.

	on_sample_lost():
A data sample was lost and will never be received.
See SampleLostStatus for further information.

Important

For more information about callbacks and its hierarchy, please refer to
Listener.

class CustomDataReaderListener : public DataReaderListener
{

public:

 CustomDataReaderListener()
 : DataReaderListener()
 {
 }

 virtual ~CustomDataReaderListener()
 {
 }

 virtual void on_data_available(
 DataReader* reader)
 {
 (void)reader;
 std::cout << "Received new data message" << std::endl;
 }

 virtual void on_subscription_matched(
 DataReader* reader,
 const SubscriptionMatchedStatus& info)
 {
 (void)reader;
 if (info.current_count_change == 1)
 {
 std::cout << "Matched a remote DataWriter" << std::endl;
 }
 else if (info.current_count_change == -1)
 {
 std::cout << "Unmatched a remote DataWriter" << std::endl;
 }
 }

 virtual void on_requested_deadline_missed(
 DataReader* reader,
 const eprosima::fastrtps::RequestedDeadlineMissedStatus& info)
 {
 (void)reader, (void)info;
 std::cout << "Some data was not received on time" << std::endl;
 }

 virtual void on_liveliness_changed(
 DataReader* reader,
 const eprosima::fastrtps::LivelinessChangedStatus& info)
 {
 (void)reader;
 if (info.alive_count_change == 1)
 {
 std::cout << "A matched DataWriter has become active" << std::endl;
 }
 else if (info.not_alive_count_change == 1)
 {
 std::cout << "A matched DataWriter has become inactive" << std::endl;
 }
 }

 virtual void on_sample_rejected(
 DataReader* reader,
 const eprosima::fastrtps::SampleRejectedStatus& info)
 {
 (void)reader, (void)info;
 std::cout << "A received data sample was rejected" << std::endl;
 }

 virtual void on_requested_incompatible_qos(
 DataReader* /*reader*/,
 const RequestedIncompatibleQosStatus& info)
 {
 std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << info.last_policy_id <<
 ")" << std::endl;
 }

 virtual void on_sample_lost(
 DataReader* reader,
 const SampleLostStatus& info)
 {
 (void)reader, (void)info;
 std::cout << "A data sample was lost and will not be received" << std::endl;
 }

};

 3.4.6. Creating a DataReader

3.4.6. Creating a DataReader

A DataReader always belongs to a Subscriber.
Creation of a DataReader is done with the create_datareader() member function on the
Subscriber instance, that acts as a factory for the DataReader.

Mandatory arguments are:

	A Topic bound to the data type that will be transmitted.

	The DataReaderQos describing the behavior of the DataReader.
If the provided value is DATAREADER_QOS_DEFAULT,
the value of the Default DataReaderQos is used.

Optional arguments are:

	A Listener derived from DataReaderListener, implementing the callbacks
that will be triggered in response to events and state changes on the DataReader.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DataReaderListener.
By default all events are enabled.

create_datareader() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DataReader with default DataReaderQos and no Listener
// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.
DataReader* data_reader_with_default_qos =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_default_qos)
{
 // Error
 return;
}

// A custom DataReaderQos can be provided to the creation method
DataReaderQos custom_qos;

// Modify QoS attributes
// (...)

DataReader* data_reader_with_custom_qos =
 subscriber->create_datareader(topic, custom_qos);
if (nullptr == data_reader_with_custom_qos)
{
 // Error
 return;
}

// Create a DataReader with default QoS and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.
CustomDataReaderListener custom_listener;
DataReader* data_reader_with_default_qos_and_custom_listener =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT, &custom_listener);
if (nullptr == data_reader_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.4.6.1. Profile based creation of a DataReader

Instead of using a DataReaderQos, the name of a profile
can be used to create a DataReader with the create_datareader_with_profile()
member function on the Subscriber instance.

Mandatory arguments are:

	A Topic bound to the data type that will be transmitted.

	A string with the name that identifies the DataReader.

Optional arguments are:

	A Listener derived from DataReaderListener, implementing the callbacks
that will be triggered in response to events and state changes on the DataReader.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
DataReaderListener.
By default all events are enabled.

create_datareader_with_profile() will return a null pointer if there was an error during the operation,
e.g. if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DataReader using a profile and no Listener
DataReader* data_reader_with_profile =
 subscriber->create_datareader_with_profile(topic, "data_reader_profile");
if (nullptr == data_reader_with_profile)
{
 // Error
 return;
}

// Create a DataReader using a profile and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
CustomDataReaderListener custom_listener;
DataReader* data_reader_with_profile_and_custom_listener =
 subscriber->create_datareader_with_profile(topic, "data_reader_profile", &custom_listener);
if (nullptr == data_reader_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.4.6.2. Deleting a DataReader

A DataReader can be deleted with the delete_datareader() member function on the
Subscriber instance where the DataReader was created.

Note

A DataReader can only be deleted if all Entities belonging to the DataReader
(QueryConditions) have already been deleted.
Otherwise, the function will issue an error and the DataReader will not be deleted.
This can be performed by using the delete_contained_entities() member function of the
DataReader.

// Create a DataReader
DataReader* data_reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
 // Error
 return;
}

// Use the DataReader to communicate
// (...)

// Delete the entities the DataReader created
if (data_reader->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{
 // DataReader failed to delete the entities it created.
 return;
}

// Delete the DataReader
if (subscriber->delete_datareader(data_reader) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.4.7. SampleInfo

3.4.7. SampleInfo

When a sample is retrieved from the DataReader, in addition to the sample data,
a SampleInfo instance is returned.
This object contains additional information that complements the returned data value and helps on it interpretation.
For example, if the valid_data value is false, the
DataReader is not informing the application about a new value in the data instance,
but a change on its status, and the returned data value must be discarded.

Please, refer to the section Accessing received data for more information regarding how received
data can be accessed on the DataReader.

The following sections describe the data members of SampleInfo
and the meaning of each one in relation to the returned sample data.

	sample_state

	view_state

	instance_state

	disposed_generation_count

	no_writers_generation_count

	sample_rank

	generation_rank

	absolute_generation_rank

	source_timestamp

	instance_handle

	publication_handle

	valid_data

	sample_identity

	related_sample_identity

3.4.7.1. sample_state

sample_state indicates whether or not the corresponding data sample has already
been read previously.
It can take one of these values:

	READ: This is the first time this data sample has been retrieved.

	NOT_READ: The data sample has already been read or taken previously.

3.4.7.2. view_state

view_state indicates whether or not this is the very first sample
of this data instance that the DataReader retrieves.
It can take one of these values:

	NEW: This is the first time a sample of this instance is retrieved.

	NOT_NEW: Other samples of this instance have been retrieved previously.

3.4.7.3. instance_state

instance_state indicates whether the instance is currently in existence
or it has been disposed.
In the latter case, it also provides information about the reason for the disposal.
It can take one of these values:

	ALIVE: The instance is currently in existence.

	NOT_ALIVE_DISPOSED: A remote DataWriter disposed the instance.

	NOT_ALIVE_NO_WRITERS: The DataReader disposed the instance because no remote
DataWriter that was publishing the instance is alive.

3.4.7.4. disposed_generation_count

disposed_generation_count indicates the number of times the instance had become alive after it was
disposed.

3.4.7.5. no_writers_generation_count

no_writers_generation_count indicates the number of times the instance had become alive after it was
disposed as NOT_ALIVE_NO_WRITERS.

3.4.7.6. sample_rank

sample_rank indicates the number of samples of the same instance that have been received after
this one.
For example, a value of 5 means that there are 5 newer samples available on the DataReader.

Note

Currently the sample_rank is not implemented, and its value is always set to 0.
It will be implemented on a future release of Fast DDS.

3.4.7.7. generation_rank

generation_rank indicates the number of times the instance was disposed and become alive again
between the time the sample was received and the time the most recent sample of the same instance
that is still held in the collection was received.

Note

Currently the generation_rank is not implemented, and its value is always set to 0.
It will be implemented on a future release of Fast DDS.

3.4.7.8. absolute_generation_rank

absolute_generation_rank indicates the number of times the instance was disposed and become alive
again between the time the sample was received and the time the most recent sample of the same instance
(which may not be in the collection) was received.

Note

Currently the absolute_generation_rank is not implemented, and its value is always set to 0.
It will be implemented on a future release of Fast DDS.

3.4.7.9. source_timestamp

source_timestamp holds the time stamp provided by the DataWriter when
the sample was published.

3.4.7.10. instance_handle

instance_handle handles of the local instance.

3.4.7.11. publication_handle

publication_handle handles of the DataWriter that published the data change.

3.4.7.12. valid_data

valid_data is a boolean that indicates whether the data sample contains a change in the value or not.
Samples with this value set to false are used to communicate a change in the instance status, e.g.,
a change in the liveliness of the instance.
In this case, the data sample should be dismissed as all the relevant information is in the
data members of SampleInfo.

3.4.7.13. sample_identity

sample_identity is an extension for requester-replier configuration.
It contains the DataWriter and the sequence number of the current message, and it is used
by the replier to fill the related_sample_identity when it sends the reply.

3.4.7.14. related_sample_identity

related_sample_identity is an extension for requester-replier configuration.
On reply messages, it contains the sample_identity of the related request message.
It is used by the requester to be able to link each reply to the appropriate request.

 3.4.8. Accessing received data

3.4.8. Accessing received data

The application can access and consume the data values received on the DataReader
by reading or taking.

	Reading is done with any of the following member functions:

	DataReader::read_next_sample() reads the next, non-previously accessed data value available
on the DataReader, and stores it in the provided data buffer.

	DataReader::read(), DataReader::read_instance(), and DataReader::read_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

	Taking is done with any of the following member functions:

	DataReader::take_next_sample() reads the next, non-previously accessed data value available on the DataReader,
and stores it in the provided data buffer.

	DataReader::take(), DataReader::take_instance(), and DataReader::take_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

When taking data, the returned samples are also removed from the DataReader, so they are no longer accessible.

When there is no data in the DataReader matching the required conditions, all the operations will return
NO_DATA and output parameter will remain unchanged.

In addition to the data values, the data access operations also provide SampleInfo instances with additional
information that help interpreting the returned data values, like the originating
DataWriter or the publication time stamp.
Please, refer to the SampleInfo section for an extensive description of its contents.

3.4.8.1. Loaning and Returning Data and SampleInfo Sequences

The DataReader::read() and DataReader::take() operations (and their variants) return information to the
application in two sequences:

	Received DDS data samples in a sequence of the data type

	Corresponding information about each DDS sample in a SampleInfo sequence

These sequences are parameters that are passed by the application code into the
DataReader::read() and DataReader::take() operations.
When the passed sequences are empty (they are initialized but have a maximum length of 0), the middleware will
fill those sequences with memory directly loaned from the receive queue itself.
There is no copying of the data or SampleInfo when the contents of the sequences are loaned.
This is certainly the most efficient way for the application code to retrieve the data.

When doing so, however, the code must return the loaned sequences back to the middleware, so that they can be reused
by the receive queue.
If the application does not return the loan by calling the DataReader::return_loan() operation, then Fast DDS
will eventually run out of memory to store DDS data samples received from the network for that DataReader.
See the code below for an example of borrowing and returning loaned sequences.

 // Sequences are automatically initialized to be empty (maximum == 0)
 FooSeq data_seq;
 SampleInfoSeq info_seq;

 // with empty sequences, a take() or read() will return loaned
 // sequence elements
 ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,
 LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
 ANY_VIEW_STATE, ANY_INSTANCE_STATE);

 // process the returned data

 // must return the loaned sequences when done processing
 data_reader->return_loan(data_seq, info_seq);

3.4.8.2. Processing returned data

After calling the DataReader::read() or DataReader::take() operations, accessing the data on the returned
sequences is quite easy.
The sequences API provides a length() operation returning the number of elements in the collections.
The application code just needs to check this value and use the [] operator to access the corresponding elements.
Elements on the DDS data sequence should only be accessed when the corresponding element on the SampleInfo sequence
indicate that valid data is present.

 // Sequences are automatically initialized to be empty (maximum == 0)
 FooSeq data_seq;
 SampleInfoSeq info_seq;

 // with empty sequences, a take() or read() will return loaned
 // sequence elements
 ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,
 LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
 ANY_VIEW_STATE, ANY_INSTANCE_STATE);

 // process the returned data
 if (ret_code == ReturnCode_t::RETCODE_OK)
 {
 // Both info_seq.length() and data_seq.length() will have the number of samples returned
 for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)
 {
 // Only samples for which valid_data is true should be accessed
 if (info_seq[n].valid_data)
 {
 // Do something with data_seq[n]
 }
 }

 // must return the loaned sequences when done processing
 data_reader->return_loan(data_seq, info_seq);
 }

3.4.8.3. Accessing data on callbacks

When the DataReader receives new data values from any matching DataWriter, it informs the application through
two Listener callbacks:

	on_data_available().

	on_data_on_readers().

These callbacks can be used to retrieve the newly arrived data, as in the following example.

class CustomizedDataReaderListener : public DataReaderListener
{

public:

 CustomizedDataReaderListener()
 : DataReaderListener()
 {
 }

 virtual ~CustomizedDataReaderListener()
 {
 }

 virtual void on_data_available(
 DataReader* reader)
 {
 // Create a data and SampleInfo instance
 Foo data;
 SampleInfo info;

 // Keep taking data until there is nothing to take
 while (reader->take_next_sample(&data, &info) == ReturnCode_t::RETCODE_OK)
 {
 if (info.valid_data)
 {
 // Do something with the data
 std::cout << "Received new data value for topic "
 << reader->get_topicdescription()->get_name()
 << std::endl;
 }
 else
 {
 std::cout << "Remote writer for topic "
 << reader->get_topicdescription()->get_name()
 << " is dead" << std::endl;
 }
 }
 }

};

Note

If several new data changes are received at once, the callbacks may be triggered just once,
instead of once per change.
The application must keep reading or taking until no new changes are available.

3.4.8.4. Accessing data with a waiting thread

3.4.8.4.1. Wait-sets and DataAvailable status condition

Instead of relying on the Listener to try and get new data values,
the application can also dedicate a thread to wait until any new data is available on the
DataReader.
This can be done using a wait-set to wait for a change on the DataAvailable status.

// Create a DataReader
DataReader* data_reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
 // Error
 return;
}

// Prepare a wait-set to wait for data on the DataReader
WaitSet wait_set;
StatusCondition& condition = data_reader->get_statuscondition();
condition.set_enabled_statuses(StatusMask::data_available());
wait_set.attach_condition(condition);

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima::fastrtps::Duration_t timeout (5, 0);

// Loop reading data as it arrives
// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote DataWriter dies
while (true)
{
 ConditionSeq active_conditions;
 if (ReturnCode_t::RETCODE_OK == wait_set.wait(active_conditions, timeout))
 {
 while (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
 {
 if (info.valid_data)
 {
 // Do something with the data
 std::cout << "Received new data value for topic "
 << topic->get_name()
 << std::endl;
 }
 else
 {
 // If the remote writer is not alive, we exit the reading loop
 std::cout << "Remote writer for topic "
 << topic->get_name()
 << " is dead" << std::endl;
 break;
 }
 }
 }
 else
 {
 std::cout << "No data this time" << std::endl;
 }
}

3.4.8.4.2. DataReader non-blocking calls

The same could be achieved using the DataReader::wait_for_unread_message() member function,
that blocks until a new data sample is available or the given timeout expires.
If no new data was available after the timeout expired, it will return with value false.
This function returning with value true means there is new data available on the
DataReader ready for the application to retrieve.

// Create a DataReader
DataReader* data_reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{
 // Error
 return;
}

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima::fastrtps::Duration_t timeout (5, 0);

// Loop reading data as it arrives
// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote DataWriter dies
while (true)
{
 if (data_reader->wait_for_unread_message(timeout))
 {
 if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
 {
 if (info.valid_data)
 {
 // Do something with the data
 std::cout << "Received new data value for topic "
 << topic->get_name()
 << std::endl;
 }
 else
 {
 // If the remote writer is not alive, we exit the reading loop
 std::cout << "Remote writer for topic "
 << topic->get_name()
 << " is dead" << std::endl;
 break;
 }
 }
 }
 else
 {
 std::cout << "No data this time" << std::endl;
 }
}

 3.5. Topic

3.5. Topic

A Topic conceptually fits between publications and subscriptions.
Each publication channel must be unambiguously identified by the subscriptions in order to receive only the data flow
they are interested in, and not data from other publications.
A Topic serves this purpose, allowing publications and subscriptions that share the same
Topic to match and start communicating.
In that sense, the Topic acts as a description for a data flow.

Publications are always linked to a single Topic, while subscriptions are linked to a
broader concept of TopicDescription.

[image: ../../../_images/topic_class_diagram.svg]Topic class diagram

	3.5.1. Topics, keys and instances
	3.5.1.1. Instance advantages

	3.5.1.2. Instance lifecycle

	3.5.1.3. Practical applications
	3.5.1.3.1. Commercial flights tracking

	3.5.1.3.2. Relational databases

	3.5.2. TopicDescription

	3.5.3. Topic
	3.5.3.1. TopicQos
	3.5.3.1.1. Default TopicQos

	3.5.4. ContentFilteredTopic

	3.5.5. TopicListener

	3.5.6. Definition of data types
	3.5.6.1. Dynamic data types

	3.5.6.2. Data types with a key

	3.5.7. Creating a Topic
	3.5.7.1. Profile based creation of a Topic

	3.5.7.2. Deleting a Topic

	3.5.8. Filtering data on a Topic
	3.5.8.1. Creating a ContentFilteredTopic

	3.5.8.2. Updating the filter expression and parameters

	3.5.8.3. Deleting a ContentFilteredTopic

	3.5.9. The default SQL-like filter
	3.5.9.1. Grammar

	3.5.9.2. Like condition

	3.5.9.3. Match condition

	3.5.9.4. Type comparisons

	3.5.9.5. Example

	3.5.10. Using custom filters
	3.5.10.1. Creating the Custom Filter

	3.5.10.2. Creating the Factory for the Custom Filter

	3.5.10.3. Registering the Factory

	3.5.10.4. Creating a ContentFilteredTopic using the Custom Filter

	3.5.11. Where is filtering applied: writer vs reader side
	3.5.11.1. Conditions for writer side filtering

	3.5.11.2. Discovery race condition

	3.5.12. Fast DDS-Gen for data types source code generation
	3.5.12.1. Basic usage

	3.5.12.2. Output files

 3.5.1. Topics, keys and instances

3.5.1. Topics, keys and instances

By definition, a Topic is linked to a single data type, so each data sample related to a Topic could be understood as an
update on the information described by the data type.
However, it is possible to include a logical separation and have, within the same Topic, several instances referring to
the same data type.
Thus, the received data sample will be an update for a specific instance of that Topic.
Therefore, a Topic identifies data of a single type, ranging from one single instance to a whole collection of instances
of that given type, as shown in the figure below.

[image: ../../../_images/instances.png]

The different instances gathered under the same topic are distinguishable by means of one or more data fields that form
the key to that data set.
The key description has to be indicated to the middleware.
The rule is simple: different data values with the same key value represent successive data samples for the same
instance, while different data values with different keys represent different topic instances.
If no key is provided, the data set associated with the Topic is restricted to a single instance.
Please refer to Data types with a key for more information about how to set the key in
eProsima Fast DDS.

3.5.1.1. Instance advantages

The advantage of using instances instead of creating a new DataWriter,
DataReader, and Topic is that the corresponding entity is already
created and discovered.
Consequently, there is less memory usage, and no new discovery (with the related metatraffic involved as explained in
Discovery) is necessary.
Another advantage is that several QoS are applied per topic instance; e.g. the HistoryQosPolicy is kept for each
instance in the DataWriter.
Thus, instances could be tuned to a wide range of applications.

3.5.1.2. Instance lifecycle

When reading or taking data from the DataReader (as explained in
Accessing received data), a SampleInfo is also returned.
This SampleInfo provides additional information about the instance lifecycle, specifically with the
view_state, instance_state,
disposed_generation_count, and
no_writers_generation_count.
The diagram below shows the statechart of instance_state and view_state for a single
instance.

[image: ../../../_images/instance-lifecycle.png]

3.5.1.3. Practical applications

This section provides a couple of examples to help clarify the use of DDS instances.

3.5.1.3.1. Commercial flights tracking

Airspace and the air traffic going through it are typically managed by the air traffic controllers that are in charge of
organizing the air traffic, preventing collisions, and providing information.
In this scenario, each air traffic control center takes responsibility for a specific flight area and delivers the data
to the airspace traffic management system, which unifies the flight information.

Any time an air traffic control center discovers a plane coming into its controlled flight zone, tracking information
about that specific flight is notified to the airspace traffic management center.
Such a flow of information could be implemented by means of DDS by creating a specific Topic where the information
related to the flight location is published.
In that case, the management center would be required to create, if not existing previously, the corresponding Topic and
DataReader to have access to the flight information, with the corresponding memory consumption and discovery metatraffic
required.
On the other hand, a cleverer implementation could leverage topic instances to relay the information from the local
air traffic control centers to the airspace traffic management center.
The topic instances might be identified using the airline name and the flight number (i.e. IBERIA 1234) as Topic
instance key.
The sample data being relayed would be the location of each flight being tracked at any given time.
The following IDL defines the data described model:

struct FlightPosition
{
 // Unique ID: airline name
 @key string<256> airline_name;

 // Unique ID: flight number
 @key short flight_number;

 // Coordinates
 double latitude;
 double longitude;
 double altitude;
};

Once a new flight is discovered by a control center, the corresponding instance is registered into the system:

// Create data sample
FlightPosition first_flight_position;

// Specify the flight instance
first_flight_position.airline_name("IBERIA");
first_flight_position.flight_number(1234);

// Register instance
eprosima::fastrtps::rtps::InstanceHandle_t first_flight_handle =
 data_writer->register_instance(&first_flight_position);

register_instance() returns an InstanceHandle_t which can be used to efficiently call the next
operations (i.e. write(), dispose(), or unregister_instance()) over
the instance.
The returned InstanceHandle_t contains the instance keyhash so it does not have to be recalculated again from the
data sample.
In case of following this approach, the application must take charge of mapping the instance handles to the
corresponding instances.

// Update position value received from the plane
first_flight_position.latitude(39.08);
first_flight_position.longitude(-84.21);
first_flight_position.altitude(1500);

// Write sample to the instance
data_writer->write(&first_flight_position, first_flight_handle);

On the other hand, the user application could directly call the DataWriter instance operations with a NIL instance
handle.
In this case, the instance handle would be calculated every time an operation is done over the instance, which can be
time consuming depending on the specific data type being used.

// New data sample
FlightPosition second_flight_position;

// New instance
second_flight_position.airline_name("RYANAIR");
second_flight_position.flight_number(4321);

// Update plane location
second_flight_position.latitude(40.02);
second_flight_position.longitude(-84.32);
second_flight_position.altitude(5000);

// Write sample directly without registering the instance
data_writer->write(&second_flight_position);

Warning

The correct management of the instance handles in the user application is paramount.
Otherwise, a sample corresponding to a different instance could wrongly update the instance which handle the user has
passed to the operation (if a non NIL instance is provided, the instance handle is not recalculated, trusting
that the one passed by the user is the correct one).
The following code updates the first instance of this example with the information coming from the second instance.

data_writer->write(&second_flight_position, first_flight_handle);

Once the plane leaves the controlled area, the air traffic control center may unregister the instance.
Unregistering implies that the DataWriter for this specific center has no more information about the unregistered
instance, and in this way the matched DataReaders in the management center are notified.
The flight is still in the air but out of scope of this particular DataWriter.
The instance is alive but no longer tracked by this center.

data_writer->unregister_instance(&first_flight_position, first_flight_handle);
data_writer->unregister_instance(&second_flight_position, HANDLE_NIL);

Finally, when the flight lands, the instance may be disposed.
This means, in this specific example, that as far as the DataWriter knows, the instance no longer exists and should be
considered not alive.
With this operation, the DataWriter conveys this information to the matched DataReaders.

data_writer->dispose(&first_flight_position, first_flight_handle);
data_writer->dispose(&second_flight_position, HANDLE_NIL);

From the management center point of view, the samples are read using the same DataReader subscribed to the Topic where
the instances are being published.
However, valid_data must be checked to ensure that the sample received contains a data sample.
Otherwise, a change of the instance state is being notified.
Instance lifecycle contains a diagram showing the instance statechart.

if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{
 if (info.valid_data)
 {
 // Data sample has been received
 }
 else if (info.instance_state == NOT_ALIVE_DISPOSED_INSTANCE_STATE)
 {
 // A remote DataWriter has disposed the instance
 }
 else if (info.instance_state == NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
 {
 // None of the matched DataWriters are writing in the instance.
 // The instance can be safely disposed.
 }
}

3.5.1.3.2. Relational databases

Consider now that the air traffic management center wants to keep a database with the flights being tracked.
Using DDS instances, maintaining a relational database is almost direct.
The instance key (unique identifier of the instance) is analogous to the primary key of the database.
Thus, the airspace traffic management center can keep the latest update for each instance in a table like the one below:

	Instance handle [PK]

	Data

	1

	Position1

	2

	Position2

	3

	Position3

	4

	Position4

	5

	Position5

In this case, every time a new sample is received, the corresponding instance entry in the database will be updated with
the latest known location.
Disposing the instance may translate in erasing the corresponding data from the database.
In this scenario, registering and unregistering the instances does not reflect in the database, although if the
instance_state and view_state are also persisted, then the instance lifecycle could
be tracked as well.
A DataWriter communicating that it is going to be publishing data about a specific instance is of no interest to the
database until a new data is received and then an insert is directly done with the new discovered instance.

Historical data can also be stored in the relational database, even though depending on the use case, a time series
database might be considered to improve efficiency.
In the scenario being considered, the sample timestamp could be used, besides the instance handle, as primary key to
be able to access the historical tracking data of an specific flight.

	Instance handle [PK]

	Source Timestamp [PK]

	Data

	1

	1

	Position1

	2

	1

	Position2

	1

	2

	Position3

	1

	3

	Position4

	2

	2

	Position5

In this case, looking for a specific instance handle would return the flight tracking information:

	Instance handle [Fixed]

	Source Timestamp

	Data

	1

	1

	Position1

	1

	2

	Position3

	1

	3

	Position4

Whereas looking for a specific timestamp would allow to have a picture of the different flight locations at a specific
time:

	Instance handle

	Source Timestamp [Fixed]

	Data

	1

	2

	Position3

	2

	2

	Position5

 3.5.2. TopicDescription

3.5.2. TopicDescription

TopicDescription is an abstract class that serves as the base for all classes describing a data flow.
Applications will not create instances of TopicDescription directly, they must create instances of one
of its specializations instead.
At the moment, the only specializations implemented are Topic,
and ContentFilteredTopic.

 3.5.3. Topic

3.5.3. Topic

A Topic is a specialization of the broader concept of TopicDescription.
A Topic represents a single data flow between Publisher
and Subscriber, providing:

	The name to identify the data flow.

	The data type that is transmitted on that flow.

	The QoS values related to the data itself.

The behavior of the Topic can be modified with the QoS values
specified on TopicQos.
The QoS values can be set at the creation of the Topic,
or modified later with the Topic::set_qos() member function.

Like other Entities, Topic accepts a Listener that will be notified of
status changes on the Topic.

Please refer to Creating a Topic for more information about how to create a Topic.

3.5.3.1. TopicQos

TopicQos controls the behavior of the Topic.
Internally it contains the following QosPolicy objects:

	QosPolicy class

	Accessor

	Mutable

	TopicDataQosPolicy

	topic_data()

	Yes

	DurabilityQosPolicy

	durability()

	Yes

	DurabilityServiceQosPolicy

	durability_service()

	Yes

	DeadlineQosPolicy

	deadline()

	Yes

	LatencyBudgetQosPolicy

	latency_budget()

	Yes

	LivelinessQosPolicy

	liveliness()

	Yes

	ReliabilityQosPolicy

	reliability()

	Yes

	DestinationOrderQosPolicy

	destination_order()

	Yes

	HistoryQosPolicy

	history()

	Yes

	ResourceLimitsQosPolicy

	resource_limits()

	Yes

	TransportPriorityQosPolicy

	transport_priority()

	Yes

	LifespanQosPolicy

	lifespan()

	Yes

	OwnershipQosPolicy

	ownership()

	Yes

	DataRepresentationQosPolicy

	representation()

	Yes

Refer to the detailed description of each QosPolicy-api class for more information about their usage and
default values.

The QoS value of a previously created Topic can be modified using the
Topic::set_qos() member function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic with default TopicQos
Topic* topic =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
TopicQos qos = topic->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
topic->set_qos(qos);

3.5.3.1.1. Default TopicQos

The default TopicQos refers to the value returned by the
get_default_topic_qos() member function on the DomainParticipant instance.
The special value TOPIC_QOS_DEFAULT can be used as QoS argument on create_topic()
or Topic::set_qos() member functions to indicate that the current default TopicQos
should be used.

When the system starts, the default TopicQos is equivalent to the default constructed
value TopicQos().
The default TopicQos can be modified at any time using the
get_default_topic_qos() member function on the DomainParticipant instance.
Modifying the default TopicQos will not affect already existing Topic
instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
TopicQos qos_type1 = participant->get_default_topic_qos();

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (participant->set_default_topic_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Topic with the new default TopicQos.
Topic* topic_with_qos_type1 =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_qos_type1)
{
 // Error
 return;
}

// Get the current QoS or create a new one from scratch
TopicQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (participant->set_default_topic_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Create a Topic with the new default TopicQos.
Topic* topic_with_qos_type2 =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_qos_type2)
{
 // Error
 return;
}

// Resetting the default TopicQos to the original default constructed values
if (participant->set_default_topic_qos(TOPIC_QOS_DEFAULT)
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following
if (participant->set_default_topic_qos(TopicQos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

get_default_topic_qos() member function also accepts the value TOPIC_QOS_DEFAULT
as input argument.
This will reset the current default TopicQos to default constructed
value TopicQos().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a custom TopicQos
TopicQos custom_qos;

// Modify QoS attributes
// (...)

// Create a topic with a custom TopicQos
Topic* topic = participant->create_topic("TopicName", "DataTypeName", custom_qos);
if (nullptr == topic)
{
 // Error
 return;
}

// Set the QoS on the topic to the default
if (topic->set_qos(TOPIC_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// The previous instruction is equivalent to the following:
if (topic->set_qos(participant->get_default_topic_qos())
 != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

Note

The value TOPIC_QOS_DEFAULT has different meaning depending on where it is used:

	On create_topic() and Topic::set_qos() it refers to the default TopicQos
as returned by get_default_topic_qos().

	On get_default_topic_qos() it refers to the default constructed TopicQos().

 3.5.4. ContentFilteredTopic

3.5.4. ContentFilteredTopic

A ContentFilteredTopic is a specialization of the broader concept of TopicDescription.
A ContentFilteredTopic is a Topic with filtering properties.
It makes it possible to subscribe to a Topic while at the same time specify interest on a subset of the Topic’s data.

Important

Note that a ContentFilteredTopic can only be used to create a DataReader, not a DataWriter.

A ContentFilteredTopic provides a relationship between a Topic, called the related topic, and
some user-defined filtering properties:

	A filter expression, which establishes a logical expression on the content of the related topic.
It is similar to the WHERE clause in a SQL statement.

	A list of expression parameters, which give values to the parameters present in the filter expression.
There must be one parameter string for each parameter in the filter expression.

Note that a ContentFilteredTopic is not an Entity, and thus it has neither QoS nor listener.
A DataReader created with a ContentFilteredTopic will use the QoS from the related topic.
Multiple DataReaders can be created for the same ContentFilteredTopic, and changing the filter properties of a
ContentFilteredTopic will affect all DataReaders using it.

Please refer to Filtering data on a Topic and
Where is filtering applied: writer vs reader side for more information about how to use
ContentFilteredTopic.

 3.5.5. TopicListener

3.5.5. TopicListener

TopicListener is an abstract class defining the callbacks that will be triggered
in response to state changes on the Topic.
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

TopicListener has the following callback:

	on_inconsistent_topic(): A remote Topic is discovered with the same name
but different characteristics as another locally created Topic.

Warning

Currently on_inconsistent_topic() is not implemented (it will never be called), and will be
implemented on a future release of Fast DDS.

class CustomTopicListener : public TopicListener
{

public:

 CustomTopicListener()
 : TopicListener()
 {
 }

 virtual ~CustomTopicListener()
 {
 }

 virtual void on_inconsistent_topic(
 Topic* topic,
 InconsistentTopicStatus status)
 {
 (void)topic, (void)status;
 std::cout << "Inconsistent topic received discovered" << std::endl;
 }

};

 3.5.6. Definition of data types

3.5.6. Definition of data types

The definition of the data type exchanged in a Topic is divided in
two classes: the TypeSupport and the TopicDataType.

TopicDataType describes the data type exchanged between a publication and a subscription, i.e.,
the data corresponding to a Topic.
The user has to create a specialized class for each specific type that will be used by the application.

Any specialization of TopicDataType must be registered in the DomainParticipant
before it can be used to create Topic objects.
A TypeSupport object encapsulates an instance of TopicDataType, providing the functions needed to
register the type and interact with the publication and subscription.
To register the data type, create a new TypeSupport with a TopicDataType instance
and use the register_type() member function on the TypeSupport.
Then the Topic can be created with the registered type name.

Note

Registering two different data types on the same DomainParticipant with identical names is not
allowed and will issue an error.
However, it is allowed to register the same data type within the same DomainParticipant,
with the same or different names.
If the same data type is registered twice on the same DomainParticipant with the same
name, the second registering will have no effect, but will not issue any error.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Register the data type in the DomainParticipant.
// If nullptr is used as name argument, the one returned by the type itself is used
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, nullptr);

// The previous instruction is equivalent to the following one
// Even if we are registering the same data type with the same name twice, no error will be issued
custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topic* topic =
 participant->create_topic("topic_name", custom_type_support.get_type_name(), TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create an alias for the same data type using a different name.
custom_type_support.register_type(participant, "data_type_name");

// We can now use the aliased name to If no name is given, it uses the name returned by the type itself
Topic* another_topic =
 participant->create_topic("other_topic_name", "data_type_name", TOPIC_QOS_DEFAULT);
if (nullptr == another_topic)
{
 // Error
 return;
}

3.5.6.1. Dynamic data types

Instead of directly writing the specialized TopicDataType class, it is possible to dynamically define
data types following the OMG Extensible and Dynamic Topic Types for DDS interface.
Data types can also be described on an XML file that is dynamically loaded.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Load the XML file with the type description
eprosima::fastrtps::xmlparser::XMLProfileManager::loadXMLFile("example_type.xml");

// Retrieve the an instance of the desired type and register it
eprosima::fastrtps::types::DynamicType_ptr dyn_type =
 eprosima::fastrtps::xmlparser::XMLProfileManager::getDynamicTypeByName("DynamicType")->build();
TypeSupport dyn_type_support(new eprosima::fastrtps::types::DynamicPubSubType(dyn_type));
dyn_type_support.register_type(participant, nullptr);

// Create a Topic with the registered type.
Topic* topic =
 participant->create_topic("topic_name", dyn_type_support.get_type_name(), TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

A complete description of the dynamic definition of types can be found on the Dynamic Topic Types section.

3.5.6.2. Data types with a key

Data types that define a set of fields to form a unique key can distinguish different data sets
within the same data type.

To define a keyed Topic, the getKey() member function on the TopicDataType
has to be overridden to return the appropriate key value according to the data fields.
Additionally, the m_isGetKeyDefined data member needs to be set to true to let the entities
know that this is a keyed Topic and that getKey() should be used.
Types that do not define a key will have m_isGetKeyDefined set to false.

There are three ways to implement keys on the TopicDataType:

	Adding a @Key annotation to the members that form the key in the IDL file when using Fast DDS-Gen.

	Adding the attribute Key to the member and its parents when using Dynamic Topic Types.

	Manually implementing the getKey() member function on the TopicDataType and setting
the m_isGetKeyDefined data member value to true.

Data types with key are used to define data sub flows on a single Topic.
Data values with the same key on the same Topic represent data from the same sub-flow,
while data values with different keys on the same Topic represent data
from different sub-flows.
The middleware keeps these sub-flows separated, but all will be restricted to the same QoS values of
the Topic.
If no key is provided, the data set associated with the Topic is restricted to a single flow.

 3.5.7. Creating a Topic

3.5.7. Creating a Topic

A Topic always belongs to a DomainParticipant.
Creation of a Topic is done with the create_topic() member function on the
DomainParticipant instance, that acts as a factory for the Topic.

Mandatory arguments are:

	A string with the name that identifies the Topic.

	The name of the registered data type that will be transmitted.

	The TopicQos describing the behavior of the Topic.
If the provided value is TOPIC_QOS_DEFAULT,
the value of the Default TopicQos is used.

Optional arguments are:

	A Listener derived from TopicListener, implementing the callbacks
that will be triggered in response to events and state changes on the Topic.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
TopicListener.
By default all events are enabled.

create_topic() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic with default TopicQos and no Listener
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
Topic* topic_with_default_qos =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_default_qos)
{
 // Error
 return;
}

// A custom TopicQos can be provided to the creation method
TopicQos custom_qos;

// Modify QoS attributes
// (...)

Topic* topic_with_custom_qos =
 participant->create_topic("TopicName", "DataTypeName", custom_qos);
if (nullptr == topic_with_custom_qos)
{
 // Error
 return;
}

// Create a Topic with default QoS and a custom Listener.
// CustomTopicListener inherits from TopicListener.
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
CustomTopicListener custom_listener;
Topic* topic_with_default_qos_and_custom_listener =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT, &custom_listener);
if (nullptr == topic_with_default_qos_and_custom_listener)
{
 // Error
 return;
}

3.5.7.1. Profile based creation of a Topic

Instead of using a TopicQos, the name of a profile
can be used to create a Topic with the create_topic_with_profile()
member function on the DomainParticipant instance.

Mandatory arguments are:

	A string with the name that identifies the Topic.

	The name of the registered data type that will be transmitted.

	The name of the profile to be applied to the Topic.

Optional arguments are:

	A Listener derived from TopicListener, implementing the callbacks
that will be triggered in response to events and state changes on the Topic.
By default empty callbacks are used.

	A StatusMask that activates or deactivates triggering of individual callbacks on the
TopicListener.
By default all events are enabled.

create_topic_with_profile() will return a null pointer if there was an error during the operation, e.g.
if the provided QoS is not compatible or is not supported.
It is advisable to check that the returned value is a valid pointer.

Note

XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic using a profile and no Listener
Topic* topic_with_profile =
 participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_profile");
if (nullptr == topic_with_profile)
{
 // Error
 return;
}

// Create a Topic using a profile and a custom Listener.
// CustomTopicListener inherits from TopicListener.
CustomTopicListener custom_listener;
Topic* topic_with_profile_and_custom_listener =
 participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_profile", &custom_listener);
if (nullptr == topic_with_profile_and_custom_listener)
{
 // Error
 return;
}

3.5.7.2. Deleting a Topic

A Topic can be deleted with the delete_topic() member function on the
DomainParticipant instance where the Topic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic
Topic* topic =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Use the Topic to communicate
// (...)

// Delete the Topic
if (participant->delete_topic(topic) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

 3.5.8. Filtering data on a Topic

3.5.8. Filtering data on a Topic

3.5.8.1. Creating a ContentFilteredTopic

A ContentFilteredTopic always belongs to a DomainParticipant.
Creation of a ContentFilteredTopic is done with the create_contentfilteredtopic() member
function on the DomainParticipant instance, that acts as a factory for the ContentFilteredTopic.

Mandatory arguments are:

	A string with the name that identifies the ContentFilteredTopic.

	The related Topic being filtered.

	A string with the filter expression indicating the conditions for a sample to be returned.

	A list of strings with the value of the parameters present on the filter expression.

Optional arguments are:

	A string with the name of the filter class to use for the filter creation.
This allows the user to create filters different from the standard SQL like one
(please refer to Using custom filters).
Defaults to FASTDDS_SQLFILTER_NAME (DDSSQL).

Important

Setting an empty string as filter expression results in the disabling of the filtering.
This can be used to enable/disable the DataReader filtering capabilities at any given time by simply
updating the filter expression.

create_contentfilteredtopic() will return a null pointer if there was an error during the
operation, e.g. if the related Topic belongs to a different DomainParticipant, a Topic with the same name already
exists, syntax errors on the filter expression, or missing parameter values.
It is advisable to check that the returned value is a valid pointer.

Note

Different filter classes may impose different requirements on the related Topic, the expression, or the parameters.
The default filter class, in particular, requires that a TypeObject for the related Topic’s type has been
registered.
When using fastddsgen to generate your type support code, remember to include
the -typeobject option so the TypeObject registration code is generated.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create the Topic.
/* IDL
 *
 * struct HelloWorld
 * {
 * long index;
 * string message;
 * }
 *
 */
Topic* topic =
 participant->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create a ContentFilteredTopic using an expression with no parameters
std::string expression = "message like 'Hello*'";
std::vector<std::string> parameters;
ContentFilteredTopic* filter_topic =
 participant->create_contentfilteredtopic("HelloWorldFilteredTopic1", topic, expression, parameters);
if (nullptr == filter_topic)
{
 // Error
 return;
}

// Create a ContentFilteredTopic using an expression with parameters
expression = "message like %0 or index > %1";
parameters.push_back("'*world*'");
parameters.push_back("20");
ContentFilteredTopic* filter_topic_with_parameters =
 participant->create_contentfilteredtopic("HelloWorldFilteredTopic2", topic, expression, parameters);
if (nullptr == filter_topic_with_parameters)
{
 // Error
 return;
}

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber* subscriber =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
 // Error
 return;
}

DataReader* reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_QOS_DEFAULT);
if (nullptr == reader_on_filter)
{
 // Error
 return;
}

DataReader* reader_on_filter_with_parameters =
 subscriber->create_datareader(filter_topic_with_parameters, DATAREADER_QOS_DEFAULT);
if (nullptr == reader_on_filter_with_parameters)
{
 // Error
 return;
}

3.5.8.2. Updating the filter expression and parameters

A ContentFilteredTopic provides several member functions for the management of the filter expression and
the expression parameters:

	The filter expression can be retrieved with the get_filter_expression() member function.

	The expression parameters can be retrieved with the get_expression_parameters() member
function.

	The expression parameters can be modified using the set_expression_parameters() member
function.

	The filter expression can be modified along with the expression parameters using the
set_filter_expression() member function.

// This lambda prints all the information of a ContentFilteredTopic
auto print_filter_info = [](
 const ContentFilteredTopic* filter_topic)
 {
 std::cout << "ContentFilteredTopic info for '" << filter_topic->get_name() << "':" << std::endl;
 std::cout << " - Related Topic: " << filter_topic->get_related_topic()->get_name() << std::endl;
 std::cout << " - Expression: " << filter_topic->get_filter_expression() << std::endl;
 std::cout << " - Parameters:" << std::endl;

 std::vector<std::string> parameters;
 filter_topic->get_expression_parameters(parameters);
 size_t i = 0;
 for (const std::string& parameter : parameters)
 {
 std::cout << " " << i++ << ": " << parameter << std::endl;
 }
 };

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic
/* IDL
 *
 * struct HelloWorld
 * {
 * long index;
 * string message;
 * }
 *
 */
Topic* topic =
 participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =
 participant->create_contentfilteredtopic("HelloWorldFilteredTopic", topic, "index > 10", {});
if (nullptr == filter_topic)
{
 // Error
 return;
}

// Print the information
print_filter_info(filter_topic);

// Use the ContentFilteredTopic on DataReader objects.
// (...)

// Update the expression
if (ReturnCode_t::RETCODE_OK !=
 filter_topic->set_filter_expression("message like %0 or index > %1", {"'Hello*'", "15"}))
{
 // Error
 return;
}

// Print the updated information
print_filter_info(filter_topic);

// Update the parameters
if (ReturnCode_t::RETCODE_OK !=
 filter_topic->set_expression_parameters({"'*world*'", "222"}))
{
 // Error
 return;
}

// Print the updated information
print_filter_info(filter_topic);

3.5.8.3. Deleting a ContentFilteredTopic

A ContentFilteredTopic can be deleted with the delete_contentfilteredtopic() member function
on the DomainParticipant instance where the ContentFilteredTopic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create a Topic
/* IDL
 *
 * struct HelloWorld
 * {
 * long index;
 * string message;
 * }
 *
 */
Topic* topic =
 participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =
 participant->create_contentfilteredtopic("HelloWorldFilteredTopic", topic, "index > 10", {});
if (nullptr == filter_topic)
{
 // Error
 return;
}

// Use the ContentFilteredTopic on DataReader objects.
// (...)

// Delete the ContentFilteredTopic
if (ReturnCode_t::RETCODE_OK != participant->delete_contentfilteredtopic(filter_topic))
{
 // Error
 return;
}

 3.5.9. The default SQL-like filter

3.5.9. The default SQL-like filter

Filter expressions used by ContentFilteredTopic API may use a subset of SQL syntax, extended with
the possibility to use program variables in the SQL expression.
This section shows this default SQL-like syntax and how to use it.

	Grammar

	Like condition

	Match condition

	Type comparisons

	Example

3.5.9.1. Grammar

The allowed SQL expressions are defined with the BNF-grammar below.

The following conventions are made:

	“Terminals” are quoted.

	TOKENS are typeset in code block with black font color.

Expression ::= FilterExpression
FilterExpression ::= Condition
Condition ::= Predicate |
 Condition "AND" Condition |
 Condition "OR" Condition |
 "NOT" Condition |
 "(" Condition ")"
Predicate ::= ComparisonPredicate |
 BetweenPredicate
ComparisonPredicate ::= FIELDNAME RelOp Parameter |
 Parameter RelOp FIELDNAME |
 FIELDNAME RelOp FIELDNAME
BetweenPredicate ::= FIELDNAME "BETWEEN" Range |
 FIELDNAME "NOT BETWEEN" Range
RelOp ::= "=" | ">" | ">=" | "<" | "<=" |
 "<>" | "!=" | like | match
Range ::= Parameter "AND" Parameter
Parameter ::= BOOLEANVALUE |
 INTEGERVALUE |
 CHARVALUE |
 FLOATVALUE |
 STRINGVALUE |
 ENUMERATEDVALUE |
 PARAMETER

“Terminals” and TOKENS are case sensitive but both uppercase and lowercase are supported.

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

	FIELDNAME: is a reference to a field in the data-structure.
The dot . is used to navigate through nested structures.
The number of dots that may be used in a FIELDNAME is unlimited.
The FIELDNAME can refer to fields at any depth in the data structure.
The names of the field are those specified in the IDL definition of the corresponding structure.

FIELDNAME ::= FieldNamePart ("." FieldNamePart)*
FieldNamePart ::= Identifier ("[" Integer "]")?

An example of FIELDNAMEs:

Filter expression

"points[0] = 0 AND color.red < 100"

Associated IDL

struct Color
{
 octet red;
 octet green;
 octet blue;
};

struct Shape
{
 long points[4];
 Color color;
};

	BOOLEANVALUE: Can either be true of false, case sensitive.

BOOLEANVALUE ::= ["TRUE", "true", "FALSE", "false"]

	INTEGERVALUE: Any series of digits, optionally preceded by a plus or minus sign, representing a decimal integer
value within the range of the system.
A hexadecimal number is preceded by 0x and must be a valid hexadecimal expression.

INTEGERVALUE ::= (["+","-"])? Integer
Integer ::= (["0"-"9"])+ | ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+

An example of INTEGERVALUE:

value = -10

	CHARVALUE: A single character enclosed between single quotes.

CHARVALUE ::= "'" Character "'"
Character ::= ~["\n"]

An example of CHARVALUE:

value = 'c'

	FLOATVALUE: Any series of digits, optionally preceded by a plus or minus sign and optionally including a floating
point (.).
A power-of-ten expression may be postfixed, which has the syntax e:sup:n, where n is a number, optionally
preceded by a plus or minus sign.

FLOATVALUE ::= (["+"], "-"])? (Integer Exponent | Integer Fractional | Integer Fractional Exponent)
Fractional ::= "." Integer
Exponent ::= ["e","E"] (["+"], "-"])? Integer

An example of FLOATVALUE:

value = 10.1e-10

	STRINGVALUE: Any series of characters encapsulated in single quotes, except a new-line character or a right quote.
A string starts with a left or right quote, but ends with a right quote.

STRINGVALUE ::= ["'"] ~["'", "\r", "\n"] ["'"]

An example of STRINGVALUE:

value = 'This is a string'

	ENUMERATEDVALUE: An enumerated value is a reference to a value declared within an enumeration.
Enumerated values consist of the name of the enumeration label enclosed in single quotes.
The name used for the enumeration label must correspond to the label names specified in the IDL definition of the
enumeration.

ENUMERATEDVALUE ::= ["'"] ~["'", "\r", "\n"] ["'"]

An example of ENUMERATEDVALUE:

Filter expression

value = 'ENUM_VALUE_1'

Associated IDL

enum MyEnum
{
 ENUM_VALUE_1,
 ENUM_VALUE_2,
 ENUM_VALUE_3
};

struct Enumerators
{
 MyEnum value;
};

	PARAMETER: A parameter is of the form %n, where n represents a natural number (zero included) smaller than
100.
It refers to the n + 1 th argument in the given context.

PARAMETER ::= ["%"] ["0"-"9"] (["0"-"9"])?

An example of PARAMETER:

value = %1

3.5.9.2. Like condition

The like [https://www.w3schools.com/sql/sql_like.asp] operator is similar as the one defined by SQL.
This operator can only be used with strings.
There are two wildcards that could be used in conjunction with this operator

	The percent sign % (or its alias *) represents zero, one, or multiple characters.

	The underscore sign _ (or its alias ?) represents one single character.

All wildcards can also be used in combinations.

An example of like operator

Filter expression

"str like '%bird%'"

Associated IDL

struct Like
{
 string str;
};

where string There are birds flying will return true.

3.5.9.3. Match condition

The match operator performs a full-text search using a regular expression.
This operator can only be used with strings.
It uses the Basic Regular Expression (BRE) defined by POSIX [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03].

An example of match operator

Filter expression

"str match '^The'"

Associated IDL

struct Like
{
 string str;
};

where string There are birds flying will return true.

3.5.9.4. Type comparisons

For the supported operators in the grammar, next table shows the type compatibility.

	Operator1 | Operator2

	BOOLEAN

	INTEGER

	FLOAT

	CHAR

	STRING

	ENUM

	BOOLEAN

	✅

	✅

	❌

	❌

	❌

	❌

	INTEGER

	✅

	✅

	✅

	❌

	❌

	❌

	FLOAT

	❌

	✅

	✅

	❌

	❌

	❌

	CHAR

	❌

	❌

	❌

	✅

	✅

	❌

	STRING

	❌

	❌

	❌

	✅

	✅

	❌

	ENUM

	❌

	✅

	❌

	❌

	❌

	✅ *

(*) Only for the same enumerated type.

3.5.9.5. Example

Assuming Topic Shape has next IDL definition.

struct Shape
{
 long x,
 long y,
 long z,
 long width,
 long height
};

An example of filter expression would be:

"x < 23 AND y > 50 AND width BETWEEN %0 AND %1"

A ContentFilteredTopic may be created using this filter expression as explained in section
Creating a ContentFilteredTopic.

ContentFilteredTopic* sql_filter_topic =
 participant->create_contentfilteredtopic("Shape", topic,
 "x < 23 AND y > 50 AND width BETWEEN %0 AND %1",
 {"10", "20"});

In this example parameters are used.
Internally the ContentFilteredTopic will be created with the filter expression below, after
setting the provided parameters.

"x < 23 AND y > 50 AND width BETWEEN 10 AND 20"

 3.5.10. Using custom filters

3.5.10. Using custom filters

Fast DDS API supports the creation and later registration of user’s custom filters to be used in the creation of a
ContentFilteredTopic.
Required steps for using a Custom Filter are:

	Creating the Custom Filter

	Creating the Factory for the Custom Filter

	Registering the Factory

	Creating a ContentFilteredTopic using the Custom Filter

3.5.10.1. Creating the Custom Filter

A custom filter must be implemented by a class which inherits from IContentFilter.
Only one function must be implemented, overriding evaluate().
Each time a sample is received by a DataReader, this function is called with next arguments.

	payload - The serialized payload of the sample which the custom filter has to evaluate.

	sample_info - The extra information which accompanies the sample.

	reader_guid - The GUID of the reader for which the filter is being evaluated.

The function returns a boolean where true implies the sample is accepted and false rejects the sample.

Next snippet code shows an example of Custom Filter which deserialize the index field from a serialized sample and
rejects samples where index > low_mark_ and index < high_mark_.

class MyCustomFilter : public IContentFilter
{
public:

 MyCustomFilter(
 int low_mark,
 int high_mark)
 : low_mark_(low_mark)
 , high_mark_(high_mark)
 {
 }

 bool evaluate(
 const SerializedPayload& payload,
 const FilterSampleInfo& sample_info,
 const GUID_t& reader_guid) const override
 {
 // Deserialize the `index` field from the serialized sample.
 /* IDL
 *
 * struct HelloWorld
 * {
 * long index;
 * string message;
 * }
 */
 eprosima::fastcdr::FastBuffer fastbuffer(reinterpret_cast<char*>(payload.data), payload.length);
 eprosima::fastcdr::Cdr deser(fastbuffer, eprosima::fastcdr::Cdr::DEFAULT_ENDIAN,
 eprosima::fastcdr::Cdr::DDS_CDR);
 // Deserialize encapsulation.
 deser.read_encapsulation();
 int index = 0;

 // Deserialize `index` field.
 try
 {
 deser >> index;
 }
 catch (eprosima::fastcdr::exception::NotEnoughMemoryException& /*exception*/)
 {
 return false;
 }

 // Custom filter: reject samples where index > low_mark_ and index < high_mark_.
 if (index > low_mark_ && index < high_mark_)
 {
 return false;
 }

 return true;
 }

private:

 int low_mark_ = 0;
 int high_mark_ = 0;

};

3.5.10.2. Creating the Factory for the Custom Filter

Fast DDS creates filters through a factory.
Therefore a factory which provides instantiating of a Custom Filter must be implemented.

A Custom Filter’s factory has to inherit from IContentFilterFactory.
This interface requires two functions to be implemented.

Each time a Custom Filter has to be created or updated, create_contentfilteredtopic() calls
internally create_content_filter() with these arguments:

	filter_class_name - Filter class name for which the factory is being called.
It allows using the same factory for different filter classes.

	type_name - Type name of the topic being filtered.

	data_type - Type support object of the topic being filtered.

	filter_expression - Custom filter expression.

	filter_parameters - Values to set for the filter parameters (where custom filter expression has its pattern to
substitute them).

	filter_instance - When a filter is being created, it will be nullptr on input, and will have the pointer to
the created filter instance on output.
When a filter is being updated, it will have a previously returned pointer on input.

This function should return the result of the operation.

When a Custom Filter should be removed, delete_contentfilteredtopic() calls internally
delete_content_filter().
The factory must remove the provided Custom Filter’s instance.

Next snippet code shows an example of Custom Filter’s factory which manages instances of the Custom Filter implemented
in the previous section.

class MyCustomFilterFactory : public IContentFilterFactory
{
public:

 ReturnCode_t create_content_filter(
 const char* filter_class_name, // My custom filter class name is 'MY_CUSTOM_FILTER'.
 const char* type_name, // This custom filter only supports one type: 'HelloWorld'.
 const TopicDataType* /*data_type*/, // Not used in this implementation.
 const char* filter_expression, // This Custom Filter doesn't implement a filter expression.
 const ParameterSeq& filter_parameters, // Always need two parameters to be set: low_mark and high_mark.
 IContentFilter*& filter_instance) override
 {
 // Check the ContentFilteredTopic should be created by my factory.
 if (0 != strcmp(filter_class_name, "MY_CUSTOM_FILTER"))
 {
 return ReturnCode_t::RETCODE_BAD_PARAMETER;
 }

 // Check the ContentFilteredTopic is created for the unique type this Custom Filter supports.
 if (0 != strcmp(type_name, "HelloWorld"))
 {
 return ReturnCode_t::RETCODE_BAD_PARAMETER;
 }

 // Check that the two mandatory filter parameters are set.
 if (2 != filter_parameters.length())
 {
 return ReturnCode_t::RETCODE_BAD_PARAMETER;
 }

 // If there is an update, delete previous instance.
 if (nullptr != filter_instance)
 {
 delete(dynamic_cast<MyCustomFilter*>(filter_instance));
 }

 // Instantiation of the Custom Filter.
 filter_instance = new MyCustomFilter(std::stoi(filter_parameters[0]), std::stoi(filter_parameters[1]));

 return ReturnCode_t::RETCODE_OK;
 }

 ReturnCode_t delete_content_filter(
 const char* filter_class_name,
 IContentFilter* filter_instance) override
 {
 // Check the ContentFilteredTopic should be created by my factory.
 if (0 != strcmp(filter_class_name, "MY_CUSTOM_FILTER"))
 {
 return ReturnCode_t::RETCODE_BAD_PARAMETER;
 }

 // Deletion of the Custom Filter.
 delete(dynamic_cast<MyCustomFilter*>(filter_instance));

 return ReturnCode_t::RETCODE_OK;
 }

};

3.5.10.3. Registering the Factory

To be able to use the Custom Filter in an application, the Custom Filter’s factory must be registered in the
DomainParticipant.
Next snippet code shows how to register a factory through API function
register_content_filter_factory().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create Custom Filter Factory
MyCustomFilterFactory* factory = new MyCustomFilterFactory();

// Registration of the factory
if (ReturnCode_t::RETCODE_OK !=
 participant->register_content_filter_factory("MY_CUSTOM_FILTER", factory))
{
 // Error
 return;
}

3.5.10.4. Creating a ContentFilteredTopic using the Custom Filter

Creating a ContentFilteredTopic explains how to create a ContentFilteredTopic.
In the case of using a Custom Filter, create_contentfilteredtopic() has an overload adding an
argument to select the Custom Filter.

Next snippet code shows how to create a ContentFilteredTopic using the Custom Filter.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Create the Topic.
Topic* topic =
 participant->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create a ContentFilteredTopic selecting the Custom Filter and using no expression with two parameters
// Filter expression cannot be an empty one even when it is not used by the custom filter, as that effectively
// disables any filtering
std::string expression = " ";
std::vector<std::string> parameters;
parameters.push_back("10"); // Parameter for low_mark
parameters.push_back("20"); // Parameter for low_mark
ContentFilteredTopic* filter_topic =
 participant->create_contentfilteredtopic("HelloWorldFilteredTopic1", topic, expression, parameters,
 "MY_CUSTOM_FILTER");
if (nullptr == filter_topic)
{
 // Error
 return;
}

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber* subscriber =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
 // Error
 return;
}

DataReader* reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_QOS_DEFAULT);
if (nullptr == reader_on_filter)
{
 // Error
 return;
}

Important

Even though this specific custom filtering example is not using the filter expression, mind that the expression
cannot be an empty string as that disables filtering as explained in
Creating a ContentFilteredTopic.

Note

Deleting a ContentFilteredTopic which uses a Custom Filter is done exactly in the same manner explained in
Deleting a ContentFilteredTopic.

 3.5.11. Where is filtering applied: writer vs reader side

3.5.11. Where is filtering applied: writer vs reader side

Content filters may be evaluated on either side, as the DataWriter obtains
the filter expression from the DataReader during discovery.
Filtering on the writer side can save network bandwidth at the cost of increasing CPU usage on the writer.

3.5.11.1. Conditions for writer side filtering

A DataWriter will perform filter evaluation in the DataReader stead whenever all of the following conditions are met;
filtering will otherwise be performed by the DataReader.

	The DataWriter has infinite liveliness.
See LivelinessQosPolicy.

	Communication with the DataReader is neither intra-process nor
data-sharing.

	The DataReader is not using multicast.

	The DataWriter is filtering for no more DataReaders than the maximum value set on
reader_filters_allocation.

	There is a resource-limit policy on DataWriterQos that controls the allocation
behavior of writer-side filtering resources.
Setting a maximum value of 0 disables filter evaluation on the writer side.
A maximum value of 32 (the default value) means the writer will perform filter evaluation for up to 32 readers.

	If the DataWriter is evaluating filters for writer_resource_limits.reader_filters_allocation.maximum
DataReaders, and a new filtered DataReader is created, then the filter for the newly created DataReader
will be evaluated on the reader side.

3.5.11.2. Discovery race condition

On applications where the filter expression and/or the expression parameters are updated, there may be a
situation where the DataWriter will apply the old version of the filter until it receives updated information
through discovery.
This may imply that a publication made a short time after the DataReader updated the filter, but before the
updated discovery information is received by the DataWriter, may not be sent to the DataReader, even if the
new filter would have told otherwise.
Publications made after the updated discovery information is received will use the updated filter.

If some critical application considers this race condition issue unbearable, filtering on the writer side
can be disabled by setting the maximum value on reader_filters_allocation to 0.

 3.5.12. Fast DDS-Gen for data types source code generation

3.5.12. Fast DDS-Gen for data types source code generation

eProsima Fast DDS comes with a built-in source code generation tool, Fast DDS-Gen, which eases the process of
translating an IDL specification of a data type to a functional implementation.
Thus, this tool automatically generates the source code of a data type defined using IDL.
A basic use of the tool is described below.
To learn about all the features that Fast DDS offers, please refer to Fast DDS-Gen section.

3.5.12.1. Basic usage

Fast DDS can be executed by calling fastddsgen on Linux or fastddsgen.bat on Windows.
The IDL file containing the data type definition is given with the <IDLfile> argument.

	Linux

	fastddsgen [<options>] <IDLfile> [<IDLfile> ...]

	Windows

	fastddsgen.bat [<options>] <IDLfile> [<IDLfile> ...]

Among the available arguments defined in Usage, the main Fast DDS-Gen options for data type source
code generation are the following:

	-replace: It replaces existing files in case the data type files have been previously generated.

	-help: It lists the currently supported platforms and Visual Studio versions.

	-typeobject: It builds additional files for TypeObject generation and management (see
TypeObject).

	-example: It generates a basic example of a DDS application and the files to build it for
the given platform.
Thus, Fast DDS-Gen tool can generate a sample application using the provided data type, together with a
Makefile, to compile it on Linux distributions, and a Visual Studio project for Windows.
To see an example of this please refer to tutorial Building a publish/subscribe application.

3.5.12.2. Output files

Fast DDS-Gen outputs several files.
Assuming the IDL file had the name “Mytype”, and none of the above options have been defined, these files are:

	MyType.cxx/.h: Type definition.

	MyTypePubSubType.cxx/.h: Serialization and deserialization source code for the data type.
It also defines the getKey() member function of the MyTypePubSubType class in case the
topic implements keys (see Data types with a key).

If the -typeobject argument was used, MyType.cxx is modified to register the TypeObject representation in
the TypeObjectFactory, and these files will also be generated:

	MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

 4. RTPS Layer

4. RTPS Layer

The lower level RTPS Layer of eprosima Fast DDS serves an implementation of the protocol defined in the
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2].
This layer provides more control over the internals of the communication protocol than the DDS Layer, so advanced
users have finer control over the library’s functionalities.

4.1. Relation to the DDS Layer

Elements of this layer map one-to-one with elements from the DDS Layer, with a few additions.
This correspondence is shown in the following table:

	DDS Layer

	RTPS Layer

	Domain

	RTPSDomain

	DomainParticipant

	RTPSParticipant

	DataWriter

	RTPSWriter

	DataReader

	RTPSReader

4.2. How to use the RTPS Layer

We will now go over the use of the RTPS Layer like we did with the DDS Layer one,
explaining the new features it presents.

We recommend you to look at the two examples describing how to use the RTPS layer that come with the distribution
while reading this section.
They are located in
examples/cpp/rtps/AsSocket [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/AsSocket] and
examples/cpp/rtps/Registered [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/Registered]

4.2.1. Managing the Participant

Creating a RTPSParticipant is done with RTPSDomain::createParticipant().
RTPSParticipantAttributes structure is used to configure the RTPSParticipant upon creation.

RTPSParticipantAttributes participant_attr;
participant_attr.setName("participant");
RTPSParticipant* participant = RTPSDomain::createParticipant(0, participant_attr);

4.2.2. Managing the Writers and Readers

As the RTPS standard specifies, RTPSWriters and RTPSReaders are always associated
with a History element.
In the DDS Layer, its creation and management is hidden,
but in the RTPS Layer, you have full control over its creation and configuration.

Writers are created with RTPSDomain::createRTPSWriter() and configured with a WriterAttributes structure.
They also need a WriterHistory which is configured with a HistoryAttributes structure.

HistoryAttributes history_attr;
WriterHistory* history = new WriterHistory(history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, history);

Similar to the creation of Writers, Readers are created with RTPSDomain::createRTPSReader()
and configured with a ReaderAttributes structure.
A HistoryAttributes structure is used to configure the required ReaderHistory.
Note that in this case, you can provide a specialization of ReaderListener class that implements your
callbacks:

class MyReaderListener : public ReaderListener
{
 // Callbacks override
};
MyReaderListener listener;
HistoryAttributes history_attr;
ReaderHistory* history = new ReaderHistory(history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, history, &listener);

4.2.3. Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated Histories.
Each piece of data is represented by a Change, which eprosima Fast DDS implements as CacheChange_t.
Changes are always managed by the History.

You can add a new CacheChange_t to the History of the Writer to send data.
The procedure is as follows:

	Request a CacheChange_t from the Writer with RTPSWriter::new_change().
In order to allocate enough memory,
you need to provide a callback that returns the maximum number bytes in the payload.

	Fill the CacheChange_t with the data.

	Add it to the History with WriterHistory::add_change().

The Writer will take care of everything to communicate the data to the Readers.

//Request a change from the writer
CacheChange_t* change = writer->new_change([]() -> uint32_t
 {
 return 255;
 }, ALIVE);
//Write serialized data into the change
change->serializedPayload.length = sprintf((char*) change->serializedPayload.data, "My example string %d", 2) + 1;
//Insert change into the history. The Writer takes care of the rest.
history->add_change(change);

If your topic data type has several fields, you will have to provide functions to serialize and deserialize
your data in and out of the CacheChange_t.
Fast DDS-Gen does this for you.

You can receive data from within the ReaderListener::onNewCacheChangeAdded callback,
as we did in the DDS Layer:

	The callback receives a CacheChange_t parameter containing the received data.

	Process the data within the received CacheChange_t.

	Inform the Reader’s History that the change is not needed anymore.

class MyReaderListener : public ReaderListener
{
public:

 MyReaderListener()
 {
 }

 ~MyReaderListener()
 {
 }

 void onNewCacheChangeAdded(
 RTPSReader* reader,
 const CacheChange_t* const change)
 {
 // The incoming message is enclosed within the `change` in the function parameters
 printf("%s\n", change->serializedPayload.data);
 // Once done, remove the change
 reader->getHistory()->remove_change((CacheChange_t*)change);
 }

};

4.3. Configuring Readers and Writers

One of the benefits of using the RTPS Layer is that it provides new configuration possibilities while
maintaining the options from the DDS layer.
For example, you can set a Writer or a Reader as a Reliable or Best-Effort endpoint as previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

4.3.1. Setting the data durability kind

The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader matches.
eProsima Fast DDS offers three Durability options:

	VOLATILE (default): Messages are discarded as they are sent.
If a new Reader matches after message n, it will start received from message n+1.

	TRANSIENT_LOCAL: The Writer saves a record of the last k messages it has sent.
If a new reader matches after message n, it will start receiving from message n-k

	TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it will be available
if the writer is destroyed and recreated, or in case of an application crash.

To choose your preferred option:

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the RTPS Layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT modes the Writer
sends all changes you have not explicitly released from the History.

4.4. Configuring the History

The History has its own configuration structure, the HistoryAttributes.

4.4.1. Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t.
Be sure to choose a size that allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250;//Defaults to 500 bytes

4.4.2. Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as they
are needed until it reaches the maximum size.

4.5. Using a custom Payload Pool

A Payload is defined as the data the user wants to transmit between a Writer and a Reader.
RTPS needs to add some metadata to this Payload in order to manage the communication between the endpoints.
Therefore, this Payload is encapsulated inside the SerializedPayload_t field
of the CacheChange_t,
while the rest of the fields of the CacheChange_t provide the required metadata.

WriterHistory and ReaderHistory provide an interface for the user to interact with these changes:
Changes to be transmitted by the Writer are added to its WriterHistory,
and changes already processed on the Reader can be removed from the ReaderHistory.
In this sense, the History acts as a buffer for changes that are not fully processed yet.

During a normal execution, new changes are added to the History and old ones are removed from it.
In order to manage the lifecycle of the Payloads contained in these changes,
Readers and Writers use a pool object,
an implementation of the IPayloadPool interface.
Different pool implementations allow for different optimizations.
For example, Payloads of different size could be retrieved from different preallocated memory chunks.

Writers and Readers can automatically select a default Payload pool implementation that best suits
the configuration given in HistoryAttributes.
However, a custom Payload pool can be given to RTPSDomain::createRTPSWriter() and
RTPSDomain::createRTPSReader() functions.
Writers and Readers will use the provided pool when a new CacheChange_t is requested
or released.

4.5.1. IPayloadPool interface

	IPayloadPool::get_payload overload with size parameter:

Ties an empty Payload of the requested size to a CacheChange_t instance.
The Payload can then be filled with the required data.

	IPayloadPool::get_payload overload with SerializadPayload parameter:

Copies the given Payload data to a new Payload from the pool and ties it to the CacheChange_t instance.
This overload also takes a pointer to the pool that owns the original Payload.
This allows certain optimizations, like sharing the Payload if the original one comes form this same pool,
therefore avoiding the copy operation.

	IPayloadPool::release_payload:

Returns the Payload tied to a CacheChange_t to the pool, and breaks the tie.

Important

When implementing a custom Payload pool, make sure that the allocated Payloads
fulfill the requirements of standard RTPS serialization.
Specifically, the Payloads must be large enough to accommodate the serialized user data plus the 4 octets
of the SerializedPayloadHeader as specified in section 10.2 of the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2].

For example, if we know the upper bound of the serialized user data,
we may consider implementing a pool that always allocates Payloads of a fixed size,
large enough to hold any of this data.
If the serialized user data has at most N octets,
then the allocated Payloads must have at least N+4 octets.

Note that the size requested to IPayloadPool::get_payload already considers this 4 octet header.

4.5.2. Default Payload pool implementation

If no custom Payload pool is provided to the Writer or Reader, Fast DDS will automatically use the
default implementation that best matches the memoryPolicy configuration of the History.

PREALLOCATED_MEMORY_MODE

All payloads will have a data buffer of fixed size,
equal to the value of payloadMaxSize,
regardless of the size requested to IPayloadPool::get_payload.
Released Payloads can be reused for another CacheChange_t.
This reduces memory allocation operations at the cost of higher memory usage.

During the initialization of the History, initialReservedCaches
Payloads are preallocated for the initially allocated CacheChange_t.

PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Payloads are guaranteed to have a data buffer at least as large as the
maximum between the requested size and payloadMaxSize.
Released Payloads can be reused for another CacheChange_t.
If there is at least one free Payload with a buffer size equal or larger to the requested one,
no memory allocation is done.

During the initialization of the History, initialReservedCaches
Payloads are preallocated for the initially allocated CacheChange_t.

DYNAMIC_RESERVE_MEMORY_MODE

Every time a Payload is requested, a new one is allocated in memory with the appropriate size.
payloadMaxSize is ignored.
The memory of released Payloads is always deallocated, so there are never free Payloads in the pool.
This reduces memory usage at the cost of frequent memory allocations.

No preallocation of Payloads is done in the initialization of the History,

DYNAMIC_REUSABLE_MEMORY_MODE

Payloads are guaranteed to have a data buffer at least as large as the requested size.
payloadMaxSize is ignored.

Released Payloads can be reused for another CacheChange_t.
If there is at least one free Payload with a buffer size equal or larger to the requested one,
no memory allocation is done.

4.5.3. Example using a custom Payload pool

// A simple payload pool that reserves and frees memory each time
class CustomPayloadPool : public IPayloadPool
{
 bool get_payload(
 uint32_t size,
 CacheChange_t& cache_change) override
 {
 // Reserve new memory for the payload buffer
 octet* payload = new octet[size];

 // Assign the payload buffer to the CacheChange and update sizes
 cache_change.serializedPayload.data = payload;
 cache_change.serializedPayload.length = size;
 cache_change.serializedPayload.max_size = size;

 // Tell the CacheChange who needs to release its payload
 cache_change.payload_owner(this);

 return true;
 }

 bool get_payload(
 SerializedPayload_t& data,
 IPayloadPool*& /* data_owner */,
 CacheChange_t& cache_change) override
 {
 // Reserve new memory for the payload buffer
 octet* payload = new octet[data.length];

 // Copy the data
 memcpy(payload, data.data, data.length);

 // Assign the payload buffer to the CacheChange and update sizes
 cache_change.serializedPayload.data = payload;
 cache_change.serializedPayload.length = data.length;
 cache_change.serializedPayload.max_size = data.length;

 // Tell the CacheChange who needs to release its payload
 cache_change.payload_owner(this);

 return true;
 }

 bool release_payload(
 CacheChange_t& cache_change) override
 {
 // Ensure precondition
 assert(this == cache_change.payload_owner());

 // Dealloc the buffer of the payload
 delete[] cache_change.serializedPayload.data;

 // Reset sizes and pointers
 cache_change.serializedPayload.data = nullptr;
 cache_change.serializedPayload.length = 0;
 cache_change.serializedPayload.max_size = 0;

 // Reset the owner of the payload
 cache_change.payload_owner(nullptr);

 return true;
 }

};

std::shared_ptr<CustomPayloadPool> payload_pool = std::make_shared<CustomPayloadPool>();

// A writer using the custom payload pool
HistoryAttributes writer_history_attr;
WriterHistory* writer_history = new WriterHistory(writer_history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, payload_pool, writer_history);

// A reader using the same instance of the custom payload pool
HistoryAttributes reader_history_attr;
ReaderHistory* reader_history = new ReaderHistory(reader_history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, payload_pool, reader_history);

// Write and Read operations work as usual, but take the Payloads from the pool.
// Requesting a change to the Writer will provide one with an empty Payload taken from the pool
CacheChange_t* change = writer->new_change([]() -> uint32_t
 {
 return 255;
 }, ALIVE);

// Write serialized data into the change and add it to the history
change->serializedPayload.length = sprintf((char*) change->serializedPayload.data, "My example string %d", 2) + 1;
writer_history->add_change(change);

 5. Discovery

5. Discovery

Fast DDS, as a Data Distribution Service (DDS [https://www.omg.org/spec/DDS/1.4]) implementation, provides discovery
mechanisms that allow for automatically finding and matching DataWriters and DataReaders across DomainParticipants
so they can start sharing data.
This discovery is performed, for all the mechanisms, in two phases.

5.1. Discovery phases

	Participant Discovery Phase (PDP):
During this phase the DomainParticipants acknowledge each other’s existence.
To do that, each DomainParticipant sends periodic announcement messages, which specify, among other things, unicast
addresses (IP and port) where the DomainParticipant is listening for incoming meta and user data traffic.
Two given DomainParticipants will match when they exist in the same DDS Domain.
By default, the announcement messages are sent using well-known multicast addresses and ports (calculated using the
DomainId).
Furthermore, it is possible to specify a list of addresses to send
announcements using unicast (see in Initial peers).
Moreover, is is also possible to configure the periodicity of such announcements (see
Discovery Configuration).

	Endpoint Discovery Phase (EDP):
During this phase, the DataWriters and DataReaders acknowledge each other.
To do that, the DomainParticipants share information about their DataWriters and DataReaders with each other,
using the communication channels established during the PDP.
This information contains, among other things, the Topic and data type (see Topic).
For two endpoints to match, their topic and data type must coincide.
Once DataWriter and DataReader have matched, they are ready for sending/receiving user data traffic.

Important

It is possible to use the PDP phase to transmit information about the host, user, and process (physical information)
in which the DomainParticipant is running.
Please refer to Physical Data in Discovery Information for more information about how to configure the transmitted
physical data.

5.2. Discovery mechanisms

Fast DDS provides the following discovery mechanisms:

	Simple Discovery: This is the default mechanism.
It upholds the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] for both PDP and EDP, and therefore
provides compatibility with any other DDS and RTPS implementations.

	Static Discovery: This mechanisms uses the Simple Participant Discovery Protocol (SPDP) for the
PDP phase (as specified by the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF]), but allows for skipping
the Simple Endpoint Discovery Protocol (SEDP) phase when all the DataWriters’ and DataReaders’ IPs and ports,
data types, and Topics are known beforehand.

	Discovery Server: This discovery mechanism uses a centralized discovery architecture,
where a DomainParticipant, referred as Server, acts as a hub for meta traffic discovery.

	Manual Discovery: This mechanism is only compatible with the RTPS layer.
It disables the PDP, letting the user to manually match and unmatch RTPSParticipants, RTPSReaders, and
RTPSWriters using whatever external meta-information channel of its choice.
Therefore, the user must access the RTPSParticipant implemented by the DomainParticipant and directly match the
RTPS Entities.

5.3. Discovery settings

The following sections list and describe the settings available for each of the previously defined discovery mechanisms,
as well as how to define the DomainParticipantListener discovery callbacks.

	5.3.1. General Discovery Settings
	5.3.1.1. Discovery Protocol

	5.3.1.2. Ignore Participant flags

	5.3.1.3. Lease Duration

	5.3.1.4. Announcement Period

	5.3.2. SIMPLE Discovery Settings
	5.3.2.1. Initial Announcements

	5.3.2.2. Simple EDP Attributes

	5.3.2.3. Initial peers

	5.3.3. STATIC Discovery Settings
	5.3.3.1. STATIC EDP

	5.3.3.2. STATIC EDP XML Configuration Specification

	5.3.3.3. Checking STATIC EDP XML Files

	5.3.3.4. Loading STATIC EDP XML Files

	5.3.4. Discovery Server Settings
	5.3.4.1. Key concepts

	5.3.4.2. Choosing between Client and Server

	5.3.4.3. The GuidPrefix as the server unique identifier

	5.3.4.4. The server locator list

	5.3.4.5. Fine tuning discovery server handshake

	5.3.4.6. Modifying remote servers list at run time

	5.3.4.7. Configure Discovery Server locators using names

	5.3.4.8. Full example

	5.3.5. DomainParticipantListener Discovery Callbacks

 5.3.1. General Discovery Settings

5.3.1. General Discovery Settings

Some discovery settings are shared across the different discovery mechanisms.
These settings are defined under the builtin public data member of the
WireProtocolConfigQos class.
These are:

	Name

	Description

	Type

	Default

	Discovery Protocol

	The discovery protocol to use

(see Discovery mechanisms).

	DiscoveryProtocol

	SIMPLE

	Ignore Participant flags

	Filter discovery traffic for

DomainParticipants in the

same process, in different

processes, or in different hosts.

	ParticipantFilteringFlags

	NO_FILTER

	Lease Duration

	Indicates for how much time

should a remote
DomainParticipant
 consider
the local DomainParticipant

to be alive.

	Duration_t

	20 s

	Announcement Period

	The period for the
DomainParticipant

to send PDP announcements.

	Duration_t

	3 s

5.3.1.1. Discovery Protocol

Specifies the discovery protocol to use (see Discovery mechanisms).
The possible values are:

	Discovery Mechanism

	Possible values

	Description

	Simple

	SIMPLE

	Simple discovery protocol as specified in
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF].

	Static

	STATIC

	SPDP with manual EDP specified in XML files.

	Discovery Server

	SERVER

	The DomainParticipant acts as a hub for discovery traffic, receiving

 and distributing discovery information.

	CLIENT

	The DomainParticipant acts as a client for discovery traffic.

It sends its discovery information to the server, and it receives

only the information that is relevant to it.

	SUPER_CLIENT

	The DomainParticipant acts as a client for discovery traffic.

It sends its discovery information to the server, and it receives

all other discovery information from the server.

	BACKUP

	Creates a SERVER DomainParticipant which has a persistent sqlite

 database. A BACKUP server can load the a database on start.

This type of sever makes the Discovery Server architecture

resilient to server destruction.

	Manual

	NONE

	Disables PDP phase, therefore the is no EDP phase.

All matching must be done manually through the

addReaderLocator, addReaderProxy, addWriterProxy

RTPS layer methods.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::SIMPLE;

	XML

	<participant profile_name="participant_discovery_protocol">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SIMPLE</discoveryProtocol>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

5.3.1.2. Ignore Participant flags

Defines a filter to ignore some discovery traffic when received.
This is useful to add an extra level of DomainParticipant isolation.
The possible values are:

	Possible values

	Description

	NO_FILTER

	All Discovery traffic is processed.

	FILTER_DIFFERENT_HOST

	Discovery traffic from another host is discarded.

	FILTER_DIFFERENT_PROCESS

	Discovery traffic from another process on the same host
is discarded.

	FILTER_SAME_PROCESS

	Discovery traffic from DomainParticipant’s own
process is discarded.

	FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS

	Discovery traffic from DomainParticipant’s own
host is discarded.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.ignoreParticipantFlags =
 static_cast<eprosima::fastrtps::rtps::ParticipantFilteringFlags_t>(
 ParticipantFilteringFlags_t::FILTER_DIFFERENT_PROCESS |
 ParticipantFilteringFlags_t::FILTER_SAME_PROCESS);

	XML

	<participant profile_name="participant_discovery_ignore_flags">
 <rtps>
 <builtin>
 <discovery_config>
 <ignoreParticipantFlags>FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS</ignoreParticipantFlags>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

5.3.1.3. Lease Duration

Indicates for how much time should a remote DomainParticipant consider the local DomainParticipant to be alive.
If the liveliness of the local DomainParticipant has not being asserted within this time, the remote
DomainParticipant considers the local DomainParticipant dead and destroys all the information regarding the local
DomainParticipant and all its endpoints.

The local DomainParticipant’s liveliness is asserted on the remote DomainParticipant any time the remote
DomainParticipant receives any kind of traffic from the local DomainParticipant.

The lease duration is specified as a time expressed in seconds and nanosecond using a Duration_t.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.leaseDuration = Duration_t(10, 20);

	XML

	<participant profile_name="participant_discovery_lease_duration">
 <rtps>
 <builtin>
 <discovery_config>
 <leaseDuration>
 <sec>10</sec>
 <nanosec>20</nanosec>
 </leaseDuration>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

5.3.1.4. Announcement Period

It specifies the periodicity of the DomainParticipant’s PDP announcements. For liveliness’ sake it is recommend that
the announcement period is shorter than the lease duration, so that the DomainParticipant’s liveliness is asserted
even when there is no data traffic. It is important to note that there is a trade-off involved in the setting of the
announcement period, i.e. too frequent announcements will bloat the network with meta traffic, but too scarce ones will
delay the discovery of late joiners.

DomainParticipant’s announcement period is specified as a time expressed in seconds and nanosecond using a
Duration_t.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.leaseDuration_announcementperiod = Duration_t(1, 2);

	XML

	<participant profile_name="participant_discovery_lease_announcement">
 <rtps>
 <builtin>
 <discovery_config>
 <leaseAnnouncement>
 <sec>1</sec>
 <nanosec>2</nanosec>
 </leaseAnnouncement>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

 5.3.2. SIMPLE Discovery Settings

5.3.2. SIMPLE Discovery Settings

The SIMPLE discovery protocol resolves the establishment of the end-to-end connection between various DDS Entities.
eProsima Fast DDS implements the SIMPLE discovery protocol to provide compatibility with the
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF].
The specification splits up the SIMPLE discovery protocol into two independent protocols:

	Simple Participant Discovery Protocol (SPDP): specifies how DomainParticipants discover each other in the
network; it announces and detects the presence of DomainParticipants within the same domain.

	Simple Endpoint Discovery Protocol (SEDP): defines the protocol adopted by the discovered DomainParticipants for
the exchange of information in order to discover the DDS Entities contained in each of them, i.e. the DataWriter and
DataReader.

	Name

	Description

	Initial Announcements

	It defines the behavior of the DomainParticipants initial announcements.

	Simple EDP Attributes

	It defines the use of the SIMPLE protocol as a discovery protocol.

	Initial peers

	A list of DomainParticipant’s IP/port pairs to which the SPDP announcements
are sent.

5.3.2.1. Initial Announcements

RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] simple discovery mechanism requires the
DomainParticipants to send announcements of their presence in the domain.
These announcements are not delivered in a reliable fashion, and can be disposed of by the network.
In order to avoid the discovery delay induced by message disposal, the initial announcement can be set up to make
several shots, in order to increase proper reception chances.
See InitialAnnouncementConfig.

Initial announcements only take place upon participant creation.
Once this phase is over, the only announcements enforced are the standard ones based on the
leaseDuration_announcementperiod period (not the period).

	Name

	Description

	Type

	Default

	count

	It defines the number of announcements to send at start-up.

	uint32_t

	5

	period

	It defines the specific period for initial announcements.

	Duration_t

	100ms

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.initial_announcements.count = 5;
pqos.wire_protocol().builtin.discovery_config.initial_announcements.period = Duration_t(0, 100000000u);

	XML

	<participant profile_name="participant_profile_simple_discovery">
 <rtps>
 <builtin>
 <discovery_config>
 <initialAnnouncements>
 <count>5</count>
 <period>
 <sec>0</sec>
 <nanosec>100000000</nanosec>
 </period>
 </initialAnnouncements>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

5.3.2.2. Simple EDP Attributes

	Name

	Description

	Type

	Default

	SIMPLE EDP

	It defines the use of the SIMPLE protocol as a discovery

protocol for EDP phase. A DomainParticipant may create

DataWriters, DataReaders, both or neither.

	bool

	true

	Publication writer and

Subscription reader

	It is intended for DomainParticipants that implement only

one or more DataWriters, i.e. do not implement DataReaders.

 It allows the creation of only DataReader discovery
related EDP endpoints.

	bool

	true

	Publication reader and

Subscription writer

	It is intended for DomainParticipants that implement only

one or more DataReaders, i.e. do not implement DataWriters.

 It allows the creation of only DataWriter discovery
related
 EDP endpoints.

	bool

	true

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol = true;
pqos.wire_protocol().builtin.discovery_config.m_simpleEDP.use_PublicationWriterANDSubscriptionReader = true;
pqos.wire_protocol().builtin.discovery_config.m_simpleEDP.use_PublicationReaderANDSubscriptionWriter = false;

	XML

	<participant profile_name="participant_profile_qos_discovery_edp">
 <rtps>
 <builtin>
 <discovery_config>
 <EDP>SIMPLE</EDP>
 <simpleEDP>
 <PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
 <PUBREADER_SUBWRITER>false</PUBREADER_SUBWRITER>
 </simpleEDP>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

5.3.2.3. Initial peers

According to the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] (Section 9.6.1.1), each
RTPSParticipant
must listen for incoming Participant Discovery Protocol (PDP) discovery metatraffic in two different ports, one linked
with a multicast address, and another one linked to a unicast address.
Fast DDS allows for the configuration of an initial peers list which contains one or more such IP-port address
pairs corresponding to remote DomainParticipants PDP discovery listening resources, so that the local
DomainParticipant will not only send its PDP traffic to the default multicast address-port specified by its domain,
but also to all the IP-port address pairs specified in the initial peers list.

A DomainParticipant’s initial peers list contains the list of IP-port address pairs of all other DomainParticipants
with which it will communicate.
It is a list of addresses that a DomainParticipant will use in the unicast discovery mechanism, together or as an
alternative to multicast discovery.
Therefore, this approach also applies to those scenarios in which multicast functionality is not available.

According to the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] (Section 9.6.1.1), the RTPSParticipants’
discovery traffic unicast listening ports are calculated using the following equation:
7400 + 250 * domainID + 10 + 2 * participantID.
Thus, if for example a RTPSParticipant operates in Domain 0 (default
domain) and its ID is 1, its discovery traffic unicast listening port would be: 7400 + 250 * 0 + 10 + 2 * 1 = 7412.
By default eProsima Fast DDS uses as initial peers the Metatraffic Multicast Locators.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with
DomainParticipant ID 1 in domain 0.

Note

There is also the possibility of not defining the initial peer port.
In this case, the discovery information would be sent to every port ranging from participantID zero to the
maxInitialPeersRange value set in the TransportDescriptorInterface.
Consequently, setting this value to at least the maximum expected number of DomainParticipants will ensure discovery
and communication.

	C++

	DomainParticipantQos qos;

// configure an initial peer on host 192.168.10.13.
// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID `1` and domain `0`.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, "192.168.10.13");
initial_peer.port = 7412;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

	XML

	<!--
<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-->
 <participant profile_name="initial_peers_example_profile" is_default_profile="true">
 <rtps>
 <builtin>
 <initialPeersList>
 <locator>
 <udpv4>
 <address>192.168.10.13</address>
 <port>7412</port>
 </udpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>

 5.3.3. STATIC Discovery Settings

5.3.3. STATIC Discovery Settings

Fast DDS allows for the substitution of the SEDP protocol for the EDP phase with a static version that completely
eliminates EDP meta traffic.
This can become useful when dealing with limited network bandwidth and a well-known schema of DataWriters and
DataReaders.
If all DataWriters and DataReaders, and their Topics and data types, are known beforehand, the EDP phase can be
replaced with a static configuration of peers.
It is important to note that by doing this, no EDP discovery meta traffic will be generated, and only those peers
defined in the configuration will be able to communicate.
The STATIC discovery related settings are:

	Name

	Description

	STATIC EDP

	It activates the STATIC discovery protocol.

	STATIC EDP XML Configuration Specification

	Specifies an XML content with a description of the remote DataWriters and

DataReaders.

	Initial Announcements

	It defines the behavior of the DomainParticipant initial announcements (PDP phase).

5.3.3.1. STATIC EDP

To activate the STATIC EDP, the SEDP must be disabled on the WireProtocolConfigQos.
This can be done either by code or using an XML configuration file:

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol = false;
pqos.wire_protocol().builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol = true;

	XML

	<participant profile_name="participant_profile_static_edp">
 <rtps>
 <builtin>
 <discovery_config>
 <EDP>STATIC</EDP>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

Currently two different formats of exchanging information in the Participant Discovery Phase (PDP) are supported:
the default one and another that reduces the network bandwidth used.
Static Discovery’s Exchange Format explains how to change this.

5.3.3.2. STATIC EDP XML Configuration Specification

Since activating STATIC EDP suppresses all EDP meta traffic, the information about the remote entities (DataWriters
and DataReaders) must be statically specified, which is done using dedicated XML files.
A DomainParticipant may load several of such configuration files so that the information about different entities can
be contained in one file, or split into different files to keep it more organized.
Fast DDS provides a
Static Discovery example [https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/StaticHelloWorldExample]
that implements this EDP discovery protocol.

The following table describes all the possible elements of a STATIC EDP XML configuration file.
A full example of such file can be found in STATIC EDP XML Example.

	Name

	Description

	Values

	Default

	<userId>

	Mandatory.

Uniquely identifies the DataReader/DataWriter.

	uint16_t

	0

	<entityID>

	EntityId of the DataReader/DataWriter.

	uint16_t

	0

	<expectsInlineQos>

	It indicates if QOS is expected inline

(DataReader only).

	bool

	false

	<topicName>

	Mandatory.

The topic of the remote DataReader/DataWriter.

Should match with one of the topics of the local DataReaders/DataWriters.

	string_255

	

	<topicDataType>

	Mandatory.

The data type of the topic.

	string_255

	

	<topicKind>

	The kind of topic.

	NO_KEY

WITH_KEY

	NO_KEY

	<partitionQos>

	The name of a partition of the remote peer.

Repeat to configure several partitions.

	string

	

	<unicastLocator>

	Unicast locator of the DomainParticipant.

See Locators definition.

	
	

	<multicastLocator>

	Multicast locator of the DomainParticipant.

See Locators definition.

	
	

	<reliabilityQos>

	See the ReliabilityQosPolicy section.

	BEST_EFFORT_RELIABILITY_QOS

RELIABLE_RELIABILITY_QOS

	BEST_EFFORT_RELIABILITY_QOS

	<durabilityQos>

	See the DurabilityQosPolicy section.

	VOLATILE_DURABILITY_QOS

TRANSIENT_LOCAL_DURABILITY_QOS

TRANSIENT_DURABILITY_QOS

	VOLATILE_DURABILITY_QOS

	<ownershipQos>

	See Ownership QoS.

	
	

	<livelinessQos>

	Defines the liveliness of the remote peer.

See Liveliness QoS.

	
	

	<disablePositiveAcks>

	See DisablePositiveACKsQosPolicy.

	See DisablePositiveAcks

	

5.3.3.2.1. Locators definition

Locators for remote peers are configured using <unicastLocator> and <multicastLocator> tags.
These take no value, and the locators are defined using tag elements.
Locators defined with <unicastLocator> and <multicastLocator> are accumulative, so they can be repeated to
assign several remote endpoints locators to the same peer.

	address: a mandatory string representing the locator address.

	port: an optional uint16_t representing a port on that address.

5.3.3.2.2. Ownership QoS

The ownership of the topic can be configured using <ownershipQos> tag.
It takes no value, and the configuration is done using tag elements:

	kind: can be one of SHARED_OWNERSHIP_QOS or EXCLUSIVE_OWNERSHIP_QOS.
This element is mandatory withing the tag.

	strength: an optional uint32_t specifying how strongly the remote DomainParticipant owns the Topic.
This QoS can be set on DataWriters only.
If not specified, default value is zero.

5.3.3.2.3. Liveliness QoS

The LivelinessQosPolicy of the remote peer is configured using <livelinessQos> tag.
It takes no value, and the configuration is done using tag elements:

	kind: can be any of AUTOMATIC_LIVELINESS_QOS, MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS. This element is mandatory withing the tag.

	leaseDuration_ms: an optional uint32 specifying the lease duration for the remote peer.
The special value INF can be used to indicate infinite lease duration.
If not specified, default value is INF

5.3.3.3. Checking STATIC EDP XML Files

Before loading a static EDP XML file, it would be useful to check its validity and make sure the file will be
successfully loaded.
This verification can be performed on DomainParticipantFactory using
DomainParticipantFactory::check_xml_static_discovery(), using either XML files or the configuration directly,
as in the examples below.

File

// The (file://) flag is optional.
std::string file = "file://static_Discovery.xml";
DomainParticipantFactory* factory = DomainParticipantFactory::get_instance();
if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(file))
{
 std::cout << "Error parsing xml file " << file << std::endl;
}

Data

// The (data://) flag is required to load the configuration directly.
std::string fileData = "data://<?xml version=\"1.0\" encoding=\"utf-8\"?>" \
 "<staticdiscovery>" \
 "<participant>" \
 "<name>HelloWorldPublisher</name>" \
 "<writer>" \
 "<userId>1</userId>" \
 "<entityID>2</entityID>" \
 "<topicName>HelloWorldTopic</topicName>" \
 "<topicDataType>HelloWorld</topicDataType>" \
 "</writer>" \
 "</participant>" \
 "</staticdiscovery>";
if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(fileData))
{
 std::cout << "Error parsing xml file data:" << std::endl << fileData << std::endl;
}

5.3.3.3.1. STATIC EDP XML Example

The following is a complete example of a configuration XML file for two remote DomainParticipant, a DataWriter and
a DataReader.
This configuration must agree with the configuration used to create the remote DataReader/DataWriter.
Otherwise, communication between DataReaders and DataWriters may be affected.
If any non-mandatory element is missing, it will take the default value.
As a rule of thumb, all the elements that were specified on the remote DataReader/DataWriter creation should be
configured.

	XML

	<staticdiscovery>
 <participant>
 <name>HelloWorldSubscriber</name>
 <reader>
 <userId>3</userId>
 <entityID>4</entityID>
 <expectsInlineQos>true</expectsInlineQos>
 <topicName>HelloWorldTopic</topicName>
 <topicDataType>HelloWorld</topicDataType>
 <topicKind>WITH_KEY</topicKind>
 <partitionQos>HelloPartition</partitionQos>
 <partitionQos>WorldPartition</partitionQos>
 <unicastLocator address="192.168.0.128" port="5000"/>
 <unicastLocator address="10.47.8.30" port="6000"/>
 <multicastLocator address="239.255.1.1" port="7000"/>
 <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>
 <durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
 <ownershipQos kind="SHARED_OWNERSHIP_QOS"/>
 <livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
 <disablePositiveAcks>
 <enabled>true</enabled>
 </disablePositiveAcks>
 </reader>
 </participant>
 <participant>
 <name>HelloWorldPublisher</name>
 <writer>
 <unicastLocator address="192.168.0.120" port="9000"/>
 <unicastLocator address="10.47.8.31" port="8000"/>
 <multicastLocator address="239.255.1.1" port="7000"/>
 <userId>5</userId>
 <entityID>6</entityID>
 <topicName>HelloWorldTopic</topicName>
 <topicDataType>HelloWorld</topicDataType>
 <topicKind>WITH_KEY</topicKind>
 <partitionQos>HelloPartition</partitionQos>
 <partitionQos>WorldPartition</partitionQos>
 <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>
 <durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
 <ownershipQos kind="SHARED_OWNERSHIP_QOS" strength="50"/>
 <livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
 <disablePositiveAcks>
 <enabled>true</enabled>
 <duration>
 <sec>300</sec>
 </duration>
 </disablePositiveAcks>
 </writer>
 </participant>
</staticdiscovery>

5.3.3.4. Loading STATIC EDP XML Files

Statically discovered remote DataReaders/DataWriters must define a unique userID on their profile, whose value
must agree with the one specified in the discovery configuration XML.
This is done by setting the user ID on the DataReaderQos/DataWriterQos:

	C++

	// Configure the DataWriter
DataWriterQos wqos;
wqos.endpoint().user_defined_id = 1;

// Configure the DataReader
DataReaderQos rqos;
rqos.endpoint().user_defined_id = 3;

	XML

	<data_writer profile_name="writer_xml_conf_static_discovery">
 <userDefinedID>3</userDefinedID>
</data_writer>

<data_reader profile_name="reader_xml_conf_static_discovery">
 <userDefinedID>5</userDefinedID>
</data_reader>

On the local DomainParticipant, you can load STATIC EDP configuration content specifying the file containing it.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config("file://RemotePublisher.xml");
pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config("file://RemoteSubscriber.xml");

	XML

	<participant profile_name="participant_profile_static_load_xml">
 <rtps>
 <builtin>
 <discovery_config>
 <static_edp_xml_config>file://RemotePublisher.xml</static_edp_xml_config>
 <static_edp_xml_config>file://RemoteSubscriber.xml</static_edp_xml_config>
 </discovery_config>
 </builtin>
 </rtps>
</participant>

Or you can specify the STATIC EDP configuration content directly.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config(
 "data://<?xml version=\"1.0\" encoding=\"utf-8\"?>" \
 "<staticdiscovery><participant><name>RTPSParticipant</name></participant></staticdiscovery>");

 5.3.4. Discovery Server Settings

5.3.4. Discovery Server Settings

This mechanism is based on a client-server discovery paradigm, i.e. the metatraffic (message exchange among
DomainParticipants to identify each other) is managed by one or several server DomainParticipants (left figure), as
opposed to simple discovery (right figure), where metatraffic is exchanged using a message broadcast mechanism like an
IP multicast protocol.
A Discovery-Server [https://eprosima-discovery-server.readthedocs.io/en/latest/index.html] tool is available to
ease Discovery Server setup and testing.

	Key concepts

	Choosing between Client and Server

	The GuidPrefix as the server unique identifier

	The server locator list

	Fine tuning discovery server handshake

	Modifying remote servers list at run time

	Configure Discovery Server locators using names

	Full example

[image: ../../_images/discovery-server.svg]Comparison of Discovery Server and Simple discovery mechanisms

5.3.4.1. Key concepts

In this architecture there are several key concepts to understand:

	The Discovery Server mechanism reuses the RTPS discovery messages structure, as well as the standard DDS
DataWriters and DataReaders.

	Discovery Server DomainParticipants may be clients or servers.
The only difference between them is on how they handle discovery traffic.
The user traffic, that is, the traffic among the DataWriters and DataReaders they create, is role-independent.

	All server and client discovery information will be shared with linked clients.
Note that a server may act as a client for other servers.

	A SERVER is a participant to which the clients (and maybe other servers) send their discovery information.
The role of the server is to re-distribute the clients (and servers) discovery information to their known
clients and servers.
A server may connect to other servers to receive information about their clients.
Known servers will receive all the information known by the server.
Known clients will only receive the information they need to establish communication, i.e. the information about the
DomainParticipants, DataWriters, and DataReaders to which they match.
This means that the server runs a “matching” algorithm to sort out which information is required by which client.

	A BACKUP server is a server that persists its discovery database into a file.
This type of server can load the network graph from a file on start-up without the need of receiving any client’s
information.
It can be used to persist the server knowledge about the network between runs, thus securing the server’s
information in case of unexpected shutdowns.
It is important to note that the discovery times will be negatively affected when using this type of server, since
periodically writing to a file is an expensive operation.

	A CLIENT is a participant that connects to one or more servers from which it receives only the discovery
information they require to establish communication with matching endpoints.

	Clients require a beforehand knowledge of the servers to which they want to link.
Basically it is reduced to the servers identity (henceforth called GuidPrefix_t) and a list of locators
where the servers are listening.
These locators also define the transport protocol (UDP or TCP) the client will use to contact the server.

	The GuidPrefix_t is the RTPS standard RTPSParticipant unique identifier, a 12-byte chain.
This identifier allows clients to assess whether they are receiving messages from the right server, as each
standard RTPS message contains this piece of information.

The GuidPrefix_t is used because the server’s IP address may not be a reliable enough server identifier,
since several servers can be hosted in the same machine, thus having the same IP, and also because multicast
addresses are acceptable addresses.

	A SUPER_CLIENT is a client that receives all the discovery information known by the server, in opposition to
clients, which only receive the information they need.

	Servers do not require any beforehand knowledge of their clients, but their GuidPrefix_t and locator list
(where they are listening) must match the one provided to the clients.
Clients send discovery messages to the servers at regular intervals (ping period) until they receive message
reception acknowledgement.
From then on, the server knows about the client and will inform it of the relevant discovery information.
The same principle applies to a server connecting to another server.

5.3.4.2. Choosing between Client and Server

It is set by the Discovery Protocol general setting.
A participant can only play one role (despite the fact that a server may connect to other servers).
It is mandatory to fill this value because it defaults to SIMPLE.
The examples below shows how to set this parameter both programmatically and using XML.

	C++

	DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::CLIENT;
pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::SUPER_CLIENT;
pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::SERVER;
pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::BACKUP;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_discovery_protocol_alt" >
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryProtocol>CLIENT</discoveryProtocol>
 <!-- alternatives
 <discoveryProtocol>SERVER</discoveryProtocol>
 <discoveryProtocol>SUPER_CLIENT</discoveryProtocol>
 <discoveryProtocol>BACKUP</discoveryProtocol>
 -->
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

5.3.4.3. The GuidPrefix as the server unique identifier

The GuidPrefix_t attribute belongs to the RTPS specification and univocally identifies each RTPSParticipant.
It consists on 12 bytes, and in Fast DDS is a key for the DomainParticipant used in the DDS domain.
Fast DDS defines the DomainParticipant GuidPrefix_t as a public data member of the
WireProtocolConfigQos class.
In the Discovery Server, it has the purpose to link a server to its clients.
It must be specified in server and client setups.

5.3.4.3.1. Server side setup

The examples below show how to manage the corresponding enum data member and XML tag.

	C++ - Option 1: Manual setting of the unsigned char in ASCII format.

	eprosima::fastrtps::rtps::GuidPrefix_t serverGuidPrefix;
serverGuidPrefix.value[0] = eprosima::fastrtps::rtps::octet(0x44);
serverGuidPrefix.value[1] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[2] = eprosima::fastrtps::rtps::octet(0x00);
serverGuidPrefix.value[3] = eprosima::fastrtps::rtps::octet(0x5f);
serverGuidPrefix.value[4] = eprosima::fastrtps::rtps::octet(0x45);
serverGuidPrefix.value[5] = eprosima::fastrtps::rtps::octet(0x50);
serverGuidPrefix.value[6] = eprosima::fastrtps::rtps::octet(0x52);
serverGuidPrefix.value[7] = eprosima::fastrtps::rtps::octet(0x4f);
serverGuidPrefix.value[8] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[9] = eprosima::fastrtps::rtps::octet(0x49);
serverGuidPrefix.value[10] = eprosima::fastrtps::rtps::octet(0x4d);
serverGuidPrefix.value[11] = eprosima::fastrtps::rtps::octet(0x41);

DomainParticipantQos serverQos;
serverQos.wire_protocol().prefix = serverGuidPrefix;

	C++ - Option 2: Using the >> operator and the std::istringstream type.

	DomainParticipantQos serverQos;
std::istringstream("44.53.00.5f.45.50.52.4f.53.49.4d.41") >> serverQos.wire_protocol().prefix;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_server_guidprefix" >
 <rtps>
 <prefix>
 44.53.00.5f.45.50.52.4f.53.49.4d.41
 </prefix>
 </rtps>
 </participant>
</profiles>

Note that a server can connect to other servers.
Thus, the following section may also apply.

Important

When selecting a GUID prefix for the server, it is important to take into account that Fast DDS also uses this
parameter to identify participants in the same process and enable intra-process communications.
Setting two DomainParticipant GUID prefixes as intra-process compatible will result in no communication if the
DomainParticipants run in separate processes.
For more information, please refer to GUID Prefix considerations for intra-process delivery.

Warning

Launching more than one server using the same GUID prefix is undefined behavior.

5.3.4.3.2. Client side setup

Each client must keep a list of the servers to which it wants to link.
Each single element represents an individual server, and a GuidPrefix_t must be provided.
The server list must be populated with RemoteServerAttributes objects with a valid GuidPrefix_t data
member.
In XML the server list and its elements are simultaneously specified.
Note that prefix is an element of the RemoteServer tag.

	C++

	RemoteServerAttributes server;
server.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.41");

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(server);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_discovery_client_prefix">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryServersList>
 <RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">
 <metatrafficUnicastLocatorList>
 <locator/>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

5.3.4.4. The server locator list

Each server must specify valid locators where it can be reached.
Any client must be given proper locators to reach each of its servers.
As in the above section, here there is a server and a client side setup.

5.3.4.4.1. Server side setup

The examples below show how to setup the server locator list and XML tag.

	C++

	Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;

DomainParticipantQos serverQos;
serverQos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_discovery_server_server_metatraffic">
 <rtps>
 <builtin>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <!-- placeholder server UDP address -->
 <address>192.168.1.113</address>
 <port>64863</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

Note that a server can connect to other servers, thus, the following section may also apply.

5.3.4.4.2. Client side setup

Each client must keep a list of locators associated to the servers to which it wants to link.
Each server specifies its own locator list which must be populated with RemoteServerAttributes objects with a
valid metatrafficUnicastLocatorList or metatrafficMulticastLocatorList.
In XML the server list and its elements are simultaneously specified.
Note the metatrafficUnicastLocatorList or metatrafficMulticastLocatorList are elements of the RemoteServer
tag.

	C++

	Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;
RemoteServerAttributes server;
server.metatrafficUnicastLocatorList.push_back(locator);

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(server);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_discovery_server_client_metatraffic">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryServersList>
 <RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <!-- placeholder server UDP address -->
 <address>192.168.1.113</address>
 <port>64863</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

5.3.4.5. Fine tuning discovery server handshake

As explained above the clients send discovery messages to the servers at regular
intervals (ping period) until they receive message reception acknowledgement.
Mind that this period also applies for those servers which connect to other servers.

	C++

	DomainParticipantQos participant_qos;
participant_qos.wire_protocol().builtin.discovery_config.discoveryServer_client_syncperiod =
 Duration_t(0, 250000000);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_ping" >
 <rtps>
 <builtin>
 <discovery_config>
 <clientAnnouncementPeriod>
 <!-- change default to 250 ms -->
 <nanosec>250000000</nanosec>
 </clientAnnouncementPeriod>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

5.3.4.6. Modifying remote servers list at run time

Once a server or client is running, it is possible to programmatically modify the participant’s list of remote
servers to which the running server or client should connect.
This is done by calling DomainParticipant::set_qos() with a DomainParticipantQos which has a modified
WireProtocolConfigQos (see WireProtocolConfigQos).
This feature allows to include a new remote server into the Discovery Server network or modify the remote server locator
in case that the remote server is relaunched with a different listening locator.

Important

The list of remote servers can only be modified to either add more servers, or modify the remote server
locator, but not to remove any of the existing ones.
This means that the new list passed to DomainParticipant::set_qos() must be a superset of the existing one.

Note

The remote server list can also be modified using the ROS_DISCOVERY_SERVER environment variable.
Please refer to FASTDDS_ENVIRONMENT_FILE for more information.

Warning

It is strongly advised to use either the API or the environment file.
Using both at the same time may cause undefined behavior.

	C++

	// Get existing QoS for the server or client
DomainParticipantQos client_or_server_qos;
client_or_server->get_qos(client_or_server_qos);

/* Create a new server entry to which the client or server should connect */
RemoteServerAttributes remote_server_att;

// Set server's GUID prefix
remote_server_att.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.42");

// Set server's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11812;
remote_server_att.metatrafficUnicastLocatorList.push_back(locator);

/* Update list of remote servers for this client or server */
client_or_server_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_att);
if (ReturnCode_t::RETCODE_OK != client_or_server->set_qos(client_or_server_qos))
{
 // Error
 return;
}

5.3.4.7. Configure Discovery Server locators using names

All the examples provided in Discovery Server Settings use IPv4 addresses to specify the servers’ listening locators.
However, Fast DDS also allows to specify locator addresses using names.

5.3.4.8. Full example

The following constitutes a full example on how to configure server and client both programmatically and using XML.

5.3.4.8.1. Server side setup

	C++

	// Get default participant QoS
DomainParticipantQos server_qos = PARTICIPANT_QOS_DEFAULT;

// Set participant as SERVER
server_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::SERVER;

// Set SERVER's GUID prefix
std::istringstream("44.53.00.5f.45.50.52.4f.53.49.4d.41") >> server_qos.wire_protocol().prefix;

// Set SERVER's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11811;
server_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

/* Add a remote serve to which this server will connect */
// Set remote SERVER's GUID prefix
RemoteServerAttributes remote_server_att;
remote_server_att.ReadguidPrefix("44.53.01.5f.45.50.52.4f.53.49.4d.41");

// Set remote SERVER's listening locator for PDP
Locator_t remote_locator;
IPLocator::setIPv4(remote_locator, 127, 0, 0, 1);
remote_locator.port = 11812;
remote_server_att.metatrafficUnicastLocatorList.push_back(remote_locator);

// Add remote SERVER to SERVER's list of SERVERs
server_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_att);

// Create SERVER
DomainParticipant* server =
 DomainParticipantFactory::get_instance()->create_participant(0, server_qos);
if (nullptr == server)
{
 // Error
 return;
}

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_server_full_example">
 <rtps>
 <!-- Set SERVER's GUID prefix -->
 <prefix>44.53.00.5f.45.50.52.4f.53.49.4d.41</prefix>
 <builtin>
 <!-- Set participant as SERVER -->
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 <!--
 Set a list of remote servers to which this server connects.
 This list may contain one or more <RemoteServer> tags
 -->
 <discoveryServersList>
 <!--
 Set remote server configuration:
 - Prefix
 - PDP listening locator
 -->
 <RemoteServer prefix="44.53.01.5f.45.50.52.4f.53.49.4d.41">
 <metatrafficUnicastLocatorList>
 <!-- Set SERVER's listening locator for PDP -->
 <locator>
 <udpv4>
 <address>127.0.0.1</address>
 <port>11812</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 <!-- Set SERVER's listening locator for PDP -->
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>127.0.0.1</address>
 <port>11811</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

5.3.4.8.2. Client side setup

	C++

	// Get default participant QoS
DomainParticipantQos client_qos = PARTICIPANT_QOS_DEFAULT;

// Set participant as CLIENT
client_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =
 DiscoveryProtocol_t::CLIENT;

// Set SERVER's GUID prefix
RemoteServerAttributes remote_server_att;
remote_server_att.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.41");

// Set SERVER's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11811;
remote_server_att.metatrafficUnicastLocatorList.push_back(locator);

// Add remote SERVER to CLIENT's list of SERVERs
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_att);

// Set ping period to 250 ms
client_qos.wire_protocol().builtin.discovery_config.discoveryServer_client_syncperiod =
 Duration_t(0, 250000000);

// Create CLIENT
DomainParticipant* client =
 DomainParticipantFactory::get_instance()->create_participant(0, client_qos);
if (nullptr == client)
{
 // Error
 return;
}

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_client_full_example">
 <rtps>
 <builtin>
 <discovery_config>
 <!-- Set participant as CLIENT -->
 <discoveryProtocol>CLIENT</discoveryProtocol>
 <!--
 Set list of remote servers. This list may contain one or
 more <RemoteServer> tags
 -->
 <discoveryServersList>
 <!--
 Set remote server configuration:
 - Prefix
 - PDP listening locator
 -->
 <RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">
 <metatrafficUnicastLocatorList>
 <!-- Set SERVER's listening locator for PDP -->
 <locator>
 <udpv4>
 <address>127.0.0.1</address>
 <port>11811</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 <!-- Set ping period to 250 ms -->
 <clientAnnouncementPeriod>
 <nanosec>250000000</nanosec>
 </clientAnnouncementPeriod>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

 5.3.5. DomainParticipantListener Discovery Callbacks

5.3.5. DomainParticipantListener Discovery Callbacks

As stated in DomainParticipantListener, the DomainParticipantListener is an abstract class
defining the callbacks that will be triggered in response to state changes on the DomainParticipant.
Fast DDS defines four callbacks attached to events that may occur during discovery:
on_participant_discovery(),
on_subscriber_discovery(),
on_publisher_discovery(),
on_type_discovery().
Further information about the DomainParticipantListener is provided in the DomainParticipantListener
section.
The following is an example of the implementation of DomainParticipantListener discovery callbacks.

class DiscoveryDomainParticipantListener : public DomainParticipantListener
{
 /* Custom Callback on_participant_discovery */
 virtual void on_participant_discovery(
 DomainParticipant* participant,
 eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&& info)
 {
 (void)participant;
 switch (info.status){
 case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERED_PARTICIPANT:
 /* Process the case when a new DomainParticipant was found in the domain */
 std::cout << "New DomainParticipant '" << info.info.m_participantName <<
 "' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '" <<
 info.info.m_guid.guidPrefix << "' discovered." << std::endl;
 break;
 case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::CHANGED_QOS_PARTICIPANT:
 /* Process the case when a DomainParticipant changed its QOS */
 break;
 case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::REMOVED_PARTICIPANT:
 /* Process the case when a DomainParticipant was removed from the domain */
 std::cout << "New DomainParticipant '" << info.info.m_participantName <<
 "' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '" <<
 info.info.m_guid.guidPrefix << "' left the domain." << std::endl;
 break;
 }
 }

 /* Custom Callback on_subscriber_discovery */
 virtual void on_subscriber_discovery(
 DomainParticipant* participant,
 eprosima::fastrtps::rtps::ReaderDiscoveryInfo&& info)
 {
 (void)participant;
 switch (info.status){
 case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_READER:
 /* Process the case when a new subscriber was found in the domain */
 std::cout << "New DataReader subscribed to topic '" << info.info.topicName() <<
 "' of type '" << info.info.typeName() << "' discovered";
 break;
 case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::CHANGED_QOS_READER:
 /* Process the case when a subscriber changed its QOS */
 break;
 case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_READER:
 /* Process the case when a subscriber was removed from the domain */
 std::cout << "New DataReader subscribed to topic '" << info.info.topicName() <<
 "' of type '" << info.info.typeName() << "' left the domain.";
 break;
 }
 }

 /* Custom Callback on_publisher_discovery */
 virtual void on_publisher_discovery(
 DomainParticipant* participant,
 eprosima::fastrtps::rtps::WriterDiscoveryInfo&& info)
 {
 (void)participant;
 switch (info.status){
 case eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERED_WRITER:
 /* Process the case when a new publisher was found in the domain */
 std::cout << "New DataWriter publishing under topic '" << info.info.topicName() <<
 "' of type '" << info.info.typeName() << "' discovered";
 break;
 case eprosima::fastrtps::rtps::WriterDiscoveryInfo::CHANGED_QOS_WRITER:
 /* Process the case when a publisher changed its QOS */
 break;
 case eprosima::fastrtps::rtps::WriterDiscoveryInfo::REMOVED_WRITER:
 /* Process the case when a publisher was removed from the domain */
 std::cout << "New DataWriter publishing under topic '" << info.info.topicName() <<
 "' of type '" << info.info.typeName() << "' left the domain.";
 break;
 }
 }

 /* Custom Callback on_type_discovery */
 virtual void on_type_discovery(
 DomainParticipant* participant,
 const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
 const eprosima::fastrtps::string_255& topic,
 const eprosima::fastrtps::types::TypeIdentifier* identifier,
 const eprosima::fastrtps::types::TypeObject* object,
 eprosima::fastrtps::types::DynamicType_ptr dyn_type)
 {
 (void)participant, (void)request_sample_id, (void)topic, (void)identifier, (void)object, (void)dyn_type;
 std::cout << "New data type of topic '" << topic << "' discovered." << std::endl;
 }

};

To use the previously implemented discovery callbacks in DiscoveryDomainParticipantListener class, which
inherits from the DomainParticipantListener, an object of this class is created and registered as a listener
of the DomainParticipant.

// Create the participant QoS and configure values
DomainParticipantQos pqos;

// Create a custom user DomainParticipantListener
DiscoveryDomainParticipantListener* plistener = new DiscoveryDomainParticipantListener();
// Pass the listener on DomainParticipant creation.
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(
 0, pqos, plistener);

Important

Read more about callbacks and its hierarchy here

 6. Transport Layer

6. Transport Layer

The transport layer provides communication services between DDS entities,
being responsible of actually sending and receiving messages over a physical transport.
The DDS layer uses this service for both user data and discovery traffic communication.
However, the DDS layer itself is transport independent,
it defines a transport API and can run over any transport plugin that implements this API.
This way, it is not restricted to a specific transport, and applications
can choose the one that best suits their requirements, or create their own.

eProsima Fast DDS comes with five transports already implemented:

	UDPv4: UDP Datagram communication over IPv4.
This transport is created by default on a new DomainParticipant
if no specific transport configuration is given
(see UDP Transport).

	UDPv6: UDP Datagram communication over IPv6
(see UDP Transport).

	TCPv4: TCP communication over IPv4
(see TCP Transport).

	TCPv6: TCP communication over IPv6
(see TCP Transport).

	SHM: Shared memory communication among entities running on the same host.
This transport is created by default on a new DomainParticipant
if no specific transport configuration is given
(see Shared Memory Transport).

Although it is not part of the transport module,
intraprocess data delivery and data sharing delivery
are also available to send messages between entities on some settings.
The figure below shows a comparison between the different transports available in Fast DDS.

[image: ../../_images/transport_comparison.svg]

	6.1. Transport API
	6.1.1. TransportDescriptorInterface

	6.1.2. TransportInterface

	6.1.3. Locator

	6.1.4. Chaining of transports

	6.2. UDP Transport
	6.2.1. UDPTransportDescriptor

	6.2.2. Enabling UDP Transport

	6.3. TCP Transport
	6.3.1. TCPTransportDescriptor

	6.3.2. Enabling TCP Transport

	6.3.3. WAN or Internet Communication over TCPv4

	6.3.4. HelloWorldExampleTCP

	6.4. Shared Memory Transport
	6.4.1. Definition of Concepts

	6.4.2. SharedMemTransportDescriptor

	6.4.3. Enabling Shared Memory Transport

	6.4.4. HelloWorldExampleSharedMem

	6.5. Data-sharing delivery
	6.5.1. Overview

	6.5.2. Constraints

	6.5.3. Data-sharing delivery configuration

	6.5.4. DataReader and DataWriter history coupling

	6.6. Intra-process delivery
	6.6.1. GUID Prefix considerations for intra-process delivery

	6.7. TLS over TCP
	6.7.1. TLS Verification Mode

	6.7.2. TLS Options

	6.7.3. TLS Handshake Role

	6.8. Listening Locators
	6.8.1. Adding Listening Locators

	6.8.2. Default Listening Locators

	6.8.3. Well Known Ports

	6.9. Interface Whitelist

	6.10. Disabling all Multicast Traffic

 6.1. Transport API

6.1. Transport API

The following diagram presents the classes defined on the transport API of eProsima Fast DDS.
It shows the abstract API interfaces, and the classes required to implement a transport.

[image: hide empty members interface TransportDescriptorInterface { +uint32_t maxMessageSize +uint32_t maxInitialPeersRange } interface TransportInterface { #int32_t transport_kind_ } class Locator { +int32_t kind +uint32_t port +octet[16] address } TransportDescriptorInterface <|-- CustomTransportDescriptor TransportInterface <|-- CustomTransport CustomTransport <--right CustomTransportDescriptor : create Locator <--right TransportInterface]

Transport API diagram

	TransportDescriptorInterface

	TransportInterface

	Locator

	Chaining of transports

6.1.1. TransportDescriptorInterface

Any class that implements the TransportDescriptorInterface is known as a TransportDescriptor.
It acts as a builder for a given transport, meaning that is allows to configure the transport,
and then a new Transport can be built according to this configuration
using its create_transport factory member function.

6.1.1.1. Data members

The TransportDescriptorInterface defines the following data members:

	Member

	Data type

	Description

	maxMessageSize

	uint32_t

	Maximum size of a single message in the transport.

	maxInitialPeersRange

	uint32_t

	Number of channels opened with each initial remote peer.

Any implementation of TransportDescriptorInterface should add as many
data members as required to full configure the transport it describes.

6.1.2. TransportInterface

A Transport is any class that implements the TransportInterface.
It is the object that actually performs the message distribution over a physical transport.

Each Transport class defines its own kind, a unique identifier that is used to
check the compatibility of a Locator with a Transport, i.e.,
determine whether a Locator refers to a Transport or not.

Applications do not create the Transport instance themselves.
Instead, applications use a TransportDescriptor instance to configure the desired transport, and add
this configured instance to the list of user-defined transports of the DomainParticipant.
The DomainParticipant will use the factory function on the TransportDescriptor
to create the Transport when required.

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(udp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

6.1.2.1. Data members

The TransportInterface defines the following data members:

	Member

	Data type

	Description

	transport_kind_

	int32_t

	Unique identifier of the transport type.

Note

transport_kind_ is a protected data member for internal use.
It cannot be accessed nor modified from the public API.
However, users that are implementing a custom Transport need to fill it with a unique constant value
in the new implementation.

Currently the following identifiers are used in Fast DDS:

	Identifier

	Value

	Transport type

	LOCATOR_KIND_RESERVED

	0

	None. Reserved value for internal use.

	LOCATOR_KIND_UDPv4

	1

	UDP Transport over IPv4.

	LOCATOR_KIND_UDPv6

	2

	UDP Transport over IPv6.

	LOCATOR_KIND_TCPv4

	4

	TCP Transport over IPv4.

	LOCATOR_KIND_TCPv6

	8

	TCP Transport over IPv6.

	LOCATOR_KIND_SHM

	16

	Shared Memory Transport.

6.1.3. Locator

A Locator_t uniquely identifies a communication channel with a remote peer for a particular transport.
For example, on UDP transports, the Locator will contain the information of the IP address and port
of the remote peer.

The Locator class is not abstract, and no specializations are implemented for each transport type.
Instead, transports should map the data members of the Locator class to their own channel identification
concepts.
For example, on Shared Memory Transport the address contains a unique ID
for the local host, and the port represents the shared ring buffer used to communicate buffer
descriptors.

Please refer to Listening Locators for more information about how to configure
DomainParticipant to listen to incoming traffic.

6.1.3.1. Data members

The Locator defines the following data members:

	Member

	Data type

	Description

	kind

	int32_t

	Unique identifier of the transport type.

	port

	uint32_t

	The channel port.

	address

	octet[16]

	The channel address.

In TCP, the port of the locator is divided into a physical and a logical port.

	The physical port is the port used by the network device, the real port that the operating system understands.
It is stored in the two least significant bytes of the member port.

	The logical port is the RTPS port.
It is stored in the two most significant bytes of the member port.

In UDP there is only the physical port, which is also the RTPS port, and is stored in the two least significant bytes
of the member port.

6.1.3.2. Configuring IP locators with IPLocator

IPLocator is an auxiliary static class that offers methods to manipulate IP based locators.
It is convenient when setting up a new UDP Transport or TCP Transport,
as it simplifies setting IPv4 and IPv6 addresses, or manipulating ports.

For example, normally users configure the physical port and do not need to worry about logical ports.
However, IPLocator allows to manage them if needed.

// We will configure a TCP locator with IPLocator
Locator_t locator;

// Get & set the physical port
uint16_t physical_port = IPLocator::getPhysicalPort(locator);
IPLocator::setPhysicalPort(locator, 5555);

// On TCP locators, we can get & set the logical port
uint16_t logical_port = IPLocator::getLogicalPort(locator);
IPLocator::setLogicalPort(locator, 7400);

// Set WAN address
IPLocator::setWan(locator, "80.88.75.55");

Fast DDS also allows to specify locator addresses using names.
When an address is specified by a name, Fast DDS will query the known hosts and available DNS servers to try to
resolve the IP address.
This address will in turn be used to create the listening locator in the case of server, or as the address of the
remote server in the case of clients (and servers that connect to other servers).

C++

Locator_t locator;
auto response = eprosima::fastrtps::rtps::IPLocator::resolveNameDNS("localhost");
// Get the first returned IPv4
if (response.first.size() > 0)
{
 IPLocator::setIPv4(locator, response.first.begin()->data());
 locator.port = 11811;
}
// Use the locator to create server or client

XML

<locator>
 <udpv4>
 <port>11811</port>
 <address>localhost</address>
 </udpv4>
</locator>

Warning

Currently, XML only supports loading IP addresses by name for UDP transport.

6.1.4. Chaining of transports

There are use cases where the user needs to pre-process out-coming information before being sent to network and also
the incoming information after being received.
Transport API offers two interfaces for implementing this kind of functionality: ChainingTransportDescriptor
and ChainingTransport.

[image: hide empty members interface TransportDescriptorInterface { +uint32_t maxMessageSize +uint32_t maxInitialPeersRange } interface TransportInterface { #int32_t transport_kind_ } interface ChainingTransportDescriptor { +std::shared_ptr<TransportDescriptorInterface> low_level_descriptor } interface ChainingTransport { #std::unique_ptr<TransportInterface> low_level_transport_ {abstract} bool send(...) {abstract} void receive(...) } TransportDescriptorInterface <|-- ChainingTransportDescriptor TransportInterface <|-- ChainingTransport ChainingTransportDescriptor <|-- CustomChainingTransportDescriptor ChainingTransport <|-- CustomChainingTransport CustomChainingTransport <-- CustomChainingTransportDescriptor : create CustomChainingTransportDescriptor "1" *-- "1" TransportDescriptorInterface : contains CustomChainingTransport "1" *-- "1" TransportInterface : contains CustomChainingTransportDescriptor --- UDPv4TransportDescriptor : example CustomChainingTransport --- UDPv4Transport : example]

These extensions allow to implement a new Transport which depends on another one (called here as
low_level_transport_).
The user can override the send() function, pre-processing the out-coming buffer before calling
the associated low_level_transport_.
Also, when a incoming buffer arrives to the low_level_transport_, this one calls the overridden
receive() function to allow to pre-process the buffer.

6.1.4.1. ChainingTransportDescriptor

Implementing ChainingTransportDescriptor allows to configure the new Transport and set the
low_level_transport_ on which it depends.
The associated low_level_transport_ can be any transport which inherits from
TransportInterface (including another ChainingTransport).

The ChainingTransportDescriptor defines the following data members:

	Member

	Data type

	Description

	low_level_descriptor

	std::shared_ptr<TransportDescriptorInterface>

	Transport descriptor of the low_level_transport_.

User has to specify the low_level_transport_ in the definition of its new custom transport.

 DomainParticipantQos qos;

 auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();

 // Create a descriptor for the new transport.
 // The low level transport will be a UDPv4Transport.
 auto custom_transport = std::make_shared<CustomChainingTransportDescriptor>(udp_transport);

 // Link the Transport Layer to the Participant.
 qos.transport().user_transports.push_back(custom_transport);

 // Avoid using the default transport
 qos.transport().use_builtin_transports = false;

6.1.4.2. ChainingTransport

This interface forces the user to implement send() and receive()
functions.
The idea is to pre-process the buffer and after, call to the next level.

class CustomChainingTransport : public eprosima::fastdds::rtps::ChainingTransport
{

public:

 CustomChainingTransport(
 const CustomChainingTransportDescriptor& descriptor)
 : ChainingTransport(descriptor)
 , descriptor_(descriptor)
 {
 }

 eprosima::fastdds::rtps::TransportDescriptorInterface* get_configuration()
 {
 return &descriptor_;
 }

 bool send(
 eprosima::fastrtps::rtps::SenderResource* low_sender_resource,
 const eprosima::fastrtps::rtps::octet* send_buffer,
 uint32_t send_buffer_size,
 eprosima::fastrtps::rtps::LocatorsIterator* destination_locators_begin,
 eprosima::fastrtps::rtps::LocatorsIterator* destination_locators_end,
 const std::chrono::steady_clock::time_point& timeout) override
 {
 //
 // Preprocess outcoming buffer.
 //

 // Call low level transport
 return low_sender_resource->send(send_buffer, send_buffer_size, destination_locators_begin,
 destination_locators_end, timeout);
 }

 void receive(
 eprosima::fastdds::rtps::TransportReceiverInterface* next_receiver,
 const eprosima::fastrtps::rtps::octet* receive_buffer,
 uint32_t receive_buffer_size,
 const eprosima::fastrtps::rtps::Locator_t& local_locator,
 const eprosima::fastrtps::rtps::Locator_t& remote_locator) override
 {
 //
 // Preprocess incoming buffer.
 //

 // Call upper level
 next_receiver->OnDataReceived(receive_buffer, receive_buffer_size, local_locator, remote_locator);
 }

private:

 CustomChainingTransportDescriptor descriptor_;
};

 6.2. UDP Transport

6.2. UDP Transport

UDP is a connectionless transport, where the receiving DomainParticipant must open a UDP port
listening for incoming messages, and the sending DomainParticipant sends messages to this port.

Warning

This documentation assumes the reader has basic knowledge of UDP/IP concepts, since terms like
Time To Live (TTL), socket buffers, and port numbering are not explained in detail.
However, it is possible to configure a basic UDP transport on Fast DDS without this knowledge.

6.2.1. UDPTransportDescriptor

eProsima Fast DDS implements UDP transport for both UDPv4 and UDPv6.
Each of these transports is independent from the other, and has its own TransportDescriptorInterface.
However, all their TransportDescriptorInterface data members are common.

The following table describes the common data members for both UDPv4 and UDPv6.

	Member

	Data type

	Default

	Description

	sendBufferSize

	uint32_t

	0

	Size of the sending buffer of the socket (octets).

	receiveBufferSize

	uint32_t

	0

	Size of the receiving buffer of the socket (octets).

	interfaceWhiteList

	vector<string>

	Empty vector

	List of allowed interfaces.
See Interface Whitelist.

	TTL

	uint8_t

	1

	Time to live, in number of hops.

	m_output_udp_socket

	uint16_t

	0

	Port number for the outgoing messages.

	non_blocking_send

	bool

	false

	Do not block on send operations (*).

Note

When non_blocking_send is set to true, send operations will return immediately if the
buffer is full, but no error will be returned to the upper layer.
This means that the application will behave as if the datagram is sent and lost.
This value is specially useful on high-frequency best-effort writers.

When set to false, send operations will block until the network buffer has space for the
datagram.
This may hinder performance on high-frequency writers.

6.2.1.1. UDPv4TransportDescriptor

UDPv4TransportDescriptor has no additional data members from the common ones described in
UDPTransportDescriptor.

Note

The kind value for a UDPv4TransportDescriptor is given by the value
LOCATOR_KIND_UDPv4.

6.2.1.2. UDPv6TransportDescriptor

UDPv6TransportDescriptor has no additional data members from the common ones described in
UDPTransportDescriptor.

Note

The kind value for a UDPv6TransportDescriptor is given by the value
LOCATOR_KIND_UDPv6.

6.2.2. Enabling UDP Transport

Fast DDS enables a UDPv4 transport by default.
Nevertheless, the application can enable other UDP transports if needed.
To enable a new UDP transport in a DomainParticipant, first
create an instance of UDPv4TransportDescriptor (for UDPv4) or
UDPv6TransportDescriptor (for UDPv6), and add it to the user transport list of the
DomainParticipant.

The examples below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(udp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>udp_transport</transport_id>
 <type>UDPv4</type>
 <sendBufferSize>9216</sendBufferSize>
 <receiveBufferSize>9216</receiveBufferSize>
 <non_blocking_send>true</non_blocking_send>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="UDPParticipant">
 <rtps>
 <userTransports>
 <transport_id>udp_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 </rtps>
 </participant>
</profiles>

 6.3. TCP Transport

6.3. TCP Transport

TCP is a connection oriented transport, so the DomainParticipant must establish a TCP connection
to the remote peer before sending data messages.
Therefore, one of the communicating DomainParticipants (the one acting as server) must open a TCP port listening for
incoming connections, and the other one (the one acting as client) must connect to this port.

Note

The server and client concepts are independent from the DDS concepts of
Publisher, Subscriber,
DataWriter, and DataReader.
Also, these concepts are independent from the eProsima Discovery Server servers and clients
(Discovery Server Settings).
Any of them can act as a TCP Server or TCP Client when establishing the connection,
and the DDS communication will work over this connection.

Warning

This documentation assumes the reader has basic knowledge of TCP/IP concepts, since terms like
Time To Live (TTL), Cyclic Redundancy Check (CRC), Transport Layer Security (TLS),
socket buffers, and port numbering are not explained in detail.
However, it is possible to configure a basic TCP transport on Fast DDS without this knowledge.

6.3.1. TCPTransportDescriptor

eProsima Fast DDS implements TCP transport for both TCPv4 and TCPv6.
Each of these transports is independent from the other, and has its own TransportDescriptorInterface.
However, they share many of their features, and most of the TransportDescriptorInterface data members are common.

The following table describes the common data members for both TCPv4 and TCPv6.

	Member

	Data type

	Default

	Description

	sendBufferSize

	uint32_t

	0

	Size of the sending buffer of the socket (octets).

	receiveBufferSize

	uint32_t

	0

	Size of the receiving buffer of the socket (octets).

	interfaceWhiteList

	vector<string>

	Empty vector

	List of allowed interfaces
See Interface Whitelist.

	TTL

	uint8_t

	1

	Time to live, in number of hops.

	listening_ports

	vector<uint16_t>

	Empty vector

	List of ports to listen as server.

	keep_alive_frequency_ms

	uint32_t

	5000

	Frequency of RTCP keep alive requests (in ms).

	keep_alive_timeout_ms

	uint32_t

	15000

	Time since sending the last keep alive request to consider a connection as broken (in ms).

	max_logical_port

	uint16_t

	100

	Maximum number of logical ports to try during RTCP negotiation.

	logical_port_range

	uint16_t

	20

	Maximum number of logical ports per request to try during RTCP negotiation.

	logical_port_increment

	uint16_t

	2

	Increment between logical ports to try during RTCP negotiation.

	enable_tcp_nodelay

	bool

	false

	Enables the TCP_NODELAY socket option.

	calculate_crc

	bool

	true

	True to calculate and send CRC on message headers.

	check_crc

	bool

	true

	True to check the CRC of incoming message headers.

	apply_security

	bool

	false

	True to use TLS. See TLS over TCP.

	tls_config

	TLSConfig

	
	Configuration for TLS. See TLS over TCP.

Note

If listening_ports is left empty, the participant will not be able to receive incoming
connections but will be able to connect to other participants that have configured their listening ports.

6.3.1.1. TCPv4TransportDescriptor

The following table describes the data members that are exclusive for TCPv4TransportDescriptor.

	Member

	Data type

	Default

	Description

	wan_addr

	octet[4]

	[0, 0, 0, 0]

	Configuration for WAN. See WAN or Internet Communication over TCPv4.

Note

The kind value for a TCPv4TransportDescriptor is given by the value
LOCATOR_KIND_TCPv4.

6.3.1.2. TCPv6TransportDescriptor

TCPv6TransportDescriptor has no additional data members from the common ones described in
TCPTransportDescriptor.

Note

The kind value for a TCPv6TransportDescriptor is given by the value
LOCATOR_KIND_TCPv6.

6.3.2. Enabling TCP Transport

To enable TCP transport in a DomainParticipant, you need to
create an instance of TCPv4TransportDescriptor (for TCPv4) or
TCPv6TransportDescriptor (for TCPv6), and add it to the user transport list of the
DomainParticipant.

If you provide listening_ports on the descriptor, the DomainParticipant will act
as TCP server, listening for incoming remote connections on the given ports.
The examples below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tcp_transport</transport_id>
 <type>TCPv4</type>
 <sendBufferSize>9216</sendBufferSize>
 <receiveBufferSize>9216</receiveBufferSize>
 <listening_ports>
 <port>5100</port>
 </listening_ports>
 <wan_addr>80.80.99.45</wan_addr>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TCPParticipant">
 <rtps>
 <userTransports>
 <transport_id>tcp_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 </rtps>
 </participant>
</profiles>

If you provide initialPeersList to the DomainParticipant, it will act
as TCP client, trying to connect to the remote servers at the given addresses and ports.
The examples below show this procedure in both C++ code and XML file.
See Initial peers for more information about their configuration.

C++

DomainParticipantQos qos;

// Disable the built-in Transport Layer.
qos.transport().use_builtin_transports = false;

// Create a descriptor for the new transport.
// Do not configure any listener port
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
qos.transport().user_transports.push_back(tcp_transport);

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tcp2_transport</transport_id>
 <type>TCPv4</type>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TCP2Participant">
 <rtps>
 <userTransports>
 <transport_id>tcp2_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 <builtin>
 <initialPeersList>
 <locator>
 <tcpv4>
 <address>80.80.99.45</address>
 <physical_port>5100</physical_port>
 </tcpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

HelloWorldExampleTCP shows how to use and configure a TCP transport.

6.3.3. WAN or Internet Communication over TCPv4

Fast DDS is able to connect through the Internet or other WAN networks when configured properly.
To achieve this kind of scenarios, the involved network devices such as routers and firewalls
must add the rules to allow the communication.

For example, imagine we have the scenario represented on the following figure:

[image: ../../../_images/TCP_WAN.png]

	A DomainParticipant acts as a TCP server listening on port 5100
and is connected to the WAN through a router with public IP 80.80.99.45.

	Another DomainParticipant acts as a TCP client and has configured
the server’s IP address and port in its Initial peers list.

On the server side, the router must be configured to forward to the TCP server
all traffic incoming to port 5100. Typically, a NAT routing of port 5100 to our
machine is enough. Any existing firewall should be configured as well.

In addition, to allow incoming connections through a WAN,
the TCPv4TransportDescriptor must indicate its public IP address
in the wan_addr data member.
The following examples show how to configure the DomainParticipant both in C++ and XML.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tcp_transport</transport_id>
 <type>TCPv4</type>
 <sendBufferSize>9216</sendBufferSize>
 <receiveBufferSize>9216</receiveBufferSize>
 <listening_ports>
 <port>5100</port>
 </listening_ports>
 <wan_addr>80.80.99.45</wan_addr>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TCPParticipant">
 <rtps>
 <userTransports>
 <transport_id>tcp_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 </rtps>
 </participant>
</profiles>

On the client side, the DomainParticipant must be configured
with the public IP address and listening_ports of the TCP server as
Initial peers.

C++

DomainParticipantQos qos;

// Disable the built-in Transport Layer.
qos.transport().use_builtin_transports = false;

// Create a descriptor for the new transport.
// Do not configure any listener port
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
qos.transport().user_transports.push_back(tcp_transport);

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tcp2_transport</transport_id>
 <type>TCPv4</type>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TCP2Participant">
 <rtps>
 <userTransports>
 <transport_id>tcp2_transport</transport_id>
 </userTransports>
 <useBuiltinTransports>false</useBuiltinTransports>
 <builtin>
 <initialPeersList>
 <locator>
 <tcpv4>
 <address>80.80.99.45</address>
 <physical_port>5100</physical_port>
 </tcpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

6.3.4. HelloWorldExampleTCP

A TCP version of helloworld example can be found in the
HelloWorldExampleTCP folder [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/HelloWorldExampleTCP].
It shows a publisher and a subscriber that communicate through TCP.
The publisher is configured as TCP server while the Subscriber is acting as TCP client.

 6.4. Shared Memory Transport

6.4. Shared Memory Transport

The shared memory (SHM) transport enables fast communications between entities running in the same
processing unit/machine, relying on the shared memory mechanisms provided by the host operating system.

SHM transport provides better performance than other network transports like UDP / TCP,
even when these transports use loopback interface.
This is mainly due to the following reasons:

	Large message support: Network protocols need to fragment data in order to comply with the specific protocol and
network stacks requirements, increasing communication overhead.
SHM transport allows the copy of full messages where the only size limit is the machine’s memory capacity.

	Reduce the number of memory copies: When sending the same message to different endpoints, SHM transport can
directly share the same memory buffer with all the destination endpoints.
Other protocols require to perform one copy of the message per endpoint.

	Less operating system overhead: Once initial setup is completed, shared memory transfers require much less system
calls than the other protocols.
Therefore, there is a performance/time consume gain by using SHM.

6.4.1. Definition of Concepts

This section describes basic concepts that will help understanding how the Shared Memory Transport works in order
to deliver the data messages to the appropriate DomainParticipant.
The purpose is not to be a exhaustive reference of the implementation, but to be a comprehensive explanation
of each concept, so that users can configure the transport to their needs.

Many of the descriptions in this section will be made following the example use case depicted in the following figure,
where Participant 1 sends a data message to Participant 2.
Please, refer to the figure when following the definitions.

[image: ../../../_images/shm_comm_sequence_diagram.svg]Sequence diagram for Shared Memory Transport

6.4.1.1. Segment

A Segment is a block of shared memory that can be accessed from different processes.
Every DomainParticipant that has been configured with Shared Memory Transport
creates a segment of shared memory.
The DomainParticipant writes to this segment any data it needs to deliver to other
DomainParticipants, and the remote
DomainParticipants are able to read it directly using the
shared memory mechanisms.

Every segment has a segmentId, a 16 character UUID that uniquely identifies each shared memory segment.
These segmentIds are used to identify and access the segment of each DomainParticipant.

6.4.1.2. Segment Buffer

A buffer allocated in the shared memory Segment.
It works as a container for a DDS message that is placed in the Segment.
In other words, each message that the DomainParticipant writes on the
Segment will be placed in a different buffer.

6.4.1.3. Buffer Descriptor

It acts as a pointer to a specific Segment Buffer
in a specific Segment.
It contains the segmentId and the offset of the Segment Buffer from the base of the
Segment.
When communicating a message to other DomainParticipants,
Shared Memory Transport only distributes the Buffer Descriptor, avoiding the copy of
the message from a DomainParticipant to another.
With this descriptor, the receiving DomainParticipant can access the message written in the buffer,
as is uniquely identifies the Segment (through the segmentId)
and the Segment Buffer (through its offset).

6.4.1.4. Port

Represents a channel to communicate Buffer Descriptors.
It is implemented as a ring-buffer in shared memory, so that any DomainParticipant
can potentially read or write information on it.
Each port has a unique identifier, a 32 bit number that can be used to refer to the port.
Every DomainParticipant that has been configured with Shared Memory Transport
creates a port to receive Buffer Descriptors.
The identifier of this port is shared during the Discovery, so that remote peers know which port to use
when they want to communicate with each DomainParticipant.

DomainParticipants create a listener to their receiving port,
so that they can be notified when a new Buffer Descriptor is pushed to the port.

6.4.1.5. Port Health Check

Every time a DomainParticipant opens a Port
(for reading or writing), a health check is performed to assess its correctness.
The reason is that if one of the processes involved crashes while using a Port,
that port can be left inoperative.
If the attached listeners do not respond in a given timeout, the Port
is considered damaged, and it is destroyed and created again.

6.4.2. SharedMemTransportDescriptor

In addition to the data members defined in the TransportDescriptorInterface,
the TransportDescriptor for Shared Memory defines the following ones:

	Member

	Data type

	Default

	Accessor / Mutator

	Description

	segment_size_

	uint32_t

	512*1024

	segment_size()

	Size of the shared memory segment

(in octets).

	port_queue_capacity_

	uint32_t

	512

	port_queue_capacity()

	The size of the listening port

(in messages).

	healthy_check_timeout_ms_

	uint32_t

	1000

	healthy_check_timeout_ms()

	Timeout for the health check of ports

(in milliseconds).

	rtps_dump_file_

	string

	""

	rtps_dump_file()

	Full path of the protocol dump file.

If rtps_dump_file_ is not empty, all the shared memory traffic on the DomainParticipant
(sent and received) is traced to a file.
The output file format is tcpdump hexadecimal text, and can be processed with protocol analyzer applications
such as Wireshark.
Specifically, to open the file using Wireshark, use the “Import from Hex Dump” option using the “Raw IPv4” encapsulation
type.

Note

The kind value for a SharedMemTransportDescriptor is given by the value
LOCATOR_KIND_SHM.

Warning

Setting a segment_size() close to or smaller than the data size poses a high risk
of data loss, since the write operation will overwrite the buffer during a single send operation.

6.4.3. Enabling Shared Memory Transport

Fast DDS enables a SHM transport by default.
Nevertheless, the application can enable other SHM transports if needed.
To enable a new SHM transport in a DomainParticipant, first
create an instance of SharedMemTransportDescriptor,
and add it to the user transport list of the DomainParticipant.

The examples below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
std::shared_ptr<SharedMemTransportDescriptor> shm_transport = std::make_shared<SharedMemTransportDescriptor>();

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(shm_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <!-- Create a descriptor for the new transport -->
 <transport_descriptor>
 <transport_id>shm_transport</transport_id>
 <type>SHM</type>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="SHMParticipant">
 <rtps>
 <!-- Link the Transport Layer to the Participant -->
 <userTransports>
 <transport_id>shm_transport</transport_id>
 </userTransports>
 </rtps>
 </participant>
</profiles>

Note

In case that several transports are enabled, the discovery traffic is always performed using the UDP/TCP transport,
even if the SHM transport is enabled in both participants running in the same machine.
This may cause discovery issues if one or several of the participants only has SHM enabled and other participants use
some other transport at the same time.
Also, when two participants on the same machine have SHM transport enabled, the user data communication between them
is automatically performed by SHM transport only.
The rest of the enabled transports are not used between those two participants.

6.4.4. HelloWorldExampleSharedMem

A Shared Memory version of helloworld example can be found in the
HelloWorldExampleSharedMem folder [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/HelloWorldExampleSharedMem].
It shows a publisher and a subscriber that communicate through Shared Memory.

 6.5. Data-sharing delivery

6.5. Data-sharing delivery

Fast DDS allows to speed up communications between entities within the same machine
by sharing the history of the DataWriter with the DataReader through shared memory.
This prevents any of the overhead involved in the transport layer,
effectively avoiding any data copy between DataWriter and DataReader.

Use of Data-sharing delivery does not prevent data copies between the application
and the DataReader and DataWriter.
These can be avoided in some cases using Zero-Copy communication.

Note

Although Data-sharing delivery uses shared memory,
it differs from Shared Memory Transport
in that Shared Memory is a full-compliant transport.
That means that with Shared Memory Transport
the data being transmitted must be copied from the DataWriter history to the transport
and from the transport to the DataReader.
With Data-sharing these copies can be avoided.

	Overview

	Constraints

	Data-sharing delivery configuration

	DataReader and DataWriter history coupling

6.5.1. Overview

When the DataWriter is created, Fast DDS will pre-allocate a pool of
max_samples + extra_samples samples that reside
in a shared memory mapped file.
When publishing new data, the DataWriter will take a sample from this pool and add it to its history,
and notify the DataReader which sample from the pool has the new data.

The DataReader will have access to the same shared memory mapped file,
and will be able to access the data published by the DataWriter.

6.5.2. Constraints

This feature is available only if the following requirements are met:

	The DataWriter and DataReader have access to the same shared memory.

	The Topic has a bounded TopicDataType,
i.e., its is_bounded() member function returns true.

	The Topic is not keyed.

	The DataWriter is configured with PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

There is also a limitation with the DataReader’s HistoryQos.
Using Data-sharing mechanism, the DataWriter’s history is shared with the DataReaders.
This means that the effective HistoryQos depth on the DataReader is, at most,
the Datawriter’s HistoryQos depth.
To avoid confusions, set the DataReaders’ history depth to a value equal or less than the DataWriter’s.

6.5.3. Data-sharing delivery configuration

Data-sharing delivery can be configured in the DataWriter and the DataReader
using DataSharingQosPolicy.
Four attributes can be configured:

	The data-sharing delivery kind

	The shared memory directory

	The data-sharing domain identifiers.

	The maximum number of data-sharing domain identifiers.

6.5.3.1. Data-Sharing delivery kind

Can be set to one of three modes:

	AUTO: If both a DataWriter and DataReader meet the requirements,
data-sharing delivery will be used between them.
This is the default value.

	ON: Like AUTO, but the creation of the entity will fail if the requirements are not met.

	OFF: No data-sharing delivery will be used on this entity.

The following matrix shows when two entities are data-sharing compatible according to their configuration
(given that the entity creation does not fail and that both entities have access to a shared memory):

	
	Reader

	ON

	OFF

	AUTO

	Writer

	ON

	Only if they have common domain IDs

	No

	Only if they have common domain IDs

	OFF

	No

	No

	No

	AUTO

	Only if they have common domain IDs

	No

	Only if the TopicDataType is bounded

and they have common domain IDs

6.5.3.2. Data-sharing domain identifiers

Each entity defines a set of identifiers that represent a domain to which the entity belongs.
Two entities will be able to use data-sharing delivery between them only if both have at least a common domain.

Users can define the domains of a DataWriter or DataReader with the DataSharingQosPolicy.
If no domain identifier is provided by the user, the system will create one automatically.
This automatic data-sharing domain will be unique for the machine where the entity is running.
That is, all entities running on the same machine, and for which the user has configured no user-specific domains,
will be able to use data-sharing delivery (given that the rest of requirements are met).

During the discovery phase, entities will exchange their domain identifiers and check if they can
use Data-sharing to communicate.

Note

Even though a data-sharing domain identifier is a 64 bit integer,
user-defined identifiers are restricted to 16 bit integers.

6.5.3.3. Maximum number of Data-sharing domain identifiers

The maximum number of domain identifiers that are expected to be received
from a remote entity during discovery.
If the remote entity defines (and sends) more than this number of domain identifiers,
the discovery will fail.

By default there is no limit to the number of identifiers.
The default value can be changed with the max_domains() function.
Defining a finite number allows to preallocate the required memory
to receive the list of identifiers during the entity creation,
avoiding dynamic memory allocations afterwards.
Note that a value of 0 means no limit.

6.5.3.4. Shared memory directory

If a user-defined directory is given for the shared memory files,
this directory will be used for the memory-mapped files used for data-sharing delivery.
If none is given, the default directory configured for the current system is used.

Configuring a user-defined directory may be useful in some scenarios:

	To select a file system with Huge TLB enabled for the memory-mapped files.

	To allow data-sharing delivery between containers that mount the same container.

6.5.4. DataReader and DataWriter history coupling

With traditional Transport Layer delivery,
the DataReader and DataWriter keep separate and independent histories,
each one with their own copy of the sample.
Once the sample is sent through the transport and received by the DataReader,
the DataWriter is free to remove the sample from its history
without affecting the DataReader.

With data-sharing delivery,
the DataReader directly accesses the data instance created by the DataWriter.
This means that the samples in both the history of the DataReader and the DataWriter
refer to the same object in the shared memory.
Therefore, there is a strong coupling in the behavior of the DataReader and DataWriter histories.
If the DataWriter reuses the same sample to publish new data,
the DataReader loses access to the old data sample.

Note

The DataWriter can remove the sample from its history,
and it will still be available on the DataReader,
unless the same sample from the pool is reused to publish a new one.

6.5.4.1. Data acknowledgement

With data-sharing delivery, sample acknowledgment from the DataReader occurs the first time
a sample is retrieved by the application (using DataReader::read_next_sample(),
DataReader::take_next_sample(), or any of their variations).
Once the data has been accessed by the application,
the DataWriter is free to reuse that sample to publish new data.
The DataReader detects when a sample has been reused
and automatically removes it from its history.

This means that subsequent attempts to access the same sample
from the DataReader may return no sample at all.

6.5.4.2. Blocking reuse of samples until acknowledged

With KEEP_LAST_HISTORY_QOS or BEST_EFFORT_RELIABILITY_QOS configurations,
the DataWriter can remove samples from its history to add new ones,
even if they were not acknowledged by the DataReader.
In situations where the publishing rate is consistently faster
than the rate at which the DataReader can process the samples,
this can lead to every sample being reused before the application
has a chance to process it, thus blocking the communication at application level.

In order to avoid this situation,
the samples in the preallocated pool are never reused unless they have been acknowledged,
i.e., they have been processed by the application at least once.
If there is no reusable sample in the pool,
the writing operation in the DataWriter will be blocked until one is available
or until max_blocking_time is reached.

Note that the DataWriter history is not affected by this behavior,
samples will be removed from the history by standard rules.
Only the reuse of pool samples is affected.
This means that the DataWriter history can be empty and the write operation
be still blocked because all samples in the pool are unacknowledged.

The chance of the DataWriter blocking on a write operation can be reduced
using extra_samples.
This will make the pool to allocate more samples than the history size,
so that the DataWriter has more chances to get a free sample,
while the DataReader can still access samples that have been removed from the
DataWriter history.

 6.6. Intra-process delivery

6.6. Intra-process delivery

eProsima Fast DDS allows to speed up communications between entities within the same process by avoiding any of the
overhead involved in the transport layer.
Instead, the Publisher directly calls the reception functions of the
Subscriber.
This not only avoids the copy or send operations of the transport, but also ensures the message is received by the
Subscriber, avoiding the acknowledgement mechanism.

This feature is enabled by default, and can be configured using XML profiles.
Currently the following options are available:

	INTRAPROCESS_OFF: The feature is disabled.

	INTRAPROCESS_USER_DATA_ONLY: Discovery metadata keeps using ordinary transport.

	INTRAPROCESS_FULL: Default value. Both user data and discovery metadata using Intra-process delivery.

	XML

	<library_settings>
 <intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_ONLY | FULL -->
</library_settings>

6.6.1. GUID Prefix considerations for intra-process delivery

Fast DDS utilizes the DomainParticipant’s GuidPrefix_t to identify peers running in the same process.
Two participants with identical 8 first bytes on the GuidPrefix_t are considered to be running in the same
process, and therefore intra-process delivery is used.
This mechanism works out-of-the-box when letting Fast DDS set the GUID prefixes for the created DomainParticipants.
However, special consideration is required when setting the GuidPrefix_t manually, either programmatically or when
using XML

	C++ - Option 1: Manual setting of the unsigned char in ASCII format.

	eprosima::fastrtps::rtps::GuidPrefix_t guid_prefix;
guid_prefix.value[0] = eprosima::fastrtps::rtps::octet(0x77);
guid_prefix.value[1] = eprosima::fastrtps::rtps::octet(0x73);
guid_prefix.value[2] = eprosima::fastrtps::rtps::octet(0x71);
guid_prefix.value[3] = eprosima::fastrtps::rtps::octet(0x85);
guid_prefix.value[4] = eprosima::fastrtps::rtps::octet(0x69);
guid_prefix.value[5] = eprosima::fastrtps::rtps::octet(0x76);
guid_prefix.value[6] = eprosima::fastrtps::rtps::octet(0x95);
guid_prefix.value[7] = eprosima::fastrtps::rtps::octet(0x66);
guid_prefix.value[8] = eprosima::fastrtps::rtps::octet(0x65);
guid_prefix.value[9] = eprosima::fastrtps::rtps::octet(0x82);
guid_prefix.value[10] = eprosima::fastrtps::rtps::octet(0x82);
guid_prefix.value[11] = eprosima::fastrtps::rtps::octet(0x79);

DomainParticipantQos participant_qos;
participant_qos.wire_protocol().prefix = guid_prefix;

	C++ - Option 2: Using the >> operator and the std::istringstream type.

	DomainParticipantQos participant_qos;
std::istringstream("77.73.71.85.69.76.95.66.65.82.82.79") >> participant_qos.wire_protocol().prefix;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_guidprefix" >
 <rtps>
 <prefix>
 77.73.71.85.69.76.95.66.65.82.82.79
 </prefix>
 </rtps>
 </participant>
</profiles>

 6.7. TLS over TCP

6.7. TLS over TCP

Warning

This documentation assumes the reader has basic knowledge of TLS concepts
since terms like Certificate Authority (CA), Private Key, Rivest–Shamir–Adleman (RSA) cryptosystem,
and Diffie-Hellman encryption protocol are not explained in detail.

Fast DDS allows configuring TCP Transports to use TLS (Transport Layer Security).
In order to set up TLS, the TCPTransportDescriptor must
have its apply_security data member set to true, and its
tls_config data member filled with the desired configuration on the
TCPTransportDescriptor.
The following is an example of configuration of TLS on the TCP server.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();
tls_transport->sendBufferSize = 9216;
tls_transport->receiveBufferSize = 9216;
tls_transport->add_listener_port(5100);
tls_transport->set_WAN_address("80.80.99.45");

// Create the TLS configuration
using TLSOptions = eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions;
tls_transport->apply_security = true;
tls_transport->tls_config.password = "test";
tls_transport->tls_config.cert_chain_file = "server.pem";
tls_transport->tls_config.private_key_file = "serverkey.pem";
tls_transport->tls_config.tmp_dh_file = "dh2048.pem";
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tls_transport_server</transport_id>
 <type>TCPv4</type>
 <tls>
 <password>test</password>
 <private_key_file>serverkey.pem</private_key_file>
 <cert_chain_file>server.pem</cert_chain_file>
 <tmp_dh_file>dh2048.pem</tmp_dh_file>
 <options>
 <option>DEFAULT_WORKAROUNDS</option>
 <option>SINGLE_DH_USE</option>
 <option>NO_SSLV2</option>
 </options>
 </tls>
 <sendBufferSize>9216</sendBufferSize>
 <receiveBufferSize>9216</receiveBufferSize>
 <listening_ports>
 <port>5100</port>
 </listening_ports>
 <wan_addr>80.80.99.45</wan_addr>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TLSServerParticipant">
 <rtps>
 <userTransports>
 <transport_id>tls_transport_server</transport_id>
 </userTransports>
 </rtps>
 </participant>
</profiles>

The corresponding configuration on the TCP client is shown in the following example.

C++

DomainParticipantQos qos;

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Create a descriptor for the new transport.
auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

// Create the TLS configuration
using TLSOptions = eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions;
using TLSVerifyMode = eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode;
tls_transport->apply_security = true;
tls_transport->tls_config.verify_file = "ca.pem";
tls_transport->tls_config.add_verify_mode(TLSVerifyMode::VERIFY_PEER);
tls_transport->tls_config.add_verify_mode(TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERT);
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>tls_transport_client</transport_id>
 <type>TCPv4</type>
 <tls>
 <verify_file>ca.pem</verify_file>
 <verify_mode>
 <verify>VERIFY_PEER</verify>
 <verify>VERIFY_FAIL_IF_NO_PEER_CERT</verify>
 </verify_mode>
 <options>
 <option>DEFAULT_WORKAROUNDS</option>
 <option>SINGLE_DH_USE</option>
 <option>NO_SSLV2</option>
 </options>
 </tls>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="TLSClientParticipant">
 <rtps>
 <userTransports>
 <transport_id>tls_transport_client</transport_id>
 </userTransports>
 <builtin>
 <initialPeersList>
 <locator>
 <tcpv4>
 <address>80.80.99.45</address>
 <physical_port>5100</physical_port>
 </tcpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

The following table describes the data members that are configurable on TLSConfig.

	Member

	Data type

	Default

	Description

	password

	string

	""

	Password of the private_key_file or

rsa_private_key_file.

	private_key_file

	string

	""

	Path to the private key certificate file.

	rsa_private_key_file

	string

	""

	Path to the private key RSA certificate file.

	cert_chain_file

	string

	""

	Path to the public certificate chain file.

	tmp_dh_file

	string

	""

	Path to the Diffie-Hellman parameters file.

	verify_file

	string

	""

	Path to the CA (Certification- Authority) file.

	verify_mode

	TLSVerifyMode

	TLSVerifyMode::UNUSED

	Establishes the verification mode mask.

See TLS Verification Mode.

	options

	TLSOptions

	TLSOptions::NONE

	Establishes the SSL Context options mask.

See TLS Options.

	verify_paths

	vector<string>

	Empty vector

	Paths where the system will look for verification files.

	verify_depth

	int32_t

	-1

	Maximum allowed depth for verifying intermediate

certificates.

	default_verify_path

	bool

	false

	Look for verification files on the default paths.

	handshake_role

	TLSHandShakeRole

	TLSHandShakeRole::DEFAULT

	Role that the transport will take on handshaking.

See TLS Handshake Role.

	server_name

	string

	""

	[UNIMPLEMENTED] Server name or host name

required in case Server Name Indication (SNI)

is used.

Note

Fast DDS uses the Boost.Asio [https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio.html] library to handle TLS secure connections.
These data members are used to build the asio library context, and most of them are mapped directly into this context
without further manipulation.
You can find more information about the implications of each member on the Boost.Asio context [https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html] documentation.

6.7.1. TLS Verification Mode

The verification mode defines how the peer node will be verified.
The following table describes the available verification options.
Several verification options can be combined in the same TCPTransportDescriptor
using the add_verify_mode() member function.

	Value

	Description

	TLSVerifyMode::VERIFY_NONE

	Perform no verification.

	TLSVerifyMode::VERIFY_PEER

	Perform verification of the peer.

	TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERT

	Fail verification if the peer has no certificate.
Ignored unless TLSVerifyMode::VERIFY_PEER is also set.

	TLSVerifyMode::VERIFY_CLIENT_ONCE

	Do not request client certificate on renegotiation.
Ignored unless TLSVerifyMode::VERIFY_PEER is also set.

Note

For a complete description of the different verification modes, please refer to the
OpenSSL documentation [https://www.openssl.org/docs/man1.0.2/man3/SSL_CTX_set_verify.html].

6.7.2. TLS Options

These options define which TLS features are to be supported.
The following table describes the available options.
Several options can be combined in the same TransportDescriptor
using the add_option() member function.

	Value

	Description

	TLSOptions::DEFAULT_WORKAROUNDS

	Implement various bug workarounds.
See Boost.Asio context [https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html].

	TLSOptions::NO_COMPRESSION

	Disable compression.

	TLSOptions::NO_SSLV2

	Disable SSL v2.

	TLSOptions::NO_SSLV3

	Disable SSL v3.

	TLSOptions::NO_TLSV1

	Disable TLS v1.

	TLSOptions::NO_TLSV1_1

	Disable TLS v1.1.

	TLSOptions::NO_TLSV1_2

	Disable TLS v1.2.

	TLSOptions::NO_TLSV1_3

	Disable TLS v1.3.

	TLSOptions::SINGLE_DH_USE

	Always create a new key when using Diffie-Hellman parameters.

6.7.3. TLS Handshake Role

The role can take the following values:

	Value

	Description

	TLSHandShakeRole::DEFAULT

	Configured as client if connector, and as server if acceptor

	TLSHandShakeRole::CLIENT

	Configured as client.

	TLSHandShakeRole::SERVER

	Configured as server.

 6.8. Listening Locators

6.8. Listening Locators

Listening Locators are used to receive incoming traffic on the
DomainParticipant.
These Locators can be classified according to the communication type
and to the nature of the data.

According to the communication type we have:

	Multicast locators: Listen to multicast communications.

	Unicast locators: Listen to unicast communications.

According to the nature of the data we have:

	Metatraffic locators: Used to receive metatraffic information, usually used by built-in endpoints to perform
discovery.

	User locators: Used by the endpoints created by the user to receive user Topic
data changes.

Applications can provide their own Listening Locators,
or use the Default Listening Locators provided by eProsima Fast DDS.

6.8.1. Adding Listening Locators

Users can add custom Listening Locators to the
DomainParticipant using the DomainParticipantQos.
Depending on the field where the Locator is added,
it will be treated as a multicast, unicast, user or metatraffic
Locator.

Note

Both UDP and TCP unicast Locators support to have a null address.
In that case, Fast DDS automatically gets and uses local network addresses.

Note

Both UDP and TCP Locators support to have a zero port.
In that case, Fast DDS automatically calculates and uses well-known ports for that type of traffic.
See Well Known Ports for details about the well-known ports.

Warning

TCP does not support multicast scenarios, so the network architecture must be carefully planned.

6.8.1.1. Metatraffic Multicast Locators

Users can set their own metatraffic multicast locators within the WireProtocolConfigQos:
builtin.metatrafficMulticastLocatorList.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22222 over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0, 1);
locator.port = 22222;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().builtin.metatrafficMulticastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="CustomMetatrafficMulticastParticipant">
 <rtps>
 <builtin>
 <metatrafficMulticastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <address>239.255.0.1</address>
 <port>22222</port>
 </udpv4>
 </locator>
 </metatrafficMulticastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

6.8.1.2. Metatraffic Unicast Locators

Users can set their own metatraffic unicast locators within the WireProtocolConfigQos:
builtin.metatrafficUnicastLocatorList.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22223 over address 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0, 1);
locator.port = 22223;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="CustomMetatrafficUnicastParticipant">
 <rtps>
 <builtin>
 <metatrafficUnicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <address>192.168.0.1</address>
 <port>22223</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

6.8.1.3. User-traffic Multicast Locators

Users can set their own user-traffic multicast locators within the WireProtocolConfigQos:
default_multicast_locator_list.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22224 over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0, 1);
locator.port = 22224;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().default_multicast_locator_list.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="CustomUsertrafficMulticastParticipant">
 <rtps>
 <defaultMulticastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <address>239.255.0.1</address>
 <port>22224</port>
 </udpv4>
 </locator>
 </defaultMulticastLocatorList>
 </rtps>
 </participant>
</profiles>

6.8.1.4. User-traffic Unicast Locators

Users can set their own user-traffic unicast locators within the WireProtocolConfigQos:
default_unicast_locator_list.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22225 over address 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0, 1);
locator.port = 22225;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().default_unicast_locator_list.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="CustomUsertrafficUnicastParticipant">
 <rtps>
 <defaultUnicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <address>192.168.0.1</address>
 <port>22225</port>
 </udpv4>
 </locator>
 </defaultUnicastLocatorList>
 </rtps>
 </participant>
</profiles>

6.8.2. Default Listening Locators

If the application does not define any Listening Locators,
eProsima Fast DDS automatically enables a set of listening UDPv4 locators by default.
This allows out-of-the-box communication in most cases, without the need of
further configuring the Transport Layer.

	If the application does not define any metatraffic Locator
(neither unicast nor multicast), Fast DDS enables one multicast Locator
that will be used during Discovery, and one unicast Locator
that will be used for peer-to-peer communication with already discovered
DomainParticipants.

	If the application does not define any user-traffic Locator
(neither unicast nor multicast), Fast DDS enables one unicast Locator
that will be used for peer-to-peer communication of Topic data.

For example, it is possible to prevent multicast traffic adding a single user-traffic unicast Locator
as described in Disabling all Multicast Traffic.

Default Listening Locators always use Well Known Ports.

6.8.3. Well Known Ports

The DDSI-RTPS V2.2 [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] standard (Section 9.6.1.1) defines a set of rules to calculate well-known
ports for default Locators, so that DomainParticipants can communicate with these default Locators.
Well-known ports are also selected automatically by Fast DDS when a Locator is configured with port number 0.

Well-known ports are calculated using the following predefined rules:

Rules to calculate ports on default listening locators

	Traffic type

	Well-known port expression

	Metatraffic multicast

	PB + DG * domainId + offsetd0

	Metatraffic unicast

	PB + DG * domainId + offsetd1 + PG * participantId

	User multicast

	PB + DG * domainId + offsetd2

	User unicast

	PB + DG * domainId + offsetd3 + PG * participantId

The values used in these rules are explained on the following table.
The default values can be modified using the port member of the
WireProtocolConfigQos on the DomainParticipantQos.

Values used in the rules to calculate well-known ports

	Symbol

	Meaning

	Default value

	QoS field

	DG

	DomainID gain

	250

	wire_protocol().port.domainIDGain

	PG

	ParticipantId gain

	2

	wire_protocol().port.participantIDGain

	PB

	Port Base number

	7400

	wire_protocol().port.portBase

	offsetd0

	Additional offset

	0

	wire_protocol().port.offsetd0

	offsetd1

	Additional offset

	10

	wire_protocol().port.offsetd1

	offsetd2

	Additional offset

	1

	wire_protocol().port.offsetd2

	offsetd3

	Additional offset

	11

	wire_protocol().port.offsetd3

 6.9. Interface Whitelist

6.9. Interface Whitelist

Using Fast DDS, it is possible to limit the network interfaces used by TCP Transport and
UDP Transport.
This is achieved by adding the interfaces’ IP addresses to the interfaceWhiteList
field in the TCPTransportDescriptor or UDPTransportDescriptor.
Thus, the communication interfaces used by the DomainParticipants whose TransportDescriptorInterface defines an
interfaceWhiteList is limited to the interfaces’ IP addresses defined in that list,
therefore avoiding the use of the rest of the network interfaces available in the system.
The values on this list should match the IPs of your machine in that networks.
For example:

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();

// Add loopback to the whitelist
tcp_transport->interfaceWhiteList.emplace_back("127.0.0.1");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>CustomTcpTransport</transport_id>
 <type>TCPv4</type>
 <interfaceWhiteList>
 <address>127.0.0.1</address>
 </interfaceWhiteList>
 </transport_descriptor>
 </transport_descriptors>

 <participant profile_name="CustomTcpTransportParticipant">
 <rtps>
 <userTransports>
 <transport_id>CustomTcpTransport</transport_id>
 </userTransports>
 </rtps>
 </participant>
</profiles>

Warning

The interface whitelist feature applies to network interfaces.
Therefore, it is only available on TCP Transport and UDP Transport.

 6.10. Disabling all Multicast Traffic

6.10. Disabling all Multicast Traffic

If all the peers are known beforehand and have been configured on the
Initial Peers List, all multicast traffic can be completely disabled.

By defining a custom Metatraffic Unicast Locators, the local DomainParticipant
creates a unicast meta traffic receiving resource for each address-port pair specified in the list,
avoiding the creation of the default metatraffic multicast and unicast locators.
This prevents the DomainParticipant from listening to any discovery data from
multicast sources.

Consideration should be given to the assignment of the ports in the
metatrafficUnicastLocatorList, avoiding the assignment of ports that are not available or do
not match the address-port listed in the publisher participant Initial Peers List.

The following is an example of how to disable all multicast traffic configuring one
metatraffic unicast locator.

C++

DomainParticipantQos qos;

// Metatraffic Multicast Locator List will be empty.
// Metatraffic Unicast Locator List will contain one locator, with null address and null port.
// Then Fast DDS will use all network interfaces to receive network messages using a well-known port.
Locator_t default_unicast_locator;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(default_unicast_locator);

// Initial peer will be UDPv4 address 192.168.0.1. The port will be a well-known port.
// Initial discovery network messages will be sent to this UDPv4 address.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, 192, 168, 0, 1);
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="disable_multicast" is_default_profile="true">
 <rtps>
 <builtin>
 <metatrafficUnicastLocatorList>
 <locator/>
 </metatrafficUnicastLocatorList>
 <initialPeersList>
 <locator>
 <udpv4>
 <address>192.168.0.1</address>
 </udpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

 7. Persistence Service

7. Persistence Service

Using default QoS, the DataWriter history is only available for
DataReader throughout the DataWriter’s life.
This means that the history does not persist between DataWriter initializations and therefore it is on an empty
state on DataWriter creation.
Similarly, the DataReader history does not persist the DataReader’s life, thus also being empty on
DataReader creation.
However, eProsima Fast DDS offers the possibility to configure the DataWriter’s history to be stored in a
persistent database, so that the DataWriter can load its history from it on creation.
Furthermore, DataReaders can be configured to store the last notified change in the database, so that they can
recover their state on creation.

This mechanism allows recovering a previous state on starting the Data Distribution Service, thus adding robustness to
applications in the case of, for example, unexpected shutdowns.
Configuring the persistence service, DataWriters and DataReaders can resume their operation from the state
in which they were when the shutdown occurred.

Note

Mind that DataReaders do not store their history into the database, but rather the last notified change from
the DataWriter.
This means that they will resume operation where they left, but they will not have the previous information, since
that was already notified to the application.

7.1. Configuration

The configuration of the persistence service is accomplished by setting of the appropriate DataWriter and DataReader
DurabilityQosPolicy, and by specifying the suitable properties for each entity’s (DomainParticipant, DataWriter,
or DataReader) PropertyPolicyQos.

	For the Persistence Service to have any effect, the DurabilityQosPolicyKind needs to be set to
TRANSIENT_DURABILITY_QOS.

	A persistence identifier (Guid_t) must be set for the entity using the property dds.persistence.guid.
This identifier is used to load the appropriate data from the database, and also to synchronize DataWriter and
DataReader between restarts.
The GUID consists of 16 bytes separated into two groups:

	The first 12 bytes correspond to the GuidPrefix_t.

	The last 4 bytes correspond to the EntityId_t.

The persistence identifier is specified using a string of 12 dot-separated bytes, expressed in hexadecimal base,
followed by a vertical bar separator (|) and another 4 dot-separated bytes, also expressed in hexadecimal base
(see Example).
For selecting an appropriate GUID for the DataReader and DataWriter, please refer to
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] (section 9.3.1 The Globally Unique Identifier (GUID)).

	A persistence plugin must be configured for managing the database using property dds.persistence.plugin (see
PERSISTENCE:SQLITE3 built-in plugin):

7.2. PERSISTENCE:SQLITE3 built-in plugin

This plugin provides persistence through a local database file using SQLite3 API.
To activate the plugin, dds.persistence.plugin property must be added to the PropertyPolicyQos of the
DomainParticipant, DataWriter, or DataReader with value builtin.SQLITE3.
Furthermore, dds.persistence.sqlite3.filename property must be added to the entities PropertyPolicyQos,
specifying the database file name.
These properties are summarized in the following table:

Persistence::SQLITE3 configuration properties

	Property name

	Property value

	dds.persistence.plugin

	builtin.SQLITE3

	dds.persistence.sqlite3.filename

	Name of the file used for persistent storage.

Default value: persistence.db

Note

To avoid undesired delays caused by concurrent access to the SQLite3 database, it is advisable to specify a
different database file for each DataWriter and DataReader.

Important

The plugin set in the PropertyPolicyQos of DomainParticipant only applies if that of the
DataWriter/DataReader does no exist or is invalid.

7.3. Example

This example shows how to configure the persistence service using PERSISTENCE:SQLITE3 built-in plugin plugin both
from C++ and using eProsima Fast DDS XML profile files (see XML profiles).

	C++

	/*
 * In order for this example to be self-contained, all the entities are created programatically, including the data
 * type and type support. This has been done using Fast DDS Dynamic Types API, but it could be substituted with a
 * Fast DDS-Gen generated type support if an IDL file is available. The Dynamic Type created here is the equivalent
 * of the following IDL:
 *
 * struct persistence_topic_type
 * {
 * unsigned long index;
 * string message;
 * };
 */

// Configure persistence service plugin for DomainParticipant
DomainParticipantQos pqos;
pqos.properties().properties().emplace_back("dds.persistence.plugin", "builtin.SQLITE3");
pqos.properties().properties().emplace_back("dds.persistence.sqlite3.filename", "persistence.db");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_participant(0, pqos);

/**
* CREATE TYPE AND TYPE SUPPORT

* This part could be replaced if IDL file and Fast DDS-Gen are available.
* The type is created with name "persistence_topic_type"
* Additionally, create a data object and populate it, just to show how to do it
**/
// Create a struct builder for a type with name "persistence_topic_type"
const std::string topic_type_name = "persistence_topic_type";
eprosima::fastrtps::types::DynamicTypeBuilder_ptr struct_type_builder(
 eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_struct_builder());
struct_type_builder->set_name(topic_type_name);

// The type consists of two members, and index and a message. Add members to the struct.
struct_type_builder->add_member(0, "index",
 eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_uint32_type());
struct_type_builder->add_member(1, "message",
 eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_string_type());

// Build the type
eprosima::fastrtps::types::DynamicType_ptr dyn_type_ptr = struct_type_builder->build();

// Create type support and register the type
TypeSupport type_support(new eprosima::fastrtps::types::DynamicPubSubType(dyn_type_ptr));
type_support.register_type(participant);

// Create data sample a populate data. This is to be used when calling `writer->write()`
eprosima::fastrtps::types::DynamicData* dyn_helloworld;
dyn_helloworld = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->create_data(dyn_type_ptr);
dyn_helloworld->set_uint32_value(0, 0);
dyn_helloworld->set_string_value("HelloWorld", 1);
/**
* END CREATE TYPE AND TYPE SUPPORT
**/

// Create a topic
Topic* topic = participant->create_topic("persistence_topic_name", topic_type_name, TOPIC_QOS_DEFAULT);

// Create a publisher and a subscriber with default QoS
Publisher* publisher = participant->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);
Subscriber* subscriber = participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

// Configure DataWriter's durability and persistence GUID so it can use the persistence service
DataWriterQos dwqos = DATAWRITER_QOS_DEFAULT;
dwqos.durability().kind = TRANSIENT_DURABILITY_QOS;
dwqos.properties().properties().emplace_back("dds.persistence.guid",
 "77.72.69.74.65.72.5f.70.65.72.73.5f|67.75.69.64");
DataWriter* writer = publisher->create_datawriter(topic, dwqos);

// Configure DataReaders's durability and persistence GUID so it can use the persistence service
DataReaderQos drqos = DATAREADER_QOS_DEFAULT;
drqos.durability().kind = TRANSIENT_DURABILITY_QOS;
drqos.properties().properties().emplace_back("dds.persistence.guid",
 "72.65.61.64.65.72.5f.70.65.72.73.5f|67.75.69.64");
DataReader* reader = subscriber->create_datareader(topic, drqos);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <!-- DomainParticipant configuration -->
 <participant profile_name="persistence_service_participant">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Select persistence plugin -->
 <property>
 <name>dds.persistence.plugin</name>
 <value>builtin.SQLITE3</value>
 </property>
 <!-- Database file name -->
 <property>
 <name>dds.persistence.sqlite3.filename</name>
 <value>persistence_service.db</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
 </participant>

 <!-- DataWriter configuration -->
 <data_writer profile_name="persistence_service_data_writer">
 <qos>
 <!-- Set durability to TRANSIENT_DURABILITY_QOS -->
 <durability>
 <kind>TRANSIENT</kind>
 </durability>
 </qos>
 <propertiesPolicy>
 <properties>
 <!-- Persistence GUID -->
 <property>
 <name>dds.persistence.guid</name>
 <value>77.72.69.74.65.72.5f.70.65.72.73.5f|67.75.69.64</value>
 </property>
 </properties>
 </propertiesPolicy>
 </data_writer>

 <data_reader profile_name="persistence_service_data_reader">
 <qos>
 <!-- Set durability to TRANSIENT_DURABILITY_QOS -->
 <kind>TRANSIENT</kind>
 </durability>

Note

For instructions on how to create DomainParticipants, DataReaders, and DataWriters, please refer to
Profile based creation of a DomainParticipant, Profile based creation of a DataWriter, and
Profile based creation of a DataReader respectively.

 8. Security

8. Security

The DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification includes five security builtin plugins.

	Authentication plugin: DDS:Auth:PKI-DH.
This plugin provides authentication for each DomainParticipant joining a DDS Domain using a trusted
Certificate Authority (CA).
Support mutual authentication between DomainParticipants and establish a shared secret.

	Access Control plugin: DDS:Access:Permissions.
This plugin provides access control to DomainParticipants which perform protected operations.

	Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC.
This plugin provides authenticated encryption using Advanced Encryption Standard (AES) in Galois Counter Mode
(AES-GCM).

	Logging plugin: DDS:Logging:DDS_LogTopic.
This plugin logs security events.

	Data Tagging: DDS:Tagging:DDS_Discovery.
This plugin enables the addition of security labels to the data.
Thus it is possible to specify classification levels of the data.
In the DDS context it can be used as a complement to access control, creating an access control based on data
tagging; for message prioritization; and to prevent its use by the middleware to be used instead by the
application or service.

Note

Currently the DDS:Tagging:DDS_Discovery plugin is not implemented in Fast DDS.
Its implementation is expected for future release of Fast DDS.

In compliance with the DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification, Fast DDS provides
secure communication by implementing pluggable security at three levels: a) DomainParticipants authentication
(DDS:Auth:PKI-DH), b) access control of Entities (DDS:Access:Permissions), and c) data encryption
(DDS:Crypto:AES-GCM-GMAC).
Furthermore, for the monitoring of the security plugins and logging relevant events, Fast DDS implements
the logging plugin (DDS:Logging:DDS_LogTopic).

By default, Fast DDS does not compile any security support, but it can be activated adding -DSECURITY=ON at CMake
configuration step.
For more information about Fast DDS compilation, see Linux installation from sources and Windows installation from sources.

Security plugins can be activated through the DomainParticipantQos properties.
A Property is defined by its name (std::string)
and its value (std::string).

Warning

For the full understanding of this documentation it is required the user to have basic knowledge of network security
since terms like Certificate Authority (CA), Public Key Infrastructure (PKI), and Diffie-Hellman encryption protocol
are not explained in detail.
However, it is possible to configure basic system security settings, i.e. authentication, access control and
encryption, to Fast DDS without this knowledge.

The following sections describe how to configure each of these properties to set up the Fast DDS security plugins.

	8.1. Authentication plugin: DDS:Auth:PKI-DH
	8.1.1. Generation of X.509 certificates

	8.2. Access control plugin: DDS:Access:Permissions
	8.2.1. Permissions CA Certificate

	8.2.2. Domain Governance Document

	8.2.3. DomainParticipant Permissions Document

	8.2.4. Signing documents using x509 certificate

	8.3. Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC

	8.4. Logging plugin: DDS:Logging:DDS_LogTopic

	8.5. PKCS#11 support

 8.1. Authentication plugin: DDS:Auth:PKI-DH

8.1. Authentication plugin: DDS:Auth:PKI-DH

This is the starting point for all the security mechanisms.
The authentication plugin provides the mechanisms and operations required for DomainParticipants authentication at
discovery.
If the security module was activated at Fast DDS compilation, when a DomainParticipant is either locally created or
discovered, it needs to be authenticated in order to be able to
communicate in a DDS Domain.
Therefore, when a DomainParticipant detects a remote DomainParticipant, both try to authenticate themselves using
the activated authentication plugin.
If the authentication process finishes successfully both DomainParticipant match and the discovery mechanism
continues.
On failure, the remote DomainParticipant is rejected.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Auth:PKI-DH”, in compliance with the
DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification.
The DDS:Auth:PKI-DH plugin uses a trusted Certificate Authority (CA) and the ECDSA
Digital Signature Algorithms to perform the mutual authentication.
It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement Methods.
This shared secret can be used by other security plugins as Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC.

The DDS:Auth:PKI-DH authentication plugin, can be activated setting the DomainParticipantQos
properties()
dds.sec.auth.plugin with the value builtin.PKI-DH.
The following table outlines the properties used for the DDS:Auth:PKI-DH plugin configuration.

	Property name

	Property value

	identity_ca

	URI to the X.509 v3 certificate of the Identity CA in PEM format.

Supported URI schemes: file.

	identity_certificate

	URI to an X.509 v3 certificate signed by the Identity CA in PEM format

containing the signed public key for the Participant.

Supported URI schemes: file.

	identity_crl (optional)

	URI to a X.509 Certificate Revocation List (CRL).

Supported URI schemes: file.

	private_key

	URI to access the private Private Key for the Participant.

Supported URI schemes: file, PKCS#11.

	password (optional)

	A password used to decrypt the private_key.

If the password property is not present, then the value supplied in the

private_key property must contain the decrypted private key.

The password property is ignored if the private_key is given in PKCS#11 scheme.

Note

All listed properties have “dds.sec.auth.builtin.PKI-DH.” prefix.
For example: dds.sec.auth.builtin.PKI-DH.identity_ca.

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Auth:PKI-DH plugin
configuration.

	C++

	DomainParticipantQos pqos;

// Activate DDS:Auth:PKI-DH plugin
pqos.properties().properties().emplace_back("dds.sec.auth.plugin",
 "builtin.PKI-DH");

// Configure DDS:Auth:PKI-DH plugin
pqos.properties().properties().emplace_back(
 "dds.sec.auth.builtin.PKI-DH.identity_ca",
 "file://maincacert.pem");
pqos.properties().properties().emplace_back(
 "dds.sec.auth.builtin.PKI-DH.identity_certificate",
 "file://partcert.pem");
pqos.properties().properties().emplace_back(
 "dds.sec.auth.builtin.PKI-DH.identity_crl",
 "file://crl.pem");
pqos.properties().properties().emplace_back(
 "dds.sec.auth.builtin.PKI-DH.private_key",
 "file://partkey.pem");
pqos.properties().properties().emplace_back(
 "dds.sec.auth.builtin.PKI-DH.password",
 "domainParticipantPassword");

	XML

	<participant profile_name="secure_domainparticipant_conf_auth_plugin_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate DDS:Auth:PKI-DH plugin -->
 <property>
 <name>dds.sec.auth.plugin</name>
 <value>builtin.PKI-DH</value>
 </property>
 <!-- Configure DDS:Auth:PKI-DH plugin -->
 <property>
 <name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
 <value>file://maincacert.pem</value>
 </property>
 <property>
 <name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
 <value>file://partcert.pem</value>
 </property>
 <property>
 <name>dds.sec.auth.builtin.PKI-DH.identity_crl</name>
 <value>file://crl.pem</value>
 </property>
 <property>
 <name>dds.sec.auth.builtin.PKI-DH.private_key</name>
 <value>file://partkey.pem</value>
 </property>
 <property>
 <name>dds.sec.auth.builtin.PKI-DH.password</name>
 <value>domainParticipantPassword</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

8.1.1. Generation of X.509 certificates

An X.509 digital certificate is a document that has been encrypted and/or digitally signed according to
RFC 5280 [https://tools.ietf.org/html/rfc5280].
The X.509 certificate refers to the Public Key Infrastructure (PKI) certificate of the IETF [https://ietf.org/] ,
and specifies the standard
formats for public-key certificates and a certification route validation algorithm.
A simple way to generate these certificates for a proprietary PKI structure is through the
OpenSSL [https://www.openssl.org/] toolkit.
This section explains how to build a certificate infrastructure from the trusted CA certificate to the end-entity
certificate, i.e. the DomainParticipant.

8.1.1.1. Generating the CA certificate for self-signing

First, since multiple certificates will need to be issued, one for each of the DomainParticipants, a dedicated CA is
set up, and the CA’s certificate is installed as the root key of all DomainParticipants.
Thus, the DomainParticipants will accept all certificates issued by our own CA.
To create a proprietary CA certificate, a configuration file must first be written with the CA information.
An example of the CA configuration file is shown below.
The OpenSSL commands shown in this example are compatible with both Linux and Windows Operating Systems (OS).
However, all other commands are only compatible with Linux OS.

File: maincaconf.cnf
OpenSSL example Certificate Authority configuration file

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = . # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
unique_subject = no # Set to 'no' to allow creation of
 # several ctificates with same subject.
new_certs_dir = $dir

certificate = $dir/maincacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
 # must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/maincakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days= 1825 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = sha256 # which md to use.
preserve = no # keep passed DN ordering

policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
prompt = no
#default_bits = 1024
#default_keyfile = privkey.pem
distinguished_name= req_distinguished_name
#attributes = req_attributes
#x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = utf8only

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
0.organizationName = eProsima
commonName = eProsima Main Test CA
emailAddress = mainca@eprosima.com

After writing the configuration file, next commands generate the certificate using the
Elliptic Curve Digital Signature Algorithm (ECDSA).

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -x509 \
 -days 3650 \
 -newkey ec:ecdsaparam \
 -keyout maincakey.pem \
 -out maincacert.pem \
 -config maincaconf.cnf

8.1.1.2. Generating the DomainParticipant certificate

As was done for the CA, a DomainParticipant certificate configuration file needs to be created first.

File: partconf.cnf

prompt = no
string_mask = utf8only
distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
organizationName = eProsima
emailAddress = example@eprosima.com
commonName = DomainParticipantName

After writing the DomainParticipant certificate configuration file, next commands generate the X.509 certificate,
using ECDSA, for a DomainParticipant.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -new \
 -newkey ec:ecdsaparam \
 -config partconf.cnf \
 -keyout partkey.pem \
 -out partreq.pem

openssl ca -batch -create_serial \
 -config maincaconf.cnf \
 -days 3650 \
 -in partreq.pem \
 -out partcert.pem

8.1.1.3. Generating the Certificate Revocation List (CRL)

Finally, the CRL is created.
This is a list of the X.509 certificates revoked by the certificate issuing CA before they reach their expiration date.
Any certificate that is on this list will no longer be trusted.
To create a CRL using OpenSSL just run the following commands.

echo -ne '00' > crlnumber

openssl ca -gencrl \
 -config maincaconf.cnf \
 -cert maincacert.pem \
 -keyfile maincakey.pem \
 -out crl.pem

As an example, below is shown how to add the X.509 certificate of a DomainParticipant to the CRL.

openssl ca \
 -config maincaconf.cnf \
 -cert maincacert.pem \
 -keyfile maincakey.pem \
 -revoke partcert.pem

openssl ca -gencrl \
 -config maincaconf.cnf \
 -cert maincacert.pem \
 -keyfile maincakey.pem \
 -out crl.pem

 8.2. Access control plugin: DDS:Access:Permissions

8.2. Access control plugin: DDS:Access:Permissions

The access control plugin provides the mechanisms and operations required for validating the DomainParticipant
permissions.
If the security module was activated at Fast DDS compilation, after a remote DomainParticipant is authenticated,
its permissions need to be validated and enforced.

Access rights that each DomainParticipant has over a resource are defined using the access control plugin.
For the proper functioning of a DomainParticipant in a DDS Domain, the DomainParticipant must be authorized to
operate in that specific domain.
The DomainParticipant is responsible for creating the DataWriters and DataReaders that communicate over a certain
Topic.
Hence, a DomainParticipant must have the permissions needed to create a Topic, to publish
through its DataWriters under defined Topics, and to subscribe via its DataReaders to other Topics.
Access control plugin can configure the Cryptographic plugin as its usage is based on the DomainParticipant’s
permissions.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Access:Permissions”, in compliance with the
DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification.
This plugin is explained in detail below.

This builtin plugin provides access control using a permissions document signed by a trusted CA.
The DDS:Access:Permissions plugin requires three documents for its configuration which contents are explained
in detail below.

	The Permissions CA certificate.

	The Domain governance signed by the Permissions CA.

	The DomainParticipant permissions signed by the Permissions CA.

The DDS:Access:Permissions authentication plugin, can be activated setting the DomainParticipantQos
properties()
dds.sec.auth.plugin with the value builtin.Access-Permissions.
The following table outlines the properties used for the DDS:Access:Permissions plugin configuration.

	Property name

	Property value

	permissions_ca

	URI to the X509 certificate of the Permissions CA.

Supported URI schemes: file.

The file schema shall refer to an X.509 v3 certificate in PEM format.

	governance

	URI to shared Governance Document signed by the Permissions CA
 in S/MIME format.

Supported URI schemes: file.

	permissions

	URI to the Participant permissions document signed by the
 Permissions CA in S/MIME format.

Supported URI schemes: file.

Note

All listed properties have “dds.sec.access.builtin.Access-Permissions.” prefix.
For example: dds.sec.access.builtin.Access-Permissions.permissions_ca.

The following is an example of how to set the properties of DomainParticipantQos for the DDS:Access:Permissions
configuration.

	C++

	DomainParticipantQos pqos;

// Activate DDS:Access:Permissions plugin
pqos.properties().properties().emplace_back("dds.sec.access.plugin",
 "builtin.Access-Permissions");

// Configure DDS:Access:Permissions plugin
pqos.properties().properties().emplace_back(
 "dds.sec.access.builtin.Access-Permissions.permissions_ca",
 "file://certs/maincacert.pem");
pqos.properties().properties().emplace_back(
 "dds.sec.access.builtin.Access-Permissions.governance",
 "file://certs/governance.smime");
pqos.properties().properties().emplace_back(
 "dds.sec.access.builtin.Access-Permissions.permissions",
 "file://certs/permissions.smime");

	XML

	<participant profile_name="secure_domainparticipant_conf_access_control_plugin_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate DDS:Access:Permissions plugin -->
 <property>
 <name>dds.sec.access.plugin</name>
 <value>builtin.Access-Permissions</value>
 </property>
 <!-- Configure DDS:Access:Permissions plugin -->
 <property>
 <name>dds.sec.access.builtin.Access-Permissions.permissions_ca</name>
 <value>file://maincacet.pem</value>
 </property>
 <property>
 <name>dds.sec.access.builtin.Access-Permissions.governance</name>
 <value>file://governance.smime</value>
 </property>
 <property>
 <name>dds.sec.access.builtin.Access-Permissions.permissions</name>
 <value>file://permissions.smime</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

8.2.1. Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the
Domain Governance Document and the DomainParticipant Permissions Document.

8.2.2. Domain Governance Document

Domain Governance document is an XML document that specifies the mechanisms to secure the DDS Domain.
It shall be signed by the Permissions CA in S/MIME format.
The XML scheme of this document is defined in Domain Governance XSD.
The following is an example of the Domain Governance XML file contents.

 1<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 2 xsi:noNamespaceSchemaLocation="omg_shared_ca_domain_governance.xsd">
 3 <domain_access_rules>
 4 <domain_rule>
 5 <domains>
 6 <id_range>
 7 <min>0</min>
 8 <max>230</max>
 9 </id_range>
10 </domains>
11 <allow_unauthenticated_participants>false</allow_unauthenticated_participants>
12 <enable_join_access_control>true</enable_join_access_control>
13 <discovery_protection_kind>ENCRYPT</discovery_protection_kind>
14 <liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
15 <rtps_protection_kind>ENCRYPT</rtps_protection_kind>
16 <topic_access_rules>
17 <topic_rule>
18 <topic_expression>HelloWorldTopic</topic_expression>
19 <enable_discovery_protection>true</enable_discovery_protection>
20 <enable_liveliness_protection>false</enable_liveliness_protection>
21 <enable_read_access_control>true</enable_read_access_control>
22 <enable_write_access_control>true</enable_write_access_control>
23 <metadata_protection_kind>ENCRYPT</metadata_protection_kind>
24 <data_protection_kind>ENCRYPT</data_protection_kind>
25 </topic_rule>
26 </topic_access_rules>
27 </domain_rule>
28 </domain_access_rules>
29</dds>

The Governance XSD file [https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd] and
the
Governance XML example [https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/SecureHelloWorldExample/certs/governance.xml]
can also be downloaded from the eProsima Fast DDS Github repository [https://github.com/eProsima/Fast-DDS].

8.2.2.1. Domain Rules

It allows the application of rules to the DDS Domain.
The domain rules define aspects of the DDS Domain such as:

	Whether the discovery data should be protected and the type of protection: MAC only or encryption followed by MAC.

	Whether the whole RTPS message should be encrypted.

	Whether the liveliness of the messages should be protected.

	Whether a non-authenticated DomainParticipant can access or not to the unprotected discovery metatraffic and
unprotected Topics.

	Whether an authenticated DomainParticipant can access the domain without evaluating the access control policies.

	Whether discovery information on a certain Topic should be sent with secure DataWriters.

	Whether or not the access to Topics should be restricted to DomainParticipants with the appropriate permission to
read them.

	Whether the metadata sent on a certain Topic should be protected and the type of protection.

	Whether payload data on a certain Topic should be protected and the type of protection.

The domain rules are evaluated in the same order as they appear in the document.
A rule only applies to a particular DomainParticipant if the domain section matches the DDS
Domain_Id to which the DomainParticipant belongs.
If multiple rules match, the first rule that matches is the only one that applies.
Each domain rule is delimited by the <domain_rule> XML element tag.

Some domain rules may have an additional configuration if enabled.
This configuration defines the level of protection that the rule applies to the domain:

	NONE: no cryptographic transformation is applied.

	SIGN: cryptographic transformation based on Message Authentication Code (MAC) is applied, without additional
encryption.

	ENCRYPT: the data is encrypted and followed by a MAC computed on the ciphertext, also known as Encrypt-then-MAC.

The following table summarizes the elements and sections that each domain rule may contain.

	Type

	Name

	XML element tag

	Values

	Element

	Domains

	<domains>

	false

	true

	Allow Unauthenticated Participants

	<allow_unauthenticated_participants>

	false

	true

	Enable Join Access Control

	<enable_join_access_control>

	SIGN

	ENCRYPT

	NONE

	Discovery Protection Kind

	<discovery_protection_kind>

	SIGN

	ENCRYPT

	NONE

	Liveliness Protection Kind

	<liveliness_protection_kind>

	SIGN

	ENCRYPT

	NONE

	RTPS Protection Kind

	<rtps_protection_kind>

	SIGN

	ENCRYPT

	NONE

	Section

	Topic Access Rules

	<topic_access_rules>

	<topic_rule>

The following describes the possible configurations of each of the elements and sections listed above that are
contained in the domain rules.

8.2.2.1.1. Domains

This element is delimited by the <domains> XML element tag.
The value in this element identifies the collection of DDS Domains to which the rule applies.
The <domains> element can contain:

	A single domain identifier:

<domains>
 <id>1</id>
</domains>

	A range of domain identifiers:

<domains>
 <id_range>
 <min>1</min>
 <max>10</max>
 </id_range>
</domains>

Or a combination of both, a list of domain identifiers and ranges of domain identifiers.

8.2.2.1.2. Allow Unauthenticated Participants

This element is delimited by the <allow_unauthenticated_participants> XML element tag.
It indicates whether the matching of a DomainParticipant with a remote DomainParticipant requires authentication.
The possible values for this element are:

	false: the DomainParticipant shall enforce the authentication of remote DomainParticipants and
disallow matching those that cannot be successfully authenticated.

	true: the DomainParticipant shall allow matching other DomainParticipants (event if the remote
DomainParticipant cannot authenticate) as long as there is not an already valid authentication with the same
DomainParticipant’s GUID.

8.2.2.1.3. Enable Join Access Control

This element is delimited by the <enable_join_access_control> XML element tag.
Indicates whether the matching of the participant with a remote DomqainParticipant requires authorization by the
DDS:Access:Permissions plugin.
Its possible values are:

	false: the DomainParticipant shall not check the permissions of the authenticated remote DomainParticipant.

	true: the DomainParticipant shall check the permissions of the authenticated remote DomainParticipant.

8.2.2.1.4. Discovery Protection Kind

This element is delimited by the <discovery_protection_kind> XML element tag.
Indicates whether the secure channel of the endpoint discovery phase needs to be encrypted.
The possible values are:

	NONE: the secure channel shall not be protected.

	SIGN: the secure channel shall be protected by MAC.

	ENCRYPT: the secure channel shall be encrypted.

8.2.2.1.5. Liveliness Protection Kind

This element is delimited by the <liveliness_protection_kind> XML element tag.
Indicates whether the secure channel of the liveliness mechanism needs to be encrypted.
The possible values are:

	NONE: the secure channel shall not be protected.

	SIGN: the secure channel shall be protected by MAC.

	ENCRYPT: the secure channel shall be encrypted.

8.2.2.1.6. RTPS Protection Kind

This element is delimited by the <rtps_protection_kind> XML element tag.
Indicates whether the whole RTPS Message needs to be encrypted.
The possible values are:

	NONE: whole RTPS Messages shall not be protected.

	SIGN: whole RTPS Messages shall be protected by MAC.

	ENCRYPT: whole RTPS Messages shall be encrypted.

8.2.2.1.7. Topic Rule

This element is delimited by the <topic_rule> XML element tag and appears within the Topic Access Rules Section
whose XML element tag is <topic_access_rules>.
The following table summarizes the elements and sections that each domain rule may contain.

	Elements

	XML element tag

	Values

	Topic expression

	<topic_expression>

	Topic name

	Enable Discovery Protection

	<enable_discovery_protection>

	false

	true

	Enable Liveliness Protection

	<enable_liveliness_protection>

	false

	true

	Enable Read Access Control

	<enable_read_access_control>

	false

	true

	Enable Write Access Control

	<enable_write_access_control>

	false

	true

	Metadata protection Kind

	<metadata_protection_kind>

	true

	false

	Data protection Kind

	<data_protection_kind>

	true

	false

The topic expression within the rules selects a set of Topic names.
The rule applies to any DataReader or DataWriter associated with a Topic whose name matches the Topic expression
name.
The topic access rules are evaluated in the same order as they appear within the <topic_access_rules> section.
If multiple rules match, the first rule that matches is the only one that applies.

Topic expression

This element is delimited by the <topic_expression> XML element tag.
The value in this element identifies the set of Topic names to which the rule applies.
The rule applies to any DataReader or DataWriter associated with a Topic whose name matches the value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as
specified in IEEE 1003.1-2017 [https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html].

Enable Discovery Protection

This element is delimited by the <enable_discovery_protection> XML element tag.
Indicates whether the entity related discovery information shall go through the secure channel of endpoint discovery
phase.

	false: the entity discovery information shall be sent by an unsecured channel of discovery.

	true: the information shall be sent by the secure channel.

Enable Liveliness Protection

This element is delimited by the <enable_liveliness_protection> XML element tag.
Indicates whether the entity related liveliness information shall go through the secure channel of liveliness
mechanism.

	false: the entity liveliness information shall be sent by an unsecured channel of liveliness.

	true: the information shall be sent by the secure channel.

Enable Read Access Control

This element is delimited by the <enable_read_access_control> XML element tag.
Indicates whether read access to the Topic is protected.

	false: then local Subscriber creation and remote Subscriber matching can proceed without further
access-control mechanisms imposed.

	true: they shall be checked using Access control plugin.

Enable Write Access Control

This element is delimited by the <enable_write_access_control> XML element tag.
Indicates whether write access to the Topic is protected.

	false: then local Publisher creation and remote Publisher matching can proceed without further
access-control mechanisms imposed.

	true: they shall be checked using Access control plugin.

Metadata Protection Kind

This element is delimited by the <metadata_protection_kind> XML element tag.
Indicates whether the entity’s RTPS submessages shall be encrypted by the Cryptographic plugin.

	false: the RTPS submessages shall not be encrypted.

	true: the RTPS submessages shall be encrypted.

Data Protection Kind

This element is delimited by the <data_protection_kind> XML element tag.
Indicates whether the data payload shall be encrypted by the Cryptographic plugin.

	false: the data payload shall not be encrypted.

	true: the data payload shall be encrypted.

8.2.3. DomainParticipant Permissions Document

The permissions document is an XML file which contains the permissions of a DomainParticipant and binds them to the
DomainParticipant distinguished name defined in the DDS:Auth:PKI-DH plugin.
The permissions document shall be signed by the Permissions CA in S/MIME format.
The XML scheme of this document is defined in DomainParticipant Permissions XSD.
The following is an example of the DomainParticipant Permissions XML file contents.

 1<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 2 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-Security/20170801/omg_shared_ca_permissions.xsd">
 3 <permissions>
 4 <grant name="PublisherPermissions">
 5 <subject_name>emailAddress=mainpub@eprosima.com, CN=Main Publisher, OU=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
 6 <validity>
 7 <not_before>2013-06-01T13:00:00</not_before>
 8 <not_after>2038-06-01T13:00:00</not_after>
 9 </validity>
10 <allow_rule>
11 <domains>
12 <id_range>
13 <min>0</min>
14 <max>230</max>
15 </id_range>
16 </domains>
17 <publish>
18 <topics>
19 <topic>HelloWorldTopic</topic>
20 </topics>
21 </publish>
22 </allow_rule>
23 <default>DENY</default>
24 </grant>
25 <grant name="SubscriberPermissions">
26 <subject_name> emailAddress=mainsub@eprosima.com, CN=Main Subscriber, OU=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
27 <validity>
28 <not_before>2013-06-01T13:00:00</not_before>
29 <not_after>2038-06-01T13:00:00</not_after>
30 </validity>
31 <allow_rule>
32 <domains>
33 <id_range>
34 <min>0</min>
35 <max>230</max>
36 </id_range>
37 </domains>
38 <subscribe>
39 <topics>
40 <topic>HelloWorldTopic</topic>
41 </topics>
42 </subscribe>
43 </allow_rule>
44 <default>DENY</default>
45 </grant>
46 </permissions>
47</dds>

The Permissions XSD file [https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd] and
the
Permissions XML example [https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/SecureHelloWorldExample/certs/governance.xml]
can also be downloaded from the eProsima Fast DDS Github repository [https://github.com/eProsima/Fast-DDS].

8.2.3.1. Grant Section

This section is delimited by the <grant> XML element tag.
Each grant section contains three sections:

	Subject name

	Validity

	Rules

8.2.3.1.1. Subject name

This section is delimited by XML element <subject_name>.
The subject name identifies the DomainParticipant to which the permissions apply.
Each subject name can only appear in a single <permissions> section within the XML Permissions document.
The contents of the subject name element shall be the X.509 subject name of the DomainParticipant that was given in
the authorization X.509 Certificate.

8.2.3.1.2. Validity

This section is delimited by the XML element <validity>.
It reflects the valid dates for the permissions.

8.2.3.1.3. Rules

This section contains the permissions assigned to the DomainParticipant.
The rules are applied in the same order that appears in the document.
If the criteria for the rule matched the Domain join, publish or subscribe operation that is being attempted,
then the allow or deny decision is applied.
If the criteria for a rule does not match the operation being attempted, the evaluation shall proceed to the next rule.
If all rules have been examined without a match, then the decision specified by the <default> rule is applied.
The default rule, if present, must appear after all allow and deny rules.
If the default rule is not present, the implied default decision is DENY.

For the grant to match there shall be a match of the topics and partitions criteria.

Allow rules are delimited by the XML element <allow_rule>.
Deny rules are delimited by the XML element``<deny_rule>``.
Both contain the same element children.

8.2.3.2. Domains Section

This section is delimited by the XML element <domains>.
The value in this element identifies the collection of DDS Domains to which the rule applies.
The syntax is the same as for the Domains of the Domain Governance Document.

8.2.3.3. Format of the Allowed/Denied Actions sections

The sections for each of the three actions have a similar format.
The only difference is the name of the XML element used to delimit the action:

	Action

	XML element tag

	Allow/Deny Publish

	<publish>

	Allow/Deny Subscribe

	<subscribe>

	Allow/Deny Relay

	<relay>

Each action contains two conditions.

	Allowed/Denied Topics Condition

	Allowed/Denied Partitions Condition

8.2.3.3.1. Topics Condition

This section is delimited by the <topics> XML element.
It defines the Topic names that must be matched for the allow/deny rule to apply.
Topic names may be given explicitly or by means of Topic name expressions.
Each explicit topic name or Topic name expressions appears separately in a <topic> sub-element within the
<topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as
specified in

<topics>
 <topic>Plane</topic>
 <topic>Hel*</topic>
</topics>

8.2.3.3.2. Partitions Condition

This section is delimited by the <partitions> XML element.
It limits the set Partitions names that may be associated with the (publish, subscribe, relay) action for the rule to
apply.
Partition names expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as
specified in IEEE 1003.1-2017 [https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html].
If there is no <partitions> section within a rule, then the default “empty string” partition is assumed.

<partitions>
 <partition>A</partition>
 <partition>B*</partition>
</partitions>

8.2.4. Signing documents using x509 certificate

Domain Governance Document and DomainParticipant Permissions Document have to be signed using an X.509 certificate.
Generation of an X.509 certificate is explained in Generation of X.509 certificates.
Next commands sign the necessary documents for its use by the DDS:Access:Permissions plugin.

Governance document: governance.xml
openssl smime -sign -in governance.xml -text -out governance.smime -signer maincacert.pem -inkey maincakey.pem

Permissions document: permissions.xml
openssl smime -sign -in permissions.xml -text -out permissions.smime -signer maincacert.pem -inkey maincakey.pem

 Domain Governance XSD

Domain Governance XSD

 1<?xml version="1.0" encoding="UTF-8"?>
 2<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 3 elementFormDefault="qualified" attributeFormDefault="unqualified">
 4 <xs:element name="dds" type="DomainAccessRulesNode" />
 5 <xs:complexType name="DomainAccessRulesNode">
 6 <xs:sequence minOccurs="1" maxOccurs="1">
 7 <xs:element name="domain_access_rules"
 8 type="DomainAccessRules" />
 9 </xs:sequence>
10 </xs:complexType>
11 <xs:complexType name="DomainAccessRules">
12 <xs:sequence minOccurs="1" maxOccurs="unbounded">
13 <xs:element name="domain_rule" type="DomainRule" />
14 </xs:sequence>
15 </xs:complexType>
16 <xs:complexType name="DomainRule">
17 <xs:sequence minOccurs="1" maxOccurs="1">
18 <xs:element name="domains" type="DomainIdSet" />
19 <xs:element name="allow_unauthenticated_participants"
20 type="xs:boolean" />
21 <xs:element name="enable_join_access_control"
22 type="xs:boolean" />
23 <xs:element name="discovery_protection_kind"
24 type="ProtectionKind" />
25 <xs:element name="liveliness_protection_kind"
26 type="ProtectionKind" />
27 <xs:element name="rtps_protection_kind"
28 type="ProtectionKind" />
29 <xs:element name="topic_access_rules"
30 type="TopicAccessRules" />
31 </xs:sequence>
32 </xs:complexType>
33 <xs:complexType name="DomainIdSet">
34 <xs:choice minOccurs="1" maxOccurs="unbounded">
35 <xs:element name="id" type="DomainId" />
36 <xs:element name="id_range" type="DomainIdRange" />
37 </xs:choice>
38 </xs:complexType>
39 <xs:simpleType name="DomainId">
40 <xs:restriction base="xs:nonNegativeInteger" />
41 </xs:simpleType>
42 <xs:complexType name="DomainIdRange">
43 <xs:choice>
44 <xs:sequence>
45 <xs:element name="min" type="DomainId" />
46 <xs:element name="max" type="DomainId" minOccurs="0" />
47 </xs:sequence>
48 <xs:element name="max" type="DomainId" />
49 </xs:choice>
50 </xs:complexType>
51 <xs:simpleType name="ProtectionKind">
52 <xs:restriction base="xs:string">
53 <xs:enumeration value="ENCRYPT_WITH_ORIGIN_AUTHENTICATION" />
54 <xs:enumeration value="SIGN_WITH_ORIGIN_AUTHENTICATION" />
55 <xs:enumeration value="ENCRYPT" />
56 <xs:enumeration value="SIGN" />
57 <xs:enumeration value="NONE" />
58 </xs:restriction>
59 </xs:simpleType>
60 <xs:simpleType name="BasicProtectionKind">
61 <xs:restriction base="ProtectionKind">
62 <xs:enumeration value="ENCRYPT" />
63 <xs:enumeration value="SIGN" />
64 <xs:enumeration value="NONE" />
65 </xs:restriction>
66 </xs:simpleType>
67 <xs:complexType name="TopicAccessRules">
68 <xs:sequence minOccurs="1" maxOccurs="unbounded">
69 <xs:element name="topic_rule" type="TopicRule" />
70 </xs:sequence>
71 </xs:complexType>
72 <xs:complexType name="TopicRule">
73 <xs:sequence minOccurs="1" maxOccurs="1">
74 <xs:element name="topic_expression" type="TopicExpression" />
75 <xs:element name="enable_discovery_protection"
76 type="xs:boolean" />
77 <xs:element name="enable_liveliness_protection"
78 type="xs:boolean" />
79 <xs:element name="enable_read_access_control"
80 type="xs:boolean" />
81 <xs:element name="enable_write_access_control"
82 type="xs:boolean" />
83 <xs:element name="metadata_protection_kind"
84 type="ProtectionKind" />
85 <xs:element name="data_protection_kind"
86 type="BasicProtectionKind" />
87 </xs:sequence>
88 </xs:complexType>
89 <xs:simpleType name="TopicExpression">
90 <xs:restriction base="xs:string" />
91 </xs:simpleType>
92</xs:schema>

Back to the Domain Governance Document.

 DomainParticipant Permissions XSD

DomainParticipant Permissions XSD

 1<?xml version="1.0" encoding="utf-8"?>
 2<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 3 elementFormDefault="qualified" attributeFormDefault="unqualified">
 4 <xs:element name="dds" type="PermissionsNode" />
 5 <xs:complexType name="PermissionsNode">
 6 <xs:sequence minOccurs="1" maxOccurs="1">
 7 <xs:element name="permissions" type="Permissions" />
 8 </xs:sequence>
 9 </xs:complexType>
 10 <xs:complexType name="Permissions">
 11 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 12 <xs:element name="grant" type="Grant" />
 13 </xs:sequence>
 14 </xs:complexType>
 15 <xs:complexType name="Grant">
 16 <xs:sequence minOccurs="1" maxOccurs="1">
 17 <xs:element name="subject_name" type="xs:string" />
 18 <xs:element name="validity" type="Validity" />
 19 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 20 <xs:choice minOccurs="1" maxOccurs="1">
 21 <xs:element name="allow_rule" minOccurs="0" type="Rule" />
 22 <xs:element name="deny_rule" minOccurs="0" type="Rule" />
 23 </xs:choice>
 24 </xs:sequence>
 25 <xs:element name="default" type="DefaultAction" />
 26 </xs:sequence>
 27 <xs:attribute name="name" type="xs:string" use="required" />
 28 </xs:complexType>
 29 <xs:complexType name="Validity">
 30 <xs:sequence minOccurs="1" maxOccurs="1">
 31 <xs:element name="not_before" type="xs:dateTime" />
 32 <xs:element name="not_after" type="xs:dateTime" />
 33 </xs:sequence>
 34 </xs:complexType>
 35 <xs:complexType name="Rule">
 36 <xs:sequence minOccurs="1" maxOccurs="1">
 37 <xs:element name="domains" type="DomainIdSet" />
 38 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 39 <xs:element name="publish" type="Criteria" />
 40 </xs:sequence>
 41 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 42 <xs:element name="subscribe" type="Criteria" />
 43 </xs:sequence>
 44 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 45 <xs:element name="relay" type="Criteria" />
 46 </xs:sequence>
 47 </xs:sequence>
 48 </xs:complexType>
 49 <xs:complexType name="DomainIdSet">
 50 <xs:choice minOccurs="1" maxOccurs="unbounded">
 51 <xs:element name="id" type="DomainId" />
 52 <xs:element name="id_range" type="DomainIdRange" />
 53 </xs:choice>
 54 </xs:complexType>
 55 <xs:simpleType name="DomainId">
 56 <xs:restriction base="xs:nonNegativeInteger" />
 57 </xs:simpleType>
 58 <xs:complexType name="DomainIdRange">
 59 <xs:choice>
 60 <xs:sequence>
 61 <xs:element name="min" type="DomainId" />
 62 <xs:element name="max" type="DomainId" minOccurs="0" />
 63 </xs:sequence>
 64 <xs:element name="max" type="DomainId" />
 65 </xs:choice>
 66 </xs:complexType>
 67 <xs:complexType name="Criteria">
 68 <xs:all minOccurs="1">
 69 <xs:element name="topics" minOccurs="1"
 70 type="TopicExpressionList" />
 71 <xs:element name="partitions" minOccurs="0"
 72 type="PartitionExpressionList" />
 73 <xs:element name="data_tags" minOccurs="0" type="DataTags" />
 74 </xs:all>
 75 </xs:complexType>
 76 <xs:complexType name="TopicExpressionList">
 77 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 78 <xs:element name="topic" type="TopicExpression" />
 79 </xs:sequence>
 80 </xs:complexType>
 81 <xs:complexType name="PartitionExpressionList">
 82 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 83 <xs:element name="partition" type="PartitionExpression" />
 84 </xs:sequence>
 85 </xs:complexType>
 86 <xs:simpleType name="TopicExpression">
 87 <xs:restriction base="xs:string" />
 88 </xs:simpleType>
 89 <xs:simpleType name="PartitionExpression">
 90 <xs:restriction base="xs:string" />
 91 </xs:simpleType>
 92 <xs:complexType name="DataTags">
 93 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 94 <xs:element name="tag" type="TagNameValuePair" />
 95 </xs:sequence>
 96 </xs:complexType>
 97 <xs:complexType name="TagNameValuePair">
 98 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 99 <xs:element name="name" type="xs:string" />
100 <xs:element name="value" type="xs:string" />
101 </xs:sequence>
102 </xs:complexType>
103 <xs:simpleType name="DefaultAction">
104 <xs:restriction base="xs:string">
105 <xs:enumeration value="ALLOW" />
106 <xs:enumeration value="DENY" />
107 </xs:restriction>
108 </xs:simpleType>
109</xs:schema>

Back to the DomainParticipant Permissions Document.

 8.3. Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC

8.3. Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC

The cryptographic plugin provides the tools and operations required to support encryption and decryption,
digests computation, message authentication codes computation and verification, key generation, and key exchange for
DomainParticipants, DataWriters and DataReaders.
Encryption can be applied over three different levels of DDS protocol:

	The whole RTPS messages.

	The RTPS submessages of a specific DDS Entity (DataWriter or DataReader).

	The payload (user data) of a particular DataWriter.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Crypto:AES-GCM-GMAC”, in compliance with the
DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification.
This plugin is explained in detail below.

The DDS:Crypto:AES-GCM-GMAC plugin provides authentication encryption using Advanced Encryption Standard (AES) in
Galois Counter Mode (AES-GCM [https://csrc.nist.gov/publications/detail/sp/800-38d/final]).
It supports 128 bits and 256 bits AES key sizes.
It may also provide additional DataReader-specific Message Authentication Codes (MACs) using Galois MAC
(AES-GMAC [https://csrc.nist.gov/publications/detail/sp/800-38d/final]).

The DDS:Crypto:AES-GCM-GMAC authentication plugin, can be activated setting the DomainParticipantQos
properties()
dds.sec.crypto.plugin with the value builtin.AES-GCM-GMAC.
Moreover, this plugin needs the activation of the Authentication plugin: DDS:Auth:PKI-DH.
The DDS:Crypto:AES-GCM-GMAC plugin is configured using the Access control plugin: DDS:Access:Permissions, i.e the cryptography
plugin is configured through the properties and configuration files of the access control plugin.
If the Access control plugin: DDS:Access:Permissions plugin will not be used, you can configure the DDS:Crypto:AES-GCM-GMAC plugin
manually with the properties outlined in the following table.

	Property name

	Description

	Property Value

	rtps.participant.rtps_protection_kind

	Encrypt whole RTPS messages

	ENCRYPT

	rtps.endpoint.submessage_protection_kind

	Encrypt RTPS submessages of a particular entity

	ENCRYPT

	rtps.endpoint.payload_protection_kind

	Encrypt payload of a particular Writer

	ENCRYPT

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Crypto:AES-GCM-GMAC
configuration.

	C++

	DomainParticipantQos pqos;

// Activate DDS:Crypto:AES-GCM-GMAC plugin
pqos.properties().properties().emplace_back("dds.sec.crypto.plugin",
 "builtin.AES-GCM-GMAC");

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
pqos.properties().properties().emplace_back(
 "rtps.participant.rtps_protection_kind",
 "ENCRYPT");

	XML

	<participant profile_name="secure_domainparticipant_conf_crypto_plugin_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate DDS:Crypto:AES-GCM-GMAC plugin -->
 <property>
 <name>dds.sec.crypto.plugin</name>
 <value>builtin.AES-GCM-GMAC</value>
 </property>
 <!-- Only if DDS:Access:Permissions plugin is not enabled -->
 <!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
 <property>
 <name>rtps.participant.rtps_protection_kind</name>
 <value>ENCRYPT</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

Next example shows how to configure DataWriters to encrypt their RTPS submessages and the RTPS message payload, i.e.
the user data.
This is done by setting the DDS:Crypto:AES-GCM-GMAC properties (properties()) corresponding to the
DataWriters in the DataWriterQos.

	C++

	DataWriterQos wqos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
wqos.properties().properties().emplace_back(
 "rtps.endpoint.submessage_protection_kind",
 "ENCRYPT");
wqos.properties().properties().emplace_back(
 "rtps.endpoint.payload_protection_kind",
 "ENCRYPT");

	XML

	<data_writer profile_name="secure_datawriter_conf_crypto_plugin_xml_profile">
 <propertiesPolicy>
 <properties>
 <!-- Only if DDS:Access:Permissions plugin is not enabled -->
 <!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
 <property>
 <name>rtps.endpoint.submessage_protection_kind</name>
 <value>ENCRYPT</value>
 </property>
 <property>
 <name>rtps.endpoint.payload_protection_kind</name>
 <value>ENCRYPT</value>
 </property>
 </properties>
 </propertiesPolicy>
</data_writer>

The last example shows how to configure DataReader to encrypt their RTPS submessages.
This is done by setting the DDS:Crypto:AES-GCM-GMAC properties (properties()) corresponding to the
DataReaders in the DataReaderQos.

	C++

	DataWriterQos rqos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
rqos.properties().properties().emplace_back(
 "rtps.endpoint.submessage_protection_kind",
 "ENCRYPT");

	XML

	<data_reader profile_name="secure_datareader_conf_crypto_plugin_xml_profile">
 <propertiesPolicy>
 <properties>
 <!-- Only if DDS:Access:Permissions plugin is not enabled -->
 <!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
 <property>
 <name>rtps.endpoint.submessage_protection_kind</name>
 <value>ENCRYPT</value>
 </property>
 </properties>
 </propertiesPolicy>
</data_reader>

 8.4. Logging plugin: DDS:Logging:DDS_LogTopic

8.4. Logging plugin: DDS:Logging:DDS_LogTopic

The logging plugin provides the necessary operations to log the security events triggered by the other security plugins
supported by Fast DDS (Authentication plugin: DDS:Auth:PKI-DH, Access control plugin: DDS:Access:Permissions, and Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC).
Therefore, the aforementioned security plugins will use the logging plugin to log their events.
These events can be reporting of expected behavior, as well as security breaches and errors.

The logging plugin implemented in Fast DDS collects all security event data of a DomainParticipant and saves
them in a local file.
The log messages generated by the logging plugin include an ID that uniquely identifies the DomainParticipant that
triggered the event, the DDS Domain identifier to which the DomainParticipant belongs, and a time-stamp.

The logging plugin implemented in Fast DDS is referred to as “DDS:Logging:DDS_LogTopic”, in compliance with the
DDS Security [https://www.omg.org/spec/DDS-SECURITY/1.1/] specification.
This plugin is explained in detail below.
This plugin can be configured to filter according to up to eight levels of severity of the messages.

The DDS:Logging:DDS_LogTopic authentication plugin, can be activated setting the DomainParticipantQos
properties()
dds.sec.log.plugin with the value builtin.DDS_LogTopic.
The following table outlines the properties used for the DDS:Logging:DDS_LogTopic plugin configuration.

	Property name

	Property value

	Value

	Definition

	logging_level

	EMERGENCY_LEVEL

	System is unusable. Should not continue use.

	ALERT_LEVEL

	Should be corrected immediately.

	CRITICAL_LEVEL

	A failure in primary application.

	ERROR_LEVEL

	General error conditions. Default value.

	WARNING_LEVEL

	May indicate future error if action not taken.

	NOTICE_LEVEL

	Unusual, but nor erroneous event or condition.

	INFORMATIONAL_LEVEL

	Normal operational. Requires no action.

	DEBUG_LEVEL

	Normal operational.

	log_file

	Path of the file in which the log messages are to be saved.

Note

All listed properties have “dds.sec.log.builtin.DDS_LogTopic.” prefix.
For example: dds.sec.log.builtin.DDS_LogTopic.logging_level.

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Logging:DDS_LogTopic
plugin configuration.

	C++

	DomainParticipantQos pqos;

// Activate DDS:Logging:DDS_LogTopic plugin
pqos.properties().properties().emplace_back("dds.sec.log.plugin",
 "builtin.DDS_LogTopic");

// Configure DDS:Logging:DDS_LogTopic plugin
pqos.properties().properties().emplace_back(
 "dds.sec.log.builtin.DDS_LogTopic.logging_level",
 "EMERGENCY_LEVEL");
pqos.properties().properties().emplace_back(
 "dds.sec.log.builtin.DDS_LogTopic.log_file",
 "myLogFile.log");

	XML

	<participant profile_name="secure_domainparticipant_conf_logging_plugin_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate DDS:Auth:PKI-DH plugin -->
 <property>
 <name>dds.sec.log.plugin</name>
 <value>builtin.DDS_LogTopic</value>
 </property>
 <!-- Configure DDS:Auth:PKI-DH plugin -->
 <property>
 <name>dds.sec.log.builtin.DDS_LogTopic.logging_level</name>
 <value>EMERGENCY_LEVEL</value>
 </property>
 <property>
 <name>dds.sec.log.builtin.DDS_LogTopic.log_file</name>
 <value>myLogFile.log</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

 8.5. PKCS#11 support

8.5. PKCS#11 support

The private key property used for the DDS:Auth:PKI-DH plugin configuration can be specified using
a PKCS#11 compliant URI that represents a key stored in a HSM (Hardware Security Module).
When a PKCS#11 URI is given, the private key is never taken out of the HSM, providing a more secure setup.

Support for PKCS#11 URIs is provided by the libp11 [https://github.com/OpenSC/libp11] library.
This library provides a PKCS#11 engine for OpenSSL that acts as a proxy between OpenSSL
and the HSM driver provided by the manufacturer.
To make OpenSSL aware of the new engine, the OpenSSL configuration file might need to be updated.
For details on how to set up the PKCS#11 engine in different platforms follow the
dedicated documentation:

	Libp11 and SoftHSM libraries on Windows.

	Libp11 and SoftHSM libraries on Linux distributions

 9. Logging

9. Logging

eProsima Fast DDS provides an extensible built-in logging module that exposes the following main functionalities:

	Three different logging levels: Log::Kind::Info, Log::Kind::Warning, and Log::Kind::Error (see
Logging Messages).

	Message filtering according to different criteria: category, content, or source file (see
Filters).

	Output to STDOUT, STDERR and/or log files (see Consumers).

This section is devoted to explain the use, configuration, and extensibility of Fast DDS’ logging module.

	9.1. Module Structure

	9.2. Log Entry Specification

	9.3. Logging Thread

	9.4. Logging Messages

	9.5. Module Configuration
	9.5.1. Log Entry
	9.5.1.1. Timestamp

	9.5.1.2. Category

	9.5.1.3. Verbosity Level

	9.5.1.4. Message

	9.5.1.5. File Context

	9.5.1.6. Function Name

	9.5.2. Register Consumers

	9.5.3. Reset Configuration

	9.5.4. XML Configuration

	9.6. Filters
	9.6.1. Category Filtering

	9.6.2. File Name Filtering

	9.6.3. Content Filtering

	9.6.4. Reset Logging Filters

	9.7. Consumers
	9.7.1. StdoutConsumer

	9.7.2. StdoutErrConsumer

	9.7.3. FileConsumer

	9.8. Disable Logging Module

 9.1. Module Structure

9.1. Module Structure

The logging module provides the following classes:

	Log is the core class of the logging module.
This singleton is not only in charge of the logging operations (see Logging Messages), but it also
provides configuration APIs to set different logging configuration aspects (see Module Configuration), as well
as logging filtering at various levels (see Filters).
It contains zero or more LogConsumer objects.
The singleton’s consuming thread feeds the log entries added to the logging queue using the macros defined in
Logging Messages to the log consumers sequentially (see Logging Thread).

Warning

Log API exposes member function Log::QueueLog().
However, this function is not intended to be used directly.
To add messages to the log queue, use the methods described in Logging Messages.

	LogConsumer is the base class for all the log consumers (see Consumers).
It includes the member functions that derived classes should overload to consume log entries.

	OStreamConsumer derives from LogConsumer.
It defines how to consume log entries for outputting to an std::ostream object.
It includes a member function that derived classes must overload to define the desired std::ostream object.

1. StdoutConsumer derives from OStreamConsumer.
It defines STDOUT as the output std::ostream object (see StdoutConsumer).

2. StdoutErrConsumer derives from OStreamConsumer.
It defines a Log::Kind threshold so that if the Log::Kind is equal to or more severe than the selected
threshold, the output defined will be STDERR.
Otherwise, it defines STDOUT as the output (see StdoutErrConsumer).

3. FileConsumer derives from OStreamConsumer.
It defines an user specified file as the output std::ostream object
(see FileConsumer).

[image: ../../_images/class_diagram.svg]Logging module class diagram

The module can be further extended by creating new consumer classes deriving from LogConsumer and/or
OStreamConsumer.
To enable a custom consumer just follow the instructions on Register Consumers.

 9.2. Log Entry Specification

9.2. Log Entry Specification

Log entries created by StdoutConsumer, StdoutErrConsumer and
FileConsumer (eProsima Fast DDS built-in Consumers) adhere to the
following structure:

<Timestamp> [<Category> <Verbosity Level>] <Message> (<File Name>:<Line Number>) -> Function <Function Name>

An example of such log entry is given by:

2020-05-27 11:45:47.447 [DOCUMENTATION_CATEGORY Error] This is an error message (example.cpp:50) -> Function main

Note

File Name and Line Number, as well as Function Name are only present when enabled. See
Module Configuration for details.

 9.3. Logging Thread

9.3. Logging Thread

Calls to the macros presented in Logging Messages merely add the log entry to a ready-to-consume queue.
Upon creation, the logging module spawns a thread that awakes every time an entry is added to the queue.
When awaken, this thread feeds all the entries in the queue to all the registered Consumers.
Once the work is done, the thread falls back into idle state.
This strategy prevents the module from blocking the application thread when a logging operation is performed.
However, sometimes applications may want to wait until the logging routine is done to continue their operation.
The logging module provides this capability via the member function Log::Flush().
Furthermore, it is possible to completely eliminate the thread and its resources using member function
Log::KillThread().

// Block current thread until the log queue is empty.
Log::Flush();

// Stop the loggin thread and free its resources.
Log::KillThread();

Warning

A call to any of the macros present in Logging Messages will spawn the logging thread even if it has
been previously killed with Log::KillThread().

 9.4. Logging Messages

9.4. Logging Messages

The logging of messages is handled by three dedicated macros, one for each available verbosity level (see
Verbosity Level):

	logInfo: Logs messages with Log::Kind::Info verbosity.

	logWarning: Logs messages with Log::Kind::Warning verbosity.

	logError: Logs messages with Log::Kind::Error verbosity.

Said macros take exactly two arguments, a category and a message, and produce a log entry showing the message itself
plus some meta information depending on the module’s configuration (see Log Entry Specification and
Log Entry).

logInfo(DOCUMENTATION_CATEGORY, "This is an info message");
logWarning(DOCUMENTATION_CATEGORY, "This is an warning message");
logError(DOCUMENTATION_CATEGORY, "This is an error message");

Warning

Note that each message level is deactivated when CMake options LOG_NO_INFO, LOG_NO_WARNING or
LOG_NO_ERROR are set to ON respectively.
For more information about how to enable and disable each individual logging macro, please refer to
Disable Logging Module.

 9.5. Module Configuration

9.5. Module Configuration

The logging module offers a variety of configuration options.
The different components of a log entry (see Log Entry Specification) can be configured as explained in
Log Entry.
Furthermore, the logging module allows for registering several log consumer, allowing applications to direct the
logging output to different destinations (see Register Consumers).
In addition, some of the logging features can be configured using eProsima Fast DDS XML configuration files (see
XML Configuration).

	Log Entry

	Register Consumers

	Reset Configuration

	XML Configuration

9.5.1. Log Entry

All the different components of a log entry are summarized in the following table (please refer to each component’s
section for further explanation):

	Component

	Optional

	Default

	Timestamp

	NO

	ENABLED

	Category

	NO

	ENABLED

	Verbosity Level

	NO

	ENABLED

	Message

	NO

	ENABLED

	File Context

	YES

	DISABLED

	Function Name

	YES

	ENABLED

9.5.1.1. Timestamp

The log timestamp follows the ISO 8601 standard [https://www.iso.org/iso-8601-date-and-time-format.html] for local
timestamps, i.e. YYYY-MM-DD hh:mm:ss.sss.
This component cannot be further configured or disabled.

9.5.1.2. Category

Log entries have a category assigned when producing the log via the macros presented in
Logging Messages.
The category component can be used to filter log entries so that only those categories specified in the filter are
consumed (see Filters).
This component cannot be further configured or disabled.

9.5.1.3. Verbosity Level

eProsima Fast DDS logging module provides three verbosity levels defined by the Log::Kind enumeration,
those are:

	Log::Kind::Error: Used to log error messages.

	Log::Kind::Warning: Used to log error and warning messages.

	Log::Kind::Info: Used to log error, warning, and info messages.

The logging module’s verbosity level defaults to Log::Kind::Error, which means that only messages logged with
logError would be consumed.
The verbosity level can be set and retrieved using member functions Log::SetVerbosity() and Log::GetVerbosity()
respectively.

// Set log verbosity level to Log::Kind::Info
Log::SetVerbosity(Log::Kind::Info);

// Get log verbosity level
Log::Kind verbosity_level = Log::GetVerbosity();

Warning

Setting any of the CMake options LOG_NO_INFO, LOG_NO_WARNING or LOG_NO_ERROR to ON
will completely disable the corresponding verbosity level.
LOG_NO_INFO is set to ON for Single-Config generators as default value if not in Debug mode.

9.5.1.4. Message

This component constitutes the body of the log entry.
It is specified when producing the log via the macros presented in Logging Messages.
The message component can be used to filter log entries so that only those entries whose message pattern-matches the
filter are consumed (see Filters).
This component cannot be further configured or disabled.

9.5.1.5. File Context

This component specifies the origin of the log entry in terms of file name and line number (see
Logging Messages for a log entry example featuring this component).
This is useful when tracing code flow for debugging purposes.
The file context component can be enabled/disabled using the member function Log::ReportFilenames().

// Enable file name and line number reporting
Log::ReportFilenames(true);

// Disable file name and line number reporting
Log::ReportFilenames(false);

9.5.1.6. Function Name

This component specifies the origin of the log entry in terms of the function name (see
Logging Messages for a log entry example featuring this component).
This is useful when tracing code flow for debugging purposes.
The function name component can be enabled/disabled using the member function Log::ReportFunctions().

// Enable function name reporting
Log::ReportFunctions(true);

// Disable function name reporting
Log::ReportFunctions(false);

9.5.2. Register Consumers

eProsima Fast DDS logging module supports zero or more consumers logging the entries
registered in the logging queue with the methods described in Logging Messages.
To register a consumer, the Log class exposes member function Log::RegisterConsumer()

// Create a FileConsumer consumer that logs entries in "archive.log"
std::unique_ptr<FileConsumer> file_consumer(new FileConsumer("archive.log"));
// Register the consumer. Log entries will be logged to STDOUT and "archive.log"
Log::RegisterConsumer(std::move(file_consumer));

The consumers list can be emptied with member function Log::ClearConsumers().

// Clear all the consumers. Log entries are discarded upon consumption.
Log::ClearConsumers();

Note

Registering and configuring consumers can also be done using Fast DDS XML configuration files.
Please refer to XML Configuration for details.

Warning

Log::ClearConsumers() empties the consumers lists.
All log entries are discarded until a new consumer is register via Log::RegisterConsumer(), or until
Log::Reset() is called.

9.5.3. Reset Configuration

The logging module’s configuration can be reset to default settings with member function Log::Reset().

Warning

Resetting the module’s configuration entails:

	Setting Verbosity Level to Log::Kind::Error.

	Disabling File Context component.

	Enabling Function Name component.

	Clear all Filters.

	Clear all consumers and reset the default consumer according to CMake option LOG_CONSUMER_DEFAULT.

9.5.4. XML Configuration

eProsima Fast DDS allows for registering and configuring log consumers using XML configuration files.
Please refer to Log profiles for details.

 9.6. Filters

9.6. Filters

eProsima Fast DDS logging module allows for log entry filtering when consuming the logs, so that an application
execution output can be limited to specific areas of interest.
Beside the Verbosity Level, Fast DDS provides three different filtering possibilities.

	Category Filtering

	File Name Filtering

	Content Filtering

	Reset Logging Filters

It is worth mentioning that filters are applied in the specific order presented above, meaning that file name filtering
is only applied to the entries that pattern-match the category filter, and content filtering is only applied to the
entries that pattern-match both category and file name filters.

9.6.1. Category Filtering

Log entries can be filtered upon consumption according to their Category component using regular
expressions.
Each time an entry is ready to be consumed, the category filter is applied using std::regex_search().
To set a category filter, member function Log::SetCategoryFilter() is used:

// Set filter using regular expression
Log::SetCategoryFilter(std::regex("(CATEGORY_1)|(CATEGORY_2)"));

// Would be consumed
logError(CATEGORY_1, "First log entry");
// Would be consumed
logError(CATEGORY_2, "Second log entry");
// Would NOT be consumed
logError(CATEGORY_3, "Third log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY_FILTER_1 Error] First log entry -> Function main
2020-05-27 15:07:05.771 [CATEGORY_FILTER_2 Error] Second log entry -> Function main

9.6.2. File Name Filtering

Log entries can be filtered upon consumption according to their File Context component using
regular expressions.
Each time an entry is ready to be consumed, the file name filter is applied using std::regex_search().
To set a file name filter, member function Log::SetFilenameFilter() is used:

// Filename: example.cpp

// Enable file name and line number reporting
Log::ReportFilenames(true);

// Set filter using regular expression so filename must match "example"
Log::SetFilenameFilter(std::regex("example"));
// Would be consumed
logError(CATEGORY, "First log entry");

// Set filter using regular expression so filename must match "other"
Log::SetFilenameFilter(std::regex("other"));
// Would NOT be consumed
logError(CATEGORY, "Second log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY Error] First log entry (example.cpp:50) -> Function main

Note

File name filters are applied even when the File Context entry component is disabled.

9.6.3. Content Filtering

Log entries can be filtered upon consumption according to their Message component using regular
expressions.
Each time an entry is ready to be consumed, the content filter is applied using std::regex_search().
To set a content filter, member function Log::SetErrorStringFilter() is used:

// Set filter using regular expression so message component must match "First"
Log::SetErrorStringFilter(std::regex("First"));
// Would be consumed
logError(CATEGORY, "First log entry");
// Would NOT be consumed
logError(CATEGORY, "Second log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY Error] First log entry -> Function main

9.6.4. Reset Logging Filters

The logging module’s filters can be reset with member function Log::Reset().

Warning

Resetting the module’s filters entails:

	Setting Verbosity Level to Log::Kind::Error.

	Disabling File Context component.

	Enabling Function Name component.

	Clear all Filters.

	Clear all consumers and reset the default consumer according to CMake option LOG_CONSUMER_DEFAULT.

 9.7. Consumers

9.7. Consumers

Consumers are classes that take a Log::Entry and produce a log output accordingly.
eProsima Fast DDS provides three different log consumers that output log entries to different streams:

	StdoutConsumer: Outputs log entries to STDOUT

	StdoutErrConsumer: Outputs log entries to STDOUT or STDERR depending on the given threshold.

	FileConsumer: Outputs log entries to a user specified file.

9.7.1. StdoutConsumer

StdoutConsumer outputs log entries to STDOUT stream following the convection specified in
Log Entry Specification.
It is the default and only log consumer of the logging module if the CMake option LOG_CONSUMER_DEFAULT is set to
AUTO, STDOUT, or not set at all.
It can be registered and unregistered using the methods explained in
Register Consumers and Reset Configuration.

// Create a StdoutConsumer consumer that logs entries to stdout stream.
std::unique_ptr<StdoutConsumer> stdout_consumer(new StdoutConsumer());

// Register the consumer.
Log::RegisterConsumer(std::move(stdout_consumer));

9.7.2. StdoutErrConsumer

StdoutErrConsumer uses a Log::Kind threshold to filter the output of the log entries.
Those log entries whose Log::Kind is equal to or more severe than the given threshold output to STDERR.
Other log entries output to STDOUT.
By default, the threshold is set to Log::Kind::Warning.
StdoutErrConsumer::stderr_threshold() allows the user to modify the default threshold.

Additionally, if CMake option LOG_CONSUMER_DEFAULT is set to STDOUTERR, the logging module will use this consumer
as the default log consumer.

// Create a StdoutErrConsumer consumer that logs entries to stderr only when the Log::Kind is equal to ERROR
std::unique_ptr<StdoutErrConsumer> stdouterr_consumer(new StdoutErrConsumer());
stdouterr_consumer->stderr_threshold(Log::Kind::Error);

// Register the consumer
Log::RegisterConsumer(std::move(stdouterr_consumer));

9.7.3. FileConsumer

FileConsumer provides the logging module with log-to-file logging capabilities.
Applications willing to hold a persistent execution log record can specify a logging file using this consumer.
Furthermore, the application can choose whether the file stream should be in “write” or “append” mode, according to the
behaviour defined by std::fstream::open().

// Create a FileConsumer consumer that logs entries in "archive_1.log", opening the file in "write" mode.
std::unique_ptr<FileConsumer> write_file_consumer(new FileConsumer("archive_1.log", false));

// Create a FileConsumer consumer that logs entries in "archive_2.log", opening the file in "append" mode.
std::unique_ptr<FileConsumer> append_file_consumer(new FileConsumer("archive_2.log", true));

// Register the consumers.
Log::RegisterConsumer(std::move(write_file_consumer));
Log::RegisterConsumer(std::move(append_file_consumer));

 9.8. Disable Logging Module

9.8. Disable Logging Module

Setting the Verbosity Level, translates into entries not being added to the log queue if the
entry’s level has lower importance than the set one.
This check is performed when calling the macros defined in Logging Messages.
However, it is possible to fully disable each macro (and therefore each verbosity level individually) at build time.

	logInfo is fully disabled by either:

	Setting CMake option LOG_NO_INFO to ON (default for Single-Config generators if CMAKE_BUILD_TYPE
is other than Debug).

	Defining macro HAVE_LOG_NO_INFO to 1.

	logWarning is fully disabled by either:

	Setting CMake option LOG_NO_WARNING to ON.

	Defining macro HAVE_LOG_NO_WARNING to 1.

	logError is fully disabled by either:

	Setting CMake option LOG_NO_ERROR to ON.

	Defining macro HAVE_LOG_NO_ERROR to 1.

Applying either of the previously described methods will set the macro to be empty at configuration time, thus allowing
the compiler to optimize the call out.
This is done so that all the debugging messages present on the library are optimized out at build time if not building
for debugging purposes, thus preventing them to impact performance.

INTERNAL_DEBUG CMake option activates log macros compilation, so the arguments of the macros are compiled.
However:

	It does not activate the log Warning and Error messages, i.e. the messages are not written in the log queue.

	logInfo has a special behaviour to simplify working with Multi-Config capability IDEs.
If CMake option LOG_NO_INFO is OFF, or the C++ definition HAVE_LOG_NO_INFO is 0, then logging is enabled
only for Debug configuration.
In this scenario, setting FASTDDS_ENFORCE_LOG_INFO to ON will enable logInfo even on non Debug
configurations.
This is specially useful when using the Fast DDS’ logging module in an external application which links with
Fast DDS compiled in Release.
In that case, applications wanting to use all three levels of logging can simply add the following code prior to
including any Fast DDS header:

#define HAVE_LOG_NO_INFO 0
#define FASTDDS_ENFORCE_LOG_INFO 1

Warning

INTERNAL_DEBUG can be automatically set to ON if CMake option EPROSIMA_BUILD is set to ON.

 10. Statistics Module

10. Statistics Module

The Fast DDS Statistics module is an extension of Fast DDS that enables the recollection of data concerning the DDS
communication.
The collected data is published using DDS over dedicated topics using builtin DataWriters within the
Statistics module.
Consequently, by default, Fast DDS does not compile this module because it may entail affecting the application’s
performance.
Nonetheless, the Statistics module can be activated using the -DFASTDDS_STATISTICS=ON at CMake configuration step.
For more information about Fast DDS compilation, see Linux installation from sources and Windows installation from sources.

Besides enabling the Statistics Module compilation, the user must enable those DataWriters that are publishing data on
the topics of interest for the user’s application.
Therefore, the standard DDS Layer has been extended.
The following section explains this DDS extended API.

	10.1. Statistics Module DDS Layer
	10.1.1. Statistics Topic names

	10.1.2. Statistics Domain Participant

	10.1.3. Statistics recommended QoS

 10.1. Statistics Module DDS Layer

10.1. Statistics Module DDS Layer

This section explains the extended DDS API provided for the Statistics Module.
First, the Statistics Topic List is presented together with the corresponding collected data.
Next, the methods to enable/disable the corresponding DataWriters are explained.
Finally, the recommended QoS for enabling the DataWriters and creating the user’s DataReaders that subscribe to the
Statistics topics are described.

	10.1.1. Statistics Topic names
	10.1.1.1. HISTORY_LATENCY_TOPIC

	10.1.1.2. NETWORK_LATENCY_TOPIC

	10.1.1.3. PUBLICATION_THROUGHPUT_TOPIC

	10.1.1.4. SUBSCRIPTION_THROUGHPUT_TOPIC

	10.1.1.5. RTPS_SENT_TOPIC

	10.1.1.6. RTPS_LOST_TOPIC

	10.1.1.7. HEARTBEAT_COUNT_TOPIC

	10.1.1.8. ACKNACK_COUNT_TOPIC

	10.1.1.9. NACKFRAG_COUNT_TOPIC

	10.1.1.10. GAP_COUNT_TOPIC

	10.1.1.11. DATA_COUNT_TOPIC

	10.1.1.12. RESENT_DATAS_TOPIC

	10.1.1.13. SAMPLE_DATAS_TOPIC

	10.1.1.14. PDP_PACKETS_TOPIC

	10.1.1.15. EDP_PACKETS_TOPIC

	10.1.1.16. DISCOVERY_TOPIC

	10.1.1.17. PHYSICAL_DATA_TOPIC

	10.1.2. Statistics Domain Participant
	10.1.2.1. Enable statistics DataWriters

	10.1.2.2. Disable statistics DataWriters

	10.1.2.3. Obtain pointer to the extended DomainParticipant class

	10.1.2.4. Example

	10.1.2.5. Automatically enabling statistics DataWriters

	10.1.3. Statistics recommended QoS
	10.1.3.1. Statistics DataWriter recommended QoS

	10.1.3.2. Statistics DataReader recommended QoS

 10.1.1. Statistics Topic names

10.1.1. Statistics Topic names

Data collected by the Fast DDS Statistics module is published in one of the topics listed below.
In order to simplify its use, the API provides aliases for the different statistics topics (see
Topic names).
The following table shows the correlation between the topic name and the corresponding alias.

	Topic name

	Alias

	_fastdds_statistics_history2history_latency

	HISTORY_LATENCY_TOPIC

	_fastdds_statistics_network_latency

	NETWORK_LATENCY_TOPIC

	_fastdds_statistics_publication_throughput

	PUBLICATION_THROUGHPUT_TOPIC

	_fastdds_statistics_subscription_throughput

	SUBSCRIPTION_THROUGHPUT_TOPIC

	_fastdds_statistics_rtps_sent

	RTPS_SENT_TOPIC

	_fastdds_statistics_rtps_lost

	RTPS_LOST_TOPIC

	_fastdds_statistics_heartbeat_count

	HEARTBEAT_COUNT_TOPIC

	_fastdds_statistics_acknack_count

	ACKNACK_COUNT_TOPIC

	_fastdds_statistics_nackfrag_count

	NACKFRAG_COUNT_TOPIC

	_fastdds_statistics_gap_count

	GAP_COUNT_TOPIC

	_fastdds_statistics_data_count

	DATA_COUNT_TOPIC

	_fastdds_statistics_resent_datas

	RESENT_DATAS_TOPIC

	_fastdds_statistics_sample_datas

	SAMPLE_DATAS_TOPIC

	_fastdds_statistics_pdp_packets

	PDP_PACKETS_TOPIC

	_fastdds_statistics_edp_packets

	EDP_PACKETS_TOPIC

	_fastdds_statistics_discovered_entity

	DISCOVERY_TOPIC

	_fastdds_statistics_physical_data

	PHYSICAL_DATA_TOPIC

10.1.1.1. HISTORY_LATENCY_TOPIC

The _fastdds_statistics_history2history_latency statistics topic collects data related with the latency between any
two matched endpoints.
This measurement provides information about the DDS overall latency independent of the user’s application overhead.
Specifically, the measured latency corresponds to the time spent between the instant when the sample is written to the
DataWriter’s history and the time when the sample is added to the DataReader’s history and the notification is issued to
the corresponding user’s callback.

10.1.1.2. NETWORK_LATENCY_TOPIC

The _fastdds_statistics_network_latency statistics topic collects data related with the network latency (expressed
in ns) between any two communicating locators.
This measurement provides information about the transport layer latency.
The measured latency corresponds to the time spent between the message being written in the RTPSMessageGroup until the
message being received in the MessageReceiver.

Important

In the case of TCP Transport, the reported latency also includes the time spent on the datagram’s CRC
related operations.
Mind that is possible to disable CRC operations when defining the TCPTransportDescriptor.

10.1.1.3. PUBLICATION_THROUGHPUT_TOPIC

The _fastdds_statistics_publication_throughput statistics topic collects the amount of data (expressed in B/s)
that is being sent by each DataWriter.
This measurement provides information about the publication’s throughput.

10.1.1.4. SUBSCRIPTION_THROUGHPUT_TOPIC

The _fastdds_statistics_subscription_throughput statistics topic collects the amount of data (expressed in B/s)
that is being received by each DataReader.
This measurement provides information about the subscription’s throughput.

10.1.1.5. RTPS_SENT_TOPIC

The _fastdds_statistics_rtps_sent statistics topic collects the number of RTPS packets and bytes that are being sent
from each DDS entity to each locator.

10.1.1.6. RTPS_LOST_TOPIC

The _fastdds_statistics_rtps_lost statistics topic collects the number of RTPS packets and bytes that are being lost
in the transport layer (dropped somewhere in between) in the communication between each DDS entity and locator.

10.1.1.7. HEARTBEAT_COUNT_TOPIC

The _fastdds_statistics_heartbeat_count statistics topic collects the number of heartbeat messages sent by each
user’s DataWriter.
This topic does not apply to builtin (related to Discovery) and statistics DataWriters.
Heartbeat messages are only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.
These messages report the DataWriter’s status.

10.1.1.8. ACKNACK_COUNT_TOPIC

The _fastdds_statistics_acknack_count statistics topic collects the number of acknack messages sent by each user’s
DataReader.
This topic does not apply to builtin DataReaders (related to Discovery).
Acknack messages are only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.
These messages report the DataReader’s status.

10.1.1.9. NACKFRAG_COUNT_TOPIC

The _fastdds_statistics_nackfrag_count statistics topic collects the number of nackfrag messages sent by each user’s
DataReader.
This topic does not apply to builtin DataReaders (related to Discovery).
Nackfrag messages are only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.
These messages report the data fragments that have not been received yet by the DataReader.

10.1.1.10. GAP_COUNT_TOPIC

The _fastdds_statistics_gap_count statistics topic collects the number of gap messages sent by each user’s
DataWriter.
This topic does not apply to builtin (related to Discovery) and statistics DataWriters.
Gap messages are only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.
These messages report that some specific samples are not relevant to a specific DataReader.

10.1.1.11. DATA_COUNT_TOPIC

The _fastdds_statistics_data_count statistics topic collects the total number of user’s data messages and data
fragments (in case that the message size is large enough to require RTPS fragmentation) that have been sent by each
user’s DataWriter.
This topic does not apply to builtin (related to Discovery) and statistics DataWriters.

10.1.1.12. RESENT_DATAS_TOPIC

The _fastdds_statistics_resent_data statistics topic collects the total number of user’s data messages and data
fragments (in case that the message size is large enough to require RTPS fragmentation) that have been necessary to
resend by each user’s DataWriter.
This topic does not apply to builtin (related to Discovery) and statistics DataWriters.

10.1.1.13. SAMPLE_DATAS_TOPIC

The _fastdds_statistics_sample_datas statistics topic collects the number of user’s data messages (or data fragments
in case that the message size is large enough to require RTPS fragmentation) that have been sent by the user’s
DataWriter to completely deliver a single sample.
This topic does not apply to builtin (related to Discovery) and statistics DataWriters.

10.1.1.14. PDP_PACKETS_TOPIC

The _fastdds_statistics_pdp_packets statistics topic collects the number of PDP discovery traffic RTPS packets
transmitted by each DDS DomainParticipant.
PDP packets are the data messages exchanged during the PDP discovery phase (see Discovery phases for more
information).

10.1.1.15. EDP_PACKETS_TOPIC

The _fastdds_statistics_edp_packets statistics topic collects the number of EDP discovery traffic RTPS packets
transmitted by each DDS DomainParticipant.
EDP packets are the data messages exchanged during the EDP discovery phase (see Discovery phases for more
information).

10.1.1.16. DISCOVERY_TOPIC

The _fastdds_statistics_discovered_entity statistics topic reports the time when each local DomainParticipant
discovers any remote DDS entity (with the exception of those DDS entities related with the Fast DDS Statistics
module).
This topic also carries the PHYSICAL_DATA_TOPIC information for the case of discovered DomainParticipant; if the
discovered entity is either a DataReader or DataWriter, then the physical information is empty (see
Physical Data in Discovery Information for more information about how to configure the physical data conveyed on the
discovery messages).

10.1.1.17. PHYSICAL_DATA_TOPIC

The _fastdds_statistics_physical_data statistics topic reports the host, user and process where the
Fast DDS Statistics module is running.

 10.1.2. Statistics Domain Participant

10.1.2. Statistics Domain Participant

In order to start collecting data in one of the statistics topics (Statistics Topic names), the corresponding
statistics DataWriter should be enabled.
In fact, Fast DDS Statistics module can be enabled and disabled at runtime.
For this purpose, Fast DDS Statistics module exposes an extended DDS DomainParticipant API:

	Enable statistics DataWriters

	Disable statistics DataWriters

	Obtain pointer to the extended DomainParticipant class

	Example

	Automatically enabling statistics DataWriters

10.1.2.1. Enable statistics DataWriters

Statistics DataWriters are enabled using the method enable_statistics_datawriter().
This method requires as parameters:

	Name of the statistics topic to be enabled (see Statistics Topic names for the statistics topic list).

	DataWriter QoS profile (see Statistics DataWriter recommended QoS for the recommended profile).

10.1.2.2. Disable statistics DataWriters

Statistics DataWriters are disabled using the method disable_statistics_datawriter().
This method requires as parameter:

	Name of the statistics topic to be disabled (see Statistics Topic names for the statistics topic list).

10.1.2.3. Obtain pointer to the extended DomainParticipant class

The DomainParticipant is created using the create_participant() provided by the
DomainParticipantFactory.
This method returns a pointer to the DDS standard DomainParticipant created.
In order to obtain the pointer to the child DomainParticipant which extends the DDS API, the
static method narrow() is provided.

10.1.2.4. Example

The following example shows how to use the Statistics module extended DDS API:

// Create a DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Obtain pointer to child class
eprosima::fastdds::statistics::dds::DomainParticipant* statistics_participant =
 eprosima::fastdds::statistics::dds::DomainParticipant::narrow(participant);

// Enable statistics DataWriter
if (statistics_participant->enable_statistics_datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC,
 eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Use the DomainParticipant to communicate
// (...)

// Disable statistics DataWriter
if (statistics_participant->disable_statistics_datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC) !=
 ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Delete DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

10.1.2.5. Automatically enabling statistics DataWriters

The statistics DataWriters can be directly enabled using the DomainParticipantQos
properties() fastdds.statistics.
The value of this property is a semicolon separated list containing the
statistics topic name aliases of those DataWriters that the user wants to enable.
The property can be set either programmatically or loading an XML file.
If the property is set in both ways, the priority would depend on the API and the QoS profile provided:

	XML settings have priority if create_participant_with_profile() is called with a valid
participant profile.

	XML settings also have priority if create_participant() is called using
PARTICIPANT_QOS_DEFAULT and a participant profile exists in the XML file with the is_default_profile option
set to true (DomainParticipant XML attributes).

	The property set programmatically is used only when create_participant() is called with
the specific QoS.

Another way of enabling statistics DataWriters, compatible with the previous one, is setting the
FASTDDS_STATISTICS environment variable.
The statistics DataWriters that will be enabled when the DomainParticipant is enabled would be the union between
those specified in the properties() fastdds.statistics and those included with the
environment variable.

The following examples show how to use all the previous methods:

	C++

	DomainParticipantQos pqos;

// Activate Fast DDS Statistics module
pqos.properties().properties().emplace_back("fastdds.statistics",
 "HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC");

	XML

	<participant profile_name="statistics_domainparticipant_conf_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate Fast DDS Statistics Module -->
 <property>
 <name>fastdds.statistics</name>
 <value>HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

	Environment Variable Linux

	export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC"

	Environment Variable Windows

	set FASTDDS_STATISTICS=HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC

Note

These are all the statistics topics:

HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_THROUGHPUT_TOPIC;SUBSCRIPTION_THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_TOPIC;NACKFRAG_COUNT_TOPIC;GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_DATAS_TOPIC;PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC

Be aware that automatically enabling the statistics DataWriters using all these methods implies using the recommended
QoS profile STATISTICS_DATAWRITER_QOS. For more information, please refer to Statistics DataWriter recommended QoS.

 10.1.3. Statistics recommended QoS

10.1.3. Statistics recommended QoS

Although the statistics DataWriters can be enabled using any valid QoS profile, the recommended profile is presented
below.
Also, the DataReaders created by the user to receive the data being published by the statistics DataWriters can use any
compatible QoS profile.
However, a recommended DataReader QoS profile is also provided.

10.1.3.1. Statistics DataWriter recommended QoS

The following table shows the recommended DataWriterQos profile for enabling the statistics DataWriters.
This profile enables the pull mode operating mode on the statistics DataWriters.
This entails that the DataWriters will only send information upon the reception of acknack submessages sent by the
monitoring DataReader.
This QoS profile is always used when the statistics DataWriters are
auto-enabled.
The recommended profile can be accessed through the constant STATISTICS_DATAWRITER_QOS.

	Qos Policy

	Value

	ReliabilityQosPolicyKind

	RELIABLE_RELIABILITY_QOS

	DurabilityQosPolicyKind

	TRANSIENT_LOCAL_DURABILITY_QOS

	PublishModeQosPolicyKind

	ASYNCHRONOUS_PUBLISH_MODE

	flow_controller_name

	FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT

	HistoryQosPolicyKind

	KEEP_LAST_HISTORY_QOS

	history_depth

	1

	PropertyPolicyQos name = value

	"fastdds.push_mode" = "false"

10.1.3.2. Statistics DataReader recommended QoS

The following table shows the recommended DataReaderQos profile for creating the monitoring DataReaders.
The recommended profile can be accessed through constant STATISTICS_DATAREADER_QOS.

	Qos Policy

	Value

	ReliabilityQosPolicyKind

	RELIABLE_RELIABILITY_QOS

	DurabilityQosPolicyKind

	TRANSIENT_LOCAL_DURABILITY_QOS

	HistoryQosPolicyKind

	KEEP_LAST_HISTORY_QOS

	history_depth

	100

	MemoryManagementPolicy

	PREALLOCATED_WITH_REALLOC_MEMORY_MODE

 11. XML profiles

11. XML profiles

eProsima Fast DDS allows for loading XML configuration files, each one containing one or more XML profiles.
In addition to the API functions for loading user XML files, Fast DDS tries to locate and load several XML files
upon initialization.
Fast DDS offers the following options:

	Load an XML file named DEFAULT_FASTRTPS_PROFILES.xml located in the current execution path.

	Load an XML file which location is defined using the environment variable FASTRTPS_DEFAULT_PROFILES_FILE
(see FASTRTPS_DEFAULT_PROFILES_FILE).

	Load the configuration parameters directly from the classes’ definitions without looking for the
DEFAULT_FASTRTPS_PROFILES.xml in the working directory (see SKIP_DEFAULT_XML).

	Load directly the XML as a string data buffer.

An XML profile is defined by a unique name that is used to reference the XML profile
during the creation of an Entity, the Trasport configuration, or the
DynamicTypes definition.

Both options can be complemented, i.e. it is possible to load multiple XML files but these must not have XML profiles
with the same name.
This section explains how to configure DDS entities using XML profiles.
This includes the description of all the configuration values available for each of the XML profiles, as well as how
to create complete XML files.

	11.1. Creating an XML profiles file
	11.1.1. Loading and applying profiles

	11.1.2. Rooted vs Standalone profiles definition

	11.1.3. Modifying predefined XML profiles

	11.2. DomainParticipant profiles
	11.2.1. DomainParticipant XML attributes

	11.2.2. DomainParticipant configuration

	11.3. DataWriter profiles
	11.3.1. DataWriter XML attributes

	11.3.2. DataWriter configuration

	11.4. DataReader profiles
	11.4.1. DataReader XML attributes

	11.4.2. DataReader configuration

	11.5. Transport descriptors
	11.5.1. TLS Configuration

	11.6. Log profiles
	11.6.1. ConsumerDataType

	11.6.2. PropertyType

	11.7. Dynamic Types profiles
	11.7.1. XML Structure

	11.7.2. Type definition

	11.7.3. Loading dynamic types in a Fast DDS application

	11.8. Common
	11.8.1. LocatorListType

	11.8.2. PropertiesPolicyType

	11.8.3. DurationType

	11.8.4. TopicType

	11.8.5. QoS

	11.8.6. Throughput Configuration

	11.8.7. HistoryMemoryPolicy

	11.8.8. Allocation Configuration

	11.9. Example

 11.1. Creating an XML profiles file

11.1. Creating an XML profiles file

An XML file can contain several XML profiles.
These XML profiles are defined within the <dds> element, and in turn, within the <profiles> XML elements.
The possible topologies for the definition of XML profiles are specified in Rooted vs Standalone profiles definition.
The available profile types are:

	DomainParticipant profiles,

	DataWriter profiles,

	DataReader profiles,

	Transport descriptors,

	Log profiles, and

	Dynamic Types profiles.

The following sections will show implementation examples for each of these profiles.

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 <participant profile_name="participant_profile">
 <!-- ... -->
 </participant>

 <data_writer profile_name="datawriter_profile">
 <!-- ... -->
 </data_writer>

 <data_reader profile_name="datareader_profile">
 <!-- ... -->
 </data_reader>

 <transport_descriptors>
 <!-- ... -->
 </transport_descriptors>

 <log>
 <!-- ... -->
 </log>

 <types>
 <!-- ... -->
 </types>
 </profiles>
</dds>

Note

The Example section shows an XML file with all the possible configurations and profile types.
This example is useful as a quick reference to look for a particular property and how to use it.
The
Fast DDS XSD scheme [https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/fastRTPS_profiles.xsd]
can be used as a quick reference too.

11.1.1. Loading and applying profiles

In case the user defines the Entity profiles via XML files, it is required to load these
XML files using the load_XML_profiles_file() public member function before creating any
entity.
It is also possible to load directly the XML information as a string data buffer using the
load_XML_profiles_string() public member function.
Moreover, create_participant_with_profile(),
create_publisher_with_profile(), create_subscriber_with_profile(),
create_datawriter_with_profile(), and create_datareader_with_profile()
member functions expect a profile name as an argument.
Fast DDS searches the given profile name over all the loaded XML profiles, applying the profile to the entity
if founded.

if (ReturnCode_t::RETCODE_OK ==
 DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml"))
{
 DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant_with_profile(
 0, "participant_xml_profile");

 Topic* topic =
 participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);

 Publisher* publisher = participant->create_publisher_with_profile("publisher_xml_profile");
 DataWriter* datawriter = publisher->create_datawriter_with_profile(topic, "datawriter_xml_profile");
 Subscriber* subscriber = participant->create_subscriber_with_profile("subscriber_xml_profile");
 DataReader* datareader = subscriber->create_datareader_with_profile(topic, "datareader_xml_profile");
}

// Load XML as string data buffer
std::string xml_profile =
 "\
 <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\
 <dds>\
 <profiles xmlns=\"http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles\" >\
 <publisher profile_name=\"test_publisher_profile\" is_default_profile=\"true\">\
 <qos>\
 <durability>\
 <kind>TRANSIENT_LOCAL</kind>\
 </durability>\
 </qos>\
 </publisher>\
 </profiles>\
 </dds>\
 ";
if (ReturnCode_t::RETCODE_OK ==
 DomainParticipantFactory::get_instance()->load_XML_profiles_string(xml_profile.c_str(),
 xml_profile.length()))
{
 // Create DDS entities with profiles
}

Warning

It is worth mentioning that if the same XML profile file is loaded multiple times, the second loading of
the file will result in an error together with the consequent error log.

Note

To load dynamic types from XML files see the Loading dynamic types in a Fast DDS application subsection of Dynamic Types profiles.

11.1.2. Rooted vs Standalone profiles definition

Fast DDS offers various options for the definition of XML profiles. These options are:

	Stand-alone:
The element defining the XML profile is the root element of the XML file.
Elements <dds>, <profiles>, <types>, and <log> can be defined in a stand-alone manner.

	Rooted:
The element defining the XML profile is the child element of another element.
For example, the <participant>, <data_reader>, <data_writer>, and <transport_descriptors> elements
must be defined as child elements of the <profiles> element.

The following is an example of the definition of the <types> XML profile using the two previously discussed
approaches.

	Stand-alone

	<?xml version="1.0" encoding="UTF-8" ?>
<types>
 <type>
 <!-- Type definition -->
 </type>

 <type>
 <!-- Type definition -->
 <!-- Type definition -->
 </type>
</types>

	Rooted

	<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <types>
 <type>
 <!-- Type definition -->
 </type>

 <type>
 <!-- Type definition -->
 <!-- Type definition -->
 </type>
 </types>
</dds>

11.1.3. Modifying predefined XML profiles

Some scenarios may require to modify some of the QoS after loading the XML profiles.
For such cases the Types of Entities which act as factories provide methods to get the QoS from the
XML profile. This allows the user to read and modify predefined XML profiles before applying them to a new entity.

if (ReturnCode_t::RETCODE_OK ==
 DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml"))
{
 DomainParticipantQos participant_qos;
 DomainParticipantFactory::get_instance()->get_participant_qos_from_profile(
 "participant_xml_profile",
 participant_qos);

 // Name obtained in another section of the code
 participant_qos.name() = custom_name;

 // Modify number of preallocations (this overrides the one set in the XML profile)
 participant_qos.allocation().send_buffers.preallocated_number = 10;

 // Create participant using the modified XML Qos
 DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(
 0, participant_qos);
}

 11.2. DomainParticipant profiles

11.2. DomainParticipant profiles

The DomainParticipant profiles allow the definition of the configuration of DomainParticipants through
XML files.
These profiles are defined within the <participant> XML tags.

11.2.1. DomainParticipant XML attributes

The <participant> element has two attributes defined: profile_name and is_default_profile.

	Name

	Description

	Use

	profile_name

	Sets the name under which the <participant> profile is registered in the DDS Domain,

so that it can be loaded later by the DomainParticipantFactory, as shown in

Loading and applying profiles.

	Mandatory

	is_default_profile

	Sets the <participant> profile as the default profile. Thus, if a default profile

exists, it will be used when no other DomainParticipant profile is specified at the

DomainParticipant’s creation.

	Optional

11.2.2. DomainParticipant configuration

The <participant> element has two child elements: <domain_id> and <rtps>.
All the DomainParticipant configuration options belong to the <rtps> element, except for the DDS DomainId
which is defined by the <domain_id> element.
Below a list with the configuration XML elements is presented:

	Name

	Description

	Values

	Default

	<domainId>

	DomainId to be used by the DomainParticipant.

	uint32_t

	0

	<rtps>

	Fast DDS DomainParticipant configurations.

See RTPS element type.

	RTPS element type

	

11.2.2.1. RTPS element type

The following is a list with all the possible child XML elements of the <rtps> element.
These elements allow the user to define the DomainParticipant configuration.

	Name

	Description

	Values

	Default

	<name>

	The DomainParticipant’s name.

	string_255

	

	<defaultUnicastLocatorList>

	List of default reception unicast locators

for user data traffic (see

<metatrafficUnicastLocatorList>

defined in Builtin parameters).

It expects a LocatorListType.

	<locator>

	

	<defaultMulticastLocatorList>

	List of default reception multicast

locators for user data traffic (see

<metatrafficMulticastLocatorList>

defined in Builtin parameters).

It expects a LocatorListType.

	<locator>

	

	<sendSocketBufferSize>

	Size in bytes of the send socket buffer.

If the value is zero then Fast DDS will

use the system default socket size.

	uint32_t

	0

	<listenSocketBufferSize>

	Size in bytes of the reception socket

buffer. If the value is zero then

Fast DDS will use the system default

socket size.

	uint32_t

	0

	<builtin>

	builtin
public data member of the

WireProtocolConfigQos
class.

See the
Builtin parameters section.

	Builtin parameters

	

	<port>

	Allows defining the port and gains related

to the RTPS protocol. See the Port section.

	Port

	

	<participantID>

	DomainParticipant’s identifier. Typically

it will be automatically generated by the

DomainParticipantFactory.

	int32_t

	0

	<throughputController>

	Limits middleware’s bandwidth usage.

See the Throughput Configuration section.

	Throughput Configuration

	

	<userTransports>

	Transport descriptors to be used by the

DomainParticipant. See

Transport descriptors.

	List <string>

	

	<useBuiltinTransports>

	Boolean field to indicate the system

whether the DomainParticipant will use the

default
builtin
transport instead

of its <userTransports>.

	bool

	true

	<propertiesPolicy>

	Additional configuration properties.

It expects a PropertiesPolicyType.

	PropertiesPolicyType

	

	<allocation>

	Configuration regarding allocation behavior.

 It expects a
 DomainParticipantAllocationType.

	DomainParticipantAllocationType

	

Example

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="domainparticipant_profile_name">
 <domainId>80</domainId>

 <rtps>
 <name>DomainParticipant Name</name>

 <defaultUnicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <port>7400</port>
 <address>192.168.1.41</address>
 </udpv4>
 </locator>
 </defaultUnicastLocatorList>

 <defaultMulticastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4>
 <port>7400</port>
 <address>192.168.2.41</address>
 </udpv4>
 </locator>
 </defaultMulticastLocatorList>

 <sendSocketBufferSize>8192</sendSocketBufferSize>

 <listenSocketBufferSize>8192</listenSocketBufferSize>

 <builtin>
 <!-- BUILTIN -->
 </builtin>

 <port>
 <portBase>7400</portBase>
 <domainIDGain>200</domainIDGain>
 <participantIDGain>10</participantIDGain>
 <offsetd0>0</offsetd0>
 <offsetd1>1</offsetd1>
 <offsetd2>2</offsetd2>
 <offsetd3>3</offsetd3>
 </port>

 <participantID>99</participantID>

 <throughputController>
 <bytesPerPeriod>8192</bytesPerPeriod>
 <periodMillisecs>1000</periodMillisecs>
 </throughputController>

 <userTransports>
 <transport_id>TransportId1</transport_id>
 <transport_id>TransportId2</transport_id>
 </userTransports>

 <useBuiltinTransports>false</useBuiltinTransports>

 <propertiesPolicy>
 <!-- PROPERTIES_POLICY -->
 <properties>
 <property>
 <name>Property1Name</name>
 <value>Property1Value</value>
 <propagate>false</propagate>
 </property>
 </properties>
 </propertiesPolicy>

 <allocation>
 <!-- ALLOCATION -->
 </allocation>
 <userData>

Note

	LOCATOR_LIST means a LocatorListType is expected.

	PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

	For BUILTIN details, please refer to Builtin parameters.

	For ALLOCATION details, please refer to ParticipantAllocationType.

11.2.2.1.1. Port Configuration

According to the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF] (Section 9.6.1.1), the
RTPSParticipants’ discovery traffic unicast listening ports are calculated using the following equation:
\(7400 + 250 * DomainId + 10 + 2 * ParticipantId\).
Therefore the following parameters can be specified:

	Name

	Description

	Values

	Default

	<portBase>

	Base port.

	uint16_t

	7400

	<domainIDGain>

	Gain in DomainId.

	uint16_t

	250

	<participantIDGain>

	Gain in participant_id.

	uint16_t

	2

	<offsetd0>

	Multicast metadata offset.

	uint16_t

	0

	<offsetd1>

	Unicast metadata offset.

	uint16_t

	10

	<offsetd2>

	Multicast user data offset.

	uint16_t

	1

	<offsetd3>

	Unicast user data offset.

	uint16_t

	11

Warning

Changing these default parameters may break compatibility with other RTPS compliant implementations, as well as
with other Fast DDS applications with default port settings.

11.2.2.1.2. ParticipantAllocationType

The ParticipantAllocationType defines the <allocation> element, which allows setting of the parameters
related with the allocation behavior on the DomainParticipant.
Please refer to ParticipantResourceLimitsQos for a detailed documentation on DomainParticipants allocation
configuration.

	Name

	Description

	Values

	Default

	<remote_locators>

	Defines the limits for the remote locators’ collections.

See RemoteLocatorsAllocationAttributes.

	<max_unicast_locators>

<max_multicast_locators>

	

	<max_unicast_locators>

	Child element of <remote_locators>.

Maximum number of unicast locators expected on a

remote entity. It is recommended to use the maximum

number of network interfaces available on the machine

on which DomainParticipant is running.

See RemoteLocatorsAllocationAttributes.

	uint32_t

	4

	<max_multicast_locators>

	Child element of <remote_locators>.

Maximum number of multicast locators expected on a

remote entity. May be set to zero to disable multicast

traffic. See RemoteLocatorsAllocationAttributes.

	uint32_t

	1

	<total_participants>

	DomainParticipant Allocation Configuration to specify the

total number of DomainParticipants in the domain

(local and remote). See

ResourceLimitedContainerConfig.

	Allocation Configuration

	

	<total_readers>

	DomainParticipant Allocation Configuration to specify the

total number of DataReader on each DomainParticipant

(local and remote). See

ResourceLimitedContainerConfig.

	Allocation Configuration

	

	<total_writers>

	DomainParticipant Allocation Configuration related to the

total number of DataWriters on each DomainParticipant

(local and remote).
See ResourceLimitedContainerConfig.

	Allocation Configuration

	

	<max_partitions>

	Maximum size of the partitions submessage.

Set to zero for no limit.

See SendBuffersAllocationAttributes.

	uint32_t

	

	<max_user_data>

	Maximum size of the user data submessage.

Set to zero for no limit. See

SendBuffersAllocationAttributes.

	uint32_t

	

	<max_properties>

	Maximum size of the properties submessage.

Set to zero for no limit. See

SendBuffersAllocationAttributes.

	uint32_t

	

Example

<allocation>
 <remote_locators>
 <max_unicast_locators>4</max_unicast_locators>
 <max_multicast_locators>1</max_multicast_locators>
 </remote_locators>

 <total_participants>
 <initial>0</initial>
 <maximum>0</maximum>
 <increment>1</increment>
 </total_participants>

 <total_readers>
 <initial>0</initial>
 <maximum>0</maximum>
 <increment>1</increment>
 </total_readers>

 <total_writers>
 <initial>0</initial>
 <maximum>0</maximum>
 <increment>1</increment>
 </total_writers>

 <max_partitions>256</max_partitions>

 <max_user_data>256</max_user_data>

 <max_properties>512</max_properties>

 <!-- content_filter cannot be configured using XML (yet) -->
</allocation>

11.2.2.1.3. Builtin parameters

By calling the wire_protocol() member function of the DomainParticipantQos,
it is possible to
access the builtin public data member of the WireProtocolConfigQos
class.
This section specifies the available XML members for the configuration of this
builtin parameters.

	Name

	Description

	Values

	Default

	<discovery_config>

	This is the main element within

which discovery-related

settings can be configured.

See Discovery.

	discovery_config

	

	<avoid_builtin_multicast>

	Restricts multicast metatraffic

to PDP only.

	bool

	true

	<use_WriterLivelinessProtocol>

	Indicates whether to use the

DataWriterLiveliness protocol.

	bool

	true

	<metatrafficUnicastLocatorList>

	Metatraffic Unicast Locator List.

	A set of <locator>
 members.
 See LocatorListType

	

	<metatrafficMulticastLocatorList>

	Metatraffic Multicast Locator List.

	A set of <locator>
 members.
 See LocatorListType

	

	<initialPeersList>

	The list of IP-port address

pairs of all other

DomainParticipants with which

a DomainParticipant will

communicate. See

Initial peers

	A set of <locator>
 members.
 See LocatorListType

	

	<DataReaderHistoryMemoryPolicy>

	Memory policy for DataReaders.

See HistoryQosPolicyKind.

	HistoryMemoryPolicy

	PREALLOCATED

	<DataWriterHistoryMemoryPolicy>

	Memory policy for DataWriters.

See HistoryQosPolicyKind.

	HistoryMemoryPolicy

	PREALLOCATED

	<readerPayloadSize>

	Maximum DataReader’s History

payload size. Allows to reserve

all the required memory at

DataReader initialization.

See MemoryManagementPolicy.

	uint32_t

	512

	<writerPayloadSize>

	Maximum DataWriter’s History

payload size. Allows to reserve

all the required memory at

DataWriter initialization.

See MemoryManagementPolicy.

	uint32_t

	512

	<mutation_tries>

	Number of different ports

to try if DataReader’s physical

port is already in use.

	uint32_t

	100

Example

<builtin>
 <discovery_config>
 <discoveryProtocol>NONE</discoveryProtocol>

 <ignoreParticipantFlags>FILTER_DIFFERENT_HOST</ignoreParticipantFlags>

 <EDP>SIMPLE</EDP>

 <leaseDuration>
 <!-- DURATION -->
 <sec>20</sec>
 <nanosec>0</nanosec>
 </leaseDuration>

 <leaseAnnouncement>
 <!-- DURATION -->
 <sec>3</sec>
 <nanosec>0</nanosec>
 </leaseAnnouncement>

 <initialAnnouncements>
 <!-- INITIAL_ANNOUNCEMENTS -->
 </initialAnnouncements>

 <simpleEDP>
 <PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
 <PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>
 </simpleEDP>

 <static_edp_xml_config>file://filename.xml</static_edp_xml_config>
 </discovery_config>

 <avoid_builtin_multicast>true</avoid_builtin_multicast>

 <use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>

 <metatrafficUnicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </metatrafficUnicastLocatorList>

 <metatrafficMulticastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </metatrafficMulticastLocatorList>

 <initialPeersList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </initialPeersList>

 <readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</readerHistoryMemoryPolicy>

 <readerPayloadSize>512</readerPayloadSize>

 <writerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</writerHistoryMemoryPolicy>

 <writerPayloadSize>512</writerPayloadSize>

 <mutation_tries>55</mutation_tries>
</builtin>

discovery_config

Through the <discovery_config> element, Fast DDS allows the configuration of the discovery mechanism via an XML
file.
Please refer to the Discovery section for more detail on the various types of discovery mechanisms and
configurable settings.

	Name

	Description

	Values

	Default

	<discoveryProtocol>

	Indicates which discovery protocol

the DomainParticipant will use.

See Discovery mechanisms.

	SIMPLE

	SIMPLE

	CLIENT

	SERVER

	BACKUP

	NONE

	<ignoreParticipantFlags>

	Restricts metatraffic using several

filtering criteria.
See Ignore Participant flags.

	ignoreParticipantFlags

	NO_FILTER

	<EDP>

	If set to SIMPLE, <simpleEDP>

element would be used.

If set to STATIC, EDPStatic will be

performed, configured with the contents

of the XML file set in
<staticEndpointXMLFilename>.

See Discovery.

	SIMPLE

	SIMPLE

	STATIC

	<simpleEDP>

	Attributes of the Simple Discovery

Protocol. See Simple EDP Attributes.

	simpleEDP

	

	<leaseDuration>

	Indicates how long the DomainParticipant

should consider remote DomainParticipants

alive.
See Lease Duration.

	DurationType

	20s

	<leaseAnnouncement>

	The period for the DomainParticipant to

send its discovery message to all other

discovered DomainParticipants as well as

to all Multicast ports.
See Announcement Period.

	DurationType

	3s

	<initialAnnouncements>

	Allows the user to configure the number

and period of the DomainParticipant’s initial

 discovery messages.
See Initial Announcements.

	Initial Announcements

	

	<staticEndpointXMLFilename>

	The XML filename with the static EDP

configuration. Only necessary if

the <EDP> member is set to

STATIC. See STATIC Discovery Settings.

	string

	

ignoreParticipantFlags

	Possible values

	Description

	NO_FILTER

	All Discovery traffic is processed.

	FILTER_DIFFERENT_HOST

	Discovery traffic from another host is discarded.

	FILTER_DIFFERENT_PROCESS

	Discovery traffic from another process on the same host is

discarded.

	FILTER_SAME_PROCESS

	Discovery traffic from DomainParticipant’s own process is

discarded.

	FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS

	Discovery traffic from DomainParticipant’s own host is

discarded.

simpleEDP

	Name

	Description

	Values

	Default

	<PUBWRITER_SUBREADER>

	Indicates if the participant must use

Publication DataWriter and Subscription DataReader.

	bool

	true

	<PUBREADER_SUBWRITER>

	Indicates if the participant must use

Publication DataReader and Subscription DataWriter.

	bool

	true

Initial Announcements

	Name

	Description

	Values

	Default

	<count>

	Number of initial discovery messages to send at the period
specified by

<period>. After these announcements, the DomainParticipant will
continue

sending its discovery messages at the <leaseAnnouncement> rate.

	uint32_t

	5

	<period>

	The period for the DomainParticipant to send its discovery messages.

	DurationType

	100 ms

 11.3. DataWriter profiles

11.3. DataWriter profiles

The DataWriter profiles allow for configuring DataWriters from an XML file.
These profiles are defined within the <data_writer> or <publisher> XML tags.
Thus, the following XML code snippets are equivalent.

	DataWriter profile - Definition method 1

	DataWriter profile - Definition method 2

	<data_writer profile_name="my_datawriter_profile">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>
 <qos>
 <!-- QOS -->
 </qos>
 <!-- Other elements -->
</data_writer>

	<publisher profile_name="my_publisher_profile">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>
 <qos>
 <!-- QOS -->
 </qos>
 <!-- Other elements -->
</publisher>

Important

The <data_writer> and <publisher> XML tags are equivalent.
Therefore, XML profiles in which the DataWriters are defined with the <publisher>
tag are fully compatible with Fast DDS.

11.3.1. DataWriter XML attributes

The <data_writer> element has two attributes defined: profile_name and is_default_profile.

	Name

	Description

	Use

	profile_name

	Sets the name under which the <data_writer> profile is registered in the DDS Domain,

so that it can be loaded later by the DomainParticipant, as shown in

Loading and applying profiles.

	Mandatory

	is_default_profile

	Sets the <data_writer> profile as the default profile. Thus, if a default profile

exists, it will be used when no other DataWriter profile is specified at the

DataWriter’s creation.

	Optional

11.3.2. DataWriter configuration

The DataWriter configuration is performed through the XML elements listed in the following table.

	Name

	Description

	Values

	Default

	<topic>

	TopicType configuration of the DataWriter.

	TopicType

	

	<qos>

	DataWriter QoS configuration.

	QoS

	

	<times>

	It configures some time related parameters
 of the DataWriter.

	Times

	

	<unicastLocatorList>

	List of input unicast locators.

It expects a LocatorListType.

	<locator>

	

	<multicastLocatorList>

	List of input multicast locators.

It expects a LocatorListType.

	<locator>

	

	<throughputController>

	Limits the output bandwidth of the

DataWriter.

	Throughput Configuration

	

	<historyMemoryPolicy>

	Memory allocation kind for DataWriter’s

history. See HistoryQosPolicyKind.

	HistoryMemoryPolicy

	PREALLOCATED

	<propertiesPolicy>

	Additional configuration properties.

	PropertiesPolicyType

	

	<userDefinedID>

	Used for EDPStatic.

	int16_t

	-1

	<entityID>

	Sets the entity_id of the RTPSEndpointQos
 class.

	int16_t

	-1

	<matchedSubscribersAllocation>

	Sets the limits of the collection of matched

DataReaders. See

ParticipantResourceLimitsQos.

	Allocation Configuration

	

Example

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 <data_writer profile_name="datawriter_profile_name">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>

 <qos>
 <!-- QOS -->
 </qos>

 <times> <!-- writerTimesType -->
 <initialHeartbeatDelay>
 <sec>0</sec>
 <nanosec>12</nanosec>
 </initialHeartbeatDelay>

 <heartbeatPeriod>
 <sec>3</sec>
 <nanosec>0</nanosec>
 </heartbeatPeriod>

 <nackResponseDelay>
 <sec>0</sec>
 <nanosec>5</nanosec>
 </nackResponseDelay>

 <nackSupressionDuration>
 <sec>0</sec>
 <nanosec>0</nanosec>
 </nackSupressionDuration>
 </times>

 <unicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </unicastLocatorList>

 <multicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </multicastLocatorList>

 <throughputController>
 <bytesPerPeriod>8192</bytesPerPeriod>
 <periodMillisecs>1000</periodMillisecs>
 </throughputController>

 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

 <propertiesPolicy>
 <!-- PROPERTIES_POLICY -->
 </propertiesPolicy>

 <userDefinedID>55</userDefinedID>

 <entityID>66</entityID>

 <matchedSubscribersAllocation>
 <initial>0</initial>
 <maximum>0</maximum>
 <increment>1</increment>
 </matchedSubscribersAllocation>

 </data_writer>
<!-->

Note

	LOCATOR_LIST means a LocatorListType is expected.

	PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

	For QOS details, please refer to QoS.

	TOPIC_TYPE is detailed in section TopicType.

11.3.2.1. Times

	Name

	Description

	Values

	Default

	<initialHeartbeatDelay>

	Initial heartbeat delay.

	DurationType

	12 ms

	<heartbeatPeriod>

	Periodic heartbeat period.

	DurationType

	3 s

	<nackResponseDelay>

	Delay to apply to the response of an ACKNACK message.

	DurationType

	5 ms

	<nackSupressionDuration>

	This time allows the DataWriter to ignore NACK

messages for a given period of time right after

the data has been sent.

	DurationType

	0 ms

 11.4. DataReader profiles

11.4. DataReader profiles

The DataReader profiles allow declaring DataReaders from an XML file.
These profiles are defined within the <data_reader> or <subscriber> XML tags.
Thus, the following XML codes are equivalent.

	DataReader profile - Definition method 1

	DataReader profile - Definition method 2

	<data_reader profile_name="my_datareader_profile">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>
 <qos>
 <!-- QOS -->
 </qos>
 <!-- Other elements -->
</data_reader>

	<subscriber profile_name="my_subscriber_profile">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>
 <qos>
 <!-- QOS -->
 </qos>
 <!-- Other elements -->
</subscriber>

Important

The <data_reader> and <subscriber> XML tags are equivalent.
Therefore, XML profiles in which the DataReaders are defined with the <subscriber> tag are fully compatible
with Fast DDS.

11.4.1. DataReader XML attributes

The <data_reader> element has two attributes defined: profile_name and is_default_profile.

	Name

	Description

	Use

	profile_name

	Sets the name under which the <data_reader> profile is registered in the DDS Domain,

so that it can be loaded later by the DomainParticipant, as shown in

Loading and applying profiles.

	Mandatory

	is_default_profile

	Sets the <data_reader> profile as the default profile. Thus, if a default profile

exists, it will be used when no other DataReader profile is specified at the

DataReader’s creation.

	Optional

11.4.2. DataReader configuration

The DataReader configuration is performed through the XML elements listed in the following table.

	Name

	Description

	Values

	Default

	<topic>

	TopicType configuration of the DataReader.

	TopicType

	

	<qos>

	Subscriber QoS configuration.

	QoS

	

	<times>

	It allows configuring some time related

parameters of the DataReader.

	Times

	

	<unicastLocatorList>

	List of input unicast locators.

It expects a LocatorListType.

	List of LocatorListType

	

	<multicastLocatorList>

	List of input multicast locators.

It expects a LocatorListType.

	List of LocatorListType

	

	<expectsInlineQos>

	It indicates if QoS is expected inline.

	bool

	false

	<historyMemoryPolicy>

	Memory allocation kind for DataReaders’s
 history.

	MemoryManagementPolicy

	PREALLOCATED

	<propertiesPolicy>

	Additional configuration properties.

	PropertiesPolicyType

	

	<userDefinedID>

	Used for StaticEndpointDiscovery.

	int16_t

	-1

	<entityID>

	Set the entity_id of the RTPSEndpointQos
 class.

	int16_t

	-1

	<matchedPublishersAllocation>

	Sets the limits of the collection of matched

DataWriters. See

ParticipantResourceLimitsQos.

	Allocation Configuration

	

Example

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 <data_reader profile_name="sub_profile_name">
 <topic>
 <!-- TOPIC_TYPE -->
 </topic>

 <qos>
 <!-- QOS -->
 </qos>

 <times> <!-- readerTimesType -->
 <initialAcknackDelay>
 <sec>0</sec>
 <nanosec>70</nanosec>
 </initialAcknackDelay>

 <heartbeatResponseDelay>
 <sec>0</sec>
 <nanosec>5</nanosec>
 </heartbeatResponseDelay>
 </times>

 <unicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </unicastLocatorList>

 <multicastLocatorList>
 <!-- LOCATOR_LIST -->
 <locator>
 <udpv4/>
 </locator>
 </multicastLocatorList>

 <expectsInlineQos>true</expectsInlineQos>

 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

 <propertiesPolicy>
 <!-- PROPERTIES_POLICY -->
 </propertiesPolicy>

 <userDefinedID>55</userDefinedID>

 <entityID>66</entityID>

 <matchedPublishersAllocation>
 <initial>0</initial>
 <maximum>0</maximum>
 <increment>1</increment>
 </matchedPublishersAllocation>
 </data_reader>
 </profiles>
<dds>

Note

	LOCATOR_LIST means it expects a LocatorListType.

	PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

	For QOS details, please refer to QoS.

	TOPIC_TYPE is detailed in section TopicType.

11.4.2.1. Times

	Name

	Description

	Values

	Default

	<initialAcknackDelay>

	Initial ACKNACK delay.

	DurationType

	70 ms

	<heartbeatResponseDelay>

	Response time delay when receiving a Heartbeat.

	DurationType

	5 ms

 11.5. Transport descriptors

11.5. Transport descriptors

This section defines the XML elements available for configuring the transport layer parameters in Fast DDS.
These elements are defined within the XML tag <transports_descriptors>.
The <transport_descriptors> can contain one or more <transport_descriptor> XML elements.
Each <transport_descriptor> element defines a configuration for a specific type of transport protocol.
Each of these <transport_descriptor> elements are uniquely identified by a transport ID with the <transport_id>
XML tag.
Once the user defines a valid <transports_descriptor>, i.e. defines the transport layer parameters, these
can be loaded
into the XML profile of the DomainParticipant using the <transport_id> XML tag.
An example of how to load the <transport_descriptor> into the XML profile of the DomainParticipant is found in
DomainParticipant profiles.

The following table lists all the available XML elements that can be defined within the <transport_descriptor>
element for the configuration of the transport layer.
A more detailed explanation of each of these elements can be found in Transport Layer.

	Name

	Description

	Values

	Default

	<transport_id>

	Unique name to identify each transport
descriptor.

	string

	

	<type>

	Type of the transport descriptor.

	UDPv4

	UDPv4

	UDPv6

	TCPv4

	TCPv6

	SHM

	<sendBufferSize>

	Size in bytes of the send socket buffer.

If the value is zero then Fast DDS will use

the system default socket size.

	uint32_t

	0

	<receiveBufferSize>

	Size in bytes of the reception socket

buffer. If the value is zero then Fast DDS

will use the system default socket size.

	uint32_t

	0

	<maxMessageSize>

	The maximum size in bytes of the transport’s

message buffer.

	uint32_t

	65500

	<maxInitialPeersRange>

	Number of channels opened with each initial

remote peer.

	uint32_t

	4

	<interfaceWhiteList>

	Allows defining an interfaces Whitelist.

	Whitelist

	

	<TTL>

	Time To Live (UDP only). See

UDP Transport.

	uint8_t

	1

	<non_blocking_send>

	Whether to set the non-blocking send mode on

the socket (UDP only). See

UDPTransportDescriptor.

	bool

	false

	<output_port>

	Port used for output bound.

If this field isn’t defined, the output port

will be random (UDP only).

	uint16_t

	0

	<wan_addr>

	Public WAN address when using TCPv4

transports. This field is optional if the

transport doesn’t need to define a WAN

address (TCPv4 only).

	IPv4 formatted

string:

XXX.XXX.XXX.XXX

	

	<keep_alive_frequency_ms>

	Frequency in milliseconds for sending
RTCP

keep-alive requests (TCP only).

	uint32_t

	50000

	<keep_alive_timeout_ms>

	Time in milliseconds since the last

keep-alive request was sent to consider a

connection as broken (TCP only).

	uint32_t

	10000

	<max_logical_port>

	The maximum number of logical ports to try

during RTCP
negotiations (TCP only).

	uint16_t

	100

	<logical_port_range>

	The maximum number of logical ports per

request to try during
RTCP negotiations

(TCP only).

	uint16_t

	20

	<logical_port_increment>

	Increment between logical ports to try during

RTCP negotiation

(TCP only).

	uint16_t

	2

	<listening_ports>

	Local port to work as TCP acceptor for input

connections. If not set, the transport will

work as TCP client only (TCP only).

	List <uint16_t>

	

	<tls>

	Allows to define TLS related parameters and

options (TCP only).

	TLS Configuration

	

	<calculate_crc>

	Calculates the Cyclic Redundancy Code (CRC)

for error control (TCP only).

	bool

	true

	<check_crc>

	Check the CRC for error control (TCP

only).

	bool

	true

	<enable_tcp_nodelay>

	Socket option for disabling the Nagle

algorithm. (TCP only).

	bool

	false

	<segment_size>

	Size (in bytes) of the shared-memory segment.

(Optional, SHM only).

	uint32_t

	262144

	<port_queue_capacity>

	Capacity (in number of messages) available to

every Listener (Optional, SHM only).

	uint32_t

	512

	<healthy_check_timeout_ms>

	Maximum time-out (in milliseconds) used when

checking whether a Listener is alive

(Optional, SHM only).

	uint32_t

	1000

	<rtps_dump_file>

	Complete path (including file) where RTPS

messages will be stored for debugging

purposes. An empty string indicates no trace

will be performed (Optional, SHM only).

	string

	Empty

The following XML code shows an example of transport protocol configuration using all configurable parameters.
More examples of transports descriptors can be found in the Transport Layer section.

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>TransportId1</transport_id>
 <type>UDPv4</type>
 <sendBufferSize>8192</sendBufferSize>
 <receiveBufferSize>8192</receiveBufferSize>
 <TTL>250</TTL>
 <non_blocking_send>false</non_blocking_send>
 <maxMessageSize>16384</maxMessageSize>
 <maxInitialPeersRange>100</maxInitialPeersRange>
 <interfaceWhiteList>
 <address>192.168.1.41</address>
 <address>127.0.0.1</address>
 </interfaceWhiteList>
 <wan_addr>80.80.55.44</wan_addr>
 <output_port>5101</output_port>
 <keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
 <keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
 <max_logical_port>9000</max_logical_port>
 <logical_port_range>100</logical_port_range>
 <logical_port_increment>2</logical_port_increment>
 <listening_ports>
 <port>5100</port>
 <port>5200</port>
 </listening_ports>
 <calculate_crc>false</calculate_crc>
 <check_crc>false</check_crc>
 <enable_tcp_nodelay>false</enable_tcp_nodelay>
 <tls><!-- TLS Section --></tls>
 <segment_size>262144</segment_size>
 <port_queue_capacity>512</port_queue_capacity>
 <healthy_check_timeout_ms>1000</healthy_check_timeout_ms>
 <rtps_dump_file>rtsp_messages.log</rtps_dump_file>
 </transport_descriptor>
 </transport_descriptors>
 </profiles>
</dds>

Note

The Real-time Transport Control Protocol (RTCP [https://tools.ietf.org/html/rfc3550]) is the control protocol
for communications with RTPS over TCP/IP connections.

11.5.1. TLS Configuration

Fast DDS provides mechanisms to configure the Transport Layer Security (TLS) protocol parameters
through the <tls> XML element of its <transport_descriptor>.
Please, refer to TLS over TCP for a detailed explanation of the entire TLS configuration in Fast DDS.
More information on how to set up secure communication in Fast DDS can be found in the Security section.

Warning

For the full understanding of this section, a basic knowledge of network security
in terms of SSL/TLS, Certificate Authority (CA), Public Key Infrastructure (PKI), and Diffie-Hellman is required;
encryption protocols are not explained in detail.

The full list of available XML elements that can be defined within the <tls> element to configure the TLS
protocol are listed in the following table:

	Name

	Description

	Values

	Default

	<password>

	Password of the
<private_key_file>
or

<rsa_private_key_file>
if provided.

	string

	

	<private_key_file>

	Path to the private key
certificate file.

	string

	

	<rsa_private_key_file>

	Path to the private key
RSA certificate file.

	string

	

	<cert_chain_file>

	Path to the public certificate
chain file.

	string

	

	<tmp_dh_file>

	Path to the Diffie-Hellman
parameters file

	string

	

	<verify_file>

	Path to the Certification
Authority (CA) file.

	string

	

	<verify_mode>

	Establishes the verification
mode mask. Several

verification options can be
combined in the same

<transport_descriptor>.

	VERIFY_NONE

	

	VERIFY_PEER

	VERIFY_FAIL_IF_NO_PEER_CERT

	VERIFY_CLIENT_ONCE

	<options>

	Establishes the SSL Context
options mask. Several

options can be combined in the
same

<transport_descriptor>.

	DEFAULT_WORKAROUNDS

	

	NO_COMPRESSION

	NO_SSLV2

	NO_SSLV3

	NO_TLSV1

	NO_TLSV1_1

	NO_TLSV1_2

	NO_TLSV1_3

	SINGLE_DH_USE

	<verify_paths>

	Paths where the system will
look for verification
 files.

	string

	

	<verify_depth>

	Maximum allowed depth to
verify intermediate

certificates.

	uint32_t

	

	<default_verify_path>

	Specifies whether the system
will look on the

default paths for the
verification files.

	bool

	false

	<handshake_role>

	Role that the transport will
take on handshaking.

On default, the acceptors act
as SERVER and the

 connectors as
CLIENT.

	DEFAULT

	DEFAULT

	SERVER

	CLIENT

An example of TLS protocol parameter configuration is shown below.

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 <transport_descriptors>
 <transport_descriptor>
 <transport_id>Test</transport_id>
 <type>TCPv4</type>
 <tls>
 <password>Password</password>
 <private_key_file>Key_file.pem</private_key_file>
 <rsa_private_key_file>RSA_file.pem</rsa_private_key_file>
 <cert_chain_file>Chain.pem</cert_chain_file>
 <tmp_dh_file>DH.pem</tmp_dh_file>
 <verify_file>verify.pem</verify_file>
 <verify_mode>
 <verify>VERIFY_PEER</verify>
 </verify_mode>
 <options>
 <option>NO_TLSV1</option>
 <option>NO_TLSV1_1</option>
 </options>
 <verify_paths>
 <verify_path>Path1</verify_path>
 <verify_path>Path2</verify_path>
 <verify_path>Path3</verify_path>
 </verify_paths>
 <verify_depth>55</verify_depth>
 <default_verify_path>true</default_verify_path>
 <handshake_role>SERVER</handshake_role>
 </tls>
 </transport_descriptor>
 </transport_descriptors>
 </profiles>
</dds>

 11.6. Log profiles

11.6. Log profiles

eProsima Fast DDS allows for registering and configuring Log consumers using XML
configuration files.
Please refer to Logging for more information on Fast DDS extensible Logging built-in module.
The logging profiles are defined within the <log> XML tags.
The <log> element has two child elements: <use_default> and <consumer>.
These are described in the following table.

	Name

	Description

	Values

	Default

	<use_default>

	If set to FALSE, a call to
Log::ClearConsumers() is

performed. See Register Consumers.

	bool

	true

	<consumer>

	Defines the class and configuration of the consumer to

be registered. Multiple consumers can be registered

this way. See Consumers.

	ConsumerDataType

	

The following constitutes an example of an XML configuration file that sets the Log to use one
StdoutConsumer, one StdoutErrConsumer, and one FileConsumer:

<?xml version="1.0" encoding="UTF-8" ?>
<dds>
 <log>
 <!--
 Clear consumers
 -->
 <use_default>FALSE</use_default>

 <!--
 StdoutConsumer does not have any properties
 -->
 <consumer>
 <class>StdoutConsumer</class>
 </consumer>

 <!--
 StdoutErrConsumer with threshold set to Log::Kind::Error
 -->
 <consumer>
 <class>StdoutErrConsumer</class>
 <property>
 <name>stderr_threshold</name>
 <value>Log::Kind::Error</value>
 </property>
 </consumer>

 <!--
 FileConsumer openning "execution.log" in append mode
 -->
 <consumer>
 <class>FileConsumer</class>
 <property>
 <name>filename</name>
 <value>execution.log</value>
 </property>
 <property>
 <name>append</name>
 <value>TRUE</value>
 </property>
 </consumer>
 </log>
</dds>

11.6.1. ConsumerDataType

	Name

	Description

	Values

	<class>

	The class of the consumer.

	StdoutConsumer

	StdoutErrConsumer

	FileConsumer

	<property>

	This element is used to configure the log consumer and only applies

if <class> is set to StdoutErrConsumer or FileConsumer.

	PropertyType

11.6.2. PropertyType

	Name

	Description

	Values

	Default

	<name>

	Name of the property to be configured.

	filename

	

	append

	

	stderr_threshold

	

	<value>

	The value of the property.

	
	

	
	If <name> is set to filename, then this

element contains the name of the log file. This

property only applies if <class> is set to

FileConsumer

	string

	output.log

	
	If <name> is set to append, then this

element defines whether the consumer should, upon

creation, open the file for appending or

overriding. This property only applies if

<class> is set to FileConsumer

	Boolean

	false

	
	If <name> is set to stderr_threshold, then

this element defines the threshold used by the

Log consumers.

This property only applies if <class> is set

to StdoutErrConsumer

	Log::Kind

	Log::Kind::Warning

 11.7. Dynamic Types profiles

11.7. Dynamic Types profiles

Fast DDS supports the implementation of DynamicType by defining them through XML files.
Thus the Dynamic Types can be modified without the need to modify the source code of the DDS
application.

11.7.1. XML Structure

The definition of type profiles in the XML file is done with the <types> tag.
Each <types> element can contain one or more Type definitions.
Defining several types within a <types> element or a single type for each <types> element has the same
result.
Below, an example of a stand-alone types definition via XML is shown.

<types>
 <type>
 <!-- Type definition -->
 </type>
 <type>
 <!-- Type definition -->
 <!-- Type definition -->
 </type>
</types>

Note

For more information on the difference between stand-alone and rooted definitions please refer to section
Rooted vs Standalone profiles definition.

11.7.2. Type definition

Below, the types supported by Fast DDS are presented .
For further information about the supported DynamicType, please, refer to Supported Types.
For each of the types detailed below, an example of how to build the type’s XML profile is provided.

	Enum

	Typedef

	Struct

	Union

	Bitset

	Bitmask

	Member types

	Primitive types

	Arrays

	Sequences

	Maps

	Complex types

11.7.2.1. Enum

The <enum> type is defined by its attribute name and a set of <enumerator> child elements.
Each <enumerator> is defined by two attributes: a name and an optional value.
Please, refer to Enumeration for more information on the <enum> type.

<enum name="MyEnum">
 <enumerator name="A" value="0"/>
 <enumerator name="B" value="1"/>
 <enumerator name="C" value="2"/>
</enum>

11.7.2.2. Typedef

The <typedef> XML element is defined by a name and a type mandatory attributes, and various optional
attributes for complex types definition.
These optional attributes are: key_type, arrayDimensions, nonBasicTypeName, sequenceMaxLength, and
mapMaxLength.
See Complex types attributes for more information on these attributes.
The <typedef> element corresponds to Alias in Supported Types
section.

<typedef name="MyAliasEnum" type="nonBasic" nonBasicTypeName="MyEnum"/>
<typedef name="MyAliasArray" type="int32" arrayDimension="2,2"/>

11.7.2.3. Struct

The <struct> element is defined by its name attribute and its <member> child elements.
Please, refer to Structure for more information on the <struct> type.

<struct name="MyStruct">
 <member name="first" type="int32"/>
 <member name="second" type="int64"/>
</struct>

Structs can inherit from another structs.
This is implemented by defining the value of the baseType attribute, on the child <struct> element to be the
value of the name attribute of the parent <struct> element.
This is exemplified by the code snippet below.

<struct name="ParentStruct">
 <member name="first" type="int32"/>
 <member name="second" type="int64"/>
</struct>
<struct name="ChildStruct" baseType="ParentStruct">
 <member name="third" type="int32"/>
 <member name="fourth" type="int64"/>
</struct>

11.7.2.4. Union

The <union> type is defined by a name attribute, a <discriminator> child element and a set of <case>
child elements.
Each <case> element has one or more <caseDiscriminator> and a <member> child elements.
Please, refer to Union for more information on the <union> type.

<union name="MyUnion">
 <discriminator type="byte"/>
 <case>
 <caseDiscriminator value="0"/>
 <caseDiscriminator value="1"/>
 <member name="first" type="int32"/>
 </case>
 <case>
 <caseDiscriminator value="2"/>
 <member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/>
 </case>
 <case>
 <caseDiscriminator value="default"/>
 <member name="third" type="nonBasic" nonBasicTypeName="int64"/>
 </case>
</union>

11.7.2.5. Bitset

The <bitset> element defines the Bitset type.
It is comprised by a name attribute and a set of <bitfield> child elements.
In turn, the <bitfield> element has the mandatory bit_bound attribute, which can not be higher than 64, and
two optional attributes:
name and type.
A <bitfield> with a blank name attribute is an inaccessible set of bits.
Its management type can ease the <bitfield> modification and access.
Please, refer to Bitset for more information about the <bitset> type.

<bitset name="MyBitSet">
 <bitfield name="a" bit_bound="3"/>
 <bitfield name="b" bit_bound="1"/>
 <bitfield bit_bound="4"/>
 <bitfield name="c" bit_bound="10"/>
 <bitfield name="d" bit_bound="12" type="int16"/>
</bitset>

Moreover, bitsets can inherit from another bitsets:

<bitset name="ParentBitSet">
 <bitfield name="a" bit_bound="10"/>
 <bitfield name="b" bit_bound="15"/>
</bitset>

<bitset name="ChildBitSet" baseType="ParentBitSet">
 <bitfield bit_bound="1"/>
 <bitfield bit_bound="5" type="uint16"/>
</bitset>

11.7.2.6. Bitmask

The <bitmask> element, which corresponds to the Bitmask type, is defined by
a mandatory name attribute, an optional bit_bound attribute, and several <bit_value> child elements.
The bit_bound attribute specifies the number of bits that the type will manage.
The maximum value allowed for the bit_bound is 64.
The <bit_value> element can define its position in the bitmask setting the positition attribute.
Please, refer to Bitmask for more information on the <bitmask> type.

<bitmask name="MyBitMask" bit_bound="8">
 <bit_value name="flag0" position="0"/>
 <bit_value name="flag1"/>
 <bit_value name="flag2" position="2"/>
 <bit_value name="flag5" position="5"/>
</bitmask>

11.7.2.7. Member types

Member types are defined as any type that can belong to a <struct> or a <union>, or be aliased by a
<typedef>.
These can be defined by the <member> XML tag.

11.7.2.7.1. Primitive types

The identifiers of the available basic types are listed in the table below.
Please, refer to Primitive Types for more information on the primitive types.

	bool

	int32_t

	float32

	byte

	int64_t

	float64

	char

	uint16_t

	float128

	wchar

	uint32_t

	string

	int16_t

	uint64_t

	wstring

All of them are defined as follows:

<struct name="primitive_types_example">
 <!-- Primitive type definitions inside a struct -->
 <member name="my_long" type="int64"/>
 <member name="my_bool" type="boolean"/>
 <member name="my_string" type="string"/>
</struct>

11.7.2.7.2. Arrays

Arrays are defined in the same way as any other member type but they add the attribute arrayDimensions.
The format of the arrayDimensions attribute value is the size of each dimension separated by commas.
Please, refer to Array explanation for more information on array type.

<struct name="arrays_example">
 <member name="long_array" type="int32" arrayDimensions="2,3,4"/>
</struct>

11.7.2.7.3. Sequences

The sequence type is implemented by setting three attributes: name, the type, and the
sequenceMaxLength.
The type of its content should be defined by the type attribute.
The following example shows the implementation of a sequence of maximum length equal to 3.
In turn, this is a sequence of sequences of maximum length of 2 and contents of type int32.
Please, refer to Sequence section for more information on sequence type.

<typedef name="my_sequence_inner" type="int32" sequenceMaxLength="2"/>
<struct name="SeqSeqStruct">
 <member name="my_sequence_sequence" type="nonBasic" nonBasicTypeName="my_sequence_inner" sequenceMaxLength="3"/>
</struct>

11.7.2.7.4. Maps

Maps are similar to sequences, but they need to define two content types.
The key_type defines the type of the map key, while the type defines the map value type.
Again, both types can be defined as attributes of a <typedef> element, or as a <member> child element of a
<struct> or <union> elements.
See section Map for more information on map type.

<typedef name="my_map_inner" type="int32" key_type="int32" mapMaxLength="2"/>
<struct name="MapMapStruct">
 <member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_inner" key_type="int32" mapMaxLength="2"/>
</struct>

11.7.2.8. Complex types

The complex types are a combination of the aforementioned types.
Complex types can be defined using the <member> element in the same way a basic or an array type would be.
Please, refer to Complex Types section for more information on complex types.

<struct name="OtherStruct">
 <member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
 <member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct" arrayDimensions="5"/>
</struct>

11.7.2.8.1. Complex types attributes

The attributes of a complex type element can be highly varied depending on the type being defined.
Since the attributes that can be defined for each of the types have already been listed,
these attributes are then defined in the following table.

	Name

	Description

	type

	Data type.
This can be a Primitive types or a nonBasic type.

The latter is used to denote that a complex type is defined.

	nonBasicTypeName

	Name of the complex type. Only applies if the type attribute is set to nonBasic.

	arrayDimensions

	Dimensions of an array.

	sequenceMaxLength

	Maximum length of a Sequences.

	mapMaxLength

	Maximum length of a Maps.

	key_type

	Data type of a map key.

11.7.3. Loading dynamic types in a Fast DDS application

In the Fast DDS application that will make use of the XML Types, the XML files that
define the types must be loaded before trying to instantiate DynamicPubSubType objects of these types.

// Create a DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Load the XML File
if (ReturnCode_t::RETCODE_OK ==
 DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml"))
{
 // Retrieve the an instance of MyStruct type
 eprosima::fastrtps::types::DynamicType_ptr my_struct_type =
 eprosima::fastrtps::xmlparser::XMLProfileManager::getDynamicTypeByName("MyStruct")->build();
 // Register MyStruct type
 TypeSupport my_struct_type_support(new eprosima::fastrtps::types::DynamicPubSubType(my_struct_type));
 my_struct_type_support.register_type(participant, nullptr);
}
else
{
 std::cout << "Cannot open XML file \"types.xml\". "
 << "Please, set the correct path to the XML file"
 << std::endl;
}

 11.8. Common

11.8. Common

The preceding XML profiles define some XML elements that are common to several profiles.
This section aims to explain these common elements.

	LocatorListType

	PropertiesPolicyType

	DurationType

	TopicType

	HistoryQoS

	ResourceLimitsQos

	QoS

	Durability

	Liveliness

	Partition

	Deadline

	Lifespan

	DisablePositiveAcks

	LatencyBudget

	DisableHeartbeatPiggyback

	Throughput Configuration

	Allocation Configuration

11.8.1. LocatorListType

It represents a list of Locator_t.
LocatorListType is used inside other configuration parameter labels that expect a list of locators,
for example, in <defaultUnicastLocatorList>.
Therefore, LocatorListType is defined as a set of <locator> elements.
The <locator> element has a single child element that defines the transport protocol for which the locator is
defined. These are: <udpv4>, <tcpv4>, <udpv6>, and <tcpv6>.
The table presented below outlines each possible Locator’s field.

Note

SHM transport locators cannot be configured as they are
automatically handled by SHM.

	Name

	Description

	Values

	Default

	<port>

	RTPS port number of the locator.

Physical port in UDP,
logical port in TCP.

	uint32_t

	0

	<physical_port>

	TCP’s physical port.

	uint32_t

	0

	<address>

	IP address of the locator.

	string
(IPv4/IPv6 format)

	“”

	<unique_lan_id>

	The LAN ID uniquely identifies the LAN the

locator belongs to (TCPv4 only).

	string
(16 bytes)

	

	<wan_address>

	WAN IPv4 address (TCPv4 only).

	string
(IPv4 format)

	0.0.0.0

Example

The following example shows the implementation of one locator of each transport protocol in
<defaultUnicastLocatorList>.

<defaultUnicastLocatorList>
 <locator>
 <udpv4>
 <!-- Access as physical, typical UDP usage -->
 <port>7400</port>
 <address>192.168.1.41</address>
 </udpv4>
 <udpv4>
 <!-- Access as physical, typical UDP usage -->
 <port>7600</port>
 <address>localhost</address>
 </udpv4>
 </locator>
 <locator>
 <tcpv4>
 <!-- Both physical and logical (port), useful in TCP transports -->
 <physical_port>5100</physical_port>
 <port>7400</port>
 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
 <wan_address>80.80.99.45</wan_address>
 <address>192.168.1.55</address>
 </tcpv4>
 </locator>
 <locator>
 <udpv6>
 <port>8844</port>
 <address>::1</address>
 </udpv6>
 <udpv6>
 <port>8888</port>
 <address>localhost</address>
 </udpv6>
 </locator>
 <locator>
 <tcpv6>
 <!-- Both physical and logical (port), useful in TCP transports -->
 <physical_port>5100</physical_port>
 <port>7400</port>
 <address>fe80::55e3:290:165:5af8</address>
 </tcpv6>
 </locator>
</defaultUnicastLocatorList>

11.8.2. PropertiesPolicyType

PropertiesPolicyType defines the <propertiesPolicy> element.
It allows the user to define a set of generic properties inside a <properties> element.
It is useful at defining extended or custom configuration parameters.

	Name

	Description

	Values

	Default

	<name>

	Name to identify the property.

	string

	

	<value>

	Property’s value.

	string

	

	<propagate>

	Indicates if it is going to be serialized along with the

object it belongs to.

	bool

	false

Example

<propertiesPolicy>
 <properties>
 <property>
 <name>Property1Name</name>
 <value>Property1Value</value>
 <propagate>false</propagate>
 </property>
 <property>
 <name>Property2Name</name>
 <value>Property2Value</value>
 <propagate>true</propagate>
 </property>
 </properties>
</propertiesPolicy>

11.8.3. DurationType

DurationType expresses a period of time and it is commonly used inside other XML elements, such as in
<leaseAnnouncement> or <leaseDuration>.
A DurationType is defined by two mandatory elements <sec> plus <nanosec>.
An infinite value can be specified by using the values DURATION_INFINITY,
DURATION_INFINITE_SEC and DURATION_INFINITE_NSEC.

	Name

	Description

	Values

	Default

	<sec>

	Number of seconds.

	int32_t

	0

	<nanosec>

	Number of nanoseconds.

	uint32_t

	0

Example

<discovery_config>
 <leaseDuration>
 <sec>DURATION_INFINITY</sec>
 </leaseDuration>

 <leaseDuration>
 <sec>500</sec>
 <nanosec>0</nanosec>
 </leaseDuration>

 <leaseAnnouncement>
 <sec>1</sec>
 <nanosec>856000</nanosec>
 </leaseAnnouncement>
</discovery_config>

11.8.4. TopicType

The Topic name and data type are used to determine whether Datawriters and DataReaders can exchange messages.
Please refer to Topic section for a a deeper explanation on the Topic class.

	Name

	Description

	Values

	Default

	<kind>

	It defines the Topic’s key kind. See

Definition of data types.

	
	

	<name>

	It defines the Topic’s name. It must

be unique.

	string_255

	

	<dataType>

	It references the Topic’s data type.

	string_255

	

	<historyQos>

	It controls the behavior of Fast DDS

when the value of an instance changes

before it is finally communicated to

some of its existing DataReaders.

	HistoryQoS

	

	<resourceLimitsQos>

	It controls the resources that Fast DDS

 can use in order to meet the

requirements imposed by the application

and other QoS settings.

	ResourceLimitsQos

	

Warning

The <kind> child element is only used if the Topic is defined using the Fast DDS RTPS-layer API, and will
be ignored if the Topic is defined via the Fast DDS DDS-layer API.

Example

<topic>
 <kind>NO_KEY</kind>
 <name>TopicName</name>
 <dataType>TopicDataTypeName</dataType>
 <historyQos>
 <kind>KEEP_LAST</kind>
 <depth>20</depth>
 </historyQos>
 <resourceLimitsQos>
 <max_samples>5</max_samples>
 <max_instances>2</max_instances>
 <max_samples_per_instance>1</max_samples_per_instance>
 <allocated_samples>20</allocated_samples>
 </resourceLimitsQos>
</topic>

11.8.4.1. HistoryQoS

It controls the behavior of Fast DDS when the value of an instance changes before it is finally
communicated to some of its existing DataReaders.
Please refer to HistoryQosPolicyKind for further information on HistoryQoS.

	Name

	Description

	Values

	Default

	<kind>

	Fast DDS will only attempt to keep the latest values
of the instance
 and discard the older ones.

	KEEP_LAST

	KEEP_LAST

	Fast DDS will attempt to maintain and deliver all the
values of the instance
 to existing DataReaders.

	KEEP_ALL

	<depth>

	It must be consistent with the ResourceLimitsQos
<max_samples_per_instance>

element value. It must be verified that:

<depth> <= <max_samples_per_instance>.

	uint32_t

	1

11.8.4.2. ResourceLimitsQos

It controls the resources that Fast DDS can use in order to meet the requirements imposed by the
application and other QoS settings.
Please refer to ResourceLimitsQosPolicy for further information on ResourceLimitsQos.

	Name

	Description

	Values

	Default

	<max_samples>

	It must verify that:
<max_samples> >= <max_samples_per_instance>.

	uint32_t

	5000

	<max_instances>

	It defines the maximum number of instances.

	uint32_t

	10

	<max_samples_per_instance>

	It must verify that: HistoryQos
<depth> <= <max_samples_per_instance>.

	uint32_t

	400

	<allocated_samples>

	It controls the maximum number of samples to be stored.

	uint32_t

	100

	<extra_samples>

	The number of extra samples to allocate on the pool.

	uint32_t

	1

11.8.5. QoS

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
Entity will behave.
Please refer to the Policy section for more information on QoS.

	Name

	Description

	Values

	<durability>

	See DurabilityQosPolicy.

	Durability

	<liveliness>

	See LivelinessQosPolicy.

	Liveliness

	<reliability>

	See ReliabilityQosPolicy.

	ReliabilityQosPolicy

	<partition>

	See PartitionQosPolicy.

	Partition

	<deadline>

	See DeadlineQosPolicy.

	Deadline

	<lifespan>

	See LifespanQosPolicy.

	Lifespan

	<disablePositiveAcks>

	See DisablePositiveACKsQosPolicy.

	DisablePositiveAcks

	<latencyBudget>

	See LatencyBudgetQosPolicy.

	LatencyBudget

	<disable_heartbeat_piggyback>

	See DisableHeartbeatPiggyback.

	DisableHeartbeatPiggyback

Example

<qos> <!-- writerQosPoliciesType -->
 <durability>
 <kind>VOLATILE</kind>
 </durability>

 <liveliness>
 <kind>AUTOMATIC</kind>

 <lease_duration>
 <sec>1</sec>
 </lease_duration>

 <announcement_period>
 <sec>1</sec>
 </announcement_period>
 </liveliness>

 <reliability>
 <kind>BEST_EFFORT</kind>
 </reliability>

 <partition>
 <names>
 <name>part1</name>
 <name>part2</name>
 </names>
 </partition>

 <deadline>
 <period>
 <sec>1</sec>
 </period>
 </deadline>

 <lifespan>
 <duration>
 <sec>1</sec>
 </duration>
 </lifespan>

 <disablePositiveAcks>
 <enabled>true</enabled>
 </disablePositiveAcks>

 <latencyBudget>
 <duration>
 <sec>1</sec>
 </duration>
 </latencyBudget>

 <disable_heartbeat_piggyback>true</disable_heartbeat_piggyback>
</qos>

11.8.5.1. Durability

	Name

	Description

	Values

	Default

	<kind>

	See DurabilityQosPolicyKind.

	VOLATILE

	VOLATILE

	TRANSIENT_LOCAL

	TRANSIENT

	PERSISTENT

11.8.5.2. Liveliness

	Name

	Description

	Values

	Default

	<kind>

	See
LivelinessQosPolicyKind.

	AUTOMATIC

	AUTOMATIC

	MANUAL_BY_PARTICIPANT

	MANUAL_BY_TOPIC

	<lease_duration>

	See LivelinessQosPolicy.

	DurationType

	c_TimeInfinite

	<announcement_period>

	See LivelinessQosPolicy.

	
	c_TimeInfinite

11.8.5.3. ReliabilityQosPolicy

	Name

	Description

	Values

	Default

	<kind>

	See
ReliabilityQosPolicyKind.

	BEST_EFFORT

	DataReaders: BEST_EFFORT

DataWriters: RELIABLE

	RELIABLE

	<max_blocking_time>

	See ReliabilityQosPolicy.

	DurationType

	100 ms

11.8.5.4. Partition

	Name

	Description

	Values

	<names>

	It comprises a set of <name> elements containing the name of each
partition.
 See PartitionQosPolicy.

	<name>

11.8.5.5. Deadline

	Name

	Description

	Values

	Default

	<period>

	See DeadlineQosPolicy.

	DurationType

	c_TimeInfinite

11.8.5.6. Lifespan

	Name

	Description

	Values

	Default

	<duration>

	See LifespanQosPolicy.

	DurationType

	c_TimeInfinite

11.8.5.7. DisablePositiveAcks

	Name

	Description

	Values

	Default

	<enabled>

	See DisablePositiveACKsQosPolicy.

	bool

	false

	<duration>

	See DisablePositiveACKsQosPolicy.

	DurationType

	c_TimeInfinite

11.8.5.8. LatencyBudget

	Name

	Description

	Values

	Default

	<duration>

	See LatencyBudgetQosPolicy.

	DurationType

	0

11.8.5.9. DisableHeartbeatPiggyback

	Name

	Description

	Values

	Default

	
	See DisableHeartbeatPiggyback.

	bool

	false

11.8.6. Throughput Configuration

The <throughputController> element allows to limit the output bandwidth.
It contains two child elements which are explained in the following table.

	Name

	Description

	Values

	Default

	<bytesPerPeriod>

	Packet size in bytes that the throughput controller
will allow to send

in a given period.

	uint32_t

	4294967295 bytes

	<periodMillisecs>

	Window of time in which no more than <bytesPerPeriod>
bytes

are allowed.

	uint32_t

	0

Warning

This tag has been deprecated but does not have an equivalent tag yet.
It will create a FIFO flow controller with the bandwidth limitation specified on this tag.
See FlowControllersQos for more information.

Example

<participant profile_name="participant_thoughput">
 <rtps>
 <throughputController>
 <bytesPerPeriod>8192</bytesPerPeriod>
 <periodMillisecs>1000</periodMillisecs>
 </throughputController>
 </rtps>
</participant>

11.8.7. HistoryMemoryPolicy

Indicates the way the memory is managed in terms of dealing with the CacheChanges of the RTPSEndpointQos.

	Name

	Description

	Values

	Default

	<historyMemoryPolicy>

	Four different options as described

 in
MemoryManagementPolicy.

	PREALLOCATED

	PREALLOCATED

	PREALLOCATED_WITH_REALLOC

	DYNAMIC

	DYNAMIC_REUSABLE

Example

<data_writer profile_name="data_writer_historyMemoryPolicy">
 <!-- ... -->
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_writer>

<data_reader profile_name="data_reader_historyMemoryPolicy">
 <!-- ... -->
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_reader>

11.8.8. Allocation Configuration

The <allocation> element allows to control the allocation behavior of internal collections for which the number
of elements depends on the number of entities in the system.
For instance, there are collections inside a DataWriter which depend on the number of DataReaders matching with it.
Please refer to ParticipantResourceLimitsQos for a detailed documentation on DomainParticipant allocation,
and to Tuning allocations for detailed information on how to tune allocation related parameters.

	Name

	Description

	Values

	Default

	<initial>

	Number of elements for which space is initially allocated.

	uint32_t

	0

	<maximum>

	Maximum number of elements for which space will be allocated.

	uint32_t

	0 (Means no limit)

	<increment>

	Number of new elements that will be allocated when more space is
 necessary.

	uint32_t

	1

 11.9. Example

11.9. Example

In this section, there is a full XML example with all possible configuration.

Warning

This example can be used as a quick reference, but it may not be correct due to incompatibility or exclusive
properties.
Do not take it as a working example.

 1<?xml version="1.0" encoding="UTF-8" ?>
 2<dds>
 3 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
 4 <transport_descriptors>
 5 <transport_descriptor>
 6 <transport_id>ExampleTransportId1</transport_id>
 7 <type>TCPv4</type>
 8 <sendBufferSize>8192</sendBufferSize>
 9 <receiveBufferSize>8192</receiveBufferSize>
 10 <TTL>250</TTL>
 11 <maxMessageSize>16384</maxMessageSize>
 12 <maxInitialPeersRange>100</maxInitialPeersRange>
 13 <interfaceWhiteList>
 14 <address>192.168.1.41</address>
 15 <address>127.0.0.1</address>
 16 </interfaceWhiteList>
 17 <wan_addr>80.80.55.44</wan_addr>
 18 <keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
 19 <keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
 20 <max_logical_port>200</max_logical_port>
 21 <logical_port_range>20</logical_port_range>
 22 <logical_port_increment>2</logical_port_increment>
 23 <listening_ports>
 24 <port>5100</port>
 25 <port>5200</port>
 26 </listening_ports>
 27 </transport_descriptor>
 28 <transport_descriptor>
 29 <transport_id>ExampleTransportId2</transport_id>
 30 <type>UDPv6</type>
 31 </transport_descriptor>
 32 <!-- SHM sample transport descriptor -->
 33 <transport_descriptor>
 34 <transport_id>SHM_SAMPLE_DESCRIPTOR</transport_id>
 35 <type>SHM</type> <!-- REQUIRED -->
 36 <maxMessageSize>524288</maxMessageSize> <!-- OPTIONAL uint32 valid of all transports-->
 37 <segment_size>1048576</segment_size> <!-- OPTIONAL uint32 SHM only-->
 38 <port_queue_capacity>1024</port_queue_capacity> <!-- OPTIONAL uint32 SHM only-->
 39 <healthy_check_timeout_ms>250</healthy_check_timeout_ms> <!-- OPTIONAL uint32 SHM only-->
 40 <rtps_dump_file>test_file.dump</rtps_dump_file> <!-- OPTIONAL string SHM only-->
 41 </transport_descriptor>
 42 </transport_descriptors>
 43
 44 <participant profile_name="participant_profile_example">
 45 <domainId>4</domainId>
 46 <rtps>
 47 <name>Participant Name</name> <!-- String -->
 48
 49 <defaultUnicastLocatorList>
 50 <locator>
 51 <udpv4>
 52 <!-- Access as physical, like UDP -->
 53 <port>7400</port>
 54 <address>192.168.1.41</address>
 55 </udpv4>
 56 </locator>
 57 <locator>
 58 <tcpv4>
 59 <!-- Both physical and logical (port), like TCP -->
 60 <physical_port>5100</physical_port>
 61 <port>7400</port>
 62 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
 63 <wan_address>80.80.99.45</wan_address>
 64 <address>192.168.1.55</address>
 65 </tcpv4>
 66 </locator>
 67 <locator>
 68 <udpv6>
 69 <port>8844</port>
 70 <address>::1</address>
 71 </udpv6>
 72 </locator>
 73 </defaultUnicastLocatorList>
 74
 75 <defaultMulticastLocatorList>
 76 <locator>
 77 <udpv4>
 78 <!-- Access as physical, like UDP -->
 79 <port>7400</port>
 80 <address>192.168.1.41</address>
 81 </udpv4>
 82 </locator>
 83 <locator>
 84 <tcpv4>
 85 <!-- Both physical and logical (port), like TCP -->
 86 <physical_port>5100</physical_port>
 87 <port>7400</port>
 88 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
 89 <wan_address>80.80.99.45</wan_address>
 90 <address>192.168.1.55</address>
 91 </tcpv4>
 92 </locator>
 93 <locator>
 94 <udpv6>
 95 <port>8844</port>
 96 <address>::1</address>
 97 </udpv6>
 98 </locator>
 99 </defaultMulticastLocatorList>
100
101 <sendSocketBufferSize>8192</sendSocketBufferSize>
102
103 <listenSocketBufferSize>8192</listenSocketBufferSize>
104
105 <builtin>
106 <discovery_config>
107
108 <discoveryProtocol>NONE</discoveryProtocol>
109
110 <EDP>SIMPLE</EDP>
111
112 <leaseDuration>
113 <sec>DURATION_INFINITY</sec>
114 </leaseDuration>
115
116 <leaseAnnouncement>
117 <sec>1</sec>
118 <nanosec>856000</nanosec>
119 </leaseAnnouncement>
120
121 <simpleEDP>
122 <PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
123 <PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>
124 </simpleEDP>
125
126 <staticEndpointXMLFilename>filename.xml</staticEndpointXMLFilename>
127
128 </discovery_config>
129
130 <use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>
131
132 <metatrafficUnicastLocatorList>
133 <locator>
134 <udpv4>
135 <!-- Access as physical, like UDP -->
136 <port>7400</port>
137 <address>192.168.1.41</address>
138 </udpv4>
139 </locator>
140 <locator>
141 <tcpv4>
142 <!-- Both physical and logical (port), like TCP -->
143 <physical_port>5100</physical_port>
144 <port>7400</port>
145 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
146 <wan_address>80.80.99.45</wan_address>
147 <address>192.168.1.55</address>
148 </tcpv4>
149 </locator>
150 <locator>
151 <udpv6>
152 <port>8844</port>
153 <address>::1</address>
154 </udpv6>
155 </locator>
156 </metatrafficUnicastLocatorList>
157
158 <metatrafficMulticastLocatorList>
159 <locator>
160 <udpv4>
161 <!-- Access as physical, like UDP -->
162 <port>7400</port>
163 <address>192.168.1.41</address>
164 </udpv4>
165 </locator>
166 <locator>
167 <tcpv4>
168 <!-- Both physical and logical (port), like TCP -->
169 <physical_port>5100</physical_port>
170 <port>7400</port>
171 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
172 <wan_address>80.80.99.45</wan_address>
173 <address>192.168.1.55</address>
174 </tcpv4>
175 </locator>
176 <locator>
177 <udpv6>
178 <port>8844</port>
179 <address>::1</address>
180 </udpv6>
181 </locator>
182 </metatrafficMulticastLocatorList>
183
184 <initialPeersList>
185 <locator>
186 <udpv4>
187 <!-- Access as physical, like UDP -->
188 <port>7400</port>
189 <address>192.168.1.41</address>
190 </udpv4>
191 </locator>
192 <locator>
193 <tcpv4>
194 <!-- Both physical and logical (port), like TCP -->
195 <physical_port>5100</physical_port>
196 <port>7400</port>
197 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
198 <wan_address>80.80.99.45</wan_address>
199 <address>192.168.1.55</address>
200 </tcpv4>
201 </locator>
202 <locator>
203 <udpv6>
204 <port>8844</port>
205 <address>::1</address>
206 </udpv6>
207 </locator>
208 </initialPeersList>
209
210 <readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</readerHistoryMemoryPolicy>
211
212 <writerHistoryMemoryPolicy>PREALLOCATED</writerHistoryMemoryPolicy>
213 </builtin>
214
215 <allocation>
216 <remote_locators>
217 <max_unicast_locators>4</max_unicast_locators> <!-- uint32 -->
218 <max_multicast_locators>1</max_multicast_locators> <!-- uint32 -->
219 </remote_locators>
220 <total_participants>
221 <initial>0</initial>
222 <maximum>0</maximum>
223 <increment>1</increment>
224 </total_participants>
225 <total_readers>
226 <initial>0</initial>
227 <maximum>0</maximum>
228 <increment>1</increment>
229 </total_readers>
230 <total_writers>
231 <initial>0</initial>
232 <maximum>0</maximum>
233 <increment>1</increment>
234 </total_writers>
235 <max_partitions>256</max_partitions>
236 <max_user_data>256</max_user_data>
237 <max_properties>512</max_properties>
238 </allocation>
239
240 <port>
241 <portBase>7400</portBase>
242 <domainIDGain>200</domainIDGain>
243 <participantIDGain>10</participantIDGain>
244 <offsetd0>0</offsetd0>
245 <offsetd1>1</offsetd1>
246 <offsetd2>2</offsetd2>
247 <offsetd3>3</offsetd3>
248 </port>
249
250 <participantID>99</participantID>
251
252 <throughputController>
253 <bytesPerPeriod>8192</bytesPerPeriod>
254 <periodMillisecs>1000</periodMillisecs>
255 </throughputController>
256
257 <userTransports>
258 <transport_id>ExampleTransportId1</transport_id>
259 <transport_id>ExampleTransportId1</transport_id>
260 </userTransports>
261
262 <useBuiltinTransports>false</useBuiltinTransports>
263
264 <propertiesPolicy>
265 <properties>
266 <property>
267 <name>Property1Name</name>
268 <value>Property1Value</value>
269 <propagate>false</propagate>
270 </property>
271 <property>
272 <name>Property2Name</name>
273 <value>Property2Value</value>
274 <propagate>false</propagate>
275 </property>
276 </properties>
277 </propertiesPolicy>
278 </rtps>
279 </participant>
280
281 <data_writer profile_name="datawriter_profile_example">
282 <topic>
283 <kind>WITH_KEY</kind>
284 <name>TopicName</name>
285 <dataType>TopicDataTypeName</dataType>
286 <historyQos>
287 <kind>KEEP_LAST</kind>
288 <depth>20</depth>
289 </historyQos>
290 <resourceLimitsQos>
291 <max_samples>5</max_samples>
292 <max_instances>2</max_instances>
293 <max_samples_per_instance>1</max_samples_per_instance>
294 <allocated_samples>20</allocated_samples>
295 </resourceLimitsQos>
296 </topic>
297
298 <qos> <!-- dataWriterQosPoliciesType -->
299 <durability>
300 <kind>VOLATILE</kind>
301 </durability>
302 <liveliness>
303 <kind>AUTOMATIC</kind>
304 <lease_duration>
305 <sec>1</sec>
306 <nanosec>856000</nanosec>
307 </lease_duration>
308 <announcement_period>
309 <sec>1</sec>
310 <nanosec>856000</nanosec>
311 </announcement_period>
312 </liveliness>
313 <reliability>
314 <kind>BEST_EFFORT</kind>
315 <max_blocking_time>
316 <sec>1</sec>
317 <nanosec>856000</nanosec>
318 </max_blocking_time>
319 </reliability>
320 <lifespan>
321 <duration>
322 <sec>5</sec>
323 <nanosec>0</nanosec>
324 </duration>
325 </lifespan>
326 <partition>
327 <names>
328 <name>part1</name>
329 <name>part2</name>
330 </names>
331 </partition>
332 <publishMode>
333 <kind>ASYNCHRONOUS</kind>
334 </publishMode>
335 <disablePositiveAcks>
336 <enabled>true</enabled>
337 <duration>
338 <sec>1</sec>
339 </duration>
340 </disablePositiveAcks>
341 </qos>
342
343 <times>
344 <initialHeartbeatDelay>
345 <sec>1</sec>
346 <nanosec>856000</nanosec>
347 </initialHeartbeatDelay>
348 <heartbeatPeriod>
349 <sec>1</sec>
350 <nanosec>856000</nanosec>
351 </heartbeatPeriod>
352 <nackResponseDelay>
353 <sec>1</sec>
354 <nanosec>856000</nanosec>
355 </nackResponseDelay>
356 <nackSupressionDuration>
357 <sec>1</sec>
358 <nanosec>856000</nanosec>
359 </nackSupressionDuration>
360 </times>
361
362 <unicastLocatorList>
363 <locator>
364 <udpv4>
365 <!-- Access as physical, like UDP -->
366 <port>7400</port>
367 <address>192.168.1.41</address>
368 </udpv4>
369 </locator>
370 <locator>
371 <tcpv4>
372 <!-- Both physical and logical (port), like TCP -->
373 <physical_port>5100</physical_port>
374 <port>7400</port>
375 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
376 <wan_address>80.80.99.45</wan_address>
377 <address>192.168.1.55</address>
378 </tcpv4>
379 </locator>
380 <locator>
381 <udpv6>
382 <port>8844</port>
383 <address>::1</address>
384 </udpv6>
385 </locator>
386 </unicastLocatorList>
387
388 <multicastLocatorList>
389 <locator>
390 <udpv4>
391 <!-- Access as physical, like UDP -->
392 <port>7400</port>
393 <address>192.168.1.41</address>
394 </udpv4>
395 </locator>
396 <locator>
397 <tcpv4>
398 <!-- Both physical and logical (port), like TCP -->
399 <physical_port>5100</physical_port>
400 <port>7400</port>
401 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
402 <wan_address>80.80.99.45</wan_address>
403 <address>192.168.1.55</address>
404 </tcpv4>
405 </locator>
406 <locator>
407 <udpv6>
408 <port>8844</port>
409 <address>::1</address>
410 </udpv6>
411 </locator>
412 </multicastLocatorList>
413
414 <throughputController>
415 <bytesPerPeriod>8192</bytesPerPeriod>
416 <periodMillisecs>1000</periodMillisecs>
417 </throughputController>
418
419 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
420
421 <matchedSubscribersAllocation>
422 <initial>3</initial>
423 <maximum>3</maximum>
424 <increment>0</increment>
425 </matchedSubscribersAllocation>
426
427 <propertiesPolicy>
428 <properties>
429 <property>
430 <name>Property1Name</name>
431 <value>Property1Value</value>
432 <propagate>false</propagate>
433 </property>
434 <property>
435 <name>Property2Name</name>
436 <value>Property2Value</value>
437 <propagate>false</propagate>
438 </property>
439 </properties>
440 </propertiesPolicy>
441
442 <userDefinedID>45</userDefinedID>
443
444 <entityID>76</entityID>
445 </data_writer>
446
447 <data_reader profile_name="datareader_profile_example">
448 <topic>
449 <kind>WITH_KEY</kind>
450 <name>TopicName</name>
451 <dataType>TopicDataTypeName</dataType>
452 <historyQos>
453 <kind>KEEP_LAST</kind>
454 <depth>20</depth>
455 </historyQos>
456 <resourceLimitsQos>
457 <max_samples>5</max_samples>
458 <max_instances>2</max_instances>
459 <max_samples_per_instance>1</max_samples_per_instance>
460 <allocated_samples>20</allocated_samples>
461 </resourceLimitsQos>
462 </topic>
463
464 <qos> <!-- dataReaderQosPoliciesType -->
465 <durability>
466 <kind>PERSISTENT</kind>
467 </durability>
468 <liveliness>
469 <kind>MANUAL_BY_PARTICIPANT</kind>
470 <lease_duration>
471 <sec>1</sec>
472 <nanosec>856000</nanosec>
473 </lease_duration>
474 <announcement_period>
475 <sec>1</sec>
476 <nanosec>856000</nanosec>
477 </announcement_period>
478 </liveliness>
479 <reliability>
480 <kind>BEST_EFFORT</kind>
481 <max_blocking_time>
482 <sec>1</sec>
483 <nanosec>856000</nanosec>
484 </max_blocking_time>
485 </reliability>
486 <lifespan>
487 <duration>
488 <sec>5</sec>
489 <nanosec>0</nanosec>
490 </duration>
491 </lifespan>
492 <partition>
493 <names>
494 <name>part1</name>
495 <name>part2</name>
496 </names>
497 </partition>
498 </qos>
499
500 <times>
501 <initialAcknackDelay>
502 <sec>1</sec>
503 <nanosec>856000</nanosec>
504 </initialAcknackDelay>
505 <heartbeatResponseDelay>
506 <sec>1</sec>
507 <nanosec>856000</nanosec>
508 </heartbeatResponseDelay>
509 </times>
510
511 <unicastLocatorList>
512 <locator>
513 <udpv4>
514 <!-- Access as physical, like UDP -->
515 <port>7400</port>
516 <address>192.168.1.41</address>
517 </udpv4>
518 </locator>
519 <locator>
520 <tcpv4>
521 <!-- Both physical and logical (port), like TCP -->
522 <physical_port>5100</physical_port>
523 <port>7400</port>
524 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
525 <wan_address>80.80.99.45</wan_address>
526 <address>192.168.1.55</address>
527 </tcpv4>
528 </locator>
529 <locator>
530 <udpv6>
531 <port>8844</port>
532 <address>::1</address>
533 </udpv6>
534 </locator>
535 </unicastLocatorList>
536
537 <multicastLocatorList>
538 <locator>
539 <udpv4>
540 <!-- Access as physical, like UDP -->
541 <port>7400</port>
542 <address>192.168.1.41</address>
543 </udpv4>
544 </locator>
545 <locator>
546 <tcpv4>
547 <!-- Both physical and logical (port), like TCP -->
548 <physical_port>5100</physical_port>
549 <port>7400</port>
550 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
551 <wan_address>80.80.99.45</wan_address>
552 <address>192.168.1.55</address>
553 </tcpv4>
554 </locator>
555 <locator>
556 <udpv6>
557 <port>8844</port>
558 <address>::1</address>
559 </udpv6>
560 </locator>
561 </multicastLocatorList>
562
563 <expectsInlineQos>true</expectsInlineQos>
564
565 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
566
567 <matchedPublishersAllocation>
568 <initial>1</initial>
569 <maximum>1</maximum>
570 <increment>0</increment>
571 </matchedPublishersAllocation>
572
573 <propertiesPolicy>
574 <properties>
575 <property>
576 <name>Property1Name</name>
577 <value>Property1Value</value>
578 <propagate>false</propagate>
579 </property>
580 <property>
581 <name>Property2Name</name>
582 <value>Property2Value</value>
583 <propagate>false</propagate>
584 </property>
585 </properties>
586 </propertiesPolicy>
587
588 <userDefinedID>55</userDefinedID>
589
590 <entityID>66</entityID>
591 </data_reader>
592 </profiles>
593
594 <log>
595 <use_default>FALSE</use_default>
596
597 <consumer>
598 <class>StdoutConsumer</class>
599 </consumer>
600
601 <consumer>
602 <class>FileConsumer</class>
603 <property>
604 <name>filename</name>
605 <value>execution.log</value>
606 </property>
607 <property>
608 <name>append</name>
609 <value>TRUE</value>
610 </property>
611 </consumer>
612 </log>
613
614 <types>
615 <type> <!-- Types can be defined in its own type of tag or sharing the same tag -->
616 <enum name="MyAloneEnumType">
617 <enumerator name="A" value="0"/>
618 <enumerator name="B" value="1"/>
619 <enumerator name="C" value="2"/>
620 </enum>
621 </type>
622 <type>
623 <enum name="MyEnum">
624 <enumerator name="A" value="0"/>
625 <enumerator name="B" value="1"/>
626 <enumerator name="C" value="2"/>
627 </enum>
628
629 <typedef name="MyAlias1" type="nonBasic" nonBasicTypeName="MyEnum"/>
630
631 <typedef name="MyAlias2" type="int32" arrayDimensions="2,2"/>
632
633 <typedef name="my_map_inner" type="int32" key_type="int32" mapMaxLength="2"/>
634
635 <bitset name="MyBitSet">
636 <bitfield name="a" bit_bound="3"/>
637 <bitfield name="b" bit_bound="10"/>
638 <bitfield name="c" bit_bound="12" type="int16"/>
639 </bitset>
640
641 <bitmask name="MyBitMask" bit_bound="8">
642 <bit_value name="flag0" position="0"/>
643 <bit_value name="flag1"/>
644 </bitmask>
645
646 <struct name="MyStruct">
647 <member name="first" type="int32"/>
648 <member name="second" type="int64"/>
649 </struct>
650
651 <struct name="OtherStruct">
652 <member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
653 <member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct" arrayDimensions="5"/>
654 </struct>
655
656 <union name="MyUnion1">
657 <discriminator type="byte"/>
658 <case>
659 <caseDiscriminator value="0"/>
660 <caseDiscriminator value="1"/>
661 <member name="first" type="int32"/>
662 </case>
663 <case>
664 <caseDiscriminator value="2"/>
665 <member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/>
666 </case>
667 <case>
668 <caseDiscriminator value="default"/>
669 <member name="third" type="int64"/>
670 </case>
671 </union>
672
673 <!-- All possible members struct type -->
674 <struct name="MyFullStruct">
675 <!-- Primitives & basic -->
676 <member name="my_bool" type="boolean"/>
677 <member name="my_byte" type="byte"/>
678 <member name="my_char" type="char8"/>
679 <member name="my_wchar" type="char16"/>
680 <member name="my_short" type="int16"/>
681 <member name="my_long" type="int32"/>
682 <member name="my_longlong" type="int64"/>
683 <member name="my_unsignedshort" type="uint16"/>
684 <member name="my_unsignedlong" type="uint32"/>
685 <member name="my_unsignedlonglong" type="uint64"/>
686 <member name="my_float" type="float32"/>
687 <member name="my_double" type="float64"/>
688 <member name="my_longdouble" type="float128"/>
689 <member name="my_string" type="string"/>
690 <member name="my_wstring" type="wstring"/>
691 <member name="my_boundedString" type="string" stringMaxLength="41925"/>
692 <member name="my_boundedWString" type="wstring" stringMaxLength="41925"/>
693
694 <!-- long long_array[2][3][4]; -->
695 <member name="long_array" arrayDimensions="2,3,4" type="int32"/>
696
697 <!-- map<long,map<long,long,2>,2> my_map_map; -->
698 <member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_inner" key_type="int32" mapMaxLength="2"/>
699
700 <!-- Complex types -->
701 <member name="my_other_struct" type="nonBasic" nonBasicTypeName="OtherStruct"/>
702 </struct>
703 </type>
704 </types>
705</dds>

 12. Environment variables

12. Environment variables

This is the list of environment variables that affect the behavior of Fast DDS:

12.1. FASTRTPS_DEFAULT_PROFILES_FILE

Defines the location of the default profile configuration XML file.
If this variable is set and its value corresponds with an existing file, Fast DDS will load its profiles.
For more information about XML profiles, please refer to XML profiles.

	Linux

	export FASTRTPS_DEFAULT_PROFILES_FILE=/home/user/profiles.xml

	Windows

	set FASTRTPS_DEFAULT_PROFILES_FILE=C:\profiles.xml

12.2. SKIP_DEFAULT_XML

Skips looking for a default profile configuration XML file.
If this variable is set to 1, Fast DDS will load the configuration parameters directly from the classes’
definitions without looking for the DEFAULT_FASTRTPS_PROFILES.xml in the working directory.
For more information about XML profiles, please refer to XML profiles.

	Linux

	export SKIP_DEFAULT_XML=1

	Windows

	set SKIP_DEFAULT_XML=1

12.3. ROS_DISCOVERY_SERVER

Warning

The environment variable is only used in the case where discovery protocol
is set to SIMPLE, SERVER, or BACKUP.
In any other case, the environment variable has no effect.

Setting this variable configures the DomainParticipant to connect to one or more
servers using the Discovery Server discovery mechanism.

	If ROS_DISCOVERY_SERVER is defined, and the DomainParticipant’s discovery protocol,
is set to SIMPLE, then Fast DDS will instead configure it as CLIENT of the given server.

	If ROS_DISCOVERY_SERVER is defined, and the DomainParticipant’s discovery protocol
is SERVER or BACKUP, then the variable is used to add remote servers to the given server, leaving the
discovery protocol as SERVER or BACKUP respectively.

	The value of the variable must list the locator of the server in the form of the IPv4 address (e.g., ‘192.168.2.23’)
or IP-port pair (e.g., ‘192.168.2.23:24353’).
Instead of an IPv4 address, a name can be specified (e.g., ‘localhost’, ‘localhost:12345’).
This name would be used to query known hosts and available DNS servers to try to resolve a valid IPv4 address (see
Configure Discovery Server locators using names).

	If no port is specified, the default port 11811 is used.

	To set more than one server’s address, they must be separated by semicolons.

	The server’s ID is determined by their position in the list.
Two semicolons together means the corresponding ID is free.

The following example shows how to set the address of two remote discovery servers with addresses
‘84.22.259.329:8888’ and ‘localhost:1234’ and IDs 0 and 2 respectively.

	Linux

	export ROS_DISCOVERY_SERVER="84.22.259.329:8888;;localhost:1234"

	Windows

	set ROS_DISCOVERY_SERVER=84.22.259.329:8888;;localhost:1234

Important

IP addresses specified in ROS_DISCOVERY_SERVER must be either valid IPv4 addresses or names.
If a name which can be translated into an address is specified, the first valid IPv4 returned from the query will be
used.

Important

This environment variable is meant to be used in combination with Fast DDS discovery CLI.
The server’s ID is used by Fast DDS to derived the GuidPrefix_t of the server.
If the server is not instantiated using the CLI, the server’s GUID prefix should adhere to the same schema
as the one generated from the CLI.
Else, the clients configured with this environment variable will not be able to establish a connection with
the server, thus not being able to connect to other clients either.
The server’s GUID prefixes generated by the CLI comply with the following schema:
44.53.<server-id-in-hex>.5f.45.50.52.4f.53.49.4d.41.
This prefix schema has been chosen for its ASCII translation: DS<id_in_hex>_EPROSIMA.

Important

This environment variable can be changed at runtime adding new remote servers to a SERVER, BACKUP or CLIENT
(that has been initialized with this environment variable previously) if loaded from an environment file using
FASTDDS_ENVIRONMENT_FILE.

12.4. FASTDDS_STATISTICS

Warning

The environment variable is only used in the case where the CMake option FASTDDS_STATISTICS has been enabled.
In any other case, the environment variable has no effect.
Please, refer to CMake options for more information.

Setting this variable configures the DomainParticipant to enable the statistics
DataWriters which topics are contained in the list set in this environment variable.
The elements of the list should be separated by semicolons and match the
statistics topic name aliases.

For example, to enable the statistics DataWriters that report the latency measurements, the environment variable should
be set as follows:

	Linux

	export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC"

	Windows

	set FASTDDS_STATISTICS=HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC

Important

This environment variable can be used together with the XML profiles
(for more information please refer to Automatically enabling statistics DataWriters).
The statistics DataWriters that will be enabled is the union between the ones specified in the XML file (if loaded)
and the ones stated in the environment variable (if set).

12.5. FASTDDS_ENVIRONMENT_FILE

Setting this environment variable to an existing json file allows to load the environment variables from the file
instead of from the environment.
This allows to change the value of some environment variables at run time with just modifying and saving the changes to
the file.
The environment value can be either an absolute or relative path.
The file format is as follows:

{
 "environment_variable_name_1": "environment_variable_value_1",
 "environment_variable_name_2": "environment_variable_value_2"
}

Important

The environment variables set in the environment file have precedence over the environment.

Warning

Currently only ROS_DISCOVERY_SERVER environment variable allows for changes at run time. (see
Modifying remote servers list at run time)

 13. PropertyPolicyQos Options

13. PropertyPolicyQos Options

This section contains the list of PropertyPolicyQos that can be set with Fast DDS:

	13.1. Non consolidated QoS
	13.1.1. DataWriter operating mode QoS Policy

	13.1.2. Unique network flows QoS Policy

	13.1.3. Statistics Module Settings

	13.1.4. Endpoint Partitions

	13.1.5. Static Discovery’s Exchange Format

	13.2. Flow Controller Settings

	13.3. Persistence Service Settings

	13.4. Security Plugins Settings

	13.5. Logging Module Settings

 13.1. Non consolidated QoS

13.1. Non consolidated QoS

The PropertyPolicyQos Options are used to develop new eProsima Extensions QoS.
Before consolidating a new QoS Policy, it is usually set using this generic QoS Policy.
Consequently, this section is prone to frequent updates so the user is advised to check latest changes after upgrading
to a different release version.

13.1.1. DataWriter operating mode QoS Policy

By default, Fast DDS DataWriters are enabled using push mode.
This implies that they will add new samples into their queue, and then immediately deliver them to matched readers.
For writers that produce non periodic bursts of data, this may imply saturating the network with a lot of packets,
increasing the possibility of losing them on unreliable (i.e. UDP) transports.
Depending on their QoS, DataReaders may also have to ignore some received samples, so they will have to be resent.

Configuring the DataWriters on pull mode offers an alternative by letting each reader pace its own data stream.
It works by the writer notifying the reader what it is available, and waiting for it to request only as much as it
can handle.
At the cost of greater latency, this model can deliver reliability while using far fewer packets than push mode.

DataWriters periodically announce the state of their queue by means of a heartbeat.
Upon reception of the heartbeat, DataReaders will request the DataWriter to send the samples they want to process.
Consequently, the publishing rate can be tuned setting the heartbeat period accordingly.
See Tuning Heartbeat Period for more details.

	PropertyPolicyQos name

	PropertyPolicyQos value

	Default value

	"fastdds.push_mode"

	"true"/"false"

	"true"

	C++

	DataWriterQos wqos;

// Enable pull mode
wqos.properties().properties().emplace_back(
 "fastdds.push_mode",
 "false");

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<data_writer profile_name="pull_mode_datawriter_xml_profile">
 <propertiesPolicy>
 <properties>
 <!-- Enable pull mode -->
 <property>
 <name>fastdds.push_mode</name>
 <value>false</value>
 </property>
 </properties>
 </propertiesPolicy>
</data_writer>
</profiles>

Note

	Communication to readers running on the same process (Intra-process delivery) will always use push mode.

	Communication to BEST_EFFORT_RELIABILITY_QOS readers will always use push mode.

Warning

	It is inconsistent to enable the pull mode and also set the ReliabilityQosPolicyKind to
BEST_EFFORT_RELIABILITY_QOS.

	It is inconsistent to enable the pull mode and also set the heartbeatPeriod to
c_TimeInfinite.

13.1.2. Unique network flows QoS Policy

Warning

This section is still under work.

13.1.3. Statistics Module Settings

Fast DDS Statistics Module uses the PropertyPolicyQos to indicate the statistics DataWriters that are enabled
automatically (see Automatically enabling statistics DataWriters).
In this case, the property value is a semicolon separated list containing the
statistics topic name aliases of those DataWriters that the user wants to enable.

	PropertyPolicyQos name

	PropertyPolicyQos value

	Default value

	"fastdds.statistics"

	Semicolon separated list of statistics topic name aliases

	""

	C++

	DomainParticipantQos pqos;

// Activate Fast DDS Statistics module
pqos.properties().properties().emplace_back("fastdds.statistics",
 "HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC");

	XML

	<participant profile_name="statistics_domainparticipant_conf_xml_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <!-- Activate Fast DDS Statistics Module -->
 <property>
 <name>fastdds.statistics</name>
 <value>HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

13.1.3.1. Physical Data in Discovery Information

It is possible to include the information conveyed in the PHYSICAL_DATA_TOPIC into the participant
discovery message, a.k.a DATA[p] (see Discovery phases).
This is done by setting the following properties within the PropertyPolicyQos:

	PropertyPolicyQos name

	PropertyPolicyQos value

	Default value without
 FASTDDS_STATISTICS

	Default value with
 FASTDDS_STATISTICS

	"fastdds.physical_data.host"

	Name of the host computer in which
 the application runs

	Not set

	""

	"fastdds.physical_data.user"

	Name of the user running the application

	Not set

	""

	"fastdds.physical_data.process"

	Name of the process running the application

	Not set

	""

Whenever any of these properties is defined within the DomainParticipantQos, the DomainParticipant DATA[p]
will contained the set value.
Furthermore, if any of these properties is set to a value of "", which is the default when FASTDDS_STATISTICS is
defined (see CMake options), Fast DDS will automatically populate the value using the following convention:

	"fastdds.physical_data.host": Host name as returned by asio::ip::host_name() [https://think-async.com/Asio/asio-1.22.0/doc/asio/reference/ip__host_name.html],
followed by ":<default data sharing domain id>"

	"fastdds.physical_data.user": Name of the user running the application, or "unknown" if it could not be
retrieved.

	"fastdds.physical_data.process": The process ID of the process in which the application is running.

All the previous entails that adding physical information to the DATA[p] can be done regardless of whether
FASTDDS_STATISTICS is defined, and that it is possible to let Fast DDS set some default values into the
reported host, user, and process:

	If FASTDDS_STATISTICS is defined, and the user does not specify otherwise, Fast DDS will set default values to
the physical properties of the DATA[p].

	If FASTDDS_STATISTICS is defined, and the user sets values to the properties, the user settings are honored.

	If FASTDDS_STATISTICS is defined, and the user removes the physical properties from the
DomainParticipantQos, then no physical information is transmitted in the DATA[p].

	If FASTDDS_STATISTICS is not defined, it is still possible to transmit physical information in the DATA[p] by
setting the aforementioned properties:

	If set to "", then Fast DDS will populate their value according to the described rules.

	If set to something other than "", then the set value will be transmitted in the DATA[p] as-is.

In case FASTDDS_STATISTICS is defined, and the reporting of statistics over the DISCOVERY_TOPIC is enabled (see
Statistics Module Settings), then the physical information included in the DATA[p] is also transmitted over
the DISCOVERY_TOPIC (see PHYSICAL_DATA_TOPIC) whenever one DomainParticipant discovers
another one.

C++

/* Create participant which announces default physical properties */
DomainParticipantQos pqos_default_physical;
// NOTE: If FASTDDS_STATISTICS is defined, then setting the properties to "" is not necessary
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.host", "");
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.user", "");
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.process", "");
DomainParticipant* participant_with_physical = DomainParticipantFactory::get_instance()->create_participant(0,
 pqos_default_physical);

/* Create participant which announces custom physical properties */
DomainParticipantQos pqos_custom_physical;
// NOTE: If FASTDDS_STATISTICS is defined, then clear the properties before setting them
// pqos_custom_physical.properties().properties().clear()
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.host", "custom_hostname");
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.user", "custom_username");
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.process", "custom_process");
DomainParticipant* participant_custom_physical = DomainParticipantFactory::get_instance()->create_participant(0,
 pqos_custom_physical);

/* Create participant which does not announce physical properties */
DomainParticipantQos pqos_no_physical;
pqos_no_physical.properties().properties().clear();
DomainParticipant* participant_without_physical = DomainParticipantFactory::get_instance()->create_participant(
 0, pqos_no_physical);

/* Load physical properties from default XML file */
DomainParticipantFactory::get_instance()->load_profiles();
DomainParticipantQos pqos_default_xml_physical =
 DomainParticipantFactory::get_instance()->get_default_participant_qos();
DomainParticipant* participant_default_xml_physical =
 DomainParticipantFactory::get_instance()->create_participant(0, pqos_default_xml_physical);

/* Load physical properties from specific XML file */
DomainParticipantFactory::get_instance()->load_XML_profiles_file("somefile.xml");
DomainParticipantFactory::get_instance()->load_profiles();
DomainParticipantQos pqos_custom_xml_physical =
 DomainParticipantFactory::get_instance()->get_default_participant_qos();
DomainParticipant* participant_custom_xml_physical =
 DomainParticipantFactory::get_instance()->create_participant(0, pqos_custom_xml_physical);

XML

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <profiles>
 <participant profile_name="statistics_participant" is_default_profile="true">
 <rtps>
 <propertiesPolicy>
 <properties>
 <property>
 <name>fastdds.physical_data.host</name>
 <value>custom_hostname</value>
 </property>
 <property>
 <name>fastdds.physical_data.user</name>
 <value>custom_username</value>
 </property>
 <property>
 <name>fastdds.physical_data.process</name>
 <value>custom_process</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
 </participant>
 </profiles>
</dds>

Important

The properties set using XML override those in the default QoS, which means that it is possible to set the physical
properties using XML regardless of whether FASTDDS_STATISTICS is defined.
However, it is not possible to remove the properties using XML, meaning that an application using Fast DDS with
FASTDDS_STATISTICS enabled which does not want for the physical information to be transmitted in the
DomainParticipant DATA[p] must remove the properties using the aforementioned C++ API.

13.1.4. Endpoint Partitions

Fast DDS uses this PropertyPolicyQos to define which partitions does an endpoint belong to. This property
follows the same logic regarding matching as the PartitionQosPolicy that can be defined for Publishers and
Subscribers.

This property’s value is a semicolon separated list containing the partition names the user wants this endpoint
to belong to.

Important

If both a Publisher and one of its DataWriters have conflicting partition configuration, this is, a DataWriter
has this property defined while the Publisher has the PartitionQosPolicy defined, the DataWriter
configuration takes precedence and the Publisher PartitionQosPolicy is ignored for this endpoint. This applies
to Subscribers and their DataReaders as well.

This property will be automatically set when creating DataReaders and DataWriters using the create_with_profile
functions. It cannot be changed after the entity has been created.

	PropertyPolicyQos name

	PropertyPolicyQos value

	Default value

	"partitions"

	Semicolon separated list of partition names

	""

	C++

	DataWriterQos wqos;

// Add partitions
wqos.properties().properties().emplace_back(
 "partitions",
 "part1;part2");

DataReaderQos rqos;

// Add partitions
rqos.properties().properties().emplace_back(
 "partitions",
 "part1;part2");

	XML

	<data_writer profile_name="pub_partition_example">
 <qos>
 <partition>
 <names>
 <name>part1</name>
 <name>part2</name>
 </names>
 </partition>
 </qos>
</data_writer>

<data_reader profile_name="sub_partition_example">
 <qos>
 <partition>
 <names>
 <name>part1</name>
 <name>part2</name>
 </names>
 </partition>
 </qos>
</data_reader>

13.1.5. Static Discovery’s Exchange Format

Static Discovery exchanges data in the Participant Discovery Phase (PDP).
Currently there are two different exchange formats which can be selected using the property
dds.discovery.static_edp.exchange_format.

	PropertyPolicyQos value

	Description

	Default

	"v1"

	Standard exchange format for Static Discovery.

	✅

	"v1_Reduced"

	Format which reduces the necessary network bandwidth to transmit Static

Discovery’s information in the Participant Discovery Phase (PDP).

	

C++

DomainParticipantQos participant_qos;
participant_qos.properties().properties().emplace_back(
 "dds.discovery.static_edp.exchange_format",
 "v1_Reduced"
);

XML

<participant profile_name="participant_xml_conf_static_discovery_format_profile">
 <rtps>
 <propertiesPolicy>
 <properties>
 <property>
 <name>dds.discovery.static_edp.exchange_format</name>
 <value>v1_Reduced</value>
 </property>
 </properties>
 </propertiesPolicy>
 </rtps>
</participant>

 13.2. Flow Controller Settings

13.2. Flow Controller Settings

When using Flow Controllers, the DataWriter may need specific parameters to be set.
Properties related with this feature lie on the fastdds.sfc namespace.

	Property fastdds.sfc.priority is used to set the priority of the DataWriter for
HIGH_PRIORITY and PRIORITY_WITH_RESERVATION flow controllers.
Allowed values are from -10 (highest priority) to 10 (lowest priority).
If the property is not present, it will be set to the lowest priority.

	Property fastdds.sfc.bandwidth_reservation is used to set the percentage of the bandwidth that
the DataWriter is requesting for PRIORITY_WITH_RESERVATION flow controllers.
Allowed values are from 0 to 100, and express a percentage of the total flow controller limit.
If the property is not present, it will be set to 0 (no bandwidth is reserved for the DataWriter).

 13.3. Persistence Service Settings

13.3. Persistence Service Settings

Warning

This section is still under work.

 13.4. Security Plugins Settings

13.4. Security Plugins Settings

Warning

This section is still under work.

 13.5. Logging Module Settings

13.5. Logging Module Settings

Warning

This section is still under work.

 14. Dynamic Topic Types

14. Dynamic Topic Types

eProsima Fast DDS provides a dynamic way to define and use topic types and topic data.
Our implementation follows the OMG Extensible and Dynamic Topic Types for DDS interface.
For more information, you can read the specification for DDS-XTypes V1.2 [http://www.omg.org/spec/DDS-XTypes/1.2].

The dynamic topic types offer the possibility to work over RTPS without the restrictions related to the IDLs.
Using them, the users can declare the different types that they need and manage the information directly,
avoiding the additional step of updating the IDL file and the generation of C++ classes.

	14.1. Overview of Dynamic Types
	14.1.1. Involved classes
	14.1.1.1. DynamicType

	14.1.1.2. DynamicTypeBuilderFactory

	14.1.1.3. DynamicTypeBuilder

	14.1.1.4. TypeDescriptor

	14.1.1.5. DynamicTypeMember

	14.1.1.6. MemberDescriptor

	14.1.1.7. DynamicData

	14.1.1.8. DynamicDataFactory

	14.1.1.9. DynamicPubSubType

	14.1.2. Minimum example

	14.2. Supported Types
	14.2.1. Primitive Types

	14.2.2. String and WString

	14.2.3. Alias

	14.2.4. Enumeration

	14.2.5. Bitmask

	14.2.6. Structure

	14.2.7. Bitset

	14.2.8. Union

	14.2.9. Sequence

	14.2.10. Array

	14.2.11. Map

	14.3. Complex Types
	14.3.1. Nested structures

	14.3.2. Structure inheritance

	14.3.3. Alias of an alias

	14.3.4. Unions with complex types

	14.4. Annotations
	14.4.1. Builtin annotations

	14.5. Dynamic Types Discovery and Endpoint Matching
	14.5.1. TypeObject

	14.5.2. TypeInformation

	14.5.3. TypeIdentifier

	14.5.4. TypeObjectFactory

	14.5.5. Fast DDS-Gen

	14.5.6. Discovery-Time Data Typing

	14.5.7. TypeLookup Service

	14.6. Serialization

	14.7. XML profiles

	14.8. Memory management

	14.9. Dynamic HelloWorld Examples
	14.9.1. DynamicHelloWorldExample

	14.9.2. DDSDynamicHelloWorldExample

	14.9.3. TypeLookupService

 14.1. Overview of Dynamic Types

14.1. Overview of Dynamic Types

This section describes the classes related to dynamic types that are used through the rest of the documentation.
At the bottom of the section you can also find a short example using the functionality.

14.1.1. Involved classes

The following class diagram describes the relationship among the classes related to dynamic types.
Please, refer to the description of each class to find its purpose and the nature of the relationship
with the rest of the classes.

[image: ../../_images/dynamic_types_class_diagram.svg]Dynamic types class diagram

	DynamicType

	DynamicTypeBuilderFactory

	DynamicTypeBuilder

	TypeDescriptor

	DynamicTypeMember

	MemberDescriptor

	DynamicData

	DynamicDataFactory

	DynamicPubSubType

14.1.1.1. DynamicType

Base class of all types declared dynamically.
It represents a dynamic data type that can be used to create
DynamicData values.
By design, the structure of a dynamic type (its member fields) cannot
be modified once the type is created.

14.1.1.2. DynamicTypeBuilderFactory

Singleton class that is in charge of the creation and the management of every
DynamicType and DynamicTypeBuilder.
It declares functions to create builders for each kind of supported types.
Given a builder for a specific type, it can also create the corresponding
DynamicType.
Some simpler types can be created directly, avoiding the step of creating a
DynamicTypeBuilder.
Please, refer to the Supported Types documentation for details about
which ones support this option.

Every object created by the factory must be deleted to avoid memory leaking.
Refer to the Memory management section for details.

14.1.1.3. DynamicTypeBuilder

Intermediate class used to configure a DynamicType
before it is created.
By design, the structure of a DynamicType (its member fields) cannot
be modified once the object is created.
Therefore, all its structure must be defined prior to its creation.
The builder is the object used to set up this structure.

Once defined, the DynamicTypeBuilderFactory is used to create
the DynamicType from the information contained in the builder.
As a shortcut, the builder exposes a function build() that internally uses the
DynamicTypeBuilderFactory to return a fully constructed
DynamicType.
The types created with build() are still subject to the Memory management
restrictions, and must be deleted by the DynamicTypeBuilderFactory.

Builders can be reused after the creation of a DynamicType, as
the changes applied to the builder do not affect to types created previously.

14.1.1.4. TypeDescriptor

Stores the information about one type with its relationships and restrictions.
This is the class that describes the inner structure of a
DynamicType.
The DynamicTypeBuilder has an internal instance of
TypeDescriptor that modifies during the type building process.
When the DynamicType is created, the
DynamicTypeBuilderFactory uses the information
of the TypeDescriptor in the builder to create the DynamicType.
During the creation, the TypeDescriptor is copied to the DynamicType,
so that it becomes independent from the DynamicTypeBuilder,
and the builder can be reused for another type.

14.1.1.5. DynamicTypeMember

Represents a data member of a DynamicType that is also a
DynamicType.
Compound types (dynamic types that are composed of other dynamic types) have a
DynamicTypeMember for every child DynamicType added to it.

14.1.1.6. MemberDescriptor

Just as a TypeDescriptor describes the inner structure of a
DynamicType,
a MemberDescriptor stores all the information needed to manage a
DynamicTypeMember, like their name, their unique ID, or
the default value after the creation.
This information is copied to the DynamicData on its creation.

14.1.1.7. DynamicData

While a DynamicType describes a type,
DynamicData represents a data instance of a DynamicType.
It provides functions to access and modify the data values in the instance.

There are two ways to work with DynamicData:

	Activating the macro DYNAMIC_TYPES_CHECKING, which creates a variable for
each primitive kind to help the debug process.

	Without this macro, the size of the DynamicData is reduced, using only the minimum needed
internal values, but it makes the code harder to debug.

14.1.1.8. DynamicDataFactory

Singleton class that is in charge of the creation and the management of every
DynamicData.
It can take a DynamicType and create an instance of a
corresponding DynamicData.
Every data object created by the factory must be deleted to avoid memory leaking.
Refer to the Memory management section for details.

It also allows to create a TypeIdentifier and a (Minimal and Complete) TypeObject from a
TypeDescriptor.

14.1.1.9. DynamicPubSubType

This class is an adapter that allows using DynamicData on Fast DDS.
It inherits from TopicDataType and implements the functions needed to communicate the
DynamicData between Publishers and Subscribers.

14.1.2. Minimum example

This is a short example to illustrate the use of the dynamic types and how the classes describe above interact
with each other.
While the code snippet can be used as a quick reference for code building, the sequence diagram below provides a
visual interpretation of the actions.

// Create a builder for a specific type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_enum_builder();

// Use the builder to configure the type
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");

// Create the data type using the builder
// The builder will internally use the DynamicTypeBuilderFactory to create the type
DynamicType_ptr type = builder->build();

// Create a new data instance of the create data type
DynamicData_ptr data (DynamicDataFactory::get_instance()->create_data(type));

// Now we can set or read data values
data->set_int32_value(1);

// No need of deleting the objects, since we used the
// automanaged smart pointers

[image: ../../_images/dynamic_types_sequence_diagram.svg]Sequence diagram of the code above

 14.2. Supported Types

14.2. Supported Types

In order to provide maximum flexibility and capability to the defined dynamic types,
eProsima Fast DDS supports several member types, ranging from simple primitives to nested structures.

This section describes the basic (not nested) supported types. For more complex structures and
examples, please, refer to Complex Types.

	Primitive Types

	String and WString

	Alias

	Enumeration

	Bitmask

	Structure

	Bitset

	Union

	Sequence

	Array

	Map

14.2.1. Primitive Types

This section includes every simple kind:

	BOOLEAN

	INT64

	BYTE

	UINT16

	CHAR8

	UINT32

	CHAR16

	UINT64

	INT16

	FLOAT32

	INT32

	FLOAT64

	FLOAT128

	

By definition, primitive types are self-described and can be created without configuration parameters.
Therefore, DynamicTypeBuilderFactory exposes several functions to allow users create
the dynamic type avoiding the DynamicTypeBuilder step.
The DynamicTypeBuilder can still be used to create dynamic data of primitive types,
as shown on the example below.
The DynamicData class has a specific get() and set() functions for each primitive
type of the list.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->create_int32_builder();
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_int32_value(1);

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_int32_value(1);

14.2.2. String and WString

Strings are pretty similar to primitive types, the main difference being
that they need to set the size of the buffer that they can manage.
By default this size is set to 255 characters.

DynamicTypeBuilderFactory exposes the functions create_string_type() and create_wstring_type()
to allow users create the DynamicTypes avoiding the DynamicTypeBuilder step.
The DynamicTypeBuilder can still be used to create String type dynamic data,
as shown on the example below.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_string_value("Dynamic String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_type(100);
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_string_value("Dynamic String");

14.2.3. Alias

Alias types provide an alternative name to an already existing type.
Once the DynamicData is created, users can access its information as if
they were working with the base type.

DynamicTypeBuilderFactory exposes the function create_alias_type() to allow users
create the Alias types avoiding the DynamicTypeBuilder step.
The DynamicTypeBuilder can still be used to create Alias,
as shown on the example below.

// Create the base type
DynamicTypeBuilder_ptr base_builder = DynamicTypeBuilderFactory::get_instance()->create_string_builder(100);
DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_type(base_builder.get());

// Create alias using Builders
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_alias_builder(base_type,
 "alias");
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());
data->set_string_value("Dynamic Alias String");

// Create alias type directly
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_type(base_type, "alias");
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pAliasType);
data2->set_string_value("Dynamic Alias String");

14.2.4. Enumeration

An enumeration contains a set of supported values and a selected value among those supported.
The supported values must be configured using the DynamicTypeBuilder, using the add_member() function
for each supported value.
The input to this function is the index and the name of the value we want to add.

The DynamicData class has functions get_enum_value() and set_enum_value() to work
with value index or value name name strings.

// Add enumeration values using the DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_enum_builder();
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");

// Create the data instance
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());

// Access value using the name
std::string sValue = "SECOND";
data->set_enum_value(sValue);
std::string sStoredValue;
data->get_enum_value(sStoredValue, MEMBER_ID_INVALID);

// Access value using the index
uint32_t uValue = 2;
data->set_enum_value(uValue);
uint32_t uStoredValue;
data->get_enum_value(uStoredValue, MEMBER_ID_INVALID);

14.2.5. Bitmask

Bitmasks are similar to enumeration types, but their members work as bit flags that can be individually turned on and
off. Bit operations can be applied when testing or setting a bitmask value.
DynamicData has the special functions get_bitmask_value() and set_bitmask_value() which allow to retrieve or
modify the full value instead of accessing each bit.

Bitmasks can be bound to any number of bits up to 64.

uint32_t limit = 5; // Stores as "octet"

// Add bitmask flags using the DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_bitmask_builder(limit);
builder->add_empty_member(0, "FIRST");
builder->add_empty_member(1, "SECOND");

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(builder.get()));

// Access the mask values using the name
data->set_bool_value(true, "FIRST"); // Set the "FIRST" bit
bool bSecondValue = data->get_bool_value("SECOND"); // Get the "SECOND" bit

// Access the mask values using the index
data->set_bool_value(true, 1); // Set the "SECOND" bit
bool bFirstValue = data->get_bool_value(0); // Get the "FIRST" bit

// Get the complete bitmask as integer
uint64_t fullValue;
data->get_bitmask_value(fullValue);

14.2.6. Structure

Structures are the common complex types, they allow to add any kind of members inside them.
They do not have any value, they are only used to contain other types.

To manage the types inside the structure, users can call the get() and set() functions
according to the kind of the type inside the structure using their ids.
If the structure contains a complex value, it should be used with loan_value to
access to it and return_loaned_value to release that pointer.
DynamicData manages the counter of loaned values and users can not loan a value that
has been loaned previously without calling return_loaned_value before.

The ids must be consecutive starting by zero, and the DynamicType will change that
Id if it doesn’t match with the next value.
If two members have the same Id, after adding the second one, the previous
will change its Id to the next value.
To get the Id of a member by name, DynamicData exposes the function get_member_id_by_name().

// Build a structure with two fields ("first" as int32, "other" as uint64) using DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_type());
DynamicType_ptr struct_type(builder->build());

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

// Access struct members
data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);

Structures allow inheritance, exactly with the same OOP meaning. To inherit from another structure, we must create the
structure calling the create_child_struct_builder() of the factory. This function is shared with bitsets and will
deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
 DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.get());

14.2.7. Bitset

Bitset types are similar to structure types, but their members are merely bitfields, which are stored optimally.
In the static version of bitsets, each bit uses just one bit in memory (with platform limitations) without alignment
considerations. A bitfield can be anonymous (cannot be addressed) to skip unused bits within a bitset.

Each bitfield in a bitset can be modified through their minimal needed primitive representation.

	Number of bits

	Primitive

	1

	BOOLEAN

	2-8

	UINT8

	9-16

	UINT16

	17-32

	UINT32

	33-64

	UINT64

Each bitfield (or member) works like its primitive type with the only difference that the internal storage only
modifies the involved bits instead of the full primitive value.

Bit_bound and position of the bitfield can be set using annotations (useful when converting between static and dynamic
bitsets).

// Create bitfields with the appropriate type for their size
DynamicTypeBuilder_ptr base_type_byte_builder =
 DynamicTypeBuilderFactory::get_instance()->create_byte_builder();
auto base_type_byte = base_type_byte_builder->build();

DynamicTypeBuilder_ptr base_type_uint32_builder =
 DynamicTypeBuilderFactory::get_instance()->create_uint32_builder();
auto base_type_uint32 = base_type_uint32_builder->build();

// Create the bitset with two bitfields
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_bitset_builder();
builder->add_member(0, "byte", base_type_byte);
builder->add_member(1, "uint32", base_type_uint32);

// Apply members' annotations
builder->apply_annotation_to_member(0, ANNOTATION_POSITION_ID, "value", "0"); // "byte" starts at position 0
builder->apply_annotation_to_member(0, ANNOTATION_BIT_BOUND_ID, "value", "2"); // "byte" is 2 bit length
builder->apply_annotation_to_member(1, ANNOTATION_POSITION_ID, "value", "10"); // "uint32" starts at position 10 (8 bits empty)
builder->apply_annotation_to_member(1, ANNOTATION_BIT_BOUND_ID, "value", "20"); // "uint32" is 20 bits length

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(builder.get()));

// Access values
data->set_byte_value(234, 0);
data->set_uint32_value(2340, 1);
octet bValue;
uint32_t uValue;
data->get_byte_value(bValue, 0);
data->get_uint32_value(uValue, 1);

Bitsets allows inheritance, exactly with the same OOP meaning. To inherit from another bitset, we must create the
bitset calling the create_child_struct_builder of the factory. This function is shared with structures and will
deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
 DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.get());

14.2.8. Union

Unions are a special kind of structures where only one of the members is active
at the same time.
To control these members, users must set the discriminator type that is going to be used
to select the current member calling the create_union_builder function.
The discriminator itself is a DynamicType of any primitive type, string type or union type.

Every member that is going to be added needs at least one union_case_index to set
how it is going to be selected and, optionally, if it is the default value of the union.

// Create the union DynamicTypeBuilder with an int32 discriminator
DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_union_builder(discriminator);

// Add the union members. "firts" will be the default value
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type(), "", { 0 },
 true);
builder->add_member(0, "second", DynamicTypeBuilderFactory::get_instance()->create_int64_type(), "", { 1 },
 false);

// Create the data instance
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

// Access the values using the member index
data->set_int32_value(9, 0);
data->set_int64_value(13, 1);

// Get the label of the currently selected member
uint64_t unionLabel;
data->get_union_label(unionLabel);

14.2.9. Sequence

A complex type that manages its members as a list of items allowing users to
insert, remove or access to a member of the list. To create this type users
need to specify the type that it is going to store and optionally the size
limit of the list.

To ease the memory management of this type, DynamicData has these functions:

	insert_sequence_data(): Creates a new element at the end of the list and returns
the id of the new element.

	remove_sequence_data(): Removes the element of the given index and refreshes the ids
to keep the consistency of the list.

	clear_data(): Removes all the elements of the list.

// Create a DynamicTypeBuilder for a sequence of two elements of type inte32
uint32_t length = 2;
DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder =
 DynamicTypeBuilderFactory::get_instance()->create_sequence_builder(base_type, length);

// Create the data instance
DynamicType_ptr sequence_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(sequence_type));

// Insert and remove elements
MemberId newId, newId2;
data->insert_int32_value(10, newId);
data->insert_int32_value(12, newId2);
data->remove_sequence_data(newId);

14.2.10. Array

Arrays are pretty similar to sequences with two main differences:
they can have multiple dimensions and they do not need their elements
to be stored consecutively.

An array needs to know the number of dimensions it is managing.
For that, users must provide a vector with as many elements as dimensions in the array.
Each element in the vector represents the size of the given dimension.
If the value of an element is set to zero, the default value applies (100).

Id values on the set() and get() functions of DynamicData correspond to the array index.
To ease the management of array elements, every set() function in DynamicData class creates
the item if the given index is empty.

To ease the memory management of this type, DynamicData has these functions:

	insert_array_data(): Creates a new element at the end of the array and returns
the id of the new element.

	remove_array_data(): Clears the element of the given index.

	clear_data(): Removes all the elements of the array.

	get_array_index(): Returns the position id giving a vector of indexes on every dimension
that the arrays support, which is useful in multidimensional arrays.

// Create an array DynamicTypeBuilder for a 2x2 elements of type int32
std::vector<uint32_t> lengths = { 2, 2 };
DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder =
 DynamicTypeBuilderFactory::get_instance()->create_array_builder(base_type, lengths);

// Create the data instance
DynamicType_ptr array_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(array_type));

// Access elements in the multidimensional array
MemberId pos = data->get_array_index({1, 0});
data->set_int32_value(11, pos);
data->set_int32_value(27, pos + 1);
data->clear_array_data(pos);

14.2.11. Map

Maps contain a list of ‘key-value’ pair types, allowing users to insert, remove or
modify the element types of the map.
The main difference with sequences is that the map works with pairs of elements and
creates copies of the key element to block the access to these elements.

To create a map, users must set the types of the key and the value elements, and,
optionally, the size limit of the map.

To ease the memory management of this type, DynamicData has these functions:

	insert_map_data(): Inserts a new key value pair and returns the ids of the newly
created key and value elements.

	remove_map_data(): Uses the given id to find the key element and removes the key
and the value elements from the map.

	clear_data(): Removes all the elements from the map.

// Create DynamicTypeBuilder for a map of two pairs of {key:int32, value:int32}
uint32_t length = 2;
DynamicType_ptr base = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder =
 DynamicTypeBuilderFactory::get_instance()->create_map_builder(base, base, length);

// Create the data instance
DynamicType_ptr map_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(map_type));

// Add a new element to the map with key 1
DynamicData_ptr key(DynamicDataFactory::get_instance()->create_data(base));
MemberId keyId;
MemberId valueId;
key->set_int32_value(1);
data->insert_map_data(key.get(), keyId, valueId);

// Add a new element to the map with key 2
// insert_map_data creates a copy of the key, so the same instance can be reused
MemberId keyId2;
MemberId valueId2;
key->set_int32_value(2);
data->insert_map_data(key.get(), keyId2, valueId2);

// Set the value to the element with key 2, using the returned value Id
data->set_int32_value(53, valueId2);

// Remove elements from the map
data->remove_map_data(keyId);
data->remove_map_data(keyId2);

 14.3. Complex Types

14.3. Complex Types

If the application’s data model is complex, it is possible to combine the
basic types to create complex types,
including nested composed types (structures within structures within unions).
Types can also be extended using inheritance, improving the flexibility of the definition
of the data types to fit the model.

The following subsections describe these complex types and their use.

	Nested structures

	Structure inheritance

	Alias of an alias

	Unions with complex types

14.3.1. Nested structures

Structures can contain other structures as members.
The access to these compound members is restricted and managed by the DynamicData instance.
Users must request access calling loan_value before using them, and release
them with return_loaned_value once they finished.
The loan operation will fail if the member is already loaned and has not been released yet.

// Create a struct type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_type());
DynamicType_ptr struct_type = builder->build();

// Create a struct type with the previous struct as member
DynamicTypeBuilder_ptr parent_builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
parent_builder->add_member(0, "child_struct", struct_type);
parent_builder->add_member(1, "second", DynamicTypeBuilderFactory::get_instance()->create_int32_type());
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(parent_builder.get()));

// Access the child struct with the loan operations
DynamicData* child_data = data->loan_value(0);
child_data->set_int32_value(5, 0);
child_data->set_uint64_value(13, 1);
data->return_loaned_value(child_data);

14.3.2. Structure inheritance

To inherit a structure from another one, use the create_child_struct_type function from
DynamicTypeBuilderFactory.
The resultant type contains all members from the base class and the new ones added to the child.

Structures support several levels of inheritance, so the base class can be another derived type itself.

// Create a base struct type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_type());

// Create a struct type derived from the previous struct
DynamicTypeBuilder_ptr child_builder =
 DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.get());

// Add new members to the derived type
builder->add_member(2, "third", DynamicTypeBuilderFactory::get_instance()->create_uint64_type());

// Create the data instance
DynamicType_ptr struct_type = child_builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

// The derived type includes the members defined on the base type
data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);
data->set_uint64_value(47, 2);

14.3.3. Alias of an alias

Alias types support recursion, simply use an alias name as base type for create_alias_type().

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_type(created_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_alias_builder(
 created_builder.get(), "alias");
DynamicTypeBuilder_ptr builder2 = DynamicTypeBuilderFactory::get_instance()->create_alias_builder(
 builder.get(), "alias2");
DynamicData* data(DynamicDataFactory::get_instance()->create_data(builder2->build()));
data->set_string_value("Dynamic Alias 2 String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_type(100);
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_type(pType, "alias");
DynamicType_ptr pAliasType2 =
 DynamicTypeBuilderFactory::get_instance()->create_alias_type(pAliasType, "alias2");
DynamicData* data2(DynamicDataFactory::get_instance()->create_data(pAliasType));
data2->set_string_value("Dynamic Alias 2 String");

14.3.4. Unions with complex types

Unions support complex type fields.
The access to these complex type fields is restricted and managed by the DynamicData instance.
Users must request access calling loan_value before using them, and release
them with return_loaned_value once they finished.
The loan operation will fail if the fields is already loaned and has not been released yet.

// Create a union DynamicTypeBuilder
DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_union_builder(discriminator);

// Add a int32 to the union
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type(), "", { 0 },
 true);

// Create a struct type and add it to the union
DynamicTypeBuilder_ptr struct_builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
struct_builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_type());
struct_builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_type());
builder->add_member(1, "first", struct_builder.get(), "", { 1 }, false);

// Create the union data instance
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

// Access the struct member using the loan operations
DynamicData* child_data = data->loan_value(1);
child_data->set_int32_value(9, 0);
child_data->set_int64_value(13, 1);
data->return_loaned_value(child_data);

 14.4. Annotations

14.4. Annotations

DynamicTypeBuilder allows applying an annotation
to both current type and inner members with the functions:

	apply_annotation()

	apply_annotation_to_member()

Both functions take the name, the key and the value of the annotation.
apply_annotation_to_member() additionally receives the MemberId of the inner member.

For example, if we define an annotation like:

@annotation MyAnnotation
{
 long value;
 string name;
};

And then we apply it through IDL to a struct:

@MyAnnotation(5, "length")
struct MyStruct
{
...

The equivalent code using DynamicType will be:

// Apply the annotation
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_struct_builder();
//...
builder->apply_annotation("MyAnnotation", "value", "5");
builder->apply_annotation("MyAnnotation", "name", "length");

14.4.1. Builtin annotations

The following annotations modifies the behavior of DynamicTypes:

	
@position: When applied to Bitmask, sets the position of the flag,

as expected in the IDL annotation.

If applied to Bitset, sets the base position of the bitfield,

useful to identify unassigned bits.

	
@bit_bound: Applies to Bitset. Sets the size in bits of the bitfield.

	
@key: Alias for @Key. See Data types with a key section for more details.

	
@default: Sets a default value for the member.

	
@non_serialized: Excludes a member from being serialized.

 14.5. Dynamic Types Discovery and Endpoint Matching

14.5. Dynamic Types Discovery and Endpoint Matching

When using DynamicType support, Fast DDS checks the optional TypeObject
and TypeIdentifier values during endpoint matching.
Currently, the matching only verifies that both endpoints are using the same topic data type,
but will not negotiate about it.

The process of checking the types is as follows:

	It checks CompleteTypeObject on TypeObject first.

	If one or both endpoints do not define the CompleteTypeObject, it tries with MinimalTypeObject.

	If one or both endpoints do not define MinimalTypeObject either,
it compares the TypeIdentifier.

	If none is defined, then just the type name is checked.

If one of the endpoints transmits a CompleteTypeObject, Discovery-Time Data Typing can be performed.

14.5.1. TypeObject

TypeObject fully describes a data type, the same way as the IDL representation does.
There are two kinds of TypeObjects: CompleteTypeObject and MinimalTypeObject .

	CompleteTypeObject fully describes the type, the same way as the IDL representation does.

	MinimalTypeObject is a compact representation of the data type, that contains only the information relevant
for the remote Endpoint to be able to interpret the data.

TypeObject is an IDL union with both Minimal and Complete representation.
Both are described in the annexes of DDS-XTypes V1.2 [http://www.omg.org/spec/DDS-XTypes/1.2] document,
please refer to this document for details.

14.5.2. TypeInformation

TypeInformation is an extension of XTypes 1.2 that allow Endpoints to
share information about data types without sending the TypeObject.
Endpoints instead share a TypeInformation containing the
TypeIdentifier of the data type.
Then each Endpoint can request the complete TypeObject for the data
types it is interested in.
This avoids sending the complete data type to Endpoints that may not be interested.

TypeInformation is described in the annexes of DDS-XTypes V1.2 [http://www.omg.org/spec/DDS-XTypes/1.2] document,
please refer to this document for details.

14.5.3. TypeIdentifier

TypeIdentifier provides a unique way to identify each type.
For basic types, the information contained in the TypeIdentifier
completely describes the type, while for complex ones, it serves as a search key to
retrieve the complete TypeObject.

TypeIdentifier is described in the annexes of DDS-XTypes V1.2 [http://www.omg.org/spec/DDS-XTypes/1.2] document,
please refer to this document for details.

14.5.4. TypeObjectFactory

Singleton class that manages the creation and access for every registered TypeObject
and TypeIdentifier.
It can generate a full DynamicType from a basic
TypeIdentifier (i.e., one whose discriminator is not EK_MINIMAL
or EK_COMPLETE).

14.5.5. Fast DDS-Gen

Fast DDS-Gen supports the generation of XXXTypeObject.h and XXXTypeObject.cxx files,
taking XXX as our IDL type.
These files provide a small Type Factory for the type XXX.
Generally, these files are not used directly, as now the type XXX will register itself through its factory to
TypeObjectFactory in its constructor, making it very easy to use static types
with dynamic types.

14.5.6. Discovery-Time Data Typing

Using the Fast DDS API, when a participant discovers a remote endpoint that sends a complete
TypeObject or a simple TypeIdentifier describing a type
that the participant does not know, the participant listener’s function
on_type_discovery
is called with the received TypeObject or TypeIdentifier,
and, when possible, a pointer to a DynamicType ready to be used.

Discovery-Time Data Typing allows the discovering of simple DynamicTypes.
A TypeObject that depends on other TypeObjects, cannot be built locally using
Discovery-Time Data Typing and should use TypeLookup Service instead.

To ease the sharing of the TypeObject and TypeIdentifier
used by Discovery-Time Data Typing,
TopicDataType contains a function member named
auto_fill_type_object.
If set to true, the local participant will send the TypeObject and
TypeIdentifier to the remote endpoint during discovery.

14.5.7. TypeLookup Service

Using the Fast DDS API, when a participant discovers an endpoint that sends a type information
describing a type that the participant doesn’t know, the participant listener’s function
on_type_information_received()
is called with the received TypeInformation.
The user can then try to retrieve the full TypeObject hierarchy to build the remote type locally, using the
TypeLookup Service.

To enable this builtin TypeLookup Service, the user must enable it in the
QoS of the DomainParticipant:

DomainParticipantQos qos;
qos.wire_protocol().builtin.typelookup_config.use_client = true;
qos.wire_protocol().builtin.typelookup_config.use_server = true;

A participant can be enabled to act as a TypeLookup server, client, or both.

The process of retrieving the remote type from its TypeInformation, and then registering it, can be simplified
using the register_remote_type
function on the DomainParticipant.
This function takes the name of the type, the type information, and a callback function.
Internally it uses the TypeLookup Service to retrieve the full TypeObject,
and, if successful, it will call the callback.

This callback has the following signature:

void(std::string& type_name, const DynamicType_ptr type)

	type_name: Is the name given to the type when calling
register_remote_type,
to allow the same callback to be used across different calls.

	type: If the register_remote_type
was able to build and register a DynamicType, this parameter contains
a pointer to the type.
Otherwise it contains nullptr.
In the latter case, the user can still try to build the type manually using the factories, but it is very
likely that the build process will fail.

TopicDataType contains a data member named
auto_fill_type_information.
If set to true, the local participant will send the type information to the remote endpoint during discovery.

 14.6. Serialization

14.6. Serialization

Dynamic Types have their own pubsub type like any class generated with an IDL, and
their management is pretty similar to them.

DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicPubSubType pubsubType(pType);

// SERIALIZATION EXAMPLE
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);
uint32_t payloadSize = static_cast<uint32_t>(pubsubType.getSerializedSizeProvider(pData)());
SerializedPayload_t payload(payloadSize);
pubsubType.serialize(pData, &payload);

// DESERIALIZATION EXAMPLE
types::DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
pubsubType.deserialize(&payload, data2);

A member can be marked to be ignored by serialization with the annotation @non_serialized.

 14.7. XML profiles

14.7. XML profiles

Dynamic Types profiles allows eProsima Fast DDS to create DynamicTypes directly defining them through XML.
This allows any application to change TopicDataTypes without the need to change its source code.

Please, refer to Dynamic Types profiles for further information about how to use this feature.

 14.8. Memory management

14.8. Memory management

Memory management is critical for dynamic types since
every dynamic type and dynamic data is managed with pointers.
Every object stored inside of a dynamic object is managed by its owner, and users
must delete every object they create using the factories.

DynamicTypeBuilder* pBuilder = DynamicTypeBuilderFactory::get_instance()->create_uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);

DynamicTypeBuilderFactory::get_instance()->delete_builder(pBuilder);
DynamicDataFactory::get_instance()->delete_data(pData);

To ease this management, the library defines smart pointers (DynamicTypeBuilder_ptr,
DynamicType and DynamicData_ptr) that will delete the objects automatically when they are not
needed anymore.
DynamicType will always be returned as DynamicType_ptr because there is no internal management of its memory.

DynamicTypeBuilder_ptr pBuilder = DynamicTypeBuilderFactory::get_instance()->create_uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData_ptr pData(DynamicDataFactory::get_instance()->create_data(pType));

The only case where these smart pointers cannot be used is with functions loan_value and return_loaned_value.
Raw pointers should be used with these functions, because the returned value should not be deleted, and using
a smart pointer with them will cause a crash.

 14.9. Dynamic HelloWorld Examples

14.9. Dynamic HelloWorld Examples

These are complete working examples that make use of dynamic types.
You can explore them to find how this feature connects to the rest of Fast DDS,
and learn how to integrate it in your own application.

14.9.1. DynamicHelloWorldExample

This example is in folder
examples/cpp/dds/DynamicHelloWorldExample [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/DynamicHelloWorldExample]
of the Fast DDS GitHub repository [https://github.com/eProsima/Fast-DDS].
It shows the use of DynamicType generation to provide the TopicDataType.
This example is compatible with the classic HelloWorldExample.

As a quick reference, the following piece of code shows how the HelloWorld type is created using DynamicTypes:

// In HelloWorldPublisher.h
// Dynamic Types
eprosima::fastrtps::types::DynamicData* m_DynHello;
eprosima::fastrtps::types::DynamicPubSubType m_DynType;

// In HelloWorldPublisher.cpp
// Create basic builders
DynamicTypeBuilder_ptr struct_type_builder(DynamicTypeBuilderFactory::get_instance()->create_struct_builder());

// Add members to the struct.
struct_type_builder->add_member(0, "index", DynamicTypeBuilderFactory::get_instance()->create_uint32_type());
struct_type_builder->add_member(1, "message", DynamicTypeBuilderFactory::get_instance()->create_string_type());
struct_type_builder->set_name("HelloWorld");

DynamicType_ptr dynType = struct_type_builder->build();
m_DynType.SetDynamicType(dynType);
m_DynHello = DynamicDataFactory::get_instance()->create_data(dynType);
m_DynHello->set_uint32_value(0, 0);
m_DynHello->set_string_value("HelloWorld", 1);

14.9.2. DDSDynamicHelloWorldExample

This example uses the DDS API, and can be retrieve from folder
examples/cpp/dds/DynamicHelloWorldExample [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/DynamicHelloWorldExample]
of the Fast DDS GitHub repository [https://github.com/eProsima/Fast-DDS].
It shows a publisher that loads a type from an XML file, and shares it during discovery.
The subscriber discovers the type using Discovery-Time Data Typing, and registers the
discovered type on the on_type_discovery() listener function.

14.9.3. TypeLookupService

This example uses the DDS API, and it is located in folder
examples/cpp/dds/TypeLookupService [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/TypeLookupService]
of the Fast DDS GitHub repository [https://github.com/eProsima/Fast-DDS].
It is very similar to DDSDynamicHelloWorldExample, but the shared type is complex enough to require the
TypeLookup Service due to the dependency of inner struct types.
Specifically, it uses the register_remote_type approach with a callback.

 15. Typical Use-Cases

15. Typical Use-Cases

Fast DDS is highly configurable, which allows for its use in a large number of scenarios.
This section provides configuration examples for the following typical use cases when dealing
with distributed systems:

	Fast DDS over WIFI.
Presents a case where Discovery through multicast communication is a challenge.
This example shows how to:

	Configure an initial list of peers with the address-port pairs of the remote participants
(see Configuring Initial Peers).

	Disable the multicast discovery mechanism (see Disabling multicast discovery).

	Configure a SERVER discovery mechanism (see Discovery Server).

	Well Known Network Deployments.
Describes a situation where the entire entity network topology (Participants, Publishers, Subscribers,
and their addresses and ports) are known beforehand.
In these kind of environments, Fast DDS allows to completely avoid the discovery phase
configuring a STATIC discovery mechanism.

	Topics with many subscribers.
In cases where there are many DataReaders subscribed to the same
Topic, using multicast delivery can help reducing the overhead in the network and CPU.

	Large Data Rates.
Presents configuration options that can improve the performance in scenarios where the amount of data exchanged
between a Publisher and a Subscriber is large, either because of the data size
or because the message rate.
The examples describe how to:

	Configure the socket buffer size (see increase the buffers size).

	Limit the publication rate (see Flow Controllers).

	Tune the size of the socket buffers (see Increasing socket buffers size).

	Tune the Heartbeat period (see Tuning Heartbeat Period).

	Configure a non-strict reliable mode (see Using Non-strict Reliability).

	Real-time behavior.
Describes the configuration options that allows using Fast DDS on a real-time scenario.
The examples describe how to:

	Configure memory management to avoid dynamic memory allocation (see Tuning allocations).

	Limit the blocking time of API functions to have a predictable response time (see Non-blocking calls).

	Reduce memory usage.
For use cases with memory consumption constraints, Fast DDS can be configured to reduce memory footprint
to a minimum by adjusting different QoS policies.

	Zero-Copy communication.
Under certain constraints, Fast DDS can provide application level communication
between publishing and subscribing nodes avoiding any data copy during the process.

	Unique network flows.
This use case illustrates the APIs that allow for the request of unique network flows, and for the identification
of those in use.

	Dynamic network interfaces.
If the network interfaces are expected to change while the application is running, Fast DDS provides an easy way
of re-scanning the available interfaces and including them.

	Statistics module.
This use case explains how to enable the Statistics module within the monitored application, and how to create a
statistics monitoring application.

	ROS 2 using Fast DDS middleware.
Since Fast DDS is the default middleware implementation in every OSRF [https://www.openrobotics.org/] Robot Operation System 2 (ROS 2) [https://index.ros.org/doc/ros2/]
long term (LTS) releases and most of the non-LTS releases,
this documentation includes a whole independent section to show the use of the library in ROS 2,
and how to take full advantage of Fast DDS wide set of capabilities in a ROS 2 project.

	How to use eProsima DDS Record and Replay (rosbag2 and DDS).
Instructions on how to tune your application to be able to record and replay your DDS messages using ROS 2 rosbag2
package.

	15.1. Fast DDS over WIFI
	15.1.1. Configuring Initial Peers

	15.1.2. Disabling multicast discovery

	15.1.3. Discovery Server

	15.2. Well Known Network Deployments
	15.2.1. Peer-to-Peer Participant Discovery Phase

	15.2.2. STATIC Endpoint Discovery Phase

	15.3. Large Data Rates
	15.3.1. Increasing socket buffers size

	15.3.2. Increasing the Transmit Queue Length of an interface (Linux only)

	15.3.3. Flow Controllers

	15.3.4. Tuning Heartbeat Period

	15.3.5. Using Non-strict Reliability

	15.3.6. Practical Examples

	15.4. Topics with many subscribers

	15.5. Real-time behavior
	15.5.1. Tuning allocations

	15.5.2. Non-blocking calls

	15.6. Reduce memory usage
	15.6.1. Limiting Resources

	15.6.2. Set Dynamic Allocation

	15.7. Zero-Copy communication
	15.7.1. Overview

	15.7.2. Getting started

	15.7.3. Writing and reading in Zero-Copy transfers

	15.7.4. Caveats

	15.7.5. Constraints

	15.7.6. Next steps

	15.8. Unique network flows
	15.8.1. Background

	15.8.2. Identifying a flow

	15.8.3. Requesting unique flows

	15.8.4. Example

	15.9. Statistics module
	15.9.1. Enable Statistics module

	15.9.2. Create monitoring application

	15.10. Dynamic network interfaces
	15.10.1. Dynamic network interface addition at run-time

	15.11. How to use eProsima DDS Record and Replay (rosbag2 and DDS)
	15.11.1. rosbag2 interactions with a native Fast DDS application

 15.1. Fast DDS over WIFI

15.1. Fast DDS over WIFI

The RTPS v2.2 standard [https://www.omg.org/spec/DDSI-RTPS/2.2/] defines the SIMPLE Discovery as the default
mechanism for discovering participants in the network.
One of the main features of this mechanism is the use of multicast communication in the Participant Discovery
Phase (PDP).
This can be a problem in cases where WiFi communication is used, since multicast is not as reliable over WiFi
as it is over ethernet.

The recommended solution to this challenge is to configure an initial list of remote peers on the
DomainParticipant, so that it can set unicast communication with them.
This way, the use of multicast is not needed to discover these initial peers.
Furthermore, if all the peers are known and configured beforehand, all multicast communication can be
removed.

Alternatively, Discovery Server can be used to avoid multicast discovery.
A DomainParticipant with a well-know address acts as a discovery server,
providing the rest of the participants the information required to connect among them.
If all the peers are known and configured beforehand, STATIC discovery can be used instead,
completely avoiding the discovery phase.
Use-case Well Known Network Deployments provides a detailed explanation on how to configure Fast DDS for
STATIC discovery.

	15.1.1. Configuring Initial Peers

	15.1.2. Disabling multicast discovery

	15.1.3. Discovery Server
	15.1.3.1. UDPv4 basic example setup

	15.1.3.2. UDPv4 redundancy example

	15.1.3.3. UDPv4 persistency example

	15.1.3.4. UDPv4 partitioning using servers

 15.1.1. Configuring Initial Peers

15.1.1. Configuring Initial Peers

A complete description of the initial peers list and its configuration can be found in
Initial peers.
For convenience, this example shows how to configure an initial peers list with one peer
on host 192.168.10.13 with participant ID 1 in domain 0.

Note

Note that the port number used here is not arbitrary, as discovery ports are defined by
the RTPS v2.2 standard [https://www.omg.org/spec/DDSI-RTPS/2.2/].
Refer to Well Known Ports to learn about these standard port numbers.

If the participant ID is not known, setting TransportDescriptorInterface
maxInitialPeersRange to at least the maximum expected number of DomainParticipants will ensure discovery and
communication.

	C++

	DomainParticipantQos qos;

// configure an initial peer on host 192.168.10.13.
// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID `1` and domain `0`.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, "192.168.10.13");
initial_peer.port = 7412;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="initial_peers_example_profile" is_default_profile="true">
 <rtps>
 <builtin>
 <initialPeersList>
 <locator>
 <udpv4>
 <address>192.168.10.13</address>
 <port>7412</port>
 </udpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

 15.1.2. Disabling multicast discovery

15.1.2. Disabling multicast discovery

If all the peers are known and configured on the initial peer list beforehand,
it is possible to disable the multicast meta traffic completely, as all
DomainParticipants can communicate among them through unicast.

The complete description of the procedure to disable multicast discovery can be found at
Disabling all Multicast Traffic.
For convenience, however, this example shows how to disable all multicast traffic configuring one
metatraffic unicast locator.
Consideration should be given to the assignment of the ports in the metatrafficUnicastLocatorList,
avoiding the assignment of ports that are not available or do not match the address-port
listed in the intial peers list of the peer participant.

	C++

	DomainParticipantQos qos;

// configure one metatraffic unicast locator on interface 192.168.10.13.
// on participant ID `1` and domain `0`.
Locator_t meta_unicast_locator;
IPLocator::setIPv4(meta_unicast_locator, "192.168.10.13");
meta_unicast_locator.port = 7412;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(meta_unicast_locator);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="initial_peers_multicast_avoidance" is_default_profile="true" >
 <rtps>
 <builtin>
 <!-- Choosing a specific unicast address -->
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.13</address>
 <port>7412</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

 15.1.3. Discovery Server

15.1.3. Discovery Server

During Discovery, the Participant Discovery Phase (PDP) relies on meta traffic
announcements sent to multicast addresses so that all the DomainParticipants
in the network can acknowledge each other.
This phase is followed by a Endpoint Discovery Phase (EDP) where all the
DomainParticipants use discovered unicast addresses to exchange information about
their Publisher and Subscriber entities with the rest of the
DomainParticipants, so that matching between entities of the same topic can occur.

Fast DDS provides a client-server discovery mechanism, in which a server DomainParticipant operates
as the central point of communication.
It collects and processes the metatraffic sent by the client DomainParticipants,
and then distributes the appropriate information among the rest of the clients.

A complete description of the feature can be found at Discovery Server Settings.
The following subsections present configurations for different discovery server use cases.

	UDPv4 basic example setup

	UDPv4 redundancy example

	UDPv4 persistency example

	UDPv4 partitioning using servers

15.1.3.1. UDPv4 basic example setup

To configure the Discovery Server scenario, two types of participants are created: the server participant and
the client participant.
Two parameters to be configured in this type of implementation are outlined:

	Server GUID Prefix: This is the unique identifier of the server.

	Server Address-port pair: Specifies the IP address and port of the machine that implements the server.
Any free random port can be used.
However, using RTPS standard ports is discouraged.

	SERVER

	C++

	DomainParticipantQos qos;

// Configure the current participant as SERVER
qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::SERVER;

// Define the listening locator to be on interface 192.168.10.57 and port 56542
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.57");
server_locator.port = 56542;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Set the GUID prefix to identify this server
std::istringstream("72.61.73.70.66.61.72.6d.74.65.73.74") >> qos.wire_protocol().prefix;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP SERVER" is_default_profile="true">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 <prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>
 </rtps>
 </participant>
</profiles>

	CLIENT

	C++

	DomainParticipantQos qos;

// Configure the current participant as CLIENT
qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::CLIENT;

// Define a locator for the SERVER Participant on address 192.168.10.57 and port 56542
Locator_t remote_server_locator;
IPLocator::setIPv4(remote_server_locator, "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_attr;
remote_server_attr.metatrafficUnicastLocatorList.push_back(remote_server_locator);

// Set the GUID prefix to identify the remote server
remote_server_attr.ReadguidPrefix("72.61.73.70.66.61.72.6d.74.65.73.74");

// Connect to the SERVER at the previous locator
qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP CLIENT" is_default_profile="true">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryProtocol>CLIENT</discoveryProtocol>
 <discoveryServersList>
 <RemoteServer prefix="72.61.73.70.66.61.72.6d.74.65.73.74">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

15.1.3.2. UDPv4 redundancy example

The basic setup example presents a single point of failure.
That is, if the server fails the clients are not able to perform the discovery.
To prevent this, several servers could be linked to each client.
Then, a discovery failure only takes place if all servers fail, which is a more unlikely event.

In the example below, the values have been chosen to ensure each server has a unique GUID Prefix and
unicast address-port pair.
Note that several servers can share the same IP address but their port numbers should be different.
Likewise, several servers can share the same port if their IP addresses are different.

	Prefix

	UDPv4 address-port

	75.63.2D.73.76.72.63.6C.6E.74.2D.31

	192.168.10.57:56542

	75.63.2D.73.76.72.63.6C.6E.74.2D.32

	192.168.10.60:56543

[image: ../../../_images/ds_redundancy.svg]

	SERVER

	C++

	// Configure first server's locator on interface 192.168.10.57 and port 56542
Locator_t server_locator_1;
IPLocator::setIPv4(server_locator_1, "192.168.10.57");
server_locator_1.port = 56542;

// Configure participant_1 as SERVER listening on the previous locator
DomainParticipantQos server_1_qos;
server_1_qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.31") >> server_1_qos.wire_protocol().prefix;
server_1_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator_1);

// Configure second server's locator on interface 192.168.10.60 and port 56543
Locator_t server_locator_2;
IPLocator::setIPv4(server_locator_2, "192.168.10.60");
server_locator_2.port = 56543;

// Configure participant_2 as SERVER listening on the previous locator
DomainParticipantQos server_2_qos;
server_2_qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.32") >> server_2_qos.wire_protocol().prefix;
server_2_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator_2);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP SERVER 1">
 <rtps>
 <prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.31</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>

 <participant profile_name="UDP SERVER 2">
 <rtps>
 <prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.32</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.60</address>
 <port>56543</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

	CLIENT

	C++

	// Define a locator for the first SERVER Participant
Locator_t remote_server_locator_1;
IPLocator::setIPv4(remote_server_locator_1, "192.168.10.57");
remote_server_locator_1.port = 56542;

RemoteServerAttributes remote_server_attr_1;
remote_server_attr_1.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_1.metatrafficUnicastLocatorList.push_back(remote_server_locator_1);

// Define a locator for the second SERVER Participant
Locator_t remote_server_locator_2;
IPLocator::setIPv4(remote_server_locator_2, "192.168.10.60");
remote_server_locator_2.port = 56543;

RemoteServerAttributes remote_server_attr_2;
remote_server_attr_2.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_2.metatrafficUnicastLocatorList.push_back(remote_server_locator_2);

// Configure the current participant as CLIENT connecting to the SERVERS at the previous locators
DomainParticipantQos client_qos;
client_qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::CLIENT;
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr_1);
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr_2);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP CLIENT REDUNDANCY">
 <rtps>
 <builtin>
 <discovery_config>
 <discoveryProtocol>CLIENT</discoveryProtocol>
 <discoveryServersList>
 <RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.31">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 <RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.60</address>
 <port>56543</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>
</profiles>

15.1.3.3. UDPv4 persistency example

On Discovery Server, servers gather and maintain the information of all connected endpoints,
and distribute it to the clients.
In case of a server failure, all this information is lost and the server needs to recover it on restart.
In the basic setup this is done
starting over the Discovery process.
Given that servers usually have lots of clients associated, this is very time consuming.

Alternatively, Fast DDS allows to synchronize the server’s discovery record to a file, so that the information can be
loaded back into memory during the restart.
This feature is enabled specifying the Discovery Protocol as BACKUP.

The record file is located on the server’s process working directory, and named following the pattern
server-<GUIDPREFIX>.db (for example: server-73-65-72-76-65-72-63-6C-69-65-6E-74.db).
Once the server is created, it automatically looks for this file.
If it already exists, its contents are loaded, avoiding the need of re-discovering the clients.
To make a fresh restart, any such backup file must be removed or renamed before launching the server.

15.1.3.4. UDPv4 partitioning using servers

Server association can be seen as another isolation mechanism besides Domains and
Partitions.
Clients that do not share a server cannot see each other and belong to isolated server networks.
For example, in the following figure, client 1 and client 2 cannot communicate even if they are on the
same physical network and Domain.

[image: ../../../_images/ds_partition.svg]Clients cannot see each other due to server isolation

However, it is possible to connect server isolated networks very much as physical networks
can be connected through routers:

	Option 1:
Connecting the clients to several servers, so that the clients belong several networks.

	Option 2:
Connecting one server to another, so that the networks are linked together.

	Option 3:
Create a new server linked to the servers to which the clients are connected.

Options 1 and 2 can only be implemented by modifying QoS values or XML configuration files beforehand.
In this regard they match the domain and partition strategy.
Option 3, however, can be implemented at runtime, when the isolated networks are already up and running.

[image: ../../../_images/ds_partition_link.svg]
15.1.3.4.1. Option 1

Connect each client to both servers.
This case matches the redundancy use case already introduced.

15.1.3.4.2. Option 2

Connect one server to the other.
This means configuring one of the servers to act as client of the other.

Consider two servers, each one managing an isolated network:

	Network

	Prefix

	UDPv4 address

	A

	75.63.2D.73.76.72.63.6C.6E.74.2D.31

	192.168.10.60:56543

	B

	75.63.2D.73.76.72.63.6C.6E.74.2D.32

	192.168.10.57:56542

In order to communicate both networks we can set server A to act as client of server B:

	C++

	DomainParticipantQos qos;

// Configure current Participant as SERVER on address 192.168.10.60
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.60");
server_locator.port = 56543;

qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.31") >> qos.wire_protocol().prefix;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Add the connection attributes to the remote server.
Locator_t remote_server_locator;
IPLocator::setIPv4(remote_server_locator, "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_attr;
remote_server_attr.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr.metatrafficUnicastLocatorList.push_back(remote_server_locator);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP SERVER A">
 <rtps>
 <prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.31</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 <discoveryServersList>
 <RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.60</address>
 <port>56543</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

15.1.3.4.3. Option 3

Create a new server linked to the servers to which the clients are connected.

Consider two servers (A and B), each one managing an isolated network, and a third
server (C) that will be used to connect the first two:

	Server

	Prefix

	UDPv4 address

	A

	75.63.2D.73.76.72.63.6C.6E.74.2D.31

	192.168.10.60:56543

	B

	75.63.2D.73.76.72.63.6C.6E.74.2D.32

	192.168.10.57:56542

	C

	75.63.2D.73.76.72.63.6C.6E.74.2D.33

	192.168.10.54:56541

In order to communicate both networks we can setup server C to act as client of servers A and B as follows:

	C++

	DomainParticipantQos qos;

// Configure current Participant as SERVER on address 192.168.10.60
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.54");
server_locator.port = 56541;

qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.33") >> qos.wire_protocol().prefix;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Add the connection attributes to the remote server A.
Locator_t remote_server_locator_A;
IPLocator::setIPv4(remote_server_locator_A, "192.168.10.60");
remote_server_locator_A.port = 56543;

RemoteServerAttributes remote_server_attr_A;
remote_server_attr_A.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_A.metatrafficUnicastLocatorList.push_back(remote_server_locator_A);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr_A);

// Add the connection attributes to the remote server B.
Locator_t remote_server_locator_B;
IPLocator::setIPv4(remote_server_locator_B, "192.168.10.57");
remote_server_locator_B.port = 56542;

RemoteServerAttributes remote_server_attr_B;
remote_server_attr_B.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_B.metatrafficUnicastLocatorList.push_back(remote_server_locator_B);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_server_attr_B);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="UDP SERVER C">
 <rtps>
 <prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.33</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 <discoveryServersList>
 <RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.57</address>
 <port>56542</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 <RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.31">
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.60</address>
 <port>56543</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </RemoteServer>
 </discoveryServersList>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.10.54</address>
 <port>56541</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
 </participant>
</profiles>

 15.2. Well Known Network Deployments

15.2. Well Known Network Deployments

It is often the case in industrial deployments, such as productions lines, that the entire network topology (hosts, IP
addresses, etc.) is known beforehand.
Such scenarios are perfect candidates for Fast DDS STATIC Discovery mechanism, which drastically reduces
the middleware setup time (time until all the entities are ready for information exchange),
while at the same time limits the connections to those strictly necessary.

Knowing the complete network topology allows to:

	Minimize the PDP meta-traffic and avoid multicast communication with Peer-to-Peer Participant Discovery Phase.

	Completely avoid the EDP with STATIC Endpoint Discovery Phase.

15.2.1. Peer-to-Peer Participant Discovery Phase

The SIMPLE PDP discovery phase entails the DomainParticipants sending periodic PDP
announcements over multicast, and answering to the announcements received from remote
DomainParticipants.
As a result, the number of PDP connections grows quadratically with the number of
DomainParticipants, resulting in a large amount of meta traffic on the network.

However, if all DomainParticipants are known beforehand,
they can be configured to send their announcements only to the unicast addresses of their peers.
This is done by specifying a list of peer addresses, and by disabling the participant multicast
announcements.
As an additional advantage, with this method only the peers configured on the list are known to the
DomainParticipant, allowing to arrange which participant will communicate with which.
This reduces the amount of meta traffic if not all the DomainParticipants
need to be aware of all the rest of the remote participants present in the network.

Use-case Fast DDS over WIFI provides a detailed explanation on how to configure Fast DDS for such
case.

15.2.2. STATIC Endpoint Discovery Phase

Users can manually configure which Publisher and Subscriber match with
each other, so they can start sharing user data right away, avoiding the EDP phase.

A complete description of the feature can be found at STATIC Discovery Settings.
There is also a fully functional helloworld example implementing STATIC EDP in the
examples/cpp/dds/StaticHelloWorldExample [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/StaticHelloWorldExample]
folder.

The following subsections present an example configuration where a Publisher in
Topic HelloWorldTopic from DomainParticipant HelloWorldPublisher
is matched with a Subscriber from DomainParticipant HelloWorldSubscriber.

15.2.2.1. Create STATIC discovery XML files

	HelloWorldPublisher.xml

	<staticdiscovery>
 <participant>
 <name>HelloWorldPublisher</name>
 <writer>
 <userId>1</userId>
 <entityID>2</entityID>
 <topicName>HelloWorldTopic</topicName>
 <topicDataType>HelloWorld</topicDataType>
 </writer>
 </participant>
</staticdiscovery>

	HelloWorldSubscriber.xml

	<staticdiscovery>
 <participant>
 <name>HelloWorldSubscriber</name>
 <reader>
 <userId>3</userId>
 <entityID>4</entityID>
 <topicName>HelloWorldTopic</topicName>
 <topicDataType>HelloWorld</topicDataType>
 </reader>
 </participant>
</staticdiscovery>

15.2.2.2. Create entities and load STATIC discovery XML files

When creating the entities, the local writer/reader attributes must match those defined in the STATIC discovery
XML file loaded by the remote entity.

	PUBLISHER

	C++

	// Participant configuration
DomainParticipantQos participant_qos;
participant_qos.name("HelloWorldPublisher");
participant_qos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol = false;
participant_qos.wire_protocol().builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol = true;
participant_qos.wire_protocol().builtin.discovery_config.static_edp_xml_config("HelloWorldSubscriber.xml");

// DataWriter configuration
DataWriterQos writer_qos;
writer_qos.endpoint().user_defined_id = 1;
writer_qos.endpoint().entity_id = 2;

// Create the DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, participant_qos);
if (nullptr == participant)
{
 // Error
 return;
}

// Create the Publisher
Publisher* publisher =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{
 // Error
 return;
}

// Create the Topic with the appropriate name and data type
std::string topic_name = "HelloWorldTopic";
std::string data_type = "HelloWorld";
Topic* topic =
 participant->create_topic(topic_name, data_type, TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create the DataWriter
DataWriter* writer =
 publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == writer)
{
 // Error
 return;
}

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_static_pub">
 <rtps>
 <name>HelloWorldPublisher</name>
 <builtin>
 <discovery_config>
 <EDP>STATIC</EDP>
 <static_edp_xml_config>file://HelloWorldSubscriber.xml</static_edp_xml_config>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>

 <data_writer profile_name="uc_publisher_xml_conf_static_discovery">
 <topic>
 <name>HelloWorldTopic</name>
 <dataType>HelloWorld</dataType>
 </topic>
 <userDefinedID>1</userDefinedID>
 <entityID>2</entityID>
 </data_writer>
</profiles>

	SUBSCRIBER

	C++

	// Participant configuration
DomainParticipantQos participant_qos;
participant_qos.name("HelloWorldSubscriber");
participant_qos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol = false;
participant_qos.wire_protocol().builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol = true;
participant_qos.wire_protocol().builtin.discovery_config.static_edp_xml_config("HelloWorldPublisher.xml");

// DataWriter configuration
DataWriterQos writer_qos;
writer_qos.endpoint().user_defined_id = 3;
writer_qos.endpoint().entity_id = 4;

// Create the DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, participant_qos);
if (nullptr == participant)
{
 // Error
 return;
}

// Create the Subscriber
Subscriber* subscriber =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{
 // Error
 return;
}

// Create the Topic with the appropriate name and data type
std::string topic_name = "HelloWorldTopic";
std::string data_type = "HelloWorld";
Topic* topic =
 participant->create_topic(topic_name, data_type, TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{
 // Error
 return;
}

// Create the DataReader
DataReader* reader =
 subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == reader)
{
 // Error
 return;
}

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_static_sub">
 <rtps>
 <name>HelloWorldSubscriber</name>
 <builtin>
 <discovery_config>
 <static_edp_xml_config>file://HelloWorldPublisher.xml</static_edp_xml_config>
 </discovery_config>
 </builtin>
 </rtps>
 </participant>

 <data_reader profile_name="uc_subscriber_xml_conf_static_discovery">
 <topic>
 <name>HelloWorldTopic</name>
 <dataType>HelloWorld</dataType>
 </topic>
 <userDefinedID>3</userDefinedID>
 <entityID>4</entityID>
 </data_reader>
</profiles>

 15.3. Large Data Rates

15.3. Large Data Rates

When the amount of data exchanged between a Publisher and a Subscriber
is large, some tuning may be required to compensate for side effects on the network and CPU load.
This large amount of data can be a result of the data types being large, a high message rate, or
a combination of both.

In this scenario, several limitations have to be taken into account:

	Network packages could be dropped because the transmitted amount of data fills the socket buffer
before it can be processed.
The solution is to increase the buffers size.

	It is also possible to limit the rate at which the Publisher sends data using
Flow Controllers, in order to limit the effect of message bursts, and avoid to flood
the Subscribers faster than they can process the messages.

	On RELIABLE_RELIABILITY_QOS mode,
the overall message rate can be affected due to the retransmission of lost packets.
Selecting the Heartbeat period allows to tune between increased meta traffic or faster response to lost packets.
See Tuning Heartbeat Period.

	Also on RELIABLE_RELIABILITY_QOS mode,
with high message rates, the history of the DataWriter
can be filled up, blocking the publication of new messages.
A non-strict reliable mode can be configured to avoid this blocking,
at the cost of potentially losing some messages on some of the Subscribers.

Warning

eProsima Fast DDS defines a conservative default message size of 64kB,
which roughly corresponds to TCP and UDP payload sizes.
If the topic data is bigger, it will automatically be be fragmented into several transport packets.

Warning

The loss of a fragment means the loss of the entire message.
This has most impact on BEST_EFFORT_RELIABILITY_QOS mode, where the message loss
probability increases with the number of fragments

15.3.1. Increasing socket buffers size

In high rate scenarios or large data scenarios, network packages can be dropped because
the transmitted amount of data fills the socket buffer before it can be processed.
Using RELIABLE_RELIABILITY_QOS mode,
Fast DDS will try to recover lost samples, but with the penalty of
retransmission.
With BEST_EFFORT_RELIABILITY_QOS mode,
samples will be definitely lost.

By default eProsima Fast DDS creates socket buffers with the system default size.
However, these sizes can be modified using the DomainParticipantQos,
as shown in the example below.

	C++

	DomainParticipantQos participant_qos;

// Increase the sending buffer size
participant_qos.transport().send_socket_buffer_size = 1048576;

// Increase the receiving buffer size
participant_qos.transport().listen_socket_buffer_size = 4194304;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_xml_profile_qos_socketbuffers">
 <rtps>
 <sendSocketBufferSize>1048576</sendSocketBufferSize>
 <listenSocketBufferSize>4194304</listenSocketBufferSize>
 </rtps>
 </participant>
</profiles>

15.3.1.1. Finding out system maximum values

Operating systems set a maximum value for socket buffer sizes.
If the buffer sizes are tuned with DomainParticipantQos, the values set
cannot exceed the maximum value of the system.

15.3.1.1.1. Linux

The maximum buffer size values can be retrieved with the command sysctl.
For socket buffers used to send data, use the following command:

$> sudo sysctl -a | grep net.core.wmem_max
net.core.wmem_max = 1048576

For socket buffers used to receive data the command is:

$> sudo sysctl -a | grep net.core.rmem_max
net.core.rmem_max = 4194304

However, these maximum values are also configurable and can be increased if needed.
The following command increases the maximum buffer size of sending sockets:

$> sudo sysctl -w net.core.wmem_max=12582912

For receiving sockets, the command is:

$> sudo sysctl -w net.core.rmem_max=12582912

15.3.1.1.2. Windows

The following command changes the maximum buffer size of sending sockets:

C:\> reg add HKLM\SYSTEM\CurrentControlSet\services\AFD\Parameters /v DefaultSendWindow /t REG_DWORD /d 12582912

For receiving sockets, the command is:

C:\> reg add HKLM\SYSTEM\CurrentControlSet\services\AFD\Parameters /v DefaultReceiveWindow /t REG_DWORD /d 12582912

15.3.2. Increasing the Transmit Queue Length of an interface (Linux only)

The Transmit Queue Length (txqueuelen) is a TCP/UDP/IP stack network interface value.
This value sets the number of packets allowed per kernel transmit queue of a network interface device.
By default, the txqueuelen value for Ethernet interfaces is set to 1000 in Linux.
This value is adequate for most Gigabit network devices.
However, in some specific cases, the txqueuelen setting should be increased to avoid overflows that drop packets.
Similarly, choosing a value that is too large can cause added overhead resulting in higher network latencies.

Note that this information only applies to the sending side, and not the receiving side.
Also increasing the txqueuelen should go together with increasing the buffer sizes of the UDP and/or TCP buffers.
(this must be applied for both the sending and receiving sides).

The settings for a specific network adapter can be viewed using the one of the following commands:

ip

ip link show ${interface}

ifconfig

ifconfig ${interface}

This will display the configuration of the adapter, and among the parameters the txqueuelen.
This parameter can be a value between a 1000 and 20000.

Important

If the ip command is used, the Transmit Queue Length parameter is called qlen.

The txqueuelen can be modified for the current session using either the ifconfig or ip commands.
However, take into account that after rebooting the default values will be configured again.

ip

ip link set txqueuelen ${value} dev ${interface}

ifconfig

ifconfig ${interface} txqueuelen ${size}

15.3.3. Flow Controllers

eProsima Fast DDS provides a mechanism to limit the rate at which the data is sent by a DataWriter.
These controllers should be registered on the creation of the DomainParticipant using FlowControllersQos, and
then referenced on the creation of the DataWriter using PublishModeQosPolicy.

A new thread is spawned the first time a flow controller is referenced by an asynchronous DataWriter.
This thread will be responsible for arbitrating the network output of the samples being transmitted by all the
DataWriters referencing the same flow controller.

Flow controllers should be given a name so they can later on be referenced by the DataWriters.
A default, unlimited, FIFO flow controller is always available with name
FASTDDS_FLOW_CONTROLLER_DEFAULT.

15.3.3.1. Scheduling policy

There are different kinds of flow controllers, depending on the scheduling policy used.
All of them will limit the number of bytes sent to the network to no more than
max_bytes_per_period bytes during period_ms
milliseconds.
They only differ in the way they decide the order in which the samples are sent.

	FIFO will output samples on a first come, first served order.

	ROUND_ROBIN will output one sample from each DataWriter in circular order.

	HIGH_PRIORITY will output samples from DataWriters with the highest priority first.
The priority of a DataWriter is configured using property fastdds.sfc.priority.
Allowed values are from -10 (highest priority) to 10 (lowest priority).
If the property is not present, it will be set to the lowest priority.
Samples for DataWriters with the same priority are handled with FIFO order.

	PRIORITY_WITH_RESERVATION works as the previous one, but allows the DataWriters to reserve
part of the output bandwidth.
This is done with the property fastdds.sfc.bandwidth_reservation.
Allowed values are from 0 to 100, and express a percentage of the total flow controller limit.
If the property is not present, it will be set to 0 (no bandwidth is reserved for the DataWriter).
After the reserved bandwidth has been consumed, the rest of the samples will be handled with the rules of
HIGH_PRIORITY.

15.3.3.2. Example configuration

	C++

	// Limit to 300kb per second.
static const char* flow_controller_name = "example_flow_controller";
auto flow_control_300k_per_sec = std::make_shared<eprosima::fastdds::rtps::FlowControllerDescriptor>();
flow_control_300k_per_sec->name = flow_controller_name;
flow_control_300k_per_sec->scheduler = eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::FIFO;
flow_control_300k_per_sec->max_bytes_per_period = 300 * 1000;
flow_control_300k_per_sec->period_ms = 1000;

// Register flow controller on participant
DomainParticipantQos participant_qos;
participant_qos.flow_controllers().push_back(flow_control_300k_per_sec);

// create participant and publisher

// Link writer to the registered flow controller.
// Note that ASYNCHRONOUS_PUBLISH_MODE must be used
DataWriterQos qos;
qos.publish_mode().kind = ASYNCHRONOUS_PUBLISH_MODE;
qos.publish_mode().flow_controller_name = flow_controller_name;

	XML

	There is currently no way of configuring flow
controllers with XML.
This will be added in future releases of the
product

Warning

Specifying a flow controller with a size smaller than the transport buffer size
can cause the messages to never be sent.

15.3.4. Tuning Heartbeat Period

On RELIABLE_RELIABILITY_QOS (ReliabilityQosPolicy), RTPS protocol can detect which messages have been lost
and retransmit them.
This mechanism is based on meta-traffic information exchanged between
DataWriters and DataReaders,
namely, Heartbeat and Ack/Nack messages.

A smaller Heartbeat period increases the CPU and network overhead, but speeds up the system response when
a piece of data is lost.
Therefore, users can customize the Heartbeat period to match their needs.
This can be done with the DataWriterQos.

DataWriterQos qos;
qos.reliable_writer_qos().times.heartbeatPeriod.seconds = 0;
qos.reliable_writer_qos().times.heartbeatPeriod.nanosec = 500000000; //500 ms

15.3.5. Using Non-strict Reliability

When HistoryQosPolicyKind is set as KEEP_ALL_HISTORY_QOS, all samples have to be received
(and acknowledged) by all subscribers before they can be overridden by the DataWriter.
If the message rate is high and the network is not reliable (i.e., lots of packets get lost), the history of the
DataWriter can be filled up, blocking the publication of new messages until any
of the old messages is acknowledged by all subscribers.

If this strictness is not needed, HistoryQosPolicyKind can be set as KEEP_ALL_HISTORY_QOS.
In this case, when the history of the DataWriter is full, the oldest message that has not
been fully acknowledged yet is overridden with the new one.
If any subscriber did not receive the discarded message, the publisher
will send a GAP message to inform the subscriber that the message is lost forever.

15.3.6. Practical Examples

15.3.6.1. Example: Sending a large file

Consider the following scenario:

	A Publisher needs to send a file with a size of 9.9 MB.

	The Publisher and Subscriber are connected through a network
with a bandwidth of 100 MB/s

With a fragment size of 64 kB, the Publisher has to send about 1100 fragments to send the whole file.
A possible configuration for this scenario could be:

	Using RELIABLE_RELIABILITY_QOS,
since a losing a single fragment would mean the loss of the complete file.

	Decreasing the heartbeat period, in order to increase the reactivity of the Publisher.

	Limiting the data rate using a Flow Controller,
to avoid this transmission cannibalizing the whole bandwidth.
A reasonable rate for this application could be 5 MB/s, which represents only 5% of the total bandwidth.

Note

Using Shared Memory Transport the only limit to the fragment size is the available memory.
Therefore, all fragmentation can be avoided in SHM by increasing the size of the shared buffers.

15.3.6.2. Example: Video streaming

In this scenario, the application transmits a video stream between a Publisher
and a Subscriber, at 50 fps. In real-time audio or video transmissions,
it is usually preferred to have a high stable datarate feed, even at the cost of losing some
samples.
Losing one or two samples per second at 50 fps is more acceptable than freezing the video waiting for the retransmission
of lost samples.
Therefore, in this case BEST_EFFORT_RELIABILITY_QOS can be appropriate.

 15.4. Topics with many subscribers

15.4. Topics with many subscribers

By default, every time a DataWriter publishes a data change on a
Topic, it sends a unicast message for every
DataReader that is subscribed to the Topic.
If there are several DataReaders subscribed, it is recommendable
to use multicast instead of unicast.
By doing so, only one network package will be sent for each sample.
This will improve both CPU and network usage.

This solution can be implemented with UDP Transport or Shared Memory Transport (SHM).
SHM transport is multicast by default, but is only available between DataWriters and
DataReaders on the same machine.
UDP transport needs some extra configuration.
The example below shows how to set a DataReaderQos to configure
a DataReader to use a multicast transport on UDP.
More information about configuring local and remote locators on endpoints can be found in RTPSEndpointQos.

Note

Multicast over UDP can be problematic on some scenarios, mainly WiFi and complex networks
with multiple network links.

	C++

	DataReaderQos qos;

// Add new multicast locator with IP 239.255.0.4 and port 7900
eprosima::fastrtps::rtps::Locator_t new_multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
qos.endpoint().multicast_locator_list.push_back(new_multicast_locator);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_reader profile_name="reader_xml_conf_multicast_locators_profile">
 <multicastLocatorList>
 <locator>
 <udpv4>
 <address>239.255.0.4</address>
 <port>7900</port>
 </udpv4>
 </locator>
 </multicastLocatorList>
 </data_reader>
</profiles>

 15.5. Real-time behavior

15.5. Real-time behavior

Real-time applications have very tight constraints on data processing times.
In order to comply with these constraints, Fast DDS can be configured to guarantee responses within
a specified time.
This is achieved with the following restraints:

	Allocating all the required memory during entity initialization, so that all the data processing
tasks are heap allocation free (see Tuning allocations).

	Returning from blocking functions if the provided timeout is reached (see Non-blocking calls).

This section explains how to configure Fast DDS to achieve this behavior.

	15.5.1. Tuning allocations
	15.5.1.1. Parameters on the participant

	15.5.1.2. Parameters on the DataWriter

	15.5.1.3. Parameters on the DataReader

	15.5.1.4. Full example

	15.5.2. Non-blocking calls

 15.5.1. Tuning allocations

15.5.1. Tuning allocations

Allocating and deallocating memory implies some non-deterministic time consuming operations.
Therefore, most real-time systems need to operate in a way that all dynamic memory is allocated during the
application initialization, avoiding memory management operations in the main loop.

If users provide maximum sizes for the data and collections that Fast DDS keeps internally,
memory for these data and collections can be preallocated during entity initialization.
In order to choose the correct size values, users must be aware of the topology of the whole domain.
Specifically, the number of DomainParticipants,
DataWriters, and DataReaders
must be known when setting their configuration.

The following sections describe how to configure allocations to be done during the initialization of the
entities.
Although some examples are provided on each section as reference, there is also a
complete example use case.

15.5.1.1. Parameters on the participant

Every DomainParticipant holds an internal collection with information about every local and remote
peer DomainParticipants that has been discovered.
This information includes, among other things:

	A nested collection with information of every DataWriter announced on the
peer DomainParticipant.

	A nested collection with information of every DataReader announced on the
peer DomainParticipant.

	Custom data configured by the user on the peer DomainParticipant, namely,
UserDataQosPolicy, PartitionQosPolicy,
and PropertyPolicyQos.

By default, these collections are fully dynamic, meaning that new memory is allocated when a new
DomainParticipant, DataWriter, or DataReader
is discovered.
Likewise, the mentioned custom configuration data parameters have an arbitrary size.
By default, the memory for these parameters is allocated when the peer DomainParticipant announces
their value.

However, DomainParticipantQos has a member function allocation(),
of type ParticipantResourceLimitsQos, that allows configuring
maximum sizes for these collections and parameters, so that all the required memory can be preallocated during
the initialization of the DomainParticipant.

15.5.1.1.1. Limiting the number of discovered entities

ParticipantResourceLimitsQos provides three data members to configure the allocation behavior of
discovered entities:

	participants configures the allocation of the collection of discovered
DomainParticipants.

	readers configures the allocation of the collection of DataWriters
within each discovered DomainParticipant.

	writers configures the allocation of the collection of DataReaders
within each discovered DomainParticipant.

By default, a full dynamic behavior is used.
Using these members, however, it is easy to configure the collections to be preallocated during initialization,
setting them to a static maximum expected value, as shown in the example below.
Please, refer to ResourceLimitedContainerConfig for a complete description of additional configuration
alternatives given by these data members.

	C++

	DomainParticipantQos qos;

// Fix the size of discovered participants to 3
// This will effectively preallocate the memory during initialization
qos.allocation().participants =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);

// Fix the size of discovered DataWriters to 1 per DomainParticipant
// Fix the size of discovered DataReaders to 3 per DomainParticipant
// This will effectively preallocate the memory during initialization
qos.allocation().writers =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);
qos.allocation().readers =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_qos_entity_resource_limit">
 <rtps>
 <allocation>
 <!-- Limit to 3 participants -->
 <total_participants>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </total_participants>

 <!-- Limit to 3 readers per participant -->
 <total_readers>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </total_readers>

 <!-- Limit to 1 writer per participant -->
 <total_writers>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </total_writers>
 </allocation>
 </rtps>
 </participant>
</profiles>

Warning

Configuring a collection as fixed in size effectively limits the number of peer entities
that can be discovered.
Once the configured limit is reached, any new entity will be ignored.
In the given example, if a fourth peer DomainParticipant appears, it will
not be discovered, as the collection of discovered DomainParticipants
is already full.

15.5.1.1.2. Limiting the size of custom parameters

data_limits inside ParticipantResourceLimitsQos provides three data members
to configure the allocation behavior of custom parameters:

	max_user_data limits the size of UserDataQosPolicy to the given number
of octets.

	max_properties limits the size of PartitionQosPolicy to the given number
of octets.

	max_partitions limits the size of PropertyPolicyQos to the given number
of octets.

If these sizes are configured to something different than zero, enough memory will be allocated for them
for each participant and endpoint.
A value of zero implies no size limitation, and memory will be dynamically allocated as needed.
By default, a full dynamic behavior is used.

content_filter inside ParticipantResourceLimitsQos provides members
to configure the allocation behavior of content filter discovery information:

	expression_initial_size sets the preallocated size of
the filter expression.

	expression_parameters controls the allocation behavior
for the list of expression parameters.
Refer to ResourceLimitedContainerConfig for a complete description of the alternatives.
Receiving information about a content filter with more parameters than the maximum configured here, will make
the filtering happen on the reader side.

	C++

	DomainParticipantQos qos;

// Fix the size of the complete user data field to 256 octets
qos.allocation().data_limits.max_user_data = 256u;
// Fix the size of the complete partitions field to 256 octets
qos.allocation().data_limits.max_partitions = 256u;
// Fix the size of the complete properties field to 512 octets
qos.allocation().data_limits.max_properties = 512u;
// Set the preallocated filter expression size to 512 characters
qos.allocation().content_filter.expression_initial_size = 512u;
// Set the maximum number of expression parameters to 4 and its allocation configuration to fixed size
qos.allocation().content_filter.expression_parameters =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(4u);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_qos_parameter_resource_limit">
 <rtps>
 <allocation>
 <max_partitions>256</max_partitions>
 <max_user_data>256</max_user_data>
 <max_properties>512</max_properties>

 <!-- content_filter cannot be configured using XML (yet) -->
 </allocation>
 </rtps>
 </participant>
</profiles>

Warning

If the data fields announced by the remote peer do not fit on the preallocated memory,
an error will be triggered during the processing of the announcement message.
This usually means that the discovery messages of a remote peer with too large data fields
will be discarded, i.e., peers with too large data fields will not be discovered.

15.5.1.2. Parameters on the DataWriter

Every DataWriter holds internal collections with information about every
DataReader to which it matches.
By default, these collections are fully dynamic, meaning that new memory is allocated when a new
DataReader is matched.
However, DataWriterQos has a data member writer_resource_limits(),
of type WriterResourceLimitsQos, that allows configuring
the memory allocation behavior on the DataWriter.

WriterResourceLimitsQos provides data members matched_subscriber_allocation
and reader_filters_allocation
of type ResourceLimitedContainerConfig that allow configuring
the maximum expected size of the collection of matched DataReader,
and the collection of writer side content filters,
so they can be preallocated during the initialization of the DataWriter,
as shown in the example below.
Please, refer to ResourceLimitedContainerConfig for a complete description of additional configuration
alternatives given by these data members.

	C++

	DataWriterQos qos;

// Fix the size of matched DataReaders to 3
// This will effectively preallocate the memory during initialization
qos.writer_resource_limits().matched_subscriber_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// Fix the size of writer side content filters to 1
// This will effectively preallocate the memory during initialization
qos.writer_resource_limits().reader_filters_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_writer profile_name="writer_profile_qos_resource_limit">
 <!-- Limit to 3 matching readers -->
 <matchedSubscribersAllocation>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </matchedSubscribersAllocation>

 <!-- reader_filters_allocation cannot be configured using XML (yet) -->
 </data_writer>
</profiles>

Warning

Configuring the collection of matched DataReaders as fixed in size
effectively limits the number of DataReaders to be matched.
Once the configured limit is reached, any new DataReader will be ignored.
In the given example, if a fourth (potentially matching) DataReader
appears, it will not be matched, as the collection is already full.

15.5.1.3. Parameters on the DataReader

Every DataReader holds an internal collection with information about every
ReaderResourceLimitsQos to which it matches.
By default, this collection is fully dynamic, meaning that new memory is allocated when a new
DataWriter is matched.
However, DataReaderQos has a data member reader_resource_limits(),
of type ReaderResourceLimitsQos, that allows configuring
the memory allocation behavior on the DataReader.

ReaderResourceLimitsQos provides a data member matched_publisher_allocation
of type ResourceLimitedContainerConfig that allows configuring
the maximum expected size of the collection of matched DataWriters,
so that it can be preallocated during the initialization of the DataReader,
as shown in the example below.
Please, refer to ResourceLimitedContainerConfig for a complete description of additional configuration
alternatives given by this data member.

	C++

	DataReaderQos qos;

// Fix the size of matched DataWriters to 1
// This will effectively preallocate the memory during initialization
qos.reader_resource_limits().matched_publisher_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_reader profile_name="reader_profile_qos_resource_limit">
 <!-- Limit to 1 matching writer -->
 <matchedPublishersAllocation>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </matchedPublishersAllocation>
 </data_reader>
</profiles>

Warning

Configuring the collection of matched DataWriters as fixed in size
effectively limits the number of DataWriters to be matched.
Once the configured limit is reached, any new DataWriter will be ignored.
In the given example, if a fourth (potentially matching) DataWriter
appears, it will not be matched, as the collection is already full.

15.5.1.4. Full example

Given a system with the following topology:

Allocation tuning example topology

	Participant P1

	Participant P2

	Participant P3

	Topic 1 publisher

	Topic 1 subscriber

	Topic 2 subscriber

	Topic 1 subscriber

	
	Topic 2 publisher

	Topic 1 subscriber

	
	Topic 2 subscriber

	The total number of DomainParticipants is 3.

	The maximum number of DataWriters per DomainParticipant is 1

	The maximum number of DataReaders per DomainParticipant is 2.

	The DataWriter for topic 1
matches with 3 DataReaders.

	The DataWriter for topic 2
matches with 2 DataReaders.

	All the DataReaders
match exactly with 1 DataWriter.

We will assume that content filtering is not being used, and will also limit the size of the parameters:

	Maximum PartitionQosPolicy size: 256

	Maximum UserDataQosPolicy size: 256

	Maximum PropertyPolicyQos size: 512

The following piece of code shows the set of parameters needed for the use case depicted in this example.

	C++

	// DomainParticipant configuration
//////////////////////////////////
DomainParticipantQos participant_qos;

// We know we have 3 participants on the domain
participant_qos.allocation().participants =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// We know we have at most 2 readers on each participant
participant_qos.allocation().readers =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);
// We know we have at most 1 writer on each participant
participant_qos.allocation().writers =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

// We know the maximum size of partition data
participant_qos.allocation().data_limits.max_partitions = 256u;
// We know the maximum size of user data
participant_qos.allocation().data_limits.max_user_data = 256u;
// We know the maximum size of properties data
participant_qos.allocation().data_limits.max_properties = 512u;

// Content filtering is not being used
participant_qos.allocation().content_filter.expression_initial_size = 0u;
participant_qos.allocation().content_filter.expression_parameters =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(0u);

// DataWriter configuration for Topic 1
///////////////////////////////////////
DataWriterQos writer1_qos;

// We know we will only have three matching subscribers, and no content filters
writer1_qos.writer_resource_limits().matched_subscriber_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
writer1_qos.writer_resource_limits().reader_filters_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(0u);

// DataWriter configuration for Topic 2
///////////////////////////////////////
DataWriterQos writer2_qos;

// We know we will only have two matching subscribers
writer2_qos.writer_resource_limits().matched_subscriber_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(2u);
writer2_qos.writer_resource_limits().reader_filters_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(0u);

// DataReader configuration for both Topics
///
DataReaderQos reader_qos;

// We know we will only have one matching publisher
reader_qos.reader_resource_limits().matched_publisher_allocation =
 eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_alloc_qos_example">
 <rtps>
 <allocation>
 <!-- We know we have 3 participants on the domain -->
 <total_participants>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </total_participants>
 <!-- We know we have at most 2 readers on each participant -->
 <total_readers>
 <initial>2</initial>
 <maximum>2</maximum>
 <increment>0</increment>
 </total_readers>
 <!-- We know we have at most 1 writer on each participant -->
 <total_writers>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </total_writers>
 <max_partitions>256</max_partitions>
 <max_user_data>256</max_user_data>
 <max_properties>512</max_properties>

 <!-- content_filter cannot be configured using XML (yet) -->
 </allocation>
 </rtps>
 </participant>

 <data_writer profile_name="alloc_qos_example_pub_for_topic_1">
 <!-- we know we will have three matching subscribers and no content filter -->
 <matchedSubscribersAllocation>
 <initial>3</initial>
 <maximum>3</maximum>
 <increment>0</increment>
 </matchedSubscribersAllocation>

 <!-- reader_filters_allocation cannot be configured using XML (yet) -->
 </data_writer>

 <data_writer profile_name="alloc_qos_example_pub_for_topic_2">
 <!-- we know we will have two matching subscribers and no content filter -->
 <matchedSubscribersAllocation>
 <initial>2</initial>
 <maximum>2</maximum>
 <increment>0</increment>
 </matchedSubscribersAllocation>

 <!-- reader_filters_allocation cannot be configured using XML (yet) -->
 </data_writer>

 <data_reader profile_name="alloc_qos_example_sub">
 <!-- we know we will only have one matching publisher -->
 <matchedPublishersAllocation>
 <initial>1</initial>
 <maximum>1</maximum>
 <increment>0</increment>
 </matchedPublishersAllocation>
 </data_reader>
</profiles>

 15.5.2. Non-blocking calls

15.5.2. Non-blocking calls

Note

As OSX does not support necessary POSIX Real-time features, this feature is not fully supported on OSX.
In that case, the feature is limited by the implementation of std::timed_mutex and std::condition_variable_any.

Several functions on the Fast DDS API can be blocked
for an undefined period of time when operations compete for the control of a resource.
The blocked function cannot continue until the operation that gained the control finishes, thus blocking
the calling thread.

Real-time applications need a predictable behavior, including a predictable maximum time since a function
is called until it returns control.
In order to comply with this restriction, Fast DDS can be configured to limit the maximum blocking time
of these functions.
If the blocking time limit is exceeded, the requested operation is aborted and function terminated,
returning the control to the caller.

This configuration needs two steps:

	Set the CMake option -DSTRICT_REALTIME=ON during the compilation of the application.

	Configure the maximum blocking times for the functions.

Fast RTPS non-blocking API

	Method

	Configuration attribute

	Default value

	DataWriter::write()

	reliability().max_blocking_time on DataWriterQos.

	100 milliseconds.

	DataReader::take_next_sample()

	reliability().max_blocking_time on DataReaderQos.

	100 milliseconds.

	DataReader::read_next_sample()

	reliability().max_blocking_time on DataReaderQos.

	100 milliseconds.

	DataReader::wait_for_unread_message()

	The method accepts an argument with the maximum blocking time.

	

 15.6. Reduce memory usage

15.6. Reduce memory usage

A great number of modern systems have tight constraints on available memory, making the reduction of memory usage to a
minimum critical. Reducing memory consumption of a Fast DDS application can be achieved through various approaches,
mainly through architectural restructuring of the application, but also by limiting the resources the
middleware utilizes, and by avoiding static allocations.

15.6.1. Limiting Resources

The ResourceLimitsQosPolicy controls the resources that the service can use in order to meet the requirements
imposed. It limits the amount of allocated memory per DataWriter or
DataReader, as per the following parameters:

	max_samples: Configures the maximum number of samples that the DataWriter or DataReader can manage across all the
instances associated with it, i.e. it represents the maximum samples that the middleware can store for a DataReader or
DataWriter.

	max_instances: Configures the maximum number of instances that the DataWriter or DataReader can manage.

	max_samples_per_instance: Controls the maximum number of samples within an instance that the DataWriter or
DataReader can manage.

	allocated_samples: States the number of samples that will be allocated on initialization.

All these parameters may be lowered as much as needed to reduce memory consumption, limit the resources to the
application’s needs. Below is an example of a configuration for the minimum resource limits possible.

Warning

	The value of max_samples must be higher or equal to the value of max_samples_per_instance.

	The value established for the HistoryQosPolicy depth must be lower or equal to the value stated for
max_samples_per_instance.

	C++

	ResourceLimitsQosPolicy resource_limits;

// The ResourceLimitsQosPolicy is default constructed with max_samples = 5000
// Change max_samples to the minimum
resource_limits.max_samples = 1;

// The ResourceLimitsQosPolicy is default constructed with max_instances = 10
// Change max_instances to the minimum
resource_limits.max_instances = 1;

// The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance = 400
// Change max_samples_per_instance to the minimum
resource_limits.max_samples_per_instance = 1;

// The ResourceLimitsQosPolicy is default constructed with allocated_samples = 100
// No allocated samples
resource_limits.allocated_samples = 0;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_writer profile_name="data_writer_min_samples">
 <topic>
 <historyQos>
 <kind>KEEP_LAST</kind>
 <depth>1</depth>
 </historyQos>
 <resourceLimitsQos>
 <max_samples>1</max_samples>
 <max_instances>1</max_instances>
 <max_samples_per_instance>1</max_samples_per_instance>
 <allocated_samples>0</allocated_samples>
 </resourceLimitsQos>
 </topic>
 </data_writer>

 <data_reader profile_name="data_writer_min_samples">
 <topic>
 <historyQos>
 <kind>KEEP_LAST</kind>
 <depth>1</depth>
 </historyQos>
 <resourceLimitsQos>
 <max_samples>1</max_samples>
 <max_instances>1</max_instances>
 <max_samples_per_instance>1</max_samples_per_instance>
 <allocated_samples>0</allocated_samples>
 </resourceLimitsQos>
 </topic>
 </data_reader>
</profiles>

15.6.2. Set Dynamic Allocation

By default MemoryManagementPolicy is set to PREALLOCATED_MEMORY_MODE, meaning that the amount of memory
required by the configured ResourceLimitsQosPolicy will be allocated at initialization.

Using the dynamic settings of the RTPSEndpointQos will prevent unnecessary allocations. Lowest footprint is
achieved with DYNAMIC_RESERVE_MEMORY_MODE at the cost of higher allocation counts, in this mode memory is
allocated when needed and freed as soon as it stops being used. For higher determinism at a small memory cost the
DYNAMIC_REUSABLE_MEMORY_MODE option is available, this option is similar but once more memory is allocated it is
not freed and is reused for future messages.

	C++

	RTPSEndpointQos endpoint;
endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_REUSABLE_MEMORY_MODE;

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <data_writer profile_name="data_writer_low_memory">
 <!-- ... -->
 <historyMemoryPolicy>DYNAMIC_REUSABLE</historyMemoryPolicy>
 </data_writer>

 <data_reader profile_name="data_reader_low_memory">
 <!-- ... -->
 <historyMemoryPolicy>DYNAMIC_REUSABLE</historyMemoryPolicy>
 </data_reader>
</profiles>

 15.7. Zero-Copy communication

15.7. Zero-Copy communication

This section explains how to configure a Zero-Copy communication in Fast DDS.
The Zero-Copy communication allows the transmission of data between applications
without copying data in memory, saving time and resources.
In order to achieve this, it uses Data-sharing delivery between the DataWriter
and the DataReader, and data buffer loans between the application and Fast DDS.

	Overview

	Getting started

	Writing and reading in Zero-Copy transfers

	Caveats

	Constraints

	Next steps

15.7.1. Overview

Data-sharing delivery provides a communication channel between a DataWriter and a DataReader
using shared memory. Therefore, it does not require copying the sample data to transmit it.

DataWriter sample loaning
is a Fast DDS extension that allows the application to borrow
a buffer for a sample in the publishing DataWriter.
The sample can be constructed directly on this buffer,
eliminating the need to copy it to the DataWriter afterwards.
This prevents the copying of the data between the publishing application and the DataWriter.
If Data-sharing delivery is used, the loaned data buffer will be in the shared memory itself.

Reading the data on the subscriber side can also be done
with loans from the DataReader.
The application gets the received samples as a reference to the receive queue itself.
This prevents the copying of the data from the DataReader to the receiving application.
Again, if Data-sharing delivery is used, the loaned data will be in the shared memory,
and will indeed be the same memory buffer used in the DataWriter history.

Combining these three features, we can achieve Zero-Copy communication between the
publishing application and the subscribing application.

15.7.2. Getting started

To enable Zero-Copy perform the following steps:

	Define a plain and bounded type in an IDL file and generate the corresponding source code for further processing
with the Fast DDS-Gen tool.

struct LoanableHelloWorld
{
 unsigned long index;
 char message[256];
};

	On the DataWriter side:

	Create a DataWriter for the previous type. Make sure that the DataWriter does not have DataSharing disabled.

	Get a loan on a sample using loan_sample().

	Write the sample using write().

	On the DataReader side:

	Create a DataReader for the previous type. Make sure that the DataReader does not have DataSharing disabled.

	Take/read samples using the available functions in the DataReader.
Please refer to section Loaning and Returning Data and SampleInfo Sequences for further detail on how to access
to loans of the received data.

	Return the loaned samples using DataReader::return_loan().

15.7.3. Writing and reading in Zero-Copy transfers

The following is an example of how to publish and receive samples with DataWriters and DataReaders respectively
that implement Zero-Copy.

15.7.3.1. DataWriter

When the DataWriter is created, Fast DDS will pre-allocate a pool of
max_samples + extra_samples samples that reside
in a shared memory mapped file.
This pool will be used to loan samples when the loan_sample() function is called.

An application example of a DataWriter that supports Zero-Copy using the Fast DDS library is presented below.
There are several points to note in the following code:

	Not disabling the DataSharingQosPolicy.
AUTO kind automatically enables Zero-Copy when possible.

	The use of the loan_sample() function to access and modify data samples.

	The writing of data samples.

// CREATE THE PARTICIPANT
DomainParticipantQos pqos;
pqos.name("Participant_pub");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_participant(0, pqos);

// REGISTER THE TYPE
TypeSupport type(new LoanableHelloWorldPubSubType());
type.register_type(participant);

// CREATE THE PUBLISHER
Publisher* publisher = participant->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);

// CREATE THE TOPIC
Topic* topic = participant->create_topic(
 "LoanableHelloWorldTopic",
 type.get_type_name(),
 TOPIC_QOS_DEFAULT);

// CREATE THE WRITER
DataWriterQos wqos = publisher->get_default_datawriter_qos();
wqos.history().depth = 10;
wqos.durability().kind = TRANSIENT_LOCAL_DURABILITY_QOS;
// DataSharingQosPolicy has to be set to AUTO (the default) or ON to enable Zero-Copy
wqos.data_sharing().on("shared_directory");

DataWriter* writer = publisher->create_datawriter(topic, wqos);

std::cout << "LoanableHelloWorld DataWriter created." << std::endl;

int msgsent = 0;
void* sample = nullptr;
// Always call loan_sample() before writing a new sample.
// This function will provide the user with a pointer to an internal buffer where the data type can be
// prepared for sending.
if (ReturnCode_t::RETCODE_OK == writer->loan_sample(sample))
{
 // Modify the sample data
 LoanableHelloWorld* data = static_cast<LoanableHelloWorld*>(sample);
 data->index() = msgsent + 1;
 memcpy(data->message().data(), "LoanableHelloWorld ", 20);

 std::cout << "Sending sample (count=" << msgsent
 << ") at address " << &data << std::endl
 << " index=" << data->index() << std::endl
 << " message=" << data->message().data() << std::endl;

 // Write the sample.
 // After this function returns, the middleware owns the sample.
 writer->write(sample);
}

15.7.3.2. DataReader

The following is an application example of a DataReader that supports Zero-Copy using the Fast DDS library.
As shown in this code snippet, the configuration in the DataReader is similar to the DataWriter.
Be sure not to disable the DataSharingQosPolicy.
AUTO kind automatically enables Zero-Copy when possible.

// CREATE THE PARTICIPANT
DomainParticipantQos pqos;
pqos.name("Participant_sub");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_participant(0, pqos);

// REGISTER THE TYPE
TypeSupport type(new LoanableHelloWorldPubSubType());
type.register_type(participant);

// CREATE THE SUBSCRIBER
Subscriber* subscriber = participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

// CREATE THE TOPIC
Topic* topic = participant->create_topic(
 "LoanableHelloWorldTopic",
 type.get_type_name(),
 TOPIC_QOS_DEFAULT);

// CREATE THE READER
DataReaderQos rqos = subscriber->get_default_datareader_qos();
rqos.history().depth = 10;
rqos.reliability().kind = RELIABLE_RELIABILITY_QOS;
rqos.durability().kind = TRANSIENT_LOCAL_DURABILITY_QOS;
// DataSharingQosPolicy has to be set to AUTO (the default) or ON to enable Zero-Copy
rqos.data_sharing().automatic();

DataReader* reader = subscriber->create_datareader(topic, rqos, &datareader_listener);

Finally, the code snippet below implements the on_data_available() DataReaderListener
callback.
The key points to be noted in this function are:

	The declaration and handling of LoanableSequence.

	The use of the DataReader::return_loan() function to indicate to the DataReader that the application has
finished accessing the sequence.

void on_data_available(
 eprosima::fastdds::dds::DataReader* reader)
{
 // Declare a LoanableSequence for a data type
 FASTDDS_SEQUENCE(DataSeq, LoanableHelloWorld);

 DataSeq data;
 SampleInfoSeq infos;
 // Access to the collection of data-samples and its corresponding collection of SampleInfo structures
 while (ReturnCode_t::RETCODE_OK == reader->take(data, infos))
 {
 // Iterate over each LoanableCollection in the SampleInfo sequence
 for (LoanableCollection::size_type i = 0; i < infos.length(); ++i)
 {
 // Check whether the DataSample contains data or is only used to communicate of a
 // change in the instance
 if (infos[i].valid_data)
 {
 // Print the data.
 const LoanableHelloWorld& sample = data[i];

 ++samples;
 std::cout << "Sample received (count=" << samples
 << ") at address " << &sample << std::endl
 << " index=" << sample.index() << std::endl
 << " message=" << sample.message().data() << std::endl;
 }
 }
 // Indicate to the DataReader that the application is done accessing the collection of
 // data values and SampleInfo, obtained by some earlier invocation of read or take on the
 // DataReader.
 reader->return_loan(data, infos);
 }
}

15.7.4. Caveats

	After calling write(), Fast DDS takes ownership of the sample and therefore it is no longer
safe to make changes to that sample.

	If function loan_sample() is called first and the sample is never written, it is necessary to use
function discard_loan() to return the sample to the DataWriter.
If this is not done, the subsequent calls to loan_sample() may fail if DataWriter has no more
extra_samples to loan.

	The current maximum supported sample size is the maximum value of an uint32_t.

15.7.5. Constraints

Although Zero-Copy can be used for one or several Fast DDS application processes running on the same machine,
it has some constraints:

	Only plain types are supported.

	Constraints for datasharing delivery also apply.

Note

Zero-Copy transfer support for non-plain types may be implemented in future releases of Fast DDS.

15.7.6. Next steps

The eProsima Fast DDS Github repository contains the complete example discussed in this section, as well as
multiple other examples for different use cases. The example implementing Zero-Copy transfers can be found
here [https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/ZeroCopyExample].

 15.8. Unique network flows

15.8. Unique network flows

This section explains which APIs should be used on Fast DDS in order to have unique network flows on specific topics.

	Background

	Identifying a flow

	Requesting unique flows

	Example

15.8.1. Background

IP networking is the pre-dominant inter-networking technology used nowadays.
Ethernet, WiFi, 4G/5G telecommunication, all of them rely on IP networking.

Streams of IP packets from a given source to destination are called packet flows or simply flows.
The network QoS of a flow can be configured when using certain networking equipment (routers, switches).
Such pieces of equipment typically support 3GPP/5QI protocols to assign certain Network QoS parameters to
specific flows.
Requesting a specific Network QoS is usually done on the endpoint sending the data, as it is the one
that usually haves complete information about the network flow.

Applications may need to use specific Network QoS parameters on different topics.

This means an application should be able to:

	Identify the flows being used in the communications, so they can correctly configure the networking
equipment.

	Use specific flows on selected topics.

15.8.2. Identifying a flow

The 5-tuple is a traditional unique identifier for flows on 3GPP enabled equipment.
The 5-tuple consists of five parameters: source IP address, source port, destination IP address, destination port,
and the transport protocol (example, TCP/UDP).

15.8.2.1. Definitions

Network flow: A tuple of networking resources selected by the middleware for transmission of messages from a
DataWriter to a DataReader, namely:

	Transport protocol: UDP or TCP

	Transport port

	Internet protocol: IPv4 or IPv6

	IP address

Network Flow Endpoint (NFE): The portion of a network flow specific to the DataWriter or the DataReader.
In other words, each network flow has two NFEs; one for the DataWriter, and the other for the DataReader.

15.8.2.2. APIs

Fast DDS provides the APIs needed to get the list of NFEs used by a given DataWriter or a DataReader.

	On the DataWriter, get_sending_locators() allows the application to obtain the list of locators
from which the writer may send data.

	On the DataReader, get_listening_locators() allows the application to obtain the list of locators
on which the reader is listening.

15.8.3. Requesting unique flows

A unique flow can be created by ensuring that at least one of the two NFEs are unique.
On Fast DDS, there are two ways to select unique listening locators on the DataReader:

	The application can specify on which locators the DataReader should be listening.
This is done using RTPSEndpointQos on the DataReaderQos.
In this case it is the responsibility of the application to ensure the uniqueness of the locators used.

	The application can request the reader to be created with unique listening locators.
This is done using a PropertyPolicyQos including the property "fastdds.unique_network_flows".
In this case, the reader will listen on a unique port outside the range of ports typically used by RTPS.

15.8.4. Example

The following snippet demonstrates all the APIs described on this page:

// Create the DataWriter
DataWriter* writer = publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == writer)
{
 // Error
 return;
}

// Create DataReader with unique flows
DataReaderQos drqos = DATAREADER_QOS_DEFAULT;
drqos.properties().properties().emplace_back("fastdds.unique_network_flows", "");
DataReader* reader = subscriber->create_datareader(topic, drqos);

// Print locators information
eprosima::fastdds::rtps::LocatorList locators;
writer->get_sending_locators(locators);
std::cout << "Writer is sending from the following locators:" << std::endl;
for (const auto& locator : locators)
{
 std::cout << " " << locator << std::endl;
}

reader->get_listening_locators(locators);
std::cout << "Reader is listening on the following locators:" << std::endl;
for (const Locator_t& locator : locators)
{
 std::cout << " " << locator << std::endl;
}

 15.9. Statistics module

15.9. Statistics module

eProsima Fast DDS Statistics Module allows the user to monitor the data being exchanged by its application.
In order to use this module, the user must enable it in the monitored application, and create another application that
receives the data being published by the statistics DataWriters.
The user can also use for the latter the
eProsima Fast DDS Statistics Backend [https://fast-dds-statistics-backend.readthedocs.io/en/latest/] which already
implements the collection and aggregation of the data coming from the statistics topics.

	Enable Statistics module

	Create monitoring application

15.9.1. Enable Statistics module

The Statistics module has to be enabled both at build and runtime.
On the one hand, CMake option FASTDDS_STATISTICS must be enabled when building the library.
On the other hand, the desired statistics DataWriters should be enabled using the Statistics Module DDS Layer.

The statistics DataWriters can be enabled automatically using the PropertyPolicyQos fastdds.statistics and
the FASTDDS_STATISTICS environment variable.
They can also be enabled manually following the next example:

// Create a DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// Obtain pointer to child class
eprosima::fastdds::statistics::dds::DomainParticipant* statistics_participant =
 eprosima::fastdds::statistics::dds::DomainParticipant::narrow(participant);

// Enable statistics DataWriter
if (statistics_participant->enable_statistics_datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC,
 eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Use the DomainParticipant to communicate
// (...)

// Disable statistics DataWriter
if (statistics_participant->disable_statistics_datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC) !=
 ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

// Delete DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) != ReturnCode_t::RETCODE_OK)
{
 // Error
 return;
}

15.9.2. Create monitoring application

Once the monitored application is publishing the collected data within the statistics topics enabled by the user,
another application should be configured to subscribe to those topics.
This application is a DDS standard application where the statistics DataReaders should be created.
In order to create these statistics DataReaders, the user should follow the next steps:

	Using the statistics IDL [https://github.com/eProsima/Fast-DDS/blob/master/include/fastdds/statistics/types.idl]
provided in the public API, generate the TopicDataTypes with Fast DDS-Gen.

	Create the DomainParticipant and register the TopicDataTypes and the corresponding statistics
Topics.

	Create the statistics DataReaders using the corresponding statistics topic.

 15.10. Dynamic network interfaces

15.10. Dynamic network interfaces

DDS Simple Discovery relies on well-known multicast addresses and ports to relay the
Participant announcement messages (see Discovery phases).
Such Participant announcement includes information about the unicast address-port pairs (a.k.a locators) where the
Participant is expecting to receive incoming metatraffic data.
The list with these unicast locators is automatically initialized taking into account the network interfaces that are
available when the Fast DDS DomainParticipant is enabled.
Consequently, any network interface that is added after enabling the DomainParticipant should be notified to Fast DDS
in order to initialize an unicast locator in said network, so communication can be established over that new interface.

15.10.1. Dynamic network interface addition at run-time

In case that the user wants to include new network interfaces at run-time, some prerequisites have to be fulfilled.
Then, once the interfaces are available, the user may notify Fast DDS so these interfaces are also used in the
communication.

15.10.1.1. Prerequisites

This feature is intended to be used when Fast DDS automatically sets the listening unicast locators.
Consequently, both metatrafficUnicastLocatorList and
metatrafficMulticastLocatorList lists must be empty.
These attributes are set within the builtin member of wire_protocol() contained in the
DomainParticipantQos (please refer to DomainParticipantQos).

Note

Be aware of the remote locators’ collections limits set within the DomainParticipantQos (please refer to
RemoteLocatorsAllocationAttributes).
It is recommended to use the highest number of local addresses found on all the systems belonging to the same domain.

15.10.1.2. Notify Fast DDS

Once a new network interface has been enabled, Fast DDS has to be manually notified.
This is done calling DomainParticipant::set_qos().
The DomainParticipantQoS that is passed to the method can either change one of the mutable DomainParticipant QoS or
it can simply be the current DomainParticipant QoS (obtained with get_qos()).

Using DomainParticipant::set_qos() is the reason for the previous prerequisites: once the DomainParticipant is
enabled, there are several QoS policies that are immutable and cannot be changed at run-time.
WireProtocolConfigQos where the aforementioned lists are defined is among these immutable policies.

Find below a brief snippet of how to use this feature:

// Create the DomainParticipant
DomainParticipant* participant =
 DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_DEFAULT);
if (nullptr == participant)
{
 // Error
 return;
}

// User application

// Notify Fast DDS a new network interface is available
participant->set_qos(PARTICIPANT_QOS_DEFAULT);

Important

This feature is still under development and only officially supported for UDPv4 Transport without whitelisting.

 15.11. How to use eProsima DDS Record and Replay (rosbag2 and DDS)

15.11. How to use eProsima DDS Record and Replay (rosbag2 and DDS)

eProsima DDS Record and Replay allows the user to continuously monitor the ROS 2 traffic in real time,
and to play it back at any given time.
This highly contributes to facilitating simulation of real life conditions,
application testing, optimizing data analysis and general troubleshooting.
rosbag2 [https://github.com/ros2/rosbag2] is a ROS 2 application that can be used to capture DDS messages
and store them on an SQLite database which allows inspecting and replaying said messages at a later time.

15.11.1. rosbag2 interactions with a native Fast DDS application

Using rosbag2 to capture traffic between ROS 2 talkers and listeners is straightforward.
However, recording and replaying messages sent by Fast DDS participants outside ROS 2 ecosystem requires some
modifications.

15.11.1.1. Prerequisites

A Fast DDS installation, either binary or from sources is required.
Fast DDS-Gen is also required for generating the examples and Fast DDS TypeSupport from the IDL file.
A ROS 2 installation with the rosbag2 package is needed as well.

15.11.1.2. DDS IDL interoperability with ROS 2 messages

DDS uses IDLs to define the data model being exchanged by the applications.
While ROS 2 can use IDL files to define the messages, there are some rules that these IDL files must follow so
compatibility between ROS 2 and Fast DDS native applications can be achieved.
Specifically, the type definition must be nested inside the type module name and then the generator to be used.
For ROS 2 messages, the generator would be msg, whereas in this case, the idl generator must be used.
Assuming that the type module name selected is fastdds_record_typesupport the following HelloWorld.idl
file could be defined.
This IDL file will be the one used in the following steps.

module fastdds_record_typesupport
{
 module idl
 {
 struct HelloWorld
 {
 unsigned long index;
 string message;
 };
 };
};

By default, rosbag2 can only recognize those Topics which types ROS 2 has already defined in its different TypeSupport
libraries.
Therefore, a new ROS 2 TypeSupport module library generated with the previously defined types must be created,
so rosbag2 would be able to parse the message contents coming from the Fast DDS application.
First, the new ROS 2 TypeSupport package should be created.
Follow the instructions below, after having sourced your ROS 2 installation:

ros2 pkg create --build-type ament_cmake fastdds_record_typesupport

This command will create a new ROS 2 package named fastdds_record_typesupport with the following folder structure:

.
└── fastdds_record_typesupport
 ├── include
 │ └── fastdds_record_typesupport
 ├── src
 ├── CMakeLists.txt
 └── package.xml

ROS 2 TypeSupport code generators expect IDL files inside their own idl folder, so the final folder structure would be
like this:

.
└── fastdds_record_typesupport
 ├── idl
 │ └── HelloWorld.idl
 ├── include
 │ └── fastdds_record_typesupport
 ├── src
 ├── CMakeLists.txt
 └── package.xml

In order to generate the TypeSupport interfaces required, the CMakeLists.txt file should be modified accordingly so the
ROS 2 TypeSupport generator is called.
Please add the following lines to the CMakeLists.txt file before calling ament_package():

find_package(rosidl_default_generators REQUIRED)

set(idl_files
 "idl/HelloWorld.idl"
)

rosidl_generate_interfaces(${PROJECT_NAME}
 ${idl_files}
)

Similarly, the package.xml file should be modified adding the ROS 2 TypeSupport generator dependency.
Add the following lines to the package.xml file after the buildtool_depend tags:

<buildtool_depend>rosidl_default_generators</buildtool_depend>
<exec_depend>rosidl_default_runtime</exec_depend>
<member_of_group>rosidl_interface_packages</member_of_group>

The last step would be to build the package.
Run the following command within the fastdds_record_typesupport folder:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp colcon build

The build process will create inside the install folder a new ROS 2 overlay with all the required
libraries and scripts for the ROS 2 applications to use te type defined in the IDL file.

15.11.1.3. Fast DDS Application tuning

ROS 2 adds special tokens to the topic names depending on the ROS 2 subsystem the topic belongs to.
More information on this topic can be found on ROS 2 design documentation [https://design.ros2.org/articles/topic_and_service_names.html#examples-of-ros-names-to-dds-concepts] .

Using the same IDL file defined earlier, Fast DDS-Gen can generate the required code to handle the new type in
Fast DDS.
The changes required in the Fast DDS application so rosbag2 can communicate with it are going to be illustrated via the
Publisher/Subscriber example generated automatically from an IDL using Fast DDS-Gen.
An in-depth guide to Fast DDS-Gen can be found
here [https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/fastddsgen/fastddsgen.html].

In the case of plain topics, the namespace “rt/” is added by ROS 2 to the DDS topic name.
DataType names for ROS 2 generated types are structured concatenating the modules names.
For the IDL being used in this example the data type name would be “fastdds_record_typesupport::idl::HelloWorld”.

Create a new workspace different from the ROS 2 one used previously.
Copy inside the same IDL file and run Fast DDS-Gen to generate
the TypeSupport and the example source files:

mkdir HelloWorldExample
cd HelloWorldExample
cp <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/idl/HelloWorld.idl .
fastddsgen -example CMake -typeros2 HelloWorld.idl

This command will populate the current folder with the required header and source files to build the TypeSupport,
and the Publisher and Subscriber applications.

└── HelloWorldExample
 ├── CMakeLists.txt
 ├── HelloWorld.cxx
 ├── HelloWorld.h
 ├── HelloWorld.idl
 ├── HelloWorldPublisher.cxx
 ├── HelloWorldPublisher.h
 ├── HelloWorldPubSubMain.cxx
 ├── HelloWorldPubSubTypes.cxx
 ├── HelloWorldPubSubTypes.h
 ├── HelloWorldSubscriber.cxx
 └── HelloWorldSubscriber.h

The Fast DDS-Gen example should be modified taking into account the topic and type name mangling
applied by ROS 2 so communication can be established with rosbag2.
Having used the -typeros2 Fast DDS-Gen option when generating the TypeSupport, the generated type
name would already include the ROS 2 naming rule mangling.
However, the topic name must be modified manually both in the Publisher and Subscriber applications.
Look for the create_topic command in both the HelloWorldPublisher.cxx and the HelloWorldSubscriber.cxx
files and modify the topic name:

topic_ = participant_->create_topic(
 "rt/HelloWorldTopic",
 type_.get_type_name(),
 TOPIC_QOS_DEFAULT);
if (topic_ == nullptr)
{
 return false;
}

To build this example run the following commands:

mkdir build && cd build
cmake ..
make

This will create a HelloWorld binary file inside the build directory that can be used to launch both the Publisher
and the Subscriber applications.
Run each application in a terminal and confirm that the communication is established.

./HelloWorld publisher|subscriber

15.11.1.4. eProsima DDS Record and Replay

In order to use the generated ROS 2 TypeSupport package, the ROS 2 workspace should be sourced besides the
ROS 2 installation.
This allows rosbag2 to record the data types used in this example.
To start recording the traffic being exchanged between the Publisher/Subscriber applications the corresponding
ROS 2 Topic name has to be passed to rosbag2 (not to be mistaken with the DDS Topic name).
Remember also to ensure that Fast DDS is the ROS 2 middleware being used by setting the environment variable
RMW_IMPLEMENTATION.

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
source <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/install/setup.bash
ros2 bag record /HelloWorldTopic

Having the Publisher application running already, the following rosbag2 log discovery info would be shown:

[INFO] [1644320308.422161532] [rosbag2_recorder]: Subscribed to topic '/HelloWorldTopic'
[INFO] [1644320308.422292205] [rosbag2_recorder]: All requested topics are subscribed. Stopping discovery...

rosbag2 will proceed to create a folder named rosbag2_<DATE> with an SQLite database inside (db3 extension)
where the received messages will be recorded.
Within the folder a YAML file provides metadata information about the record: type and topic name, number of
messages recorded, record duration, etc.
The path to this database file can be used to replay the recorded messages.
Having the Subscriber application running, the previously recorded traffic will be replayed.
After stopping the rosbag2 application, rerun it in replay mode running the following command.
The recorded messages will be published by rosbag2 at their original publishing rate and the Subscriber application
will receive them:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
source <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/install/setup.bash
ros2 bag play <path-to-db-file>

 16. ROS 2 using Fast DDS middleware

16. ROS 2 using Fast DDS middleware

Fast DDS is the default middleware implementation in the
Open Source Robotic Fundation (OSRF) [https://www.openrobotics.org/]
Robot Operating System ROS 2 [https://index.ros.org/doc/ros2/] in every long term (LTS) releases and most of the
non-LTS releases.

ROS 2 is a state-of-the-art software for robot engineering which
consists of a set of free software libraries [https://github.com/ros2] and tools for building robot applications.
This section presents some use cases and shows how to take full advantage of
Fast DDS wide set of capabilities in a ROS 2 project.

The interface between the ROS 2 stack and Fast DDS is provided by a ROS 2 package
rmw_fastrtps [https://github.com/ros2/rmw_fastrtps].
This package is available in all ROS 2 distributions, both from binaries and from sources.
rmw_fastrtps actually provides not one but two different ROS 2 middleware implementations, both of them using Fast
DDS as middleware layer: rmw_fastrtps_cpp and rmw_fastrtps_dynamic_cpp.
The main difference between the two is that rmw_fastrtps_dynamic_cpp uses introspection type support at run time to
decide on the serialization/deserialization mechanism, while rmw_fastrtps_cpp uses its own type support, which
generates the mapping for each message type at build time.
The default ROS 2 RMW implementation until Foxy is rmw_fastrtps_cpp.
For Galactic the environment variable RMW_IMPLEMENTATION has to be set to select rmw_fastrtps_cpp in order to
use Fast DDS as the middleware layer.
This environment variable can also be used to select the rmw_fastrtps_dynamic_cpp implementation:

	Exporting RMW_IMPLEMENTATION environment variable:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp

or

export RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp

	When launching your ROS 2 application:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp ros2 run <package> <application>

or

RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp ros2 run <package> <application>

Note

Since Galactic you may have to install the rmw_fastrtps_cpp package:

sudo apt install ros-galactic-rmw-fastrtps-cpp

	16.1. Configuring Fast DDS in ROS 2

	16.2. Use ROS 2 with Fast-DDS Discovery Server

 16.1. Configuring Fast DDS in ROS 2

16.1. Configuring Fast DDS in ROS 2

ROS 2 only allows for the configuration of certain middleware QoS
(see ROS 2 QoS policies [https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/#qos-policies]).
However, rmw_fastrtps offers extended configuration capabilities
to take full advantage of the features in Fast DDS.
This section describes how to specify this extended configuration.

	Changing publication mode

	XML configuration

	XML configuration file location

	Applying different profiles to different entities

	Example

16.1.1. Changing publication mode

rmw_fastrtps in ROS 2 uses asynchronous publication by default.
This can be easily changed setting the environment variable RMW_FASTRTPS_PUBLICATION_MODE
to one of the following allowed values:

	ASYNCHRONOUS: asynchronous publication mode.
Setting this mode implies that when the publisher invokes the write operation, the data is copied into a queue,
a background thread (asynchronous thread) is notified about the addition to the queue,
and control of the thread is returned to the user before the data is actually sent.
The background thread is in charge of consuming the queue and sending the data to every matched reader.

	SYNCHRONOUS: synchronous publication mode.
Setting this mode implies that the data is sent directly within the context of the user thread.
This entails that any blocking call occurring during the write operation would block the user thread,
thus preventing the application from continuing its operation.
It is important to note that this mode typically yields higher throughput rates at lower latencies,
since there is no notification nor context switching between threads.

	AUTO: let Fast DDS select the publication mode.
This implies using the publication mode set in the XML file, or otherwise,
the default value set in Fast DDS (see PublishModeQosPolicy).

rmw_fastrtps defines two configurable parameters in addition to
ROS 2 QoS policies [https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/#qos-policies].
Said parameters, and their default values under ROS 2, are:

	Parameter

	Description

	Default ROS 2 value

	MemoryManagementPolicy

	Fast DDS preallocates memory for the publisher

and subscriber histories. When those histories fill

up, a reallocation occurs to reserve more memory.

	PREALLOCATED_WITH_REALLOC_MEMORY_MODE

	PublishModeQosPolicy

	User calls to publication method add the messages

in a queue that is managed in a different thread,

meaning that the user thread is available right

after the call to send data.

	ASYNCHRONOUS_PUBLISH_MODE

16.1.2. XML configuration

To use specific Fast-DDS features within a ROS 2 application,
XML configuration files can be used to configure a wide set of QoS.
Please refer to XML profiles to see the whole list of configuration options available in Fast DDS.

When configuring rmw_fastrtps using XML files, there are certain points that have to be taken into account:

	ROS 2 QoS contained in rmw_qos_profile_t [http://docs.ros2.org/latest/api/rmw/structrmw__qos__profile__t.html]
are always honored, unless set to *_SYSTEM_DEFAULT.
In that case, XML values, or Fast DDS default values in the absences of XML ones, are applied.
This means that if any QoS in rmw_qos_profile_t is set to something other than *_SYSTEM_DEFAULT,
the corresponding value in the XML is ignored.

	By default, rmw_fastrtps overrides the values for MemoryManagementPolicy and PublishModeQosPolicy.
This means that the values configured in the XML for these two parameters will be ignored.
Instead, PREALLOCATED_WITH_REALLOC_MEMORY_MODE and ASYNCHRONOUS_PUBLISH_MODE
are used respectively.

	The override of MemoryManagementPolicy and PublishModeQosPolicy can be avoided
by setting the environment variable RMW_FASTRTPS_USE_QOS_FROM_XML to 1
(its default value is 0).
This will make rmw_fastrtps use the values defined in the XML for
MemoryManagementPolicy and PublishModeQosPolicy.
Bear in mind that setting this environment variable but not setting these policies in the XML
results in using the default values in Fast DDS.
These are different from the aforementioned rmw_fastrtps default values
(see MemoryManagementPolicy and PublishModeQosPolicy).

	Setting RMW_FASTRTPS_USE_QOS_FROM_XML effectively overrides whatever configuration was set
with RMW_FASTRTPS_PUBLICATION_MODE, setting the publication mode to the value specified in the XML,
or to the Fast DDS default publication mode if none is set in the XML.

The following table summarizes which values are used or ignored according to the configured variables:

	RMW_FASTRTPS_USE_QOS_FROM_XML

	rmw_qos_profile_t

	Fast DDS XML QoS

	Fast DDS XML history memory policy

and publication mode

	0 (default)

	Default values

	Overridden by

rmw_qos_profile_t

	Overridden by

rmw_fastrtps default value

	0 (default)

	Non system default

	overridden by

rmw_qos_profile_t

	Overridden by

rmw_fastrtps default value

	0 (default)

	System default

	Used

	Overridden by

rmw_fastrtps default value

	1

	Default values

	Overridden by

rmw_qos_profile_t

	Used

	1

	Non system default

	Overridden by

rmw_qos_profile_t

	Used

	1

	System default

	Used

	Used

16.1.2.1. XML configuration file location

There are two possibilities for providing Fast DDS with XML configuration files:

	Recommended: Setting the location with environment variable FASTRTPS_DEFAULT_PROFILES_FILE
to contain the path to the XML configuration file (see Environment variables).

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>

	Alternative: Placing the XML file in the running application directory
under the name DEFAULT_FASTRTPS_PROFILES.xml.

For example:

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run <package> <application>

16.1.2.2. Applying different profiles to different entities

rmw_fastrtps allows for the configuration of different entities with different QoS using the same XML file.
For doing so, rmw_fastrtps locates profiles in the XML based on topic names.

16.1.2.2.1. Creating publishers/subscribers with different profiles

	To configure a publisher, define a <data_writer> profile
with attribute profile_name=topic_name, where topic_name is the name of the topic
prepended by the node namespace (which defaults to “” if not specified),
i.e. the node’s namespace followed by topic name used to create the publisher.
Mind that topic names always start with / (it is added when creating the topic if not present),
and that namespace and topic name are always separated by one /.
If such profile is not defined, rmw_fastrtps attempts to load the <data_writer> profile
with attribute is_default_profile="true".

	To configure a subscriber, define a <data_reader> profile
with attribute profile_name=topic_name, where topic_name is the name of the topic
prepended by the node namespace (which defaults to “” if not specified),
i.e. the node’s namespace followed by topic name used to create the subscriber.
Mind that topic names always start with / (it is added when creating the topic if not present),
and that namespace and topic name are always separated by one /.
If such profile is not defined, rmw_fastrtps attempts to load the <data_reader> profile
with attribute is_default_profile="true".

The following table presents different combinations of node namespaces and user specified topic names,
as well as the resulting topic names and the suitable profile names:

	User specified topic name

	Node namespace

	Final topic name

	Profile name

	chatter

	DEFAULT (“”)

	/chatter

	/chatter

	chatter

	test_namespace

	/test_namespace/chatter

	/test_namespace/chatter

	chatter

	/test_namespace

	/test_namespace/chatter

	/test_namespace/chatter

	/chatter

	test_namespace

	/chatter

	/chatter

	/chatter

	/test_namespace

	/chatter

	/chatter

Important

Node namespaces are NOT prepended to user specified topic names starting with /,
a.k.a Fully Qualified Names (FQN).
For a complete description of topic name remapping please refer to
Remapping Names [http://design.ros2.org/articles/static_remapping.html].

16.1.2.2.2. Creating services with different profiles

ROS 2 services contain a subscriber for receiving requests, and a publisher to reply to them.
rmw_fastrtps allows for configuring each of these endpoints separately in the following manner:

	To configure the request subscriber, define a <data_reader> profile with attribute profile_name=topic_name,
where topic_name is the name of the service after mangling.
For more information on name mangling, please refer to
Topic and Service name mapping to DDS [https://design.ros2.org/articles/topic_and_service_names.html].
If such profile is not defined, rmw_fastrtps attempts to load a <data_reader> profile
with attribute profile_name="service".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_reader> profile
with attribute is_default_profile="true".

	To configure the reply publisher, define a <data_writer> profile with attribute profile_name=topic_name,
where topic_name is the name of the service after mangling.
If such profile is not defined, rmw_fastrtps attempts to load a <data_writer> profile
with attribute profile_name="service".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_writer> profile
with attribute is_default_profile="true".

16.1.2.2.3. Creating clients with different profiles

ROS 2 clients contain a publisher to send requests, and a subscription to receive the service’s replies.
rmw_fastrtps allows for configuring each of these endpoints separately in the following manner:

	To configure the requests publisher, define a <data_writer> profile with attribute profile_name=topic_name,
where topic_name is the name of the service after mangling.
If such profile is not defined, rmw_fastrtps attempts to load a <data_writer> profile
with attribute profile_name="client".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_writer> profile
with attribute is_default_profile="true".

	To configure the reply subscription, define a <data_reader> profile with attribute profile_name=topic_name,
where topic_name is the name of the service after mangling.
If such profile is not defined, rmw_fastrtps attempts to load a <data_reader> profile
with attribute profile_name="client".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_reader> profile
with attribute is_default_profile="true".

16.1.2.2.4. Creating ROS contexts and nodes

ROS context and node entities are mapped to Fast DDS Participant entity,
according to the following table:

	ROS entity

	Fast DDS entity since Foxy

	Fast DDS entity in Eloquent & below

	Context

	Participant

	Not DDS direct mapping

	Node

	Not DDS direct mapping

	Participant

This means that on Foxy and later releases, contexts can be configured using a <Participant> profile
with attribute is_default_profile="true".
The same profile will be used in Eloquent and below to configure nodes.

For example, a profile for a ROS 2 context on Foxy and later releases would be specified as:

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_ros2" is_default_profile="true">
 <rtps>
 <name>profile_for_ros2_context</name>
 </rtps>
 </participant>
</profiles>

16.1.3. Example

The following example uses the ROS 2 talker/listener demo, configuring Fast DDS to publish synchronously, and to have
dynamically allocated publisher and subscriber histories.

	Create a XML file ros_example.xml and save it in path/to/xml/

	XML

	<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
 <participant profile_name="participant_profile_ros2" is_default_profile="true">
 <rtps>
 <name>profile_for_ros2_context</name>
 </rtps>
 </participant>

 <!-- Default publisher profile -->
 <data_writer profile_name="default publisher profile" is_default_profile="true">
 <qos>
 <publishMode>
 <kind>SYNCHRONOUS</kind>
 </publishMode>
 </qos>
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
 </data_writer>

 <!-- Publisher profile for topic helloworld -->
 <data_writer profile_name="helloworld">
 <qos>
 <publishMode>
 <kind>SYNCHRONOUS</kind>
 </publishMode>
 </qos>
 </data_writer>

 <!-- Request subscriber profile for services -->
 <data_reader profile_name="service">
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
 </data_reader>

 <!-- Request publisher profile for clients -->
 <data_writer profile_name="client">
 <qos>
 <publishMode>
 <kind>ASYNCHRONOUS</kind>
 </publishMode>
 </qos>
 </data_writer>

 <!-- Request subscriber profile for server of service "add_two_ints" -->
 <data_reader profile_name="rq/add_two_intsRequest">
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
 </data_reader>

 <!-- Reply subscriber profile for client of service "add_two_ints" -->
 <data_reader profile_name="rr/add_two_intsReply">
 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
 </data_reader>
</profiles>

	Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp talker

	Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp listener

 16.2. Use ROS 2 with Fast-DDS Discovery Server

16.2. Use ROS 2 with Fast-DDS Discovery Server

This section explains how to run some ROS 2 examples using the Discovery Servers
as discovery communication.
In order to get more information about the specific use of this configuration,
please check the Discovery Server Documentation
or read the common use cases for this configuration.

The following tutorial gathers the steps to check this functionality and learn how to use it with ROS 2.

	Discovery Server v2

	Prerequisites

	Run the demo

	Setup Discovery Server

	Launch node listener

	Launch node talker

	Demonstrate Discovery Server execution

	Advance user cases

	Server Redundancy

	Backup Server

	Discovery partitions

	ROS 2 Introspection

	Daemon’s related commands

	No Daemon commands

	Compare Discovery Server with Simple Discovery

The Simple Discovery Protocol is the
standard protocol defined in the DDS standard [https://www.omg.org/omg-dds-portal/].
However, it has certain known disadvantages in some scenarios, mainly:

	It does not Scale efficiently, as the number of exchanged packets highly increases as new nodes are added.

	It requires Multicasting capabilities that may not work reliably in some scenarios, e.g. WiFi.

The Discovery Server provides a Client-Server Architecture that allows
the nodes to connect with each other using an intermediate server.
Each node will work as a Client, sharing its info with the Discovery Server and receiving
the discovery information from it.
This means that the network traffic is highly reduced in big systems, and it does not require Multicasting.

[image: ../../../_images/ds_explanation.svg]These Discovery Servers can be independent, duplicated or connected with each other in order to create
redundancy over the network and avoid having a Single-Point-Of-Failure.

16.2.1. Discovery Server v2

The new version v2 of Discovery Server, available from Fast DDS v2.0.2, implements a new filter feature
that allows to further reduce the number of discovery messages sent.
This version uses the topic of the different nodes to decide if two nodes must be connected, or they
could be left unmatched.
The following schema represents the decrease of the discovery packages:

[image: ../../../_images/ds1vs2.svg]This architecture reduces the number of packages sent between the server and the different clients dramatically.
In the following graph, the reduction in traffic network over the discovery phase for a
RMF Clinic demo use case, is shown:

[image: ../../../_images/discovery_server_v2_performance.svg]In order to use this functionality, Fast-DDS Discovery Server can be set using
the XML configuration for Participants.
Furthermore, Fast DDS provides an easier way to set a Discovery Server communication using
the fastdds CLI tool and an environment variable,
which are going to be used along this tutorial.
For a more detailed explanation about the configuration of the Discovery Server,
visit Discovery Server Settings.

16.2.2. Prerequisites

This tutorial assumes you have at least a
working Foxy ROS 2 installation [https://index.ros.org/doc/ros2/Installation/].
In case your installation is using a Fast DDS version lower than v2.0.2 you could not use the fastdds tool.
You could update your repository to use a different Fast DDS version,
or set the discovery server by Fast-DDS XML QoS configuration.

Note

This tutorial can also be run in Galactic exporting the environment variable that selects Fast DDS as the
middleware layer:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp

16.2.3. Run the demo

The talker-listener ROS 2 demo allows to create a talker node that publishes a Hello World message every second,
and a listener node that listens to these messages.

By Sourcing ROS 2 [https://index.ros.org/doc/ros2/Tutorials/Configuring-ROS2-Environment/]
you will get access to the CLI of Fast DDS: fastdds.
This CLI gives access to the discovery tool,
which allows to launch a server. This server will manage the discovery process for the nodes that connect to it.

Important

Do not forget to source ROS 2 [https://index.ros.org/doc/ros2/Tutorials/Configuring-ROS2-Environment/]
in every new terminal opened.

16.2.3.1. Setup Discovery Server

Start by launching a server with id 0, with port 11811 and listening on all available interfaces.

Open a new terminal and run:

fastdds discovery -i 0

16.2.3.2. Launch node listener

Execute the listener demo, that will listen in /chatter topic.

In a new terminal, set the environment variable ROS_DISCOVERY_SERVER to use Discovery Server.
(Do not forget to source ROS 2 in every new terminal)

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"

Afterwards, launch the listener node. Use the argument --remap __node:=listener_discovery_server
to change the node’s name for future purpose.

ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_discovery_server

This process will create a ROS 2 node, that will automatically create a client for the Discovery Server
and use the server created previously to run the discovery protocol.

16.2.3.3. Launch node talker

Open a new terminal and set the environment variable as before, so the node raises a client for the discovery protocol.

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_discovery_server

Now, we should see the talker publishing Hello World messages, and the listener receiving these messages.

16.2.3.4. Demonstrate Discovery Server execution

So far, there is not proof that this example and the standard talker-listener example run differently.
For this purpose, run another node that is not connected to our Discovery Server.
Just run a new listener (listening in /chatter topic by default) in a new terminal and check that it is
not connected to the talker already running.

ros2 run demo_nodes_cpp listener --ros-args --remap __node:=simple_listener

In this case, we should not see the listener receiving the messages.

To finally verify that everything is running correctly, a new talker can be created using the
simple discovery protocol.

ros2 run demo_nodes_cpp talker --ros-args --remap __node:=simple_talker

Now we should see the listener simple_listener receiving the messages from simple_talker but not the other
messages from talker_discovery_server.

16.2.4. Advance user cases

The following paragraphs are going to show different features of the Discovery Server
that allows to hold a robust structure over the node’s network.

16.2.4.1. Server Redundancy

By using the Fast DDS tool, several servers can be created, and the nodes can be connected to as many
servers as desired. This allows to have a safe redundancy network that will work even if some servers or
nodes shut down unexpectedly.
Next schema shows a simple architecture that will work with server redundancy:

[image: ../../../_images/ds_redundancy_example.svg]In different terminals, run the next code to establish a communication over redundant servers.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

fastdds discovery -i 1 -l 127.0.0.1 -p 11888

-i N means server with id N. When referencing the servers with ROS_DISCOVERY_SERVER,
server 0 must be in first place and server 1 in second place.

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

Now, if one of these servers fails, there would still be discovery communication between nodes.

16.2.4.2. Backup Server

Fast DDS Discovery Server allows to easily build a server with a backup functionality.
This allows the server to retake the last state it saved in case of a shutdown.

[image: ../../../_images/ds_backup_example.svg]In different terminals, run the next code to establish a communication over a backup server.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811 -b

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

Several backup files are created in the path the server has run.
Two SQLite files and two json files that contains the information required to
raise a new server in case of failure, avoiding the whole discovery process to happen again and
without losing information.

16.2.4.3. Discovery partitions

The Discovery Server communication could be used with different servers to split in virtual
partitions the discovery info.
This means that two endpoints only would know each other if there is a server or a server network
between them.
We are going to execute an example with two different independent servers.
The following image shows a schema of the architecture desired:

[image: ../../../_images/ds_partition_example.svg]With this schema Listener 1 will be connected to Talker 1 and Talker 2, as they
share Server 1.
Listener 2 will connect with Talker 1 as they share Server 2.
But Listener 2 will not hear the messages from Talker 2 because they do not
share any server or servers’ network that connect them.

Run the first server listening in localhost in default port 11811.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

In another terminal run the second server listening in localhost in port another port, in this case 11888.

fastdds discovery -i 1 -l 127.0.0.1 -p 11888

Now, run each node in a different terminal. Use the environment variable ROS_DISCOVERY_SERVER to decide which
server they are connected to. Be aware that the ids must match (Environment variables).

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_1

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_1

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_2

export ROS_DISCOVERY_SERVER=";127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_2

We should see how Listener 1 is receiving double messages, while Listener 2 is in a different
partition from Talker 2 and so it does not listen to it.

Note

Once two endpoints know each other, they do not need the server network between them to
listen to each other messages.

16.2.5. ROS 2 Introspection

ROS 2 Command Line Interface (CLI) implements several introspection features to analyze the behaviour of a ROS 2
execution.
These features (i.e. rosbag, topic list, etc.) are very helpful to understand a ROS 2 working network.

Most of these features use the DDS capability to share any topic information with every exiting participant.
However, the new Discovery Server v2 implements a traffic network reduction
that limits the discovery data between nodes that do not share a topic.
This means that not every node will receive every topic data unless it has a reader in that topic.
As most of ROS 2 CLI Introspection is executed by adding a node into the network (some of them use ROS 2 Daemon,
and some create their own nodes), using Discovery Server v2 we will find that most of these functionalities are
limited and do not have all the information.

The Discovery Server v2 functionality allows every node running as a SUPER_CLIENT, a kind of Client that
connects to a SERVER, from which it receives all the available discovery information (instead of just what it needs).
In this sense, ROS 2 introspection tools can be configured as Super Client, thus being able to discover every entity
that is using the Discovery Server protocol within the network.

16.2.5.1. Daemon’s related commands

The ROS 2 Daemon is used in several ROS 2 CLI introspection commands.
It adds a ROS 2 Node to the network in order to receive all the data sent.
In order for the ROS 2 CLI to work when using Discover Server discovery mechanism, the ROS 2 Daemon needs to be
configured as Super Client.
Therefore, this section is devoted to explain how to use ROS 2 CLI with ROS 2 Daemon running as a Super Client.
This will allow the Daemon to discover the entire Node graph, and to receive every topic and endpoint information.
To do so, a Fast DDS XML configuration file is used to configure the ROS 2 Daemon and CLI tools.

Warning

Although it is possible to run the ROS 2 Daemon as a Server, this is not recommended since the daemon will stop
after two hours of inactivity, taking the Server down with it.

Below you can find a XML configuration file which will configure every new participant as a Super Client.

	XML Super Client configuration file

First of all, instantiate a Discovery Server using Fast DDS CLI

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

Run a talker and a listener that will discover each other through the Server (notice that ROS_DISCOVERY_SERVER
configuration is the same as the one in super_client_configuration_file.xml).

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

Then, instantiate a ROS 2 Daemon using the Super Client configuration (remember to source ROS 2 installation in
every new terminal).

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
ros2 daemon stop
ros2 daemon start
ros2 topic list
ros2 node info /talker
ros2 topic info /chatter
ros2 topic echo /chatter

We can also see the Node’s Graph using the ROS 2 tool rqt_graph as follows (you may need to press the refresh button):

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
rqt_graph

16.2.5.2. No Daemon commands

Some ROS 2 CLI tools can be executed without the ROS 2 Daemon.
In order for these tools to connect with a Discovery Server and receive all the topics information
they need to be instantiated as a Super Client that connects to the Server.

Following the previous configuration, build a simple system with a talker and a listener.
First, run a Server:

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

Then, run the talker and listener is separate terminals:

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

Continue using the ROS 2 CLI with --no-daemon option with the new configuration.
New nodes will connect with the existing Server and will know every topic.
Exporting ROS_DISCOVERY_SERVER is not needed as the remote server has been configured in the xml file.

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
ros2 topic list --no-daemon
ros2 node info /talker --no-daemon --spin-time 2

16.2.6. Compare Discovery Server with Simple Discovery

In order to compare the ROS 2 execution using Simple Discovery or Discovery Server, two scripts that
execute a talker and many listeners and analyze the network traffic during this time are provided.
For this experiment, tshark is required to be installed on your system.
The configuration file is mandatory in order to avoid using intra-process mode.

Note

These scripts require a Discovery Server closure feature that is only available from
Fast DDS v2.1.0 and forward.
In order to use this functionality, compile ROS 2 with Fast DDS v2.1.0 or higher.

These scripts’ functionalities are references for advance purpose and their study is left to the user.

	bash network traffic generator

	python3 graph generator

	XML configuration

Run the bash script with the setup path to source ROS 2 as argument.
This will generate the traffic trace for simple discovery.
Executing the same script with second argument SERVER, it will generates the trace for service discovery.

Note

Depending on your configuration of tcpdump, this script may require sudo privileges to read traffic across
your network device.

After both executions are done, run the python script to generates a graph similar to the one below:

$ export FASTRTPS_DEFAULT_PROFILES_FILE="no_intraprocess_configuration.xml"
$ sudo bash generate_discovery_packages.bash ~/ros2_foxy/install/local_setup.bash
$ sudo bash generate_discovery_packages.bash ~/ros2_foxy/install/local_setup.bash SERVER
$ python3 discovery_packets.py

[image: ../../../_images/discovery_packets.svg]This graph is the result of a is a specific example, the user can execute the scripts and watch their own results.
It can easily be seen how the network traffic is reduced when using Discovery Service.

The reduction in traffic is a result of avoiding every node announcing itself and waiting a response from every other
node in the net.
This creates a huge amount of traffic in large architectures.
This reduction from this method increases with the number of Nodes, making this architecture more scalable than the
simple one.

Since Fast DDS v2.0.2 the new Discovery Server v2 is available, substituting the old Discovery Server.
In this new version, those nodes that do not share topics will not know each other, saving the whole discovery data
required to connect them and their endpoints.
Notice that this is not this example case, but even though the massive reduction could be appreciate
due to the hidden architecture topics of ROS 2 nodes.

 17. C++ API Reference

17. C++ API Reference

Fast DDS, as a Data Distribution Service (DDS) standard implementation, exposes the DDS Data-Centric Publish-Subscribe
(DCPS) Platform Independent Model (PIM) API, as specified in the
DDS specification [https://www.omg.org/spec/DDS/1.4/PDF].
Furthermore, is also gives the user the possibility to directly interact with the underlying Real-time
Publish-Subscribe (RTPS) API that DDS implements for wired communications, as specified in the
RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF].

This section presents the most commonly used APIs provided by Fast DDS.
For more information about the API reference, please refer to
Fast DDS API reference [https://www.eprosima.com/docs/fast-rtps/latest/API].

	17.1. DDS DCPS PIM
	17.1.1. Core
	17.1.1.1. Entity

	17.1.1.2. DomainEntity

	17.1.1.3. Policy
	17.1.1.3.1. DataRepresentationId

	17.1.1.3.2. DataRepresentationQosPolicy

	17.1.1.3.3. DataSharingQosPolicy

	17.1.1.3.4. DataSharingKind

	17.1.1.3.5. DeadlineQosPolicy

	17.1.1.3.6. DestinationOrderQosPolicy

	17.1.1.3.7. DestinationOrderQosPolicyKind

	17.1.1.3.8. DisablePositiveACKsQosPolicy

	17.1.1.3.9. DurabilityQosPolicy

	17.1.1.3.10. DurabilityQosPolicyKind

	17.1.1.3.11. DurabilityServiceQosPolicy

	17.1.1.3.12. EntityFactoryQosPolicy

	17.1.1.3.13. GenericDataQosPolicy

	17.1.1.3.14. GroupDataQosPolicy

	17.1.1.3.15. HistoryQosPolicy

	17.1.1.3.16. HistoryQosPolicyKind

	17.1.1.3.17. LatencyBudgetQosPolicy

	17.1.1.3.18. LifespanQosPolicy

	17.1.1.3.19. LivelinessQosPolicy

	17.1.1.3.20. LivelinessQosPolicyKind

	17.1.1.3.21. OwnershipQosPolicy

	17.1.1.3.22. OwnershipQosPolicyKind

	17.1.1.3.23. OwnershipStrengthQosPolicy

	17.1.1.3.24. ParticipantResourceLimitsQos

	17.1.1.3.25. Partition_t

	17.1.1.3.26. PartitionQosPolicy

	17.1.1.3.27. PresentationQosPolicy

	17.1.1.3.28. PresentationQosPolicyAccessScopeKind

	17.1.1.3.29. PropertyPolicyQos

	17.1.1.3.30. PublishModeQosPolicy

	17.1.1.3.31. PublishModeQosPolicyKind

	17.1.1.3.32. QosPolicy

	17.1.1.3.33. QosPolicyId_t

	17.1.1.3.34. ReaderDataLifecycleQosPolicy

	17.1.1.3.35. ReliabilityQosPolicy

	17.1.1.3.36. ReliabilityQosPolicyKind

	17.1.1.3.37. ResourceLimitsQosPolicy

	17.1.1.3.38. RTPSEndpointQos

	17.1.1.3.39. TimeBasedFilterQosPolicy

	17.1.1.3.40. TopicDataQosPolicy

	17.1.1.3.41. TransportConfigQos

	17.1.1.3.42. TransportPriorityQosPolicy

	17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	17.1.1.3.44. TypeConsistencyKind

	17.1.1.3.45. UserDataQosPolicy

	17.1.1.3.46. WireProtocolConfigQos

	17.1.1.3.47. WriterDataLifecycleQosPolicy

	17.1.1.3.48. WriterResourceLimitsQos

	17.1.1.4. Status
	17.1.1.4.1. BaseStatus

	17.1.1.4.2. DeadlineMissedStatus

	17.1.1.4.3. IncompatibleQosStatus

	17.1.1.4.4. InconsistentTopicStatus

	17.1.1.4.5. LivelinessChangedStatus

	17.1.1.4.6. MatchedStatus

	17.1.1.4.7. OfferedDeadlineMissedStatus

	17.1.1.4.8. OfferedIncompatibleQosStatus

	17.1.1.4.9. PublicationMatchedStatus

	17.1.1.4.10. QosPolicyCount

	17.1.1.4.11. QosPolicyCountSeq

	17.1.1.4.12. RequestedDeadlineMissedStatus

	17.1.1.4.13. RequestedIncompatibleQosStatus

	17.1.1.4.14. LivelinessLostStatus

	17.1.1.4.15. SampleLostStatus

	17.1.1.4.16. SampleRejectedStatus

	17.1.1.4.17. SampleRejectedStatusKind

	17.1.1.4.18. StatusMask

	17.1.1.4.19. SubscriptionMatchedStatus

	17.1.1.5. Condition
	17.1.1.5.1. Condition

	17.1.1.5.2. ConditionSeq

	17.1.1.5.3. GuardCondition

	17.1.1.5.4. StatusCondition

	17.1.1.5.5. Wait-set

	17.1.1.6. LoanableArray

	17.1.1.7. LoanableCollection

	17.1.1.8. LoanableSequence

	17.1.1.9. StackAllocatedSequence

	17.1.2. Domain
	17.1.2.1. DomainParticipant

	17.1.2.2. DomainParticipantFactory

	17.1.2.3. DomainParticipantFactoryQos

	17.1.2.4. DomainParticipantListener

	17.1.2.5. DomainParticipantQos

	17.1.3. Publisher
	17.1.3.1. DataWriter

	17.1.3.2. DataWriterListener

	17.1.3.3. DataWriterQos

	17.1.3.4. Publisher

	17.1.3.5. PublisherListener

	17.1.3.6. PublisherQos

	17.1.3.7. RTPSReliableWriterQos

	17.1.4. Subscriber
	17.1.4.1. DataReader

	17.1.4.2. DataReaderListener

	17.1.4.3. DataReaderQos

	17.1.4.4. InstanceStateKind

	17.1.4.5. ReadCondition

	17.1.4.6. ReaderResourceLimitsQos

	17.1.4.7. RTPSReliableReaderQos

	17.1.4.8. SampleInfo

	17.1.4.9. SampleStateKind

	17.1.4.10. Subscriber

	17.1.4.11. SubscriberListener

	17.1.4.12. SubscriberQos

	17.1.4.13. TypeConsistencyQos

	17.1.4.14. ViewStateKind

	17.1.5. Topic
	17.1.5.1. TopicDataType

	17.1.5.2. TypeSupport

	17.1.5.3. TopicDescription

	17.1.5.4. Topic

	17.1.5.5. ContentFilteredTopic

	17.1.5.6. IContentFilter

	17.1.5.7. IContentFilterFactory

	17.1.5.8. TopicListener

	17.1.5.9. TopicQos

	17.1.5.10. TypeIdV1

	17.1.5.11. TypeInformation

	17.1.5.12. TypeObjectV1

	17.2. RTPS
	17.2.1. Attributes
	17.2.1.1. BuiltinAttributes

	17.2.1.2. c_default_RTPSParticipantAllocationAttributes

	17.2.1.3. DiscoveryProtocol

	17.2.1.4. DiscoverySettings

	17.2.1.5. EndpointAttributes

	17.2.1.6. HistoryAttributes

	17.2.1.7. InitialAnnouncementConfig

	17.2.1.8. ParticipantFilteringFlags

	17.2.1.9. PropertyPolicy

	17.2.1.10. PropertyPolicyHelper

	17.2.1.11. ReaderAttributes

	17.2.1.12. ReaderTimes

	17.2.1.13. RemoteLocatorsAllocationAttributes

	17.2.1.14. RemoteServerAttributes

	17.2.1.15. RemoteServerList_t

	17.2.1.16. RTPSParticipantAllocationAttributes

	17.2.1.17. RTPSParticipantAttributes

	17.2.1.18. RTPSWriterPublishMode

	17.2.1.19. SendBuffersAllocationAttributes

	17.2.1.20. SimpleEDPAttributes

	17.2.1.21. TypeLookupSettings

	17.2.1.22. VariableLengthDataLimits

	17.2.1.23. WriterAttributes

	17.2.1.24. WriterTimes

	17.2.2. Builtin data
	17.2.2.1. ContentFilterProperty

	17.2.3. Common
	17.2.3.1. BinaryProperty
	17.2.3.1.1. BinaryProperty

	17.2.3.1.2. BinaryPropertyHelper

	17.2.3.1.3. BinaryPropertySeq

	17.2.3.2. CacheChange
	17.2.3.2.1. CacheChange_t

	17.2.3.2.2. ChangeForReader_t

	17.2.3.2.3. ChangeForReaderCmp

	17.2.3.2.4. ChangeForReaderStatus_t

	17.2.3.2.5. ChangeKind_t

	17.2.3.3. CDRMessage
	17.2.3.3.1. CDRMessage_t

	17.2.3.3.2. Macro definitions (#define)

	17.2.3.4. EntityId
	17.2.3.4.1. Const values

	17.2.3.4.2. Macro definitions (#define)

	17.2.3.4.3. EntityId_t

	17.2.3.4.4. EntityId_t Operators

	17.2.3.5. FragmentNumber
	17.2.3.5.1. FragmentNumber_t

	17.2.3.5.2. FragmentNumberSet_t

	17.2.3.6. Guid
	17.2.3.6.1. c_Guid_Unknown

	17.2.3.6.2. GUID_t

	17.2.3.6.3. GUID_t Operators

	17.2.3.7. GuidPrefix
	17.2.3.7.1. c_GuidPrefix_Unknown

	17.2.3.7.2. GuidPrefix_t

	17.2.3.7.3. GuidPrefix_t Operators

	17.2.3.8. InstanceHandle
	17.2.3.8.1. c_InstanceHandle_Unknown

	17.2.3.8.2. InstanceHandle_t

	17.2.3.8.3. InstanceHandle_t Operators

	17.2.3.9. Locator
	17.2.3.9.1. Macro definitions (#define)

	17.2.3.9.2. IsAddressDefined

	17.2.3.9.3. IsLocatorValid

	17.2.3.9.4. Locator_t

	17.2.3.9.5. LocatorList

	17.2.3.9.6. LocatorListConstIterator

	17.2.3.9.7. LocatorListIterator

	17.2.3.9.8. LocatorsIterator

	17.2.3.9.9. Locators

	17.2.3.9.10. Locator Operators

	17.2.3.10. LocatorSelectorEntry

	17.2.3.11. LocatorSelector

	17.2.3.12. MatchingInfo
	17.2.3.12.1. MatchingInfo

	17.2.3.12.2. MatchingStatus

	17.2.3.13. PortParameters

	17.2.3.14. Property
	17.2.3.14.1. Property

	17.2.3.14.2. PropertyHelper

	17.2.3.14.3. PropertySeq

	17.2.3.15. RemoteLocators
	17.2.3.15.1. RemoteLocators Operators

	17.2.3.15.2. RemoteLocatorList

	17.2.3.16. SampleIdentity

	17.2.3.17. SequenceNumber
	17.2.3.17.1. c_SequenceNumber_Unknown

	17.2.3.17.2. SequenceNumber_t Operators

	17.2.3.17.3. SequenceNumber_t

	17.2.3.17.4. SequenceNumberDiff

	17.2.3.17.5. SequenceNumberHash

	17.2.3.17.6. SequenceNumberSet_t

	17.2.3.17.7. sort_seqNum

	17.2.3.18. SerializedPayload
	17.2.3.18.1. Macro definitions (#define)

	17.2.3.18.2. SerializedPayload_t

	17.2.3.19. Time_t
	17.2.3.19.1. Const values

	17.2.3.19.2. Macro definitions (#define)

	17.2.3.19.3. eprosima::fastrtps::Duration_t

	17.2.3.19.4. eprosima::fastrtps::Time_t

	17.2.3.19.5. Time_t Operators

	17.2.3.19.6. Time_t

	17.2.3.20. Token
	17.2.3.20.1. AuthenticatedPeerCredentialToken

	17.2.3.20.2. DataHolder

	17.2.3.20.3. DataHolderHelper

	17.2.3.20.4. DataHolderSeq

	17.2.3.20.5. IdentityStatusToken

	17.2.3.20.6. IdentityToken

	17.2.3.20.7. PermissionsCredentialToken

	17.2.3.20.8. PermissionsToken

	17.2.3.20.9. Token

	17.2.3.21. Types
	17.2.3.21.1. BuiltinEndpointSet_t

	17.2.3.21.2. Const values

	17.2.3.21.3. Count_t

	17.2.3.21.4. Macro definitions (#define)

	17.2.3.21.5. DurabilityKind_t

	17.2.3.21.6. Endianness_t

	17.2.3.21.7. EndpointKind_t

	17.2.3.21.8. octet

	17.2.3.21.9. ProtocolVersion_t

	17.2.3.21.10. ReliabilityKind_t

	17.2.3.21.11. SubmessageFlag

	17.2.3.21.12. TopicKind_t

	17.2.3.21.13. VendorId_t

	17.2.3.22. WriteParams

	17.2.4. Endpoint

	17.2.5. Exceptions
	17.2.5.1. Exception

	17.2.6. Flow control
	17.2.6.1. FlowControllerDescriptor

	17.2.6.2. FlowControllerSchedulerPolicy

	17.2.6.3. ThroughputControllerDescriptor

	17.2.7. History
	17.2.7.1. History

	17.2.7.2. IChangePool

	17.2.7.3. IPayloadPool

	17.2.7.4. ReaderHistory

	17.2.7.5. WriterHistory

	17.2.8. RTPSParticipant
	17.2.8.1. ParticipantDiscoveryInfo
	17.2.8.1.1. ParticipantAuthenticationInfo

	17.2.8.1.2. ParticipantDiscoveryInfo

	17.2.8.1.3. ParticipantProxyData

	17.2.8.1.4. ReaderDiscoveryInfo

	17.2.8.1.5. ReaderProxyData

	17.2.8.1.6. WriterDiscoveryInfo

	17.2.8.1.7. WriterProxyData

	17.2.8.2. RTPSParticipant

	17.2.8.3. RTPSParticipantListener

	17.2.9. RTPSReader
	17.2.9.1. ReaderListener

	17.2.9.2. RTPSReader

	17.2.10. Resources
	17.2.10.1. MemoryManagementPolicy

	17.2.11. RTPSDomain

	17.2.12. RTPSWriter
	17.2.12.1. LivelinessData

	17.2.12.2. RTPSWriter

	17.2.12.3. WriterListener

	17.3. Transport
	17.3.1. Transport Generic Interfaces
	17.3.1.1. TransportDescriptorInterface

	17.3.1.2. TransportInterface

	17.3.1.3. TransportReceiverInterface

	17.3.1.4. SocketTransportDescriptor

	17.3.2. Chaining of transports
	17.3.2.1. ChainingTransportDescriptor

	17.3.2.2. ChainingTransport

	17.3.3. UDP Transport
	17.3.3.1. UDPTransportDescriptor

	17.3.3.2. UDPv4TransportDescriptor

	17.3.3.3. UDPv6TransportDescriptor

	17.3.3.4. test_UDPv4TransportDescriptor

	17.3.4. TCP Transport
	17.3.4.1. TCPTransportDescriptor

	17.3.4.2. TCPv4TransportDescriptor

	17.3.4.3. TCPv6TransportDescriptor

	17.3.5. Shared Memory Transport
	17.3.5.1. SharedMemTransportDescriptor

	17.4. LOG
	17.4.1. Colors
	17.4.1.1. Color Blue

	17.4.1.2. Color Bright

	17.4.1.3. Color Bright Blue

	17.4.1.4. Color Bright Cyan

	17.4.1.5. Color Bright Green

	17.4.1.6. Color Bright Magenta

	17.4.1.7. Color Bright Red

	17.4.1.8. Color Bright White

	17.4.1.9. Color Bright Yellow

	17.4.1.10. Color Cyan

	17.4.1.11. Color Def

	17.4.1.12. Color Green

	17.4.1.13. Color Magenta

	17.4.1.14. Color Red

	17.4.1.15. Color White

	17.4.1.16. Color Yellow

	17.4.2. FileConsumer

	17.4.3. Log

	17.4.4. LogConsumer

	17.4.5. logError

	17.4.6. logInfo

	17.4.7. logWarning

	17.4.8. OStreamConsumer

	17.4.9. StdoutConsumer

	17.4.10. StdoutErrConsumer

	17.5. Statistics
	17.5.1. DomainParticipant

	17.5.2. DataWriterQos

	17.5.3. DataReaderQos

	17.5.4. Topic names

 17.1. DDS DCPS PIM

17.1. DDS DCPS PIM

Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model (PIM) API

	17.1.1. Core
	17.1.1.1. Entity

	17.1.1.2. DomainEntity

	17.1.1.3. Policy
	17.1.1.3.1. DataRepresentationId

	17.1.1.3.2. DataRepresentationQosPolicy

	17.1.1.3.3. DataSharingQosPolicy

	17.1.1.3.4. DataSharingKind

	17.1.1.3.5. DeadlineQosPolicy

	17.1.1.3.6. DestinationOrderQosPolicy

	17.1.1.3.7. DestinationOrderQosPolicyKind

	17.1.1.3.8. DisablePositiveACKsQosPolicy

	17.1.1.3.9. DurabilityQosPolicy

	17.1.1.3.10. DurabilityQosPolicyKind

	17.1.1.3.11. DurabilityServiceQosPolicy

	17.1.1.3.12. EntityFactoryQosPolicy

	17.1.1.3.13. GenericDataQosPolicy

	17.1.1.3.14. GroupDataQosPolicy

	17.1.1.3.15. HistoryQosPolicy

	17.1.1.3.16. HistoryQosPolicyKind

	17.1.1.3.17. LatencyBudgetQosPolicy

	17.1.1.3.18. LifespanQosPolicy

	17.1.1.3.19. LivelinessQosPolicy

	17.1.1.3.20. LivelinessQosPolicyKind

	17.1.1.3.21. OwnershipQosPolicy

	17.1.1.3.22. OwnershipQosPolicyKind

	17.1.1.3.23. OwnershipStrengthQosPolicy

	17.1.1.3.24. ParticipantResourceLimitsQos

	17.1.1.3.25. Partition_t

	17.1.1.3.26. PartitionQosPolicy

	17.1.1.3.27. PresentationQosPolicy

	17.1.1.3.28. PresentationQosPolicyAccessScopeKind

	17.1.1.3.29. PropertyPolicyQos

	17.1.1.3.30. PublishModeQosPolicy

	17.1.1.3.31. PublishModeQosPolicyKind

	17.1.1.3.32. QosPolicy

	17.1.1.3.33. QosPolicyId_t

	17.1.1.3.34. ReaderDataLifecycleQosPolicy

	17.1.1.3.35. ReliabilityQosPolicy

	17.1.1.3.36. ReliabilityQosPolicyKind

	17.1.1.3.37. ResourceLimitsQosPolicy

	17.1.1.3.38. RTPSEndpointQos

	17.1.1.3.39. TimeBasedFilterQosPolicy

	17.1.1.3.40. TopicDataQosPolicy

	17.1.1.3.41. TransportConfigQos

	17.1.1.3.42. TransportPriorityQosPolicy

	17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	17.1.1.3.44. TypeConsistencyKind

	17.1.1.3.45. UserDataQosPolicy

	17.1.1.3.46. WireProtocolConfigQos

	17.1.1.3.47. WriterDataLifecycleQosPolicy

	17.1.1.3.48. WriterResourceLimitsQos

	17.1.1.4. Status
	17.1.1.4.1. BaseStatus

	17.1.1.4.2. DeadlineMissedStatus

	17.1.1.4.3. IncompatibleQosStatus

	17.1.1.4.4. InconsistentTopicStatus

	17.1.1.4.5. LivelinessChangedStatus

	17.1.1.4.6. MatchedStatus

	17.1.1.4.7. OfferedDeadlineMissedStatus

	17.1.1.4.8. OfferedIncompatibleQosStatus

	17.1.1.4.9. PublicationMatchedStatus

	17.1.1.4.10. QosPolicyCount

	17.1.1.4.11. QosPolicyCountSeq

	17.1.1.4.12. RequestedDeadlineMissedStatus

	17.1.1.4.13. RequestedIncompatibleQosStatus

	17.1.1.4.14. LivelinessLostStatus

	17.1.1.4.15. SampleLostStatus

	17.1.1.4.16. SampleRejectedStatus

	17.1.1.4.17. SampleRejectedStatusKind

	17.1.1.4.18. StatusMask

	17.1.1.4.19. SubscriptionMatchedStatus

	17.1.1.5. Condition
	17.1.1.5.1. Condition

	17.1.1.5.2. ConditionSeq

	17.1.1.5.3. GuardCondition

	17.1.1.5.4. StatusCondition

	17.1.1.5.5. Wait-set

	17.1.1.6. LoanableArray

	17.1.1.7. LoanableCollection

	17.1.1.8. LoanableSequence

	17.1.1.9. StackAllocatedSequence

	17.1.2. Domain
	17.1.2.1. DomainParticipant

	17.1.2.2. DomainParticipantFactory

	17.1.2.3. DomainParticipantFactoryQos

	17.1.2.4. DomainParticipantListener

	17.1.2.5. DomainParticipantQos

	17.1.3. Publisher
	17.1.3.1. DataWriter

	17.1.3.2. DataWriterListener

	17.1.3.3. DataWriterQos

	17.1.3.4. Publisher

	17.1.3.5. PublisherListener

	17.1.3.6. PublisherQos

	17.1.3.7. RTPSReliableWriterQos

	17.1.4. Subscriber
	17.1.4.1. DataReader

	17.1.4.2. DataReaderListener

	17.1.4.3. DataReaderQos

	17.1.4.4. InstanceStateKind

	17.1.4.5. ReadCondition

	17.1.4.6. ReaderResourceLimitsQos

	17.1.4.7. RTPSReliableReaderQos

	17.1.4.8. SampleInfo

	17.1.4.9. SampleStateKind

	17.1.4.10. Subscriber

	17.1.4.11. SubscriberListener

	17.1.4.12. SubscriberQos

	17.1.4.13. TypeConsistencyQos

	17.1.4.14. ViewStateKind

	17.1.5. Topic
	17.1.5.1. TopicDataType

	17.1.5.2. TypeSupport

	17.1.5.3. TopicDescription

	17.1.5.4. Topic

	17.1.5.5. ContentFilteredTopic

	17.1.5.6. IContentFilter

	17.1.5.7. IContentFilterFactory

	17.1.5.8. TopicListener

	17.1.5.9. TopicQos

	17.1.5.10. TypeIdV1

	17.1.5.11. TypeInformation

	17.1.5.12. TypeObjectV1

 17.1.1. Core

17.1.1. Core

	17.1.1.1. Entity

	17.1.1.2. DomainEntity

	17.1.1.3. Policy
	17.1.1.3.1. DataRepresentationId

	17.1.1.3.2. DataRepresentationQosPolicy

	17.1.1.3.3. DataSharingQosPolicy

	17.1.1.3.4. DataSharingKind

	17.1.1.3.5. DeadlineQosPolicy

	17.1.1.3.6. DestinationOrderQosPolicy

	17.1.1.3.7. DestinationOrderQosPolicyKind

	17.1.1.3.8. DisablePositiveACKsQosPolicy

	17.1.1.3.9. DurabilityQosPolicy

	17.1.1.3.10. DurabilityQosPolicyKind

	17.1.1.3.11. DurabilityServiceQosPolicy

	17.1.1.3.12. EntityFactoryQosPolicy

	17.1.1.3.13. GenericDataQosPolicy

	17.1.1.3.14. GroupDataQosPolicy

	17.1.1.3.15. HistoryQosPolicy

	17.1.1.3.16. HistoryQosPolicyKind

	17.1.1.3.17. LatencyBudgetQosPolicy

	17.1.1.3.18. LifespanQosPolicy

	17.1.1.3.19. LivelinessQosPolicy

	17.1.1.3.20. LivelinessQosPolicyKind

	17.1.1.3.21. OwnershipQosPolicy

	17.1.1.3.22. OwnershipQosPolicyKind

	17.1.1.3.23. OwnershipStrengthQosPolicy

	17.1.1.3.24. ParticipantResourceLimitsQos

	17.1.1.3.25. Partition_t

	17.1.1.3.26. PartitionQosPolicy

	17.1.1.3.27. PresentationQosPolicy

	17.1.1.3.28. PresentationQosPolicyAccessScopeKind

	17.1.1.3.29. PropertyPolicyQos

	17.1.1.3.30. PublishModeQosPolicy

	17.1.1.3.31. PublishModeQosPolicyKind

	17.1.1.3.32. QosPolicy

	17.1.1.3.33. QosPolicyId_t

	17.1.1.3.34. ReaderDataLifecycleQosPolicy

	17.1.1.3.35. ReliabilityQosPolicy

	17.1.1.3.36. ReliabilityQosPolicyKind

	17.1.1.3.37. ResourceLimitsQosPolicy

	17.1.1.3.38. RTPSEndpointQos

	17.1.1.3.39. TimeBasedFilterQosPolicy

	17.1.1.3.40. TopicDataQosPolicy

	17.1.1.3.41. TransportConfigQos

	17.1.1.3.42. TransportPriorityQosPolicy

	17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	17.1.1.3.44. TypeConsistencyKind

	17.1.1.3.45. UserDataQosPolicy

	17.1.1.3.46. WireProtocolConfigQos

	17.1.1.3.47. WriterDataLifecycleQosPolicy

	17.1.1.3.48. WriterResourceLimitsQos

	17.1.1.4. Status
	17.1.1.4.1. BaseStatus

	17.1.1.4.2. DeadlineMissedStatus

	17.1.1.4.3. IncompatibleQosStatus

	17.1.1.4.4. InconsistentTopicStatus

	17.1.1.4.5. LivelinessChangedStatus

	17.1.1.4.6. MatchedStatus

	17.1.1.4.7. OfferedDeadlineMissedStatus

	17.1.1.4.8. OfferedIncompatibleQosStatus

	17.1.1.4.9. PublicationMatchedStatus

	17.1.1.4.10. QosPolicyCount

	17.1.1.4.11. QosPolicyCountSeq

	17.1.1.4.12. RequestedDeadlineMissedStatus

	17.1.1.4.13. RequestedIncompatibleQosStatus

	17.1.1.4.14. LivelinessLostStatus

	17.1.1.4.15. SampleLostStatus

	17.1.1.4.16. SampleRejectedStatus

	17.1.1.4.17. SampleRejectedStatusKind

	17.1.1.4.18. StatusMask

	17.1.1.4.19. SubscriptionMatchedStatus

	17.1.1.5. Condition
	17.1.1.5.1. Condition

	17.1.1.5.2. ConditionSeq

	17.1.1.5.3. GuardCondition

	17.1.1.5.4. StatusCondition

	17.1.1.5.5. Wait-set

	17.1.1.6. LoanableArray

	17.1.1.7. LoanableCollection

	17.1.1.8. LoanableSequence

	17.1.1.9. StackAllocatedSequence

 17.1.1.1. Entity

17.1.1.1. Entity

	
class eprosima::fastdds::dds::Entity

	The Entity class is the abstract base class for all the objects that support QoS policies, a listener and a status condition.

Subclassed by eprosima::fastdds::dds::DomainEntity, eprosima::fastdds::dds::DomainParticipant

Public Functions

	
inline Entity(const StatusMask &mask = StatusMask::all())

	Constructor.

	Parameters

	mask – StatusMask (default: all)

	
inline virtual fastrtps::types::ReturnCode_t enable()

	This operation enables the Entity.

	Returns

	RETCODE_OK

	
inline void close()

	This operation disables the Entity before closing it.

	
inline const StatusMask &get_status_mask() const

	Retrieves the set of relevant statuses for the Entity.

	Returns

	Reference to the StatusMask with the relevant statuses set to 1

	
const StatusMask &get_status_changes() const

	Retrieves the set of triggered statuses in the Entity.

Triggered statuses are the ones whose value has changed since the last time the application read the status. When the entity is first created or if the entity is not enabled, all communication statuses are in the non-triggered state, so the list returned by the get_status_changes operation will be empty. The list of statuses returned by the get_status_changes operation refers to the status that are triggered on the Entity itself and does not include statuses that apply to contained entities.

	Returns

	const reference to the StatusMask with the triggered statuses set to 1

	
inline const InstanceHandle_t &get_instance_handle() const

	Retrieves the instance handler that represents the Entity.

	Returns

	Reference to the InstanceHandle

	
inline bool is_enabled() const

	Checks if the Entity is enabled.

	Returns

	true if enabled, false if not

	
inline StatusCondition &get_statuscondition()

	Allows access to the StatusCondition associated with the Entity.

	Returns

	Reference to StatusCondition object

 17.1.1.2. DomainEntity

17.1.1.2. DomainEntity

	
class eprosima::fastdds::dds::DomainEntity : public eprosima::fastdds::dds::Entity

	The DomainEntity class is a subclass of Entity created in order to differentiate between DomainParticipants and the rest of Entities.

Subclassed by eprosima::fastdds::dds::DataReader, eprosima::fastdds::dds::DataWriter, eprosima::fastdds::dds::Publisher, eprosima::fastdds::dds::Subscriber, eprosima::fastdds::dds::Topic

Public Functions

	
inline DomainEntity(const StatusMask &mask = StatusMask::all())

	Constructor.

	Parameters

	mask – StatusMask (default: all)

 17.1.1.3. Policy

17.1.1.3. Policy

	17.1.1.3.1. DataRepresentationId

	17.1.1.3.2. DataRepresentationQosPolicy

	17.1.1.3.3. DataSharingQosPolicy

	17.1.1.3.4. DataSharingKind

	17.1.1.3.5. DeadlineQosPolicy

	17.1.1.3.6. DestinationOrderQosPolicy

	17.1.1.3.7. DestinationOrderQosPolicyKind

	17.1.1.3.8. DisablePositiveACKsQosPolicy

	17.1.1.3.9. DurabilityQosPolicy

	17.1.1.3.10. DurabilityQosPolicyKind

	17.1.1.3.11. DurabilityServiceQosPolicy

	17.1.1.3.12. EntityFactoryQosPolicy

	17.1.1.3.13. GenericDataQosPolicy

	17.1.1.3.14. GroupDataQosPolicy

	17.1.1.3.15. HistoryQosPolicy

	17.1.1.3.16. HistoryQosPolicyKind

	17.1.1.3.17. LatencyBudgetQosPolicy

	17.1.1.3.18. LifespanQosPolicy

	17.1.1.3.19. LivelinessQosPolicy

	17.1.1.3.20. LivelinessQosPolicyKind

	17.1.1.3.21. OwnershipQosPolicy

	17.1.1.3.22. OwnershipQosPolicyKind

	17.1.1.3.23. OwnershipStrengthQosPolicy

	17.1.1.3.24. ParticipantResourceLimitsQos

	17.1.1.3.25. Partition_t

	17.1.1.3.26. PartitionQosPolicy

	17.1.1.3.27. PresentationQosPolicy

	17.1.1.3.28. PresentationQosPolicyAccessScopeKind

	17.1.1.3.29. PropertyPolicyQos

	17.1.1.3.30. PublishModeQosPolicy

	17.1.1.3.31. PublishModeQosPolicyKind

	17.1.1.3.32. QosPolicy

	17.1.1.3.33. QosPolicyId_t

	17.1.1.3.34. ReaderDataLifecycleQosPolicy

	17.1.1.3.35. ReliabilityQosPolicy

	17.1.1.3.36. ReliabilityQosPolicyKind

	17.1.1.3.37. ResourceLimitsQosPolicy

	17.1.1.3.38. RTPSEndpointQos

	17.1.1.3.39. TimeBasedFilterQosPolicy

	17.1.1.3.40. TopicDataQosPolicy

	17.1.1.3.41. TransportConfigQos

	17.1.1.3.42. TransportPriorityQosPolicy

	17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	17.1.1.3.44. TypeConsistencyKind

	17.1.1.3.45. UserDataQosPolicy

	17.1.1.3.46. WireProtocolConfigQos

	17.1.1.3.47. WriterDataLifecycleQosPolicy

	17.1.1.3.48. WriterResourceLimitsQos

 17.1.1.3.1. DataRepresentationId

17.1.1.3.1. DataRepresentationId

	
enum eprosima::fastdds::dds::DataRepresentationId

	Enum DataRepresentationId, different kinds of topic data representation

Values:

	
enumerator XCDR_DATA_REPRESENTATION

	Extended CDR Encoding version 1.

	
enumerator XML_DATA_REPRESENTATION

	XML Data Representation (Unsupported)

	
enumerator XCDR2_DATA_REPRESENTATION

	Extended CDR Encoding version 2.

 17.1.1.3.2. DataRepresentationQosPolicy

17.1.1.3.2. DataRepresentationQosPolicy

	
class eprosima::fastdds::dds::DataRepresentationQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	With multiple standard data Representations available, and vendor-specific extensions possible, DataWriters and DataReaders must be able to negotiate which data representation(s) to use. This negotiation shall occur based on DataRepresentationQosPolicy.

Warning

If a writer’s offered representation is contained within a reader’s sequence, the offer satisfies the request and the policies are compatible. Otherwise, they are incompatible.

Note

Immutable Qos Policy

Public Functions

	
inline DataRepresentationQosPolicy()

	Constructor.

	
virtual ~DataRepresentationQosPolicy() override = default

	Destructor.

	
inline bool operator==(const DataRepresentationQosPolicy &b) const

	Compares the given policy to check if it’s equal.

	Parameters

	b – QoS Policy.

	Returns

	True if the policy is equal.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
std::vector<DataRepresentationId_t> m_value

	List of DataRepresentationId.

By default, empty list.

 17.1.1.3.3. DataSharingQosPolicy

17.1.1.3.3. DataSharingQosPolicy

	
class eprosima::fastdds::dds::DataSharingQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Qos Policy to configure the data sharing

Note

Immutable Qos Policy

Public Functions

	
inline DataSharingQosPolicy()

	Constructor.

	
virtual ~DataSharingQosPolicy() = default

	Destructor.

	
inline DataSharingQosPolicy(const DataSharingQosPolicy &b)

	Copy constructor.

	Parameters

	b – Another DataSharingQosPolicy instance

	
inline virtual void clear() override

	Clears the QosPolicy object.

	
inline const DataSharingKind &kind() const

	
	Returns

	the current DataSharing configuration mode

	
inline const std::string &shm_directory() const

	
	Returns

	the current DataSharing shared memory directory

	
inline const std::vector<uint64_t> &domain_ids() const

	Gets the set of DataSharing domain IDs.

Each domain ID is 64 bit long. However, user-defined domain IDs are only 16 bit long, while the rest of the 48 bits are used for the automatically generated domain ID (if any).

	Automatic domain IDs use the 48 MSB and leave the 16 LSB as zero.

	User defined domain IDs use the 16 LSB and leave the 48 MSB as zero.

	Returns

	the current DataSharing domain IDs

	
inline void set_max_domains(uint32_t size)

	
	Parameters

	size – the new maximum number of domain IDs

	
inline const uint32_t &max_domains() const

	
	Returns

	the current configured maximum number of domain IDs

	
inline void automatic()

	Configures the DataSharing in automatic mode.

The default shared memory directory of the OS is used. A default domain ID is automatically computed.

	
inline void automatic(const std::vector<uint16_t> &domain_ids)

	Configures the DataSharing in automatic mode.

The default shared memory directory of the OS is used.

	Parameters

	domain_ids – the user configured DataSharing domain IDs (16 bits).

	
inline void automatic(const std::string &directory)

	Configures the DataSharing in automatic mode.

A default domain ID is automatically computed.

	Parameters

	directory – The shared memory directory to use.

	
inline void automatic(const std::string &directory, const std::vector<uint16_t> &domain_ids)

	Configures the DataSharing in automatic mode.

	Parameters

	
	directory – The shared memory directory to use.

	domain_ids – the user configured DataSharing domain IDs (16 bits).

	
inline void on(const std::string &directory)

	Configures the DataSharing in active mode.

A default domain ID is automatically computed.

	Parameters

	directory – The shared memory directory to use. It is mandatory to provide a non-empty name or the creation of endpoints will fail.

	
inline void on(const std::string &directory, const std::vector<uint16_t> &domain_ids)

	Configures the DataSharing in active mode.

	Parameters

	
	directory – The shared memory directory to use. It is mandatory to provide a non-empty name or the creation of endpoints will fail.

	domain_ids – the user configured DataSharing domain IDs (16 bits).

	
inline void off()

	Configures the DataSharing in disabled mode.

	
inline void add_domain_id(uint16_t id)

	Adds a user-specific DataSharing domain ID.

	Parameters

	id – 16 bit identifier

 17.1.1.3.4. DataSharingKind

17.1.1.3.4. DataSharingKind

	
enum eprosima::fastdds::dds::DataSharingKind

	Data sharing configuration kinds

Values:

	
enumerator AUTO

	Automatic configuration. DataSharing will be used if requirements are met.

	
enumerator ON

	Activate the use of DataSharing. Entity creation will fail if requirements for DataSharing are not met

	
enumerator OFF

	Disable the use of DataSharing

 17.1.1.3.5. DeadlineQosPolicy

17.1.1.3.5. DeadlineQosPolicy

	
class eprosima::fastdds::dds::DeadlineQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	DataReader expects a new sample updating the value of each instance at least once every deadline period. DataWriter indicates that the application commits to write a new value (using the DataWriter) for each instance managed by the DataWriter at least once every deadline period.

Note

Mutable Qos Policy

Public Functions

	
inline DeadlineQosPolicy()

	Constructor.

	
virtual ~DeadlineQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::Duration_t period

	Maximum time expected between samples. It is inconsistent for a DataReader to have a DEADLINE period less than its TimeBasedFilterQosPolicyminimum_separation.

By default, c_TimeInifinite.

 17.1.1.3.6. DestinationOrderQosPolicy

17.1.1.3.6. DestinationOrderQosPolicy

	
class eprosima::fastdds::dds::DestinationOrderQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Controls the criteria used to determine the logical order among changes made by Publisher entities to the same instance of data (i.e., matching Topic and key).

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Immutable Qos Policy

Public Functions

	
inline DestinationOrderQosPolicy()

	Constructor.

	
virtual ~DestinationOrderQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
DestinationOrderQosPolicyKind kind

	DestinationOrderQosPolicyKind.

By default, BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

 17.1.1.3.7. DestinationOrderQosPolicyKind

17.1.1.3.7. DestinationOrderQosPolicyKind

	
enum eprosima::fastdds::dds::DestinationOrderQosPolicyKind

	Enum DestinationOrderQosPolicyKind, different kinds of destination order for DestinationOrderQosPolicy.

Values:

	
enumerator BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

	Indicates that data is ordered based on the reception time at each Subscriber. Since each subscriber may receive the data at different times there is no guaranteed that the changes will be seen in the same order. Consequently, it is possible for each subscriber to end up with a different final value for the data.

	
enumerator BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

	Indicates that data is ordered based on a timestamp placed at the source (by the Service or by the application). In any case this guarantees a consistent final value for the data in all subscribers.

 17.1.1.3.8. DisablePositiveACKsQosPolicy

17.1.1.3.8. DisablePositiveACKsQosPolicy

	
class eprosima::fastdds::dds::DisablePositiveACKsQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Class DisablePositiveACKsQosPolicy to disable sending of positive ACKs

Note

Immutable Qos Policy

Public Functions

	
inline DisablePositiveACKsQosPolicy()

	Constructor.

	
virtual ~DisablePositiveACKsQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
bool enabled

	True if this QoS is enabled.

By default, false.

	
fastrtps::Duration_t duration

	The duration to keep samples for (not serialized as not needed by reader).

By default, c_TimeInfinite.

 17.1.1.3.9. DurabilityQosPolicy

17.1.1.3.9. DurabilityQosPolicy

	
class eprosima::fastdds::dds::DurabilityQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	This policy expresses if the data should ‘outlive’ their writing time.

Note

Immutable Qos Policy

Public Functions

	
inline DurabilityQosPolicy()

	Constructor.

	
virtual ~DurabilityQosPolicy() = default

	Destructor.

	
inline fastrtps::rtps::DurabilityKind_t durabilityKind() const

	Translates kind to rtps layer equivalent

	Returns

	fastrtps::rtps::DurabilityKind_t

	
inline void durabilityKind(const fastrtps::rtps::DurabilityKind_t new_kind)

	Set kind passing the rtps layer equivalent kind

	Parameters

	new_kind – fastrtps::rtps::DurabilityKind_t

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
DurabilityQosPolicyKind_t kind

	DurabilityQosPolicyKind.

By default the value for DataReaders: VOLATILE_DURABILITY_QOS, for DataWriters TRANSIENT_LOCAL_DURABILITY_QOS.

 17.1.1.3.10. DurabilityQosPolicyKind

17.1.1.3.10. DurabilityQosPolicyKind

	
enum eprosima::fastdds::dds::DurabilityQosPolicyKind

	Enum DurabilityQosPolicyKind_t, different kinds of durability for DurabilityQosPolicy.

Values:

	
enumerator VOLATILE_DURABILITY_QOS

	The Service does not need to keep any samples of data-instances on behalf of any DataReader that is not known by the DataWriter at the time the instance is written. In other words the Service will only attempt to provide the data to existing subscribers

	
enumerator TRANSIENT_LOCAL_DURABILITY_QOS

	For TRANSIENT_LOCAL, the service is only required to keep the data in the memory of the DataWriter that wrote the data and the data is not required to survive the DataWriter.

	
enumerator TRANSIENT_DURABILITY_QOS

	For TRANSIENT, the service is only required to keep the data in memory and not in permanent storage; but the data is not tied to the lifecycle of the DataWriter and will, in general, survive it.

	
enumerator PERSISTENT_DURABILITY_QOS

	Data is kept on permanent storage, so that they can outlive a system session.

Warning

Not Supported

 17.1.1.3.11. DurabilityServiceQosPolicy

17.1.1.3.11. DurabilityServiceQosPolicy

	
class eprosima::fastdds::dds::DurabilityServiceQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the configuration of the durability service. That is, the service that implements the DurabilityQosPolicy kind of TRANSIENT and PERSISTENT.

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Immutable Qos Policy

Public Functions

	
inline DurabilityServiceQosPolicy()

	Constructor.

	
virtual ~DurabilityServiceQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::Duration_t service_cleanup_delay

	Control when the service is able to remove all information regarding a data-instance.

By default, c_TimeZero.

	
HistoryQosPolicyKind history_kind

	Controls the HistoryQosPolicy of the fictitious DataReaderthat stores the data within the durability service.

By default, KEEP_LAST_HISTORY_QOS.

	
int32_t history_depth

	Number of most recent values that should be maintained on the History. It only have effect if the history_kind is KEEP_LAST_HISTORY_QOS.

By default, 1.

	
int32_t max_samples

	Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service. Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all the instances associated with it. Represents the maximum samples the middleware can store for any one DataWriter (or DataReader). It is inconsistent for this value to be less than max_samples_per_instance.

By default, LENGTH_UNLIMITED.

	
int32_t max_instances

	Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service. Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, LENGTH_UNLIMITED.

	
int32_t max_samples_per_instance

	Control the ResourceLimitsQos of the implied DataReaderthat stores the data within the durability service. Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage. It is inconsistent for this value to be greater than max_samples.

By default, LENGTH_UNLIMITED.

 17.1.1.3.12. EntityFactoryQosPolicy

17.1.1.3.12. EntityFactoryQosPolicy

	
class eprosima::fastdds::dds::EntityFactoryQosPolicy

	Controls the behavior of the entity when acting as a factory for other entities. In other words, configures the side-effects of the create_* and delete_* operations.

Note

Mutable Qos Policy

Public Functions

	
inline EntityFactoryQosPolicy()

	Constructor without parameters.

	
inline EntityFactoryQosPolicy(bool autoenable)

	Constructor.

	Parameters

	autoenable – Value for the autoenable_created_entities boolean

	
inline virtual ~EntityFactoryQosPolicy()

	Destructor.

Public Members

	
bool autoenable_created_entities

	Specifies whether the entity acting as a factory automatically enables the instances it creates. If True the factory will automatically enable each created Entityotherwise it will not.

By default, True.

 17.1.1.3.13. GenericDataQosPolicy

17.1.1.3.13. GenericDataQosPolicy

	
class eprosima::fastdds::dds::GenericDataQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy, public fastrtps::ResourceLimitedVector<fastrtps::rtps::octet>

	Class GenericDataQosPolicy, base class to transmit user data during the discovery phase.

Subclassed by eprosima::fastdds::dds::GroupDataQosPolicy, eprosima::fastdds::dds::TopicDataQosPolicy, eprosima::fastdds::dds::UserDataQosPolicy

Public Functions

	
inline GenericDataQosPolicy(const GenericDataQosPolicy &data)

	Construct from another GenericDataQosPolicy.

The resulting GenericDataQosPolicy will have the same size limits as the input attribute

	Parameters

	data – data to copy in the newly created object

	
inline GenericDataQosPolicy(ParameterId_t pid, const collection_type &data)

	Construct from underlying collection type.

Useful to easy integration on old APIs where a traditional container was used. The resulting GenericDataQosPolicy will always be unlimited in size

	Parameters

	
	pid – Id of the parameter

	data – data to copy in the newly created object

	
inline GenericDataQosPolicy &operator=(const collection_type &b)

	Copies data from underlying collection type.

Useful to easy integration on old APIs where a traditional container was used. The resulting GenericDataQosPolicy will keep the current size limit. If the input data is larger than the current limit size, the elements exceeding that maximum will be silently discarded.

	Parameters

	b – object to be copied

	Returns

	reference to the current object.

	
inline GenericDataQosPolicy &operator=(const GenericDataQosPolicy &b)

	Copies another GenericDataQosPolicy.

The resulting GenericDataQosPolicy will have the same size limit as the input parameter, so all data in the input will be copied.

	Parameters

	b – object to be copied

	Returns

	reference to the current object.

	
inline void set_max_size(size_t size)

	Set the maximum size of the user data and reserves memory for that much.

	Parameters

	size – new maximum size of the user data. Zero for unlimited size

	
inline const collection_type &dataVec() const

	
	Returns

	const reference to the internal raw data.

	
inline virtual void clear() override

	Clears the QosPolicy object.

	
inline const collection_type &data_vec() const

	Returns raw data vector.

	Returns

	raw data as vector of octets.

	
inline collection_type &data_vec()

	Returns raw data vector.

	Returns

	raw data as vector of octets.

	
inline void data_vec(const collection_type &vec)

	Sets raw data vector.

	Parameters

	vec – raw data to set.

	
inline const collection_type &getValue() const

	Returns raw data vector.

	Returns

	raw data as vector of octets.

	
inline void setValue(const collection_type &vec)

	Sets raw data vector.

	Parameters

	vec – raw data to set.

 17.1.1.3.14. GroupDataQosPolicy

17.1.1.3.14. GroupDataQosPolicy

	
class GroupDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy

	Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Publisher or Subscriber. The value of the GROUP_DATA is available to the application on the DataReader and DataWriter entities and is propagated by means of the built-in topics.

This QoS can be used by an application combination with the DataReaderListener and DataWriterListener to implement matching policies similar to those of the PARTITION QoS except the decision can be made based on an application-defined policy.

 17.1.1.3.15. HistoryQosPolicy

17.1.1.3.15. HistoryQosPolicy

	
class eprosima::fastdds::dds::HistoryQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the behavior of the Service in the case where the value of a sample changes (one or more times) before it can be successfully communicated to one or more existing subscribers. This QoS policy controls whether the Service should deliver only the most recent value, attempt to deliver all intermediate values, or do something in between. On the publishing side this policy controls the samples that should be maintained by the DataWriter on behalf of existing DataReader entities. The behavior with regards to a DataReaderentities discovered after a sample is written is controlled by the DURABILITY QoS policy. On the subscribing side it controls the samples that should be maintained until the application “takes” them from the Service.

Note

Immutable Qos Policy

Public Functions

	
inline HistoryQosPolicy()

	Constructor.

	
virtual ~HistoryQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
HistoryQosPolicyKind kind

	HistoryQosPolicyKind.

By default, KEEP_LAST_HISTORY_QOS.

	
int32_t depth

	History depth.

 By default, 1. If a value other than 1 is specified, it should be consistent with the settings of the ResourceLimitsQosPolicy.

Warning

Only takes effect if the kind is KEEP_LAST_HISTORY_QOS.

 17.1.1.3.16. HistoryQosPolicyKind

17.1.1.3.16. HistoryQosPolicyKind

	
enum eprosima::fastdds::dds::HistoryQosPolicyKind

	Enum HistoryQosPolicyKind, different kinds of History Qos for HistoryQosPolicy.

Values:

	
enumerator KEEP_LAST_HISTORY_QOS

	On the publishing side, the Service will only attempt to keep the most recent “depth” samples of each instance of data (identified by its key) managed by the DataWriter. On the subscribing side, the DataReader will only attempt to keep the most recent “depth” samples received for each instance (identified by its key) until the application “takes” them via the DataReader’s take operation.

	
enumerator KEEP_ALL_HISTORY_QOS

	On the publishing side, the Service will attempt to keep all samples (representing each value written) of each instance of data (identified by its key) managed by the DataWriter until they can be delivered to all subscribers. On the subscribing side, the Service will attempt to keep all samples of each instance of data (identified by its key) managed by the DataReader. These samples are kept until the application “takes” them from the Service via the take operation.

 17.1.1.3.17. LatencyBudgetQosPolicy

17.1.1.3.17. LatencyBudgetQosPolicy

	
class eprosima::fastdds::dds::LatencyBudgetQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the maximum acceptable delay from the time the data is written until the data is inserted in the receiver’s application-cache and the receiving application is notified of the fact.This policy is a hint to the Service, not something that must be monitored or enforced. The Service is not required to track or alert the user of any violation.

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Mutable Qos Policy

Public Functions

	
inline LatencyBudgetQosPolicy()

	Constructor.

	
virtual ~LatencyBudgetQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::Duration_t duration

	Maximum acceptable delay from the time data is written until it is received.

By default, c_TimeZero.

 17.1.1.3.18. LifespanQosPolicy

17.1.1.3.18. LifespanQosPolicy

	
class eprosima::fastdds::dds::LifespanQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the maximum duration of validity of the data written by the DataWriter.

Note

Mutable Qos Policy

Public Functions

	
inline LifespanQosPolicy()

	Constructor.

	
virtual ~LifespanQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::Duration_t duration

	Period of validity.

By default, c_TimeInfinite.

 17.1.1.3.19. LivelinessQosPolicy

17.1.1.3.19. LivelinessQosPolicy

	
class eprosima::fastdds::dds::LivelinessQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Determines the mechanism and parameters used by the application to determine whether an Entity is “active” (alive). The “liveliness” status of an Entity is used to maintain instance ownership in combination with the setting of the OwnershipQosPolicy. The application is also informed via listener when an Entity is no longer alive.

The DataReader requests that liveliness of the writers is maintained by the requested means and loss of liveliness is detected with delay not to exceed the lease_duration.

The DataWriter commits to signaling its liveliness using the stated means at intervals not to exceed the lease_duration. Listeners are used to notify the DataReaderof loss of liveliness and DataWriter of violations to the liveliness contract.

Public Functions

	
inline LivelinessQosPolicy()

	Constructor.

	
virtual ~LivelinessQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
LivelinessQosPolicyKind kind

	Liveliness kind

By default, AUTOMATIC_LIVELINESS.

	
fastrtps::Duration_t lease_duration

	Period within which liveliness should be asserted.

On a DataWriter it represents the period it commits to signal its liveliness. On a DataReader it represents the period without assertion after which a DataWriter is considered inactive. By default, c_TimeInfinite.

	
fastrtps::Duration_t announcement_period

	The period for automatic assertion of liveliness.

Only used for DataWriters with AUTOMATIC liveliness. By default, c_TimeInfinite.

Warning

When not infinite, must be < lease_duration, and it is advisable to be less than 0.7*lease_duration.

 17.1.1.3.20. LivelinessQosPolicyKind

17.1.1.3.20. LivelinessQosPolicyKind

	
enum eprosima::fastdds::dds::LivelinessQosPolicyKind

	Enum LivelinessQosPolicyKind, different kinds of liveliness for LivelinessQosPolicy

Values:

	
enumerator AUTOMATIC_LIVELINESS_QOS

	The infrastructure will automatically signal liveliness for the DataWriters at least as often as required by the lease_duration.

	
enumerator MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

	The Service will assume that as long as at least one Entity within the DomainParticipant has asserted its liveliness the other Entities in that same DomainParticipant are also alive.

	
enumerator MANUAL_BY_TOPIC_LIVELINESS_QOS

	The Service will only assume liveliness of the DataWriter if the application has asserted liveliness of that DataWriter itself.

 17.1.1.3.21. OwnershipQosPolicy

17.1.1.3.21. OwnershipQosPolicy

	
class eprosima::fastdds::dds::OwnershipQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies whether it is allowed for multiple DataWriters to write the same instance of the data and if so, how these modifications should be arbitrated

Note

Immutable Qos Policy

Public Functions

	
inline OwnershipQosPolicy()

	Constructor.

	
virtual ~OwnershipQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
OwnershipQosPolicyKind kind

	OwnershipQosPolicyKind.

 17.1.1.3.22. OwnershipQosPolicyKind

17.1.1.3.22. OwnershipQosPolicyKind

	
enum eprosima::fastdds::dds::OwnershipQosPolicyKind

	Enum OwnershipQosPolicyKind, different kinds of ownership for OwnershipQosPolicy.

Values:

	
enumerator SHARED_OWNERSHIP_QOS

	Indicates shared ownership for each instance. Multiple writers are allowed to update the same instance and all the updates are made available to the readers. In other words there is no concept of an “owner” for the instances.

	
enumerator EXCLUSIVE_OWNERSHIP_QOS

	Indicates each instance can only be owned by one DataWriter, but the owner of an instance can change dynamically. The selection of the owner is controlled by the setting of the OwnershipStrengthQosPolicy. The owner is always set to be the highest-strength DataWriter object among the ones currently “active” (as determined by the LivelinessQosPolicy).

 17.1.1.3.23. OwnershipStrengthQosPolicy

17.1.1.3.23. OwnershipStrengthQosPolicy

	
class eprosima::fastdds::dds::OwnershipStrengthQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the value of the “strength” used to arbitrate among multiple DataWriter objects that attempt to modify the same instance of a data-object (identified by Topic + key).This policy only applies if the OWNERSHIP QoS policy is of kind EXCLUSIVE.

Note

Mutable Qos Policy

Public Functions

	
inline OwnershipStrengthQosPolicy()

	Constructor.

	
virtual ~OwnershipStrengthQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
uint32_t value

	Strength

By default, 0.

 17.1.1.3.24. ParticipantResourceLimitsQos

17.1.1.3.24. ParticipantResourceLimitsQos

	
using eprosima::fastdds::dds::ParticipantResourceLimitsQos = fastrtps::rtps::RTPSParticipantAllocationAttributes

	Holds allocation limits affecting collections managed by a participant.

 17.1.1.3.25. Partition_t

17.1.1.3.25. Partition_t

	
class eprosima::fastdds::dds::Partition_t

	
Public Functions

	
inline explicit Partition_t(const void *ptr)

	Constructor using a pointer.

	Parameters

	ptr – Pointer to be set

	
inline uint32_t size() const

	Getter for the size.

	Returns

	uint32_t with the size

	
inline const char *name() const

	Getter for the partition name.

	Returns

	name

 17.1.1.3.26. PartitionQosPolicy

17.1.1.3.26. PartitionQosPolicy

	
class eprosima::fastdds::dds::PartitionQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Set of strings that introduces a logical partition among the topics visible by the Publisher and Subscriber. A DataWriter within a Publisher only communicates with a DataReader in a Subscriber if (in addition to matching the Topic and having compatible QoS) the Publisher and Subscriber have a common partition name string.

The empty string (“”) is considered a valid partition that is matched with other partition names using the same rules of string matching and regular-expression matching used for any other partition name.

Note

Mutable Qos Policy

Public Functions

	
inline PartitionQosPolicy()

	Constructor without parameters.

	
inline PartitionQosPolicy(uint16_t in_length)

	Constructor using Parameter length.

	Parameters

	in_length – Length of the parameter

	
inline PartitionQosPolicy(const PartitionQosPolicy &b)

	Copy constructor.

	Parameters

	b – Another PartitionQosPolicy instance

	
virtual ~PartitionQosPolicy() = default

	Destructor.

	
inline const_iterator begin() const

	Getter for the first position of the partition list.

	Returns

	const_iterator

	
inline const_iterator end() const

	Getter for the end of the partition list.

	Returns

	const_iterator

	
inline uint32_t size() const

	Getter for the number of partitions.

	Returns

	uint32_t with the size

	
inline uint32_t empty() const

	Check if the set is empty.

	Returns

	true if it is empty, false otherwise

	
inline void set_max_size(uint32_t size)

	Setter for the maximum size reserved for partitions (in bytes)

	Parameters

	size – Size to be set

	
inline uint32_t max_size() const

	Getter for the maximum size (in bytes)

	Returns

	uint32_t with the maximum size

	
inline void push_back(const char *name)

	Appends a name to the list of partition names.

	Parameters

	name – Name to append.

	
inline virtual void clear() override

	Clears list of partition names

	
inline const std::vector<std::string> getNames() const

	Returns partition names.

	Returns

	Vector of partition name strings.

	
inline void setNames(std::vector<std::string> &nam)

	Overrides partition names

	Parameters

	nam – Vector of partition name strings.

	
inline const std::vector<std::string> names() const

	Returns partition names.

	Returns

	Vector of partition name strings.

	
inline void names(std::vector<std::string> &nam)

	Overrides partition names

	Parameters

	nam – Vector of partition name strings.

	
class const_iterator

	
Public Functions

	
inline const_iterator(const fastrtps::rtps::octet *ptr)

	Constructor using a pointer.

	Parameters

	ptr – Pointer to be set

 17.1.1.3.27. PresentationQosPolicy

17.1.1.3.27. PresentationQosPolicy

	
class eprosima::fastdds::dds::PresentationQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies how the samples representing changes to data instances are presented to the subscribing application. This policy affects the application’s ability to specify and receive coherent changes and to see the relative order of changes.access_scope determines the largest scope spanning the entities for which the order and coherency of changes can be preserved. The two booleans control whether coherent access and ordered access are supported within the scope access_scope.

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Immutable Qos Policy

Public Functions

	
inline PresentationQosPolicy()

	Constructor without parameters.

	
virtual ~PresentationQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
PresentationQosPolicyAccessScopeKind access_scope

	Access Scope Kind

By default, INSTANCE_PRESENTATION_QOS.

	
bool coherent_access

	Specifies support coherent access. That is, the ability to group a set of changes as a unit on the publishing end such that they are received as a unit at the subscribing end. by default, false.

	
bool ordered_access

	Specifies support for ordered access to the samples received at the subscription end. That is, the ability of the subscriber to see changes in the same order as they occurred on the publishing end. By default, false.

 17.1.1.3.28. PresentationQosPolicyAccessScopeKind

17.1.1.3.28. PresentationQosPolicyAccessScopeKind

	
enum eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind

	Enum PresentationQosPolicyAccessScopeKind, different kinds of Presentation Policy order for PresentationQosPolicy.

Values:

	
enumerator INSTANCE_PRESENTATION_QOS

	Scope spans only a single instance. Indicates that changes to one instance need not be coherent nor ordered with respect to changes to any other instance. In other words, order and coherent changes apply to each instance separately.

	
enumerator TOPIC_PRESENTATION_QOS

	Scope spans to all instances within the same DataWriter (or DataReader), but not across instances in different DataWriter (or DataReader).

	
enumerator GROUP_PRESENTATION_QOS

	Scope spans to all instances belonging to DataWriter (or DataReader) entities within the same Publisher (or Subscriber).

 17.1.1.3.29. PropertyPolicyQos

17.1.1.3.29. PropertyPolicyQos

	
using eprosima::fastdds::dds::PropertyPolicyQos = fastrtps::rtps::PropertyPolicy

	Property policies.

 17.1.1.3.30. PublishModeQosPolicy

17.1.1.3.30. PublishModeQosPolicy

	
class eprosima::fastdds::dds::PublishModeQosPolicy : public eprosima::fastdds::dds::QosPolicy

	Class PublishModeQosPolicy, defines the publication mode for a specific writer.

Public Functions

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
PublishModeQosPolicyKind kind = SYNCHRONOUS_PUBLISH_MODE

	PublishModeQosPolicyKind

By default, SYNCHRONOUS_PUBLISH_MODE.

	
const char *flow_controller_name = fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT

	Name of the flow controller used when publish mode kind is ASYNCHRONOUS_PUBLISH_MODE.

	Since
	2.4.0

 17.1.1.3.31. PublishModeQosPolicyKind

17.1.1.3.31. PublishModeQosPolicyKind

	
enum eprosima::fastdds::dds::PublishModeQosPolicyKind

	Enum PublishModeQosPolicyKind, different kinds of publication synchronism

Values:

	
enumerator SYNCHRONOUS_PUBLISH_MODE

	Synchronous publication mode (default for writers).

	
enumerator ASYNCHRONOUS_PUBLISH_MODE

	Asynchronous publication mode.

 17.1.1.3.32. QosPolicy

17.1.1.3.32. QosPolicy

	
class eprosima::fastdds::dds::QosPolicy

	Class QosPolicy, base for all QoS policies defined for Writers and Readers.

Subclassed by eprosima::fastdds::dds::DataRepresentationQosPolicy, eprosima::fastdds::dds::DataSharingQosPolicy, eprosima::fastdds::dds::DeadlineQosPolicy, eprosima::fastdds::dds::DestinationOrderQosPolicy, eprosima::fastdds::dds::DisablePositiveACKsQosPolicy, eprosima::fastdds::dds::DurabilityQosPolicy, eprosima::fastdds::dds::DurabilityServiceQosPolicy, eprosima::fastdds::dds::GenericDataQosPolicy, eprosima::fastdds::dds::HistoryQosPolicy, eprosima::fastdds::dds::LatencyBudgetQosPolicy, eprosima::fastdds::dds::LifespanQosPolicy, eprosima::fastdds::dds::LivelinessQosPolicy, eprosima::fastdds::dds::OwnershipQosPolicy, eprosima::fastdds::dds::OwnershipStrengthQosPolicy, eprosima::fastdds::dds::PartitionQosPolicy, eprosima::fastdds::dds::PresentationQosPolicy, eprosima::fastdds::dds::PublishModeQosPolicy, eprosima::fastdds::dds::ReliabilityQosPolicy, eprosima::fastdds::dds::ResourceLimitsQosPolicy, eprosima::fastdds::dds::TimeBasedFilterQosPolicy, eprosima::fastdds::dds::TransportConfigQos, eprosima::fastdds::dds::TransportPriorityQosPolicy, eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy, eprosima::fastdds::dds::TypeConsistencyQos, eprosima::fastdds::dds::TypeIdV1, eprosima::fastdds::dds::TypeObjectV1, eprosima::fastdds::dds::WireProtocolConfigQos, eprosima::fastdds::dds::xtypes::TypeInformation

Public Functions

	
inline QosPolicy()

	Constructor without parameters.

	
inline explicit QosPolicy(bool send_always)

	Constructor.

	Parameters

	send_always – Boolean that set if the Qos need to be sent even if it is not changed

	
QosPolicy(const QosPolicy &b) = default

	Copy Constructor.

	Parameters

	b – Another instance of QosPolicy

	
virtual ~QosPolicy() = default

	Destructor.

	
inline virtual bool send_always() const

	Whether it should always be sent.

	Returns

	True if it should always be sent.

	
inline virtual void clear() = 0

	Clears the QosPolicy object.

Public Members

	
bool hasChanged

	Boolean that indicates if the Qos has been changed with respect to the default Qos.

 17.1.1.3.33. QosPolicyId_t

17.1.1.3.33. QosPolicyId_t

	
enum eprosima::fastdds::dds::QosPolicyId_t

	The identifier for each QosPolicy.

Each QosPolicy class has a different ID that is then used to refer to the incompatible policies on OfferedIncompatibleQosStatus and RequestedIncompatibleQosStatus.

Values:

	
enumerator INVALID_QOS_POLICY_ID

	

	
enumerator USERDATA_QOS_POLICY_ID

	

	
enumerator DURABILITY_QOS_POLICY_ID

	

	
enumerator PRESENTATION_QOS_POLICY_ID

	

	
enumerator DEADLINE_QOS_POLICY_ID

	

	
enumerator LATENCYBUDGET_QOS_POLICY_ID

	

	
enumerator OWNERSHIP_QOS_POLICY_ID

	

	
enumerator OWNERSHIPSTRENGTH_QOS_POLICY_ID

	

	
enumerator LIVELINESS_QOS_POLICY_ID

	

	
enumerator TIMEBASEDFILTER_QOS_POLICY_ID

	

	
enumerator PARTITION_QOS_POLICY_ID

	

	
enumerator RELIABILITY_QOS_POLICY_ID

	

	
enumerator DESTINATIONORDER_QOS_POLICY_ID

	

	
enumerator HISTORY_QOS_POLICY_ID

	

	
enumerator RESOURCELIMITS_QOS_POLICY_ID

	

	
enumerator ENTITYFACTORY_QOS_POLICY_ID

	

	
enumerator WRITERDATALIFECYCLE_QOS_POLICY_ID

	

	
enumerator READERDATALIFECYCLE_QOS_POLICY_ID

	

	
enumerator TOPICDATA_QOS_POLICY_ID

	

	
enumerator GROUPDATA_QOS_POLICY_ID

	

	
enumerator TRANSPORTPRIORITY_QOS_POLICY_ID

	

	
enumerator LIFESPAN_QOS_POLICY_ID

	

	
enumerator DURABILITYSERVICE_QOS_POLICY_ID

	

	
enumerator DATAREPRESENTATION_QOS_POLICY_ID

	

	
enumerator TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID

	

	
enumerator DISABLEPOSITIVEACKS_QOS_POLICY_ID

	

	
enumerator PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID

	

	
enumerator PROPERTYPOLICY_QOS_POLICY_ID

	

	
enumerator PUBLISHMODE_QOS_POLICY_ID

	

	
enumerator READERRESOURCELIMITS_QOS_POLICY_ID

	

	
enumerator RTPSENDPOINT_QOS_POLICY_ID

	

	
enumerator RTPSRELIABLEREADER_QOS_POLICY_ID

	

	
enumerator RTPSRELIABLEWRITER_QOS_POLICY_ID

	

	
enumerator TRANSPORTCONFIG_QOS_POLICY_ID

	

	
enumerator TYPECONSISTENCY_QOS_POLICY_ID

	

	
enumerator WIREPROTOCOLCONFIG_QOS_POLICY_ID

	

	
enumerator WRITERRESOURCELIMITS_QOS_POLICY_ID

	

	
enumerator NEXT_QOS_POLICY_ID

	

 17.1.1.3.34. ReaderDataLifecycleQosPolicy

17.1.1.3.34. ReaderDataLifecycleQosPolicy

	
class eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy

	Specifies the behavior of the DataReader with regards to the lifecycle of the data-instances it manages.

Warning

This Qos Policy will be implemented in future releases.

Note

Mutable Qos Policy

Public Functions

	
inline ReaderDataLifecycleQosPolicy()

	Constructor.

	
inline virtual ~ReaderDataLifecycleQosPolicy()

	Destructor.

Public Members

	
Duration_t autopurge_no_writer_samples_delay

	Indicates the duration the DataReadermust retain information regarding instances that have the instance_state NOT_ALIVE_NO_WRITERS.

By default, c_TimeInfinite.

	
Duration_t autopurge_disposed_samples_delay

	Indicates the duration the DataReadermust retain information regarding instances that have the instance_state NOT_ALIVE_DISPOSED.

By default, c_TimeInfinite.

 17.1.1.3.35. ReliabilityQosPolicy

17.1.1.3.35. ReliabilityQosPolicy

	
class eprosima::fastdds::dds::ReliabilityQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Indicates the reliability of the endpoint.

Note

Immutable Qos Policy

Public Functions

	
inline ReliabilityQosPolicy()

	Constructor.

	
virtual ~ReliabilityQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
ReliabilityQosPolicyKind kind

	Defines the reliability kind of the endpoint.

 By default, BEST_EFFORT_RELIABILITY_QOS for DataReaders and RELIABLE_RELIABILITY_QOS for DataWriters.

	
fastrtps::Duration_t max_blocking_time

	Defines the maximum period of time certain methods will be blocked.

Methods affected by this property are:
	DataWriter::write

	DataReader::takeNextData

	DataReader::readNextData

By default, 100 ms.

 17.1.1.3.36. ReliabilityQosPolicyKind

17.1.1.3.36. ReliabilityQosPolicyKind

	
enum eprosima::fastdds::dds::ReliabilityQosPolicyKind

	Enum ReliabilityQosPolicyKind, different kinds of reliability for ReliabilityQosPolicy.

Values:

	
enumerator BEST_EFFORT_RELIABILITY_QOS

	Indicates that it is acceptable to not retry propagation of any samples. Presumably new values for the samples are generated often enough that it is not necessary to re-send or acknowledge any samples

	
enumerator RELIABLE_RELIABILITY_QOS

	Specifies the Service will attempt to deliver all samples in its history. Missed samples may be retried. In steady-state (no modifications communicated via the DataWriter) the middleware guarantees that all samples in the DataWriter history will eventually be delivered to all the DataReader objects. Outside steady state the HistoryQosPolicy and ResourceLimitsQosPolicy will determine how samples become part of the history and whether samples can be discarded from it.

 17.1.1.3.37. ResourceLimitsQosPolicy

17.1.1.3.37. ResourceLimitsQosPolicy

	
class eprosima::fastdds::dds::ResourceLimitsQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Specifies the resources that the Service can consume in order to meet the requested QoS

Note

Immutable Qos Policy

Public Functions

	
inline ResourceLimitsQosPolicy()

	Constructor.

	
virtual ~ResourceLimitsQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
int32_t max_samples

	Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all the instances associated with it. Represents the maximum samples the middleware can store for any one DataWriter (or DataReader).

By default, 5000.

Warning

It is inconsistent if max_samples < (max_instances * max_samples_per_instance).

	
int32_t max_instances

	Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, 10.

Warning

It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

	
int32_t max_samples_per_instance

	Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.

By default, 400.

Warning

It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

	
int32_t allocated_samples

	Number of samples currently allocated.

By default, 100.

	
int32_t extra_samples

	Represents the extra number of samples available once the max_samples have been reached in the history. This makes it possible, for example, to loan samples even with a full history. By default, 1.

 17.1.1.3.38. RTPSEndpointQos

17.1.1.3.38. RTPSEndpointQos

	
class eprosima::fastdds::dds::RTPSEndpointQos

	Qos Policy to configure the endpoint.

Public Members

	
rtps::LocatorList unicast_locator_list

	Unicast locator list.

	
rtps::LocatorList multicast_locator_list

	Multicast locator list.

	
rtps::LocatorList remote_locator_list

	Remote locator list.

	
fastdds::rtps::ExternalLocators external_unicast_locators

	The collection of external locators to use for communication.

	
bool ignore_non_matching_locators = false

	Whether locators that don’t match with the announced locators should be kept.

	
int16_t user_defined_id = -1

	User Defined ID, used for StaticEndpointDiscovery.

By default, -1.

	
int16_t entity_id = -1

	EntityID, if the user wants to specify the EntityID of the endpoint.

By default, -1.

	
fastrtps::rtps::MemoryManagementPolicy_t history_memory_policy = fastrtps::rtps::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

	Underlying History memory policy.

By default, PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

 17.1.1.3.39. TimeBasedFilterQosPolicy

17.1.1.3.39. TimeBasedFilterQosPolicy

	
class eprosima::fastdds::dds::TimeBasedFilterQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Filter that allows a DataReader to specify that it is interested only in (potentially) a subset of the values of the data. The filter states that the DataReader does not want to receive more than one value each minimum_separation, regardless of how fast the changes occur. It is inconsistent for a DataReader to have a minimum_separation longer than its Deadline period.

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Mutable Qos Policy

Public Functions

	
inline TimeBasedFilterQosPolicy()

	Constructor.

	
virtual ~TimeBasedFilterQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::Duration_t minimum_separation

	Minimum interval between samples. By default, c_TimeZero (the DataReader is interested in all values)

 17.1.1.3.40. TopicDataQosPolicy

17.1.1.3.40. TopicDataQosPolicy

	
class TopicDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy

	Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Topic such that when a remote application discovers their existence it can examine the information and use it in an application-defined way.

In combination with the listeners on the DataReader and DataWriter as well as by means of operations such as ignore_topic,these QoS can assist an application to extend the provided QoS.

 17.1.1.3.41. TransportConfigQos

17.1.1.3.41. TransportConfigQos

	
class eprosima::fastdds::dds::TransportConfigQos : public eprosima::fastdds::dds::QosPolicy

	Qos Policy to configure the transport layer.

Public Functions

	
inline TransportConfigQos()

	Constructor.

	
virtual ~TransportConfigQos() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
std::vector<std::shared_ptr<fastdds::rtps::TransportDescriptorInterface>> user_transports

	User defined transports to use alongside or in place of builtins.

	
bool use_builtin_transports

	Set as false to disable the default UDPv4 implementation.

By default, true.

	
uint32_t send_socket_buffer_size

	Send socket buffer size for the send resource.

Zero value indicates to use default system buffer size.

By default, 0.

	
uint32_t listen_socket_buffer_size

	Listen socket buffer for all listen resources.

Zero value indicates to use default system buffer size.

By default, 0.

 17.1.1.3.42. TransportPriorityQosPolicy

17.1.1.3.42. TransportPriorityQosPolicy

	
class eprosima::fastdds::dds::TransportPriorityQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	This policy is a hint to the infrastructure as to how to set the priority of the underlying transport used to send the data.

Warning

This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Note

Mutable Qos Policy

Public Functions

	
inline TransportPriorityQosPolicy()

	Constructor.

	
virtual ~TransportPriorityQosPolicy() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
uint32_t value

	Priority

By default, 0.

 17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

17.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	
class eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	The TypeConsistencyEnforcementQosPolicy defines the rules for determining whether the type used to publish a given data stream is consistent with that used to subscribe to it. It applies to DataReaders.

Note

Immutable Qos Policy

Public Functions

	
inline TypeConsistencyEnforcementQosPolicy()

	Constructor.

	
virtual ~TypeConsistencyEnforcementQosPolicy() override = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
TypeConsistencyKind m_kind

	TypeConsistencyKind.

By default, ALLOW_TYPE_COERCION.

	
bool m_ignore_sequence_bounds

	This option controls whether sequence bounds are taken into consideration for type assignability. If the option is set to TRUE, sequence bounds (maximum lengths) are not considered as part of the type assignability. This means that a T2 sequence type with maximum length L2 would be assignable to a T1 sequence type with maximum length L1, even if L2 is greater than L1. If the option is set to false, then sequence bounds are taken into consideration for type assignability and in order for T1 to be assignable from T2 it is required that L1>= L2.

By default, true.

	
bool m_ignore_string_bounds

	This option controls whether string bounds are taken into consideration for type assignability. If the option is set to TRUE, string bounds (maximum lengths) are not considered as part of the type assignability. This means that a T2 string type with maximum length L2 would be assignable to a T1 string type with maximum length L1, even if L2 is greater than L1. If the option is set to false, then string bounds are taken into consideration for type assignability and in order for T1 to be assignable from T2 it is required that L1>= L2.

By default, true.

	
bool m_ignore_member_names

	This option controls whether member names are taken into consideration for type assignability. If the option is set to TRUE, member names are considered as part of assignability in addition to member IDs (so that members with the same ID also have the same name). If the option is set to FALSE, then member names are not ignored.

By default, false.

	
bool m_prevent_type_widening

	This option controls whether type widening is allowed. If the option is set to FALSE, type widening is permitted. If the option is set to TRUE,it shall cause a wider type to not be assignable to a narrower type.

By default, false.

	
bool m_force_type_validation

	This option requires type information to be available in order to complete matching between a DataWriter and DataReaderwhen set to TRUE, otherwise matching can occur without complete type information when set to FALSE.

By default, false.

 17.1.1.3.44. TypeConsistencyKind

17.1.1.3.44. TypeConsistencyKind

	
enum eprosima::fastdds::dds::TypeConsistencyKind

	Values:

	
enumerator DISALLOW_TYPE_COERCION

	The DataWriter and the DataReader must support the same data type in order for them to communicate.

	
enumerator ALLOW_TYPE_COERCION

	The DataWriter and the DataReader need not support the same data type in order for them to communicate as long as the reader’s type is assignable from the writer’s type.

 17.1.1.3.45. UserDataQosPolicy

17.1.1.3.45. UserDataQosPolicy

	
class UserDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy

	Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Entity objects such that when a remote application discovers their existence it can access that information and use it for its own purposes.

One possible use of this QoS is to attach security credentials or some other information that can be used by the remote application to authenticate the source.

 17.1.1.3.46. WireProtocolConfigQos

17.1.1.3.46. WireProtocolConfigQos

	
class eprosima::fastdds::dds::WireProtocolConfigQos : public eprosima::fastdds::dds::QosPolicy

	Qos Policy that configures the wire protocol.

Public Functions

	
inline WireProtocolConfigQos()

	Constructor.

	
virtual ~WireProtocolConfigQos() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
fastrtps::rtps::GuidPrefix_t prefix

	Optionally allows user to define the GuidPrefix_t.

	
int32_t participant_id

	Participant ID

By default, -1.

	
fastrtps::rtps::BuiltinAttributes builtin

	Builtin parameters.

	
fastrtps::rtps::PortParameters port

	Port Parameters.

	
fastrtps::rtps::ThroughputControllerDescriptor throughput_controller

	Throughput controller parameters. Leave default for uncontrolled flow.

	
Deprecated:

	Use flow_controllers() on DomainParticipantQoS

	
rtps::LocatorList default_unicast_locator_list

	Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

	
rtps::LocatorList default_multicast_locator_list

	Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case that it was defined with NO MulticastLocators. This is usually left empty.

	
rtps::ExternalLocators default_external_unicast_locators

	The collection of external locators to use for communication on user created topics.

	
bool ignore_non_matching_locators = false

	Whether locators that don’t match with the announced locators should be kept.

 17.1.1.3.47. WriterDataLifecycleQosPolicy

17.1.1.3.47. WriterDataLifecycleQosPolicy

	
class eprosima::fastdds::dds::WriterDataLifecycleQosPolicy

	Specifies the behavior of the DataWriter with regards to the lifecycle of the data-instances it manages.

Warning

This Qos Policy will be implemented in future releases.

Note

Mutable Qos Policy

Public Functions

	
inline WriterDataLifecycleQosPolicy()

	Constructor.

	
inline virtual ~WriterDataLifecycleQosPolicy()

	Destructor.

Public Members

	
bool autodispose_unregistered_instances

	Controls whether a DataWriterwill automatically dispose instances each time they are unregistered. The setting autodispose_unregistered_instances = TRUE indicates that unregistered instances will also be considered disposed.

By default, true.

 17.1.1.3.48. WriterResourceLimitsQos

17.1.1.3.48. WriterResourceLimitsQos

	
class eprosima::fastdds::dds::WriterResourceLimitsQos

	Qos Policy to configure the limit of the writer resources.

Public Functions

	
inline WriterResourceLimitsQos()

	Constructor.

	
virtual ~WriterResourceLimitsQos() = default

	Destructor.

Public Members

	
fastrtps::ResourceLimitedContainerConfig matched_subscriber_allocation

	Matched subscribers allocation limits.

	
fastrtps::ResourceLimitedContainerConfig reader_filters_allocation

	Reader filters allocation limits.

 17.1.1.4. Status

17.1.1.4. Status

	17.1.1.4.1. BaseStatus

	17.1.1.4.2. DeadlineMissedStatus

	17.1.1.4.3. IncompatibleQosStatus

	17.1.1.4.4. InconsistentTopicStatus

	17.1.1.4.5. LivelinessChangedStatus

	17.1.1.4.6. MatchedStatus

	17.1.1.4.7. OfferedDeadlineMissedStatus

	17.1.1.4.8. OfferedIncompatibleQosStatus

	17.1.1.4.9. PublicationMatchedStatus

	17.1.1.4.10. QosPolicyCount

	17.1.1.4.11. QosPolicyCountSeq

	17.1.1.4.12. RequestedDeadlineMissedStatus

	17.1.1.4.13. RequestedIncompatibleQosStatus

	17.1.1.4.14. LivelinessLostStatus

	17.1.1.4.15. SampleLostStatus

	17.1.1.4.16. SampleRejectedStatus

	17.1.1.4.17. SampleRejectedStatusKind

	17.1.1.4.18. StatusMask

	17.1.1.4.19. SubscriptionMatchedStatus

 17.1.1.4.1. BaseStatus

17.1.1.4.1. BaseStatus

	
struct eprosima::fastdds::dds::BaseStatus

	A struct storing the base status.

Public Members

	
int32_t total_count = 0

	Total cumulative count.

	
int32_t total_count_change = 0

	Increment since the last time the status was read.

 17.1.1.4.2. DeadlineMissedStatus

17.1.1.4.2. DeadlineMissedStatus

	
struct eprosima::fastdds::dds::DeadlineMissedStatus

	A struct storing the deadline status.

Public Functions

	
inline DeadlineMissedStatus()

	Constructor.

	
inline ~DeadlineMissedStatus()

	Destructor.

Public Members

	
uint32_t total_count

	Total cumulative number of offered deadline periods elapsed during which a writer failed to provide data.

Missed deadlines accumulate, that is, each deadline period the total_count will be incremented by 1

	
uint32_t total_count_change

	The change in total_count since the last time the listener was called or the status was read.

	
InstanceHandle_t last_instance_handle

	Handle to the last instance missing the deadline.

 17.1.1.4.3. IncompatibleQosStatus

17.1.1.4.3. IncompatibleQosStatus

	
struct eprosima::fastdds::dds::IncompatibleQosStatus

	A struct storing the requested incompatible QoS status.

Public Members

	
uint32_t total_count = 0

	Total cumulative number of times the concerned writer discovered a reader for the same topic.

The requested QoS is incompatible with the one offered by the writer

	
uint32_t total_count_change = 0

	The change in total_count since the last time the listener was called or the status was read.

	
QosPolicyId_t last_policy_id = INVALID_QOS_POLICY_ID

	The id of the policy that was found to be incompatible the last time an incompatibility is detected.

	
QosPolicyCountSeq policies

	A list of QosPolicyCount.

 17.1.1.4.4. InconsistentTopicStatus

17.1.1.4.4. InconsistentTopicStatus

	
using eprosima::fastdds::dds::InconsistentTopicStatus = BaseStatus

	Alias of BaseStatus.

 17.1.1.4.5. LivelinessChangedStatus

17.1.1.4.5. LivelinessChangedStatus

	
struct eprosima::fastdds::dds::LivelinessChangedStatus

	A struct storing the liveliness changed status.

Public Members

	
int32_t alive_count = 0

	The total number of currently active publishers that write the topic read by the subscriber.

This count increases when a newly matched publisher asserts its liveliness for the first time or when a publisher previously considered to be not alive reasserts its liveliness. The count decreases when a publisher considered alive fails to assert its liveliness and becomes not alive, whether because it was deleted normally or for some other reason

	
int32_t not_alive_count = 0

	The total count of current publishers that write the topic read by the subscriber that are no longer asserting their liveliness.

This count increases when a publisher considered alive fails to assert its liveliness and becomes not alive for some reason other than the normal deletion of that publisher. It decreases when a previously not alive publisher either reasserts its liveliness or is deleted normally

	
int32_t alive_count_change = 0

	The change in the alive_count since the last time the listener was called or the status was read.

	
int32_t not_alive_count_change = 0

	The change in the not_alive_count since the last time the listener was called or the status was read.

	
InstanceHandle_t last_publication_handle

	Handle to the last publisher whose change in liveliness caused this status to change.

 17.1.1.4.6. MatchedStatus

17.1.1.4.6. MatchedStatus

	
struct eprosima::fastdds::dds::MatchedStatus

	A structure storing a matching status.

Subclassed by eprosima::fastdds::dds::PublicationMatchedStatus, eprosima::fastdds::dds::SubscriptionMatchedStatus

Public Functions

	
MatchedStatus() = default

	Constructor.

	
~MatchedStatus() = default

	Destructor.

Public Members

	
int32_t total_count = 0

	Total cumulative count the concerned reader discovered a match with a writer.

It found a writer for the same topic with a requested QoS that is compatible with that offered by the reader

	
int32_t total_count_change = 0

	The change in total_count since the last time the listener was called or the status was read.

	
int32_t current_count = 0

	The number of writers currently matched to the concerned reader.

	
int32_t current_count_change = 0

	The change in current_count since the last time the listener was called or the status was read.

 17.1.1.4.7. OfferedDeadlineMissedStatus

17.1.1.4.7. OfferedDeadlineMissedStatus

	
typedef DeadlineMissedStatus eprosima::fastdds::dds::OfferedDeadlineMissedStatus

	Typedef of DeadlineMissedStatus.

 17.1.1.4.8. OfferedIncompatibleQosStatus

17.1.1.4.8. OfferedIncompatibleQosStatus

	
using eprosima::fastdds::dds::OfferedIncompatibleQosStatus = IncompatibleQosStatus

	Alias of IncompatibleQosStatus.

 17.1.1.4.9. PublicationMatchedStatus

17.1.1.4.9. PublicationMatchedStatus

	
struct eprosima::fastdds::dds::PublicationMatchedStatus : public eprosima::fastdds::dds::MatchedStatus

	A structure storing the publication status.

Public Members

	
InstanceHandle_t last_subscription_handle

	Handle to the last reader that matched the writer causing the status to change.

 17.1.1.4.10. QosPolicyCount

17.1.1.4.10. QosPolicyCount

	
struct eprosima::fastdds::dds::QosPolicyCount

	A struct storing the id of the incompatible QoS Policy and the number of times it fails.

Public Functions

	
QosPolicyCount() = default

	Constructor.

	
inline QosPolicyCount(QosPolicyId_t id, int32_t c)

	Constructor.

Public Members

	
QosPolicyId_t policy_id = INVALID_QOS_POLICY_ID

	The id of the policy.

	
uint32_t count = 0

	Total number of times that the concerned writer discovered a reader for the same topic.

The requested QoS is incompatible with the one offered by the writer

 17.1.1.4.11. QosPolicyCountSeq

17.1.1.4.11. QosPolicyCountSeq

	
using eprosima::fastdds::dds::QosPolicyCountSeq = std::vector<QosPolicyCount>

	Alias of std::vector<QosPolicyCount>

 17.1.1.4.12. RequestedDeadlineMissedStatus

17.1.1.4.12. RequestedDeadlineMissedStatus

	
typedef DeadlineMissedStatus eprosima::fastdds::dds::RequestedDeadlineMissedStatus

	Typedef of DeadlineMissedStatus.

 17.1.1.4.13. RequestedIncompatibleQosStatus

17.1.1.4.13. RequestedIncompatibleQosStatus

	
using eprosima::fastdds::dds::RequestedIncompatibleQosStatus = IncompatibleQosStatus

	Alias of IncompatibleQosStatus.

 17.1.1.4.14. LivelinessLostStatus

17.1.1.4.14. LivelinessLostStatus

	
using eprosima::fastdds::dds::LivelinessLostStatus = BaseStatus

	Alias of BaseStatus.

 17.1.1.4.15. SampleLostStatus

17.1.1.4.15. SampleLostStatus

	
using eprosima::fastdds::dds::SampleLostStatus = BaseStatus

	Alias of BaseStatus.

 17.1.1.4.16. SampleRejectedStatus

17.1.1.4.16. SampleRejectedStatus

	
struct eprosima::fastdds::dds::SampleRejectedStatus

	A struct storing the sample rejected status.

Public Members

	
uint32_t total_count = 0

	Total cumulative count of samples rejected by the DataReader.

	
uint32_t total_count_change = 0

	The incremental number of samples rejected since the last time the listener was called or the status was read.

	
SampleRejectedStatusKind last_reason = NOT_REJECTED

	Reason for rejecting the last sample rejected. If no samples have been rejected, the reason is the special value NOT_REJECTED.

	
InstanceHandle_t last_instance_handle

	Handle to the instance being updated by the last sample that was rejected.

 17.1.1.4.17. SampleRejectedStatusKind

17.1.1.4.17. SampleRejectedStatusKind

	
enum eprosima::fastdds::dds::SampleRejectedStatusKind

	An enum with the possible values for the sample rejected reason.

Values:

	
enumerator NOT_REJECTED

	Default value.

	
enumerator REJECTED_BY_INSTANCES_LIMIT

	Exceeds the max_instance limit.

	
enumerator REJECTED_BY_SAMPLES_LIMIT

	Exceeds the max_samples limit.

	
enumerator REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

	Exceeds the max_samples_per_instance limit.

 17.1.1.4.18. StatusMask

17.1.1.4.18. StatusMask

	
class eprosima::fastdds::dds::StatusMask : public std::bitset<FASTDDS_STATUS_COUNT>

	StatusMask is a bitmap or bitset field.

This bitset is used to:
	determine which listener functions to call

	set conditions in dds::core::cond::StatusCondition

	indicate status changes when calling dds::core::Entity::status_changes

Public Types

	
typedef std::bitset<FASTDDS_STATUS_COUNT> MaskType

	Convenience typedef for std::bitset<FASTDDS_STATUS_COUNT>.

Public Functions

	
inline StatusMask()

	Construct an StatusMask with no flags set.

	
inline explicit StatusMask(uint32_t mask)

	Construct an StatusMask with an uint32_t bit mask.

	Parameters

	mask – the bit array to initialize the bitset with

	
inline StatusMask &operator<<(const StatusMask &mask)

	Add given StatusMask bits into this StatusMask bitset.

	Returns

	StatusMask this

	
inline StatusMask &operator>>(const StatusMask &mask)

	Remove given StatusMask bits into this StatusMask bitset.

	Returns

	StatusMask this

	
inline bool is_active(StatusMask status) const

	Checks if the status passed as parameter is 1 in the actual StatusMask.

	Parameters

	status – Status that need to be checked

	Returns

	true if the status is active and false if not

Public Static Functions

	
static inline StatusMask all()

	Get all StatusMasks

	Returns

	StatusMask all

	
static inline StatusMask none()

	Get no StatusMasks

	Returns

	StatusMask none

	
static inline StatusMask inconsistent_topic()

	Get the StatusMask associated with dds::core::status::InconsistentTopicStatus

	Returns

	StatusMask inconsistent_topic

	
static inline StatusMask offered_deadline_missed()

	Get the StatusMask associated with dds::core::status::OfferedDeadlineMissedStatus

	Returns

	StatusMask offered_deadline_missed

	
static inline StatusMask requested_deadline_missed()

	Get the StatusMask associated with dds::core::status::RequestedDeadlineMissedStatus

	Returns

	StatusMask requested_deadline_missed

	
static inline StatusMask offered_incompatible_qos()

	Get the StatusMask associated with dds::core::status::OfferedIncompatibleQosStatus

	Returns

	StatusMask offered_incompatible_qos

	
static inline StatusMask requested_incompatible_qos()

	Get the StatusMask associated with dds::core::status::RequestedIncompatibleQosStatus

	Returns

	StatusMask requested_incompatible_qos

	
static inline StatusMask sample_lost()

	Get the StatusMask associated with dds::core::status::SampleLostStatus

	Returns

	StatusMask sample_lost

	
static inline StatusMask sample_rejected()

	Get the StatusMask associated with dds::core::status::SampleRejectedStatus

	Returns

	StatusMask sample_rejected

	
static inline StatusMask data_on_readers()

	Get the StatusMask associated with dds::core::status::data_on_readers

	Returns

	StatusMask data_on_readers

	
static inline StatusMask data_available()

	get the statusmask associated with dds::core::status::data_available

	Returns

	statusmask data_available

	
static inline StatusMask liveliness_lost()

	Get the StatusMask associated with dds::core::status::LivelinessLostStatus

	Returns

	StatusMask liveliness_lost

	
static inline StatusMask liveliness_changed()

	Get the StatusMask associated with dds::core::status::LivelinessChangedStatus

	Returns

	StatusMask liveliness_changed

	
static inline StatusMask publication_matched()

	Get the statusmask associated with dds::core::status::PublicationMatchedStatus

	Returns

	StatusMask publication_matched

	
static inline StatusMask subscription_matched()

	Get the statusmask associated with dds::core::status::SubscriptionMatchedStatus

	Returns

	StatusMask subscription_matched

	
FASTDDS_STATUS_COUNT size_t(16)

	Alias of size_t(16)

 17.1.1.4.19. SubscriptionMatchedStatus

17.1.1.4.19. SubscriptionMatchedStatus

	
struct eprosima::fastdds::dds::SubscriptionMatchedStatus : public eprosima::fastdds::dds::MatchedStatus

	A structure storing the subscription status.

Public Members

	
InstanceHandle_t last_publication_handle

	Handle to the last writer that matched the reader causing the status change.

 17.1.1.5. Condition

17.1.1.5. Condition

	17.1.1.5.1. Condition

	17.1.1.5.2. ConditionSeq

	17.1.1.5.3. GuardCondition

	17.1.1.5.4. StatusCondition

	17.1.1.5.5. Wait-set

 17.1.1.5.1. Condition

17.1.1.5.1. Condition

	
class eprosima::fastdds::dds::Condition

	The Condition class is the root base class for all the conditions that may be attached to a WaitSet.

Subclassed by eprosima::fastdds::dds::GuardCondition, eprosima::fastdds::dds::ReadCondition, eprosima::fastdds::dds::StatusCondition

Public Functions

	
inline virtual bool get_trigger_value() const

	Retrieves the trigger_value of the Condition.

	Returns

	true if trigger_value is set to ‘true’, ‘false’ otherwise

 17.1.1.5.2. ConditionSeq

17.1.1.5.2. ConditionSeq

	
using eprosima::fastdds::dds::ConditionSeq = std::vector<Condition*>

	

 17.1.1.5.3. GuardCondition

17.1.1.5.3. GuardCondition

	
class eprosima::fastdds::dds::GuardCondition : public eprosima::fastdds::dds::Condition

	The GuardCondition class is a specific Condition whose trigger_value is completely under the control of the application.

The purpose of the GuardCondition is to provide the means for the application to manually wakeup a WaitSet. This is accomplished by attaching the GuardCondition to the WaitSet and then setting the trigger_value by means of the set_trigger_value operation.

Public Functions

	
virtual bool get_trigger_value() const override

	Retrieves the trigger_value of the Condition.

	Returns

	true if trigger_value is set to ‘true’, ‘false’ otherwise

	
ReturnCode_t set_trigger_value(bool value)

	Set the trigger_value.

	Parameters

	value – new value for trigger

	Returns

	RETURN_OK

 17.1.1.5.4. StatusCondition

17.1.1.5.4. StatusCondition

	
class eprosima::fastdds::dds::StatusCondition : public eprosima::fastdds::dds::Condition

	The StatusCondition class is a specific Condition that is associated with each Entity.

Public Functions

	
virtual bool get_trigger_value() const override

	Retrieves the trigger_value of the Condition.

	Returns

	true if trigger_value is set to ‘true’, ‘false’ otherwise

	
ReturnCode_t set_enabled_statuses(const StatusMask &mask)

	Defines the list of communication statuses that are taken into account to determine the trigger_value.

	Parameters

	mask – defines the mask for the status

	Returns

	RETCODE_OK with everything ok, error code otherwise

	
const StatusMask &get_enabled_statuses() const

	Retrieves the list of communication statuses that are taken into account to determine the trigger_value.

	Returns

	Status set or default status if it has not been set

	
Entity *get_entity() const

	Returns the Entity associated.

	Returns

	Entity

 17.1.1.5.5. Wait-set

17.1.1.5.5. Wait-set

	
class eprosima::fastdds::dds::WaitSet

	The WaitSet class allows an application to wait until one or more of the attached Condition objects has a trigger_value of TRUE or until timeout expires.

Public Functions

	
ReturnCode_t attach_condition(const Condition &cond)

	Attaches a Condition to the Wait Set.

	Parameters

	cond – Condition

	Returns

	RETCODE_OK if attached correctly, error code otherwise

	
ReturnCode_t detach_condition(const Condition &cond)

	Detaches a Condition from the WaitSet.

	Parameters

	cond – Condition

	Returns

	RETCODE_OK if detached correctly, PRECONDITION_NOT_MET if condition was not attached

	
ReturnCode_t wait(ConditionSeq &active_conditions, const fastrtps::Duration_t timeout) const

	Allows an application thread to wait for the occurrence of certain conditions. If none of the conditions attached to the WaitSet have a trigger_value of true, the wait operation will block suspending the calling thread.

	Parameters

	
	active_conditions – Reference to the collection of conditions which trigger_value are true

	timeout – Maximum time of the wait

	Returns

	RETCODE_OK if everything correct, PRECONDITION_NOT_MET if WaitSet already waiting, TIMEOUT if maximum time expired, error code otherwise

	
ReturnCode_t get_conditions(ConditionSeq &attached_conditions) const

	Retrieves the list of attached conditions.

	Parameters

	attached_conditions – Reference to the collection of attached conditions

	Returns

	RETCODE_OK if everything correct, error code otherwise

 17.1.1.6. LoanableArray

17.1.1.6. LoanableArray

	
template<typename T, std::size_t num_items>
struct eprosima::fastdds::dds::LoanableArray : public std::array<T, num_items>

	A type-safe, ordered collection of elements allocated on the stack, which can be loaned to a LoanableCollection.

Public Functions

	
inline void **buffer_for_loans() const

	Get a buffer pointer that could be used on LoanableCollection::loan.

	Returns

	buffer pointer for loans.

 17.1.1.7. LoanableCollection

17.1.1.7. LoanableCollection

	
class eprosima::fastdds::dds::LoanableCollection

	A collection of generic opaque pointers that can receive the buffer from outside (loan).

This is an abstract class. See LoanableSequence for details.

Subclassed by eprosima::fastdds::dds::LoanableTypedCollection< T, _NonConstEnabler >, eprosima::fastdds::dds::UserAllocatedSequence, eprosima::fastdds::dds::LoanableTypedCollection< T >, eprosima::fastdds::dds::LoanableTypedCollection< T, std::true_type >

Public Functions

	
inline const element_type *buffer() const

	Get the pointer to the elements buffer.

The returned value may be nullptr if maximum() is 0. Otherwise it is guaranteed that up to maximum() elements can be accessed.

	Returns

	the pointer to the elements buffer.

	
inline bool has_ownership() const

	Get the ownership flag.

	Returns

	whether the collection has ownership of the buffer.

	
inline size_type maximum() const

	Get the maximum number of elements currently allocated.

	Returns

	the maximum number of elements currently allocated.

	
inline size_type length() const

	Get the number of elements currently accessible.

	Returns

	the number of elements currently accessible.

	
inline bool length(size_type new_length)

	Set the number of elements currently accessible.

This method tells the collection that a certain number of elements should be accessible. If the new length is greater than the current maximum() the collection should allocate space for the new elements. If this is the case and the collection does not own the buffer (i.e. has_ownership() is false) then no allocation will be performed, the length will remain unchanged, and false will be returned.

	Parameters

	new_length – [in] New number of elements to be accessible.

	Pre

	new_length >= 0

	Returns

	true if the new length was correctly set.

	Post

	length() == new_length

	Post

	maximum() >= new_length

	
inline bool loan(element_type *buffer, size_type new_maximum, size_type new_length)

	Loan a buffer to the collection.

	Parameters

	
	buffer – [in] pointer to the buffer to be loaned.

	new_maximum – [in] number of allocated elements in buffer.

	new_length – [in] number of accessible elements in buffer.

	Pre

	(has_ownership() == false) || (maximum() == 0)

	Pre

	new_maximum > 0

	Pre

	new_maximum >= new_length

	Pre

	buffer != nullptr

	Returns

	false if preconditions are not met.

	Returns

	true if operation succeeds.

	Post

	buffer() == buffer

	Post

	has_ownership() == false

	Post

	maximum() == new_maximum

	Post

	length() == new_length

	
inline element_type *unloan(size_type &maximum, size_type &length)

	Remove the loan from the collection.

	Parameters

	
	maximum – [out] number of allocated elements on the returned buffer.

	length – [out] number of accessible elements on the returned buffer.

	Pre

	has_ownership() == false

	Returns

	nullptr if preconditions are not met.

	Returns

	pointer to the previously loaned buffer of elements.

	Post

	buffer() == nullptr

	Post

	has_ownership() == true

	Post

	length() == 0

	Post

	maximum() == 0

	
inline element_type *unloan()

	Remove the loan from the collection.

	Pre

	has_ownership() == false

	Returns

	nullptr if preconditions are not met.

	Returns

	pointer to the previously loaned buffer of elements.

	Post

	buffer() == nullptr

	Post

	has_ownership() == true

	Post

	length() == 0

	Post

	maximum() == 0

 17.1.1.8. LoanableSequence

17.1.1.8. LoanableSequence

	
template<typename T, typename _NonConstEnabler = std::true_type>
class eprosima::fastdds::dds::LoanableSequence : public eprosima::fastdds::dds::LoanableTypedCollection<T, std::true_type>

	A type-safe, ordered collection of elements that can receive the buffer from outside (loan).

For users who define data types in OMG IDL, this type corresponds to the IDL express sequence<T>.

For any user-data type Foo that an application defines for the purpose of data-distribution with Fast DDS, a ‘using FooSeq = LoanableSequence<Foo>’ is generated. The sequence offers a subset of the methods defined by the standard OMG IDL to C++ mapping for sequences. We refer to an IDL ‘sequence<Foo>’ as FooSeq.

The state of a sequence is described by the properties ‘maximum’, ‘length’ and ‘has_ownership’.
	The ‘maximum’ represents the size of the underlying buffer; this is the maximum number of elements it can possibly hold. It is returned by the maximum() operation.

	The ‘length’ represents the actual number of elements it currently holds. It is returned by the length() operation.

	The ‘has_ownership’ flag represents whether the sequence owns the underlying buffer. It is returned by the has_ownership() operation. If the sequence does not own the underlying buffer, the underlying buffer is loaned from somewhere else. This flag influences the lifecycle of the sequence and what operations are allowed on it. The general guidelines are provided below and more details are described in detail as pre-conditions and post-conditions of each of the sequence’s operations:

	If has_ownership == true, the sequence has ownership on the buffer. It is then responsible for destroying the buffer when the sequence is destroyed.

	If has_ownership == false, the sequence does not have ownership on the buffer. This implies that the sequence is loaning the buffer. The sequence should not be destroyed until the loan is returned.

	A sequence with a zero maximum always has has_ownership == true

Public Functions

	
LoanableSequence() = default

	Default constructor.

Creates the sequence with no data.

	Post

	buffer() == nullptr

	Post

	has_ownership() == true

	Post

	length() == 0

	Post

	maximum() == 0

	
inline LoanableSequence(size_type max)

	Pre-allocation constructor.

Creates the sequence with an initial number of allocated elements. When the input parameter is less than or equal to 0, the behavior is equivalent to the default constructor. Otherwise, the post-conditions below will apply.

	Parameters

	max – [in] Number of elements to pre-allocate.

	Post

	buffer() != nullptr

	Post

	has_ownership() == true

	Post

	length() == 0

	Post

	maximum() == max

	
inline ~LoanableSequence()

	Deallocate this sequence’s buffer.

	Pre

	has_ownership() == true. If this precondition is not met, no memory will be released and a warning will be logged.

	Post

	maximum() == 0 and the underlying buffer is released.

	
inline LoanableSequence(const LoanableSequence &other)

	Construct a sequence with the contents of another sequence.

This method performs a deep copy of the sequence received into this one. Allocations will happen when other.length() > 0

	Parameters

	other – [in] The sequence from where contents are to be copied.

	Post

	has_ownership() == true

	Post

	maximum() == other.length()

	Post

	length() == other.length()

	Post

	buffer() != nullptr when other.length() > 0

	
inline LoanableSequence &operator=(const LoanableSequence &other)

	Copy the contents of another sequence into this one.

This method performs a deep copy of the sequence received into this one. If this sequence had a buffer loaned, it will behave as if unloan has been called. Allocations will happen when (a) has_ownership() == false and other.length() > 0 (b) has_ownership() == true and other.length() > maximum()

	Parameters

	other – [in] The sequence from where contents are to be copied.

	Post

	has_ownership() == true

	Post

	maximum() >= other.length()

	Post

	length() == other.length()

	Post

	buffer() != nullptr when other.length() > 0

	
FASTDDS_SEQUENCE(FooSeq, Foo) using FooSeq = eprosima::fastdds::dds::LoanableSequence<Foo>

	

 17.1.1.9. StackAllocatedSequence

17.1.1.9. StackAllocatedSequence

	
template<typename T, LoanableCollection::size_type num_items>
struct StackAllocatedSequence : public eprosima::fastdds::dds::LoanableTypedCollection<T>

	A type-safe, ordered collection of elements allocated on the stack.

 17.1.2. Domain

17.1.2. Domain

	17.1.2.1. DomainParticipant

	17.1.2.2. DomainParticipantFactory

	17.1.2.3. DomainParticipantFactoryQos

	17.1.2.4. DomainParticipantListener

	17.1.2.5. DomainParticipantQos

 17.1.2.1. DomainParticipant

17.1.2.1. DomainParticipant

	
class eprosima::fastdds::dds::DomainParticipant : public eprosima::fastdds::dds::Entity

	Class DomainParticipant used to group Publishers and Subscribers into a single working unit.

Subclassed by eprosima::fastdds::statistics::dds::DomainParticipant

Public Functions

	
virtual ~DomainParticipant()

	Destructor.

	
ReturnCode_t get_qos(DomainParticipantQos &qos) const

	This operation returns the value of the DomainParticipant QoS policies

	Parameters

	qos – DomainParticipantQos reference where the qos is going to be returned

	Returns

	RETCODE_OK

	
const DomainParticipantQos &get_qos() const

	This operation returns the value of the DomainParticipant QoS policies.

	Returns

	A reference to the DomainParticipantQos

	
ReturnCode_t set_qos(const DomainParticipantQos &qos) const

	This operation sets the value of the DomainParticipant QoS policies.

	Parameters

	qos – DomainParticipantQos to be set

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const DomainParticipantListener *get_listener() const

	Allows accessing the DomainParticipantListener.

	Returns

	DomainParticipantListener pointer

	
ReturnCode_t set_listener(DomainParticipantListener *listener)

	Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

Warning

Do not call this method from a DomainParticipantListener callback.

	Parameters

	listener – New value for the DomainParticipantListener

	Returns

	RETCODE_OK if successful, RETCODE_ERROR otherwise.

	
ReturnCode_t set_listener(DomainParticipantListener *listener, const std::chrono::seconds timeout)

	Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

Warning

Do not call this method from a DomainParticipantListener callback.

	Parameters

	
	listener – New value for the DomainParticipantListener

	timeout – Maximum time to wait for executing callbacks to finish.

	Returns

	RETCODE_OK if successful, RETCODE_ERROR if failed (timeout expired).

	
ReturnCode_t set_listener(DomainParticipantListener *listener, const StatusMask &mask)

	Modifies the DomainParticipantListener.

Warning

Do not call this method from a DomainParticipantListener callback.

	Parameters

	
	listener – New value for the DomainParticipantListener

	mask – StatusMask that holds statuses the listener responds to

	Returns

	RETCODE_OK if successful, RETCODE_ERROR otherwise.

	
ReturnCode_t set_listener(DomainParticipantListener *listener, const StatusMask &mask, const std::chrono::seconds timeout)

	Modifies the DomainParticipantListener.

Warning

Do not call this method from a DomainParticipantListener callback.

	Parameters

	
	listener – New value for the DomainParticipantListener

	mask – StatusMask that holds statuses the listener responds to

	timeout – Maximum time to wait for executing callbacks to finish.

	Returns

	RETCODE_OK if successful, RETCODE_ERROR if failed (timeout expired)

	
virtual ReturnCode_t enable() override

	This operation enables the DomainParticipant.

	Returns

	RETCODE_OK

	
Publisher *create_publisher(const PublisherQos &qos, PublisherListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Publisher in this Participant.

	Parameters

	
	qos – QoS of the Publisher.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Publisher.

	
Publisher *create_publisher_with_profile(const std::string &profile_name, PublisherListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Publisher in this Participant.

	Parameters

	
	profile_name – Publisher profile name.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Publisher.

	
ReturnCode_t delete_publisher(const Publisher *publisher)

	Deletes an existing Publisher.

	Parameters

	publisher – to be deleted.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the publisher does not belong to this participant or if it has active DataWriters, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
Subscriber *create_subscriber(const SubscriberQos &qos, SubscriberListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Subscriber in this Participant.

	Parameters

	
	qos – QoS of the Subscriber.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Subscriber.

	
Subscriber *create_subscriber_with_profile(const std::string &profile_name, SubscriberListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Subscriber in this Participant.

	Parameters

	
	profile_name – Subscriber profile name.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Subscriber.

	
ReturnCode_t delete_subscriber(const Subscriber *subscriber)

	Deletes an existing Subscriber.

	Parameters

	subscriber – to be deleted.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the subscriber does not belong to this participant or if it has active DataReaders, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
Topic *create_topic(const std::string &topic_name, const std::string &type_name, const TopicQos &qos, TopicListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Topic in this Participant.

	Parameters

	
	topic_name – Name of the Topic.

	type_name – Data type of the Topic.

	qos – QoS of the Topic.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Topic.

	
Topic *create_topic_with_profile(const std::string &topic_name, const std::string &type_name, const std::string &profile_name, TopicListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Topic in this Participant.

	Parameters

	
	topic_name – Name of the Topic.

	type_name – Data type of the Topic.

	profile_name – Topic profile name.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all)

	Returns

	Pointer to the created Topic.

	
ReturnCode_t delete_topic(const Topic *topic)

	Deletes an existing Topic.

	Parameters

	topic – to be deleted.

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to this participant or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

	
ContentFilteredTopic *create_contentfilteredtopic(const std::string &name, Topic *related_topic, const std::string &filter_expression, const std::vector<std::string> &expression_parameters)

	Create a ContentFilteredTopic in this Participant.

	Parameters

	
	name – Name of the ContentFilteredTopic

	related_topic – Related Topic to being subscribed

	filter_expression – Logic expression to create filter

	expression_parameters – Parameters to filter content

	Returns

	Pointer to the created ContentFilteredTopic.

	Returns

	nullptr if related_topic does not belong to this participant.

	Returns

	nullptr if a topic with the specified name has already been created.

	Returns

	nullptr if a filter cannot be created with the specified filter_expression and expression_parameters.

	
ContentFilteredTopic *create_contentfilteredtopic(const std::string &name, Topic *related_topic, const std::string &filter_expression, const std::vector<std::string> &expression_parameters, const char *filter_class_name)

	Create a ContentFilteredTopic in this Participant using a custom filter.

	Parameters

	
	name – Name of the ContentFilteredTopic

	related_topic – Related Topic to being subscribed

	filter_expression – Logic expression to create filter

	expression_parameters – Parameters to filter content

	filter_class_name – Name of the filter class to use

	Returns

	Pointer to the created ContentFilteredTopic.

	Returns

	nullptr if related_topic does not belong to this participant.

	Returns

	nullptr if a topic with the specified name has already been created.

	Returns

	nullptr if a filter cannot be created with the specified filter_expression and expression_parameters.

	Returns

	nullptr if the specified filter_class_name has not been registered.

	
ReturnCode_t delete_contentfilteredtopic(const ContentFilteredTopic *a_contentfilteredtopic)

	Deletes an existing ContentFilteredTopic.

	Parameters

	a_contentfilteredtopic – ContentFilteredTopic to be deleted

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to this participant or if it is referenced by any entity and RETCODE_OK if the ContentFilteredTopic was deleted.

	
MultiTopic *create_multitopic(const std::string &name, const std::string &type_name, const std::string &subscription_expression, const std::vector<std::string> &expression_parameters)

	Create a MultiTopic in this Participant.

	Parameters

	
	name – Name of the MultiTopic

	type_name – Result type of the MultiTopic

	subscription_expression – Logic expression to combine filter

	expression_parameters – Parameters to subscription content

	Returns

	Pointer to the created ContentFilteredTopic, nullptr in error case

	
ReturnCode_t delete_multitopic(const MultiTopic *a_multitopic)

	Deletes an existing MultiTopic.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	a_multitopic – MultiTopic to be deleted

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to this participant or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

	
Topic *find_topic(const std::string &topic_name, const fastrtps::Duration_t &timeout)

	Gives access to an existing (or ready to exist) enabled Topic. It should be noted that the returned Topic is a local object that acts as a proxy to designate the global concept of topic. Topics obtained by means of find_topic, must also be deleted by means of delete_topic so that the local resources can be released. If a Topic is obtained multiple times by means of find_topic or create_topic, it must also be deleted that same number of times using delete_topic.

	Parameters

	
	topic_name – Topic name

	timeout – Maximum time to wait for the Topic

	Returns

	Pointer to the existing Topic, nullptr in case of error or timeout

	
TopicDescription *lookup_topicdescription(const std::string &topic_name) const

	Looks up an existing, locally created TopicDescription, based on its name. May be called on a disabled participant.

	Remark
	UNSAFE. It is unsafe to lookup a topic description while another thread is creating a topic.

	Parameters

	topic_name – Name of the TopicDescription to search for.

	Returns

	Pointer to the topic description, if it has been created locally. Otherwise, nullptr is returned.

	
const Subscriber *get_builtin_subscriber() const

	Allows access to the builtin Subscriber.

	Returns

	Pointer to the builtin Subscriber, nullptr in error case

	
ReturnCode_t ignore_participant(const InstanceHandle_t &handle)

	Locally ignore a remote domain participant.

Note

This action is not required to be reversible.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	handle – Identifier of the remote participant to ignore

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
ReturnCode_t ignore_topic(const InstanceHandle_t &handle)

	Locally ignore a topic.

Note

This action is not required to be reversible.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	handle – Identifier of the topic to ignore

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
ReturnCode_t ignore_publication(const InstanceHandle_t &handle)

	Locally ignore a datawriter.

Note

This action is not required to be reversible.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	handle – Identifier of the datawriter to ignore

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
ReturnCode_t ignore_subscription(const InstanceHandle_t &handle)

	Locally ignore a datareader.

Note

This action is not required to be reversible.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	handle – Identifier of the datareader to ignore

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
DomainId_t get_domain_id() const

	This operation retrieves the domain_id used to create the DomainParticipant. The domain_id identifies the DDS domain to which the DomainParticipant belongs.

	Returns

	The Participant’s domain_id

	
ReturnCode_t delete_contained_entities()

	Deletes all the entities that were created by means of the “create” methods

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
ReturnCode_t assert_liveliness()

	This operation manually asserts the liveliness of the DomainParticipant. This is used in combination with the LIVELINESS QoS policy to indicate to the Service that the entity remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter entities with the LIVELINESS set to MANUAL_BY_PARTICIPANT and it only affects the liveliness of those DataWriter entities. Otherwise, it has no effect.

Note

Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not writing data regularly.

	Returns

	RETCODE_OK if the liveliness was asserted, RETCODE_ERROR otherwise.

	
ReturnCode_t set_default_publisher_qos(const PublisherQos &qos)

	This operation sets a default value of the Publisher QoS policies which will be used for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return false.

The special value PUBLISHER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_publisher_qos operation had never been called.

	Parameters

	qos – PublisherQos to be set

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const PublisherQos &get_default_publisher_qos() const

	This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful call to set_default_publisher_qos, or else, if the call was never made, the default values.

	Returns

	Current default publisher qos.

	
ReturnCode_t get_default_publisher_qos(PublisherQos &qos) const

	This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful call to set_default_publisher_qos, or else, if the call was never made, the default values.

	Parameters

	qos – PublisherQos reference where the default_publisher_qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t get_publisher_qos_from_profile(const std::string &profile_name, PublisherQos &qos) const

	Fills the PublisherQos with the values of the XML profile.

	Parameters

	
	profile_name – Publisher profile name.

	qos – PublisherQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
ReturnCode_t set_default_subscriber_qos(const SubscriberQos &qos)

	This operation sets a default value of the Subscriber QoS policies that will be used for newly created Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return false.

The special value SUBSCRIBER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_subscriber_qos operation had never been called.

	Parameters

	qos – SubscriberQos to be set

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const SubscriberQos &get_default_subscriber_qos() const

	This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be used for newly created Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful call to set_default_subscriber_qos, or else, if the call was never made, the default values.

	Returns

	Current default subscriber qos.

	
ReturnCode_t get_default_subscriber_qos(SubscriberQos &qos) const

	This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be used for newly created Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful call to set_default_subscriber_qos, or else, if the call was never made, the default values.

	Parameters

	qos – SubscriberQos reference where the default_subscriber_qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t get_subscriber_qos_from_profile(const std::string &profile_name, SubscriberQos &qos) const

	Fills the SubscriberQos with the values of the XML profile.

	Parameters

	
	profile_name – Subscriber profile name.

	qos – SubscriberQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
ReturnCode_t set_default_topic_qos(const TopicQos &qos)

	This operation sets a default value of the Topic QoS policies which will be used for newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return INCONSISTENT_POLICY.

The special value TOPIC_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_topic_qos operation had never been called.

	Parameters

	qos – TopicQos to be set

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const TopicQos &get_default_topic_qos() const

	This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

	Returns

	Current default topic qos.

	
ReturnCode_t get_default_topic_qos(TopicQos &qos) const

	This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

	Parameters

	qos – TopicQos reference where the default_topic_qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t get_topic_qos_from_profile(const std::string &profile_name, TopicQos &qos) const

	Fills the TopicQos with the values of the XML profile.

	Parameters

	
	profile_name – Topic profile name.

	qos – TopicQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
ReturnCode_t get_discovered_participants(std::vector<InstanceHandle_t> &participant_handles) const

	Retrieves the list of DomainParticipants that have been discovered in the domain and are not “ignored”.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	participant_handles – [out] Reference to the vector where discovered participants will be returned

	Returns

	RETCODE_OK if everything correct, error code otherwise

	
ReturnCode_t get_discovered_participant_data(builtin::ParticipantBuiltinTopicData &participant_data, const InstanceHandle_t &participant_handle) const

	Retrieves the DomainParticipant data of a discovered not ignored participant.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	participant_data – [out] Reference to the ParticipantBuiltinTopicData object to return the data

	participant_handle – InstanceHandle of DomainParticipant to retrieve the data from

	Returns

	RETCODE_OK if everything correct, PRECONDITION_NOT_MET if participant does not exist

	
ReturnCode_t get_discovered_topics(std::vector<InstanceHandle_t> &topic_handles) const

	Retrieves the list of topics that have been discovered in the domain and are not “ignored”.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	topic_handles – [out] Reference to the vector where discovered topics will be returned

	Returns

	RETCODE_OK if everything correct, error code otherwise

	
ReturnCode_t get_discovered_topic_data(builtin::TopicBuiltinTopicData &topic_data, const InstanceHandle_t &topic_handle) const

	Retrieves the Topic data of a discovered not ignored topic.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	topic_data – [out] Reference to the TopicBuiltinTopicData object to return the data

	topic_handle – InstanceHandle of Topic to retrieve the data from

	Returns

	RETCODE_OK if everything correct, PRECONDITION_NOT_MET if topic does not exist

	
bool contains_entity(const InstanceHandle_t &a_handle, bool recursive = true) const

	This operation checks whether or not the given handle represents an Entity that was created from the DomainParticipant.

	Parameters

	
	a_handle – InstanceHandle of the entity to look for.

	recursive – The containment applies recursively. That is, it applies both to entities (TopicDescription, Publisher, or Subscriber) created directly using the DomainParticipant as well as entities created using a contained Publisher, or Subscriber as the factory, and so forth. (default: true)

	Returns

	True if entity is contained. False otherwise.

	
ReturnCode_t get_current_time(fastrtps::Time_t ¤t_time) const

	This operation returns the current value of the time that the service uses to time-stamp data-writes and to set the reception-timestamp for the data-updates it receives.

	Parameters

	current_time – Time_t reference where the current time is returned

	Returns

	RETCODE_OK

	
ReturnCode_t register_type(TypeSupport type, const std::string &type_name)

	Register a type in this participant.

	Parameters

	
	type – TypeSupport.

	type_name – The name that will be used to identify the Type.

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with the same name and RETCODE_OK if it is correctly registered.

	
ReturnCode_t register_type(TypeSupport type)

	Register a type in this participant.

	Parameters

	type – TypeSupport.

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with the same name and RETCODE_OK if it is correctly registered.

	
ReturnCode_t unregister_type(const std::string &typeName)

	Unregister a type in this participant.

	Parameters

	typeName – Name of the type

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there are entities using that TypeSupport and RETCODE_OK if it is correctly unregistered.

	
TypeSupport find_type(const std::string &type_name) const

	This method gives access to a registered type based on its name.

	Parameters

	type_name – Name of the type

	Returns

	TypeSupport corresponding to the type_name

	
const InstanceHandle_t &get_instance_handle() const

	Returns the DomainParticipant’s handle.

	Returns

	InstanceHandle of this DomainParticipant.

	
const fastrtps::rtps::GUID_t &guid() const

	Getter for the Participant GUID.

	Returns

	A reference to the GUID

	
std::vector<std::string> get_participant_names() const

	Getter for the participant names.

	Returns

	Vector with the names

	
bool new_remote_endpoint_discovered(const fastrtps::rtps::GUID_t &partguid, uint16_t userId, fastrtps::rtps::EndpointKind_t kind)

	This method can be used when using a StaticEndpointDiscovery mechanism different that the one included in FastRTPS, for example when communicating with other implementations. It indicates the Participant that an Endpoint from the XML has been discovered and should be activated.

	Parameters

	
	partguid – Participant GUID_t.

	userId – User defined ID as shown in the XML file.

	kind – EndpointKind (WRITER or READER)

	Returns

	True if correctly found and activated.

	
fastrtps::rtps::ResourceEvent &get_resource_event() const

	Getter for the resource event.

	Pre

	The DomainParticipant is enabled.

	Returns

	A reference to the resource event

	
fastrtps::rtps::SampleIdentity get_type_dependencies(const fastrtps::types::TypeIdentifierSeq &in) const

	When a DomainParticipant receives an incomplete list of TypeIdentifiers in a PublicationBuiltinTopicData or SubscriptionBuiltinTopicData, it may request the additional type dependencies by invoking the getTypeDependencies operation.

	Parameters

	in – TypeIdentifier sequence

	Returns

	SampleIdentity

	
fastrtps::rtps::SampleIdentity get_types(const fastrtps::types::TypeIdentifierSeq &in) const

	A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects associated with a list of TypeIdentifiers.

	Parameters

	in – TypeIdentifier sequence

	Returns

	SampleIdentity

	
ReturnCode_t register_remote_type(const fastrtps::types::TypeInformation &type_information, const std::string &type_name, std::function<void(const std::string &name, const fastrtps::types::DynamicType_ptr type)> &callback)

	Helps the user to solve all dependencies calling internally to the typelookup service and registers the resulting dynamic type. The registration will be perform asynchronously and the user will be notified through the given callback, which receives the type_name as unique argument. If the type is already registered, the function will return true, but the callback will not be called. If the given type_information is enough to build the type without using the typelookup service, it will return true and the callback will be never called.

	Parameters

	
	type_information –

	type_name –

	callback –

	Returns

	true if type is already available (callback will not be called). false if type isn’t available yet (the callback will be called if negotiation is success, and ignored in other case).

	
ReturnCode_t register_content_filter_factory(const char *filter_class_name, IContentFilterFactory *const filter_factory)

	Register a custom content filter factory, which can be used to create a ContentFilteredTopic.

DDS specifies a SQL-like content filter to be used by content filtered topics. If this filter does not meet your filtering requirements, you can register a custom filter factory.

To use a custom filter, a factory for it must be registered in the following places:

	In any application that uses the custom filter factory to create a ContentFilteredTopic and the corresponding DataReader.

	In each application that writes the data to the applications mentioned above.

For example, suppose Application A on the subscription side creates a Topic named X and a ContentFilteredTopic named filteredX (and a corresponding DataReader), using a previously registered content filter factory, myFilterFactory. With only that, you will have filtering at the subscription side. If you also want to perform filtering in any application that publishes Topic X, then you also need to register the same definition of the ContentFilterFactory myFilterFactory in that application.

Each filter_class_name can only be used to register a content filter factory once per DomainParticipant.

	Parameters

	
	filter_class_name – Name of the filter class. Cannot be nullptr, must not exceed 255 characters, and must be unique within this DomainParticipant.

	filter_factory – Factory of content filters to be registered. Cannot be nullptr.

	Returns

	RETCODE_BAD_PARAMETER if any parameter is nullptr, or the filter_class_name exceeds 255 characters.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the filter_class_name has been already registered.

	Returns

	RETCODE_PRECONDITION_NOT_MET if filter_class_name is FASTDDS_SQLFILTER_NAME.

	Returns

	RETCODE_OK if the filter is correctly registered.

	
IContentFilterFactory *lookup_content_filter_factory(const char *filter_class_name)

	Lookup a custom content filter factory previously registered with register_content_filter_factory.

	Parameters

	filter_class_name – Name of the filter class. Cannot be nullptr.

	Returns

	nullptr if the given filter_class_name has not been previously registered on this DomainParticipant. Otherwise, the content filter factory previously registered with the given filter_class_name.

	
ReturnCode_t unregister_content_filter_factory(const char *filter_class_name)

	Unregister a custom content filter factory previously registered with register_content_filter_factory.

A filter_class_name can be unregistered only if it has been previously registered to the DomainParticipant with register_content_filter_factory.

The unregistration of filter is not allowed if there are any existing ContentFilteredTopic objects that are using the filter.

If there is any existing discovered DataReader with the same filter_class_name, filtering on the writer side will be stopped, but this operation will not fail.

	Parameters

	filter_class_name – Name of the filter class. Cannot be nullptr.

	Returns

	RETCODE_BAD_PARAMETER if the filter_class_name is nullptr.

	Returns

	RERCODE_PRECONDITION_NOT_MET if the filter_class_name has not been previously registered.

	Returns

	RERCODE_PRECONDITION_NOT_MET if there is any ContentFilteredTopic referencing the filter.

	Returns

	RETCODE_OK if the filter is correctly unregistered.

	
bool has_active_entities()

	Check if the Participant has any Publisher, Subscriber or Topic.

	Returns

	true if any, false otherwise.

 17.1.2.2. DomainParticipantFactory

17.1.2.2. DomainParticipantFactory

	
class eprosima::fastdds::dds::DomainParticipantFactory

	Class DomainParticipantFactory

Public Functions

	
DomainParticipant *create_participant(DomainId_t domain_id, const DomainParticipantQos &qos, DomainParticipantListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Participant.

	Parameters

	
	domain_id – Domain Id.

	qos – DomainParticipantQos Reference.

	listener – DomainParticipantListener Pointer (default: nullptr)

	mask – StatusMask Reference (default: all)

	Returns

	DomainParticipant pointer. (nullptr if not created.)

	
DomainParticipant *create_participant_with_profile(DomainId_t domain_id, const std::string &profile_name, DomainParticipantListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Participant.

	Parameters

	
	domain_id – Domain Id.

	profile_name – Participant profile name.

	listener – DomainParticipantListener Pointer (default: nullptr)

	mask – StatusMask Reference (default: all)

	Returns

	DomainParticipant pointer. (nullptr if not created.)

	
DomainParticipant *create_participant_with_profile(const std::string &profile_name, DomainParticipantListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	Create a Participant.

	Parameters

	
	profile_name – Participant profile name.

	listener – DomainParticipantListener Pointer (default: nullptr)

	mask – StatusMask Reference (default: all)

	Returns

	DomainParticipant pointer. (nullptr if not created.)

	
DomainParticipant *lookup_participant(DomainId_t domain_id) const

	This operation retrieves a previously created DomainParticipant belonging to specified domain_id. If no such DomainParticipant exists, the operation will return ‘nullptr’. If multiple DomainParticipant entities belonging to that domain_id exist, then the operation will return one of them. It is not specified which one.

	Parameters

	domain_id –

	Returns

	previously created DomainParticipant within the specified domain

	
std::vector<DomainParticipant*> lookup_participants(DomainId_t domain_id) const

	Returns all participants that belongs to the specified domain_id.

	Parameters

	domain_id –

	Returns

	previously created DomainParticipants within the specified domain

	
ReturnCode_t get_default_participant_qos(DomainParticipantQos &qos) const

	This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant operation. The values retrieved get_default_participant_qos will match the set of values specified on the last successful call to set_default_participant_qos, or else, if the call was never made, the default values.

	Parameters

	qos – DomainParticipantQos where the qos is returned

	Returns

	RETCODE_OK

	
const DomainParticipantQos &get_default_participant_qos() const

	This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant operation. The values retrieved get_default_participant_qos will match the set of values specified on the last successful call to set_default_participant_qos, or else, if the call was never made, the default values.

	Returns

	A reference to the default DomainParticipantQos

	
ReturnCode_t set_default_participant_qos(const DomainParticipantQos &qos)

	This operation sets a default value of the DomainParticipant QoS policies which will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return INCONSISTENT_POLICY.

The special value PARTICIPANT_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_participant_qos operation had never been called.

	Parameters

	qos – DomainParticipantQos to be set

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
ReturnCode_t get_participant_qos_from_profile(const std::string &profile_name, DomainParticipantQos &qos) const

	Fills the DomainParticipantQos with the values of the XML profile.

	Parameters

	
	profile_name – DomainParticipant profile name.

	qos – DomainParticipantQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
ReturnCode_t delete_participant(DomainParticipant *part)

	Remove a Participant and all associated publishers and subscribers.

	Parameters

	part – Pointer to the participant.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the participant has active entities, RETCODE_OK if the participant is correctly deleted and RETCODE_ERROR otherwise.

	
ReturnCode_t load_profiles()

	Load profiles from default XML file.

	Returns

	RETCODE_OK

	
ReturnCode_t load_XML_profiles_file(const std::string &xml_profile_file)

	Load profiles from XML file.

	Parameters

	xml_profile_file – XML profile file.

	Returns

	RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

	
ReturnCode_t load_XML_profiles_string(const char *data, size_t length)

	Load profiles from XML string.

	Parameters

	
	data – buffer containing xml data.

	length – length of data

	Returns

	RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

	
ReturnCode_t check_xml_static_discovery(std::string &xml_file)

	Check the validity of the provided static discovery XML file

	Parameters

	xml_file – xml file path

	Returns

	RETCODE_OK if the validation is successful, RETCODE_ERROR otherwise.

	
ReturnCode_t get_qos(DomainParticipantFactoryQos &qos) const

	This operation returns the value of the DomainParticipantFactory QoS policies.

	Parameters

	qos – DomaParticipantFactoryQos reference where the qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const DomainParticipantFactoryQos &qos)

	This operation sets the value of the DomainParticipantFactory QoS policies. These policies control the behavior of the object a factory for entities.

Note that despite having QoS, the DomainParticipantFactory is not an Entity.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return INCONSISTENT_POLICY.

	Parameters

	qos – DomainParticipantFactoryQos to be set.

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

Public Static Functions

	
static DomainParticipantFactory *get_instance()

	Returns the DomainParticipantFactory singleton instance.

	Returns

	A raw pointer to the DomainParticipantFactory singleton instance.

	
static std::shared_ptr<DomainParticipantFactory> get_shared_instance()

	Returns the DomainParticipantFactory singleton instance.

	Returns

	A shared pointer to the DomainParticipantFactory singleton instance.

 17.1.2.3. DomainParticipantFactoryQos

17.1.2.3. DomainParticipantFactoryQos

	
class eprosima::fastdds::dds::DomainParticipantFactoryQos

	Class DomainParticipantFactoryQos, contains all the possible Qos that can be set for a determined participant. Please consult each of them to check for implementation details and default values.

Public Functions

	
inline DomainParticipantFactoryQos()

	Constructor.

	
inline virtual ~DomainParticipantFactoryQos()

	Destructor.

	
inline const EntityFactoryQosPolicy &entity_factory() const

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline EntityFactoryQosPolicy &entity_factory()

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)

	Setter for EntityFactoryQosPolicy

	Parameters

	entity_factory – EntityFactoryQosPolicy

 17.1.2.4. DomainParticipantListener

17.1.2.4. DomainParticipantListener

	
class eprosima::fastdds::dds::DomainParticipantListener : public eprosima::fastdds::dds::PublisherListener, public eprosima::fastdds::dds::SubscriberListener, public eprosima::fastdds::dds::TopicListener

	Class DomainParticipantListener, overrides behaviour towards certain events.

Public Functions

	
inline DomainParticipantListener()

	Constructor.

	
inline virtual ~DomainParticipantListener()

	Destructor.

	
inline virtual void on_participant_discovery(DomainParticipant *participant, fastrtps::rtps::ParticipantDiscoveryInfo &&info)

	This method is called when a new Participant is discovered, or a previously discovered participant changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote participant.

	info – Remote participant information. User can take ownership of the object.

	
inline virtual void onParticipantAuthentication(DomainParticipant *participant, fastrtps::rtps::ParticipantAuthenticationInfo &&info)

	This method is called when a new Participant is authenticated.

	Parameters

	
	participant – Pointer to the authenticated Participant.

	info – Remote participant authentication information. User can take ownership of the object.

	
inline virtual void on_subscriber_discovery(DomainParticipant *participant, fastrtps::rtps::ReaderDiscoveryInfo &&info)

	This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote subscriber.

	info – Remote subscriber information. User can take ownership of the object.

	
inline virtual void on_publisher_discovery(DomainParticipant *participant, fastrtps::rtps::WriterDiscoveryInfo &&info)

	This method is called when a new Publisher is discovered, or a previously discovered publisher changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote publisher.

	info – Remote publisher information. User can take ownership of the object.

	
inline virtual void on_type_discovery(DomainParticipant *participant, const fastrtps::rtps::SampleIdentity &request_sample_id, const fastrtps::string_255 &topic, const fastrtps::types::TypeIdentifier *identifier, const fastrtps::types::TypeObject *object, fastrtps::types::DynamicType_ptr dyn_type)

	This method is called when a participant discovers a new Type The ownership of all object belongs to the caller so if needs to be used after the method ends, a full copy should be perform (except for dyn_type due to its shared_ptr nature.

For example: fastrtps::types::TypeIdentifier new_type_id = *identifier;

	
inline virtual void on_type_dependencies_reply(DomainParticipant *participant, const fastrtps::rtps::SampleIdentity &request_sample_id, const fastrtps::types::TypeIdentifierWithSizeSeq &dependencies)

	This method is called when the typelookup client received a reply to a getTypeDependencies request.

The user may want to retrieve these new types using the getTypes request and create a new DynamicType using the retrieved TypeObject.

	
inline virtual void on_type_information_received(DomainParticipant *participant, const fastrtps::string_255 topic_name, const fastrtps::string_255 type_name, const fastrtps::types::TypeInformation &type_information)

	This method is called when a participant receives a TypeInformation while discovering another participant.

 17.1.2.5. DomainParticipantQos

17.1.2.5. DomainParticipantQos

	
class eprosima::fastdds::dds::DomainParticipantQos

	Class DomainParticipantQos, contains all the possible Qos that can be set for a determined participant. Please consult each of them to check for implementation details and default values.

Public Types

	
using FlowControllerDescriptorList = std::vector<std::shared_ptr<fastdds::rtps::FlowControllerDescriptor>>

	User defined flow controllers to use alongside.

	Since
	2.4.0

Public Functions

	
inline DomainParticipantQos()

	Constructor.

	
inline virtual ~DomainParticipantQos()

	Destructor.

	
inline const UserDataQosPolicy &user_data() const

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

	
inline UserDataQosPolicy &user_data()

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

	
inline void user_data(const UserDataQosPolicy &value)

	Setter for UserDataQosPolicy

	Parameters

	value – UserDataQosPolicy

	
inline const EntityFactoryQosPolicy &entity_factory() const

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline EntityFactoryQosPolicy &entity_factory()

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline void entity_factory(const EntityFactoryQosPolicy &value)

	Setter for EntityFactoryQosPolicy

	Parameters

	value – EntityFactoryQosPolicy

	
inline const ParticipantResourceLimitsQos &allocation() const

	Getter for ParticipantResourceLimitsQos

	Returns

	ParticipantResourceLimitsQos reference

	
inline ParticipantResourceLimitsQos &allocation()

	Getter for ParticipantResourceLimitsQos

	Returns

	ParticipantResourceLimitsQos reference

	
inline void allocation(const ParticipantResourceLimitsQos &allocation)

	Setter for ParticipantResourceLimitsQos

	Parameters

	allocation – ParticipantResourceLimitsQos

	
inline const PropertyPolicyQos &properties() const

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

	
inline PropertyPolicyQos &properties()

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

	
inline void properties(const PropertyPolicyQos &properties)

	Setter for PropertyPolicyQos

	Parameters

	properties – PropertyPolicyQos

	
inline const WireProtocolConfigQos &wire_protocol() const

	Getter for WireProtocolConfigQos

	Returns

	WireProtocolConfigQos reference

	
inline WireProtocolConfigQos &wire_protocol()

	Getter for WireProtocolConfigQos

	Returns

	WireProtocolConfigQos reference

	
inline void wire_protocol(const WireProtocolConfigQos &wire_protocol)

	Setter for WireProtocolConfigQos

	Parameters

	wire_protocol – WireProtocolConfigQos

	
inline const TransportConfigQos &transport() const

	Getter for TransportConfigQos

	Returns

	TransportConfigQos reference

	
inline TransportConfigQos &transport()

	Getter for TransportConfigQos

	Returns

	TransportConfigQos reference

	
inline void transport(const TransportConfigQos &transport)

	Setter for TransportConfigQos

	Parameters

	transport – TransportConfigQos

	
inline const fastrtps::string_255 &name() const

	Getter for the Participant name

	Returns

	name

	
inline fastrtps::string_255 &name()

	Getter for the Participant name

	Returns

	name

	
inline void name(const fastrtps::string_255 &value)

	Setter for the Participant name

	Parameters

	value – New name to be set

	
inline FlowControllerDescriptorList &flow_controllers()

	Getter for FlowControllerDescriptorList

	Returns

	FlowControllerDescriptorList reference

	
inline const FlowControllerDescriptorList &flow_controllers() const

	Getter for FlowControllerDescriptorList

	Returns

	FlowControllerDescriptorList reference

	
const DomainParticipantQos eprosima::fastdds::dds::PARTICIPANT_QOS_DEFAULT

	

 17.1.3. Publisher

17.1.3. Publisher

	17.1.3.1. DataWriter

	17.1.3.2. DataWriterListener

	17.1.3.3. DataWriterQos

	17.1.3.4. Publisher

	17.1.3.5. PublisherListener

	17.1.3.6. PublisherQos

	17.1.3.7. RTPSReliableWriterQos

 17.1.3.1. DataWriter

17.1.3.1. DataWriter

	
class eprosima::fastdds::dds::DataWriter : public eprosima::fastdds::dds::DomainEntity

	Class DataWriter, contains the actual implementation of the behaviour of the DataWriter.

Public Types

	
enum LoanInitializationKind

	How to initialize samples loaned with loan_sample

Values:

	
enumerator NO_LOAN_INITIALIZATION

	Do not perform initialization of sample.

This is the default initialization scheme of loaned samples. It is the fastest scheme, but implies the user should take care of writing every field on the data type before calling write on the loaned sample.

	
enumerator ZERO_LOAN_INITIALIZATION

	Initialize all memory with zero-valued bytes.

The contents of the loaned sample will be zero-initialized upon return of loan_sample.

	
enumerator CONSTRUCTED_LOAN_INITIALIZATION

	Use in-place constructor initialization.

This will call the constructor of the data type over the memory space being returned by loan_sample.

Public Functions

	
virtual ReturnCode_t enable() override

	This operation enables the DataWriter.

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the Publisher creating this DataWriter is not enabled.

	
bool write(void *data)

	Write data to the topic.

	Parameters

	data – Pointer to the data

	Returns

	True if correct, false otherwise

	
bool write(void *data, fastrtps::rtps::WriteParams ¶ms)

	Write data with params to the topic.

	Parameters

	
	data – Pointer to the data

	params – Extra write parameters.

	Returns

	True if correct, false otherwise

	
ReturnCode_t write(void *data, const InstanceHandle_t &handle)

	Write data with handle.

The special value HANDLE_NIL can be used for the parameter handle.This indicates that the identity of the instance should be automatically deduced from the instance_data (by means of the key).

	Parameters

	
	data – Pointer to the data

	handle – InstanceHandle_t.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match with the one associated to the data, RETCODE_OK if the data is correctly sent and RETCODE_ERROR otherwise.

	
ReturnCode_t write_w_timestamp(void *data, const InstanceHandle_t &handle, const fastrtps::Time_t ×tamp)

	This operation performs the same function as write except that it also provides the value for the source_timestamp that is made available to DataReader objects by means of the eprosima::fastdds::dds::SampleInfo::source_timestamp attribute “source_timestamp” inside the SampleInfo. The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the write operation. This operation may block and return RETCODE_TIMEOUT under the same circumstances described for the write operation. This operation may return RETCODE_OUT_OF_RESOURCES, RETCODE_PRECONDITION_NOT_MET or RETCODE_BAD_PARAMETER under the same circumstances described for the write operation.

	Parameters

	
	data – Pointer to the data

	handle – InstanceHandle_t

	timestamp – Time_t used to set the source_timestamp.

	Returns

	Any of the standard return codes.

	
InstanceHandle_t register_instance(void *instance)

	Informs that the application will be modifying a particular instance.

It gives an opportunity to the middleware to pre-configure itself to improve performance.

	Parameters

	instance – [in] Sample used to get the instance’s key.

	Returns

	Handle containing the instance’s key. This handle could be used in successive write or dispose operations. In case of error, HANDLE_NIL will be returned.

	
InstanceHandle_t register_instance_w_timestamp(void *instance, const fastrtps::Time_t ×tamp)

	This operation performs the same function as register_instance and can be used instead of register_instance in the cases where the application desires to specify the value for the source_timestamp. The source_timestamp potentially affects the relative order in which readers observe events from multiple writers. See the QoS policy DESTINATION_ORDER.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for the write operation.

This operation may return RETCODE_OUT_OF_RESOURCES under the same circumstances described for the write operation.

	Parameters

	
	instance – Sample used to get the instance’s key.

	timestamp – Time_t used to set the source_timestamp.

	Returns

	Handle containing the instance’s key.

	
ReturnCode_t unregister_instance(void *instance, const InstanceHandle_t &handle)

	This operation reverses the action of register_instance.

It should only be called on an instance that is currently registered. Informs the middleware that the DataWriter is not intending to modify any more of that data instance. Also indicates that the middleware can locally remove all information regarding that instance.

	Parameters

	
	instance – [in] Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle – [in] Instance’s key to be unregistered.

	Returns

	Returns the operation’s result. If the operation finishes successfully, ReturnCode_t::RETCODE_OK is returned.

	
ReturnCode_t unregister_instance_w_timestamp(void *instance, const InstanceHandle_t &handle, const fastrtps::Time_t ×tamp)

	This operation performs the same function as unregister_instance and can be used instead of unregister_instance in the cases where the application desires to specify the value for the source_timestamp. The source_timestamp potentially affects the relative order in which readers observe events from multiple writers. See the QoS policy DESTINATION_ORDER.

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the unregister_instance operation.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for the write operation

	Parameters

	
	instance – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle – Instance’s key to be unregistered.

	timestamp – Time_t used to set the source_timestamp.

	Returns

	Handle containing the instance’s key.

	
ReturnCode_t get_key_value(void *key_holder, const InstanceHandle_t &handle)

	This operation can be used to retrieve the instance key that corresponds to an instance_handle. The operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t handle does not correspond to an existing data-object known to the DataWriter. If the implementation is not able to check invalid handles then the result in this situation is unspecified.

	Parameters

	
	key_holder – [inout] Sample where the key fields will be returned.

	handle – [in] Handle to the instance to retrieve the key values from.

	Returns

	Any of the standard return codes.

	
InstanceHandle_t lookup_instance(const void *instance) const

	NOT YET IMPLEMENTED

Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept an instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that define the key.

	Parameters

	instance – [in] Data pointer to the sample

	Returns

	handle of the given instance

	
const fastrtps::rtps::GUID_t &guid() const

	Returns the DataWriter’s GUID

	Returns

	Reference to the DataWriter GUID

	
InstanceHandle_t get_instance_handle() const

	Returns the DataWriter’s InstanceHandle

	Returns

	Copy of the DataWriter InstanceHandle

	
TypeSupport get_type() const

	Get data type associated to the DataWriter

	Returns

	Copy of the TypeSupport

	
ReturnCode_t wait_for_acknowledgments(const fastrtps::Duration_t &max_wait)

	Waits the current thread until all writers have received their acknowledgments.

	Parameters

	max_wait – Maximum blocking time for this operation

	Returns

	RETCODE_OK if the DataWriter receive the acknowledgments before the time expires and RETCODE_ERROR otherwise

	
ReturnCode_t get_offered_deadline_missed_status(OfferedDeadlineMissedStatus &status)

	Returns the offered deadline missed status.

	Parameters

	status – [out] Deadline missed status struct

	Returns

	RETCODE_OK

	
ReturnCode_t get_offered_incompatible_qos_status(OfferedIncompatibleQosStatus &status)

	Returns the offered incompatible qos status.

	Parameters

	status – [out] Offered incompatible qos status struct

	Returns

	RETCODE_OK

	
ReturnCode_t get_publication_matched_status(PublicationMatchedStatus &status) const

	Returns the publication matched status.

	Parameters

	status – [out] publication matched status struct

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const DataWriterQos &qos)

	Establishes the DataWriterQos for this DataWriter.

	Parameters

	qos – DataWriterQos to be set

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const DataWriterQos &get_qos() const

	Retrieves the DataWriterQos for this DataWriter.

	Returns

	Reference to the current DataWriterQos

	
ReturnCode_t get_qos(DataWriterQos &qos) const

	Fills the DataWriterQos with the values of this DataWriter.

	Parameters

	qos – DataWriterQos object where the qos is returned.

	Returns

	RETCODE_OK

	
Topic *get_topic() const

	Retrieves the topic for this DataWriter.

	Returns

	Pointer to the associated Topic

	
const DataWriterListener *get_listener() const

	Retrieves the listener for this DataWriter.

	Returns

	Pointer to the DataWriterListener

	
ReturnCode_t set_listener(DataWriterListener *listener)

	Modifies the DataWriterListener, sets the mask to StatusMask::all()

	Parameters

	listener – new value for the DataWriterListener

	Returns

	RETCODE_OK

	
ReturnCode_t set_listener(DataWriterListener *listener, const StatusMask &mask)

	Modifies the DataWriterListener.

	Parameters

	
	listener – new value for the DataWriterListener

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	RETCODE_OK

	
ReturnCode_t dispose(void *data, const InstanceHandle_t &handle)

	This operation requests the middleware to delete the data (the actual deletion is postponed until there is no more use for that data in the whole system). In general, applications are made aware of the deletion by means of operations on the DataReader objects that already knew that instance. This operation does not modify the value of the instance. The instance parameter is passed just for the purposes of identifying the instance. When this operation is used, the Service will automatically supply the value of the source_timestamp that is made available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo. The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the unregister_instance operation.

	Parameters

	
	data – [in] Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle – [in] InstanceHandle of the data

	Returns

	RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match with the one associated to the data, RETCODE_OK if the data is correctly sent and RETCODE_ERROR otherwise.

	
ReturnCode_t dispose_w_timestamp(void *instance, const InstanceHandle_t &handle, const fastrtps::Time_t ×tamp)

	This operation performs the same functions as dispose except that the application provides the value for the source_timestamp that is made available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo.

The constraints on the values of the handle parameter and the corresponding error behavior are the same specified for the dispose operation.

This operation may return RETCODE_PRECONDITION_NOT_MET and RETCODE_BAD_PARAMETER under the same circumstances described for the dispose operation.

This operation may return RETCODE_TIMEOUT and RETCODE_OUT_OF_RESOURCES under the same circumstances described for the write operation.

	Parameters

	
	instance – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle – Instance’s key to be disposed.

	timestamp – Time_t used to set the source_timestamp.

	Returns

	RTPS_DllAPI

	
ReturnCode_t get_liveliness_lost_status(LivelinessLostStatus &status)

	Returns the liveliness lost status.

	Parameters

	status – Liveliness lost status struct

	Returns

	RETCODE_OK

	
const Publisher *get_publisher() const

	Getter for the Publisher that creates this DataWriter.

	Returns

	Pointer to the Publisher

	
ReturnCode_t assert_liveliness()

	This operation manually asserts the liveliness of the DataWriter. This is used in combination with the LivelinessQosPolicy to indicate to the Service that the entity remains active. This operation need only be used if the LIVELINESS setting is either MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC. Otherwise, it has no effect.

Note

Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not writing data regularly.

	Returns

	RETCODE_OK if asserted, RETCODE_ERROR otherwise

	
ReturnCode_t get_matched_subscription_data(builtin::SubscriptionBuiltinTopicData &subscription_data, const InstanceHandle_t &subscription_handle) const

	Retrieves in a subscription associated with the DataWriter.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	subscription_data – [out] subscription data struct

	subscription_handle – InstanceHandle_t of the subscription

	Returns

	RETCODE_OK

	
ReturnCode_t get_matched_subscriptions(std::vector<InstanceHandle_t> &subscription_handles) const

	Fills the given vector with the InstanceHandle_t of matched DataReaders.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	subscription_handles – [out] Vector where the InstanceHandle_t are returned

	Returns

	RETCODE_OK

	
ReturnCode_t clear_history(size_t *removed)

	Clears the DataWriter history.

	Parameters

	removed – size_t pointer to return the size of the data removed

	Returns

	RETCODE_OK if the samples are removed and RETCODE_ERROR otherwise

	
ReturnCode_t loan_sample(void *&sample, LoanInitializationKind initialization = LoanInitializationKind::NO_LOAN_INITIALIZATION)

	Get a pointer to the internal pool where the user could directly write.

This method can only be used on a DataWriter for a plain data type. It will provide the user with a pointer to an internal buffer where the data type can be prepared for sending.

When using NO_LOAN_INITIALIZATION on the initialization parameter, which is the default, no assumptions should be made on the contents where the pointer points to, as it may be an old pointer being reused. See LoanInitializationKind for more details.

Once the sample has been prepared, it can then be published by calling write. After a successful call to write, the middleware takes ownership of the loaned pointer again, and the user should not access that memory again.

If, for whatever reason, the sample is not published, the loan can be returned by calling discard_loan.

	Parameters

	
	sample – [out] Pointer to the sample on the internal pool.

	initialization – [in] How to initialize the loaned sample.

	Returns

	ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not support loans.

	Returns

	ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

	Returns

	ReturnCode_t::RETCODE_OUT_OF_RESOURCES if the pool has been exhausted.

	Returns

	ReturnCode_t::RETCODE_OK if a pointer to a sample is successfully obtained.

	
ReturnCode_t discard_loan(void *&sample)

	Discards a loaned sample pointer.

See the description on loan_sample for how and when to call this method.

	Parameters

	sample – [inout] Pointer to the previously loaned sample.

	Returns

	ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not support loans.

	Returns

	ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

	Returns

	ReturnCode_t::RETCODE_BAD_PARAMETER if the pointer does not correspond to a loaned sample.

	Returns

	ReturnCode_t::RETCODE_OK if the loan is successfully discarded.

	
ReturnCode_t get_sending_locators(rtps::LocatorList &locators) const

	Get the list of locators from which this DataWriter may send data.

	Parameters

	locators – [out] LocatorList where the list of locators will be stored.

	Returns

	NOT_ENABLED if the reader has not been enabled.

	Returns

	OK if a list of locators is returned.

	
ReturnCode_t wait_for_acknowledgments(void *instance, const InstanceHandle_t &handle, const fastrtps::Duration_t &max_wait)

	Block the current thread until the writer has received the acknowledgment corresponding to the given instance. Operations performed on the same instance while the current thread is waiting will not be taken into consideration, i.e. this method may return RETCODE_OK with those operations unacknowledged.

	Parameters

	
	instance – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle – Instance handle of the data.

	max_wait – Maximum blocking time for this operation.

	Returns

	RETCODE_NOT_ENABLED if the writer has not been enabled.

	Returns

	RETCODE_BAD_PARAMETER if instance is not a valid pointer.

	Returns

	RETCODE_PRECONDITION_NOT_MET if the topic does not have a key, the key is unknown to the writer, or the key is not consistent with handle.

	Returns

	RETCODE_OK if the DataWriter received the acknowledgments before the time expired.

	Returns

	RETCODE_TIMEOUT otherwise.

 17.1.3.2. DataWriterListener

17.1.3.2. DataWriterListener

	
class eprosima::fastdds::dds::DataWriterListener

	Class DataWriterListener, allows the end user to implement callbacks triggered by certain events.

Subclassed by eprosima::fastdds::dds::PublisherListener

Public Functions

	
inline DataWriterListener()

	Constructor.

	
inline virtual ~DataWriterListener()

	Destructor.

	
inline virtual void on_publication_matched(DataWriter *writer, const PublicationMatchedStatus &info)

	This method is called when the Publisher is matched (or unmatched) against an endpoint.

	Parameters

	
	writer – Pointer to the associated Publisher

	info – Information regarding the matched subscriber

	
inline virtual void on_offered_deadline_missed(DataWriter *writer, const OfferedDeadlineMissedStatus &status)

	A method called when a deadline is missed

	Parameters

	
	writer – Pointer to the associated Publisher

	status – The deadline missed status

	
inline virtual void on_offered_incompatible_qos(DataWriter *writer, const OfferedIncompatibleQosStatus &status)

	A method called when an incompatible QoS is offered

	Parameters

	
	writer – Pointer to the associated Publisher

	status – The deadline missed status

	
inline virtual void on_liveliness_lost(DataWriter *writer, const LivelinessLostStatus &status)

	Method called when the liveliness of a publisher is lost.

	Parameters

	
	writer – The publisher

	status – The liveliness lost status

 17.1.3.3. DataWriterQos

17.1.3.3. DataWriterQos

	
class eprosima::fastdds::dds::DataWriterQos

	Class DataWriterQos, containing all the possible Qos that can be set for a determined DataWriter. Although these values can be and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library. Please consult each of them to check for implementation details and default values.

Subclassed by eprosima::fastdds::statistics::dds::DataWriterQos

Public Functions

	
DataWriterQos()

	Constructor.

	
~DataWriterQos() = default

	Destructor.

	
inline DurabilityQosPolicy &durability()

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

	
inline const DurabilityQosPolicy &durability() const

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

	
inline void durability(const DurabilityQosPolicy &durability)

	Setter for DurabilityQosPolicy

	Parameters

	durability – new value for the DurabilityQosPolicy

	
inline DurabilityServiceQosPolicy &durability_service()

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

	
inline const DurabilityServiceQosPolicy &durability_service() const

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

	
inline void durability_service(const DurabilityServiceQosPolicy &durability_service)

	Setter for DurabilityServiceQosPolicy

	Parameters

	durability_service – new value for the DurabilityServiceQosPolicy

	
inline DeadlineQosPolicy &deadline()

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

	
inline const DeadlineQosPolicy &deadline() const

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

	
inline void deadline(const DeadlineQosPolicy &deadline)

	Setter for DeadlineQosPolicy

	Parameters

	deadline – new value for the DeadlineQosPolicy

	
inline LatencyBudgetQosPolicy &latency_budget()

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

	
inline const LatencyBudgetQosPolicy &latency_budget() const

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

	
inline void latency_budget(const LatencyBudgetQosPolicy &latency_budget)

	Setter for LatencyBudgetQosPolicy

	Parameters

	latency_budget – new value for the LatencyBudgetQosPolicy

	
inline LivelinessQosPolicy &liveliness()

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

	
inline const LivelinessQosPolicy &liveliness() const

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

	
inline void liveliness(const LivelinessQosPolicy &liveliness)

	Setter for LivelinessQosPolicy

	Parameters

	liveliness – new value for the LivelinessQosPolicy

	
inline ReliabilityQosPolicy &reliability()

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

	
inline const ReliabilityQosPolicy &reliability() const

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

	
inline void reliability(const ReliabilityQosPolicy &reliability)

	Setter for ReliabilityQosPolicy

	Parameters

	reliability – new value for the ReliabilityQosPolicy

	
inline DestinationOrderQosPolicy &destination_order()

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

	
inline const DestinationOrderQosPolicy &destination_order() const

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

	
inline void destination_order(const DestinationOrderQosPolicy &destination_order)

	Setter for DestinationOrderQosPolicy

	Parameters

	destination_order – new value for the DestinationOrderQosPolicy

	
inline HistoryQosPolicy &history()

	Getter for HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

	
inline const HistoryQosPolicy &history() const

	Getter for HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

	
inline void history(const HistoryQosPolicy &history)

	Setter for HistoryQosPolicy

	Parameters

	history – new value for the HistoryQosPolicy

	
inline ResourceLimitsQosPolicy &resource_limits()

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

	
inline const ResourceLimitsQosPolicy &resource_limits() const

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

	
inline void resource_limits(const ResourceLimitsQosPolicy &resource_limits)

	Setter for ResourceLimitsQosPolicy

	Parameters

	resource_limits – new value for the ResourceLimitsQosPolicy

	
inline TransportPriorityQosPolicy &transport_priority()

	Getter for TransportPriorityQosPolicy

	Returns

	TransportPriorityQosPolicy reference

	
inline const TransportPriorityQosPolicy &transport_priority() const

	Getter for TransportPriorityQosPolicy

	Returns

	TransportPriorityQosPolicy reference

	
inline void transport_priority(const TransportPriorityQosPolicy &transport_priority)

	Setter for TransportPriorityQosPolicy

	Parameters

	transport_priority – new value for the TransportPriorityQosPolicy

	
inline LifespanQosPolicy &lifespan()

	Getter for LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

	
inline const LifespanQosPolicy &lifespan() const

	Getter for LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

	
inline void lifespan(const LifespanQosPolicy &lifespan)

	Setter for LifespanQosPolicy

	Parameters

	lifespan – new value for the LifespanQosPolicy

	
inline UserDataQosPolicy &user_data()

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

	
inline const UserDataQosPolicy &user_data() const

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

	
inline void user_data(const UserDataQosPolicy &user_data)

	Setter for UserDataQosPolicy

	Parameters

	user_data – new value for the UserDataQosPolicy

	
inline OwnershipQosPolicy &ownership()

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

	
inline const OwnershipQosPolicy &ownership() const

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

	
inline void ownership(const OwnershipQosPolicy &ownership)

	Setter for OwnershipQosPolicy

	Parameters

	ownership – new value for the OwnershipQosPolicy

	
inline OwnershipStrengthQosPolicy &ownership_strength()

	Getter for OwnershipStrengthQosPolicy

	Returns

	OwnershipStrengthQosPolicy reference

	
inline const OwnershipStrengthQosPolicy &ownership_strength() const

	Getter for OwnershipStrengthQosPolicy

	Returns

	OwnershipStrengthQosPolicy reference

	
inline void ownership_strength(const OwnershipStrengthQosPolicy &ownership_strength)

	Setter for OwnershipStrengthQosPolicy

	Parameters

	ownership_strength – new value for the OwnershipStrengthQosPolicy

	
inline WriterDataLifecycleQosPolicy &writer_data_lifecycle()

	Getter for WriterDataLifecycleQosPolicy

	Returns

	WriterDataLifecycleQosPolicy reference

	
inline const WriterDataLifecycleQosPolicy &writer_data_lifecycle() const

	Getter for WriterDataLifecycleQosPolicy

	Returns

	WriterDataLifecycleQosPolicy reference

	
inline void writer_data_lifecycle(const WriterDataLifecycleQosPolicy &writer_data_lifecycle)

	Setter for WriterDataLifecycleQosPolicy

	Parameters

	writer_data_lifecycle – new value for the WriterDataLifecycleQosPolicy

	
inline PublishModeQosPolicy &publish_mode()

	Getter for PublishModeQosPolicy

	Returns

	PublishModeQosPolicy reference

	
inline const PublishModeQosPolicy &publish_mode() const

	Getter for PublishModeQosPolicy

	Returns

	PublishModeQosPolicy reference

	
inline void publish_mode(const PublishModeQosPolicy &publish_mode)

	Setter for PublishModeQosPolicy

	Parameters

	publish_mode – new value for the PublishModeQosPolicy

	
inline DataRepresentationQosPolicy &representation()

	Getter for DataRepresentationQosPolicy

	Returns

	DataRepresentationQosPolicy reference

	
inline const DataRepresentationQosPolicy &representation() const

	Getter for DataRepresentationQosPolicy

	Returns

	DataRepresentationQosPolicy reference

	
inline void representation(const DataRepresentationQosPolicy &representation)

	Setter for DataRepresentationQosPolicy

	Parameters

	representation – new value for the DataRepresentationQosPolicy

	
inline PropertyPolicyQos &properties()

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

	
inline const PropertyPolicyQos &properties() const

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

	
inline void properties(const PropertyPolicyQos &properties)

	Setter for PropertyPolicyQos

	Parameters

	properties – new value for the PropertyPolicyQos

	
inline RTPSReliableWriterQos &reliable_writer_qos()

	Getter for RTPSReliableWriterQos

	Returns

	RTPSReliableWriterQos reference

	
inline const RTPSReliableWriterQos &reliable_writer_qos() const

	Getter for RTPSReliableWriterQos

	Returns

	RTPSReliableWriterQos reference

	
inline void reliable_writer_qos(const RTPSReliableWriterQos &reliable_writer_qos)

	Setter for RTPSReliableWriterQos

	Parameters

	reliable_writer_qos – new value for the RTPSReliableWriterQos

	
inline RTPSEndpointQos &endpoint()

	Getter for RTPSEndpointQos

	Returns

	RTPSEndpointQos reference

	
inline const RTPSEndpointQos &endpoint() const

	Getter for RTPSEndpointQos

	Returns

	RTPSEndpointQos reference

	
inline void endpoint(const RTPSEndpointQos &endpoint)

	Setter for RTPSEndpointQos

	Parameters

	endpoint – new value for the RTPSEndpointQos

	
inline WriterResourceLimitsQos &writer_resource_limits()

	Getter for WriterResourceLimitsQos

	Returns

	WriterResourceLimitsQos reference

	
inline const WriterResourceLimitsQos &writer_resource_limits() const

	Getter for WriterResourceLimitsQos

	Returns

	WriterResourceLimitsQos reference

	
inline void writer_resource_limits(const WriterResourceLimitsQos &writer_resource_limits)

	Setter for WriterResourceLimitsQos

	Parameters

	writer_resource_limits – new value for the WriterResourceLimitsQos

	
inline fastrtps::rtps::ThroughputControllerDescriptor &throughput_controller()

	Getter for ThroughputControllerDescriptor

	
Deprecated:

	Use flow_controllers() on DomainParticipantQoS

	Returns

	ThroughputControllerDescriptor reference

	
inline const fastrtps::rtps::ThroughputControllerDescriptor &throughput_controller() const

	Getter for ThroughputControllerDescriptor

	
Deprecated:

	Use flow_controllers() on DomainParticipantQoS

	Returns

	ThroughputControllerDescriptor reference

	
inline void throughput_controller(const fastrtps::rtps::ThroughputControllerDescriptor &throughput_controller)

	Setter for ThroughputControllerDescriptor

	
Deprecated:

	Use flow_controllers() on DomainParticipantQoS

	Parameters

	throughput_controller – new value for the ThroughputControllerDescriptor

	
inline DataSharingQosPolicy &data_sharing()

	Getter for DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

	
inline const DataSharingQosPolicy &data_sharing() const

	Getter for DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

	
inline void data_sharing(const DataSharingQosPolicy &data_sharing)

	Setter for DataSharingQosPolicy

	Parameters

	data_sharing – new value for the DataSharingQosPolicy

	
const DataWriterQos eprosima::fastdds::dds::DATAWRITER_QOS_DEFAULT

	

 17.1.3.4. Publisher

17.1.3.4. Publisher

	
class eprosima::fastdds::dds::Publisher : public eprosima::fastdds::dds::DomainEntity

	Class Publisher, used to send data to associated subscribers.

Public Functions

	
virtual ~Publisher()

	Destructor.

	
virtual ReturnCode_t enable() override

	This operation enables the Publisher.

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the participant creating this Publisher is not enabled.

	
const PublisherQos &get_qos() const

	Allows accessing the Publisher Qos.

	Returns

	PublisherQos reference

	
ReturnCode_t get_qos(PublisherQos &qos) const

	Retrieves the Publisher Qos.

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const PublisherQos &qos)

	Allows modifying the Publisher Qos. The given Qos must be supported by the PublisherQos.

	Parameters

	qos – PublisherQos to be set

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const PublisherListener *get_listener() const

	Retrieves the attached PublisherListener.

	Returns

	PublisherListener pointer

	
ReturnCode_t set_listener(PublisherListener *listener)

	Modifies the PublisherListener, sets the mask to StatusMask::all()

	Parameters

	listener – new value for the PublisherListener

	Returns

	RETCODE_OK

	
ReturnCode_t set_listener(PublisherListener *listener, const StatusMask &mask)

	Modifies the PublisherListener.

	Parameters

	
	listener – new value for the PublisherListener

	mask – StatusMask that holds statuses the listener responds to

	Returns

	RETCODE_OK

	
DataWriter *create_datawriter(Topic *topic, const DataWriterQos &qos, DataWriterListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

	Parameters

	
	topic – Topic the DataWriter will be listening

	qos – QoS of the DataWriter.

	listener – Pointer to the listener (default: nullptr).

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	Pointer to the created DataWriter. nullptr if failed.

	
DataWriter *create_datawriter_with_profile(Topic *topic, const std::string &profile_name, DataWriterListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

	Parameters

	
	topic – Topic the DataWriter will be listening

	profile_name – DataWriter profile name.

	listener – Pointer to the listener (default: nullptr).

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	Pointer to the created DataWriter. nullptr if failed.

	
ReturnCode_t delete_datawriter(const DataWriter *writer)

	This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to create the DataWriter. If delete_datawriter is called on a different Publisher, the operation will have no effect and it will return false.

The deletion of the DataWriter will automatically unregister all instances. Depending on the settings of the WRITER_DATA_LIFECYCLE QosPolicy, the deletion of the DataWriter may also dispose all instances.

	Parameters

	writer – DataWriter to delete

	Returns

	RETCODE_PRECONDITION_NOT_MET if it does not belong to this Publisher, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
DataWriter *lookup_datawriter(const std::string &topic_name) const

	This operation retrieves a previously created DataWriter belonging to the Publisher that is attached to a Topic with a matching topic_name. If no such DataWriter exists, the operation will return nullptr.

If multiple DataWriter attached to the Publisher satisfy this condition, then the operation will return one of them. It is not specified which one.

	Parameters

	topic_name – Name of the Topic

	Returns

	Pointer to a previously created DataWriter associated to a Topic with the requested topic_name

	
ReturnCode_t suspend_publications()

	Indicates to FastDDS that the contained DataWriters are about to be modified.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t resume_publications()

	Indicates to FastDDS that the modifications to the DataWriters are complete.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t begin_coherent_changes()

	Signals the beginning of a set of coherent cache changes using the Datawriters attached to the publisher.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t end_coherent_changes()

	Signals the end of a set of coherent cache changes.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t wait_for_acknowledgments(const fastrtps::Duration_t &max_wait)

	This operation blocks the calling thread until either all data written by the reliable DataWriter entities is acknowledged by all matched reliable DataReader entities, or else the duration specified by the max_wait parameter elapses, whichever happens first. A return value of true indicates that all the samples written have been acknowledged by all reliable matched data readers; a return value of false indicates that max_wait elapsed before all the data was acknowledged.

	Parameters

	max_wait – Maximum blocking time for this operation

	Returns

	RETCODE_TIMEOUT if the function takes more than the maximum blocking time established, RETCODE_OK if the Publisher receives the acknowledgments and RETCODE_ERROR otherwise.

	
const DomainParticipant *get_participant() const

	This operation returns the DomainParticipant to which the Publisher belongs.

	Returns

	Pointer to the DomainParticipant

	
ReturnCode_t delete_contained_entities()

	Deletes all contained DataWriters.

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t set_default_datawriter_qos(const DataWriterQos &qos)

	This operation sets a default value of the DataWriter QoS policies which will be used for newly created DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return false.

The special value DATAWRITER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_datawriter_qos operation had never been called.

	Parameters

	qos – DataWriterQos to be set

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const DataWriterQos &get_default_datawriter_qos() const

	This operation returns the default value of the DataWriter QoS, that is, the QoS policies which will be used for newly created DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last successful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

	Returns

	Current default WriterQos

	
ReturnCode_t get_default_datawriter_qos(DataWriterQos &qos) const

	This operation retrieves the default value of the DataWriter QoS, that is, the QoS policies which will be used for newly created DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last successful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

	Parameters

	qos – Reference to the current default WriterQos.

	Returns

	RETCODE_OK

	
ReturnCode_t copy_from_topic_qos(fastdds::dds::DataWriterQos &writer_qos, const fastdds::dds::TopicQos &topic_qos) const

	Copies TopicQos into the corresponding DataWriterQos.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	writer_qos – [out]

	topic_qos – [in]

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t get_datawriter_qos_from_profile(const std::string &profile_name, DataWriterQos &qos) const

	Fills the DataWriterQos with the values of the XML profile.

	Parameters

	
	profile_name – DataWriter profile name.

	qos – DataWriterQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
const InstanceHandle_t &get_instance_handle() const

	Returns the Publisher’s handle.

	Returns

	InstanceHandle of this Publisher.

	
bool get_datawriters(std::vector<DataWriter*> &writers) const

	Fills the given vector with all the datawriters of this publisher.

	Parameters

	writers – Vector where the DataWriters are returned

	Returns

	true

	
bool has_datawriters() const

	This operation checks if the publisher has DataWriters

	Returns

	true if the publisher has one or several DataWriters, false otherwise

 17.1.3.5. PublisherListener

17.1.3.5. PublisherListener

	
class eprosima::fastdds::dds::PublisherListener : public eprosima::fastdds::dds::DataWriterListener

	Class PublisherListener, allows the end user to implement callbacks triggered by certain events. It inherits all the DataWriterListener callbacks.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

	
inline PublisherListener()

	Constructor.

	
inline virtual ~PublisherListener()

	Destructor.

 17.1.3.6. PublisherQos

17.1.3.6. PublisherQos

	
class eprosima::fastdds::dds::PublisherQos

	Class PublisherQos, containing all the possible Qos that can be set for a determined Publisher. Although these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library. Please consult each of them to check for implementation details and default values.

Public Functions

	
inline PublisherQos()

	Constructor.

	
virtual ~PublisherQos() = default

	Destructor.

	
inline const PresentationQosPolicy &presentation() const

	Getter for PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

	
inline PresentationQosPolicy &presentation()

	Getter for PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

	
inline void presentation(const PresentationQosPolicy &presentation)

	Setter for PresentationQosPolicy

	Parameters

	presentation – PresentationQosPolicy

	
inline const PartitionQosPolicy &partition() const

	Getter for PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

	
inline PartitionQosPolicy &partition()

	Getter for PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

	
inline void partition(const PartitionQosPolicy &partition)

	Setter for PartitionQosPolicy

	Parameters

	partition – PartitionQosPolicy

	
inline const GroupDataQosPolicy &group_data() const

	Getter for GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

	
inline GroupDataQosPolicy &group_data()

	Getter for GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

	
inline void group_data(const GroupDataQosPolicy &group_data)

	Setter for GroupDataQosPolicy

	Parameters

	group_data – GroupDataQosPolicy

	
inline const EntityFactoryQosPolicy &entity_factory() const

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline EntityFactoryQosPolicy &entity_factory()

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)

	Setter for EntityFactoryQosPolicy

	Parameters

	entity_factory – EntityFactoryQosPolicy

	
const PublisherQos eprosima::fastdds::dds::PUBLISHER_QOS_DEFAULT

	

 17.1.3.7. RTPSReliableWriterQos

17.1.3.7. RTPSReliableWriterQos

	
class eprosima::fastdds::dds::RTPSReliableWriterQos

	Qos Policy to configure the DisablePositiveACKsQos and the writer timing attributes.

Public Functions

	
inline RTPSReliableWriterQos()

	Constructor.

	
virtual ~RTPSReliableWriterQos() = default

	Destructor.

Public Members

	
fastrtps::rtps::WriterTimes times

	Writer Timing Attributes.

	
DisablePositiveACKsQosPolicy disable_positive_acks

	Disable positive acks QoS, implemented in the library.

	
bool disable_heartbeat_piggyback = false

	Disable heartbeat piggyback mechanism.

 17.1.4. Subscriber

17.1.4. Subscriber

	17.1.4.1. DataReader

	17.1.4.2. DataReaderListener

	17.1.4.3. DataReaderQos

	17.1.4.4. InstanceStateKind

	17.1.4.5. ReadCondition

	17.1.4.6. ReaderResourceLimitsQos

	17.1.4.7. RTPSReliableReaderQos

	17.1.4.8. SampleInfo

	17.1.4.9. SampleStateKind

	17.1.4.10. Subscriber

	17.1.4.11. SubscriberListener

	17.1.4.12. SubscriberQos

	17.1.4.13. TypeConsistencyQos

	17.1.4.14. ViewStateKind

 17.1.4.1. DataReader

17.1.4.1. DataReader

	
class eprosima::fastdds::dds::DataReader : public eprosima::fastdds::dds::DomainEntity

	Class DataReader, contains the actual implementation of the behaviour of the Subscriber.

Read or take data methods.

Methods to read or take data from the History.

	
ReturnCode_t read(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of Data values from the DataReader. The caller can limit the size of the returned collection with the max_samples parameter.

The properties of the data_values collection and the setting of the PresentationQosPolicy may impose further limits on the size of the returned ‘list.’

	If PresentationQosPolicy::access_scope is INSTANCE_PRESENTATION_QOS, then the returned collection is a ‘list’ where samples belonging to the same data-instance are consecutive.

	If PresentationQosPolicy::access_scope is TOPIC_PRESENTATION_QOS and PresentationQosPolicy::ordered_access is set to false, then the returned collection is a ‘list’ where samples belonging to the same data-instance are consecutive.

	If PresentationQosPolicy::access_scope is TOPIC_PRESENTATION_QOS and PresentationQosPolicy::ordered_access is set to true, then the returned collection is a ‘list’ where samples belonging to the same instance may or may not be consecutive. This is because to preserve order it may be necessary to mix samples from different instances.

	If PresentationQosPolicy::access_scope is GROUP_PRESENTATION_QOS and PresentationQosPolicy::ordered_access is set to false, then the returned collection is a ‘list’ where samples belonging to the same data instance are consecutive.

	If PresentationQosPolicy::access_scope is GROUP_PRESENTATION_QOS and PresentationQosPolicy::ordered_access is set to true, then the returned collection contains at most one sample. The difference in this case is due to the fact that it is required that the application is able to read samples belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the DestinationOrderQosPolicy:

	If DestinationOrderQosPolicy::kind is BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, samples belonging to the same instances will appear in the relative order in which there were received (FIFO, earlier samples ahead of the later samples).

	If DestinationOrderQosPolicy::kind is BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, samples belonging to the same instances will appear in the relative order implied by the source_timestamp (FIFO, smaller values of source_timestamp ahead of the larger values).

The actual number of samples returned depends on the information that has been received by the middleware as well as the HistoryQosPolicy, ResourceLimitsQosPolicy, and ReaderResourceLimitsQos:

	In the case where the HistoryQosPolicy::kind is KEEP_LAST_HISTORY_QOS, the call will return at most HistoryQosPolicy::depth samples per instance.

	The maximum number of samples returned is limited by ResourceLimitsQosPolicy::max_samples, and by ReaderResourceLimitsQos::max_samples_per_read.

	For multiple instances, the number of samples returned is additionally limited by the product (ResourceLimitsQosPolicy::max_samples_per_instance * ResourceLimitsQosPolicy::max_instances).

	If ReaderResourceLimitsQos::sample_infos_allocation has a maximum limit, the number of samples returned may also be limited if insufficient SampleInfo resources are available.

If the operation succeeds and the number of samples returned has been limited (by means of a maximum limit, as listed above, or insufficient SampleInfo resources), the call will complete successfully and provide those samples the reader is able to return. The user may need to make additional calls, or return outstanding loaned buffers in the case of insufficient resources, in order to access remaining samples.

In addition to the collection of samples, the read operation also uses a collection of SampleInfo structures (sample_infos).

The initial (input) properties of the data_values and sample_infos collections will determine the precise behavior of this operation. For the purposes of this description the collections are modeled as having three properties:

	the current length (len, see LoanableCollection::length())

	the maximum length (max_len, see LoanableCollection::maximum())

	whether the collection container owns the memory of the elements within (owns, see LoanableCollection::has_ownership())

The initial (input) values of the len, max_len, and owns properties for the data_values and sample_infos collections govern the behavior of the read operation as specified by the following rules:

	The values of len, max_len, and owns for the two collections must be identical. Otherwise read will fail with RETCODE_PRECONDITION_NOT_MET.

	On successful output, the values of len, max_len, and owns will be the same for both collections.

	If the input max_len == 0 , then the data_values and sample_infos collections will be filled with elements that are ‘loaned’ by the DataReader. On output, owns will be false, len will be set to the number of values returned, and max_len will be set to a value verifying max_len >= len . The use of this variant allows for zero-copy access to the data and the application will need to return the loan to the DataReader using the return_loan operation.

	If the input max_len > 0 and the input owns == false , then the read operation will fail with RETCODE_PRECONDITION_NOT_MET. This avoids the potential hard-to-detect memory leaks caused by an application forgetting to return the loan.

	If input max_len > 0 and the input owns == true , then the read operation will copy the Data values and SampleInfo values into the elements already inside the collections. On output, owns will be true, len will be set to the number of values copied, and max_len will remain unchanged. The use of this variant forces a copy but the application can control where the copy is placed and the application will not need to return the loan. The number of samples copied depends on the values of max_len and max_samples:
	If max_samples == LENGTH_UNLIMITED , then at most max_len values will be copied. The use of this variant lets the application limit the number of samples returned to what the sequence can accommodate.

	If max_samples <= max_len , then at most max_samples values will be copied. The use of this variant lets the application limit the number of samples returned to fewer that what the sequence can accommodate.

	If max_samples > max_len , then the read operation will fail with RETCODE_PRECONDITION_NOT_MET. This avoids the potential confusion where the application expects to be able to access up to max_samples, but that number can never be returned, even if they are available in the DataReader, because the output sequence cannot accommodate them.

As described above, upon return the data_values and sample_infos collections may contain elements ‘loaned’ from the DataReader. If this is the case, the application will need to use the return_loan operation to return the loan once it is no longer using the Data in the collection. Upon return from return_loan, the collection will have max_len == 0 and owns == false .

The application can determine whether it is necessary to return the loan or not based on the state of the collections when the read operation was called, or by accessing the owns property. However, in many cases it may be simpler to always call return_loan, as this operation is harmless (i.e., leaves all elements unchanged) if the collection does not have a loan.

On output, the collection of Data values and the collection of SampleInfo structures are of the same length and are in a one-to-one correspondence. Each SampleInfo provides information, such as the source_timestamp, the sample_state, view_state, and instance_state, etc., about the corresponding sample.

Some elements in the returned collection may not have valid data. If the instance_state in the SampleInfo is NOT_ALIVE_DISPOSED_INSTANCE_STATE or NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that instance in the collection, that is, the one whose SampleInfo has sample_rank == 0 does not contain valid data. Samples that contain no data do not count towards the limits imposed by the ResourceLimitsQosPolicy.

The act of reading a sample changes its sample_state to READ_SAMPLE_STATE. If the sample belongs to the most recent generation of the instance, it will also set the view_state of the instance to be NOT_NEW_VIEW_STATE. It will not affect the instance_state of the instance.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

Important: If the samples “returned” by this method are loaned from the middleware (see take for more information on memory loaning), it is important that their contents not be changed. Because the memory in which the data is stored belongs to the middleware, any modifications made to the data will be seen the next time the same samples are read or taken; the samples will no longer reflect the state that was received from the network.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described above.

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t read_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples, ReadCondition *a_condition)

	This operation accesses via ‘read’ the samples that match the criteria specified in the ReadCondition. This operation is especially useful in combination with QueryCondition to filter data samples based on the content.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized QueryCondition, the operation is equivalent to calling read and passing as sample_states, view_states and instance_states the value of the corresponding attributes in a_condition. Using this operation the application can avoid repeating the same parameters specified when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation. If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned.

	a_condition – [in] A ReadCondition that returned data_values must pass

	Returns

	Any of the standard return codes.

	
ReturnCode_t read_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &a_handle = HANDLE_NIL, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader. The behavior is identical to read, except that all samples returned belong to the single specified instance whose handle is a_handle.

Upon successful completion, the data collection will contain samples all belonging to the same instance. The corresponding SampleInfo verifies SampleInfo::instance_handle == a_handle.

This operation is semantically equivalent to the read operation, except in building the collection. The DataReader will check that the sample belongs to the specified instance and otherwise it will not place the sample in the returned collection.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’ elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	a_handle – [in] The specified instance to return samples for. The method will fail with RETCODE_BAD_PARAMETER if the handle does not correspond to an existing data-object known to the DataReader.

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t read_next_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &previous_handle = HANDLE_NIL, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader where all the samples belong to a single instance. The behavior is similar to read_instance, except that the actual instance is not directly specified. Rather, the samples will all belong to the ‘next’ instance with instance_handle ‘greater’ than the specified ‘previous_handle’ that has available samples.

This operation implies the existence of a total order ‘greater-than’ relationship between the instance handles. The specifics of this relationship are not all important and are implementation specific. The important thing is that, according to the middleware, all instances are ordered relative to each other. This ordering is between the instance handles, and should not depend on the state of the instance (e.g. whether it has data or not) and must be defined even for instance handles that do not correspond to instances currently managed by the DataReader. For the purposes of the ordering, it should be ‘as if’ each instance handle was represented as an integer.

The behavior of this operation is ‘as if’ the DataReader invoked read_instance, passing the smallest instance_handle among all the ones that: (a) are greater than previous_handle, and (b) have available samples (i.e. samples that meet the constraints imposed by the specified states).

The special value HANDLE_NIL is guaranteed to be ‘less than’ any valid instance_handle. So the use of the parameter value previous_handle == HANDLE_NIL will return the samples for the instance which has the smallest instance_handle among all the instances that contain available samples.

This operation is intended to be used in an application-driven iteration, where the application starts by passing previous_handle == HANDLE_NIL, examines the samples returned, and then uses the instance_handle returned in the SampleInfo as the value of the previous_handle argument to the next call to read_next_instance. The iteration continues until read_next_instance fails with RETCODE_NO_DATA.

Note that it is possible to call the read_next_instance operation with a previous_handle that does not correspond to an instance currently managed by the DataReader. This is because as stated earlier the ‘greater-than’ relationship is defined even for handles not managed by the DataReader. One practical situation where this may occur is when an application is iterating through all the instances, takes all the samples of a NOT_ALIVE_NO_WRITERS_INSTANCE_STATE instance, returns the loan (at which point the instance information may be removed, and thus the handle becomes invalid), and tries to read the next instance.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’ elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	previous_handle – [in] The ‘next smallest’ instance with a value greater than this value that has available samples will be returned.

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t read_next_instance_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples, const InstanceHandle_t &previous_handle, ReadCondition *a_condition)

	This operation accesses a collection of Data values from the DataReader. The behavior is identical to read_next_instance except that all samples returned satisfy the specified condition. In other words, on success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’ instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation read_next_instance it is possible to call read_next_instance_w_condition with a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the read_next_instance_w_condition operation follows the same rules than the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the read_next_instance_w_condition operation may ‘loan’ elements to the output collections which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	previous_handle – [in] The ‘next smallest’ instance with a value greater than this value that has available samples will be returned.

	a_condition – [in] A ReadCondition that returned data_values must pass

	Returns

	Any of the standard return codes.

	
ReturnCode_t read_next_sample(void *data, SampleInfo *info)

	This operation copies the next, non-previously accessed Data value from the DataReader; the operation also copies the corresponding SampleInfo. The implied order among the samples stored in the DataReader is the same as for the read operation.

The read_next_sample operation is semantically equivalent to the read operation where the input Data sequence has max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the view_states = ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding the need for the application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing is copied

	Parameters

	
	data – [out] Data pointer to store the sample

	info – [out] SampleInfo pointer to store the sample information

	Returns

	Any of the standard return codes.

	
ReturnCode_t take(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data-samples from the DataReader and a corresponding collection of SampleInfo structures, and ‘removes’ them from the DataReader. The operation will return either a ‘list’ of samples or else a single sample. This is controlled by the PresentationQosPolicy using the same logic as for the read operation.

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or ‘taken’ again. If the sample belongs to the most recent generation of the instance, it will also set the view_state of the instance to NOT_NEW. It will not affect the instance_state of the instance.

The behavior of the take operation follows the same rules than the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the take operation may ‘loan’ elements to the output collections which must then be returned by means of return_loan. The only difference with read is that, as stated, the samples returned by take will no longer be accessible to successive calls to read or take.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t take_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples, ReadCondition *a_condition)

	This operation is analogous to read_w_condition except it accesses samples via the ‘take’ operation.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the take operation.

This operation is especially useful in combination with QueryCondition to filter data samples based on the content.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are.

	a_condition – [in] A ReadCondition that returned data_values must pass

	Returns

	Any of the standard return codes.

	
ReturnCode_t take_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &a_handle = HANDLE_NIL, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the DataReader.

This operation has the same behavior as read_instance, except that the samples are ‘taken’ from the DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’ elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	a_handle – [in] The specified instance to return samples for. The method will fail with RETCODE_BAD_PARAMETER if the handle does not correspond to an existing data-object known to the DataReader.

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t take_next_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &previous_handle = HANDLE_NIL, SampleStateMask sample_states = ANY_SAMPLE_STATE, ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states = ANY_INSTANCE_STATE)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the DataReader.

This operation has the same behavior as read_next_instance, except that the samples are ‘taken’ from the DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation read_next_instance, it is possible to call this operation with a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’ elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	previous_handle – [in] The ‘next smallest’ instance with a value greater than this value that has available samples will be returned.

	sample_states – [in] Only data samples with sample_state matching one of these will be returned.

	view_states – [in] Only data samples with view_state matching one of these will be returned.

	instance_states – [in] Only data samples with instance_state matching one of these will be returned.

	Returns

	Any of the standard return codes.

	
ReturnCode_t take_next_instance_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples, const InstanceHandle_t &previous_handle, ReadCondition *a_condition)

	This operation accesses a collection of Data values from the DataReader. The behavior is identical to read_next_instance except that all samples returned satisfy the specified condition. In other words, on success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’ instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation read_next_instance it is possible to call read_next_instance_w_condition with a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the read_next_instance_w_condition operation follows the same rules than the read operation regarding the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to read, the read_next_instance_w_condition operation may ‘loan’ elements to the output collections which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples will be returned.

	sample_infos – [inout] A SampleInfoSeq object where the received sample info will be returned.

	max_samples – [in] The maximum number of samples to be returned. If the special value LENGTH_UNLIMITED is provided, as many samples will be returned as are available, up to the limits described in the documentation for read().

	previous_handle – [in] The ‘next smallest’ instance with a value greater than this value that has available samples will be returned.

	a_condition – [in] A ReadCondition that returned data_values must pass

	Returns

	Any of the standard return codes.

	
ReturnCode_t take_next_sample(void *data, SampleInfo *info)

	This operation copies the next, non-previously accessed Data value from the DataReader and ‘removes’ it from the DataReader so it is no longer accessible. The operation also copies the corresponding SampleInfo.

This operation is analogous to read_next_sample except for the fact that the sample is ‘removed’ from the DataReader.

This operation is semantically equivalent to the take operation where the input sequence has max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the view_states = ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

This operation provides a simplified API to ’take’ samples avoiding the need for the application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing is copied.

	Parameters

	
	data – [out] Data pointer to store the sample

	info – [out] SampleInfo pointer to store the sample information

	Returns

	Any of the standard return codes.

Public Functions

	
virtual ~DataReader()

	Destructor.

	
virtual ReturnCode_t enable() override

	This operation enables the DataReader.

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the Subscriber creating this DataReader is not enabled.

	
bool wait_for_unread_message(const fastrtps::Duration_t &timeout)

	Method to block the current thread until an unread message is available.

	Parameters

	timeout – [in] Max blocking time for this operation.

	Returns

	true if there is new unread message, false if timeout

	
ReturnCode_t wait_for_historical_data(const fastrtps::Duration_t &max_wait) const

	Method to block the current thread until an unread message is available.

NOT YET IMPLEMENTED

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	max_wait – [in] Max blocking time for this operation.

	Returns

	RETCODE_OK if there is new unread message, ReturnCode_t::RETCODE_TIMEOUT if timeout

	
ReturnCode_t return_loan(LoanableCollection &data_values, SampleInfoSeq &sample_infos)

	This operation indicates to the DataReader that the application is done accessing the collection of data_values and sample_infos obtained by some earlier invocation of read or take on the DataReader.

The data_values and sample_infos must belong to a single related ‘pair’; that is, they should correspond to a pair returned from a single call to read or take. The data_values and sample_infos must also have been obtained from the same DataReader to which they are returned. If either of these conditions is not met, the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

This operation allows implementations of the read and take operations to “loan” buffers from the DataReader to the application and in this manner provide “zero-copy” access to the data. During the loan, the DataReader will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or take calls. However, as these buffers correspond to internal resources inside the DataReader, the application should not retain them indefinitely.

The use of the return_loan operation is only necessary if the read or take calls “loaned” buffers to the application. This only occurs if the data_values and sample_infos collections had max_len == 0 at the time read or take was called. The application may also examine the owns property of the collection to determine if there is an outstanding loan. However, calling return_loan on a collection that does not have a loan is safe and has no side effects.

If the collections had a loan, upon return from return_loan the collections will have max_len == 0 .

	Parameters

	
	data_values – [inout] A LoanableCollection object where the received data samples were obtained from an earlier invocation of read or take on this DataReader.

	sample_infos – [inout] A SampleInfoSeq object where the received sample infos were obtained from an earlier invocation of read or take on this DataReader.

	Returns

	Any of the standard return codes.

	
ReturnCode_t get_key_value(void *key_holder, const InstanceHandle_t &handle)

	NOT YET IMPLEMENTED

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing data-object known to the DataReader. If the implementation is not able to check invalid handles then the result in this situation is unspecified.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	key_holder – [inout]

	handle – [in]

	Returns

	Any of the standard return codes.

	
InstanceHandle_t lookup_instance(const void *instance) const

	Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept an instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that define the key.

	Parameters

	instance – [in] Data pointer to the sample

	Returns

	handle of the given instance.

	Returns

	HANDLE_NIL if instance is nullptr.

	Returns

	HANDLE_NIL if there is no instance on the DataReader’s history with the same key as instance.

	
ReturnCode_t get_first_untaken_info(SampleInfo *info)

	Returns information about the first untaken sample.

	Parameters

	info – [out] Pointer to a SampleInfo_t structure to store first untaken sample information.

	Returns

	RETCODE_OK if sample info was returned. RETCODE_NO_DATA if there is no sample to take.

	
uint64_t get_unread_count() const

	Get the number of samples pending to be read. The number includes samples that may not yet be available to be read or taken by the user, due to samples being received out of order.

	Returns

	the number of samples on the reader history that have never been read.

	
uint64_t get_unread_count(bool mark_as_read) const

	Get the number of samples pending to be read.

	Parameters

	mark_as_read – Whether the unread samples should be marked as read or not.

	Returns

	the number of samples on the reader history that have never been read.

	
const fastrtps::rtps::GUID_t &guid()

	Get associated GUID.

	Returns

	Associated GUID

	
const fastrtps::rtps::GUID_t &guid() const

	Get associated GUID.

	Returns

	Associated GUID

	
InstanceHandle_t get_instance_handle() const

	Getter for the associated InstanceHandle.

	Returns

	Copy of the InstanceHandle

	
TypeSupport type()

	Getter for the data type.

	Returns

	TypeSupport associated to the DataReader.

	
const TopicDescription *get_topicdescription() const

	Get TopicDescription.

	Returns

	TopicDescription pointer.

	
ReturnCode_t get_requested_deadline_missed_status(RequestedDeadlineMissedStatus &status)

	Get the requested deadline missed status.

	Returns

	The deadline missed status.

	
ReturnCode_t get_requested_incompatible_qos_status(RequestedIncompatibleQosStatus &status)

	Get the requested incompatible qos status.

	Parameters

	status – [out] Requested incompatible qos status.

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const DataReaderQos &qos)

	Setter for the DataReaderQos.

	Parameters

	qos – [in] new value for the DataReaderQos.

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const DataReaderQos &get_qos() const

	Getter for the DataReaderQos.

	Returns

	Pointer to the DataReaderQos.

	
ReturnCode_t get_qos(DataReaderQos &qos) const

	Getter for the DataReaderQos.

	Parameters

	qos – [in] DataReaderQos where the qos is returned.

	Returns

	RETCODE_OK

	
ReturnCode_t set_listener(DataReaderListener *listener)

	Modifies the DataReaderListener, sets the mask to StatusMask::all().

	Parameters

	listener – [in] new value for the DataReaderListener.

	Returns

	RETCODE_OK

	
ReturnCode_t set_listener(DataReaderListener *listener, const StatusMask &mask)

	Modifies the DataReaderListener.

	Parameters

	
	listener – [in] new value for the DataReaderListener.

	mask – [in] StatusMask that holds statuses the listener responds to (default: all).

	Returns

	RETCODE_OK

	
const DataReaderListener *get_listener() const

	Getter for the DataReaderListener.

	Returns

	Pointer to the DataReaderListener

	
ReturnCode_t get_liveliness_changed_status(LivelinessChangedStatus &status) const

	Get the liveliness changed status.

	Parameters

	status – [out] LivelinessChangedStatus object where the status is returned.

	Returns

	RETCODE_OK

	
ReturnCode_t get_sample_lost_status(SampleLostStatus &status) const

	Get the SAMPLE_LOST communication status.

	Parameters

	status – [out] SampleLostStatus object where the status is returned.

	Returns

	RETCODE_OK

	
ReturnCode_t get_sample_rejected_status(SampleRejectedStatus &status) const

	Get the SAMPLE_REJECTED communication status.

	Parameters

	status – [out] SampleRejectedStatus object where the status is returned.

	Returns

	RETCODE_OK

	
ReturnCode_t get_subscription_matched_status(SubscriptionMatchedStatus &status) const

	Returns the subscription matched status.

	Parameters

	status – [out] subscription matched status struct

	Returns

	RETCODE_OK

	
ReturnCode_t get_matched_publication_data(builtin::PublicationBuiltinTopicData &publication_data, const fastrtps::rtps::InstanceHandle_t &publication_handle) const

	Retrieves in a publication associated with the DataWriter.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	publication_data – [out] publication data struct

	publication_handle – InstanceHandle_t of the publication

	Returns

	RETCODE_OK

	
ReturnCode_t get_matched_publications(std::vector<InstanceHandle_t> &publication_handles) const

	Fills the given vector with the InstanceHandle_t of matched DataReaders.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	publication_handles – [out] Vector where the InstanceHandle_t are returned

	Returns

	RETCODE_OK

	
ReadCondition *create_readcondition(SampleStateMask sample_states, ViewStateMask view_states, InstanceStateMask instance_states)

	This operation creates a ReadCondition. The returned ReadCondition will be attached and belong to the DataReader.

	Parameters

	
	sample_states – [in] Only data samples with sample_state matching one of these will trigger the created condition.

	view_states – [in] Only data samples with view_state matching one of these will trigger the created condition.

	instance_states – [in] Only data samples with instance_state matching one of these will trigger the created condition.

	Returns

	pointer to the created ReadCondition, nullptr in case of error.

	
QueryCondition *create_querycondition(SampleStateMask sample_states, ViewStateMask view_states, InstanceStateMask instance_states, const std::string &query_expression, const std::vector<std::string> &query_parameters)

	This operation creates a QueryCondition. The returned QueryCondition will be attached and belong to the DataReader.

	Parameters

	
	sample_states – [in] Only data samples with sample_state matching one of these will trigger the created condition.

	view_states – [in] Only data samples with view_state matching one of these will trigger the created condition.

	instance_states – [in] Only data samples with instance_state matching one of these will trigger the created condition.

	query_expression – [in] Only data samples matching this query will trigger the created condition.

	query_parameters – [in] Value of the parameters on the query expression.

	Returns

	pointer to the created QueryCondition, nullptr in case of error.

	
ReturnCode_t delete_readcondition(ReadCondition *a_condition)

	This operation deletes a ReadCondition attached to the DataReader.

	Parameters

	a_condition – pointer to a ReadCondition belonging to the DataReader

	Returns

	RETCODE_OK

	
const Subscriber *get_subscriber() const

	Getter for the Subscriber.

	Returns

	Subscriber pointer

	
ReturnCode_t delete_contained_entities()

	This operation deletes all the entities that were created by means of the “create” operations on the DataReader. That is, it deletes all contained ReadCondition and QueryCondition objects.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state where it cannot be deleted.

	Returns

	Any of the standard return codes.

	
bool is_sample_valid(const void *data, const SampleInfo *info) const

	Checks whether a loaned sample is still valid or is corrupted. Calling this method on a sample which has not been loaned, or one for which the loan has been returned yields undefined behavior.

	Parameters

	
	data – Pointer to the sample data to check

	info – Pointer to the SampleInfo related to data

	Returns

	true if the sample is valid

	
ReturnCode_t get_listening_locators(rtps::LocatorList &locators) const

	Get the list of locators on which this DataReader is listening.

	Parameters

	locators – [out] LocatorList where the list of locators will be stored.

	Returns

	NOT_ENABLED if the reader has not been enabled.

	Returns

	OK if a list of locators is returned.

 17.1.4.2. DataReaderListener

17.1.4.2. DataReaderListener

	
class eprosima::fastdds::dds::DataReaderListener

	Class DataReaderListener, it should be used by the end user to implement specific callbacks to certain actions.

Subclassed by eprosima::fastdds::dds::SubscriberListener

Public Functions

	
inline DataReaderListener()

	Constructor.

	
inline virtual ~DataReaderListener()

	Destructor.

	
inline virtual void on_data_available(DataReader *reader)

	Virtual function to be implemented by the user containing the actions to be performed when new Data Messages are received.

	Parameters

	reader – DataReader

	
inline virtual void on_subscription_matched(DataReader *reader, const fastdds::dds::SubscriptionMatchedStatus &info)

	Virtual method to be called when the subscriber is matched with a new Writer (or unmatched); i.e., when a writer publishing in the same topic is discovered.

	Parameters

	
	reader – DataReader

	info – The subscription matched status

	
inline virtual void on_requested_deadline_missed(DataReader *reader, const fastrtps::RequestedDeadlineMissedStatus &status)

	Virtual method to be called when a topic misses the deadline period

	Parameters

	
	reader – DataReader

	status – The requested deadline missed status

	
inline virtual void on_liveliness_changed(DataReader *reader, const fastrtps::LivelinessChangedStatus &status)

	Method called when the liveliness status associated to a subscriber changes.

	Parameters

	
	reader – The DataReader

	status – The liveliness changed status

	
inline virtual void on_sample_rejected(DataReader *reader, const fastrtps::SampleRejectedStatus &status)

	Method called when a sample was rejected.

	Parameters

	
	reader – The DataReader

	status – The rejected status

	
inline virtual void on_requested_incompatible_qos(DataReader *reader, const RequestedIncompatibleQosStatus &status)

	Method called an incompatible QoS was requested.

	Parameters

	
	reader – The DataReader

	status – The requested incompatible QoS status

	
inline virtual void on_sample_lost(DataReader *reader, const SampleLostStatus &status)

	Method called when a sample was lost.

	Parameters

	
	reader – The DataReader

	status – The sample lost status

 17.1.4.3. DataReaderQos

17.1.4.3. DataReaderQos

	
class eprosima::fastdds::dds::DataReaderQos

	Class DataReaderQos, containing all the possible Qos that can be set for a determined DataReader. Although these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library. Please consult each of them to check for implementation details and default values.

Subclassed by eprosima::fastdds::statistics::dds::DataReaderQos

Public Functions

	
inline DataReaderQos()

	Constructor.

	
inline DurabilityQosPolicy &durability()

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

	
inline const DurabilityQosPolicy &durability() const

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQosPolicy const reference

	
inline void durability(const DurabilityQosPolicy &new_value)

	Setter for DurabilityQosPolicy

	Parameters

	new_value – new value for the DurabilityQosPolicy

	
inline DeadlineQosPolicy &deadline()

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

	
inline const DeadlineQosPolicy &deadline() const

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQosPolicy const reference

	
inline void deadline(const DeadlineQosPolicy &new_value)

	Setter for DeadlineQosPolicy

	Parameters

	new_value – new value for the DeadlineQosPolicy

	
inline LatencyBudgetQosPolicy &latency_budget()

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

	
inline const LatencyBudgetQosPolicy &latency_budget() const

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy const reference

	
inline void latency_budget(const LatencyBudgetQosPolicy &new_value)

	Setter for LatencyBudgetQosPolicy

	Parameters

	new_value – new value for the LatencyBudgetQosPolicy

	
inline LivelinessQosPolicy &liveliness()

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

	
inline const LivelinessQosPolicy &liveliness() const

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQosPolicy const reference

	
inline void liveliness(const LivelinessQosPolicy &new_value)

	Setter for LivelinessQosPolicy

	Parameters

	new_value – new value for the LivelinessQosPolicy

	
inline ReliabilityQosPolicy &reliability()

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

	
inline const ReliabilityQosPolicy &reliability() const

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy const reference

	
inline void reliability(const ReliabilityQosPolicy &new_value)

	Setter for ReliabilityQosPolicy

	Parameters

	new_value – new value for the ReliabilityQosPolicy

	
inline DestinationOrderQosPolicy &destination_order()

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

	
inline const DestinationOrderQosPolicy &destination_order() const

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy const reference

	
inline void destination_order(const DestinationOrderQosPolicy &new_value)

	Setter for DestinationOrderQosPolicy

	Parameters

	new_value – new value for the DestinationOrderQosPolicy

	
inline HistoryQosPolicy &history()

	Getter for HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

	
inline const HistoryQosPolicy &history() const

	Getter for HistoryQosPolicy

	Returns

	HistoryQosPolicy const reference

	
inline void history(const HistoryQosPolicy &new_value)

	Setter for HistoryQosPolicy

	Parameters

	new_value – new value for the HistoryQosPolicy

	
inline ResourceLimitsQosPolicy &resource_limits()

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

	
inline const ResourceLimitsQosPolicy &resource_limits() const

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy const reference

	
inline void resource_limits(const ResourceLimitsQosPolicy &new_value)

	Setter for ResourceLimitsQosPolicy

	Parameters

	new_value – new value for the ResourceLimitsQosPolicy

	
inline UserDataQosPolicy &user_data()

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

	
inline const UserDataQosPolicy &user_data() const

	Getter for UserDataQosPolicy

	Returns

	UserDataQosPolicy const reference

	
inline void user_data(const UserDataQosPolicy &new_value)

	Setter for UserDataQosPolicy

	Parameters

	new_value – new value for the UserDataQosPolicy

	
inline OwnershipQosPolicy &ownership()

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

	
inline const OwnershipQosPolicy &ownership() const

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQosPolicy const reference

	
inline void ownership(const OwnershipQosPolicy &new_value)

	Setter for OwnershipQosPolicy

	Parameters

	new_value – new value for the OwnershipQosPolicy

	
inline TimeBasedFilterQosPolicy &time_based_filter()

	Getter for TimeBasedFilterQosPolicy

	Returns

	TimeBasedFilterQosPolicy reference

	
inline const TimeBasedFilterQosPolicy &time_based_filter() const

	Getter for TimeBasedFilterQosPolicy

	Returns

	TimeBasedFilterQosPolicy const reference

	
inline void time_based_filter(const TimeBasedFilterQosPolicy &new_value)

	Setter for TimeBasedFilterQosPolicy

	Parameters

	new_value – new value for the TimeBasedFilterQosPolicy

	
inline ReaderDataLifecycleQosPolicy &reader_data_lifecycle()

	Getter for ReaderDataLifecycleQosPolicy

	Returns

	ReaderDataLifecycleQosPolicy reference

	
inline const ReaderDataLifecycleQosPolicy &reader_data_lifecycle() const

	Getter for ReaderDataLifecycleQosPolicy

	Returns

	ReaderDataLifecycleQosPolicy const reference

	
inline void reader_data_lifecycle(const ReaderDataLifecycleQosPolicy &new_value)

	Setter for ReaderDataLifecycleQosPolicy

	Parameters

	new_value – new value for the ReaderDataLifecycleQosPolicy

	
inline LifespanQosPolicy &lifespan()

	Getter for LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

	
inline const LifespanQosPolicy &lifespan() const

	Getter for LifespanQosPolicy

	Returns

	LifespanQosPolicy const reference

	
inline void lifespan(const LifespanQosPolicy &new_value)

	Setter for LifespanQosPolicy

	Parameters

	new_value – new value for the LifespanQosPolicy

	
inline DurabilityServiceQosPolicy &durability_service()

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

	
inline const DurabilityServiceQosPolicy &durability_service() const

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy const reference

	
inline void durability_service(const DurabilityServiceQosPolicy &new_value)

	Setter for DurabilityServiceQosPolicy

	Parameters

	new_value – new value for the DurabilityServiceQosPolicy

	
inline RTPSReliableReaderQos &reliable_reader_qos()

	Getter for RTPSReliableReaderQos

	Returns

	RTPSReliableReaderQos reference

	
inline const RTPSReliableReaderQos &reliable_reader_qos() const

	Getter for RTPSReliableReaderQos

	Returns

	RTPSReliableReaderQos const reference

	
inline void reliable_reader_qos(const RTPSReliableReaderQos &new_value)

	Setter for RTPSReliableReaderQos

	Parameters

	new_value – new value for the RTPSReliableReaderQos

	
inline TypeConsistencyQos &type_consistency()

	Getter for TypeConsistencyQos

	Returns

	TypeConsistencyQos reference

	
inline const TypeConsistencyQos &type_consistency() const

	Getter for TypeConsistencyQos

	Returns

	TypeConsistencyQos const reference

	
inline void type_consistency(const TypeConsistencyQos &new_value)

	Setter for TypeConsistencyQos

	Parameters

	new_value – new value for the TypeConsistencyQos

	
inline bool expects_inline_qos() const

	Getter for expectsInlineQos

	Returns

	expectsInlineQos

	
inline void expects_inline_qos(bool new_value)

	Setter for expectsInlineQos

	Parameters

	new_value – new value for the expectsInlineQos

	
inline PropertyPolicyQos &properties()

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

	
inline const PropertyPolicyQos &properties() const

	Getter for PropertyPolicyQos

	Returns

	PropertyPolicyQos const reference

	
inline void properties(const PropertyPolicyQos &new_value)

	Setter for PropertyPolicyQos

	Parameters

	new_value – new value for the PropertyPolicyQos

	
inline RTPSEndpointQos &endpoint()

	Getter for RTPSEndpointQos

	Returns

	RTPSEndpointQos reference

	
inline const RTPSEndpointQos &endpoint() const

	Getter for RTPSEndpointQos

	Returns

	RTPSEndpointQos const reference

	
inline void endpoint(const RTPSEndpointQos &new_value)

	Setter for RTPSEndpointQos

	Parameters

	new_value – new value for the RTPSEndpointQos

	
inline ReaderResourceLimitsQos &reader_resource_limits()

	Getter for ReaderResourceLimitsQos

	Returns

	ReaderResourceLimitsQos reference

	
inline const ReaderResourceLimitsQos &reader_resource_limits() const

	Getter for ReaderResourceLimitsQos

	Returns

	ReaderResourceLimitsQos const reference

	
inline void reader_resource_limits(const ReaderResourceLimitsQos &new_value)

	Setter for ReaderResourceLimitsQos

	Parameters

	new_value – new value for the ReaderResourceLimitsQos

	
inline DataSharingQosPolicy &data_sharing()

	Getter for DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

	
inline const DataSharingQosPolicy &data_sharing() const

	Getter for DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

	
inline void data_sharing(const DataSharingQosPolicy &data_sharing)

	Setter for DataSharingQosPolicy

	Parameters

	data_sharing – new value for the DataSharingQosPolicy

	
const DataReaderQos eprosima::fastdds::dds::DATAREADER_QOS_DEFAULT

	

 17.1.4.4. InstanceStateKind

17.1.4.4. InstanceStateKind

	
enum eprosima::fastdds::dds::InstanceStateKind

	Indicates if the samples are from an alive DataWriter or not.

For each instance, the middleware internally maintains an instance state. The instance state can be:

	ALIVE_INSTANCE_STATE indicates that (a) samples have been received for the instance, (b) there are alive DataWriter entities writing the instance, and (c) the instance has not been explicitly disposed (or else more samples have been received after it was disposed).

	NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was explicitly disposed by a DataWriter by means of the dispose operation.

	NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has been declared as not-alive by the DataReader because it detected that there are no alive DataWriter entities writing that instance.

The precise behavior events that cause the instance state to change depends on the setting of the OWNERSHIP QoS:

	If OWNERSHIP is set to EXCLUSIVE_OWNERSHIP_QOS, then the instance state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE only if the DataWriter that “owns” the instance explicitly disposes it. The instance state becomes ALIVE_INSTANCE_STATE again only if the DataWriter that owns the instance writes it.

	If OWNERSHIP is set to SHARED_OWNERSHIP_QOS, then the instance state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE if any DataWriter explicitly disposes the instance. The instance state becomes ALIVE_INSTANCE_STATE as soon as any DataWriter writes the instance again.

The instance state available in the SampleInfo is a snapshot of the instance state of the instance at the time the collection was obtained (i.e. at the time read or take was called). The instance state is therefore the same for all samples in the returned collection that refer to the same instance.

Values:

	
enumerator ALIVE_INSTANCE_STATE

	Instance is currently in existence.

	
enumerator NOT_ALIVE_DISPOSED_INSTANCE_STATE

	Not alive disposed instance. The instance has been disposed by a DataWriter.

	
enumerator NOT_ALIVE_NO_WRITERS_INSTANCE_STATE

	Not alive no writers for instance. None of the DataWriter objects that are currently alive (according to the LIVELINESS QoS) are writing the instance.

 17.1.4.5. ReadCondition

17.1.4.5. ReadCondition

	
class eprosima::fastdds::dds::ReadCondition : public eprosima::fastdds::dds::Condition

	A Condition specifically dedicated to read operations and attached to one DataReader.

ReadCondition objects allow an application to specify the data samples it is interested in (by specifying the desired sample_states, view_states, and instance_states). The condition will only be triggered when suitable information is available. They are to be used in conjunction with a WaitSet as normal conditions. More than one ReadCondition may be attached to the same DataReader.

Public Functions

	
virtual bool get_trigger_value() const noexcept override

	Retrieves the trigger_value of the Condition.

	Returns

	true if trigger_value is set to ‘true’, ‘false’ otherwise

	
DataReader *get_datareader() const noexcept

	Retrieves the DataReader associated with the ReadCondition.

Note that there is exactly one DataReader associated with each ReadCondition.

	Returns

	pointer to the DataReader associated with this ReadCondition.

	
SampleStateMask get_sample_state_mask() const noexcept

	Retrieves the set of sample_states taken into account to determine the trigger_value of this condition.

	Returns

	the sample_states specified when the ReadCondition was created.

	
ViewStateMask get_view_state_mask() const noexcept

	Retrieves the set of view_states taken into account to determine the trigger_value of this condition.

	Returns

	the view_states specified when the ReadCondition was created.

	
InstanceStateMask get_instance_state_mask() const noexcept

	Retrieves the set of instance_states taken into account to determine the trigger_value of this condition.

	Returns

	the instance_states specified when the ReadCondition was created.

 17.1.4.6. ReaderResourceLimitsQos

17.1.4.6. ReaderResourceLimitsQos

	
class eprosima::fastdds::dds::ReaderResourceLimitsQos

	Qos Policy to configure the limit of the reader resources.

Public Functions

	
ReaderResourceLimitsQos() = default

	Constructor.

	
virtual ~ReaderResourceLimitsQos() = default

	Destructor.

Public Members

	
fastrtps::ResourceLimitedContainerConfig matched_publisher_allocation

	Matched publishers allocation limits.

	
fastrtps::ResourceLimitedContainerConfig sample_infos_allocation = {32u}

	SampleInfo allocation limits.

	
fastrtps::ResourceLimitedContainerConfig outstanding_reads_allocation = {2u}

	Loaned collections allocation limits.

	
int32_t max_samples_per_read = 32

	Maximum number of samples to return on a single call to read / take.

This attribute is a signed integer to be consistent with the max_samples argument of DataReader methods, but should always have a strict positive value. Bear in mind that a big number here may cause the creation of the DataReader to fail due to pre-allocation of internal resources.

Default value: 32.

 17.1.4.7. RTPSReliableReaderQos

17.1.4.7. RTPSReliableReaderQos

	
class eprosima::fastdds::dds::RTPSReliableReaderQos

	Qos Policy to configure the DisablePositiveACKsQos and the reader attributes.

Public Functions

	
inline RTPSReliableReaderQos()

	Constructor.

	
virtual ~RTPSReliableReaderQos() = default

	Destructor.

Public Members

	
fastrtps::rtps::ReaderTimes times

	Times associated with the Reliable Readers events.

	
DisablePositiveACKsQosPolicy disable_positive_ACKs

	Control the sending of positive ACKs.

 17.1.4.8. SampleInfo

17.1.4.8. SampleInfo

	
struct eprosima::fastdds::dds::SampleInfo

	SampleInfo is the information that accompanies each sample that is ‘read’ or ‘taken.

’

Public Members

	
SampleStateKind sample_state

	indicates whether or not the corresponding data sample has already been read

	
ViewStateKind view_state

	indicates whether the DataReader has already seen samples for the most-current generation of the related instance.

	
InstanceStateKind instance_state

	indicates whether the instance is currently in existence or, if it has been disposed, the reason why it was disposed.

	
int32_t disposed_generation_count

	number of times the instance had become alive after it was disposed

	
int32_t no_writers_generation_count

	number of times the instance had become alive after it was disposed because no writers

	
int32_t sample_rank

	number of samples related to the same instance that follow in the collection

	
int32_t generation_rank

	the generation difference between the time the sample was received, and the time the most recent sample in the collection was received.

	
int32_t absolute_generation_rank

	the generation difference between the time the sample was received, and the time the most recent sample was received. The most recent sample used for the calculation may or may not be in the returned collection

	
fastrtps::rtps::Time_t source_timestamp

	time provided by the DataWriter when the sample was written

	
fastrtps::rtps::Time_t reception_timestamp

	time provided by the DataReader when the sample was added to its history

	
InstanceHandle_t instance_handle

	identifies locally the corresponding instance

	
InstanceHandle_t publication_handle

	identifies locally the DataWriter that modified the instance

Is the same InstanceHandle_t that is returned by the operation get_matched_publications on the DataReader

	
bool valid_data

	whether the DataSample contains data or is only used to communicate of a change in the instance

	
fastrtps::rtps::SampleIdentity sample_identity

	Sample Identity (Extension for RPC)

	
fastrtps::rtps::SampleIdentity related_sample_identity

	Related Sample Identity (Extension for RPC)

 17.1.4.9. SampleStateKind

17.1.4.9. SampleStateKind

	
enum eprosima::fastdds::dds::SampleStateKind

	Indicates whether or not a sample has ever been read.

For each sample received, the middleware internally maintains a sample state relative to each DataReader. This sample state can have the following values:

	READ_SAMPLE_STATE indicates that the DataReader has already accessed that sample by means of a read or take operation

	NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that sample before.

The sample state will, in general, be different for each sample in the collection returned by read or take.

Values:

	
enumerator READ_SAMPLE_STATE

	Sample has been read.

	
enumerator NOT_READ_SAMPLE_STATE

	Sample has not been read.

 17.1.4.10. Subscriber

17.1.4.10. Subscriber

	
class eprosima::fastdds::dds::Subscriber : public eprosima::fastdds::dds::DomainEntity

	Class Subscriber, contains the public API that allows the user to control the reception of messages. This class should not be instantiated directly. DomainRTPSParticipant class should be used to correctly create this element.

Public Functions

	
inline virtual ~Subscriber()

	Destructor.

	
virtual ReturnCode_t enable() override

	This operation enables the Subscriber.

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the participant creating this Subscriber is not enabled.

	
const SubscriberQos &get_qos() const

	Allows accessing the Subscriber Qos.

	Returns

	SubscriberQos reference

	
ReturnCode_t get_qos(SubscriberQos &qos) const

	Retrieves the Subscriber Qos.

	Parameters

	qos – SubscriberQos where the qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const SubscriberQos &qos)

	Allows modifying the Subscriber Qos. The given Qos must be supported by the SubscriberQos.

	Parameters

	qos – new value for SubscriberQos

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const SubscriberListener *get_listener() const

	Retrieves the attached SubscriberListener.

	Returns

	Pointer to the SubscriberListener

	
ReturnCode_t set_listener(SubscriberListener *listener)

	Modifies the SubscriberListener, sets the mask to StatusMask::all()

	Parameters

	listener – new value for SubscriberListener

	Returns

	RETCODE_OK

	
ReturnCode_t set_listener(SubscriberListener *listener, const StatusMask &mask)

	Modifies the SubscriberListener.

	Parameters

	
	listener – new value for the SubscriberListener

	mask – StatusMask that holds statuses the listener responds to.

	Returns

	RETCODE_OK

	
DataReader *create_datareader(TopicDescription *topic, const DataReaderQos &reader_qos, DataReaderListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	This operation creates a DataReader. The returned DataReader will be attached and belong to the Subscriber.

	Parameters

	
	topic – Topic the DataReader will be listening.

	reader_qos – QoS of the DataReader.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	Pointer to the created DataReader. nullptr if failed.

	
DataReader *create_datareader_with_profile(TopicDescription *topic, const std::string &profile_name, DataReaderListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

	This operation creates a DataReader. The returned DataReader will be attached and belongs to the Subscriber.

	Parameters

	
	topic – Topic the DataReader will be listening.

	profile_name – DataReader profile name.

	listener – Pointer to the listener (default: nullptr)

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	Pointer to the created DataReader. nullptr if failed.

	
ReturnCode_t delete_datareader(const DataReader *reader)

	This operation deletes a DataReader that belongs to the Subscriber.

The delete_datareader operation must be called on the same Subscriber object used to create the DataReader. If delete_datareader is called on a different Subscriber, the operation will have no effect and it will return an error.

	Parameters

	reader – DataReader to delete

	Returns

	RETCODE_PRECONDITION_NOT_MET if the datareader does not belong to this subscriber, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
DataReader *lookup_datareader(const std::string &topic_name) const

	This operation retrieves a previously-created DataReader belonging to the Subscriber that is attached to a Topic with a matching topic_name. If no such DataReader exists, the operation will return nullptr.

If multiple DataReaders attached to the Subscriber satisfy this condition, then the operation will return one of them. It is not specified which one.

	Parameters

	topic_name – Name of the topic associated to the DataReader

	Returns

	Pointer to a previously created DataReader created on a Topic with that topic_name

	
ReturnCode_t get_datareaders(std::vector<DataReader*> &readers) const

	This operation allows the application to access the DataReader objects.

	Parameters

	readers – Vector of DataReader where the list of existing readers is returned

	Returns

	RETCODE_OK

	
ReturnCode_t get_datareaders(std::vector<DataReader*> &readers, const std::vector<SampleStateKind> &sample_states, const std::vector<ViewStateKind> &view_states, const std::vector<InstanceStateKind> &instance_states) const

	This operation allows the application to access the DataReader objects that contain samples with the specified sample_states, view_states, and instance_states.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	readers – [out] Vector of DataReader where the list of existing readers is returned

	sample_states – Vector of SampleStateKind

	view_states – Vector of ViewStateKind

	instance_states – Vector of InstanceStateKind

	Returns

	RETCODE_OK

	
bool has_datareaders() const

	This operation checks if the subscriber has DataReaders

	Returns

	true if the subscriber has one or several DataReaders, false in other case

	
ReturnCode_t begin_access()

	Indicates that the application is about to access the data samples in any of the DataReader objects attached to the Subscriber.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK

	
ReturnCode_t end_access()

	Indicates that the application has finished accessing the data samples in DataReader objects managed by the Subscriber.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Returns

	RETCODE_OK

	
ReturnCode_t notify_datareaders() const

	This operation invokes the operation on_data_available on the DataReaderListener objects attached to contained DataReader entities.

This operation is typically invoked from the on_data_on_readers operation in the SubscriberListener. That way the SubscriberListener can delegate to the DataReaderListener objects the handling of the data.

	Returns

	RETCODE_OK

	
ReturnCode_t delete_contained_entities()

	Deletes all contained DataReaders. If the DataReaders have any QueryCondition or ReadCondition, they are deleted before the DataReader itself.

	Returns

	RETCODE_OK if successful, an error code otherwise

	
ReturnCode_t set_default_datareader_qos(const DataReaderQos &qos)

	This operation sets a default value of the DataReader QoS policies which will be used for newly created DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will have no effect and return false.

The special value DATAREADER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS should be reset back to the initial values the factory would use, that is the values that would be used if the set_default_datareader_qos operation had never been called.

	Parameters

	qos – new value for DataReaderQos to set as default

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
const DataReaderQos &get_default_datareader_qos() const

	This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be used for newly created DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Returns

	Current default DataReaderQos.

	
DataReaderQos &get_default_datareader_qos()

	This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be used for newly created DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Returns

	Current default DataReaderQos.

	
ReturnCode_t get_default_datareader_qos(DataReaderQos &qos) const

	This operation retrieves the default value of the DataReader QoS, that is, the QoS policies which will be used for newly created DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Parameters

	qos – DataReaderQos where the default_qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t get_datareader_qos_from_profile(const std::string &profile_name, DataReaderQos &qos) const

	Fills the DataReaderQos with the values of the XML profile.

	Parameters

	
	profile_name – DataReader profile name.

	qos – DataReaderQos object where the qos is returned.

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
const DomainParticipant *get_participant() const

	This operation returns the DomainParticipant to which the Subscriber belongs.

	Returns

	DomainParticipant Pointer

	
const InstanceHandle_t &get_instance_handle() const

	Returns the Subscriber’s handle.

	Returns

	InstanceHandle of this Subscriber.

Public Static Functions

	
static ReturnCode_t copy_from_topic_qos(DataReaderQos &reader_qos, const TopicQos &topic_qos)

	Copies TopicQos into the corresponding DataReaderQos.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	
	reader_qos – [inout]

	topic_qos – [in]

	Returns

	RETCODE_OK if successful, an error code otherwise

 17.1.4.11. SubscriberListener

17.1.4.11. SubscriberListener

	
class eprosima::fastdds::dds::SubscriberListener : public eprosima::fastdds::dds::DataReaderListener

	Class SubscriberListener, it should be used by the end user to implement specific callbacks to certain actions. It also inherits all DataReaderListener callbacks.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

	
inline SubscriberListener()

	Constructor.

	
inline virtual ~SubscriberListener()

	Destructor.

	
inline virtual void on_data_on_readers(Subscriber *sub)

	Virtual function to be implemented by the user containing the actions to be performed when a new Data Message is available on any reader.

	Parameters

	sub – Subscriber

 17.1.4.12. SubscriberQos

17.1.4.12. SubscriberQos

	
class eprosima::fastdds::dds::SubscriberQos

	Class SubscriberQos, contains all the possible Qos that can be set for a determined Subscriber. Although these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library. Please consult each of them to check for implementation details and default values.

Public Functions

	
inline SubscriberQos()

	Constructor.

	
inline virtual ~SubscriberQos()

	Destructor.

	
inline const PresentationQosPolicy &presentation() const

	Getter for PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

	
inline PresentationQosPolicy &presentation()

	Getter for PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

	
inline void presentation(const PresentationQosPolicy &presentation)

	Setter for PresentationQosPolicy

	Parameters

	presentation – new value for the PresentationQosPolicy

	
inline const PartitionQosPolicy &partition() const

	Getter for PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

	
inline PartitionQosPolicy &partition()

	Getter for PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

	
inline void partition(const PartitionQosPolicy &partition)

	Setter for PartitionQosPolicy

	Parameters

	partition – new value for the PartitionQosPolicy

	
inline const GroupDataQosPolicy &group_data() const

	Getter for GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

	
inline GroupDataQosPolicy &group_data()

	Getter for GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

	
inline void group_data(const GroupDataQosPolicy &group_data)

	Setter for GroupDataQosPolicy

	Parameters

	group_data – new value for the GroupDataQosPolicy

	
inline const EntityFactoryQosPolicy &entity_factory() const

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline EntityFactoryQosPolicy &entity_factory()

	Getter for EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

	
inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)

	Setter for EntityFactoryQosPolicy

	Parameters

	entity_factory – new value for the EntityFactoryQosPolicy

	
const SubscriberQos eprosima::fastdds::dds::SUBSCRIBER_QOS_DEFAULT

	

 17.1.4.13. TypeConsistencyQos

17.1.4.13. TypeConsistencyQos

	
class eprosima::fastdds::dds::TypeConsistencyQos : public eprosima::fastdds::dds::QosPolicy

	Qos Policy to configure the XTypes Qos associated to the DataReader.

Public Functions

	
inline TypeConsistencyQos()

	Constructor.

	
virtual ~TypeConsistencyQos() = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

Public Members

	
TypeConsistencyEnforcementQosPolicy type_consistency

	Type consistency enforcement Qos.

	
DataRepresentationQosPolicy representation

	Data Representation Qos.

 17.1.4.14. ViewStateKind

17.1.4.14. ViewStateKind

	
enum eprosima::fastdds::dds::ViewStateKind

	Indicates whether or not an instance is new.

For each instance (identified by the key), the middleware internally maintains a view state relative to each DataReader. This view state can have the following values:

	NEW_VIEW_STATE indicates that either this is the first time that the DataReader has ever accessed samples of that instance, or else that the DataReader has accessed previous samples of the instance, but the instance has since been reborn (i.e. become not-alive and then alive again). These two cases are distinguished by examining the SampleInfo::disposed_generation_count and the SampleInfo::no_writers_generation_count.

	NOT_NEW_VIEW_STATE indicates that the DataReader has already accessed samples of the same instance and that the instance has not been reborn since.

The view_state available in the SampleInfo is a snapshot of the view state of the instance relative to the DataReader used to access the samples at the time the collection was obtained (i.e. at the time read or take was called). The view_state is therefore the same for all samples in the returned collection that refer to the same instance.

Once an instance has been detected as not having any “live” writers and all the samples associated with the instance are “taken” from the DDSDataReader, the middleware can reclaim all local resources regarding the instance. Future samples will be treated as “never seen.”

Values:

	
enumerator NEW_VIEW_STATE

	New instance.This latest generation of the instance has not previously been accessed.

	
enumerator NOT_NEW_VIEW_STATE

	Not a new instance. This latest generation of the instance has previously been accessed.

 17.1.5. Topic

17.1.5. Topic

	17.1.5.1. TopicDataType

	17.1.5.2. TypeSupport

	17.1.5.3. TopicDescription

	17.1.5.4. Topic

	17.1.5.5. ContentFilteredTopic

	17.1.5.6. IContentFilter

	17.1.5.7. IContentFilterFactory

	17.1.5.8. TopicListener

	17.1.5.9. TopicQos

	17.1.5.10. TypeIdV1

	17.1.5.11. TypeInformation

	17.1.5.12. TypeObjectV1

 17.1.5.1. TopicDataType

17.1.5.1. TopicDataType

	
class eprosima::fastdds::dds::TopicDataType

	Class TopicDataType used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and get the key of a specific data type. The user should created a class that inherits from this one, where Serialize and deserialize methods MUST be implemented. ,

Subclassed by eprosima::fastdds::dds::builtin::TypeLookup_ReplyPubSubType, eprosima::fastdds::dds::builtin::TypeLookup_RequestPubSubType

Public Functions

	
inline TopicDataType()

	Constructor.

	
inline virtual ~TopicDataType()

	Destructor.

	
virtual bool serialize(void *data, fastrtps::rtps::SerializedPayload_t *payload) = 0

	Serialize method, it should be implemented by the user, since it is abstract. It is VERY IMPORTANT that the user sets the SerializedPayload length correctly.

	Parameters

	
	data – [in] Pointer to the data

	payload – [out] Pointer to the payload

	Returns

	True if correct.

	
virtual bool deserialize(fastrtps::rtps::SerializedPayload_t *payload, void *data) = 0

	Deserialize method, it should be implemented by the user, since it is abstract.

	Parameters

	
	payload – [in] Pointer to the payload

	data – [out] Pointer to the data

	Returns

	True if correct.

	
virtual std::function<uint32_t()> getSerializedSizeProvider(void *data) = 0

	Gets the SerializedSizeProvider function.

	Parameters

	data – Pointer

	Returns

	function

	
virtual void *createData() = 0

	Create a Data Type.

	Returns

	Void pointer to the created object.

	
virtual void deleteData(void *data) = 0

	Remove a previously created object.

	Parameters

	data – Pointer to the created Data.

	
virtual bool getKey(void *data, fastrtps::rtps::InstanceHandle_t *ihandle, bool force_md5 = false) = 0

	Get the key associated with the data.

	Parameters

	
	data – [in] Pointer to the data.

	ihandle – [out] Pointer to the Handle.

	force_md5 – [in] Force MD5 checking.

	Returns

	True if correct.

	
inline void setName(const char *nam)

	Set topic data type name

	Parameters

	nam – Topic data type name

	
inline const char *getName() const

	Get topic data type name

	Returns

	Topic data type name

	
inline bool auto_fill_type_object() const

	Get the type object auto-fill configuration

	Returns

	true if the type object should be auto-filled

	
inline void auto_fill_type_object(bool auto_fill_type_object)

	Set the type object auto-fill configuration

	Parameters

	auto_fill_type_object – new value to set

	
inline bool auto_fill_type_information() const

	Get the type information auto-fill configuration

	Returns

	true if the type information should be auto-filled

	
inline void auto_fill_type_information(bool auto_fill_type_information)

	Set type information auto-fill configuration

	Parameters

	auto_fill_type_information – new value to set

	
inline const std::shared_ptr<TypeIdV1> type_identifier() const

	Get the type identifier

	Returns

	TypeIdV1

	
inline void type_identifier(const TypeIdV1 &id)

	Set type identifier

	Parameters

	id – new value for TypeIdV1

	
inline void type_identifier(const std::shared_ptr<TypeIdV1> id)

	Set type identifier

	Parameters

	id – shared pointer to TypeIdV1

	
inline const std::shared_ptr<TypeObjectV1> type_object() const

	Get the type object

	Returns

	TypeObjectV1

	
inline void type_object(const TypeObjectV1 &object)

	Set type object

	Parameters

	object – new value for TypeObjectV1

	
inline void type_object(std::shared_ptr<TypeObjectV1> object)

	Set type object

	Parameters

	object – shared pointer to TypeObjectV1

	
inline const std::shared_ptr<xtypes::TypeInformation> type_information() const

	Get the type information

	Returns

	TypeInformation

	
inline void type_information(const xtypes::TypeInformation &info)

	Set type information

	Parameters

	info – new value for TypeInformation

	
inline void type_information(std::shared_ptr<xtypes::TypeInformation> info)

	Set type information

	Parameters

	info – shared pointer to TypeInformation

	
inline virtual bool is_bounded() const

	Checks if the type is bounded.

	
inline virtual bool is_plain() const

	Checks if the type is plain.

	
inline virtual bool construct_sample(void *memory) const

	Construct a sample on a memory location.

	Parameters

	memory – Pointer to the memory location where the sample should be constructed.

	Returns

	whether this type supports in-place construction or not.

Public Members

	
uint32_t m_typeSize

	Maximum serialized size of the type in bytes. If the type has unbounded fields, and therefore cannot have a maximum size, use 0.

	
bool m_isGetKeyDefined

	Indicates whether the method to obtain the key has been implemented.

 17.1.5.2. TypeSupport

17.1.5.2. TypeSupport

	
class eprosima::fastdds::dds::TypeSupport : public std::shared_ptr<fastdds::dds::TopicDataType>

	Class TypeSupport used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and get the key of a specific data type. The user should created a class that inherits from this one, where Serialize and deserialize methods MUST be implemented.

Note

This class inherits from std::shared_ptr<TopicDataType>.

Subclassed by eprosima::fastdds::dds::builtin::TypeLookup_ReplyTypeSupport, eprosima::fastdds::dds::builtin::TypeLookup_RequestTypeSupport

Public Functions

	
TypeSupport() noexcept = default

	Constructor.

	
TypeSupport(const TypeSupport &type) noexcept = default

	Copy Constructor.

	Parameters

	type – Another instance of TypeSupport

	
TypeSupport(TypeSupport &&type) noexcept = default

	Move Constructor.

	Parameters

	type – Another instance of TypeSupport

	
TypeSupport &operator=(const TypeSupport &type) noexcept = default

	Copy Assignment.

	Parameters

	type – Another instance of TypeSupport

	
TypeSupport &operator=(TypeSupport &&type) noexcept = default

	Move Assignment.

	Parameters

	type – Another instance of TypeSupport

	
inline explicit TypeSupport(fastdds::dds::TopicDataType *ptr)

	TypeSupport constructor that receives a TopicDataType pointer.

The passed pointer will be managed by the TypeSupport object, so creating two TypeSupport from the same pointer or deleting the passed pointer will produce a runtime error.

	Parameters

	ptr –

	
inline TypeSupport(fastrtps::types::DynamicPubSubType ptr)

	TypeSupport constructor that receives a DynamicPubSubType.

It will copy the instance so the user will keep the ownership of his object.

	Parameters

	ptr –

	
virtual ReturnCode_t register_type(DomainParticipant *participant) const

	Registers the type on a participant.

	Parameters

	participant – DomainParticipant where the type is going to be registered

	Returns

	RETCODE_BAD_PARAMETER if the type name is empty, RETCODE_PRECONDITION_NOT_MET if there is another type with the same name registered on the DomainParticipant and RETCODE_OK if it is registered correctly

	
virtual ReturnCode_t register_type(DomainParticipant *participant, std::string type_name) const

	Registers the type on a participant.

	Parameters

	
	participant – DomainParticipant where the type is going to be registered

	type_name – Name of the type to register

	Returns

	RETCODE_BAD_PARAMETER if the type name is empty, RETCODE_PRECONDITION_NOT_MET if there is another type with the same name registered on the DomainParticipant and RETCODE_OK if it is registered correctly

	
inline virtual const std::string &get_type_name() const

	Getter for the type name.

	Returns

	name of the data type

	
virtual bool serialize(void *data, fastrtps::rtps::SerializedPayload_t *payload)

	Serializes the data.

	Parameters

	
	data – Pointer to data

	payload – Pointer to payload

	Returns

	true if it is serialized correctly, false if not

	
virtual bool deserialize(fastrtps::rtps::SerializedPayload_t *payload, void *data)

	Deserializes the data.

	Parameters

	
	payload – Pointer to payload

	data – Pointer to data

	Returns

	true if it is deserialized correctly, false if not

	
inline virtual std::function<uint32_t()> get_serialized_size_provider(void *data)

	Getter for the SerializedSizeProvider.

	Parameters

	data – Pointer to data

	Returns

	function

	
inline virtual void *create_data()

	Creates new data.

	Returns

	Pointer to the data

	
inline virtual void delete_data(void *data)

	Deletes data.

	Parameters

	data – Pointer to the data to delete

	
inline virtual bool get_key(void *data, InstanceHandle_t *i_handle, bool force_md5 = false)

	Getter for the data key.

	Parameters

	
	data – Pointer to data

	i_handle – InstanceHandle pointer to store the key

	force_md5 – boolean to force md5 (default: false)

	Returns

	true if the key is returned, false if not

	
inline bool empty() const

	Check if the TypeSupport is empty.

	Returns

	true if empty, false if not

	
inline virtual bool is_bounded() const

	Checks if the type is bounded.

	
inline virtual bool is_plain() const

	Checks if the type is plain.

 17.1.5.3. TopicDescription

17.1.5.3. TopicDescription

	
class eprosima::fastdds::dds::TopicDescription

	Class TopicDescription, represents the fact that both publications and subscriptions are tied to a single data-type

Subclassed by eprosima::fastdds::dds::ContentFilteredTopic, eprosima::fastdds::dds::Topic

Public Functions

	
virtual DomainParticipant *get_participant() const = 0

	Get the DomainParticipant to which the TopicDescription belongs.

	Returns

	The DomainParticipant to which the TopicDescription belongs.

	
inline const std::string &get_name() const

	Get the name used to create this TopicDescription.

	Returns

	the name used to create this TopicDescription.

	
inline const std::string &get_type_name() const

	Get the associated type name.

	Returns

	the type name.

 17.1.5.4. Topic

17.1.5.4. Topic

	
class eprosima::fastdds::dds::Topic : public eprosima::fastdds::dds::DomainEntity, public eprosima::fastdds::dds::TopicDescription

	Class Topic, represents the fact that both publications and subscriptions are tied to a single data-type

Public Functions

	
virtual DomainParticipant *get_participant() const override

	Getter for the DomainParticipant.

	Returns

	DomainParticipant pointer

	
ReturnCode_t get_inconsistent_topic_status(InconsistentTopicStatus &status)

	Allows the application to retrieve the INCONSISTENT_TOPIC_STATUS status of a Topic.

Warning

Not supported yet. Currently returns RETCODE_UNSUPPORTED

	Parameters

	status – [out] Status to be retrieved.

	Returns

	RETCODE_OK

	
const TopicQos &get_qos() const

	Allows accessing the Topic Qos.

	Returns

	reference to TopicQos

	
ReturnCode_t get_qos(TopicQos &qos) const

	Retrieves the Topic Qos.

	Parameters

	qos – TopicQos where the qos is returned

	Returns

	RETCODE_OK

	
ReturnCode_t set_qos(const TopicQos &qos)

	Allows modifying the Topic Qos. The given Qos must be supported by the Topic.

	Parameters

	qos – new TopicQos value to set for the Topic.

	Returns

	
	RETCODE_IMMUTABLE_POLICY – if a change was not allowed.

	RETCODE_INCONSISTENT_POLICY – if new qos has inconsistent values.

	RETCODE_OK – if qos was updated.

	
const TopicListener *get_listener() const

	Retrieves the attached TopicListener.

	Returns

	pointer to TopicListener

	
ReturnCode_t set_listener(TopicListener *listener, const StatusMask &mask = StatusMask::all())

	Modifies the TopicListener.

	Parameters

	
	listener – new value for the TopicListener

	mask – StatusMask that holds statuses the listener responds to (default: all).

	Returns

	RETCODE_OK

 17.1.5.5. ContentFilteredTopic

17.1.5.5. ContentFilteredTopic

	
class eprosima::fastdds::dds::ContentFilteredTopic : public eprosima::fastdds::dds::TopicDescription

	Specialization of TopicDescription that allows for content-based subscriptions.

Public Functions

	
Topic *get_related_topic() const

	Getter for the related topic.

This operation returns the Topic associated with the ContentFilteredTopic. That is, the Topic specified when the ContentFilteredTopic was created.

	
const std::string &get_filter_expression() const

	Get the filter expression.

This operation returns filter expression associated with this ContentFilteredTopic. It will return the filter_expression specified on the last successful call to set_expression or, if that method is never called, the expression specified when the ContentFilteredTopic was created.

	Returns

	the filter_expression.

	
ReturnCode_t get_expression_parameters(std::vector<std::string> &expression_parameters) const

	Get the expression parameters.

This operation returns expression parameters associated with this ContentFilteredTopic. These will be the expression_parameters specified on the last successful call to set_expression or set_expression_parameters. If those methods have never been called, the expression parameters specified when the ContentFilteredTopic was created will be returned.

	Parameters

	expression_parameters – [out] The expression parameters currently associated with the ContentFilteredTopic.

	Returns

	RETCODE_OK

	
ReturnCode_t set_expression_parameters(const std::vector<std::string> &expression_parameters)

	Set the expression parameters.

This operation changes expression parameters associated with this ContentFilteredTopic.

	Parameters

	expression_parameters – [in] The expression parameters to set.

	Returns

	RETCODE_OK if the expression parameters where correctly updated.

	Returns

	RETCODE_BAD_PARAMETER if the expression parameters do not match with the current filter_expression.

	
ReturnCode_t set_filter_expression(const std::string &filter_expression, const std::vector<std::string> &expression_parameters)

	Set the filter expression and the expression parameters.

This operation changes the filter expression and the expression parameters associated with this ContentFilteredTopic.

	Parameters

	
	filter_expression – [in] The filter expression to set.

	expression_parameters – [in] The expression parameters to set.

	Returns

	RETCODE_OK if the expression and parameters where correctly updated.

	Returns

	RETCODE_BAD_PARAMETER if filter_expression is not valid for this ContentFilteredTopic.

	Returns

	RETCODE_BAD_PARAMETER if the expression parameters do not match with the filter_expression.

	
virtual DomainParticipant *get_participant() const override

	Getter for the DomainParticipant.

	Returns

	DomainParticipant pointer

	
FASTDDS_SQLFILTER_NAME eprosima::fastdds::dds::sqlfilter_name

	

 17.1.5.6. IContentFilter

17.1.5.6. IContentFilter

	
struct eprosima::fastdds::dds::IContentFilter

	The interface that content filter objects should implement.

Public Functions

	
virtual bool evaluate(const SerializedPayload &payload, const FilterSampleInfo &sample_info, const GUID_t &reader_guid) const = 0

	Evaluate if a serialized payload should be accepted by certain reader.

	Parameters

	
	payload – [in] The serialized payload of the sample being evaluated.

	sample_info – [in] The accompanying sample information.

	reader_guid – [in] The GUID of the reader for which the filter is being evaluated.

	Returns

	whether the sample should be accepted for the specified reader.

	
struct FilterSampleInfo

	Selected information from the cache change that is passed to the content filter object on payload evaluation.

Public Members

	
SampleIdentity sample_identity

	Identity of the sample being filtered.

	
SampleIdentity related_sample_identity

	Identity of a sample related to the one being filtered.

 17.1.5.7. IContentFilterFactory

17.1.5.7. IContentFilterFactory

	
struct eprosima::fastdds::dds::IContentFilterFactory

	The interface that a factory of IContentFilter objects should implement.

Public Functions

	
virtual ReturnCode_t create_content_filter(const char *filter_class_name, const char *type_name, const TopicDataType *data_type, const char *filter_expression, const ParameterSeq &filter_parameters, IContentFilter *&filter_instance) = 0

	Create or update an IContentFilter instance.

	Parameters

	
	filter_class_name – [in] Filter class name for which the factory is being called. Allows using the same factory for different filter classes.

	type_name – [in] Type name of the topic being filtered.

	data_type – [in] Type support object of the topic being filtered.

	filter_expression – [in] Content filter expression. May be nullptr when updating the parameters of a filter instance.

	filter_parameters – [in] Values to set for the filter parameters (n on the filter expression).

	filter_instance – [inout] When a filter is being created, it will be nullptr on input, and will have the pointer to the created filter instance on output. The caller takes ownership of the filter instance returned. When a filter is being updated, it will have a previously returned pointer on input. The method takes ownership of the filter instance during its execution, and can update the filter instance or even destroy it and create a new one. The caller takes ownership of the filter instance returned. It should always have a valid pointer upon return. The original state of the filter instance should be preserved when an error is returned.

	Returns

	A return code indicating the result of the operation.

	
virtual ReturnCode_t delete_content_filter(const char *filter_class_name, IContentFilter *filter_instance) = 0

	Delete an IContentFilter instance.

	Parameters

	
	filter_class_name – [in] Filter class name for which the factory is being called. Allows using the same factory for different filter classes.

	filter_instance – [in] A pointer to a filter instance previously returned by create_content_filter. The factory takes ownership of the filter instance, and can decide to destroy it or keep it for future use. In case of deletion, note this pointer must be downcasted to the derived class.

	Returns

	A return code indicating the result of the operation.

 17.1.5.8. TopicListener

17.1.5.8. TopicListener

	
class eprosima::fastdds::dds::TopicListener

	Class TopicListener, it should be used by the end user to implement specific callbacks to certain actions.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

	
inline TopicListener()

	Constructor.

	
inline virtual ~TopicListener()

	Destructor.

	
inline virtual void on_inconsistent_topic(Topic *topic, InconsistentTopicStatus status)

	Virtual function to be implemented by the user containing the actions to be performed when another topic exists with the same name but different characteristics.

	Parameters

	
	topic – Topic

	status – The inconsistent topic status

 17.1.5.9. TopicQos

17.1.5.9. TopicQos

	
class eprosima::fastdds::dds::TopicQos

	Class TopicQos, containing all the possible Qos that can be set for a determined Topic. Although these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library. Please consult each of them to check for implementation details and default values.

Public Functions

	
TopicQos()

	Constructor.

	
inline const TopicDataQosPolicy &topic_data() const

	Getter for TopicDataQosPolicy

	Returns

	TopicDataQos reference

	
inline TopicDataQosPolicy &topic_data()

	Getter for TopicDataQosPolicy

	Returns

	TopicDataQos reference

	
inline void topic_data(const TopicDataQosPolicy &value)

	Setter for TopicDataQosPolicy

	Parameters

	value – new value for the TopicDataQosPolicy

	
inline const DurabilityQosPolicy &durability() const

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQos reference

	
inline DurabilityQosPolicy &durability()

	Getter for DurabilityQosPolicy

	Returns

	DurabilityQos reference

	
inline void durability(const DurabilityQosPolicy &durability)

	Setter for DurabilityQosPolicy

	Parameters

	durability – new value for the DurabilityQosPolicy

	
inline const DurabilityServiceQosPolicy &durability_service() const

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQos reference

	
inline DurabilityServiceQosPolicy &durability_service()

	Getter for DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQos reference

	
inline void durability_service(const DurabilityServiceQosPolicy &durability_service)

	Setter for DurabilityServiceQosPolicy

	Parameters

	durability_service – new value for the DurabilityServiceQosPolicy

	
inline const DeadlineQosPolicy &deadline() const

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQos reference

	
inline DeadlineQosPolicy &deadline()

	Getter for DeadlineQosPolicy

	Returns

	DeadlineQos reference

	
inline void deadline(const DeadlineQosPolicy &deadline)

	Setter for DeadlineQosPolicy

	Parameters

	deadline – new value for the DeadlineQosPolicy

	
inline const LatencyBudgetQosPolicy &latency_budget() const

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQos reference

	
inline LatencyBudgetQosPolicy &latency_budget()

	Getter for LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQos reference

	
inline void latency_budget(const LatencyBudgetQosPolicy &latency_budget)

	Setter for LatencyBudgetQosPolicy

	Parameters

	latency_budget – new value for the LatencyBudgetQosPolicy

	
inline const LivelinessQosPolicy &liveliness() const

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQos reference

	
inline LivelinessQosPolicy &liveliness()

	Getter for LivelinessQosPolicy

	Returns

	LivelinessQos reference

	
inline void liveliness(const LivelinessQosPolicy &liveliness)

	Setter for LivelinessQosPolicy

	Parameters

	liveliness – new value for the LivelinessQosPolicy

	
inline const ReliabilityQosPolicy &reliability() const

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQos reference

	
inline ReliabilityQosPolicy &reliability()

	Getter for ReliabilityQosPolicy

	Returns

	ReliabilityQos reference

	
inline void reliability(const ReliabilityQosPolicy &reliability)

	Setter for ReliabilityQosPolicy

	Parameters

	reliability – new value for the ReliabilityQosPolicy

	
inline const DestinationOrderQosPolicy &destination_order() const

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQos reference

	
inline DestinationOrderQosPolicy &destination_order()

	Getter for DestinationOrderQosPolicy

	Returns

	DestinationOrderQos reference

	
inline void destination_order(const DestinationOrderQosPolicy &destination_order)

	Setter for DestinationOrderQosPolicy

	Parameters

	destination_order – new value for the DestinationOrderQosPolicy

	
inline const HistoryQosPolicy &history() const

	Getter for HistoryQosPolicy

	Returns

	HistoryQos reference

	
inline HistoryQosPolicy &history()

	Getter for HistoryQosPolicy

	Returns

	HistoryQos reference

	
inline void history(const HistoryQosPolicy &history)

	Setter for HistoryQosPolicy

	Parameters

	history – new value for the HistoryQosPolicy

	
inline const ResourceLimitsQosPolicy &resource_limits() const

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQos reference

	
inline ResourceLimitsQosPolicy &resource_limits()

	Getter for ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQos reference

	
inline void resource_limits(const ResourceLimitsQosPolicy &resource_limits)

	Setter for ResourceLimitsQosPolicy

	Parameters

	resource_limits – new value for the ResourceLimitsQosPolicy

	
inline const TransportPriorityQosPolicy &transport_priority() const

	Getter for TransportPriorityQosPolicy

	Returns

	TransportPriorityQos reference

	
inline TransportPriorityQosPolicy &transport_priority()

	Getter for TransportPriorityQosPolicy

	Returns

	TransportPriorityQos reference

	
inline void transport_priority(const TransportPriorityQosPolicy &transport_priority)

	Setter for TransportPriorityQosPolicy

	Parameters

	transport_priority – new value for the TransportPriorityQosPolicy

	
inline const LifespanQosPolicy &lifespan() const

	Getter for LifespanQosPolicy

	Returns

	LifespanQos reference

	
inline LifespanQosPolicy &lifespan()

	Getter for LifespanQosPolicy

	Returns

	LifespanQos reference

	
inline void lifespan(const LifespanQosPolicy &lifespan)

	Setter for LifespanQosPolicy

	Parameters

	lifespan – new value for the LifespanQosPolicy

	
inline const OwnershipQosPolicy &ownership() const

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQos reference

	
inline OwnershipQosPolicy &ownership()

	Getter for OwnershipQosPolicy

	Returns

	OwnershipQos reference

	
inline void ownership(const OwnershipQosPolicy &ownership)

	Setter for OwnershipQosPolicy

	Parameters

	ownership – new value for the OwnershipQosPolicy

	
inline const DataRepresentationQosPolicy &representation() const

	Getter for DataRepresentationQosPolicy

	Returns

	DataRepresentationQosPolicy reference

	
inline DataRepresentationQosPolicy &representation()

	Getter for DataRepresentationQosPolicy

	Returns

	DataRepresentationQosPolicy reference

	
inline void representation(const DataRepresentationQosPolicy &representation)

	Setter for DataRepresentationQosPolicy

	Parameters

	representation – new value for the DataRepresentationQosPolicy

	
const TopicQos eprosima::fastdds::dds::TOPIC_QOS_DEFAULT

	

 17.1.5.10. TypeIdV1

17.1.5.10. TypeIdV1

	
class eprosima::fastdds::dds::TypeIdV1 : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Class TypeIdV1

Public Functions

	
inline TypeIdV1()

	Constructor without parameters.

	
inline TypeIdV1(const TypeIdV1 &type)

	Copy constructor.

	Parameters

	type – Another instance of TypeIdV1

	
inline TypeIdV1(const fastrtps::types::TypeIdentifier &identifier)

	Constructor using a TypeIndentifier.

	Parameters

	identifier – TypeIdentifier to be set

	
inline TypeIdV1(TypeIdV1 &&type)

	Move constructor.

	Parameters

	type – Another instance of TypeIdV1

	
virtual ~TypeIdV1() override = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

	
inline const fastrtps::types::TypeIdentifier &get() const

	Getter for the TypeIndentifier.

	Returns

	TypeIdentifier reference

Public Members

	
fastrtps::types::TypeIdentifier m_type_identifier

	Type Identifier.

 17.1.5.11. TypeInformation

17.1.5.11. TypeInformation

	
class eprosima::fastdds::dds::xtypes::TypeInformation : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Class xtypes::TypeInformation

Public Functions

	
inline TypeInformation()

	Constructor.

	
inline TypeInformation(const TypeInformation &type)

	Copy constructor.

	Parameters

	type – Another instance of TypeInformation

	
inline TypeInformation(const fastrtps::types::TypeInformation &info)

	Constructor using a fastrtps::types::TypeInformation.

	Parameters

	info – fastrtps::types::TypeInformation to be set

	
inline TypeInformation(TypeInformation &&type)

	Move Constructor.

	Parameters

	type – Another instance of TypeInformation

	
virtual ~TypeInformation() override = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

	
inline bool assigned() const

	Check if it is assigned.

	Returns

	true if assigned, false if not

	
inline void assigned(bool value)

	Setter for assigned boolean.

	Parameters

	value – Boolean to be set

Public Members

	
fastrtps::types::TypeInformation type_information

	Type Information.

 17.1.5.12. TypeObjectV1

17.1.5.12. TypeObjectV1

	
class eprosima::fastdds::dds::TypeObjectV1 : public eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

	Class TypeObjectV1

Public Functions

	
inline TypeObjectV1()

	Constructor.

	
inline TypeObjectV1(const TypeObjectV1 &type)

	Copy constructor.

	Parameters

	type – Another instance of TypeObjectV1

	
inline TypeObjectV1(const fastrtps::types::TypeObject &type)

	Constructor using a TypeObject.

	Parameters

	type – TypeObject to be set

	
inline TypeObjectV1(TypeObjectV1 &&type)

	Move constructor.

	Parameters

	type – Another instance of TypeObjectV1

	
virtual ~TypeObjectV1() override = default

	Destructor.

	
inline virtual void clear() override

	Clears the QosPolicy object.

	
inline const fastrtps::types::TypeObject &get() const

	Getter for the TypeObject.

	Returns

	TypeObject reference

Public Members

	
fastrtps::types::TypeObject m_type_object

	Type Object.

 17.2. RTPS

17.2. RTPS

eProsima Fast DDS Real-Time Publish-Subscribe (RTPS) layer API.

	17.2.1. Attributes
	17.2.1.1. BuiltinAttributes

	17.2.1.2. c_default_RTPSParticipantAllocationAttributes

	17.2.1.3. DiscoveryProtocol

	17.2.1.4. DiscoverySettings

	17.2.1.5. EndpointAttributes

	17.2.1.6. HistoryAttributes

	17.2.1.7. InitialAnnouncementConfig

	17.2.1.8. ParticipantFilteringFlags

	17.2.1.9. PropertyPolicy

	17.2.1.10. PropertyPolicyHelper

	17.2.1.11. ReaderAttributes

	17.2.1.12. ReaderTimes

	17.2.1.13. RemoteLocatorsAllocationAttributes

	17.2.1.14. RemoteServerAttributes

	17.2.1.15. RemoteServerList_t

	17.2.1.16. RTPSParticipantAllocationAttributes

	17.2.1.17. RTPSParticipantAttributes

	17.2.1.18. RTPSWriterPublishMode

	17.2.1.19. SendBuffersAllocationAttributes

	17.2.1.20. SimpleEDPAttributes

	17.2.1.21. TypeLookupSettings

	17.2.1.22. VariableLengthDataLimits

	17.2.1.23. WriterAttributes

	17.2.1.24. WriterTimes

	17.2.2. Builtin data
	17.2.2.1. ContentFilterProperty

	17.2.3. Common
	17.2.3.1. BinaryProperty
	17.2.3.1.1. BinaryProperty

	17.2.3.1.2. BinaryPropertyHelper

	17.2.3.1.3. BinaryPropertySeq

	17.2.3.2. CacheChange
	17.2.3.2.1. CacheChange_t

	17.2.3.2.2. ChangeForReader_t

	17.2.3.2.3. ChangeForReaderCmp

	17.2.3.2.4. ChangeForReaderStatus_t

	17.2.3.2.5. ChangeKind_t

	17.2.3.3. CDRMessage
	17.2.3.3.1. CDRMessage_t

	17.2.3.3.2. Macro definitions (#define)

	17.2.3.4. EntityId
	17.2.3.4.1. Const values

	17.2.3.4.2. Macro definitions (#define)

	17.2.3.4.3. EntityId_t

	17.2.3.4.4. EntityId_t Operators

	17.2.3.5. FragmentNumber
	17.2.3.5.1. FragmentNumber_t

	17.2.3.5.2. FragmentNumberSet_t

	17.2.3.6. Guid
	17.2.3.6.1. c_Guid_Unknown

	17.2.3.6.2. GUID_t

	17.2.3.6.3. GUID_t Operators

	17.2.3.7. GuidPrefix
	17.2.3.7.1. c_GuidPrefix_Unknown

	17.2.3.7.2. GuidPrefix_t

	17.2.3.7.3. GuidPrefix_t Operators

	17.2.3.8. InstanceHandle
	17.2.3.8.1. c_InstanceHandle_Unknown

	17.2.3.8.2. InstanceHandle_t

	17.2.3.8.3. InstanceHandle_t Operators

	17.2.3.9. Locator
	17.2.3.9.1. Macro definitions (#define)

	17.2.3.9.2. IsAddressDefined

	17.2.3.9.3. IsLocatorValid

	17.2.3.9.4. Locator_t

	17.2.3.9.5. LocatorList

	17.2.3.9.6. LocatorListConstIterator

	17.2.3.9.7. LocatorListIterator

	17.2.3.9.8. LocatorsIterator

	17.2.3.9.9. Locators

	17.2.3.9.10. Locator Operators

	17.2.3.10. LocatorSelectorEntry

	17.2.3.11. LocatorSelector

	17.2.3.12. MatchingInfo
	17.2.3.12.1. MatchingInfo

	17.2.3.12.2. MatchingStatus

	17.2.3.13. PortParameters

	17.2.3.14. Property
	17.2.3.14.1. Property

	17.2.3.14.2. PropertyHelper

	17.2.3.14.3. PropertySeq

	17.2.3.15. RemoteLocators
	17.2.3.15.1. RemoteLocators Operators

	17.2.3.15.2. RemoteLocatorList

	17.2.3.16. SampleIdentity

	17.2.3.17. SequenceNumber
	17.2.3.17.1. c_SequenceNumber_Unknown

	17.2.3.17.2. SequenceNumber_t Operators

	17.2.3.17.3. SequenceNumber_t

	17.2.3.17.4. SequenceNumberDiff

	17.2.3.17.5. SequenceNumberHash

	17.2.3.17.6. SequenceNumberSet_t

	17.2.3.17.7. sort_seqNum

	17.2.3.18. SerializedPayload
	17.2.3.18.1. Macro definitions (#define)

	17.2.3.18.2. SerializedPayload_t

	17.2.3.19. Time_t
	17.2.3.19.1. Const values

	17.2.3.19.2. Macro definitions (#define)

	17.2.3.19.3. eprosima::fastrtps::Duration_t

	17.2.3.19.4. eprosima::fastrtps::Time_t

	17.2.3.19.5. Time_t Operators

	17.2.3.19.6. Time_t

	17.2.3.20. Token
	17.2.3.20.1. AuthenticatedPeerCredentialToken

	17.2.3.20.2. DataHolder

	17.2.3.20.3. DataHolderHelper

	17.2.3.20.4. DataHolderSeq

	17.2.3.20.5. IdentityStatusToken

	17.2.3.20.6. IdentityToken

	17.2.3.20.7. PermissionsCredentialToken

	17.2.3.20.8. PermissionsToken

	17.2.3.20.9. Token

	17.2.3.21. Types
	17.2.3.21.1. BuiltinEndpointSet_t

	17.2.3.21.2. Const values

	17.2.3.21.3. Count_t

	17.2.3.21.4. Macro definitions (#define)

	17.2.3.21.5. DurabilityKind_t

	17.2.3.21.6. Endianness_t

	17.2.3.21.7. EndpointKind_t

	17.2.3.21.8. octet

	17.2.3.21.9. ProtocolVersion_t

	17.2.3.21.10. ReliabilityKind_t

	17.2.3.21.11. SubmessageFlag

	17.2.3.21.12. TopicKind_t

	17.2.3.21.13. VendorId_t

	17.2.3.22. WriteParams

	17.2.4. Endpoint

	17.2.5. Exceptions
	17.2.5.1. Exception

	17.2.6. Flow control
	17.2.6.1. FlowControllerDescriptor

	17.2.6.2. FlowControllerSchedulerPolicy

	17.2.6.3. ThroughputControllerDescriptor

	17.2.7. History
	17.2.7.1. History

	17.2.7.2. IChangePool

	17.2.7.3. IPayloadPool

	17.2.7.4. ReaderHistory

	17.2.7.5. WriterHistory

	17.2.8. RTPSParticipant
	17.2.8.1. ParticipantDiscoveryInfo
	17.2.8.1.1. ParticipantAuthenticationInfo

	17.2.8.1.2. ParticipantDiscoveryInfo

	17.2.8.1.3. ParticipantProxyData

	17.2.8.1.4. ReaderDiscoveryInfo

	17.2.8.1.5. ReaderProxyData

	17.2.8.1.6. WriterDiscoveryInfo

	17.2.8.1.7. WriterProxyData

	17.2.8.2. RTPSParticipant

	17.2.8.3. RTPSParticipantListener

	17.2.9. RTPSReader
	17.2.9.1. ReaderListener

	17.2.9.2. RTPSReader

	17.2.10. Resources
	17.2.10.1. MemoryManagementPolicy

	17.2.11. RTPSDomain

	17.2.12. RTPSWriter
	17.2.12.1. LivelinessData

	17.2.12.2. RTPSWriter

	17.2.12.3. WriterListener

 17.2.1. Attributes

17.2.1. Attributes

	17.2.1.1. BuiltinAttributes

	17.2.1.2. c_default_RTPSParticipantAllocationAttributes

	17.2.1.3. DiscoveryProtocol

	17.2.1.4. DiscoverySettings

	17.2.1.5. EndpointAttributes

	17.2.1.6. HistoryAttributes

	17.2.1.7. InitialAnnouncementConfig

	17.2.1.8. ParticipantFilteringFlags

	17.2.1.9. PropertyPolicy

	17.2.1.10. PropertyPolicyHelper

	17.2.1.11. ReaderAttributes

	17.2.1.12. ReaderTimes

	17.2.1.13. RemoteLocatorsAllocationAttributes

	17.2.1.14. RemoteServerAttributes

	17.2.1.15. RemoteServerList_t

	17.2.1.16. RTPSParticipantAllocationAttributes

	17.2.1.17. RTPSParticipantAttributes

	17.2.1.18. RTPSWriterPublishMode

	17.2.1.19. SendBuffersAllocationAttributes

	17.2.1.20. SimpleEDPAttributes

	17.2.1.21. TypeLookupSettings

	17.2.1.22. VariableLengthDataLimits

	17.2.1.23. WriterAttributes

	17.2.1.24. WriterTimes

 17.2.1.1. BuiltinAttributes

17.2.1.1. BuiltinAttributes

	
class eprosima::fastrtps::rtps::BuiltinAttributes

	Class BuiltinAttributes, to define the behavior of the RTPSParticipant builtin protocols.

Public Members

	
DiscoverySettings discovery_config

	Discovery protocol related attributes.

	
bool use_WriterLivelinessProtocol = true

	Indicates to use the WriterLiveliness protocol.

	
TypeLookupSettings typelookup_config

	TypeLookup Service settings.

	
LocatorList_t metatrafficUnicastLocatorList

	Metatraffic Unicast Locator List.

	
LocatorList_t metatrafficMulticastLocatorList

	Metatraffic Multicast Locator List.

	
fastdds::rtps::ExternalLocators metatraffic_external_unicast_locators

	The collection of external locators to use for communication on metatraffic topics.

	
LocatorList_t initialPeersList

	Initial peers.

	
MemoryManagementPolicy_t readerHistoryMemoryPolicy = MemoryManagementPolicy_t::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

	Memory policy for builtin readers.

	
uint32_t readerPayloadSize = BUILTIN_DATA_MAX_SIZE

	Maximum payload size for builtin readers.

	
MemoryManagementPolicy_t writerHistoryMemoryPolicy = MemoryManagementPolicy_t::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

	Memory policy for builtin writers.

	
uint32_t writerPayloadSize = BUILTIN_DATA_MAX_SIZE

	Maximum payload size for builtin writers.

	
uint32_t mutation_tries = 100u

	Mutation tries if the port is being used.

	
bool avoid_builtin_multicast = true

	Set to true to avoid multicast traffic on builtin endpoints.

 17.2.1.2. c_default_RTPSParticipantAllocationAttributes

17.2.1.2. c_default_RTPSParticipantAllocationAttributes

	
const RTPSParticipantAllocationAttributes eprosima::fastrtps::rtps::c_default_RTPSParticipantAllocationAttributes = RTPSParticipantAllocationAttributes()

	

 17.2.1.3. DiscoveryProtocol

17.2.1.3. DiscoveryProtocol

	
enum eprosima::fastrtps::rtps::DiscoveryProtocol

	PDP subclass choice.

Values:

	
enumerator NONE

	NO discovery whatsoever would be used.

Publisher and Subscriber defined with the same topic name would NOT be linked. All matching must be done manually through the addReaderLocator, addReaderProxy, addWriterProxy methods.

	
enumerator SIMPLE

	Discovery works according to ‘The Real-time Publish-Subscribe Protocol(RTPS) DDS Interoperability Wire Protocol Specification’.

	
enumerator EXTERNAL

	A user defined PDP subclass object must be provided in the attributes that deals with the discovery.

Framework is not responsible of this object lifetime.

	
enumerator CLIENT

	The participant will behave as a client concerning discovery operation.

Server locators should be specified as attributes.

	
enumerator SERVER

	The participant will behave as a server concerning discovery operation.

Discovery operation is volatile (discovery handshake must take place if shutdown).

	
enumerator BACKUP

	The participant will behave as a server concerning discovery operation.

Discovery operation persist on a file (discovery handshake wouldn’t repeat if shutdown).

	
enumerator SUPER_CLIENT

	The participant will behave as a client concerning all internal behaviour.

Remote servers will treat it as a server and will share every discovery information.

 17.2.1.4. DiscoverySettings

17.2.1.4. DiscoverySettings

	
class eprosima::fastrtps::rtps::DiscoverySettings

	Class DiscoverySettings, to define the attributes of the several discovery protocols available

Public Functions

	
inline const char *getStaticEndpointXMLFilename() const

	Get the static endpoint XML filename

	Returns

	Static endpoint XML filename

	
inline void setStaticEndpointXMLFilename(const char *str)

	Set the static endpoint XML filename
	
Deprecated:

	

	Parameters

	str – Static endpoint XML filename

	
inline void static_edp_xml_config(const char *str)

	Set the static endpoint XML configuration.

	Parameters

	str – URI specifying the static endpoint XML configuration. The string could contain a filename (file://) or the XML content directly (data://).

	
inline const char *static_edp_xml_config() const

	Get the static endpoint XML configuration.

	Returns

	URI specifying the static endpoint XML configuration. The string could contain a filename (file://) or the XML content directly (data://).

Public Members

	
DiscoveryProtocol_t discoveryProtocol = DiscoveryProtocol_t::SIMPLE

	Chosen discovery protocol.

	
bool use_SIMPLE_EndpointDiscoveryProtocol = true

	If set to true, SimpleEDP would be used.

	
bool use_STATIC_EndpointDiscoveryProtocol = false

	If set to true, StaticEDP based on an XML file would be implemented. The XML filename must be provided.

	
Duration_t leaseDuration = {20, 0}

	Lease Duration of the RTPSParticipant, indicating how much time remote RTPSParticipants should consider this RTPSParticipant alive.

	
Duration_t leaseDuration_announcementperiod = {3, 0}

	The period for the RTPSParticipant to send its Discovery Message to all other discovered RTPSParticipants as well as to all Multicast ports.

	
InitialAnnouncementConfig initial_announcements

	Initial announcements configuration.

	
SimpleEDPAttributes m_simpleEDP

	Attributes of the SimpleEDP protocol.

	
PDPFactory m_PDPfactory = {}

	function that returns a PDP object (only if EXTERNAL selected)

	
Duration_t discoveryServer_client_syncperiod = {0, 450 * 1000000}

	The period for the RTPSParticipant to: send its Discovery Message to its servers check for EDP endpoints matching

	
eprosima::fastdds::rtps::RemoteServerList_t m_DiscoveryServers

	Discovery Server settings, only needed if use_CLIENT_DiscoveryProtocol=true.

	
ParticipantFilteringFlags_t ignoreParticipantFlags = ParticipantFilteringFlags::NO_FILTER

	Filtering participants out depending on location.

 17.2.1.5. EndpointAttributes

17.2.1.5. EndpointAttributes

	
class eprosima::fastrtps::rtps::EndpointAttributes

	Structure EndpointAttributes, describing the attributes associated with an RTPS Endpoint.

Public Functions

	
inline int16_t getUserDefinedID() const

	Get the user defined ID

	Returns

	User defined ID

	
inline int16_t getEntityID() const

	Get the entity defined ID

	Returns

	Entity ID

	
inline void setUserDefinedID(int16_t id)

	Set the user defined ID

	Parameters

	id – User defined ID to be set

	
inline void setEntityID(int16_t id)

	Set the entity ID

	Parameters

	id – Entity ID to be set

	
inline void set_data_sharing_configuration(DataSharingQosPolicy cfg)

	Set the DataSharing configuration

	Parameters

	cfg – Configuration to be set

	
inline const DataSharingQosPolicy &data_sharing_configuration() const

	Get the DataSharing configuration

	Returns

	Configuration of data sharing

Public Members

	
EndpointKind_t endpointKind = EndpointKind_t::WRITER

	Endpoint kind, default value WRITER.

	
TopicKind_t topicKind = TopicKind_t::NO_KEY

	Topic kind, default value NO_KEY.

	
ReliabilityKind_t reliabilityKind = ReliabilityKind_t::BEST_EFFORT

	Reliability kind, default value BEST_EFFORT.

	
DurabilityKind_t durabilityKind = DurabilityKind_t::VOLATILE

	Durability kind, default value VOLATILE.

	
GUID_t persistence_guid

	GUID used for persistence.

	
fastdds::rtps::ExternalLocators external_unicast_locators

	The collection of external locators to use for communication.

	
bool ignore_non_matching_locators = false

	Whether locators that don’t match with the announced locators should be kept.

	
LocatorList_t unicastLocatorList

	Unicast locator list.

	
LocatorList_t multicastLocatorList

	Multicast locator list.

	
LocatorList_t remoteLocatorList

	Remote locator list.

	
PropertyPolicy properties

	Properties.

	
OwnershipQosPolicyKind ownershipKind = SHARED_OWNERSHIP_QOS

	Ownership.

 17.2.1.6. HistoryAttributes

17.2.1.6. HistoryAttributes

	
class eprosima::fastrtps::rtps::HistoryAttributes

	Class HistoryAttributes, to specify the attributes of a WriterHistory or a ReaderHistory. This class is only intended to be used with the RTPS API. The Publisher-Subscriber API has other fields to define this values (HistoryQosPolicy and ResourceLimitsQosPolicy).

Public Functions

	
inline HistoryAttributes()

	Default constructor.

	
inline HistoryAttributes(MemoryManagementPolicy_t memoryPolicy, uint32_t payload, int32_t initial, int32_t maxRes)

	Constructor

	Parameters

	
	memoryPolicy – Set whether memory can be dynamically reallocated or not

	payload – Maximum payload size. It is used when memory management policy is PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

	initial – Initial reserved caches. It is used when memory management policy is PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

	maxRes – Maximum reserved caches.

	
inline HistoryAttributes(MemoryManagementPolicy_t memoryPolicy, uint32_t payload, int32_t initial, int32_t maxRes, int32_t extra)

	Constructor

	Parameters

	
	memoryPolicy – Set whether memory can be dynamically reallocated or not

	payload – Maximum payload size. It is used when memory management policy is PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

	initial – Initial reserved caches. It is used when memory management policy is PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

	maxRes – Maximum reserved caches.

	extra – Extra reserved caches.

Public Members

	
MemoryManagementPolicy_t memoryPolicy

	Memory management policy.

	
uint32_t payloadMaxSize

	Maximum payload size of the history, default value 500.

	
int32_t initialReservedCaches

	Number of the initial Reserved Caches, default value 500.

	
int32_t maximumReservedCaches

	Maximum number of reserved caches. Default value is 0 that indicates to keep reserving until something breaks.

	
int32_t extraReservedCaches

	Number of extra caches that can be reserved for other purposes than the history. For example, on a full history, the writer could give as many as these to be used by the application but they will not be able to be inserted in the history unless some cache from the history is released.

Default value is 1.

 17.2.1.7. InitialAnnouncementConfig

17.2.1.7. InitialAnnouncementConfig

	
struct eprosima::fastrtps::rtps::InitialAnnouncementConfig

	Struct InitialAnnouncementConfig defines the behavior of the RTPSParticipant initial announcements.

Public Members

	
uint32_t count = 5u

	Number of initial announcements with specific period (default 5)

	
Duration_t period = {0, 100000000u}

	Specific period for initial announcements (default 100ms)

 17.2.1.8. ParticipantFilteringFlags

17.2.1.8. ParticipantFilteringFlags

	
enum eprosima::fastrtps::rtps::ParticipantFilteringFlags

	Filtering flags when discovering participants.

Values:

	
enumerator NO_FILTER

	

	
enumerator FILTER_DIFFERENT_HOST

	

	
enumerator FILTER_DIFFERENT_PROCESS

	

	
enumerator FILTER_SAME_PROCESS

	

 17.2.1.9. PropertyPolicy

17.2.1.9. PropertyPolicy

	
class eprosima::fastrtps::rtps::PropertyPolicy

	
Public Functions

	
inline const PropertySeq &properties() const

	Get properties.

	
inline PropertySeq &properties()

	Set properties.

	
inline const BinaryPropertySeq &binary_properties() const

	Get binary_properties.

	
inline BinaryPropertySeq &binary_properties()

	Set binary_properties.

 17.2.1.10. PropertyPolicyHelper

17.2.1.10. PropertyPolicyHelper

	
class eprosima::fastrtps::rtps::PropertyPolicyHelper

	
Public Static Functions

	
static PropertyPolicy get_properties_with_prefix(const PropertyPolicy &property_policy, const std::string &prefix)

	Returns only the properties whose name starts with the prefix.

Prefix is removed in returned properties.

	Parameters

	
	property_policy – PropertyPolicy where properties will be searched.

	prefix – Prefix used to search properties.

	Returns

	A copy of properties whose name starts with the prefix.

	
static size_t length(const PropertyPolicy &property_policy)

	Get the length of the property_policy.

	
static std::string *find_property(PropertyPolicy &property_policy, const std::string &name)

	Look for a property_policy by name.

	
static const std::string *find_property(const PropertyPolicy &property_policy, const std::string &name)

	Retrieves a property_policy by name.

 17.2.1.11. ReaderAttributes

17.2.1.11. ReaderAttributes

	
class eprosima::fastrtps::rtps::ReaderAttributes

	Class ReaderAttributes, to define the attributes of a RTPSReader.

Public Members

	
EndpointAttributes endpoint

	Attributes of the associated endpoint.

	
ReaderTimes times

	Times associated with this reader (only for stateful readers)

	
LivelinessQosPolicyKind liveliness_kind_

	Liveliness kind.

	
Duration_t liveliness_lease_duration

	Liveliness lease duration.

	
bool expectsInlineQos

	Indicates if the reader expects Inline qos, default value 0.

	
bool disable_positive_acks

	Disable positive ACKs.

	
ResourceLimitedContainerConfig matched_writers_allocation

	Define the allocation behaviour for matched-writer-dependent collections.

 17.2.1.12. ReaderTimes

17.2.1.12. ReaderTimes

	
class eprosima::fastrtps::rtps::ReaderTimes

	Class ReaderTimes, defining the times associated with the Reliable Readers events.

Public Members

	
Duration_t initialAcknackDelay

	Initial AckNack delay. Default value 70ms.

	
Duration_t heartbeatResponseDelay

	Delay to be applied when a HEARTBEAT message is received, default value 5ms.

 17.2.1.13. RemoteLocatorsAllocationAttributes

17.2.1.13. RemoteLocatorsAllocationAttributes

	
struct eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes

	Holds limits for collections of remote locators.

Public Members

	
size_t max_unicast_locators = 4u

	Maximum number of unicast locators per remote entity.

This attribute controls the maximum number of unicast locators to keep for each discovered remote entity (be it a participant, reader of writer). It is recommended to use the highest number of local addresses found on all the systems belonging to the same domain as this participant.

	
size_t max_multicast_locators = 1u

	Maximum number of multicast locators per remote entity.

This attribute controls the maximum number of multicast locators to keep for each discovered remote entity (be it a participant, reader of writer). The default value of 1 is usually enough, as it doesn’t make sense to add more than one multicast locator per entity.

 17.2.1.14. RemoteServerAttributes

17.2.1.14. RemoteServerAttributes

	
class eprosima::fastdds::rtps::RemoteServerAttributes

	Class RemoteServerAttributes, to define the attributes of the Discovery Server Protocol.

Public Members

	
LocatorList metatrafficUnicastLocatorList

	Metatraffic Unicast Locator List.

	
LocatorList metatrafficMulticastLocatorList

	Metatraffic Multicast Locator List.

	
fastrtps::rtps::GuidPrefix_t guidPrefix

	Guid prefix.

 17.2.1.15. RemoteServerList_t

17.2.1.15. RemoteServerList_t

	
typedef std::list<RemoteServerAttributes> eprosima::fastdds::rtps::RemoteServerList_t

	

 17.2.1.16. RTPSParticipantAllocationAttributes

17.2.1.16. RTPSParticipantAllocationAttributes

	
struct eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes

	Holds allocation limits affecting collections managed by a participant.

Public Functions

	
inline ResourceLimitedContainerConfig total_readers() const

	
	Returns

	the allocation config for the total of readers in the system (participants * readers)

	
inline ResourceLimitedContainerConfig total_writers() const

	
	Returns

	the allocation config for the total of writers in the system (participants * writers)

Public Members

	
RemoteLocatorsAllocationAttributes locators

	Holds limits for collections of remote locators.

	
ResourceLimitedContainerConfig participants

	Defines the allocation behaviour for collections dependent on the total number of participants.

	
ResourceLimitedContainerConfig readers

	Defines the allocation behaviour for collections dependent on the total number of readers per participant.

	
ResourceLimitedContainerConfig writers

	Defines the allocation behaviour for collections dependent on the total number of writers per participant.

	
SendBuffersAllocationAttributes send_buffers

	Defines the allocation behaviour for the send buffer manager.

	
VariableLengthDataLimits data_limits

	Holds limits for variable-length data.

	
fastdds::rtps::ContentFilterProperty::AllocationConfiguration content_filter

	Defines the allocation behavior of content filter discovery information.

 17.2.1.17. RTPSParticipantAttributes

17.2.1.17. RTPSParticipantAttributes

	
class eprosima::fastrtps::rtps::RTPSParticipantAttributes

	Class RTPSParticipantAttributes used to define different aspects of a RTPSParticipant.

Public Functions

	
inline void setName(const char *nam)

	Set the name of the participant.

	
inline const char *getName() const

	Get the name of the participant.

Public Members

	
LocatorList_t defaultUnicastLocatorList

	Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

	
LocatorList_t defaultMulticastLocatorList

	Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case that it was defined with NO MulticastLocators. This is usually left empty.

	
fastdds::rtps::ExternalLocators default_external_unicast_locators

	The collection of external locators to use for communication on user created topics.

	
bool ignore_non_matching_locators = false

	Whether locators that don’t match with the announced locators should be kept.

	
uint32_t sendSocketBufferSize

	Send socket buffer size for the send resource.

Zero value indicates to use default system buffer size. Default value: 0.

	
uint32_t listenSocketBufferSize

	Listen socket buffer for all listen resources.

Zero value indicates to use default system buffer size. Default value: 0.

	
GuidPrefix_t prefix

	Optionally allows user to define the GuidPrefix_t.

	
BuiltinAttributes builtin

	Builtin parameters.

	
PortParameters port

	Port Parameters.

	
std::vector<octet> userData

	User Data of the participant.

	
int32_t participantID

	Participant ID.

	
ThroughputControllerDescriptor throughputController

	Throughput controller parameters. Leave default for uncontrolled flow.

	
Deprecated:

	Use flow_controllers on RTPSParticipantAttributes

	
std::vector<std::shared_ptr<fastdds::rtps::TransportDescriptorInterface>> userTransports

	User defined transports to use alongside or in place of builtins.

	
bool useBuiltinTransports

	Set as false to disable the default UDPv4 implementation.

	
RTPSParticipantAllocationAttributes allocation

	Holds allocation limits affecting collections managed by a participant.

	
PropertyPolicy properties

	Property policies.

	
FlowControllerDescriptorList flow_controllers

	Flow controllers.

 17.2.1.18. RTPSWriterPublishMode

17.2.1.18. RTPSWriterPublishMode

	
enum eprosima::fastrtps::rtps::RTPSWriterPublishMode

	Values:

	
enumerator SYNCHRONOUS_WRITER

	

	
enumerator ASYNCHRONOUS_WRITER

	

 17.2.1.19. SendBuffersAllocationAttributes

17.2.1.19. SendBuffersAllocationAttributes

	
struct eprosima::fastrtps::rtps::SendBuffersAllocationAttributes

	Holds limits for send buffers allocations.

Public Members

	
size_t preallocated_number = 0u

	Initial number of send buffers to allocate.

This attribute controls the initial number of send buffers to be allocated. The default value of 0 will perform an initial guess of the number of buffers required, based on the number of threads from which a send operation could be started.

	
bool dynamic = false

	Whether the number of send buffers is allowed to grow.

This attribute controls how the buffer manager behaves when a send buffer is not available. When true, a new buffer will be created. When false, it will wait for a buffer to be returned. This is a trade-off between latency and dynamic allocations.

 17.2.1.20. SimpleEDPAttributes

17.2.1.20. SimpleEDPAttributes

	
class eprosima::fastrtps::rtps::SimpleEDPAttributes

	Class SimpleEDPAttributes, to define the attributes of the Simple Endpoint Discovery Protocol.

Public Members

	
bool use_PublicationWriterANDSubscriptionReader

	Default value true.

	
bool use_PublicationReaderANDSubscriptionWriter

	Default value true.

 17.2.1.21. TypeLookupSettings

17.2.1.21. TypeLookupSettings

	
class eprosima::fastrtps::rtps::TypeLookupSettings

	TypeLookupService settings.

Public Members

	
bool use_client = false

	Indicates to use the TypeLookup Service client endpoints.

	
bool use_server = false

	Indicates to use the TypeLookup Service server endpoints.

 17.2.1.22. VariableLengthDataLimits

17.2.1.22. VariableLengthDataLimits

	
struct eprosima::fastrtps::rtps::VariableLengthDataLimits

	Holds limits for variable-length data.

Public Members

	
size_t max_properties = 0

	Defines the maximum size (in octets) of properties data in the local or remote participant.

	
size_t max_user_data = 0

	Defines the maximum size (in octets) of user data in the local or remote participant.

	
size_t max_partitions = 0

	Defines the maximum size (in octets) of partitions data.

	
size_t max_datasharing_domains = 0

	Defines the maximum size (in elements) of the list of data sharing domain IDs.

 17.2.1.23. WriterAttributes

17.2.1.23. WriterAttributes

	
class eprosima::fastrtps::rtps::WriterAttributes

	Class WriterAttributes, defining the attributes of a RTPSWriter.

Public Members

	
EndpointAttributes endpoint

	Attributes of the associated endpoint.

	
WriterTimes times

	Writer Times (only used for RELIABLE).

	
fastrtps::LivelinessQosPolicyKind liveliness_kind

	Liveliness kind.

	
Duration_t liveliness_lease_duration

	Liveliness lease duration.

	
Duration_t liveliness_announcement_period

	Liveliness announcement period.

	
RTPSWriterPublishMode mode

	Indicates if the Writer is synchronous or asynchronous.

	
ThroughputControllerDescriptor throughputController

	Throughput controller, always the last one to apply.

	
Deprecated:

	Use flow_controllers on RTPSParticipantAttributes

	
bool disable_heartbeat_piggyback

	Disable the sending of heartbeat piggybacks.

	
ResourceLimitedContainerConfig matched_readers_allocation

	Define the allocation behaviour for matched-reader-dependent collections.

	
bool disable_positive_acks

	Disable the sending of positive ACKs.

	
Duration_t keep_duration

	Keep duration to keep a sample before considering it has been acked.

	
const char *flow_controller_name = fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT

	Flow controller name. Default: fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT.

 17.2.1.24. WriterTimes

17.2.1.24. WriterTimes

	
struct eprosima::fastrtps::rtps::WriterTimes

	Struct WriterTimes, defining the times associated with the Reliable Writers events.

Public Members

	
Duration_t initialHeartbeatDelay

	Initial heartbeat delay. Default value ~11ms.

	
Duration_t heartbeatPeriod

	Periodic HB period, default value 3s.

	
Duration_t nackResponseDelay

	Delay to apply to the response of a ACKNACK message, default value ~5ms.

	
Duration_t nackSupressionDuration

	This time allows the RTPSWriter to ignore nack messages too soon after the data as sent, default value 0s.

 17.2.2. Builtin data

17.2.2. Builtin data

	17.2.2.1. ContentFilterProperty

 17.2.2.1. ContentFilterProperty

17.2.2.1. ContentFilterProperty

	
class eprosima::fastdds::rtps::ContentFilterProperty

	Information about the content filter being applied by a reader.

Public Functions

	
inline explicit ContentFilterProperty(const AllocationConfiguration &config)

	Construct a ContentFilterProperty.

	Parameters

	config – Allocation configuration for the new object.

Public Members

	
fastrtps::string_255 content_filtered_topic_name

	Name of the content filtered topic on which the reader was created.

	
fastrtps::string_255 related_topic_name

	Name of the related topic being filtered.

	
fastrtps::string_255 filter_class_name

	Class name of the filter being used. May be empty to indicate the ContentFilterProperty is not present.

	
std::string filter_expression

	Filter expression indicating which content the reader wants to receive. May be empty to indicate the ContentFilterProperty is not present.

	
fastrtps::ResourceLimitedVector<fastrtps::string_255, std::true_type> expression_parameters

	List of values for the parameters present on the filter expression.

	
struct AllocationConfiguration

	Allocation configuration for a ContentFilterProperty.

Public Members

	
size_t expression_initial_size = 0

	Preallocated size of the filter expression.

	
fastrtps::ResourceLimitedContainerConfig expression_parameters = {0, 100, 1}

	Allocation configuration for the list of expression parameters.

 17.2.3. Common

17.2.3. Common

	17.2.3.1. BinaryProperty
	17.2.3.1.1. BinaryProperty

	17.2.3.1.2. BinaryPropertyHelper

	17.2.3.1.3. BinaryPropertySeq

	17.2.3.2. CacheChange
	17.2.3.2.1. CacheChange_t

	17.2.3.2.2. ChangeForReader_t

	17.2.3.2.3. ChangeForReaderCmp

	17.2.3.2.4. ChangeForReaderStatus_t

	17.2.3.2.5. ChangeKind_t

	17.2.3.3. CDRMessage
	17.2.3.3.1. CDRMessage_t

	17.2.3.3.2. Macro definitions (#define)

	17.2.3.4. EntityId
	17.2.3.4.1. Const values

	17.2.3.4.2. Macro definitions (#define)

	17.2.3.4.3. EntityId_t

	17.2.3.4.4. EntityId_t Operators

	17.2.3.5. FragmentNumber
	17.2.3.5.1. FragmentNumber_t

	17.2.3.5.2. FragmentNumberSet_t

	17.2.3.6. Guid
	17.2.3.6.1. c_Guid_Unknown

	17.2.3.6.2. GUID_t

	17.2.3.6.3. GUID_t Operators

	17.2.3.7. GuidPrefix
	17.2.3.7.1. c_GuidPrefix_Unknown

	17.2.3.7.2. GuidPrefix_t

	17.2.3.7.3. GuidPrefix_t Operators

	17.2.3.8. InstanceHandle
	17.2.3.8.1. c_InstanceHandle_Unknown

	17.2.3.8.2. InstanceHandle_t

	17.2.3.8.3. InstanceHandle_t Operators

	17.2.3.9. Locator
	17.2.3.9.1. Macro definitions (#define)

	17.2.3.9.2. IsAddressDefined

	17.2.3.9.3. IsLocatorValid

	17.2.3.9.4. Locator_t

	17.2.3.9.5. LocatorList

	17.2.3.9.6. LocatorListConstIterator

	17.2.3.9.7. LocatorListIterator

	17.2.3.9.8. LocatorsIterator

	17.2.3.9.9. Locators

	17.2.3.9.10. Locator Operators

	17.2.3.10. LocatorSelectorEntry

	17.2.3.11. LocatorSelector

	17.2.3.12. MatchingInfo
	17.2.3.12.1. MatchingInfo

	17.2.3.12.2. MatchingStatus

	17.2.3.13. PortParameters

	17.2.3.14. Property
	17.2.3.14.1. Property

	17.2.3.14.2. PropertyHelper

	17.2.3.14.3. PropertySeq

	17.2.3.15. RemoteLocators
	17.2.3.15.1. RemoteLocators Operators

	17.2.3.15.2. RemoteLocatorList

	17.2.3.16. SampleIdentity

	17.2.3.17. SequenceNumber
	17.2.3.17.1. c_SequenceNumber_Unknown

	17.2.3.17.2. SequenceNumber_t Operators

	17.2.3.17.3. SequenceNumber_t

	17.2.3.17.4. SequenceNumberDiff

	17.2.3.17.5. SequenceNumberHash

	17.2.3.17.6. SequenceNumberSet_t

	17.2.3.17.7. sort_seqNum

	17.2.3.18. SerializedPayload
	17.2.3.18.1. Macro definitions (#define)

	17.2.3.18.2. SerializedPayload_t

	17.2.3.19. Time_t
	17.2.3.19.1. Const values

	17.2.3.19.2. Macro definitions (#define)

	17.2.3.19.3. eprosima::fastrtps::Duration_t

	17.2.3.19.4. eprosima::fastrtps::Time_t

	17.2.3.19.5. Time_t Operators

	17.2.3.19.6. Time_t

	17.2.3.20. Token
	17.2.3.20.1. AuthenticatedPeerCredentialToken

	17.2.3.20.2. DataHolder

	17.2.3.20.3. DataHolderHelper

	17.2.3.20.4. DataHolderSeq

	17.2.3.20.5. IdentityStatusToken

	17.2.3.20.6. IdentityToken

	17.2.3.20.7. PermissionsCredentialToken

	17.2.3.20.8. PermissionsToken

	17.2.3.20.9. Token

	17.2.3.21. Types
	17.2.3.21.1. BuiltinEndpointSet_t

	17.2.3.21.2. Const values

	17.2.3.21.3. Count_t

	17.2.3.21.4. Macro definitions (#define)

	17.2.3.21.5. DurabilityKind_t

	17.2.3.21.6. Endianness_t

	17.2.3.21.7. EndpointKind_t

	17.2.3.21.8. octet

	17.2.3.21.9. ProtocolVersion_t

	17.2.3.21.10. ReliabilityKind_t

	17.2.3.21.11. SubmessageFlag

	17.2.3.21.12. TopicKind_t

	17.2.3.21.13. VendorId_t

	17.2.3.22. WriteParams

 17.2.3.1. BinaryProperty

17.2.3.1. BinaryProperty

	17.2.3.1.1. BinaryProperty

	17.2.3.1.2. BinaryPropertyHelper

	17.2.3.1.3. BinaryPropertySeq

 17.2.3.1.1. BinaryProperty

17.2.3.1.1. BinaryProperty

	
class BinaryProperty

	

 17.2.3.1.2. BinaryPropertyHelper

17.2.3.1.2. BinaryPropertyHelper

	
class BinaryPropertyHelper

	

 17.2.3.1.3. BinaryPropertySeq

17.2.3.1.3. BinaryPropertySeq

	
typedef std::vector<BinaryProperty> eprosima::fastrtps::rtps::BinaryPropertySeq

	

 17.2.3.2. CacheChange

17.2.3.2. CacheChange

	17.2.3.2.1. CacheChange_t

	17.2.3.2.2. ChangeForReader_t

	17.2.3.2.3. ChangeForReaderCmp

	17.2.3.2.4. ChangeForReaderStatus_t

	17.2.3.2.5. ChangeKind_t

 17.2.3.2.1. CacheChange_t

17.2.3.2.1. CacheChange_t

	
struct eprosima::fastrtps::rtps::CacheChange_t

	Structure CacheChange_t, contains information on a specific CacheChange.

Public Functions

	
inline CacheChange_t()

	Default constructor.

Creates an empty CacheChange_t.

	
inline CacheChange_t(uint32_t payload_size, bool is_untyped = false)

	Constructor with payload size

	Parameters

	
	payload_size – Serialized payload size

	is_untyped – Flag to mark the change as untyped.

	
inline bool copy(const CacheChange_t *ch_ptr)

	Copy a different change into this one.

All the elements are copied, included the data, allocating new memory.

	Parameters

	ch_ptr – [in] Pointer to the change.

	Returns

	True if correct.

	
inline void copy_not_memcpy(const CacheChange_t *ch_ptr)

	Copy information form a different change into this one.

All the elements are copied except data.

	Parameters

	ch_ptr – [in] Pointer to the change.

	
inline uint32_t getFragmentCount() const

	Get the number of fragments this change is split into.

	Returns

	number of fragments.

	
inline uint16_t getFragmentSize() const

	Get the size of each fragment this change is split into.

	Returns

	size of fragment (0 means change is not fragmented).

	
inline bool is_fully_assembled()

	Checks if all fragments have been received.

	Returns

	true when change is fully assembled (i.e. no missing fragments).

	
inline bool contains_first_fragment()

	Checks if the first fragment is present.

	Returns

	true when it contains the first fragment. In other case, false.

	
inline void get_missing_fragments(FragmentNumberSet_t &frag_sns)

	Fills a FragmentNumberSet_t with the list of missing fragments.

	Parameters

	frag_sns – [out] FragmentNumberSet_t where result is stored.

	
inline void setFragmentSize(uint16_t fragment_size, bool create_fragment_list = false)

	Set fragment size for this change.

	Remark
	Parameter create_fragment_list should only be true when receiving the first fragment of a change.

	Parameters

	
	fragment_size – Size of fragments.

	create_fragment_list – Whether to create missing fragments list or not.

Public Members

	
ChangeKind_t kind = ALIVE

	Kind of change, default value ALIVE.

	
GUID_t writerGUID = {}

	GUID_t of the writer that generated this change.

	
InstanceHandle_t instanceHandle = {}

	Handle of the data associated with this change.

	
SequenceNumber_t sequenceNumber = {}

	SequenceNumber of the change.

	
SerializedPayload_t serializedPayload = {}

	Serialized Payload associated with the change.

	
SerializedPayload_t inline_qos = {}

	CDR serialization of inlined QoS for this change.

	
bool isRead = false

	Indicates if the cache has been read (only used in READERS)

	
Time_t sourceTimestamp = {}

	Source TimeStamp.

 17.2.3.2.2. ChangeForReader_t

17.2.3.2.2. ChangeForReader_t

	
class eprosima::fastrtps::rtps::ChangeForReader_t

	Struct ChangeForReader_t used to represent the state of a specific change with respect to a specific reader, as well as its relevance.

Public Functions

	
inline CacheChange_t *getChange() const

	Get the cache change

	Returns

	Cache change

 17.2.3.2.3. ChangeForReaderCmp

17.2.3.2.3. ChangeForReaderCmp

	
struct ChangeForReaderCmp

	

 17.2.3.2.4. ChangeForReaderStatus_t

17.2.3.2.4. ChangeForReaderStatus_t

	
enum eprosima::fastrtps::rtps::ChangeForReaderStatus_t

	Enum ChangeForReaderStatus_t, possible states for a CacheChange_t in a ReaderProxy.

Values:

	
enumerator UNSENT

	UNSENT.

	
enumerator REQUESTED

	REQUESTED.

	
enumerator UNACKNOWLEDGED

	UNACKNOWLEDGED.

	
enumerator ACKNOWLEDGED

	ACKNOWLEDGED.

	
enumerator UNDERWAY

	UNDERWAY.

 17.2.3.2.5. ChangeKind_t

17.2.3.2.5. ChangeKind_t

	
enum eprosima::fastrtps::rtps::ChangeKind_t

	, different types of CacheChange_t.

Values:

	
enumerator ALIVE

	ALIVE.

	
enumerator NOT_ALIVE_DISPOSED

	NOT_ALIVE_DISPOSED.

	
enumerator NOT_ALIVE_UNREGISTERED

	NOT_ALIVE_UNREGISTERED.

	
enumerator NOT_ALIVE_DISPOSED_UNREGISTERED

	NOT_ALIVE_DISPOSED_UNREGISTERED.

 17.2.3.3. CDRMessage

17.2.3.3. CDRMessage

	17.2.3.3.1. CDRMessage_t

	17.2.3.3.2. Macro definitions (#define)

 17.2.3.3.1. CDRMessage_t

17.2.3.3.1. CDRMessage_t

	
struct eprosima::fastrtps::rtps::CDRMessage_t

	Structure CDRMessage_t, contains a serialized message.

Public Functions

	
inline explicit CDRMessage_t(uint32_t size)

	Constructor with maximum size

	Parameters

	size – Maximum size

	
inline explicit CDRMessage_t(const SerializedPayload_t &payload)

	Constructor to wrap a serialized payload

	Parameters

	payload – Payload to wrap

Public Members

	
octet *buffer

	Pointer to the buffer where the data is stored.

	
uint32_t pos

	Read or write position.

	
uint32_t max_size

	Max size of the message.

	
uint32_t reserved_size

	Size allocated on buffer. May be higher than max_size.

	
uint32_t length

	Current length of the message.

	
Endianness_t msg_endian

	Endianness of the message.

 17.2.3.3.2. Macro definitions (#define)

17.2.3.3.2. Macro definitions (#define)

	
RTPSMESSAGE_DEFAULT_SIZE 10500

	Max size of RTPS message in bytes.

	
RTPSMESSAGE_COMMON_RTPS_PAYLOAD_SIZE 536

	

	
RTPSMESSAGE_COMMON_DATA_PAYLOAD_SIZE 10000

	

	
RTPSMESSAGE_HEADER_SIZE 20

	

	
RTPSMESSAGE_SUBMESSAGEHEADER_SIZE 4

	

	
RTPSMESSAGE_DATA_EXTRA_INLINEQOS_SIZE 4

	

	
RTPSMESSAGE_INFOTS_SIZE 12

	

	
RTPSMESSAGE_OCTETSTOINLINEQOS_DATASUBMSG 16

	

	
RTPSMESSAGE_OCTETSTOINLINEQOS_DATAFRAGSUBMSG 28

	

	
RTPSMESSAGE_DATA_MIN_LENGTH 24

	

 17.2.3.4. EntityId

17.2.3.4. EntityId

	17.2.3.4.1. Const values

	17.2.3.4.2. Macro definitions (#define)

	17.2.3.4.3. EntityId_t

	17.2.3.4.4. EntityId_t Operators

 17.2.3.4.1. Const values

17.2.3.4.1. Const values

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_Unknown = ENTITYID_UNKNOWN

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SPDPReader = ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SPDPWriter = ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPPubWriter = ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPPubReader = ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPSubWriter = ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPSubReader = ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_RTPSParticipant = ENTITYID_RTPSParticipant

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_WriterLiveliness = ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_ReaderLiveliness = ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::participant_stateless_message_writer_entity_id = ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::participant_stateless_message_reader_entity_id = ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_writer = ENTITYID_TL_SVC_REQ_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_reader = ENTITYID_TL_SVC_REQ_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_writer = ENTITYID_TL_SVC_REPLY_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_reader = ENTITYID_TL_SVC_REPLY_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_publications_secure_writer = ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_publications_secure_reader = ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_writer = ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_reader = ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::participant_volatile_message_secure_writer_entity_id = ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::participant_volatile_message_secure_reader_entity_id = ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_WriterLivelinessSecure = ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER

	

	
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_ReaderLivelinessSecure = ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER

	

 17.2.3.4.2. Macro definitions (#define)

17.2.3.4.2. Macro definitions (#define)

	
ENTITYID_UNKNOWN 0x00000000

	

	
ENTITYID_RTPSParticipant 0x000001c1

	

	
ENTITYID_SEDP_BUILTIN_TOPIC_WRITER 0x000002c2

	

	
ENTITYID_SEDP_BUILTIN_TOPIC_READER 0x000002c7

	

	
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER 0x000003c2

	

	
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER 0x000003c7

	

	
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER 0x000004c2

	

	
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER 0x000004c7

	

	
ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER 0x000100c2

	

	
ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER 0x000100c7

	

	
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER 0x000200C2

	

	
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER 0x000200C7

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER 0x000201C3

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER 0x000201C4

	

	
ENTITYID_TL_SVC_REQ_WRITER 0x000300C3

	

	
ENTITYID_TL_SVC_REQ_READER 0x000300C4

	

	
ENTITYID_TL_SVC_REPLY_WRITER 0x000301C3

	

	
ENTITYID_TL_SVC_REPLY_READER 0x000301C4

	

	
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER 0xff0003c2

	

	
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER 0xff0003c7

	

	
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER 0xff0004c2

	

	
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER 0xff0004c7

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER 0xff0200c2

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER 0xff0200c7

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER 0xff0202C3

	

	
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER 0xff0202C4

	

	
ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_WRITER 0xff0101c2

	

	
ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_READER 0xff0101c7

	

 17.2.3.4.3. EntityId_t

17.2.3.4.3. EntityId_t

	
struct eprosima::fastrtps::rtps::EntityId_t

	Structure EntityId_t, entity id part of GUID_t.

Public Functions

	
inline EntityId_t()

	Default constructor. Unknown entity.

	
inline EntityId_t(uint32_t id)

	Main constructor.

	Parameters

	id – Entity id

	
inline EntityId_t(const EntityId_t &id)

	Copy constructor.

	
inline EntityId_t(EntityId_t &&id)

	Move constructor.

	
inline EntityId_t &operator=(uint32_t id)

	Assignment operator.

	Parameters

	id – Entity id to copy

	
inline uint32_t to_uint32() const

	conversion to uint32_t

	Returns

	uint32_t representation

	
inline bool operator<(const EntityId_t &other) const

	Entity Id minor operator

	Parameters

	other – Second entity id to compare

	Returns

	True if other is higher than this

Public Static Functions

	
static inline int cmp(const EntityId_t &entity1, const EntityId_t &entity2)

	Entity Id compare static method.

	Parameters

	
	entity1 – First entity id to compare

	entity2 – Second entity id to compare

	Returns

	0 if entity1 is equal to entity2 .

	Returns

	< 0 if entity1 is lower than entity2 .

	Returns

	> 0 if entity1 is higher than entity2 .

 17.2.3.4.4. EntityId_t Operators

17.2.3.4.4. EntityId_t Operators

	
inline bool eprosima::fastrtps::rtps::operator==(EntityId_t &id1, const uint32_t id2)

	Entity Id comparison operator

	Parameters

	
	id1 – EntityId to compare

	id2 – ID prefix to compare

	Returns

	True if equal

	
inline bool eprosima::fastrtps::rtps::operator==(const EntityId_t &id1, const EntityId_t &id2)

	Entity Id comparison operator

	Parameters

	
	id1 – First EntityId to compare

	id2 – Second EntityId to compare

	Returns

	True if equal

	
inline bool eprosima::fastrtps::rtps::operator!=(const EntityId_t &id1, const EntityId_t &id2)

	Guid prefix comparison operator

	Parameters

	
	id1 – First EntityId to compare

	id2 – Second EntityId to compare

	Returns

	True if not equal

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const EntityId_t &enI)

	

	
inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, EntityId_t &enP)

	

 17.2.3.5. FragmentNumber

17.2.3.5. FragmentNumber

	17.2.3.5.1. FragmentNumber_t

	17.2.3.5.2. FragmentNumberSet_t

 17.2.3.5.1. FragmentNumber_t

17.2.3.5.1. FragmentNumber_t

	
using eprosima::fastrtps::rtps::FragmentNumber_t = uint32_t

	

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const FragmentNumberSet_t &fns)

	

 17.2.3.5.2. FragmentNumberSet_t

17.2.3.5.2. FragmentNumberSet_t

	
using eprosima::fastrtps::rtps::FragmentNumberSet_t = BitmapRange<FragmentNumber_t>

	Structure FragmentNumberSet_t, contains a group of fragmentnumbers.

 17.2.3.6. Guid

17.2.3.6. Guid

	17.2.3.6.1. c_Guid_Unknown

	17.2.3.6.2. GUID_t

	17.2.3.6.3. GUID_t Operators

 17.2.3.6.1. c_Guid_Unknown

17.2.3.6.1. c_Guid_Unknown

	
const GUID_t eprosima::fastrtps::rtps::c_Guid_Unknown

	

 17.2.3.6.2. GUID_t

17.2.3.6.2. GUID_t

	
struct eprosima::fastrtps::rtps::GUID_t

	Structure GUID_t, entity identifier, unique in DDS-RTPS Domain.

Public Functions

	
inline GUID_t() noexcept

	Default constructor.

Contructs an unknown GUID.

	
inline GUID_t(const GuidPrefix_t &guid_prefix, uint32_t id) noexcept

	Construct

	Parameters

	
	guid_prefix – Guid prefix

	id – Entity id

	
inline GUID_t(const GuidPrefix_t &guid_prefix, const EntityId_t &entity_id) noexcept

	
	Parameters

	
	guid_prefix – Guid prefix

	entity_id – Entity id

	
inline bool is_on_same_host_as(const GUID_t &other_guid) const

	Checks whether this guid is for an entity on the same host as another guid.

	Parameters

	other_guid – GUID_t to compare to.

	Returns

	true when this guid is on the same host, false otherwise.

	
inline bool is_on_same_process_as(const GUID_t &other_guid) const

	Checks whether this guid is for an entity on the same host and process as another guid.

	Parameters

	other_guid – GUID_t to compare to.

	Returns

	true when this guid is on the same host and process, false otherwise.

	
inline bool is_builtin() const

	Checks whether this guid corresponds to a builtin entity.

	Returns

	true when this guid corresponds to a builtin entity, false otherwise.

Public Members

	
GuidPrefix_t guidPrefix

	Guid prefix.

	
EntityId_t entityId

	Entity id.

 17.2.3.6.3. GUID_t Operators

17.2.3.6.3. GUID_t Operators

	
inline bool eprosima::fastrtps::rtps::operator==(const GUID_t &g1, const GUID_t &g2)

	GUID comparison operator

	Parameters

	
	g1 – First GUID to compare

	g2 – Second GUID to compare

	Returns

	True if equal

	
inline bool eprosima::fastrtps::rtps::operator!=(const GUID_t &g1, const GUID_t &g2)

	GUID comparison operator

	Parameters

	
	g1 – First GUID to compare

	g2 – Second GUID to compare

	Returns

	True if not equal

	
inline bool eprosima::fastrtps::rtps::operator<(const GUID_t &g1, const GUID_t &g2)

	

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const GUID_t &guid)

	Stream operator, prints a GUID.

	Parameters

	
	output – Output stream.

	guid – GUID_t to print.

	Returns

	Stream operator.

	
inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, GUID_t &guid)

	Stream operator, retrieves a GUID.

	Parameters

	
	input – Input stream.

	guid – GUID_t to print.

	Returns

	Stream operator.

 17.2.3.7. GuidPrefix

17.2.3.7. GuidPrefix

	17.2.3.7.1. c_GuidPrefix_Unknown

	17.2.3.7.2. GuidPrefix_t

	17.2.3.7.3. GuidPrefix_t Operators

 17.2.3.7.1. c_GuidPrefix_Unknown

17.2.3.7.1. c_GuidPrefix_Unknown

	
const GuidPrefix_t eprosima::fastrtps::rtps::c_GuidPrefix_Unknown

	

 17.2.3.7.2. GuidPrefix_t

17.2.3.7.2. GuidPrefix_t

	
struct eprosima::fastrtps::rtps::GuidPrefix_t

	Structure GuidPrefix_t, Guid Prefix of GUID_t.

Public Functions

	
inline GuidPrefix_t()

	Default constructor. Set the Guid prefix to 0.

	
inline bool operator==(const GuidPrefix_t &prefix) const

	Guid prefix comparison operator

	Parameters

	prefix – guid prefix to compare

	Returns

	True if the guid prefixes are equal

	
inline bool operator!=(const GuidPrefix_t &prefix) const

	Guid prefix comparison operator

	Parameters

	prefix – Second guid prefix to compare

	Returns

	True if the guid prefixes are not equal

	
inline bool operator<(const GuidPrefix_t &prefix) const

	Guid prefix minor operator

	Parameters

	prefix – Second guid prefix to compare

	Returns

	True if prefix is higher than this

Public Static Functions

	
static inline int cmp(const GuidPrefix_t &prefix1, const GuidPrefix_t &prefix2)

	Guid Prefix compare static method.

	Parameters

	
	prefix1 – First guid prefix to compare

	prefix2 – Second guid prefix to compare

	Returns

	0 if prefix1 is equal to prefix2 .

	Returns

	< 0 if prefix1 is lower than prefix2 .

	Returns

	> 0 if prefix1 is higher than prefix2 .

 17.2.3.7.3. GuidPrefix_t Operators

17.2.3.7.3. GuidPrefix_t Operators

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const GuidPrefix_t &guiP)

	

	
inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, GuidPrefix_t &guiP)

	

 17.2.3.8. InstanceHandle

17.2.3.8. InstanceHandle

	17.2.3.8.1. c_InstanceHandle_Unknown

	17.2.3.8.2. InstanceHandle_t

	17.2.3.8.3. InstanceHandle_t Operators

 17.2.3.8.1. c_InstanceHandle_Unknown

17.2.3.8.1. c_InstanceHandle_Unknown

	
const InstanceHandle_t eprosima::fastrtps::rtps::c_InstanceHandle_Unknown

	

 17.2.3.8.2. InstanceHandle_t

17.2.3.8.2. InstanceHandle_t

	
struct eprosima::fastrtps::rtps::InstanceHandle_t

	Struct InstanceHandle_t, used to contain the key for WITH_KEY topics.

Public Functions

	
InstanceHandle_t &operator=(const InstanceHandle_t &ihandle) noexcept = default

	Assignment operator

	Parameters

	ihandle – Instance handle to copy the data from

	
inline InstanceHandle_t &operator=(const GUID_t &guid) noexcept

	Assignment operator

	Parameters

	guid – GUID to copy the data from

	
inline bool isDefined() const noexcept

	Know if the instance handle is defined

	Returns

	True if the values are not zero.

Public Members

	
InstanceHandleValue_t value

	Value.

 17.2.3.8.3. InstanceHandle_t Operators

17.2.3.8.3. InstanceHandle_t Operators

	
inline bool eprosima::fastrtps::rtps::operator==(const InstanceHandle_t &ihandle1, const InstanceHandle_t &ihandle2) noexcept

	Comparison operator

	Parameters

	
	ihandle1 – First InstanceHandle_t to compare

	ihandle2 – Second InstanceHandle_t to compare

	Returns

	True if equal

	
inline bool eprosima::fastrtps::rtps::operator!=(const InstanceHandle_t &ihandle1, const InstanceHandle_t &ihandle2) noexcept

	Comparison operator.

	Parameters

	
	ihandle1 – First InstanceHandle_t to compare

	ihandle2 – Second InstanceHandle_t to compare

	Returns

	True if not equal

	
inline bool eprosima::fastrtps::rtps::operator<(const InstanceHandle_t &h1, const InstanceHandle_t &h2) noexcept

	Comparison operator: checks if a InstanceHandle_t is less than another.

	Parameters

	
	h1 – First InstanceHandle_t to compare.

	h2 – Second InstanceHandle_t to compare.

	Returns

	True if the first InstanceHandle_t is less than the second.

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const InstanceHandle_t &iHandle)

	Stream operator: print an InstanceHandle_t.

	Parameters

	
	output – Output stream.

	iHandle – InstanceHandle_t to print.

	Returns

	Stream operator.

	
inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, InstanceHandle_t &iHandle)

	Stream operator: retrieve an InstanceHandle_t.

	Parameters

	
	input – Input stream.

	iHandle – InstanceHandle_t that will receive the input as its new value.

	Returns

	Stream operator.

	
inline void eprosima::fastrtps::rtps::iHandle2GUID(GUID_t &guid, const InstanceHandle_t &ihandle) noexcept

	Convert InstanceHandle_t to GUID

	Parameters

	
	guid – GUID to store the results

	ihandle – InstanceHandle_t to copy

	
inline GUID_t eprosima::fastrtps::rtps::iHandle2GUID(const InstanceHandle_t &ihandle) noexcept

	Convert GUID to InstanceHandle_t

	Parameters

	ihandle – InstanceHandle_t to store the results

	Returns

	GUID_t

 17.2.3.9. Locator

17.2.3.9. Locator

	17.2.3.9.1. Macro definitions (#define)

	17.2.3.9.2. IsAddressDefined

	17.2.3.9.3. IsLocatorValid

	17.2.3.9.4. Locator_t

	17.2.3.9.5. LocatorList

	17.2.3.9.6. LocatorListConstIterator

	17.2.3.9.7. LocatorListIterator

	17.2.3.9.8. LocatorsIterator

	17.2.3.9.9. Locators

	17.2.3.9.10. Locator Operators

 17.2.3.9.1. Macro definitions (#define)

17.2.3.9.1. Macro definitions (#define)

	
LOCATOR_INVALID(loc) {loc.kind = LOCATOR_KIND_INVALID; loc.port = LOCATOR_PORT_INVALID; \
 LOCATOR_ADDRESS_INVALID(loc.address); \

}

	Initialize locator with invalid values.

	
LOCATOR_KIND_INVALID -1

	Invalid locator kind.

	
LOCATOR_ADDRESS_INVALID(a) {std::memset(a, 0x00, 16 * sizeof(octet));}

	Set locator IP address to 0.

	
LOCATOR_PORT_INVALID 0

	Invalid locator port.

	
LOCATOR_KIND_RESERVED 0

	Reserved locator kind.

	
LOCATOR_KIND_UDPv4 1

	UDP over IPv4 locator kind.

	
LOCATOR_KIND_UDPv6 2

	UDP over IPv6 locator kind.

	
LOCATOR_KIND_TCPv4 4

	TCP over IPv4 kind.

	
LOCATOR_KIND_TCPv6 8

	TCP over IPv6 locator kind.

	
LOCATOR_KIND_SHM 16

	Shared memory locator kind.

 17.2.3.9.2. IsAddressDefined

17.2.3.9.2. IsAddressDefined

	
inline bool eprosima::fastrtps::rtps::IsAddressDefined(const Locator_t &loc)

	Auxiliary method to check that IP address is not invalid (0).

	Parameters

	loc – Locator which IP address is going to be checked.

	Returns

	true if IP address is defined (not 0).

	Returns

	false otherwise.

 17.2.3.9.3. IsLocatorValid

17.2.3.9.3. IsLocatorValid

	
inline bool eprosima::fastrtps::rtps::IsLocatorValid(const Locator_t &loc)

	Auxiliary method to check that locator kind is not LOCATOR_KIND_INVALID (-1).

	Parameters

	loc – Locator to be checked.

	Returns

	true if the locator kind is not LOCATOR_KIND_INVALID.

	Returns

	false otherwise.

 17.2.3.9.4. Locator_t

17.2.3.9.4. Locator_t

	
class eprosima::fastrtps::rtps::Locator_t

	Class Locator_t, uniquely identifies a communication channel for a particular transport. For example, an address + port combination in the case of UDP.

Subclassed by eprosima::fastdds::rtps::LocatorWithMask

Public Functions

	
inline Locator_t()

	Default constructor.

	
inline Locator_t(Locator_t &&loc)

	Move constructor.

	
inline Locator_t(const Locator_t &loc)

	Copy constructor.

	
inline Locator_t(uint32_t portin)

	Port constructor.

	
inline Locator_t(int32_t kindin, uint32_t portin)

	Kind and port constructor.

	
inline Locator_t &operator=(const Locator_t &loc)

	Copy assignment.

	
inline bool set_address(const Locator_t &other)

	Set the locator IP address using another locator.

	Parameters

	other – Locator which IP address is used to set this locator IP address.

	Returns

	always true.

	
inline octet *get_address()

	Getter for the locator IP address.

	Returns

	IP address as octet pointer.

	
inline octet get_address(uint16_t field) const

	Getter for a specific field of the locator IP address.

	Parameters

	field – IP address element to be accessed.

	Returns

	Octet value for the specific IP address element.

	
inline void set_Invalid_Address()

	Automatic setter for setting locator IP address to invalid address (0).

Public Members

	
int32_t kind

	Specifies the locator type. Valid values are:

LOCATOR_KIND_UDPv4

LOCATOR_KIND_UDPv6

LOCATOR_KIND_TCPv4

LOCATOR_KIND_TCPv6

LOCATOR_KIND_SHM

	
uint32_t port

	Network port.

	
octet address[16]

	IP address.

 17.2.3.9.5. LocatorList

17.2.3.9.5. LocatorList

	
class eprosima::fastdds::rtps::LocatorList

	Class LocatorList, a Locator vector that doesn’t allow duplicates.

Public Functions

	
inline LocatorList()

	Constructor.

	
inline ~LocatorList()

	Destructor.

	
inline LocatorList(const LocatorList &list)

	Copy constructor.

	
inline LocatorList(LocatorList &&list)

	Move constructor.

	
inline LocatorList &operator=(const LocatorList &list)

	Copy assignment.

	
inline LocatorList &operator=(LocatorList &&list)

	Move assignment.

	
inline bool operator==(const LocatorList &locator_list) const

	Equal to operator.

	
inline LocatorListIterator begin()

	Return an iterator to the beginning.

	Returns

	LocatorListIterator iterator to the first locator.

	
inline LocatorListIterator end()

	Return an iterator to the end.

	Returns

	LocatorListIterator iterator to the element following the last element.

	
inline LocatorListConstIterator begin() const

	Return a constant iterator to the beginning.

	Returns

	LocatorListConstIterator iterator to the first locator.

	
inline LocatorListConstIterator end() const

	Return a constant iterator to the end.

	Returns

	LocatorListConstIterator iterator to the element following the last element.

	
inline size_t size() const

	Return the number of locators.

	Returns

	size_t The number of locators in the container.

	
inline LocatorList &assign(const LocatorList &list)

	Replace the contents of the container.

	Parameters

	list – New content to be saved into the container.

	Returns

	LocatorList& reference to the container with the replaced content.

	
inline void clear()

	Erase all locators from the container.

	
inline void reserve(size_t num)

	Reserve storage increasing the capacity of the vector.

	Parameters

	num – new capacity of the vector, in number of elements.

	
inline void resize(size_t num)

	Resize the container to contain num locators. If the current size is greater than num, the container is reduced to its first num locators. If the current size is less than count, additional default-inserted locators are appended.

	Parameters

	num – new size of the container.

	
inline void push_back(const Locator &loc)

	Add locator to the end if not found within the list.

	Parameters

	loc – locator to be appended.

	
inline void push_back(const LocatorList &locList)

	Add several locators to the end if not already present within the list.

	Parameters

	locList – LocatorList with the locators to be appended.

	
inline bool empty() const

	Check that the container has no locators.

	Returns

	true if the container is empty. False otherwise.

	
inline void erase(const Locator &loc)

	Erase the specified locator from the container.

	Parameters

	loc – Locator to be removed.

	
inline bool isValid() const

	Check that every locator contained in the list is not LOCATOR_KIND_INVALID.

	Returns

	true if all locators are valid. False otherwise.

	
inline void swap(LocatorList &locatorList)

	exchange the content of the container.

	Parameters

	locatorList – container to exchange the contents with.

 17.2.3.9.6. LocatorListConstIterator

17.2.3.9.6. LocatorListConstIterator

	
typedef std::vector<Locator>::const_iterator eprosima::fastdds::rtps::LocatorListConstIterator

	Constant iterator to iterate over a vector of locators.

 17.2.3.9.7. LocatorListIterator

17.2.3.9.7. LocatorListIterator

	
typedef std::vector<Locator>::iterator eprosima::fastdds::rtps::LocatorListIterator

	Iterator to iterate over a vector of locators.

 17.2.3.9.8. LocatorsIterator

17.2.3.9.8. LocatorsIterator

	
struct eprosima::fastdds::rtps::LocatorsIterator

	Provides a Locator’s iterator interface that can be used by different Locator’s containers

Subclassed by eprosima::fastdds::rtps::Locators, eprosima::fastrtps::rtps::LocatorSelector::iterator

Public Functions

	
virtual LocatorsIterator &operator++() = 0

	Increment operator.

	Returns

	LocatorsIterator& reference to the next LocatorsIterator.

	
virtual bool operator==(const LocatorsIterator &other) const = 0

	Equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if equal.

	Returns

	false otherwise.

	
virtual bool operator!=(const LocatorsIterator &other) const = 0

	Not equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if not equal.

	Returns

	false otherwise.

	
virtual const Locator &operator*() const = 0

	Dereference operator.

	Returns

	const Locator& Reference to the locator pointed by the LocatorsIterator.

 17.2.3.9.9. Locators

17.2.3.9.9. Locators

	
class eprosima::fastdds::rtps::Locators : public eprosima::fastdds::rtps::LocatorsIterator

	Adapter class that provides a LocatorsIterator interface from a LocatorListConstIterator

Public Functions

	
inline Locators(const LocatorListConstIterator &it)

	Constructor.

	
inline Locators(const Locators &other)

	Copy constructor.

	
inline virtual LocatorsIterator &operator++()

	Increment operator.

	Returns

	LocatorsIterator& reference to the next LocatorsIterator.

	
inline virtual bool operator==(const LocatorsIterator &other) const

	Equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if equal.

	Returns

	false otherwise.

	
inline virtual bool operator!=(const LocatorsIterator &other) const

	Not equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if not equal.

	Returns

	false otherwise.

	
inline virtual const Locator &operator*() const

	Dereference operator.

	Returns

	const Locator& Reference to the locator pointed by the LocatorsIterator.

 17.2.3.9.10. Locator Operators

17.2.3.9.10. Locator Operators

	
inline bool eprosima::fastrtps::rtps::operator<(const Locator_t &loc1, const Locator_t &loc2)

	Less than operator.

	Parameters

	
	loc1 – Left hand side locator being compared.

	loc2 – Right hand side locator being compared.

	Returns

	true if loc1 is less than loc2.

	Returns

	false otherwise.

	
inline bool eprosima::fastrtps::rtps::operator==(const Locator_t &loc1, const Locator_t &loc2)

	Equal to operator.

	Parameters

	
	loc1 – Left hand side locator being compared.

	loc2 – Right hand side locator being compared.

	Returns

	true if loc1 is equal to loc2.

	Returns

	false otherwise.

	
inline bool eprosima::fastrtps::rtps::operator!=(const Locator_t &loc1, const Locator_t &loc2)

	Not equal to operator.

	Parameters

	
	loc1 – Left hand side locator being compared.

	loc2 – Right hand side locator being compared.

	Returns

	true if loc1 is not equal to loc2.

	Returns

	false otherwise.

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const Locator_t &loc)

	Insertion operator: serialize a locator The serialization format is kind:[address]:port kind must be one of the following:

	UDPv4

	UDPv6

	TCPv4

	TCPv6

	SHM address IP address unless kind is SHM port number

	Parameters

	
	output – Output stream where the serialized locator is appended.

	loc – Locator to be serialized/inserted.

	Returns

	std::ostream& Reference to the output stream with the serialized locator appended.

	
inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, Locator_t &loc)

	Extraction operator: deserialize a locator The deserialization format is kind:[address]:port kind must be one of the following:

	UDPv4

	UDPv6

	TCPv4

	TCPv6

	SHM address must be either a name which can be resolved by DNS or the IP address unless kind is SHM port number

	Parameters

	
	input – Input stream where the locator to be deserialized is located.

	loc – Locator where the deserialized locator is saved.

	Returns

	std::istream& Reference to the input stream after extracting the locator.

	
inline std::ostream &eprosima::fastdds::rtps::operator<<(std::ostream &output, const LocatorList &locList)

	Insertion operator: serialize a locator list. The deserialization format is [locator1,locator2,…,locatorN]. Each individual locator within the list must follow the serialization format explained in the locator insertion operator.

	Parameters

	
	output – Output stream where the serialized locator list is appended.

	locList – Locator list to be serialized/inserted.

	Returns

	std::ostream& Reference to the output stream with the serialized locator list appended.

	
inline std::istream &eprosima::fastdds::rtps::operator>>(std::istream &input, LocatorList &locList)

	Extraction operator: deserialize a list of locators. The serialization format is [locator1,locator2,…,locatorN]. Each individual locator within the list must follow the deserialization format explained in the locator extraction operator.

	Parameters

	
	input – Input stream where the locator list to be deserialized is located.

	locList – Locator list where the deserialized locators are saved.

	Returns

	std::istream& Reference to the input stream after extracting the locator list.

	
static inline bool eprosima::fastrtps::rtps::operator==(const ResourceLimitedVector<Locator_t> &lhs, const ResourceLimitedVector<Locator_t> &rhs)

	Equal to operator to compare two locator lists.

	Parameters

	
	lhs – Locator list to be compared.

	rhs – Other locator list to be compared.

	Returns

	true if the list are equal.

	Returns

	false otherwise.

 17.2.3.10. LocatorSelectorEntry

17.2.3.10. LocatorSelectorEntry

	
struct eprosima::fastrtps::rtps::LocatorSelectorEntry

	An entry for the LocatorSelector.

This class holds the locators of a remote endpoint along with data required for the locator selection algorithm. Can be easily integrated inside other classes, such as ReaderProxyData and WriterProxyData.

Public Functions

	
inline LocatorSelectorEntry(size_t max_unicast_locators, size_t max_multicast_locators)

	Construct a LocatorSelectorEntry.

	Parameters

	
	max_unicast_locators – Maximum number of unicast locators to hold.

	max_multicast_locators – Maximum number of multicast locators to hold.

	
inline void enable(bool should_enable)

	Set the enabled value.

	Parameters

	should_enable – Whether this entry should be enabled.

	
inline void reset()

	Reset the selections.

Public Members

	
GUID_t remote_guid

	GUID of the remote entity.

	
ResourceLimitedVector<Locator_t> unicast

	List of unicast locators to send data to the remote entity.

	
ResourceLimitedVector<Locator_t> multicast

	List of multicast locators to send data to the remote entity.

	
EntryState state

	State of the entry.

	
bool enabled

	Indicates whether this entry should be taken into consideration.

	
bool transport_should_process

	A temporary value for each transport to help optimizing some use cases.

	
struct EntryState

	Holds the selection state of the locators held by a LocatorSelectorEntry

Public Functions

	
inline EntryState(size_t max_unicast_locators, size_t max_multicast_locators)

	Construct an EntryState object.

	Parameters

	
	max_unicast_locators – Maximum number of unicast locators to held by parent LocatorSelectorEntry.

	max_multicast_locators – Maximum number of multicast locators to held by parent LocatorSelectorEntry.

Public Members

	
ResourceLimitedVector<size_t> unicast

	Unicast locators selection state.

	
ResourceLimitedVector<size_t> multicast

	Multicast locators selection state.

 17.2.3.11. LocatorSelector

17.2.3.11. LocatorSelector

	
class eprosima::fastrtps::rtps::LocatorSelector

	A class used for the efficient selection of locators when sending data to multiple entities.

Algorithm:
	Entries are added/removed with add_entry/remove_entry when matched/unmatched.

	When data is to be sent:
	A reference to this object is passed to the message group

	For each submessage:
	A call to reset is performed

	A call to enable is performed per desired destination

	If state_has_changed() returns true:
	the message group is flushed

	selection_start is called

	for each transport:
	transport_starts is called

	transport handles the selection state of each entry

	select may be called

	Submessage is added to the message group

Public Functions

	
inline LocatorSelector(const ResourceLimitedContainerConfig &entries_allocation)

	Construct a LocatorSelector.

	Parameters

	entries_allocation – Allocation configuration regarding the number of remote entities.

	
inline void clear()

	Clears all internal data.

	
inline bool add_entry(LocatorSelectorEntry *entry)

	Add an entry to this selector.

	Parameters

	entry – Pointer to the LocatorSelectorEntry to add.

	
inline bool remove_entry(const GUID_t &guid)

	Remove an entry from this selector.

	Parameters

	guid – Identifier of the entry to be removed.

	
inline void reset(bool enable_all)

	Reset the enabling state of the selector.

	Parameters

	enable_all – Indicates whether entries should be initially enabled.

	
inline void enable(const GUID_t &guid)

	Enable an entry given its GUID.

	Parameters

	guid – GUID of the entry to enable.

	
inline bool state_has_changed() const

	Check if enabling state has changed.

	Returns

	true if the enabling state has changed, false otherwise.

	
inline void selection_start()

	Reset the selection state of the selector.

	
inline ResourceLimitedVector<LocatorSelectorEntry*> &transport_starts()

	Called when the selection algorithm starts for a specific transport.

Will set the temporary transport_should_process flag for all enabled entries.

	Returns

	a reference to the entries collection.

	
inline void select(size_t index)

	Marks an entry as selected.

	Parameters

	index – The index of the entry to mark as selected.

	
inline size_t selected_size() const

	Count the number of selected locators.

	Returns

	the number of selected locators.

	
inline bool is_selected(const Locator_t locator) const

	Check if a locator is present in the selections of this object.

	Parameters

	locator – The locator to be checked.

	Returns

	True if the locator has been selected, false otherwise.

	
template<class UnaryPredicate>
inline void for_each(UnaryPredicate action) const

	Performs an action on each selected locator.

	Parameters

	action – Unary function that accepts a locator as argument. The function shall not modify its argument. This can either be a function pointer or a function object.

	
class iterator : public eprosima::fastdds::rtps::LocatorsIterator

	
Public Functions

	
inline virtual iterator &operator++()

	Increment operator.

	Returns

	LocatorsIterator& reference to the next LocatorsIterator.

	
inline virtual bool operator==(const LocatorsIterator &other) const

	Equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if equal.

	Returns

	false otherwise.

	
inline virtual bool operator!=(const LocatorsIterator &other) const

	Not equal to operator.

	Parameters

	other – LocatorsIterator to compare.

	Returns

	true if not equal.

	Returns

	false otherwise.

	
inline virtual reference operator*() const

	Dereference operator.

	Returns

	const Locator& Reference to the locator pointed by the LocatorsIterator.

	
struct IteratorIndex

	

 17.2.3.12. MatchingInfo

17.2.3.12. MatchingInfo

	17.2.3.12.1. MatchingInfo

	17.2.3.12.2. MatchingStatus

 17.2.3.12.1. MatchingInfo

17.2.3.12.1. MatchingInfo

	
class eprosima::fastrtps::rtps::MatchingInfo

	Class MatchingInfo contains information about the matching between two endpoints.

Public Functions

	
inline MatchingInfo()

	Default constructor.

	
inline MatchingInfo(MatchingStatus stat, const GUID_t &guid)

	
	Parameters

	
	stat – Status

	guid – GUID

Public Members

	
MatchingStatus status

	Status.

	
GUID_t remoteEndpointGuid

	Remote endpoint GUID.

 17.2.3.12.2. MatchingStatus

17.2.3.12.2. MatchingStatus

	
enum eprosima::fastrtps::rtps::MatchingStatus

	, indicates whether the matched publication/subscription method of the PublisherListener or SubscriberListener has been called for a matching or a removal of a remote endpoint.

Values:

	
enumerator MATCHED_MATCHING

	MATCHED_MATCHING, new publisher/subscriber found.

	
enumerator REMOVED_MATCHING

	REMOVED_MATCHING, publisher/subscriber removed.

 17.2.3.13. PortParameters

17.2.3.13. PortParameters

	
class eprosima::fastrtps::rtps::PortParameters

	Class PortParameters, to define the port parameters and gains related with the RTPS protocol.

Public Functions

	
inline uint32_t getMulticastPort(uint32_t domainId) const

	Get a multicast port based on the domain ID.

	Parameters

	domainId – Domain ID.

	Returns

	Multicast port

	
inline uint32_t getUnicastPort(uint32_t domainId, uint32_t RTPSParticipantID) const

	Get a unicast port based on the domain ID and the participant ID.

	Parameters

	
	domainId – Domain ID.

	RTPSParticipantID – Participant ID.

	Returns

	Unicast port

Public Members

	
uint16_t portBase

	PortBase, default value 7400.

	
uint16_t domainIDGain

	DomainID gain, default value 250.

	
uint16_t participantIDGain

	ParticipantID gain, default value 2.

	
uint16_t offsetd0

	Offset d0, default value 0.

	
uint16_t offsetd1

	Offset d1, default value 10.

	
uint16_t offsetd2

	Offset d2, default value 1.

	
uint16_t offsetd3

	Offset d3, default value 11.

 17.2.3.14. Property

17.2.3.14. Property

	17.2.3.14.1. Property

	17.2.3.14.2. PropertyHelper

	17.2.3.14.3. PropertySeq

 17.2.3.14.1. Property

17.2.3.14.1. Property

	
class Property

	

 17.2.3.14.2. PropertyHelper

17.2.3.14.2. PropertyHelper

	
class PropertyHelper

	

 17.2.3.14.3. PropertySeq

17.2.3.14.3. PropertySeq

	
typedef std::vector<Property> eprosima::fastrtps::rtps::PropertySeq

	

 17.2.3.15. RemoteLocators

17.2.3.15. RemoteLocators

	17.2.3.15.1. RemoteLocators Operators

	17.2.3.15.2. RemoteLocatorList

 17.2.3.15.1. RemoteLocators Operators

17.2.3.15.1. RemoteLocators Operators

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const RemoteLocatorList &remote_locators)

	

 17.2.3.15.2. RemoteLocatorList

17.2.3.15.2. RemoteLocatorList

	
struct eprosima::fastrtps::rtps::RemoteLocatorList

	Holds information about the locators of a remote entity.

Public Functions

	
inline RemoteLocatorList()

	Default constructor of RemoteLocatorList for deserialize.

	
inline RemoteLocatorList(size_t max_unicast_locators, size_t max_multicast_locators)

	Construct a RemoteLocatorList.

	Parameters

	
	max_unicast_locators – Maximum number of unicast locators to hold.

	max_multicast_locators – Maximum number of multicast locators to hold.

	
inline RemoteLocatorList(const RemoteLocatorList &other)

	Copy-construct a RemoteLocatorList.

	Parameters

	other – RemoteLocatorList to copy data from.

	
inline RemoteLocatorList &operator=(const RemoteLocatorList &other)

	Assign locator values from other RemoteLocatorList.

	Remark
	Using the assignment operator is different from copy-constructing as in the first case the configuration with the maximum number of locators is not copied. This means that, for two lists with different maximum number of locators, the expression (a = b) == b may not be true.

	Parameters

	other – RemoteLocatorList to copy data from.

	
inline void add_unicast_locator(const Locator_t &locator)

	Adds a locator to the unicast list.

If the locator already exists in the unicast list, or the maximum number of unicast locators has been reached, the new locator is silently discarded.

	Parameters

	locator – Unicast locator to be added.

	
inline void add_multicast_locator(const Locator_t &locator)

	Adds a locator to the multicast list.

If the locator already exists in the multicast list, or the maximum number of multicast locators has been reached, the new locator is silently discarded.

	Parameters

	locator – Multicast locator to be added.

Public Members

	
ResourceLimitedVector<Locator_t> unicast

	List of unicast locators.

	
ResourceLimitedVector<Locator_t> multicast

	List of multicast locators.

 17.2.3.16. SampleIdentity

17.2.3.16. SampleIdentity

	
class eprosima::fastrtps::rtps::SampleIdentity

	This class is used to specify a sample.

Public Functions

	
inline SampleIdentity()

	Default constructor.

Constructs an unknown SampleIdentity.

	
inline SampleIdentity(const SampleIdentity &sample_id)

	Copy constructor.

	
inline SampleIdentity(SampleIdentity &&sample_id)

	Move constructor.

	
inline SampleIdentity &operator=(const SampleIdentity &sample_id)

	Assignment operator.

	
inline SampleIdentity &operator=(SampleIdentity &&sample_id)

	Move constructor.

	
inline bool operator<(const SampleIdentity &sample) const

	To allow using SampleIdentity as map key.

	Parameters

	sample –

	Returns

	

 17.2.3.17. SequenceNumber

17.2.3.17. SequenceNumber

	17.2.3.17.1. c_SequenceNumber_Unknown

	17.2.3.17.2. SequenceNumber_t Operators

	17.2.3.17.3. SequenceNumber_t

	17.2.3.17.4. SequenceNumberDiff

	17.2.3.17.5. SequenceNumberHash

	17.2.3.17.6. SequenceNumberSet_t

	17.2.3.17.7. sort_seqNum

 17.2.3.17.1. c_SequenceNumber_Unknown

17.2.3.17.1. c_SequenceNumber_Unknown

	
const SequenceNumber_t eprosima::fastrtps::rtps::c_SequenceNumber_Unknown = {-1, 0}

	

 17.2.3.17.2. SequenceNumber_t Operators

17.2.3.17.2. SequenceNumber_t Operators

	
inline bool eprosima::fastrtps::rtps::operator==(const SequenceNumber_t &sn1, const SequenceNumber_t &sn2) noexcept

	Compares two SequenceNumber_t.

	Parameters

	
	sn1 – First SequenceNumber_t to compare

	sn2 – Second SequenceNumber_t to compare

	Returns

	True if equal

	
inline bool eprosima::fastrtps::rtps::operator!=(const SequenceNumber_t &sn1, const SequenceNumber_t &sn2) noexcept

	Compares two SequenceNumber_t.

	Parameters

	
	sn1 – First SequenceNumber_t to compare

	sn2 – Second SequenceNumber_t to compare

	Returns

	True if not equal

	
inline bool eprosima::fastrtps::rtps::operator>(const SequenceNumber_t &seq1, const SequenceNumber_t &seq2) noexcept

	Checks if a SequenceNumber_t is greater than other.

	Parameters

	
	seq1 – First SequenceNumber_t to compare

	seq2 – Second SequenceNumber_t to compare

	Returns

	True if the first SequenceNumber_t is greater than the second

	
inline bool eprosima::fastrtps::rtps::operator<(const SequenceNumber_t &seq1, const SequenceNumber_t &seq2) noexcept

	Checks if a SequenceNumber_t is less than other.

	Parameters

	
	seq1 – First SequenceNumber_t to compare

	seq2 – Second SequenceNumber_t to compare

	Returns

	True if the first SequenceNumber_t is less than the second

	
inline bool eprosima::fastrtps::rtps::operator>=(const SequenceNumber_t &seq1, const SequenceNumber_t &seq2) noexcept

	Checks if a SequenceNumber_t is greater or equal than other.

	Parameters

	
	seq1 – First SequenceNumber_t to compare

	seq2 – Second SequenceNumber_t to compare

	Returns

	True if the first SequenceNumber_t is greater or equal than the second

	
inline bool eprosima::fastrtps::rtps::operator<=(const SequenceNumber_t &seq1, const SequenceNumber_t &seq2) noexcept

	Checks if a SequenceNumber_t is less or equal than other.

	Parameters

	
	seq1 – First SequenceNumber_t to compare

	seq2 – Second SequenceNumber_t to compare

	Returns

	True if the first SequenceNumber_t is less or equal than the second

	
inline SequenceNumber_t eprosima::fastrtps::rtps::operator-(const SequenceNumber_t &seq, const uint32_t inc) noexcept

	Subtract one uint32_t from a SequenceNumber_t

	Parameters

	
	seq – Base SequenceNumber_t

	inc – uint32_t to subtract

	Returns

	Result of the subtraction

	
inline SequenceNumber_t eprosima::fastrtps::rtps::operator+(const SequenceNumber_t &seq, const uint32_t inc) noexcept

	Add one uint32_t to a SequenceNumber_t

	Parameters

	
	seq – [in] Base sequence number

	inc – value to add to the base

	Returns

	Result of the addition

	
inline SequenceNumber_t eprosima::fastrtps::rtps::operator-(const SequenceNumber_t &minuend, const SequenceNumber_t &subtrahend) noexcept

	Subtract one SequenceNumber_t to another

	Parameters

	
	minuend – Minuend. Has to be greater than or equal to subtrahend.

	subtrahend – Subtrahend.

	Returns

	Result of the subtraction

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const SequenceNumber_t &seqNum)

	
	Parameters

	
	output –

	seqNum –

	Returns

	

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const std::vector<SequenceNumber_t> &seqNumSet)

	

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const SequenceNumberSet_t &sns)

	Prints a sequence Number set

	Parameters

	
	output – Output Stream

	sns – SequenceNumber set

	Returns

	OStream.

 17.2.3.17.3. SequenceNumber_t

17.2.3.17.3. SequenceNumber_t

	
struct eprosima::fastrtps::rtps::SequenceNumber_t

	Structure SequenceNumber_t, different for each change in the same writer.

Public Functions

	
inline SequenceNumber_t() noexcept

	Default constructor.

	
inline SequenceNumber_t(int32_t hi, uint32_t lo) noexcept

	
	Parameters

	
	hi –

	lo –

	
inline explicit SequenceNumber_t(uint64_t u) noexcept

	
	Parameters

	u –

	
inline uint64_t to64long() const noexcept

	Convert the number to 64 bit.

	Returns

	64 bit representation of the SequenceNumber

	
inline SequenceNumber_t &operator++() noexcept

	Increase SequenceNumber in 1.

	
inline SequenceNumber_t &operator+=(int inc) noexcept

	Increase SequenceNumber.

	Parameters

	inc – Number to add to the SequenceNumber

 17.2.3.17.4. SequenceNumberDiff

17.2.3.17.4. SequenceNumberDiff

	
struct SequenceNumberDiff

	

 17.2.3.17.5. SequenceNumberHash

17.2.3.17.5. SequenceNumberHash

	
struct SequenceNumberHash

	Defines the STL hash function for type SequenceNumber_t.

 17.2.3.17.6. SequenceNumberSet_t

17.2.3.17.6. SequenceNumberSet_t

	
using eprosima::fastrtps::rtps::SequenceNumberSet_t = BitmapRange<SequenceNumber_t, SequenceNumberDiff, 256>

	Structure SequenceNumberSet_t, contains a group of sequencenumbers.

 17.2.3.17.7. sort_seqNum

17.2.3.17.7. sort_seqNum

	
inline bool eprosima::fastrtps::rtps::sort_seqNum(const SequenceNumber_t &s1, const SequenceNumber_t &s2) noexcept

	Sorts two instances of SequenceNumber_t

	Parameters

	
	s1 – First SequenceNumber_t to compare

	s2 – First SequenceNumber_t to compare

	Returns

	True if s1 is less than s2

 17.2.3.18. SerializedPayload

17.2.3.18. SerializedPayload

	17.2.3.18.1. Macro definitions (#define)

	17.2.3.18.2. SerializedPayload_t

 17.2.3.18.1. Macro definitions (#define)

17.2.3.18.1. Macro definitions (#define)

	
CDR_BE 0x0000

	

	
CDR_LE 0x0001

	

	
PL_CDR_BE 0x0002

	

	
PL_CDR_LE 0x0003

	

 17.2.3.18.2. SerializedPayload_t

17.2.3.18.2. SerializedPayload_t

	
struct eprosima::fastrtps::rtps::SerializedPayload_t

	Structure SerializedPayload_t.

Public Functions

	
inline SerializedPayload_t()

	Default constructor.

	
inline explicit SerializedPayload_t(uint32_t len)

	
	Parameters

	len – Maximum size of the payload

	
inline bool copy(const SerializedPayload_t *serData, bool with_limit = true)

	Copy another structure (including allocating new space for the data.)

	Parameters

	
	serData – [in] Pointer to the structure to copy

	with_limit – if true, the function will fail when providing a payload too big

	Returns

	True if correct

	
inline bool reserve_fragmented(SerializedPayload_t *serData)

	Allocate new space for fragmented data.

	Parameters

	serData – [in] Pointer to the structure to copy

	Returns

	True if correct

	
inline void empty()

	Empty the payload.

Public Members

	
uint16_t encapsulation

	Encapsulation of the data as suggested in the RTPS 2.1 specification chapter 10.

	
uint32_t length

	Actual length of the data.

	
octet *data

	Pointer to the data.

	
uint32_t max_size

	Maximum size of the payload.

	
uint32_t pos

	Position when reading.

Public Static Attributes

	
static constexpr size_t representation_header_size = 4u

	Size in bytes of the representation header as specified in the RTPS 2.3 specification chapter 10.

 17.2.3.19. Time_t

17.2.3.19. Time_t

	17.2.3.19.1. Const values

	17.2.3.19.2. Macro definitions (#define)

	17.2.3.19.3. eprosima::fastrtps::Duration_t

	17.2.3.19.4. eprosima::fastrtps::Time_t

	17.2.3.19.5. Time_t Operators

	17.2.3.19.6. Time_t

 17.2.3.19.1. Const values

17.2.3.19.1. Const values

	
const Time_t eprosima::fastrtps::c_TimeInfinite = {Time_t::INFINITE_SECONDS, Time_t::INFINITE_NANOSECONDS}

	Time_t (Duration_t) representing an infinite time. DONT USE IT IN CONSTRUCTORS.

	
const Time_t eprosima::fastrtps::c_TimeZero = {0, 0}

	Time_t (Duration_t) representing a zero time. DONT USE IT IN CONSTRUCTORS.

	
const Time_t eprosima::fastrtps::c_TimeInvalid = {-1, Time_t::INFINITE_NANOSECONDS}

	Time_t (Duration_t) representing an invalid time. DONT USE IT IN CONSTRUCTORS.

 17.2.3.19.2. Macro definitions (#define)

17.2.3.19.2. Macro definitions (#define)

	
TIME_T_INFINITE_SECONDS (eprosima::fastrtps::Time_t::INFINITE_SECONDS)

	

	
TIME_T_INFINITE_NANOSECONDS (eprosima::fastrtps::Time_t::INFINITE_NANOSECONDS)

	

 17.2.3.19.3. eprosima::fastrtps::Duration_t

17.2.3.19.3. eprosima::fastrtps::Duration_t

	
using eprosima::fastrtps::Duration_t = Time_t

	

 17.2.3.19.4. eprosima::fastrtps::Time_t

17.2.3.19.4. eprosima::fastrtps::Time_t

	
struct eprosima::fastrtps::Time_t

	Structure Time_t, used to describe times.

Public Functions

	
Time_t()

	Default constructor. Sets values to zero.

	
Time_t(int32_t sec, uint32_t nsec)

	
	Parameters

	
	sec – Seconds

	nsec – Nanoseconds

	
Time_t(long double sec)

	
	Parameters

	sec – Seconds. The fractional part is converted to nanoseconds.

	
int64_t to_ns() const

	Returns stored time as nanoseconds (including seconds)

Public Static Functions

	
static void now(Time_t &ret)

	Fills a Time_t struct with a representation of the current time.

	Parameters

	ret – Reference to the structure to be filled in.

 17.2.3.19.5. Time_t Operators

17.2.3.19.5. Time_t Operators

	
static inline bool eprosima::fastrtps::rtps::operator==(const Time_t &t1, const Time_t &t2)

	Comparison assignment

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if equal

	
static inline bool eprosima::fastrtps::rtps::operator!=(const Time_t &t1, const Time_t &t2)

	Comparison assignment

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if not equal

	
static inline bool eprosima::fastrtps::rtps::operator<(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is less than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is less than the second

	
static inline bool eprosima::fastrtps::rtps::operator>(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is greater than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is greater than the second

	
static inline bool eprosima::fastrtps::rtps::operator<=(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is less or equal than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is less or equal than the second

	
static inline bool eprosima::fastrtps::rtps::operator>=(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is greater or equal than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is greater or equal than the second

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const Time_t &t)

	

	
static inline Time_t eprosima::fastrtps::rtps::operator+(const Time_t &ta, const Time_t &tb)

	Adds two Time_t.

	Parameters

	
	ta – First Time_t to add

	tb – Second Time_t to add

	Returns

	A new Time_t with the result.

	
static inline Time_t eprosima::fastrtps::rtps::operator-(const Time_t &ta, const Time_t &tb)

	Subtracts two Time_t.

	Parameters

	
	ta – First Time_t to subtract

	tb – Second Time_t to subtract

	Returns

	A new Time_t with the result.

	
static inline bool eprosima::fastrtps::operator==(const Time_t &t1, const Time_t &t2)

	Comparison assignment

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if equal

	
static inline bool eprosima::fastrtps::operator!=(const Time_t &t1, const Time_t &t2)

	Comparison assignment

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if not equal

	
static inline bool eprosima::fastrtps::operator<(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is less than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is less than the second

	
static inline bool eprosima::fastrtps::operator>(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is greater than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is greater than the second

	
static inline bool eprosima::fastrtps::operator<=(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is less or equal than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is less or equal than the second

	
static inline bool eprosima::fastrtps::operator>=(const Time_t &t1, const Time_t &t2)

	Checks if a Time_t is greater or equal than other.

	Parameters

	
	t1 – First Time_t to compare

	t2 – Second Time_t to compare

	Returns

	True if the first Time_t is greater or equal than the second

	
inline std::ostream &eprosima::fastrtps::operator<<(std::ostream &output, const Time_t &t)

	

	
static inline Time_t eprosima::fastrtps::operator+(const Time_t &ta, const Time_t &tb)

	Adds two Time_t.

	Parameters

	
	ta – First Time_t to add

	tb – Second Time_t to add

	Returns

	A new Time_t with the result.

	
static inline Time_t eprosima::fastrtps::operator-(const Time_t &ta, const Time_t &tb)

	Subtracts two Time_t.

	Parameters

	
	ta – First Time_t to subtract

	tb – Second Time_t to subtract

	Returns

	A new Time_t with the result.

 17.2.3.19.6. Time_t

17.2.3.19.6. Time_t

	
class eprosima::fastrtps::rtps::Time_t

	Structure Time_t, used to describe times at RTPS protocol.

Public Functions

	
Time_t() = default

	Default constructor. Sets values to zero.

	
Time_t(int32_t sec, uint32_t frac)

	
	Parameters

	
	sec – Seconds

	frac – Fraction of second

	
Time_t(long double sec)

	
	Parameters

	sec – Seconds. The fractional part is converted to nanoseconds.

	
Time_t(const eprosima::fastrtps::Time_t &time)

	
	Parameters

	time – fastrtps::Time_t, aka. Duration_t.

	
int64_t to_ns() const

	Returns stored time as nanoseconds (including seconds)

	
void from_ns(int64_t nanosecs)

	
	Parameters

	nanosecs – Stores given time as nanoseconds (including seconds)

	
int32_t seconds() const

	Retrieve the seconds field.

	
int32_t &seconds()

	Retrieve the seconds field by ref.

	
void seconds(int32_t sec)

	Sets seconds field.

	
uint32_t nanosec() const

	Retrieve the nanosec field.

	
void nanosec(uint32_t nanos)

	Sets nanoseconds field and updates the fraction.

	
uint32_t fraction() const

	Retrieve the fraction field.

	
uint32_t &fraction()

	Retrieve the fraction field by ref.

	
void fraction(uint32_t frac)

	Sets fraction field and updates the nanoseconds.

Public Static Functions

	
static void now(Time_t &ret)

	Fills a Time_t struct with a representation of the current time.

	Parameters

	ret – Reference to the structure to be filled in.

 17.2.3.20. Token

17.2.3.20. Token

	17.2.3.20.1. AuthenticatedPeerCredentialToken

	17.2.3.20.2. DataHolder

	17.2.3.20.3. DataHolderHelper

	17.2.3.20.4. DataHolderSeq

	17.2.3.20.5. IdentityStatusToken

	17.2.3.20.6. IdentityToken

	17.2.3.20.7. PermissionsCredentialToken

	17.2.3.20.8. PermissionsToken

	17.2.3.20.9. Token

 17.2.3.20.1. AuthenticatedPeerCredentialToken

17.2.3.20.1. AuthenticatedPeerCredentialToken

	
typedef Token eprosima::fastrtps::rtps::AuthenticatedPeerCredentialToken

	

 17.2.3.20.2. DataHolder

17.2.3.20.2. DataHolder

	
class DataHolder

	

 17.2.3.20.3. DataHolderHelper

17.2.3.20.3. DataHolderHelper

	
class DataHolderHelper

	

 17.2.3.20.4. DataHolderSeq

17.2.3.20.4. DataHolderSeq

	
typedef std::vector<DataHolder> eprosima::fastrtps::rtps::DataHolderSeq

	

 17.2.3.20.5. IdentityStatusToken

17.2.3.20.5. IdentityStatusToken

	
typedef Token eprosima::fastrtps::rtps::IdentityStatusToken

	

 17.2.3.20.6. IdentityToken

17.2.3.20.6. IdentityToken

	
typedef Token eprosima::fastrtps::rtps::IdentityToken

	

 17.2.3.20.7. PermissionsCredentialToken

17.2.3.20.7. PermissionsCredentialToken

	
typedef Token eprosima::fastrtps::rtps::PermissionsCredentialToken

	

 17.2.3.20.8. PermissionsToken

17.2.3.20.8. PermissionsToken

	
typedef Token eprosima::fastrtps::rtps::PermissionsToken

	

 17.2.3.20.9. Token

17.2.3.20.9. Token

	
typedef DataHolder eprosima::fastrtps::rtps::Token

	

 17.2.3.21. Types

17.2.3.21. Types

	17.2.3.21.1. BuiltinEndpointSet_t

	17.2.3.21.2. Const values

	17.2.3.21.3. Count_t

	17.2.3.21.4. Macro definitions (#define)

	17.2.3.21.5. DurabilityKind_t

	17.2.3.21.6. Endianness_t

	17.2.3.21.7. EndpointKind_t

	17.2.3.21.8. octet

	17.2.3.21.9. ProtocolVersion_t

	17.2.3.21.10. ReliabilityKind_t

	17.2.3.21.11. SubmessageFlag

	17.2.3.21.12. TopicKind_t

	17.2.3.21.13. VendorId_t

 17.2.3.21.1. BuiltinEndpointSet_t

17.2.3.21.1. BuiltinEndpointSet_t

	
using eprosima::fastrtps::rtps::BuiltinEndpointSet_t = uint32_t

	

 17.2.3.21.2. Const values

17.2.3.21.2. Const values

	
const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_0 = {2, 0}

	

	
const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_1 = {2, 1}

	

	
const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_2 = {2, 2}

	

	
const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_3 = {2, 3}

	

	
const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion

	

	
const VendorId_t eprosima::fastdds::rtps::c_VendorId_Unknown = {0x00, 0x00}

	

	
const VendorId_t eprosima::fastdds::rtps::c_VendorId_eProsima = {0x01, 0x0F}

	

 17.2.3.21.3. Count_t

17.2.3.21.3. Count_t

	
using eprosima::fastrtps::rtps::Count_t = uint32_t

	

 17.2.3.21.4. Macro definitions (#define)

17.2.3.21.4. Macro definitions (#define)

	
BIT0 0x01u

	

	
BIT1 0x02u

	

	
BIT2 0x04u

	

	
BIT3 0x08u

	

	
BIT4 0x10u

	

	
BIT5 0x20u

	

	
BIT6 0x40u

	

	
BIT7 0x80u

	

	
BIT(i) (1U << static_cast<unsigned>(i))

	

 17.2.3.21.5. DurabilityKind_t

17.2.3.21.5. DurabilityKind_t

	
typedef enum eprosima::fastrtps::rtps::DurabilityKind_t eprosima::fastrtps::rtps::DurabilityKind_t

	Durability kind

 17.2.3.21.6. Endianness_t

17.2.3.21.6. Endianness_t

	
enum eprosima::fastrtps::rtps::Endianness_t

	This enumeration represents endianness types.

Values:

	
enumerator BIGEND

	Big endianness.

	
enumerator LITTLEEND

	Little endianness.

 17.2.3.21.7. EndpointKind_t

17.2.3.21.7. EndpointKind_t

	
typedef enum eprosima::fastrtps::rtps::EndpointKind_t eprosima::fastrtps::rtps::EndpointKind_t

	Endpoint kind

 17.2.3.21.8. octet

17.2.3.21.8. octet

	
using eprosima::fastrtps::rtps::octet = unsigned char

	

 17.2.3.21.9. ProtocolVersion_t

17.2.3.21.9. ProtocolVersion_t

	
struct ProtocolVersion_t

	Structure ProtocolVersion_t, contains the protocol version.

	
inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const ProtocolVersion_t &pv)

	Prints a ProtocolVersion

	Parameters

	
	output – Output Stream

	pv – ProtocolVersion

	Returns

	OStream.

 17.2.3.21.10. ReliabilityKind_t

17.2.3.21.10. ReliabilityKind_t

	
typedef enum eprosima::fastrtps::rtps::ReliabilityKind_t eprosima::fastrtps::rtps::ReliabilityKind_t

	Reliability enum used for internal purposes

 17.2.3.21.11. SubmessageFlag

17.2.3.21.11. SubmessageFlag

	
using eprosima::fastrtps::rtps::SubmessageFlag = unsigned char

	

 17.2.3.21.12. TopicKind_t

17.2.3.21.12. TopicKind_t

	
typedef enum eprosima::fastrtps::rtps::TopicKind_t eprosima::fastrtps::rtps::TopicKind_t

	Topic kind.

 17.2.3.21.13. VendorId_t

17.2.3.21.13. VendorId_t

	
using eprosima::fastdds::rtps::VendorId_t = std::array<uint8_t, 2>

	Structure VendorId_t, specifying the vendor Id of the implementation.

 17.2.3.22. WriteParams

17.2.3.22. WriteParams

	
class eprosima::fastrtps::rtps::WriteParams

	This class contains additional information of a CacheChange.

Public Functions

	
inline WriteParams &sample_identity(const SampleIdentity &sample_id)

	Set the value of the sample_identity member.

	Parameters

	sample_id – New value for the sample_identity member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

	
inline WriteParams &sample_identity(SampleIdentity &&sample_id)

	Set the value of the sample_identity member.

	Parameters

	sample_id – New value for the sample_identity member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

	
inline const SampleIdentity &sample_identity() const

	Get the value of the sample_identity member.

	Returns

	Constant reference to the sample_identity member.

	
inline SampleIdentity &sample_identity()

	Set the value of the sample_identity member.

	Returns

	Reference to the sample_identity member.

	
inline WriteParams &related_sample_identity(const SampleIdentity &sample_id)

	Set the value of the related_sample_identity member of this class.

	Parameters

	sample_id – New value for the related_sample_identity member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

	
inline WriteParams &related_sample_identity(SampleIdentity &&sample_id)

	Set the related_sample_identity member of this class.

	Parameters

	sample_id – New value for the related_sample_identity member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

	
inline const SampleIdentity &related_sample_identity() const

	Get the value of the related_sample_identity member.

	Returns

	Constant reference to the related_sample_identity member.

	
inline SampleIdentity &related_sample_identity()

	Set the value of the related_sample_identity member.

	Returns

	Reference to the related_sample_identity member.

	
inline Time_t source_timestamp() const

	Get the value of the source_timestamp member.

	Returns

	Current value of the source_timestamp member.

	
inline Time_t &source_timestamp()

	Set the value of the source_timestamp member.

	Returns

	Reference to the source_timestamp member.

	
inline WriteParams &source_timestamp(const Time_t ×tamp)

	Set the source_timestamp member of this class.

	Parameters

	timestamp – New value for the source_timestamp member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

	
inline WriteParams &source_timestamp(Time_t &×tamp)

	Set the source_timestamp member of this class.

	Parameters

	timestamp – New value for the source_timestamp member.

	Returns

	Reference to the modified object in order to allow daisy chaining.

Public Static Attributes

	
static WriteParams WRITE_PARAM_DEFAULT

	Default value for methods receiving a WriteParams.

Will contain the following values on its members:
	sample_identity: Invalid SampleIdentity

	related_sample_identity: Invalid SampleIdentity

	source_timestamp: Invalid Time_t

 17.2.4. Endpoint

17.2.4. Endpoint

	
class eprosima::fastrtps::rtps::Endpoint

	Class Endpoint, all entities of the RTPS network derive from this class. Although the RTPSParticipant is also defined as an endpoint in the RTPS specification, in this implementation the RTPSParticipant class does not inherit from the endpoint class. Each Endpoint object owns a pointer to the RTPSParticipant it belongs to.

Subclassed by eprosima::fastrtps::rtps::RTPSReader, eprosima::fastrtps::rtps::RTPSWriter

Public Functions

	
inline const GUID_t &getGuid() const

	Get associated GUID

	Returns

	Associated GUID

	
inline RecursiveTimedMutex &getMutex()

	Get mutex

	Returns

	Associated Mutex

	
inline EndpointAttributes &getAttributes()

	Get associated attributes

	Returns

	Endpoint attributes

 17.2.5. Exceptions

17.2.5. Exceptions

	17.2.5.1. Exception

 17.2.5.1. Exception

17.2.5.1. Exception

	
class eprosima::fastrtps::rtps::Exception : public exception

	This abstract class is used to create exceptions.

Subclassed by eprosima::fastrtps::rtps::security::SecurityException

Public Functions

	
virtual ~Exception()

	Default destructor.

	
const int32_t &minor() const

	This function returns the number associated with the system exception.

	Returns

	The number associated with the system exception.

	
void minor(const int32_t &minor)

	This function sets the number that will be associated with the system exception.

	Parameters

	minor – The number that will be associated with the system exception.

	
virtual void raise() const = 0

	This function throws the object as exception.

	
virtual const char *what() const

	This function returns the error message.

	Returns

	The error message.

 17.2.6. Flow control

17.2.6. Flow control

	17.2.6.1. FlowControllerDescriptor

	17.2.6.2. FlowControllerSchedulerPolicy

	17.2.6.3. ThroughputControllerDescriptor

 17.2.6.1. FlowControllerDescriptor

17.2.6.1. FlowControllerDescriptor

	
struct eprosima::fastdds::rtps::FlowControllerDescriptor

	Configuration values for creating flow controllers.

This descriptor is used to define the configuration applied in the creation of a flow controller.
	Since
	2.4.0

Public Members

	
const char *name = nullptr

	Name of the flow controller.

	
FlowControllerSchedulerPolicy scheduler = FlowControllerSchedulerPolicy::FIFO

	Scheduler policy used by the flow controller.

Default value: FlowControllerScheduler::FIFO_SCHEDULER

	
int32_t max_bytes_per_period = 0

	Maximum number of bytes to be sent to network per period.

Range of bytes: [1, 2147483647]; 0 value means no limit. Default value: 0

	
uint64_t period_ms = 100

	Period time in milliseconds.

Period of time on which the flow controller is allowed to send max_bytes_per_period. Default value: 100ms.

	
const char *const eprosima::fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT

	Name of the default flow controller.

	
const char *const eprosima::fastdds::rtps::FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT

	Name of the default flow controller for statistics writers.

 17.2.6.2. FlowControllerSchedulerPolicy

17.2.6.2. FlowControllerSchedulerPolicy

	
enum eprosima::fastdds::rtps::FlowControllerSchedulerPolicy

	Supported scheduler policy by a flow controller.

A flow controller’s scheduler policy takes the decision of which samples are the next ones to be sent to the network. Fast DDS flow controller supports several scheduler policies listed in this enumeration.

Values:

	
enumerator FIFO

	FIFO scheduler policy: first written sample by user, first sample scheduled to be sent to network.

	
enumerator ROUND_ROBIN

	Round Robin scheduler policy: schedules one sample of each DataWriter in circular order.

	
enumerator HIGH_PRIORITY

	High priority scheduler policy: samples with highest priority are scheduled first to be sent to network.

	
enumerator PRIORITY_WITH_RESERVATION

	Priority with reservation scheduler policy: guarantee each DataWriter’s minimum reservation of throughput. Samples not fitting the reservation are scheduled by priority.

 17.2.6.3. ThroughputControllerDescriptor

17.2.6.3. ThroughputControllerDescriptor

	
struct eprosima::fastrtps::rtps::ThroughputControllerDescriptor

	Descriptor for a Throughput Controller, containing all constructor information for it.

	
Deprecated:

	Use FlowControllerDescriptor

Public Members

	
uint32_t bytesPerPeriod

	Packet size in bytes that this controller will allow in a given period.

	
uint32_t periodMillisecs

	Window of time in which no more than ‘bytesPerPeriod’ bytes are allowed.

 17.2.7. History

17.2.7. History

	17.2.7.1. History

	17.2.7.2. IChangePool

	17.2.7.3. IPayloadPool

	17.2.7.4. ReaderHistory

	17.2.7.5. WriterHistory

 17.2.7.1. History

17.2.7.1. History

	
class eprosima::fastrtps::rtps::History

	Class History, container of the different CacheChanges and the methods to access them.

Subclassed by eprosima::fastrtps::rtps::ReaderHistory, eprosima::fastrtps::rtps::WriterHistory

Public Functions

	
inline bool reserve_Cache(CacheChange_t **change, const std::function<uint32_t()> &calculateSizeFunc)

	Reserve a CacheChange_t from the CacheChange pool.

Warning

This method has been deprecated and will be removed on v3.0.0

	Parameters

	
	change – [out] Pointer to pointer to the CacheChange_t to reserve

	calculateSizeFunc – [in] Function to calculate the size of the payload.

	Returns

	True if reserved

	
inline bool reserve_Cache(CacheChange_t **change, uint32_t dataSize)

	Reserve a CacheChange_t from the CacheChange pool.

Warning

This method has been deprecated and will be removed on v3.0.0

	Parameters

	
	change – [out] Pointer to pointer to the CacheChange_t to reserve

	dataSize – [in] Required size for the payload.

	Returns

	True if reserved

	
inline void release_Cache(CacheChange_t *ch)

	release a previously reserved CacheChange_t.

Warning

This method has been deprecated and will be removed on v3.0.0

	Parameters

	ch – Pointer to the CacheChange_t.

	
inline bool isFull()

	Check if the history is full

	Returns

	true if the History is full.

	
inline size_t getHistorySize()

	Get the History size.

	Returns

	Size of the history.

	
const_iterator find_change_nts(CacheChange_t *ch)

	Find a specific change in the history using the matches_change method criteria. No Thread Safe

	Parameters

	ch – Pointer to the CacheChange_t to search for.

	Returns

	an iterator if a suitable change is found

	
virtual iterator remove_change_nts(const_iterator removal, bool release = true)

	Remove a specific change from the history. No Thread Safe

	Parameters

	
	removal – iterator to the CacheChange_t to remove.

	release – defaults to true and hints if the CacheChange_t should return to the pool

	Returns

	iterator to the next CacheChange_t or end iterator.

	
bool remove_all_changes()

	Remove all changes from the History

	Returns

	True if everything was correctly removed.

	
bool remove_change(CacheChange_t *ch)

	Remove a specific change from the history.

	Parameters

	ch – Pointer to the CacheChange_t.

	Returns

	True if removed.

	
inline const_iterator find_change(CacheChange_t *ch)

	Find a specific change in the history using the matches_change method criteria.

	Parameters

	ch – Pointer to the CacheChange_t to search for.

	Returns

	an iterator if a suitable change is found

	
virtual bool matches_change(const CacheChange_t *ch_inner, CacheChange_t *ch_outer)

	Verifies if an element of the changes collection matches a given change Derived classes have more info on how to identify univocally a change and should override.

	Parameters

	
	ch_inner – element of the collection to compare with the given change

	ch_outer – Pointer to the CacheChange_t to identify.

	Returns

	true if the iterator identifies this change.

	
inline iterator remove_change(const_iterator removal, bool release = true)

	Remove a specific change from the history.

	Parameters

	
	removal – iterator to the CacheChange_t to remove.

	release – defaults to true and hints if the CacheChange_t should return to the pool

	Returns

	iterator to the next CacheChange_t or end iterator.

	
inline iterator changesBegin()

	Get the beginning of the changes history iterator.

	Returns

	Iterator to the beginning of the vector.

	
inline iterator changesEnd()

	Get the end of the changes history iterator.

	Returns

	Iterator to the end of the vector.

	
bool get_min_change(CacheChange_t **min_change)

	Get the minimum CacheChange_t.

	Parameters

	min_change – Pointer to pointer to the minimum change.

	Returns

	True if correct.

	
bool get_max_change(CacheChange_t **max_change)

	Get the maximum CacheChange_t.

	Parameters

	max_change – Pointer to pointer to the maximum change.

	Returns

	True if correct.

	
inline uint32_t getTypeMaxSerialized()

	Get the maximum serialized payload size

	Returns

	Maximum serialized payload size

	
inline RecursiveTimedMutex *getMutex() const

	Get the mutex.

	Returns

	Mutex

	
bool get_earliest_change(CacheChange_t **change)

	A method to get the change with the earliest timestamp.

	Parameters

	change – Pointer to pointer to earliest change

	Returns

	True on success

Public Members

	
HistoryAttributes m_att

	Attributes of the History.

 17.2.7.2. IChangePool

17.2.7.2. IChangePool

	
class eprosima::fastrtps::rtps::IChangePool

	An interface for classes responsible of cache changes allocation management.

Public Functions

	
virtual bool reserve_cache(CacheChange_t *&cache_change) = 0

	Get a new cache change from the pool.

	Parameters

	cache_change – [out] Pointer to the new cache change.

	Returns

	whether the operation succeeded or not

	Pre

	cache_change is nullptr

	Post

	
	cache_change is not nullptr

	*cache_change equals CacheChange_t() except for the contents of serializedPayload

	
virtual bool release_cache(CacheChange_t *cache_change) = 0

	Return a cache change to the pool.

	Parameters

	cache_change – [in] Pointer to the cache change to release.

	Returns

	whether the operation succeeded or not

	Pre

	
	cache_change is not nullptr

	cache_change points to a cache change obtained from a call to this->reserve_cache

 17.2.7.3. IPayloadPool

17.2.7.3. IPayloadPool

	
class eprosima::fastrtps::rtps::IPayloadPool

	An interface for classes responsible of serialized payload management.

Public Functions

	
virtual bool get_payload(uint32_t size, CacheChange_t &cache_change) = 0

	Get a serialized payload for a new sample.

This method will usually be called in one of the following situations:
	When a writer creates a new cache change

	When a reader receives the first fragment of a cache change

In both cases, the received size will be for the whole serialized payload.

	Parameters

	
	size – [in] Number of bytes required for the serialized payload. Should be greater than 0.

	cache_change – [inout] Cache change to assign the payload to

	Returns

	whether the operation succeeded or not

	Pre

	Fields writerGUID and sequenceNumber of cache_change are either:
	Both equal to unknown (meaning a writer is creating a new change)

	Both different from unknown (meaning a reader has received the first fragment of a cache change)

	Post

	
	Field cache_change.payload_owner equals this

	Field serializedPayload.data points to a buffer of at least size bytes

	Field serializedPayload.max_size is greater than or equal to size

	
virtual bool get_payload(SerializedPayload_t &data, IPayloadPool *&data_owner, CacheChange_t &cache_change) = 0

	Assign a serialized payload to a new sample.

This method will usually be called when a reader receives a whole cache change.

Note

data and data_owner are received as references to accommodate the case where several readers receive the same payload. If the payload has no owner, it means it is allocated on the stack of a reception thread, and a copy should be performed. The pool may decide in that case to point data.data to the new copy and take ownership of the payload. In that case, when the reception thread is done with the payload (after all readers have been informed of the received data), method release_payload will be called to indicate that the reception thread is not using the payload anymore.

Warning

data_owner can only be changed from nullptr to this. If a value different from nullptr is received it should be left unchanged.

Warning

data fields can only be changed when data_owner is nullptr. If a value different from nullptr is received all fields in data should be left unchanged.

	Parameters

	
	data – [inout] Serialized payload received

	data_owner – [inout] Payload pool owning incoming data

	cache_change – [inout] Cache change to assign the payload to

	Returns

	whether the operation succeeded or not

	Pre

	
	Field cache_change.writerGUID is not unknown

	Field cache_change.sequenceNumber is not unknown

	Post

	
	Field cache_change.payload_owner equals this

	Field cache_change.serializedPayload.data points to a buffer of at least data.length bytes

	Field cache_change.serializedPayload.length is equal to data.length

	Field cache_change.serializedPayload.max_size is greater than or equal to data.length

	Content of cache_change.serializedPayload.data is the same as data.data

	
virtual bool release_payload(CacheChange_t &cache_change) = 0

	Release a serialized payload from a sample.

This method will be called when a cache change is removed from a history.

	Parameters

	cache_change – [inout] Cache change to assign the payload to

	Returns

	whether the operation succeeded or not

	Pre

	
	Field payload_owner of cache_change equals this

	Post

	
	Field payload_owner of cache_change is nullptr

 17.2.7.4. ReaderHistory

17.2.7.4. ReaderHistory

	
class eprosima::fastrtps::rtps::ReaderHistory : public eprosima::fastrtps::rtps::History

	Class ReaderHistory, container of the different CacheChanges of a reader

Public Functions

	
ReaderHistory(const HistoryAttributes &att)

	Constructor of the ReaderHistory. It needs a HistoryAttributes.

	
virtual bool can_change_be_added_nts(const GUID_t &writer_guid, uint32_t total_payload_size, size_t unknown_missing_changes_up_to, bool &will_never_be_accepted) const

	Check if a new change can be added to this history.

	Parameters

	
	writer_guid – [in] GUID of the writer where the change came from.

	total_payload_size – [in] Total payload size of the incoming change.

	unknown_missing_changes_up_to – [in] The number of changes from the same writer with a lower sequence number that could potentially be received in the future.

	will_never_be_accepted – [out] When the method returns false, this parameter will inform whether the change could be accepted in the future or not.

	Pre

	change should not be present in the history

	Returns

	Whether a call to received_change will succeed when called with the same arguments.

	
virtual bool received_change(CacheChange_t *change, size_t unknown_missing_changes_up_to)

	Virtual method that is called when a new change is received. In this implementation this method just calls add_change. The user can overload this method in case he needs to perform additional checks before adding the change.

	Parameters

	
	change – Pointer to the change

	unknown_missing_changes_up_to – The number of changes from the same writer with a lower sequence number that could potentially be received in the future.

	Returns

	True if added.

	
inline virtual bool received_change(CacheChange_t *change, size_t unknown_missing_changes_up_to, fastdds::dds::SampleRejectedStatusKind &rejection_reason)

	Virtual method that is called when a new change is received. In this implementation this method just calls add_change. The user can overload this method in case he needs to perform additional checks before adding the change.

	Parameters

	
	change – [in] Pointer to the change

	unknown_missing_changes_up_to – [in] The number of changes from the same writer with a lower sequence number that could potentially be received in the future.

	rejection_reason – [out] In case of been rejected the sample, it will contain the reason of the rejection.

	Returns

	True if added.

	
inline virtual bool completed_change(rtps::CacheChange_t *change)

	Called when a fragmented change is received completely by the Subscriber. Will find its instance and store it.

	Parameters

	change – [in] The received change

	Pre

	Change should be already present in the history.

	Returns

	

	
inline virtual bool completed_change(CacheChange_t *change, size_t unknown_missing_changes_up_to, fastdds::dds::SampleRejectedStatusKind &rejection_reason)

	Called when a fragmented change is received completely by the Subscriber. Will find its instance and store it.

	Parameters

	
	change – [in] The received change

	unknown_missing_changes_up_to – [in] Number of missing changes before this one

	rejection_reason – [out] In case of been rejected the sample, it will contain the reason of the rejection.

	Pre

	Change should be already present in the history.

	Returns

	

	
bool add_change(CacheChange_t *a_change)

	Add a CacheChange_t to the ReaderHistory.

	Parameters

	a_change – Pointer to the CacheChange to add.

	Returns

	True if added.

	
virtual iterator remove_change_nts(const_iterator removal, bool release = true) override

	Remove a specific change from the history. No Thread Safe

	Parameters

	
	removal – iterator to the change for removal

	release – specifies if the change must be returned to the pool

	Returns

	iterator to the next change if any

	
virtual bool matches_change(const CacheChange_t *inner, CacheChange_t *outer) override

	Criteria to search a specific CacheChange_t on history

	Parameters

	
	inner – change to compare

	outer – change for comparison

	Returns

	true if inner matches outer criteria

	
bool remove_changes_with_guid(const GUID_t &a_guid)

	Remove all changes from the History that have a certain guid.

	Parameters

	a_guid – Pointer to the target guid to search for.

	Returns

	True if successful, even if no changes have been removed.

	
bool remove_fragmented_changes_until(const SequenceNumber_t &seq_num, const GUID_t &writer_guid)

	Remove all fragmented changes from certain writer up to certain sequence number.

	Parameters

	
	seq_num – First SequenceNumber_t not to be removed.

	writer_guid – GUID of the writer for which changes should be looked for.

	Returns

	True if successful, even if no changes have been removed.

	
virtual void writer_unmatched(const GUID_t &writer_guid, const SequenceNumber_t &last_notified_seq)

	Called when a writer is unmatched from the reader holding this history.

This method will remove all the changes on the history that came from the writer being unmatched and which have not yet been notified to the user.

	Parameters

	
	writer_guid – GUID of the writer being unmatched.

	last_notified_seq – Last sequence number from the specified writer that was notified to the user.

	
inline virtual void writer_update_its_ownership_strength_nts(const GUID_t &writer_guid, const uint32_t ownership_strength)

	This function should be called by reader if a writer updates its ownership strength.

	Parameters

	
	writer_guid – [in] Guid of the writer which changes its ownership strength.

	ownership_strength – [out] New value of the writer’s Ownership strength.

	
bool remove_change(CacheChange_t *ch)

	Introduce base class method into scope.

	
inline iterator remove_change(const_iterator removal, bool release = true)

	Introduce base class method into scope.

 17.2.7.5. WriterHistory

17.2.7.5. WriterHistory

	
class eprosima::fastrtps::rtps::WriterHistory : public eprosima::fastrtps::rtps::History

	Class WriterHistory, container of the different CacheChanges of a writer

Public Functions

	
WriterHistory(const HistoryAttributes &att)

	Constructor of the WriterHistory.

	
bool add_change(CacheChange_t *a_change)

	Add a CacheChange_t to the WriterHistory.

	Parameters

	a_change – Pointer to the CacheChange_t to be added.

	Returns

	True if added.

	
bool add_change(CacheChange_t *a_change, WriteParams &wparams)

	Add a CacheChange_t to the WriterHistory.

	Parameters

	
	a_change – Pointer to the CacheChange_t to be added.

	wparams – Extra write parameters.

	Returns

	True if added.

	
virtual iterator remove_change_nts(const_iterator removal, bool release = true) override

	Remove a specific change from the history. No Thread Safe

	Parameters

	
	removal – iterator to the change for removal

	release – specifies if the change should be return to the pool

	Returns

	iterator to the next change if any

	
virtual bool matches_change(const CacheChange_t *inner, CacheChange_t *outer) override

	Criteria to search a specific CacheChange_t on history

	Parameters

	
	inner – change to compare

	outer – change for comparison

	Returns

	true if inner matches outer criteria

	
bool remove_min_change()

	Remove the CacheChange_t with the minimum sequenceNumber.

	Returns

	True if correctly removed.

	
bool remove_change(CacheChange_t *ch)

	Introduce base class method into scope.

	
inline iterator remove_change(const_iterator removal, bool release = true)

	Introduce base class method into scope.

 17.2.8. RTPSParticipant

17.2.8. RTPSParticipant

	17.2.8.1. ParticipantDiscoveryInfo
	17.2.8.1.1. ParticipantAuthenticationInfo

	17.2.8.1.2. ParticipantDiscoveryInfo

	17.2.8.1.3. ParticipantProxyData

	17.2.8.1.4. ReaderDiscoveryInfo

	17.2.8.1.5. ReaderProxyData

	17.2.8.1.6. WriterDiscoveryInfo

	17.2.8.1.7. WriterProxyData

	17.2.8.2. RTPSParticipant

	17.2.8.3. RTPSParticipantListener

 17.2.8.1. ParticipantDiscoveryInfo

17.2.8.1. ParticipantDiscoveryInfo

	17.2.8.1.1. ParticipantAuthenticationInfo

	17.2.8.1.2. ParticipantDiscoveryInfo

	17.2.8.1.3. ParticipantProxyData

	17.2.8.1.4. ReaderDiscoveryInfo

	17.2.8.1.5. ReaderProxyData

	17.2.8.1.6. WriterDiscoveryInfo

	17.2.8.1.7. WriterProxyData

 17.2.8.1.1. ParticipantAuthenticationInfo

17.2.8.1.1. ParticipantAuthenticationInfo

	
struct eprosima::fastrtps::rtps::ParticipantAuthenticationInfo

	
Public Members

	
AUTHENTICATION_STATUS status

	Status.

	
GUID_t guid

	Associated GUID.

	
inline bool eprosima::fastrtps::rtps::operator==(const ParticipantAuthenticationInfo &l, const ParticipantAuthenticationInfo &r)

	

 17.2.8.1.2. ParticipantDiscoveryInfo

17.2.8.1.2. ParticipantDiscoveryInfo

	
struct eprosima::fastrtps::rtps::ParticipantDiscoveryInfo

	Class ParticipantDiscoveryInfo with discovery information of the Participant.

Public Types

	
enum DISCOVERY_STATUS

	Enum DISCOVERY_STATUS, four different status for discovered participants.

Values:

	
enumerator DISCOVERED_PARTICIPANT

	

	
enumerator CHANGED_QOS_PARTICIPANT

	

	
enumerator REMOVED_PARTICIPANT

	

	
enumerator DROPPED_PARTICIPANT

	

Public Members

	
DISCOVERY_STATUS status

	Status.

	
const ParticipantProxyData &info

	Participant discovery info.

	
Todo:

	This is a reference to an object that could be deleted, thus it should not be a reference (intraprocess case -> BlackboxTests_DDS_PIM.DDSDiscovery.ParticipantProxyPhysicalData).

 17.2.8.1.3. ParticipantProxyData

17.2.8.1.3. ParticipantProxyData

	
class eprosima::fastrtps::rtps::ParticipantProxyData

	ParticipantProxyData class is used to store and convert the information Participants send to each other during the PDP phase.

Public Functions

	
bool updateData(ParticipantProxyData &pdata)

	Update the data.

	Parameters

	pdata – Object to copy the data from

	Returns

	True on success

	
uint32_t get_serialized_size(bool include_encapsulation) const

	Get the size in bytes of the CDR serialization of this object.

	Parameters

	include_encapsulation – Whether to include the size of the encapsulation info.

	Returns

	size in bytes of the CDR serialization.

	
bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation)

	Write as a parameter list on a CDRMessage_t

	Returns

	True on success

	
bool readFromCDRMessage(CDRMessage_t *msg, bool use_encapsulation, const NetworkFactory &network, bool is_shm_transport_available)

	Read the parameter list from a received CDRMessage_t

	Returns

	True on success

	
void clear()

	Clear the data (restore to default state).

	
void copy(const ParticipantProxyData &pdata)

	Copy the data from another object.

	Parameters

	pdata – Object to copy the data from

	
void set_persistence_guid(const GUID_t &guid)

	Set participant persistent GUID_t

	Parameters

	guid – valid GUID_t

	
GUID_t get_persistence_guid() const

	Retrieve participant persistent GUID_t

	Returns

	guid persistent GUID_t or c_Guid_Unknown

	
void set_sample_identity(const SampleIdentity &sid)

	Set participant client server sample identity

	Parameters

	sid – valid SampleIdentity

	
SampleIdentity get_sample_identity() const

	Retrieve participant SampleIdentity

	Returns

	SampleIdentity

	
void set_backup_stamp(const GUID_t &guid)

	Identifies the participant as client of the given server

	Parameters

	guid – valid backup server GUID

	
GUID_t get_backup_stamp() const

	Retrieves BACKUP server stamp. On deserialization hints if lease duration must be enforced

	Returns

	GUID

Public Members

	
ProtocolVersion_t m_protocolVersion

	Protocol version.

	
GUID_t m_guid

	GUID.

	
VendorId_t m_VendorId

	Vendor ID.

	
bool m_expectsInlineQos

	Expects Inline QOS.

	
BuiltinEndpointSet_t m_availableBuiltinEndpoints

	Available builtin endpoints.

	
RemoteLocatorList metatraffic_locators

	Metatraffic locators.

	
RemoteLocatorList default_locators

	Default locators.

	
Count_t m_manualLivelinessCount

	Manual liveliness count.

	
string_255 m_participantName

	Participant name.

	
BUILTIN_PARTICIPANT_DATA_MAX_SIZE 100

	

	
TYPELOOKUP_DATA_MAX_SIZE 5000

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_ANNOUNCER (0x00000001 << 0)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_DETECTOR (0x00000001 << 1)

	

	
DISC_BUILTIN_ENDPOINT_PUBLICATION_ANNOUNCER (0x00000001 << 2)

	

	
DISC_BUILTIN_ENDPOINT_PUBLICATION_DETECTOR (0x00000001 << 3)

	

	
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_ANNOUNCER (0x00000001 << 4)

	

	
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_DETECTOR (0x00000001 << 5)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_ANNOUNCER (0x00000001 << 6)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_DETECTOR (0x00000001 << 7)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_ANNOUNCER (0x00000001 << 8)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_DETECTOR (0x00000001 << 9)

	

	
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_WRITER (0x00000001 << 10)

	

	
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_READER (0x00000001 << 11)

	

	
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_WRITER (0x00000001 << 12)

	

	
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_READER (0x00000001 << 13)

	

	
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_WRITER (0x00000001 << 14)

	

	
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_READER (0x00000001 << 15)

	

	
DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_ANNOUNCER (0x00000001 << 16)

	

	
DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_DETECTOR (0x00000001 << 17)

	

	
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_ANNOUNCER (0x00000001 << 18)

	

	
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_DETECTOR (0x00000001 << 19)

	

	
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_WRITER (0x00000001 << 20)

	

	
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_READER (0x00000001 << 21)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_ANNOUNCER (0x00000001 << 26)

	

	
DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_DETECTOR (0x00000001 << 27)

	

 17.2.8.1.4. ReaderDiscoveryInfo

17.2.8.1.4. ReaderDiscoveryInfo

	
struct eprosima::fastrtps::rtps::ReaderDiscoveryInfo

	Class ReaderDiscoveryInfo with discovery information of the reader.

Public Types

	
enum DISCOVERY_STATUS

	Enum DISCOVERY_STATUS, four different status for discovered readers.

Values:

	
enumerator DISCOVERED_READER

	

	
enumerator CHANGED_QOS_READER

	

	
enumerator REMOVED_READER

	

Public Members

	
DISCOVERY_STATUS status

	Status.

	
const ReaderProxyData &info

	Participant discovery info.

 17.2.8.1.5. ReaderProxyData

17.2.8.1.5. ReaderProxyData

	
class eprosima::fastrtps::rtps::ReaderProxyData

	Class ReaderProxyData, used to represent all the information on a Reader (both local and remote) with the purpose of implementing the discovery.
	

Public Functions

	
inline void set_sample_identity(const SampleIdentity &sid)

	Set participant client server sample identity

	Parameters

	sid – valid SampleIdentity

	
inline SampleIdentity get_sample_identity() const

	Retrieve participant SampleIdentity

	Returns

	SampleIdentity

	
uint32_t get_serialized_size(bool include_encapsulation) const

	Get the size in bytes of the CDR serialization of this object.

	Parameters

	include_encapsulation – Whether to include the size of the encapsulation info.

	Returns

	size in bytes of the CDR serialization.

	
bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation) const

	Write as a parameter list on a CDRMessage_t

	Returns

	True on success

	
bool readFromCDRMessage(CDRMessage_t *msg, const NetworkFactory &network, bool is_shm_transport_available)

	Read the information from a CDRMessage_t. The position of the message must be in the beginning on the parameter list.

	Parameters

	
	msg – Pointer to the message.

	network – Reference to network factory for locator validation and transformation

	is_shm_transport_available – Indicates whether the Reader is reachable by SHM.

	Returns

	true on success

	
void clear()

	Clear (put to default) the information.

	
bool is_update_allowed(const ReaderProxyData &rdata) const

	Check if this object can be updated with the information on another object.

	Parameters

	rdata – ReaderProxyData object to be checked.

	Returns

	true if this object can be updated with the information on rdata.

	
void update(ReaderProxyData *rdata)

	Update the information (only certain fields will be updated).

	Parameters

	rdata – Pointer to the object from which we are going to update.

	
void copy(ReaderProxyData *rdata)

	Copy ALL the information from another object.

	Parameters

	rdata – Pointer to the object from where the information must be copied.

Public Members

	
ReaderQos m_qos

	Reader Qos.

	
security::EndpointSecurityAttributesMask security_attributes_

	EndpointSecurityInfo.endpoint_security_attributes.

	
security::PluginEndpointSecurityAttributesMask plugin_security_attributes_

	EndpointSecurityInfo.plugin_endpoint_security_attributes.

 17.2.8.1.6. WriterDiscoveryInfo

17.2.8.1.6. WriterDiscoveryInfo

	
struct eprosima::fastrtps::rtps::WriterDiscoveryInfo

	Class WriterDiscoveryInfo with discovery information of the writer.

Public Types

	
enum DISCOVERY_STATUS

	Enum DISCOVERY_STATUS, four different status for discovered writers.

Values:

	
enumerator DISCOVERED_WRITER

	

	
enumerator CHANGED_QOS_WRITER

	

	
enumerator REMOVED_WRITER

	

Public Members

	
DISCOVERY_STATUS status

	Status.

	
const WriterProxyData &info

	Participant discovery info.

 17.2.8.1.7. WriterProxyData

17.2.8.1.7. WriterProxyData

	
class eprosima::fastrtps::rtps::WriterProxyData

	
Public Functions

	
inline void set_sample_identity(const SampleIdentity &sid)

	Set participant client server sample identity

	Parameters

	sid – valid SampleIdentity

	
inline SampleIdentity get_sample_identity() const

	Retrieve participant SampleIdentity

	Returns

	SampleIdentity

	
void clear()

	Clear the information and return the object to the default state.

	
bool is_update_allowed(const WriterProxyData &wdata) const

	Check if this object can be updated with the information on another object.

	Parameters

	wdata – WriterProxyData object to be checked.

	Returns

	true if this object can be updated with the information on wdata.

	
void update(WriterProxyData *wdata)

	Update certain parameters from another object.

	Parameters

	wdata – pointer to object with new information.

	
void copy(WriterProxyData *wdata)

	Copy all information from another object.

	
uint32_t get_serialized_size(bool include_encapsulation) const

	Get the size in bytes of the CDR serialization of this object.

	Parameters

	include_encapsulation – Whether to include the size of the encapsulation info.

	Returns

	size in bytes of the CDR serialization.

	
bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation) const

	Write as a parameter list on a CDRMessage_t.

	
bool readFromCDRMessage(CDRMessage_t *msg, const NetworkFactory &network, bool is_shm_transport_possible)

	Read a parameter list from a CDRMessage_t.

Public Members

	
WriterQos m_qos

	WriterQOS.

	
security::EndpointSecurityAttributesMask security_attributes_

	EndpointSecurityInfo.endpoint_security_attributes.

	
security::PluginEndpointSecurityAttributesMask plugin_security_attributes_

	EndpointSecurityInfo.plugin_endpoint_security_attributes.

 17.2.8.2. RTPSParticipant

17.2.8.2. RTPSParticipant

	
class eprosima::fastrtps::rtps::RTPSParticipant

	Class RTPSParticipant, contains the public API for a RTPSParticipant.

Public Functions

	
const GUID_t &getGuid() const

	Get the GUID_t of the RTPSParticipant.

	
void announceRTPSParticipantState()

	Force the announcement of the RTPSParticipant state.

	
void stopRTPSParticipantAnnouncement()

	Stop the RTPSParticipant announcement period. //TODO remove this method because is only for testing.

	
void resetRTPSParticipantAnnouncement()

	Reset the RTPSParticipant announcement period. //TODO remove this method because is only for testing.

	
bool newRemoteWriterDiscovered(const GUID_t &pguid, int16_t userDefinedId)

	Indicate the Participant that you have discovered a new Remote Writer. This method can be used by the user to implements its own Static Endpoint Discovery Protocol

	Parameters

	
	pguid – GUID_t of the discovered Writer.

	userDefinedId – ID of the discovered Writer.

	Returns

	True if correctly added.

	
bool newRemoteReaderDiscovered(const GUID_t &pguid, int16_t userDefinedId)

	Indicate the Participant that you have discovered a new Remote Reader. This method can be used by the user to implements its own Static Endpoint Discovery Protocol

	Parameters

	
	pguid – GUID_t of the discovered Reader.

	userDefinedId – ID of the discovered Reader.

	Returns

	True if correctly added.

	
uint32_t getRTPSParticipantID() const

	Get the Participant ID.

	Returns

	Participant ID.

	
bool registerWriter(RTPSWriter *Writer, const TopicAttributes &topicAtt, const WriterQos &wqos)

	Register a RTPSWriter in the builtin Protocols.

	Parameters

	
	Writer – Pointer to the RTPSWriter.

	topicAtt – Topic Attributes where you want to register it.

	wqos – WriterQos.

	Returns

	True if correctly registered.

	
bool registerReader(RTPSReader *Reader, const TopicAttributes &topicAtt, const ReaderQos &rqos, const fastdds::rtps::ContentFilterProperty *content_filter = nullptr)

	Register a RTPSReader in the builtin Protocols.

	Parameters

	
	Reader – Pointer to the RTPSReader.

	topicAtt – Topic Attributes where you want to register it.

	rqos – ReaderQos.

	content_filter – Optional content filtering information.

	Returns

	True if correctly registered.

	
void update_attributes(const RTPSParticipantAttributes &patt)

	Update participant attributes.

	Parameters

	patt – New participant attributes.

	
bool updateWriter(RTPSWriter *Writer, const TopicAttributes &topicAtt, const WriterQos &wqos)

	Update writer QOS

	Parameters

	
	Writer – to update

	topicAtt – Topic Attributes where you want to register it.

	wqos – New writer QoS

	Returns

	true on success

	
bool updateReader(RTPSReader *Reader, const TopicAttributes &topicAtt, const ReaderQos &rqos, const fastdds::rtps::ContentFilterProperty *content_filter = nullptr)

	Update reader QOS

	Parameters

	
	Reader – Pointer to the RTPSReader to update

	topicAtt – Topic Attributes where you want to register it.

	rqos – New reader QoS

	content_filter – Optional content filtering information.

	Returns

	true on success

	
std::vector<std::string> getParticipantNames() const

	Returns a list with the participant names.

	Returns

	list of participant names.

	
const RTPSParticipantAttributes &getRTPSParticipantAttributes() const

	Get a copy of the actual state of the RTPSParticipantParameters

	Returns

	RTPSParticipantAttributes copy of the params.

	
uint32_t getMaxMessageSize() const

	Retrieves the maximum message size.

	
uint32_t getMaxDataSize() const

	Retrieves the maximum data size.

	
WLP *wlp() const

	A method to retrieve the built-in writer liveliness protocol.

	Returns

	Writer liveliness protocol

	
bool get_new_entity_id(EntityId_t &entityId)

	Fills a new entityId if set to unknown, or checks if a entity already exists with that entityId in other case.

	Parameters

	entityId – to check of fill. If filled, EntityKind will be “vendor-specific” (0x01)

	Returns

	True if filled or the entityId is available.

	
void set_check_type_function(std::function<bool(const std::string&)> &&check_type)

	Allows setting a function to check if a type is already known by the top level API participant.

	
fastdds::dds::builtin::TypeLookupManager *typelookup_manager() const

	Retrieves the built-in typelookup service manager.

	Returns

	

	
void set_listener(RTPSParticipantListener *listener)

	Modifies the participant listener.

	Parameters

	listener –

	
uint32_t get_domain_id() const

	Retrieves the DomainId.

	
void enable()

	This operation enables the RTPSParticipantImpl.

	
bool is_security_enabled_for_writer(const WriterAttributes &writer_attributes)

	Checks whether the writer has security attributes enabled.

	Parameters

	writer_attributes – Attributes of the writer as given to the RTPSParticipantImpl::create_writer

	
bool is_security_enabled_for_reader(const ReaderAttributes &reader_attributes)

	Checks whether the reader has security attributes enabled.

	Parameters

	reader_attributes – Attributes of the reader as given to the RTPSParticipantImpl::create_reader

 17.2.8.3. RTPSParticipantListener

17.2.8.3. RTPSParticipantListener

	
class eprosima::fastrtps::rtps::RTPSParticipantListener

	Class RTPSParticipantListener with virtual method that the user can overload to respond to certain events.

Public Functions

	
inline virtual void onParticipantDiscovery(RTPSParticipant *participant, ParticipantDiscoveryInfo &&info)

	This method is called when a new Participant is discovered, or a previously discovered participant changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote participant.

	info – Remote participant information. User can take ownership of the object.

	
inline virtual void onReaderDiscovery(RTPSParticipant *participant, ReaderDiscoveryInfo &&info)

	This method is called when a new Reader is discovered, or a previously discovered reader changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote reader.

	info – Remote reader information. User can take ownership of the object.

	
inline virtual void onWriterDiscovery(RTPSParticipant *participant, WriterDiscoveryInfo &&info)

	This method is called when a new Writer is discovered, or a previously discovered writer changes its QOS or is removed.

	Parameters

	
	participant – Pointer to the Participant which discovered the remote writer.

	info – Remote writer information. User can take ownership of the object.

	
inline virtual void on_type_discovery(RTPSParticipant *participant, const SampleIdentity &request_sample_id, const string_255 &topic, const types::TypeIdentifier *identifier, const types::TypeObject *object, types::DynamicType_ptr dyn_type)

	This method is called when a participant discovers a new Type The ownership of all object belongs to the caller so if needs to be used after the method ends, a full copy should be perform (except for dyn_type due to its shared_ptr nature.

The field “topic” it is only available if the type was discovered using “Discovery-Time Data Typing”, in which case the field request_sample_id will contain INVALID_SAMPLE_IDENTITY. If the type was discovered using TypeLookup Service then “topic” will be empty, but will have the request_sample_id of the petition that caused the discovery. For example: fastrtps::types::TypeIdentifier new_type_id = *identifier;

	
inline virtual void on_type_dependencies_reply(RTPSParticipant *participant, const SampleIdentity &request_sample_id, const types::TypeIdentifierWithSizeSeq &dependencies)

	This method is called when the typelookup client received a reply to a getTypeDependencies request.

The user may want to retrieve these new types using the getTypes request and create a new DynamicType using the retrieved TypeObject.

	
inline virtual void on_type_information_received(RTPSParticipant *participant, const string_255 &topic_name, const string_255 &type_name, const types::TypeInformation &type_information)

	This method is called when a participant receives a TypeInformation while discovering another participant.

 17.2.9. RTPSReader

17.2.9. RTPSReader

	17.2.9.1. ReaderListener

	17.2.9.2. RTPSReader

 17.2.9.1. ReaderListener

17.2.9.1. ReaderListener

	
class eprosima::fastrtps::rtps::ReaderListener

	Class ReaderListener, to be used by the user to override some of is virtual method to program actions to certain events.

Subclassed by eprosima::fastdds::dds::builtin::TypeLookupReplyListener, eprosima::fastdds::dds::builtin::TypeLookupRequestListener, eprosima::fastrtps::rtps::PDPListener, eprosima::fastrtps::rtps::WLPListener

Public Functions

	
inline virtual void onReaderMatched(RTPSReader *reader, MatchingInfo &info)

	This method is invoked when a new reader matches

	Parameters

	
	reader – Matching reader

	info – Matching information of the reader

	
inline virtual void onReaderMatched(RTPSReader *reader, const fastdds::dds::SubscriptionMatchedStatus &info)

	This method is invoked when a new reader matches

	Parameters

	
	reader – Matching reader

	info – Subscription matching information

	
inline virtual void onNewCacheChangeAdded(RTPSReader *reader, const CacheChange_t *const change)

	This method is called when a new CacheChange_t is added to the ReaderHistory.

	Parameters

	
	reader – Pointer to the reader.

	change – Pointer to the CacheChange_t. This is a const pointer to const data to indicate that the user should not dispose of this data himself. To remove the data call the remove_change method of the ReaderHistory. reader->getHistory()->remove_change((CacheChange_t*)change).

	
inline virtual void on_liveliness_changed(RTPSReader *reader, const eprosima::fastdds::dds::LivelinessChangedStatus &status)

	Method called when the liveliness of a reader changes.

	Parameters

	
	reader – The reader

	status – The liveliness changed status

	
inline virtual void on_requested_incompatible_qos(RTPSReader *reader, eprosima::fastdds::dds::PolicyMask qos)

	This method is called when a new Writer is discovered, with a Topic that matches that of a local reader, but with an offered QoS that is incompatible with the one requested by the local reader

	Parameters

	
	reader – Pointer to the RTPSReader.

	qos – A mask with the bits of all incompatible Qos activated.

	
inline virtual void on_sample_lost(RTPSReader *reader, int32_t sample_lost_since_last_update)

	This method is called when the reader detects that one or more samples have been lost.

	Parameters

	
	reader – Pointer to the RTPSReader.

	sample_lost_since_last_update – The number of samples that were lost since the last time this method was called for the same reader.

	
inline virtual void on_writer_discovery(RTPSReader *reader, WriterDiscoveryInfo::DISCOVERY_STATUS reason, const GUID_t &writer_guid, const WriterProxyData *writer_info)

	Method called when the discovery information of a writer regarding a reader changes.

	Parameters

	
	reader – The reader.

	reason – The reason motivating this method to be called.

	writer_guid – The GUID of the writer for which the discovery information changed.

	writer_info – Discovery information about the writer. Will be nullptr for reason REMOVED_WRITER.

	
inline virtual void on_sample_rejected(RTPSReader *reader, eprosima::fastdds::dds::SampleRejectedStatusKind reason, const CacheChange_t *const change)

	This method is called when the reader rejects a samples.

	Parameters

	
	reader – Pointer to the RTPSReader.

	reason – Indicates reason for sample rejection.

	change – Pointer to the CacheChange_t. This is a const pointer to const data to indicate that the user should not dispose of this data himself.

	
inline virtual void on_data_available(RTPSReader *reader, const GUID_t &writer_guid, const SequenceNumber_t &first_sequence, const SequenceNumber_t &last_sequence, bool &should_notify_individual_changes)

	This method is called when new CacheChange_t objects are made available to the user.

Note

This method is currently never called. Implementation will be added in future releases.

	Parameters

	
	reader – [in] Pointer to the reader performing the notification.

	writer_guid – [in] GUID of the writer from which the changes were received.

	first_sequence – [in] Sequence number of the first change made available.

	last_sequence – [in] Sequence number of the last change made available. It will always be greater or equal than first_sequence.

	should_notify_individual_changes – [out] Whether the individual changes should be notified by means of onNewCacheChangeAdded.

 17.2.9.2. RTPSReader

17.2.9.2. RTPSReader

	
class eprosima::fastrtps::rtps::RTPSReader : public eprosima::fastrtps::rtps::Endpoint, public eprosima::fastdds::statistics::StatisticsReaderImpl

	Class RTPSReader, manages the reception of data from its matched writers.

Subclassed by eprosima::fastrtps::rtps::StatefulReader, eprosima::fastrtps::rtps::StatelessReader

Public Functions

	
virtual bool matched_writer_add(const WriterProxyData &wdata) = 0

	Add a matched writer represented by its attributes.

	Parameters

	wdata – Attributes of the writer to add.

	Returns

	True if correctly added.

	
virtual bool matched_writer_remove(const GUID_t &writer_guid, bool removed_by_lease = false) = 0

	Remove a writer represented by its attributes from the matched writers.

	Parameters

	
	writer_guid – GUID of the writer to remove.

	removed_by_lease – Whether the writer is being unmatched due to a participant drop.

	Returns

	True if correctly removed.

	
virtual bool matched_writer_is_matched(const GUID_t &writer_guid) = 0

	Tells us if a specific Writer is matched against this reader.

	Parameters

	writer_guid – GUID of the writer to check.

	Returns

	True if it is matched.

	
virtual bool processDataMsg(CacheChange_t *change) = 0

	Processes a new DATA message. Previously the message must have been accepted by function acceptMsgDirectedTo.

	Parameters

	change – Pointer to the CacheChange_t.

	Returns

	true if the reader accepts messages from the.

	
virtual bool processDataFragMsg(CacheChange_t *change, uint32_t sampleSize, uint32_t fragmentStartingNum, uint16_t fragmentsInSubmessage) = 0

	Processes a new DATA FRAG message.

	Parameters

	
	change – Pointer to the CacheChange_t.

	sampleSize – Size of the complete, assembled message.

	fragmentStartingNum – Starting number of this particular message.

	fragmentsInSubmessage – Number of fragments on this particular message.

	Returns

	true if the reader accepts message.

	
virtual bool processHeartbeatMsg(const GUID_t &writerGUID, uint32_t hbCount, const SequenceNumber_t &firstSN, const SequenceNumber_t &lastSN, bool finalFlag, bool livelinessFlag) = 0

	Processes a new HEARTBEAT message.

	Parameters

	
	writerGUID –

	hbCount –

	firstSN –

	lastSN –

	finalFlag –

	livelinessFlag –

	Returns

	true if the reader accepts messages from the.

	
virtual bool processGapMsg(const GUID_t &writerGUID, const SequenceNumber_t &gapStart, const SequenceNumberSet_t &gapList) = 0

	Processes a new GAP message.

	Parameters

	
	writerGUID –

	gapStart –

	gapList –

	Returns

	true if the reader accepts messages from the.

	
virtual bool change_removed_by_history(CacheChange_t *change, WriterProxy *prox = nullptr) = 0

	Method to indicate the reader that some change has been removed due to HistoryQos requirements.

	Parameters

	
	change – Pointer to the CacheChange_t.

	prox – Pointer to the WriterProxy.

	Returns

	True if correctly removed.

	
ReaderListener *getListener() const

	Get the associated listener, secondary attached Listener in case it is of compound type

	Returns

	Pointer to the associated reader listener.

	
bool setListener(ReaderListener *target)

	Switch the ReaderListener kind for the Reader. If the RTPSReader does not belong to the built-in protocols it switches out the old one. If it belongs to the built-in protocols, it sets the new ReaderListener callbacks to be called after the built-in ReaderListener ones.

	Parameters

	target – Pointed to ReaderLister to attach

	Returns

	True is correctly set.

	
bool reserveCache(CacheChange_t **change, uint32_t dataCdrSerializedSize)

	Reserve a CacheChange_t.

	Parameters

	
	change – Pointer to pointer to the Cache.

	dataCdrSerializedSize – Size of the Cache.

	Returns

	True if correctly reserved.

	
void releaseCache(CacheChange_t *change)

	Release a cacheChange.

	
virtual bool nextUnreadCache(CacheChange_t **change, WriterProxy **wp) = 0

	Read the next unread CacheChange_t from the history

	Parameters

	
	change – Pointer to pointer of CacheChange_t

	wp – Pointer to pointer to the WriterProxy

	Returns

	True if read.

	
virtual bool nextUntakenCache(CacheChange_t **change, WriterProxy **wp) = 0

	Get the next CacheChange_t from the history to take.

	Parameters

	
	change – Pointer to pointer of CacheChange_t.

	wp – Pointer to pointer to the WriterProxy.

	Returns

	True if read.

	
inline bool expectsInlineQos()

	
	Returns

	True if the reader expects Inline QOS.

	
inline ReaderHistory *getHistory()

	Returns a pointer to the associated History.

	
inline eprosima::fastdds::rtps::IReaderDataFilter *get_content_filter() const

	
	Returns

	The content filter associated to this reader.

	
inline void set_content_filter(eprosima::fastdds::rtps::IReaderDataFilter *filter)

	Set the content filter associated to this reader.

	Parameters

	filter – Pointer to the content filter to associate to this reader.

	
virtual bool isInCleanState() = 0

	Returns there is a clean state with all Writers.

It occurs when the Reader received all samples sent by Writers. In other words, its WriterProxies are up to date.

	Returns

	There is a clean state with all Writers.

	
virtual void assert_writer_liveliness(const GUID_t &writer) = 0

	Assert the liveliness of a matched writer.

	Parameters

	writer – GUID of the writer to assert.

	
virtual bool begin_sample_access_nts(CacheChange_t *change, WriterProxy *&wp, bool &is_future_change) = 0

	Called just before a change is going to be deserialized.

	Parameters

	
	change – [in] Pointer to the change being accessed.

	wp – [out] Writer proxy the change belongs to.

	is_future_change – [out] Whether the change is in the future (i.e. there are earlier unreceived changes from the same writer).

	Returns

	Whether the change is still valid or not.

	
virtual void end_sample_access_nts(CacheChange_t *change, WriterProxy *&wp, bool mark_as_read) = 0

	Called after the change has been deserialized.

	Parameters

	
	change – [in] Pointer to the change being accessed.

	wp – [in] Writer proxy the change belongs to.

	mark_as_read – [in] Whether the change should be marked as read or not.

	
virtual void change_read_by_user(CacheChange_t *change, WriterProxy *writer, bool mark_as_read = true) = 0

	Called when the user has retrieved a change from the history.

	Parameters

	
	change – Pointer to the change to ACK

	writer – Writer proxy of the change.

	mark_as_read – Whether the change should be marked as read or not

	
bool is_sample_valid(const void *data, const GUID_t &writer, const SequenceNumber_t &sn) const

	Checks whether the sample is still valid or is corrupted.

	Parameters

	
	data – Pointer to the sample data to check. If it does not belong to the payload pool passed to the reader on construction, it yields undefined behavior.

	writer – GUID of the writer that sent data.

	sn – Sequence number related to data.

	Returns

	true if the sample is valid

Public Members

	
LivelinessChangedStatus liveliness_changed_status_

	The liveliness changed status struct as defined in the DDS.

 17.2.10. Resources

17.2.10. Resources

	17.2.10.1. MemoryManagementPolicy

 17.2.10.1. MemoryManagementPolicy

17.2.10.1. MemoryManagementPolicy

	
enum eprosima::fastrtps::rtps::MemoryManagementPolicy

	Enum MemoryuManagementPolicy_t, indicated the way memory is managed in terms of dealing with CacheChanges

Values:

	
enumerator PREALLOCATED_MEMORY_MODE

	Preallocated memory.

Size set to the data type maximum. Largest memory footprint but smallest allocation count.

	
enumerator PREALLOCATED_WITH_REALLOC_MEMORY_MODE

	Default size preallocated, requires reallocation when a bigger message arrives.

Smaller memory footprint at the cost of an increased allocation count.

	
enumerator DYNAMIC_RESERVE_MEMORY_MODE

	

	
enumerator DYNAMIC_REUSABLE_MEMORY_MODE

	

 17.2.11. RTPSDomain

17.2.11. RTPSDomain

	
class eprosima::fastrtps::rtps::RTPSDomain

	Class RTPSDomain,it manages the creation and destruction of RTPSParticipant RTPSWriter and RTPSReader. It stores a list of all created RTPSParticipant. It has only static methods.

Public Static Functions

	
static void stopAll()

	Method to shut down all RTPSParticipants, readers, writers, etc. It must be called at the end of the process to avoid memory leaks. It also shut downs the DomainRTPSParticipant.

	Post

	After this call, all the pointers to RTPS entities are invalidated and their use may result in undefined behaviour.

	
static RTPSParticipant *createParticipant(uint32_t domain_id, const RTPSParticipantAttributes &attrs, RTPSParticipantListener *plisten = nullptr)

	Create a RTPSParticipant.

Warning

The returned pointer is invalidated after a call to removeRTPSParticipant() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	domain_id – DomainId to be used by the RTPSParticipant (80 by default).

	attrs – RTPSParticipant Attributes.

	plisten – Pointer to the ParticipantListener.

	Returns

	Pointer to the RTPSParticipant.

	
static RTPSParticipant *createParticipant(uint32_t domain_id, bool enabled, const RTPSParticipantAttributes &attrs, RTPSParticipantListener *plisten = nullptr)

	Create a RTPSParticipant.

Warning

The returned pointer is invalidated after a call to removeRTPSParticipant() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	domain_id – DomainId to be used by the RTPSParticipant (80 by default).

	enabled – True if the RTPSParticipant should be enabled on creation. False if it will be enabled later with RTPSParticipant::enable()

	attrs – RTPSParticipant Attributes.

	plisten – Pointer to the ParticipantListener.

	Returns

	Pointer to the RTPSParticipant.

	
static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, WriterHistory *hist, WriterListener *listen = nullptr)

	Create a RTPSWriter in a participant.

Warning

The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	watt – Writer Attributes.

	hist – Pointer to the WriterHistory.

	listen – Pointer to the WriterListener.

	Returns

	Pointer to the created RTPSWriter.

	
static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, const std::shared_ptr<IPayloadPool> &payload_pool, WriterHistory *hist, WriterListener *listen = nullptr)

	Create a RTPSWriter in a participant using a custom payload pool.

Warning

The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	watt – Writer Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	hist – Pointer to the WriterHistory.

	listen – Pointer to the WriterListener.

	Returns

	Pointer to the created RTPSWriter.

	
static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, const std::shared_ptr<IPayloadPool> &payload_pool, const std::shared_ptr<IChangePool> &change_pool, WriterHistory *hist, WriterListener *listen = nullptr)

	Create a RTPSWriter in a participant using a custom payload pool.

Warning

The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	watt – Writer Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	change_pool – Shared pointer to the IChangePool

	hist – Pointer to the WriterHistory.

	listen – Pointer to the WriterListener.

	Returns

	Pointer to the created RTPSWriter.

	
static RTPSWriter *createRTPSWriter(RTPSParticipant *p, const EntityId_t &entity_id, WriterAttributes &watt, const std::shared_ptr<IPayloadPool> &payload_pool, const std::shared_ptr<IChangePool> &change_pool, WriterHistory *hist, WriterListener *listen = nullptr)

	Create a RTPSWriter in a participant using a custom payload pool.

Warning

The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	entity_id – Specific entity id to use for the created writer.

	watt – Writer Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	change_pool – Shared pointer to the IChangePool

	hist – Pointer to the WriterHistory.

	listen – Pointer to the WriterListener.

	Returns

	Pointer to the created RTPSWriter.

	
static RTPSWriter *createRTPSWriter(RTPSParticipant *p, const EntityId_t &entity_id, WriterAttributes &watt, const std::shared_ptr<IPayloadPool> &payload_pool, WriterHistory *hist, WriterListener *listen = nullptr)

	Create a RTPSWriter in a participant.

Warning

The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	entity_id – Specific entity id to use for the created writer.

	watt – Writer Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	hist – Pointer to the WriterHistory.

	listen – Pointer to the WriterListener.

	Returns

	Pointer to the created RTPSWriter.

	
static bool removeRTPSWriter(RTPSWriter *writer)

	Remove a RTPSWriter.

	Parameters

	writer – Pointer to the writer you want to remove.

	Returns

	True if correctly removed.

	
static RTPSReader *createRTPSReader(RTPSParticipant *p, ReaderAttributes &ratt, ReaderHistory *hist, ReaderListener *listen = nullptr)

	Create a RTPSReader in a participant.

Warning

The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	ratt – Reader Attributes.

	hist – Pointer to the ReaderHistory.

	listen – Pointer to the ReaderListener.

	Returns

	Pointer to the created RTPSReader.

	
static RTPSReader *createRTPSReader(RTPSParticipant *p, ReaderAttributes &ratt, const std::shared_ptr<IPayloadPool> &payload_pool, ReaderHistory *hist, ReaderListener *listen = nullptr)

	Create a RTPReader in a participant using a custom payload pool.

Warning

The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	ratt – Reader Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	hist – Pointer to the ReaderHistory.

	listen – Pointer to the ReaderListener.

	Returns

	Pointer to the created RTPSReader.

	
static RTPSReader *createRTPSReader(RTPSParticipant *p, const EntityId_t &entity_id, ReaderAttributes &ratt, const std::shared_ptr<IPayloadPool> &payload_pool, ReaderHistory *hist, ReaderListener *listen = nullptr)

	Create a RTPSReader in a participant using a custom payload pool.

Warning

The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its use may result in undefined behaviour.

	Parameters

	
	p – Pointer to the RTPSParticipant.

	entity_id – Specific entity id to use for the created reader.

	ratt – Reader Attributes.

	payload_pool – Shared pointer to the IPayloadPool

	hist – Pointer to the ReaderHistory.

	listen – Pointer to the ReaderListener.

	Returns

	Pointer to the created RTPSReader.

	
static bool removeRTPSReader(RTPSReader *reader)

	Remove a RTPSReader.

	Parameters

	reader – Pointer to the reader you want to remove.

	Returns

	True if correctly removed.

	
static bool removeRTPSParticipant(RTPSParticipant *p)

	Remove a RTPSParticipant and delete all its associated Writers, Readers, resources, etc.

	Parameters

	p – [in] Pointer to the RTPSParticipant;

	Returns

	True if correct.

 17.2.12. RTPSWriter

17.2.12. RTPSWriter

	17.2.12.1. LivelinessData

	17.2.12.2. RTPSWriter

	17.2.12.3. WriterListener

 17.2.12.1. LivelinessData

17.2.12.1. LivelinessData

	
struct eprosima::fastrtps::rtps::LivelinessData

	A struct keeping relevant liveliness information of a writer.

Public Functions

	
inline LivelinessData(GUID_t guid_in, LivelinessQosPolicyKind kind_in, Duration_t lease_duration_in)

	Constructor.

	Parameters

	
	guid_in – GUID of the writer

	kind_in – Liveliness kind

	lease_duration_in – Liveliness lease duration

	
inline bool operator==(const LivelinessData &other) const

	Equality operator.

	Parameters

	other – Liveliness data to compare to

	Returns

	True if equal

	
inline bool operator!=(const LivelinessData &other) const

	Inequality operator.

	Parameters

	other – Liveliness data to compare to

	Returns

	True if different

Public Members

	
GUID_t guid

	GUID of the writer.

	
LivelinessQosPolicyKind kind

	Writer liveliness kind.

	
Duration_t lease_duration

	The lease duration.

	
unsigned int count = 1

	The number of times the writer is being counted.

	
WriterStatus status

	The writer status.

	
std::chrono::steady_clock::time_point time

	The time when the writer will lose liveliness.

 17.2.12.2. RTPSWriter

17.2.12.2. RTPSWriter

	
class eprosima::fastrtps::rtps::RTPSWriter : public eprosima::fastrtps::rtps::Endpoint, public eprosima::fastdds::statistics::StatisticsWriterImpl

	Class RTPSWriter, manages the sending of data to the readers. Is always associated with a HistoryCache.

Subclassed by eprosima::fastrtps::rtps::StatefulWriter, eprosima::fastrtps::rtps::StatelessWriter

Public Functions

	
template<typename T>
inline CacheChange_t *new_change(T &data, ChangeKind_t changeKind, InstanceHandle_t handle = c_InstanceHandle_Unknown)

	Create a new change based with the provided changeKind.

	Parameters

	
	data – Data of the change.

	changeKind – The type of change.

	handle – InstanceHandle to assign.

	Returns

	Pointer to the CacheChange or nullptr if incorrect.

	
bool release_change(CacheChange_t *change)

	Release a change when it is not being used anymore.

	Parameters

	change – Pointer to the cache change to be released.

	Returns

	whether the operation succeeded or not

	Pre

	
	change is not nullptr

	change points to a cache change obtained from a call to this->new_change

	Post

	memory pointed to by change is not accessed

	
virtual bool matched_reader_add(const ReaderProxyData &data) = 0

	Add a matched reader.

	Parameters

	data – Pointer to the ReaderProxyData object added.

	Returns

	True if added.

	
virtual bool matched_reader_remove(const GUID_t &reader_guid) = 0

	Remove a matched reader.

	Parameters

	reader_guid – GUID of the reader to remove.

	Returns

	True if removed.

	
virtual bool matched_reader_is_matched(const GUID_t &reader_guid) = 0

	Tells us if a specific Reader is matched against this writer.

	Parameters

	reader_guid – GUID of the reader to check.

	Returns

	True if it was matched.

	
virtual void reader_data_filter(fastdds::rtps::IReaderDataFilter *filter) = 0

	Set a content filter to perform content filtering on this writer.

This method sets a content filter that will be used to check whether a cache change is relevant for a reader or not.

	Parameters

	filter – The content filter to use on this writer. May be nullptr to remove the content filter (i.e. treat all samples as relevant).

	
virtual const fastdds::rtps::IReaderDataFilter *reader_data_filter() const = 0

	Get the content filter used to perform content filtering on this writer.

	Returns

	The content filter used on this writer.

	
inline virtual bool is_acked_by_all(const CacheChange_t*) const

	Check if a specific change has been acknowledged by all Readers. Is only useful in reliable Writer. In BE Writers returns false when pending to be sent.

	Returns

	True if acknowledged by all.

	
inline virtual bool wait_for_all_acked(const Duration_t&)

	Waits until all changes were acknowledged or max_wait.

	Returns

	True if all were acknowledged.

	
virtual void updateAttributes(const WriterAttributes &att) = 0

	Update the Attributes of the Writer.

	Parameters

	att – New attributes

	
SequenceNumber_t get_seq_num_min()

	Get Min Seq Num in History.

	Returns

	Minimum sequence number in history

	
SequenceNumber_t get_seq_num_max()

	Get Max Seq Num in History.

	Returns

	Maximum sequence number in history

	
uint32_t getTypeMaxSerialized()

	Get maximum size of the serialized type

	Returns

	Maximum size of the serialized type

	
uint32_t getMaxDataSize()

	Get maximum size of the data.

	
uint32_t calculateMaxDataSize(uint32_t length)

	Calculates the maximum size of the data.

	
inline WriterListener *getListener()

	Get listener

	Returns

	Listener

	
inline bool isAsync() const

	Get the publication mode

	Returns

	publication mode

	
bool remove_older_changes(unsigned int max = 0)

	Remove an specified max number of changes

	Parameters

	max – Maximum number of changes to remove.

	Returns

	at least one change has been removed

	
virtual bool try_remove_change(const std::chrono::steady_clock::time_point &max_blocking_time_point, std::unique_lock<RecursiveTimedMutex> &lock) = 0

	Tries to remove a change waiting a maximum of the provided microseconds.

	Parameters

	
	max_blocking_time_point – Maximum time to wait for.

	lock – Lock of the Change list.

	Returns

	at least one change has been removed

	
virtual bool wait_for_acknowledgement(const SequenceNumber_t &seq, const std::chrono::steady_clock::time_point &max_blocking_time_point, std::unique_lock<RecursiveTimedMutex> &lock) = 0

	Waits till a change has been acknowledged.

	Parameters

	
	seq – Sequence number to wait for acknowledgement.

	max_blocking_time_point – Maximum time to wait for.

	lock – Lock of the Change list.

	Returns

	true when change was acknowledged, false when timeout is reached.

	
inline RTPSParticipantImpl *getRTPSParticipant() const

	Get RTPS participant

	Returns

	RTPS participant

	
inline void set_separate_sending(bool enable)

	Enable or disable sending data to readers separately NOTE: This will only work for synchronous writers

	Parameters

	enable – If separate sending should be enabled

	
inline bool get_separate_sending() const

	Inform if data is sent to readers separately

	Returns

	true if separate sending is enabled

	
inline virtual bool process_acknack(const GUID_t &writer_guid, const GUID_t &reader_guid, uint32_t ack_count, const SequenceNumberSet_t &sn_set, bool final_flag, bool &result)

	Process an incoming ACKNACK submessage.

	Parameters

	
	writer_guid – [in] GUID of the writer the submessage is directed to.

	reader_guid – [in] GUID of the reader originating the submessage.

	ack_count – [in] Count field of the submessage.

	sn_set – [in] Sequence number bitmap field of the submessage.

	final_flag – [in] Final flag field of the submessage.

	result – [out] true if the writer could process the submessage. Only valid when returned value is true.

	Returns

	true when the submessage was destinated to this writer, false otherwise.

	
inline virtual bool process_nack_frag(const GUID_t &writer_guid, const GUID_t &reader_guid, uint32_t ack_count, const SequenceNumber_t &seq_num, const FragmentNumberSet_t fragments_state, bool &result)

	Process an incoming NACKFRAG submessage.

	Parameters

	
	writer_guid – [in] GUID of the writer the submessage is directed to.

	reader_guid – [in] GUID of the reader originating the submessage.

	ack_count – [in] Count field of the submessage.

	seq_num – [in] Sequence number field of the submessage.

	fragments_state – [in] Fragment number bitmap field of the submessage.

	result – [out] true if the writer could process the submessage. Only valid when returned value is true.

	Returns

	true when the submessage was destinated to this writer, false otherwise.

	
const LivelinessQosPolicyKind &get_liveliness_kind() const

	A method to retrieve the liveliness kind.

	Returns

	Liveliness kind

	
const Duration_t &get_liveliness_lease_duration() const

	A method to retrieve the liveliness lease duration.

	Returns

	Lease duration

	
const Duration_t &get_liveliness_announcement_period() const

	A method to return the liveliness announcement period.

	Returns

	The announcement period

	
bool is_datasharing_compatible() const

	
	Returns

	Whether the writer is data sharing compatible or not

	
virtual DeliveryRetCode deliver_sample_nts(CacheChange_t *cache_change, RTPSMessageGroup &group, LocatorSelectorSender &locator_selector, const std::chrono::time_point<std::chrono::steady_clock> &max_blocking_time) = 0

	Tells writer the sample can be sent to the network.

This function should be used by a fastdds::rtps::FlowController.

Note

Must be non-thread safe.

	Parameters

	
	cache_change – Pointer to the CacheChange_t that represents the sample which can be sent.

	group – RTPSMessageGroup reference uses for generating the RTPS message.

	locator_selector – RTPSMessageSenderInterface reference uses for selecting locators. The reference has to be a member of this RTPSWriter object.

	max_blocking_time – Future timepoint where blocking send should end.

	Returns

	Return code.

	
virtual bool send_nts(CDRMessage_t *message, const LocatorSelectorSender &locator_selector, std::chrono::steady_clock::time_point &max_blocking_time_point) const

	Send a message through this interface.

	Parameters

	
	message – Pointer to the buffer with the message already serialized.

	locator_selector – RTPSMessageSenderInterface reference uses for selecting locators. The reference has to be a member of this RTPSWriter object.

	max_blocking_time_point – Future timepoint where blocking send should end.

Public Members

	
LivelinessLostStatus liveliness_lost_status_

	Liveliness lost status of this writer.

 17.2.12.3. WriterListener

17.2.12.3. WriterListener

	
class eprosima::fastrtps::rtps::WriterListener

	Class WriterListener with virtual method so the user can implement callbacks to certain events.

Public Functions

	
inline virtual void onWriterMatched(RTPSWriter *writer, MatchingInfo &info)

	This method is called when a new Reader is matched with this Writer by the builtin protocols

	Parameters

	
	writer – Pointer to the RTPSWriter.

	info – Matching Information.

	
inline virtual void onWriterMatched(RTPSWriter *writer, const eprosima::fastdds::dds::PublicationMatchedStatus &info)

	This method is called when a new Reader is matched with this Writer by the builtin protocols

	Parameters

	
	writer – Pointer to the RTPSWriter.

	info – Publication matching information.

	
inline virtual void on_offered_incompatible_qos(RTPSWriter *writer, eprosima::fastdds::dds::PolicyMask qos)

	This method is called when a new Reader is discovered, with a Topic that matches that of a local writer, but with a requested QoS that is incompatible with the one offered by the local writer

	Parameters

	
	writer – Pointer to the RTPSWriter.

	qos – A mask with the bits of all incompatible Qos activated.

	
inline virtual void onWriterChangeReceivedByAll(RTPSWriter *writer, CacheChange_t *change)

	This method is called when all the readers matched with this Writer acknowledge that a cache change has been received.

	Parameters

	
	writer – Pointer to the RTPSWriter.

	change – Pointer to the affected CacheChange_t.

	
inline virtual void on_liveliness_lost(RTPSWriter *writer, const LivelinessLostStatus &status)

	Method called when the liveliness of a writer is lost.

	Parameters

	
	writer – The writer

	status – The liveliness lost status

	
inline virtual void on_reader_discovery(RTPSWriter *writer, ReaderDiscoveryInfo::DISCOVERY_STATUS reason, const GUID_t &reader_guid, const ReaderProxyData *reader_info)

	Method called when the discovery information of a reader regarding a writer changes.

	Parameters

	
	writer – The writer.

	reason – The reason motivating this method to be called.

	reader_guid – The GUID of the reader for which the discovery information changed.

	reader_info – Discovery information about the reader. Will be nullptr for reason REMOVED_READER.

 17.3. Transport

17.3. Transport

eProsima Fast DDS Transport Layer API.

	17.3.1. Transport Generic Interfaces
	17.3.1.1. TransportDescriptorInterface

	17.3.1.2. TransportInterface

	17.3.1.3. TransportReceiverInterface

	17.3.1.4. SocketTransportDescriptor

	17.3.2. Chaining of transports
	17.3.2.1. ChainingTransportDescriptor

	17.3.2.2. ChainingTransport

	17.3.3. UDP Transport
	17.3.3.1. UDPTransportDescriptor

	17.3.3.2. UDPv4TransportDescriptor

	17.3.3.3. UDPv6TransportDescriptor

	17.3.3.4. test_UDPv4TransportDescriptor

	17.3.4. TCP Transport
	17.3.4.1. TCPTransportDescriptor

	17.3.4.2. TCPv4TransportDescriptor

	17.3.4.3. TCPv6TransportDescriptor

	17.3.5. Shared Memory Transport
	17.3.5.1. SharedMemTransportDescriptor

 17.3.1. Transport Generic Interfaces

17.3.1. Transport Generic Interfaces

	17.3.1.1. TransportDescriptorInterface

	17.3.1.2. TransportInterface

	17.3.1.3. TransportReceiverInterface

	17.3.1.4. SocketTransportDescriptor

 17.3.1.1. TransportDescriptorInterface

17.3.1.1. TransportDescriptorInterface

	
struct eprosima::fastdds::rtps::TransportDescriptorInterface

	Virtual base class for the data type used to define transport configuration. It acts as a builder for a given transport meaning that it allows to configure the transport, and then a new Transport can be built according to this configuration using its create_transport() factory member function.

	maxMessageSize: maximum size of a single message in the transport.

	maxInitialPeersRange: number of channels opened with each initial remote peer.

Subclassed by eprosima::fastdds::rtps::ChainingTransportDescriptor, eprosima::fastdds::rtps::SharedMemTransportDescriptor, eprosima::fastdds::rtps::SocketTransportDescriptor

Public Functions

	
inline TransportDescriptorInterface(uint32_t maximumMessageSize, uint32_t maximumInitialPeersRange)

	Constructor.

	
TransportDescriptorInterface(const TransportDescriptorInterface &t) = default

	Copy constructor.

	
TransportDescriptorInterface &operator=(const TransportDescriptorInterface &t) = default

	Copy assignment.

	
virtual ~TransportDescriptorInterface() = default

	Destructor.

	
virtual TransportInterface *create_transport() const = 0

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
virtual uint32_t min_send_buffer_size() const = 0

	Returns the minimum size required for a send operation.

	
inline virtual uint32_t max_message_size() const

	Returns the maximum size expected for received messages.

	
inline virtual uint32_t max_initial_peers_range() const

	Returns the maximum number of opened channels for each initial remote peer (maximum number of guessed initial peers to try to connect)

	
inline bool operator==(const TransportDescriptorInterface &t) const

	Comparison operator.

Public Members

	
uint32_t maxMessageSize

	Maximum size of a single message in the transport.

	
uint32_t maxInitialPeersRange

	Number of channels opened with each initial remote peer.

 17.3.1.2. TransportInterface

17.3.1.2. TransportInterface

	
class eprosima::fastdds::rtps::TransportInterface

	Interface against which to implement a transport layer, decoupled from FastRTPS internals. TransportInterface expects the user to implement a logical equivalence between Locators and protocol-specific “channels”. This equivalence can be narrowing: For instance in UDP/IP, a port would take the role of channel, and several different locators can map to the same port, and hence the same channel.

Subclassed by eprosima::fastdds::rtps::ChainingTransport

Public Functions

	
virtual ~TransportInterface() = default

	Aside from the API defined here, an user-defined Transport must define a descriptor data type and a constructor that expects a constant reference to such descriptor. e.g:

class MyTransport: public: typedef struct { … } MyTransportDescriptor; MyTransport(const MyTransportDescriptor&); …

	
TransportInterface(const TransportInterface &t) = delete

	Copy constructor.

	
TransportInterface &operator=(const TransportInterface &t) = delete

	Copy assignment.

	
TransportInterface(TransportInterface &&t) = delete

	Move constructor.

	
TransportInterface &operator=(TransportInterface &&t) = delete

	Move assignment.

	
virtual bool init(const fastrtps::rtps::PropertyPolicy *properties = nullptr) = 0

	Initialize this transport. This method will prepare all the internals of the transport.

	Parameters

	properties – Optional policy to specify additional parameters of the created transport.

	Returns

	True when the transport was correctly initialized.

	
virtual bool IsInputChannelOpen(const Locator&) const = 0

	Must report whether the input channel associated to this locator is open. Channels must either be fully closed or fully open, so that “open” and “close” operations are whole and definitive.

	
virtual bool IsLocatorSupported(const Locator&) const = 0

	Must report whether the given locator is supported by this transport (typically inspecting its “kind” value).

	
virtual bool is_locator_allowed(const Locator&) const = 0

	Must report whether the given locator is allowed by this transport.

	
virtual Locator RemoteToMainLocal(const Locator &remote) const = 0

	Returns the locator describing the main (most general) channel that can write to the provided remote locator.

	
inline virtual bool transform_remote_locator(const Locator &remote_locator, Locator &result_locator) const

	Transforms a remote locator into a locator optimized for local communications.

If the remote locator corresponds to one of the local interfaces, it is converted to the corresponding local address.

	Parameters

	
	remote_locator – [in] Locator to be converted.

	result_locator – [out] Converted locator.

	Returns

	false if the input locator is not supported/allowed by this transport, true otherwise.

	
virtual bool OpenOutputChannel(SendResourceList &sender_resource_list, const Locator&) = 0

	Must open the channel that maps to/from the given locator. This method must allocate, reserve and mark any resources that are needed for said channel.

	
virtual bool OpenInputChannel(const Locator&, TransportReceiverInterface*, uint32_t) = 0

	Opens an input channel to receive incoming connections. If there is an existing channel it registers the receiver interface.

	
virtual bool CloseInputChannel(const Locator&) = 0

	Must close the channel that maps to/from the given locator. IMPORTANT: It MUST be safe to call this method even during a Receive operation on another thread. You must implement any necessary mutual exclusion and timeout mechanisms to make sure the channel can be closed without damage.

	
virtual bool DoInputLocatorsMatch(const Locator&, const Locator&) const = 0

	Must report whether two locators map to the same internal channel.

	
virtual LocatorList NormalizeLocator(const Locator &locator) = 0

	Performs locator normalization (assign valid IP if not defined by user)

	
virtual void select_locators(fastrtps::rtps::LocatorSelector &selector) const = 0

	Performs the locator selection algorithm for this transport.

It basically consists of the following steps
	selector.transport_starts is called

	transport handles the selection state of each locator

	if a locator from an entry is selected, selector.select is called for that entry

	Parameters

	selector – [inout] Locator selector.

	
virtual bool is_local_locator(const Locator &locator) const = 0

	Must report whether the given locator is from the local host.

	
virtual TransportDescriptorInterface *get_configuration() = 0

	Return the transport configuration (Transport Descriptor)

	
virtual void AddDefaultOutputLocator(LocatorList &defaultList) = 0

	Add default output locator to the locator list.

	
virtual bool getDefaultMetatrafficMulticastLocators(LocatorList &locators, uint32_t metatraffic_multicast_port) const = 0

	Add metatraffic multicast locator with the given port.

	
virtual bool getDefaultMetatrafficUnicastLocators(LocatorList &locators, uint32_t metatraffic_unicast_port) const = 0

	Add metatraffic unicast locator with the given port.

	
virtual bool getDefaultUnicastLocators(LocatorList &locators, uint32_t unicast_port) const = 0

	Add unicast locator with the given port.

	
virtual bool fillMetatrafficMulticastLocator(Locator &locator, uint32_t metatraffic_multicast_port) const = 0

	Assign port to the given metatraffic multicast locator if not already defined.

	
virtual bool fillMetatrafficUnicastLocator(Locator &locator, uint32_t metatraffic_unicast_port) const = 0

	Assign port to the given metatraffic unicast locator if not already defined.

	
virtual bool configureInitialPeerLocator(Locator &locator, const fastrtps::rtps::PortParameters &port_params, uint32_t domainId, LocatorList &list) const = 0

	Configure the initial peer locators list.

	
virtual bool fillUnicastLocator(Locator &locator, uint32_t well_known_port) const = 0

	Assign port to the given unicast locator if not already defined.

	
virtual uint32_t max_recv_buffer_size() const = 0

	
	Returns

	The maximum datagram size for reception supported by the transport

	
inline virtual void shutdown()

	Shutdown method to close the connections of the transports.

	
inline virtual void update_network_interfaces()

	Update network interfaces.

	
inline int32_t kind() const

	Return the transport kind.

	
constexpr uint32_t eprosima::fastdds::rtps::s_maximumMessageSize = 65500

	Default maximum message size.

	
constexpr uint32_t eprosima::fastdds::rtps::s_maximumInitialPeersRange = 4

	Default maximum initial peers range.

	
constexpr uint32_t eprosima::fastdds::rtps::s_minimumSocketBuffer = 65536

	Default minimum socket buffer.

	
static const std::string eprosima::fastdds::rtps::s_IPv4AddressAny = "0.0.0.0"

	Default IPv4 address.

	
static const std::string eprosima::fastdds::rtps::s_IPv6AddressAny = "::"

	Default IPv6 address.

	
using eprosima::fastdds::rtps::SendResourceList = std::vector<std::unique_ptr<fastrtps::rtps::SenderResource>>

	

 17.3.1.3. TransportReceiverInterface

17.3.1.3. TransportReceiverInterface

	
class eprosima::fastdds::rtps::TransportReceiverInterface

	Interface against which to implement a data receiver, decoupled from transport internals.

Subclassed by eprosima::fastrtps::rtps::ReceiverResource

Public Functions

	
virtual ~TransportReceiverInterface() = default

	Destructor.

	
virtual void OnDataReceived(const fastrtps::rtps::octet *data, const uint32_t size, const Locator &local_locator, const Locator &remote_locator) = 0

	Method to be called by the transport when receiving data.

	Parameters

	
	data – Pointer to the received data.

	size – Number of bytes received.

	local_locator – Locator identifying the local endpoint.

	remote_locator – Locator identifying the remote endpoint.

 17.3.1.4. SocketTransportDescriptor

17.3.1.4. SocketTransportDescriptor

	
struct eprosima::fastdds::rtps::SocketTransportDescriptor : public eprosima::fastdds::rtps::TransportDescriptorInterface

	Virtual base class for the data type used to define configuration of transports using sockets.

	sendBufferSize: size of the sending buffer of the socket (in octets).

	receiveBufferSize: size of the receiving buffer of the socket (in octets).

	interfaceWhiteList: list of allowed interfaces.

	TTL: time to live, in number of hops.

Subclassed by eprosima::fastdds::rtps::TCPTransportDescriptor, eprosima::fastdds::rtps::test_UDPv4TransportDescriptor, eprosima::fastdds::rtps::UDPTransportDescriptor

Public Functions

	
inline SocketTransportDescriptor(uint32_t maximumMessageSize, uint32_t maximumInitialPeersRange)

	Constructor.

	
SocketTransportDescriptor(const SocketTransportDescriptor &t) = default

	Copy constructor.

	
SocketTransportDescriptor &operator=(const SocketTransportDescriptor &t) = default

	Copy assignment.

	
virtual ~SocketTransportDescriptor() = default

	Destructor.

	
inline virtual uint32_t min_send_buffer_size() const override

	Returns the minimum size required for a send operation.

	
inline bool operator==(const SocketTransportDescriptor &t) const

	Comparison operator.

Public Members

	
uint32_t sendBufferSize

	Length of the send buffer.

	
uint32_t receiveBufferSize

	Length of the receive buffer.

	
std::vector<std::string> interfaceWhiteList

	Allowed interfaces in an IP string format.

	
uint8_t TTL

	Specified time to live (8bit - 255 max TTL)

	
constexpr uint8_t eprosima::fastdds::rtps::s_defaultTTL = 1

	Default time to live (TTL)

 17.3.2. Chaining of transports

17.3.2. Chaining of transports

	17.3.2.1. ChainingTransportDescriptor

	17.3.2.2. ChainingTransport

 17.3.2.1. ChainingTransportDescriptor

17.3.2.1. ChainingTransportDescriptor

	
struct eprosima::fastdds::rtps::ChainingTransportDescriptor : public eprosima::fastdds::rtps::TransportDescriptorInterface

	Base class for the descriptors of chaining transports. A chaining transport allows for the manipulation of data before sending or after receiving from another transport.

Transport configuration:

	low_level_descriptor: Descriptor for lower level transport.

Public Functions

	
inline virtual uint32_t min_send_buffer_size() const override

	Returns the minimum size required for a send operation.

	
inline virtual uint32_t max_message_size() const override

	Returns the maximum size expected for received messages.

Public Members

	
std::shared_ptr<TransportDescriptorInterface> low_level_descriptor

	Descriptor for lower level transport.

 17.3.2.2. ChainingTransport

17.3.2.2. ChainingTransport

	
class eprosima::fastdds::rtps::ChainingTransport : public eprosima::fastdds::rtps::TransportInterface

	This is the base class for chaining adapter transports.
	Directly proxies all operations except Send and Receive

	Has a pointer to the low level transport

Public Functions

	
inline ChainingTransport(const ChainingTransportDescriptor &t)

	Constructor.

	
virtual ~ChainingTransport() = default

	Destructor.

	
inline virtual bool init(const fastrtps::rtps::PropertyPolicy *properties = nullptr) override

	Initialize the low-level transport.

This method will prepare all the internals of the transport.

	Parameters

	properties – Optional policy to specify additional parameters of the created transport.

	Returns

	True when the transport was correctly initialized.

	
inline virtual bool IsInputChannelOpen(const fastrtps::rtps::Locator_t &loc) const override

	Call the low-level transport IsInputChannelOpen().

Must report whether the input channel associated to this locator is open. Channels must either be fully closed or fully open, so that “open” and “close” operations are whole and definitive.

	
inline virtual bool IsLocatorSupported(const fastrtps::rtps::Locator_t &loc) const override

	Call the low-level transport IsLocatorSupported().

Must report whether the given locator is supported by this transport (typically inspecting its “kind” value).

	
inline virtual fastrtps::rtps::Locator_t RemoteToMainLocal(const fastrtps::rtps::Locator_t &loc) const override

	Call the low-level transport RemoteToMainLocal().

Returns the locator describing the main (most general) channel that can write to the provided remote locator.

	
virtual bool OpenInputChannel(const fastrtps::rtps::Locator_t &loc, TransportReceiverInterface *receiver_interface, uint32_t max_message_size) override

	Call the low-level transport OpenInputChannel().

Opens an input channel to receive incoming connections. If there is an existing channel it registers the receiver interface.

	
virtual bool OpenOutputChannel(SendResourceList &sender_resource_list, const fastrtps::rtps::Locator_t &loc) override

	Call the low-level transport OpenOutputChannel().

Must open the channel that maps to/from the given locator. This method must allocate, reserve and mark any resources that are needed for said channel.

	
inline virtual bool CloseInputChannel(const fastrtps::rtps::Locator_t &loc) override

	Call the low-level transport CloseInputChannel().

Must close the channel that maps to/from the given locator. IMPORTANT: It MUST be safe to call this method even during a Receive operation on another thread. You must implement any necessary mutual exclusion and timeout mechanisms to make sure the channel can be closed without damage.

	
inline virtual fastrtps::rtps::LocatorList_t NormalizeLocator(const fastrtps::rtps::Locator_t &locator) override

	Call the low-level transport NormalizeLocator().

Performs locator normalization (assign valid IP if not defined by user)

	
inline virtual bool is_local_locator(const fastrtps::rtps::Locator_t &locator) const override

	Call the low-level transport is_local_locator().

Must report whether the given locator is from the local host

	
inline virtual bool is_locator_allowed(const fastrtps::rtps::Locator_t &locator) const override

	Call the low-level transport is_locator_allowed().

Must report whether the given locator is allowed by this transport.

	
inline virtual bool DoInputLocatorsMatch(const fastrtps::rtps::Locator_t &locator_1, const fastrtps::rtps::Locator_t &locator_2) const override

	Call the low-level transport DoInputLocatorsMatch().

Must report whether two locators map to the same internal channel.

	
inline virtual void select_locators(fastrtps::rtps::LocatorSelector &selector) const override

	Call the low-level transport select_locators().

Performs the locator selection algorithm for this transport.

	
inline virtual void AddDefaultOutputLocator(fastrtps::rtps::LocatorList_t &defaultList) override

	Call the low-level transport AddDefaultOutputLocator().

Add default output locator to the locator list

	
inline virtual bool getDefaultMetatrafficMulticastLocators(fastrtps::rtps::LocatorList_t &locators, uint32_t metatraffic_multicast_port) const override

	Call the low-level transport getDefaultMetatrafficMulticastLocators().

Add metatraffic multicast locator with the given port

	
inline virtual bool getDefaultMetatrafficUnicastLocators(fastrtps::rtps::LocatorList_t &locators, uint32_t metatraffic_unicast_port) const override

	Call the low-level transport getDefaultMetatrafficUnicastLocators().

Add metatraffic unicast locator with the given port

	
inline virtual bool getDefaultUnicastLocators(fastrtps::rtps::LocatorList_t &locators, uint32_t unicast_port) const override

	Call the low-level transport getDefaultUnicastLocators().

Add unicast locator with the given port

	
inline virtual bool fillMetatrafficMulticastLocator(fastrtps::rtps::Locator_t &locator, uint32_t metatraffic_multicast_port) const override

	Call the low-level transport fillMetatrafficMulticastLocator().

Assign port to the given metatraffic multicast locator if not already defined

	
inline virtual bool fillMetatrafficUnicastLocator(fastrtps::rtps::Locator_t &locator, uint32_t metatraffic_unicast_port) const override

	Call the low-level transport fillMetatrafficUnicastLocator().

Assign port to the given metatraffic unicast locator if not already defined

	
inline virtual bool configureInitialPeerLocator(fastrtps::rtps::Locator_t &locator, const fastrtps::rtps::PortParameters &port_params, uint32_t domainId, fastrtps::rtps::LocatorList_t &list) const override

	Call the low-level transport configureInitialPeerLocator().

Configure the initial peer locators list

	
inline virtual bool fillUnicastLocator(fastrtps::rtps::Locator_t &locator, uint32_t well_known_port) const override

	Call the low-level transport fillUnicastLocator().

Assign port to the given unicast locator if not already defined

	
inline virtual bool transform_remote_locator(const fastrtps::rtps::Locator_t &remote_locator, fastrtps::rtps::Locator_t &result_locator) const override

	Call the low-level transport transform_remote_locator(). Transforms a remote locator into a locator optimized for local communications.

	
inline virtual uint32_t max_recv_buffer_size() const override

	Call the low-level transport max_recv_buffer_size().

	Returns

	The maximum datagram size for reception supported by the transport

	
virtual bool send(fastrtps::rtps::SenderResource *low_sender_resource, const fastrtps::rtps::octet *send_buffer, uint32_t send_buffer_size, fastrtps::rtps::LocatorsIterator *destination_locators_begin, fastrtps::rtps::LocatorsIterator *destination_locators_end, const std::chrono::steady_clock::time_point &timeout) = 0

	Blocking Send through the specified channel. It may perform operations on the output buffer. At the end the function must call to the low-level transport’s send() function. // Example of calling the low-level transport `send()` function.
return low_sender_resource->send(send_buffer, send_buffer_size, destination_locators_begin,
 destination_locators_end, timeout);

	Parameters

	
	low_sender_resource – SenderResource generated by the lower transport.

	send_buffer – Slice into the raw data to send.

	send_buffer_size – Size of the raw data. It will be used as a bounds check for the previous argument. It must not exceed the sendBufferSize fed to this class during construction.

	destination_locators_begin – First iterator of the list of Locators describing the remote destinations we’re sending to.

	destination_locators_end – End iterator of the list of Locators describing the remote destinations we’re sending to.

	timeout – Maximum blocking time.

	
virtual void receive(TransportReceiverInterface *next_receiver, const fastrtps::rtps::octet *receive_buffer, uint32_t receive_buffer_size, const fastrtps::rtps::Locator_t &local_locator, const fastrtps::rtps::Locator_t &remote_locator) = 0

	Blocking Receive from the specified channel.

It may perform operations on the input buffer. At the end the function must call to the next_receiver’s OnDataReceived function. // Example of calling the `next_receiver`'s `OnDataReceived` function.
next_receiver->OnDataReceived(receive_buffer, receive_buffer_size, local_locator, remote_locator);

	Parameters

	
	next_receiver – Next resource receiver to be called.

	receive_buffer – vector with enough capacity (not size) to accommodate a full receive buffer. That capacity must not be less than the receiveBufferSize supplied to this class during construction.

	receive_buffer_size – Size of the raw data. It will be used as bounds check for the previous argument. It must not exceed the receiveBufferSize fed to this class during construction.

	local_locator – Locator mapping to the local channel we’re listening to.

	remote_locator – [out] Locator describing the remote destination we received a packet from.

	
inline virtual void update_network_interfaces() override

	Update network interfaces.

 17.3.3. UDP Transport

17.3.3. UDP Transport

	17.3.3.1. UDPTransportDescriptor

	17.3.3.2. UDPv4TransportDescriptor

	17.3.3.3. UDPv6TransportDescriptor

	17.3.3.4. test_UDPv4TransportDescriptor

 17.3.3.1. UDPTransportDescriptor

17.3.3.1. UDPTransportDescriptor

	
struct eprosima::fastdds::rtps::UDPTransportDescriptor : public eprosima::fastdds::rtps::SocketTransportDescriptor

	UDP Transport configuration

	m_output_udp_socket: source port to use for outgoing datagrams.

	non_blocking_send: do not block on send operations. When it is set to true, send operations will return immediately if the buffer is full, but no error will be returned to the upper layer. This means that the application will behave as if the datagram is sent and lost.

Subclassed by eprosima::fastdds::rtps::UDPv4TransportDescriptor, eprosima::fastdds::rtps::UDPv6TransportDescriptor

Public Functions

	
virtual ~UDPTransportDescriptor() = default

	Destructor.

	
UDPTransportDescriptor()

	Constructor.

	
UDPTransportDescriptor(const UDPTransportDescriptor &t) = default

	Copy constructor.

	
UDPTransportDescriptor &operator=(const UDPTransportDescriptor &t) = default

	Copy assignment.

	
bool operator==(const UDPTransportDescriptor &t) const

	Comparison operator.

Public Members

	
uint16_t m_output_udp_socket

	Source port to use for outgoing datagrams.

	
bool non_blocking_send = false

	Whether to use non-blocking calls to send_to().

When set to true, calls to send_to() will return immediately if the buffer is full, but no error will be returned to the upper layer. This means that the application will behave as if the datagram is sent but lost (i.e. throughput may be reduced). This value is specially useful on high-frequency best-effort writers.

When set to false, calls to send_to() will block until the network buffer has space for the datagram. This may hinder performance on high-frequency writers.

 17.3.3.2. UDPv4TransportDescriptor

17.3.3.2. UDPv4TransportDescriptor

	
struct eprosima::fastdds::rtps::UDPv4TransportDescriptor : public eprosima::fastdds::rtps::UDPTransportDescriptor

	UDPv4 Transport configuration The kind value for UDPv4TransportDescriptor is given by eprosima::fastrtps::rtps::LOCATOR_KIND_UDPv4.

Public Functions

	
virtual ~UDPv4TransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
UDPv4TransportDescriptor()

	Constructor.

	
UDPv4TransportDescriptor(const UDPv4TransportDescriptor &t) = default

	Copy constructor.

	
UDPv4TransportDescriptor &operator=(const UDPv4TransportDescriptor &t) = default

	Copy assignment.

 17.3.3.3. UDPv6TransportDescriptor

17.3.3.3. UDPv6TransportDescriptor

	
struct eprosima::fastdds::rtps::UDPv6TransportDescriptor : public eprosima::fastdds::rtps::UDPTransportDescriptor

	UDPv6 Transport configuration The kind value for UDPv6TransportDescriptor is given by eprosima::fastrtps::rtps::LOCATOR_KIND_UDPv6.

Public Functions

	
virtual ~UDPv6TransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
UDPv6TransportDescriptor()

	Constructor.

	
UDPv6TransportDescriptor(const UDPv6TransportDescriptor &t) = default

	Copy constructor.

	
UDPv6TransportDescriptor &operator=(const UDPv6TransportDescriptor &t) = default

	Copy assignment.

 17.3.3.4. test_UDPv4TransportDescriptor

17.3.3.4. test_UDPv4TransportDescriptor

	
struct eprosima::fastdds::rtps::test_UDPv4TransportDescriptor : public eprosima::fastdds::rtps::SocketTransportDescriptor

	UDP v4 Test Transport configuration

Public Types

	
typedef std::function<bool(fastrtps::rtps::CDRMessage_t &msg)> filter

	Custom message filtering functions.

	
typedef std::function<bool(const Locator &destination)> DestinationLocatorFilter

	Locator filtering function.

Public Functions

	
test_UDPv4TransportDescriptor()

	Constructor.

	
virtual ~test_UDPv4TransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Create transport using the parameters defined within the Descriptor.

	
test_UDPv4TransportDescriptor(const test_UDPv4TransportDescriptor &t) = default

	Copy constructor.

	
test_UDPv4TransportDescriptor &operator=(const test_UDPv4TransportDescriptor &t) = default

	Copy assignment.

	
bool operator==(const test_UDPv4TransportDescriptor &t) const

	Comparison operator.

Public Members

	
uint8_t dropDataMessagesPercentage

	Test shim parameters Percentage of data messages being dropped

	
filter drop_data_messages_filter_

	Filtering function for dropping data messages.

	
bool dropParticipantBuiltinTopicData

	Flag to enable dropping of discovery Participant DATA(P) messages.

	
bool dropPublicationBuiltinTopicData

	Flag to enable dropping of discovery Writer DATA(W) messages.

	
bool dropSubscriptionBuiltinTopicData

	Flag to enable dropping of discovery Reader DATA(R) messages.

	
uint8_t dropDataFragMessagesPercentage

	Percentage of data fragments being dropped.

	
filter drop_data_frag_messages_filter_

	Filtering function for dropping data fragments messages.

	
uint8_t dropHeartbeatMessagesPercentage

	Percentage of heartbeats being dropped.

	
filter drop_heartbeat_messages_filter_

	Filtering function for dropping heartbeat messages.

	
uint8_t dropAckNackMessagesPercentage

	Percentage of AckNacks being dropped.

	
filter drop_ack_nack_messages_filter_

	Filtering function for dropping AckNacks.

	
uint8_t dropGapMessagesPercentage

	Percentage of gap messages being dropped.

	
filter drop_gap_messages_filter_

	Filtering function for dropping gap messages.

	
DestinationLocatorFilter locator_filter_

	Filtering function for dropping messages to specific destinations.

	
std::vector<fastrtps::rtps::SequenceNumber_t> sequenceNumberDataMessagesToDrop

	Vector containing the message’s sequence numbers being dropped.

	
uint32_t dropLogLength

	Log dropped packets.

 17.3.4. TCP Transport

17.3.4. TCP Transport

	17.3.4.1. TCPTransportDescriptor

	17.3.4.2. TCPv4TransportDescriptor

	17.3.4.3. TCPv6TransportDescriptor

 17.3.4.1. TCPTransportDescriptor

17.3.4.1. TCPTransportDescriptor

	
struct eprosima::fastdds::rtps::TCPTransportDescriptor : public eprosima::fastdds::rtps::SocketTransportDescriptor

	TCP Transport configuration

	listening_ports: list of ports to listen as server.

	keep_alive_frequency_ms: frequency of RTCP keep alive requests (in ms).

	keep_alive_timeout_ms: time since sending the last keep alive request to consider a connection as broken (in ms).

	max_logical_port: maximum number of logical ports to try during RTCP negotiation.

	logical_port_range: maximum number of logical ports per request to try during RTCP negotiation.

	logical_port_increment: increment between logical ports to try during RTCP negotiation.

	enable_tcp_nodelay: enables the TCP_NODELAY socket option.

	calculate_crc: true to calculate and send CRC on message headers.

	check_crc: true to check the CRC of incoming message headers.

	apply_security: true to use TLS (Transport Layer Security).

	tls_config: Configuration for TLS.

Subclassed by eprosima::fastdds::rtps::TCPv4TransportDescriptor, eprosima::fastdds::rtps::TCPv6TransportDescriptor

Public Functions

	
inline void add_listener_port(uint16_t port)

	Add listener port to the listening_ports list.

	
TCPTransportDescriptor()

	Constructor.

	
TCPTransportDescriptor(const TCPTransportDescriptor &t)

	Copy constructor.

	
TCPTransportDescriptor &operator=(const TCPTransportDescriptor &t)

	Copy assignment.

	
virtual ~TCPTransportDescriptor() = default

	Destructor.

	
bool operator==(const TCPTransportDescriptor &t) const

	Comparison operator.

Public Members

	
std::vector<uint16_t> listening_ports

	List of ports to listen as server.

	
uint32_t keep_alive_frequency_ms

	Frequency of RTCP keep alive requests (ms)

	
uint32_t keep_alive_timeout_ms

	Time since sending the last keep alive request to consider a connection as broken (ms)

	
uint16_t max_logical_port

	Maximum number of logical ports to try during RTCP negotiation.

	
uint16_t logical_port_range

	Maximum number of logical ports per request to try during RTCP negotiation.

	
uint16_t logical_port_increment

	Increment between logical ports to try during RTCP negotiation.

	
bool enable_tcp_nodelay

	Enables the TCP_NODELAY socket option.

	
bool calculate_crc

	Enables the calculation and sending of CRC on message headers.

	
bool check_crc

	Enables checking the CRC of incoming message headers.

	
bool apply_security

	Enables the use of TLS (Transport Layer Security)

	
TLSConfig tls_config

	Configuration of the TLS (Transport Layer Security)

	
struct TLSConfig

	TLS Configuration

	password: password of the private_key_file or rsa_private_key_file.

	private_key_file: path to the private key certificate file.

	rsa_private_key_file: path to the private key RSA certificate file.

	cert_chain_file: path to the public certificate chain file.

	tmp_dh_file: path to the Diffie-Hellman parameters file.

	verify_file: path to the CA (Certification-Authority) file.

	verify_mode: establishes the verification mode mask.

	options: establishes the SSL Context options mask.

	verify_paths: paths where the system will look for verification files.

	default_verify_path: look for verification files on the default paths.

	handshake_role: role that the transport will take on handshaking.

	server_name: server name or host name required in case Server Name Indication (SNI) is used.

Public Types

	
enum TLSOptions

	Supported TLS features. Several options can be combined in the same TransportDescriptor using the add_option() member function.

	DEFAULT_WORKAROUNDS: implement various bug workarounds.

	NO_COMPRESSION: disable compression.

	NO_SSLV2: disable SSL v2.

	NO_SSLV3: disable SSL v3.

	NO_TLSV1: disable TLS v1.

	NO_TLSV1_1: disable TLS v1.1.

	NO_TLSV1_2: disable TLS v1.2.

	NO_TLSV1_3: disable TLS v1.3.

	SINGLE_DH_USE: always create a new key using Diffie-Hellman parameters.

Values:

	
enumerator NONE

	

	
enumerator DEFAULT_WORKAROUNDS

	

	
enumerator NO_COMPRESSION

	

	
enumerator NO_SSLV2

	

	
enumerator NO_SSLV3

	

	
enumerator NO_TLSV1

	

	
enumerator NO_TLSV1_1

	

	
enumerator NO_TLSV1_2

	

	
enumerator NO_TLSV1_3

	

	
enumerator SINGLE_DH_USE

	

	
enum TLSVerifyMode

	Peer node verification options. Several verification options can be combined in the same TransportDescriptor using the add_verify_mode() member function.

	VERIFY_NONE: perform no verification.

	VERIFY_PEER: perform verification of the peer.

	VERIFY_FAIL_IF_NO_PEER_CERT: fail verification if the peer has no certificate. Ignored unless VERIFY_PEER is also set.

	VERIFY_CLIENT_ONCE: do not request client certificate on renegotiation. Ignored unless VERIFY_PEER is also set.

Values:

	
enumerator UNUSED

	

	
enumerator VERIFY_NONE

	

	
enumerator VERIFY_PEER

	

	
enumerator VERIFY_FAIL_IF_NO_PEER_CERT

	

	
enumerator VERIFY_CLIENT_ONCE

	

	
enum TLSHandShakeRole

	Role that the transport will take on handshaking.

	DEFAULT: configured as client if connector, and as server if acceptor.

	CLIENT: configured as client.

	SERVER: configured as server.

Values:

	
enumerator DEFAULT

	

	
enumerator CLIENT

	

	
enumerator SERVER

	

Public Functions

	
inline void add_verify_mode(const TLSVerifyMode verify)

	Add verification modes to the verification mode mask.

	
inline bool get_verify_mode(const TLSVerifyMode verify) const

	Get the verification mode mask.

	
inline void add_option(const TLSOptions option)

	Add TLS features to the SSL Context options mask.

	
inline bool get_option(const TLSOptions option) const

	Get the SSL Context options mask.

	
inline bool operator==(const TLSConfig &t) const

	Comparison operator.

Public Members

	
std::string password

	Password of the private_key_file or rsa_private_key_file.

	
uint32_t options = TLSOptions::NONE

	SSL context options mask.

	
std::string cert_chain_file

	Path to the public certificate chain file.

	
std::string private_key_file

	Path to the private key certificate file.

	
std::string tmp_dh_file

	Path to the Diffie-Hellman parameters file.

	
std::string verify_file

	Path to the CA (Certification-Authority) file.

	
uint8_t verify_mode = TLSVerifyMode::UNUSED

	Verification mode mask.

	
std::vector<std::string> verify_paths

	Paths where the system will look for verification files.

	
bool default_verify_path = false

	Look for verification files on the default paths.

	
int32_t verify_depth = -1

	Maximum allowed depth for verifying intermediate certificates. Do not override.

	
std::string rsa_private_key_file

	Path to the private key RSA certificate file.

	
TLSHandShakeRole handshake_role = TLSHandShakeRole::DEFAULT

	Role that the transport will take on handshaking.

	
std::string server_name

	Server name or host name required in case Server Name Indication (SNI) is used.

 17.3.4.2. TCPv4TransportDescriptor

17.3.4.2. TCPv4TransportDescriptor

	
struct eprosima::fastdds::rtps::TCPv4TransportDescriptor : public eprosima::fastdds::rtps::TCPTransportDescriptor

	TCPv4 Transport configuration. The kind value for TCPv4TransportDescriptor is given by eprosima::fastrtps::rtps::LOCATOR_KIND_TCPv4.

	wan_addr: Public IP address. Peers on a different LAN will use this IP for communications with this host.

Public Functions

	
virtual ~TCPv4TransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
inline void set_WAN_address(fastrtps::rtps::octet o1, fastrtps::rtps::octet o2, fastrtps::rtps::octet o3, fastrtps::rtps::octet o4)

	Set the public IP address.

	
inline void set_WAN_address(const std::string &in_address)

	Set the public IP address.

	
inline std::string get_WAN_address()

	Get the public IP address.

	
TCPv4TransportDescriptor()

	Constructor.

	
TCPv4TransportDescriptor(const TCPv4TransportDescriptor &t)

	Copy constructor.

	
TCPv4TransportDescriptor &operator=(const TCPv4TransportDescriptor &t)

	Copy assignment.

	
bool operator==(const TCPv4TransportDescriptor &t) const

	Comparison operator.

Public Members

	
fastrtps::rtps::octet wan_addr[4]

	Public IP address.

 17.3.4.3. TCPv6TransportDescriptor

17.3.4.3. TCPv6TransportDescriptor

	
struct eprosima::fastdds::rtps::TCPv6TransportDescriptor : public eprosima::fastdds::rtps::TCPTransportDescriptor

	TCPv6 Transport configuration The kind value for TCPv6TransportDescriptor is given by eprosima::fastrtps::rtps::LOCATOR_KIND_TCPv6.

Public Functions

	
virtual ~TCPv6TransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
TCPv6TransportDescriptor()

	Constructor.

	
TCPv6TransportDescriptor(const TCPv6TransportDescriptor &t)

	Copy constructor.

	
TCPv6TransportDescriptor &operator=(const TCPv6TransportDescriptor &t) = default

	Copy assignment.

	
bool operator==(const TCPv6TransportDescriptor &t) const

	Comparison operator.

 17.3.5. Shared Memory Transport

17.3.5. Shared Memory Transport

	17.3.5.1. SharedMemTransportDescriptor

 17.3.5.1. SharedMemTransportDescriptor

17.3.5.1. SharedMemTransportDescriptor

	
struct eprosima::fastdds::rtps::SharedMemTransportDescriptor : public eprosima::fastdds::rtps::TransportDescriptorInterface

	Shared memory transport configuration. The kind value for SharedMemTransportDescriptor is given by eprosima::fastrtps::rtps::LOCATOR_KIND_SHM.

	segment_size_: size of the shared memory segment (in octets).

	port_queue_capacity_: size of the listening port (in messages).

	healthy_check_timeout_ms_: timeout for the health check of ports (ms).

	rtps_dump_file_: full path of the protocol dump file.

Public Functions

	
virtual ~SharedMemTransportDescriptor() = default

	Destructor.

	
virtual TransportInterface *create_transport() const override

	Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor. This provides an interface to the NetworkFactory to create the transports without the need to know about their type

	
inline virtual uint32_t min_send_buffer_size() const override

	Minimum size of the send buffer.

	
SharedMemTransportDescriptor()

	Constructor.

	
SharedMemTransportDescriptor(const SharedMemTransportDescriptor &t) = default

	Copy constructor.

	
SharedMemTransportDescriptor &operator=(const SharedMemTransportDescriptor &t) = default

	Copy assignment.

	
inline uint32_t segment_size() const

	Return the size of the shared memory segment.

	
inline void segment_size(uint32_t segment_size)

	Set the size of the shared memory segment.

	
inline virtual uint32_t max_message_size() const override

	Return the maximum size of a single message in the transport (in octets)

	
inline void max_message_size(uint32_t max_message_size)

	Set the maximum size of a single message in the transport (in octets)

	
inline uint32_t port_queue_capacity() const

	Return the size of the listening port (in messages)

	
inline void port_queue_capacity(uint32_t port_queue_capacity)

	Set the size of the listening port (in messages)

	
inline uint32_t healthy_check_timeout_ms() const

	Return the timeout for the health check of ports (ms)

	
inline void healthy_check_timeout_ms(uint32_t healthy_check_timeout_ms)

	Set the timeout for the health check of ports (ms)

	
inline std::string rtps_dump_file() const

	Return the full path of the protocol dump file.

	
inline void rtps_dump_file(const std::string &rtps_dump_file)

	Set the full path of the protocol dump file.

	
bool operator==(const SharedMemTransportDescriptor &t) const

	Comparison operator.

 17.4. LOG

17.4. LOG

eProsima Fast DDS Logging Module API

	17.4.1. Colors
	17.4.1.1. Color Blue

	17.4.1.2. Color Bright

	17.4.1.3. Color Bright Blue

	17.4.1.4. Color Bright Cyan

	17.4.1.5. Color Bright Green

	17.4.1.6. Color Bright Magenta

	17.4.1.7. Color Bright Red

	17.4.1.8. Color Bright White

	17.4.1.9. Color Bright Yellow

	17.4.1.10. Color Cyan

	17.4.1.11. Color Def

	17.4.1.12. Color Green

	17.4.1.13. Color Magenta

	17.4.1.14. Color Red

	17.4.1.15. Color White

	17.4.1.16. Color Yellow

	17.4.2. FileConsumer

	17.4.3. Log

	17.4.4. LogConsumer

	17.4.5. logError

	17.4.6. logInfo

	17.4.7. logWarning

	17.4.8. OStreamConsumer

	17.4.9. StdoutConsumer

	17.4.10. StdoutErrConsumer

 17.4.1. Colors

17.4.1. Colors

A collection of macros for ease the stream coloring.

	17.4.1.1. Color Blue

	17.4.1.2. Color Bright

	17.4.1.3. Color Bright Blue

	17.4.1.4. Color Bright Cyan

	17.4.1.5. Color Bright Green

	17.4.1.6. Color Bright Magenta

	17.4.1.7. Color Bright Red

	17.4.1.8. Color Bright White

	17.4.1.9. Color Bright Yellow

	17.4.1.10. Color Cyan

	17.4.1.11. Color Def

	17.4.1.12. Color Green

	17.4.1.13. Color Magenta

	17.4.1.14. Color Red

	17.4.1.15. Color White

	17.4.1.16. Color Yellow

 17.4.1.1. Color Blue

17.4.1.1. Color Blue

	
C_BLUE "\033[34m"

	

17.4.1.2. Color Bright

	
C_BRIGHT "\033[1m"

	

17.4.1.3. Color Bright Blue

	
C_B_BLUE "\033[34;1m"

	

17.4.1.4. Color Bright Cyan

	
C_B_CYAN "\033[36;1m"

	

17.4.1.5. Color Bright Green

	
C_B_GREEN "\033[32;1m"

	

17.4.1.6. Color Bright Magenta

	
C_B_MAGENTA "\033[35;1m"

	

17.4.1.7. Color Bright Red

	
C_B_RED "\033[31;1m"

	

17.4.1.8. Color Bright White

	
C_B_WHITE "\033[37;1m"

	

17.4.1.9. Color Bright Yellow

	
C_B_YELLOW "\033[33;1m"

	

17.4.1.10. Color Cyan

	
C_CYAN "\033[36m"

	

17.4.1.11. Color Def

	
C_DEF "\033[m"

	

17.4.1.12. Color Green

	
C_GREEN "\033[32m"

	

17.4.1.13. Color Magenta

	
C_MAGENTA "\033[35m"

	

17.4.1.14. Color Red

	
C_RED "\033[31m"

	

17.4.1.15. Color White

	
C_WHITE "\033[37m"

	

17.4.1.16. Color Yellow

	
C_YELLOW "\033[33m"

	

 17.4.2. FileConsumer

17.4.2. FileConsumer

	
class eprosima::fastdds::dds::FileConsumer : public eprosima::fastdds::dds::OStreamConsumer

	
Public Functions

	
FileConsumer()

	Default constructor: filename = “output.log”, append = false.

	
FileConsumer(const std::string &filename, bool append = false)

	Constructor with parameters.

	Parameters

	
	filename – path of the output file where the log will be wrote.

	append – indicates if the consumer must append the content in the filename.

 17.4.3. Log

17.4.3. Log

	
class eprosima::fastdds::dds::Log

	Logging utilities. Logging is accessed through the three macros above, and configuration on the log output can be achieved through static methods on the class. Logging at various levels can be disabled dynamically (through the Verbosity level) or statically (through the LOG_NO_[VERB] macros) for maximum performance.

Public Types

	
enum Kind

	Types of log entry.
	Error: Maximum priority. Can only be disabled statically through LOG_NO_ERROR.

	Warning: Medium priority. Can be disabled statically and dynamically.

	Info: Low priority. Useful for debugging. Disabled by default on release branches.

Values:

	
enumerator Error

	

	
enumerator Warning

	

	
enumerator Info

	

Public Static Functions

	
static void RegisterConsumer(std::unique_ptr<LogConsumer> &&consumer)

	Registers an user defined consumer to route log output. There is a default stdout consumer active as default.

	Parameters

	consumer – r-value to a consumer unique_ptr. It will be invalidated after the call.

	
static void ClearConsumers()

	Removes all registered consumers, including the default stdout.

	
static void ReportFilenames(bool)

	Enables the reporting of filenames in log entries. Disabled by default.

	
static void ReportFunctions(bool)

	Enables the reporting of function names in log entries. Enabled by default when supported.

	
static void SetVerbosity(Log::Kind)

	Sets the verbosity level, allowing for messages equal or under that priority to be logged.

	
static Log::Kind GetVerbosity()

	Returns the current verbosity level.

	
static void SetCategoryFilter(const std::regex&)

	Sets a filter that will pattern-match against log categories, dropping any unmatched categories.

	
static void SetFilenameFilter(const std::regex&)

	Sets a filter that will pattern-match against filenames, dropping any unmatched categories.

	
static void SetErrorStringFilter(const std::regex&)

	Sets a filter that will pattern-match against the provided error string, dropping any unmatched categories.

	
static void Reset()

	Returns the logging engine to configuration defaults.

	
static void Flush()

	Waits until all info logged up to the call time is consumed.

	
static void KillThread()

	Stops the logging thread. It will re-launch on the next call to a successful log macro.

	
static void QueueLog(const std::string &message, const Log::Context&, Log::Kind)

	Not recommended to call this method directly! Use the following macros:
	EPROSIMA_LOG_INFO(cat, msg);

	EPROSIMA_LOG_WARNING(cat, msg);

	EPROSIMA_LOG_ERROR(cat, msg);

	
Todo:

	this method takes 2 mutexes (same mutex) internally. This is a very high sensible point of the code and it should be refactored to be as efficient as possible.

	
struct Context

	

	
struct Entry

	

 17.4.4. LogConsumer

17.4.4. LogConsumer

	
class LogConsumer

	Consumes a log entry to output it somewhere.

Subclassed by eprosima::fastdds::dds::OStreamConsumer

 17.4.5. logError

17.4.5. logError

Warning

doxygendefine: Cannot find define “logError” in doxygen xml output for project “FastDDS” from directory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-rtps/checkouts/v2.7.2/build/doxygen/xml

 17.4.6. logInfo

17.4.6. logInfo

Warning

doxygendefine: Cannot find define “logInfo” in doxygen xml output for project “FastDDS” from directory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-rtps/checkouts/v2.7.2/build/doxygen/xml

 17.4.7. logWarning

17.4.7. logWarning

Warning

doxygendefine: Cannot find define “logWarning” in doxygen xml output for project “FastDDS” from directory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-rtps/checkouts/v2.7.2/build/doxygen/xml

 17.4.8. OStreamConsumer

17.4.8. OStreamConsumer

	
class OStreamConsumer : public eprosima::fastdds::dds::LogConsumer

	Subclassed by eprosima::fastdds::dds::FileConsumer, eprosima::fastdds::dds::StdoutConsumer, eprosima::fastdds::dds::StdoutErrConsumer

 17.4.9. StdoutConsumer

17.4.9. StdoutConsumer

	
class StdoutConsumer : public eprosima::fastdds::dds::OStreamConsumer

	

 17.4.10. StdoutErrConsumer

17.4.10. StdoutErrConsumer

	
class eprosima::fastdds::dds::StdoutErrConsumer : public eprosima::fastdds::dds::OStreamConsumer

	
Public Functions

	
virtual void stderr_threshold(const Log::Kind &kind)

	Set the stderr_threshold to a Log::Kind. This threshold decides which log messages are output on STDOUT, and which are output to STDERR. Log messages with a Log::Kind equal to or more severe than the stderr_threshold are output to STDERR using std::cerr. Log messages with a Log::Kind less severe than the stderr_threshold are output to STDOUT using std::cout.

	Parameters

	kind – The Log::Kind to which stderr_threshold is set.

	
virtual Log::Kind stderr_threshold() const

	Retrieve the stderr_threshold.

	Returns

	The Log::Kind to which stderr_threshold is set.

Public Static Attributes

	
static constexpr Log::Kind STDERR_THRESHOLD_DEFAULT = Log::Kind::Warning

	Default value of stderr_threshold.

 17.5. Statistics

17.5. Statistics

eProsima Fast DDS Statistics Module extension API.

	17.5.1. DomainParticipant

	17.5.2. DataWriterQos

	17.5.3. DataReaderQos

	17.5.4. Topic names

 17.5.1. DomainParticipant

17.5.1. DomainParticipant

	
class eprosima::fastdds::statistics::dds::DomainParticipant : public eprosima::fastdds::dds::DomainParticipant

	Class DomainParticipant: extends standard DDS DomainParticipant class to include specific methods for the Statistics module

Public Functions

	
ReturnCode_t enable_statistics_datawriter(const std::string &topic_name, const eprosima::fastdds::dds::DataWriterQos &dwqos)

	This operation enables a Statistics DataWriter.

	Parameters

	
	topic_name – [in] Name of the topic associated to the Statistics DataWriter

	dwqos – [in] DataWriterQos to be set

	Returns

	RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has not been set, RETCODE_BAD_PARAMETER if the topic name provided does not correspond to any Statistics DataWriter, RETCODE_INCONSISTENT_POLICY if the DataWriterQos provided are inconsistent, RETCODE_OK if the DataWriter has been created or if it has been created previously, and RETCODE_ERROR otherwise

	
ReturnCode_t enable_statistics_datawriter_with_profile(const std::string &profile_name, const std::string &topic_name)

	This operation enables a Statistics DataWriter from a given profile.

	Parameters

	
	profile_name – [in] DataWriter QoS profile name

	topic_name – [in] Name of the statistics topic to be enabled.

	Returns

	RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has not been set, RETCODE_BAD_PARAMETER if the topic name provided does not correspond to any Statistics DataWriter, RETCODE_INCONSISTENT_POLICY if the DataWriterQos provided in profile are inconsistent, RETCODE_OK if the DataWriter has been created or if it has been created previously, and RETCODE_ERROR otherwise

	
ReturnCode_t disable_statistics_datawriter(const std::string &topic_name)

	This operation disables a Statistics DataWriter.

	Parameters

	topic_name – Name of the topic associated to the Statistics DataWriter

	Returns

	RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has not been set, RETCODE_BAD_PARAMETER if the topic name provided does not correspond to any Statistics DataWriter, RETCODE_OK if the DataWriter has been correctly deleted or does not exist, and RETCODE_ERROR otherwise

Public Static Functions

	
static DomainParticipant *narrow(eprosima::fastdds::dds::DomainParticipant *domain_participant)

	This operation narrows the DDS DomainParticipant to the Statistics DomainParticipant.

	Parameters

	domain_participant – Reference to the DDS DomainParticipant

	Returns

	Reference to the Statistics DomainParticipant if successful. nullptr otherwise.

	
static const DomainParticipant *narrow(const eprosima::fastdds::dds::DomainParticipant *domain_participant)

	This operation narrows the DDS DomainParticipant to the Statistics DomainParticipant.

	Parameters

	domain_participant – Constant reference to the DDS DomainParticipant

	Returns

	Constant reference to the Statistics DomainParticipant if successful. nullptr otherwise.

 17.5.2. DataWriterQos

17.5.2. DataWriterQos

	
class eprosima::fastdds::statistics::dds::DataWriterQos : public eprosima::fastdds::dds::DataWriterQos

	Class DataWriterQos: extends standard DDS DataWriterQos class to include specific default constructor for the recommended DataWriterQos profile.

Public Functions

	
DataWriterQos()

	Constructor.

	
const eprosima::fastdds::statistics::dds::DataWriterQos eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS

	Constant to access default Statistics DataWriter Qos.

 17.5.3. DataReaderQos

17.5.3. DataReaderQos

	
class eprosima::fastdds::statistics::dds::DataReaderQos : public eprosima::fastdds::dds::DataReaderQos

	Class DataReaderQos: extends standard DDS DataReaderQos class to include specific default constructor for the recommended DataReaderQos profile.

Public Functions

	
DataReaderQos()

	Constructor.

	
const eprosima::fastdds::statistics::dds::DataReaderQos eprosima::fastdds::statistics::dds::STATISTICS_DATAREADER_QOS

	Constant to access default Statistics DataReader Qos.

 17.5.4. Topic names

17.5.4. Topic names

	
constexpr const char *eprosima::fastdds::statistics::HISTORY_LATENCY_TOPIC = "_fastdds_statistics_history2history_latency"

	Statistic topic that reports the write-to-notification latency between any two pairs of matched DataWriter-DataReader histories

	
constexpr const char *eprosima::fastdds::statistics::NETWORK_LATENCY_TOPIC = "_fastdds_statistics_network_latency"

	Statistics topic that reports the network latency (message group to message receiver) between any two communicating locators

	
constexpr const char *eprosima::fastdds::statistics::PUBLICATION_THROUGHPUT_TOPIC = "_fastdds_statistics_publication_throughput"

	Statistic topic that reports the publication’s throughput (amount of data sent) for every DataWriter.

	
constexpr const char *eprosima::fastdds::statistics::SUBSCRIPTION_THROUGHPUT_TOPIC = "_fastdds_statistics_subscription_throughput"

	Statistics topic that reports the subscription’s throughput (amount of data received) for every DataReader.

	
constexpr const char *eprosima::fastdds::statistics::RTPS_SENT_TOPIC = "_fastdds_statistics_rtps_sent"

	Statistics topic that reports the number of RTPS packets and bytes sent to each locator.

	
constexpr const char *eprosima::fastdds::statistics::RTPS_LOST_TOPIC = "_fastdds_statistics_rtps_lost"

	Statistics topic that reports the number of RTPS packets and bytes that have been lost in the network.

	
constexpr const char *eprosima::fastdds::statistics::RESENT_DATAS_TOPIC = "_fastdds_statistics_resent_datas"

	Statistics topic that reports the number of DATA/DATAFRAG sub-messages resent.

	
constexpr const char *eprosima::fastdds::statistics::HEARTBEAT_COUNT_TOPIC = "_fastdds_statistics_heartbeat_count"

	Statistics topic that reports the number of HEARTBEATs that each non discovery DataWriter sends.

	
constexpr const char *eprosima::fastdds::statistics::ACKNACK_COUNT_TOPIC = "_fastdds_statistics_acknack_count"

	Statistics topic that reports the number of ACKNACKs that each non discovery DataReader sends.

	
constexpr const char *eprosima::fastdds::statistics::NACKFRAG_COUNT_TOPIC = "_fastdds_statistics_nackfrag_count"

	Statistics topic that reports the number of NACKFRAGs that each non discovery DataReader sends.

	
constexpr const char *eprosima::fastdds::statistics::GAP_COUNT_TOPIC = "_fastdds_statistics_gap_count"

	Statistics topic that reports the number of GAPs that each non discovery DataWriter sends.

	
constexpr const char *eprosima::fastdds::statistics::DATA_COUNT_TOPIC = "_fastdds_statistics_data_count"

	Statistics topic that reports the number of DATA/DATAFRAG sub-messages that each non discovery DataWriter sends.

	
constexpr const char *eprosima::fastdds::statistics::PDP_PACKETS_TOPIC = "_fastdds_statistics_pdp_packets"

	Statistics topic that reports the number of PDP discovery traffic RTPS packets transmitted by each DDS participant.

	
constexpr const char *eprosima::fastdds::statistics::EDP_PACKETS_TOPIC = "_fastdds_statistics_edp_packets"

	Statistics topic that reports the number of EDP discovery traffic RTPS packets transmitted by each DDS participant.

	
constexpr const char *eprosima::fastdds::statistics::DISCOVERY_TOPIC = "_fastdds_statistics_discovered_entity"

	Statistics topic that reports when new entities are discovered.

	
constexpr const char *eprosima::fastdds::statistics::SAMPLE_DATAS_TOPIC = "_fastdds_statistics_sample_datas"

	Statistics topic that reports the number of DATA/DATAFRAG sub-messages needed to send a single sample.

	
constexpr const char *eprosima::fastdds::statistics::PHYSICAL_DATA_TOPIC = "_fastdds_statistics_physical_data"

	Statistics topic that reports the host, user and process where the module is running.

 18. Python API Reference

18. Python API Reference

This section presents the most commonly used Python APIs provided by Fast DDS.

	18.1. DDS DCPS PIM
	18.1.1. Core
	18.1.1.1. Entity

	18.1.1.2. DomainEntity

	18.1.1.3. Policy
	18.1.1.3.1. DataRepresentationId

	18.1.1.3.2. DataRepresentationQosPolicy

	18.1.1.3.3. DataSharingQosPolicy

	18.1.1.3.4. DataSharingKind

	18.1.1.3.5. DeadlineQosPolicy

	18.1.1.3.6. DestinationOrderQosPolicy

	18.1.1.3.7. DestinationOrderQosPolicyKind

	18.1.1.3.8. DisablePositiveACKsQosPolicy

	18.1.1.3.9. DurabilityQosPolicy

	18.1.1.3.10. DurabilityQosPolicyKind

	18.1.1.3.11. DurabilityServiceQosPolicy

	18.1.1.3.12. EntityFactoryQosPolicy

	18.1.1.3.13. GenericDataQosPolicy

	18.1.1.3.14. GroupDataQosPolicy

	18.1.1.3.15. HistoryQosPolicy

	18.1.1.3.16. HistoryQosPolicyKind

	18.1.1.3.17. LatencyBudgetQosPolicy

	18.1.1.3.18. LifespanQosPolicy

	18.1.1.3.19. LivelinessQosPolicy

	18.1.1.3.20. LivelinessQosPolicyKind

	18.1.1.3.21. OwnershipQosPolicy

	18.1.1.3.22. OwnershipQosPolicyKind

	18.1.1.3.23. OwnershipStrengthQosPolicy

	18.1.1.3.24. ParticipantResourceLimitsQos

	18.1.1.3.25. Partition_t

	18.1.1.3.26. PartitionQosPolicy

	18.1.1.3.27. PresentationQosPolicy

	18.1.1.3.28. PresentationQosPolicyAccessScopeKind

	18.1.1.3.29. PropertyPolicyQos

	18.1.1.3.30. PublishModeQosPolicy

	18.1.1.3.31. PublishModeQosPolicyKind

	18.1.1.3.32. QosPolicy

	18.1.1.3.33. QosPolicyId_t

	18.1.1.3.34. ReaderDataLifecycleQosPolicy

	18.1.1.3.35. ReliabilityQosPolicy

	18.1.1.3.36. ReliabilityQosPolicyKind

	18.1.1.3.37. ResourceLimitsQosPolicy

	18.1.1.3.38. RTPSEndpointQos

	18.1.1.3.39. TimeBasedFilterQosPolicy

	18.1.1.3.40. TopicDataQosPolicy

	18.1.1.3.41. TransportConfigQos

	18.1.1.3.42. TransportPriorityQosPolicy

	18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	18.1.1.3.44. TypeConsistencyKind

	18.1.1.3.45. UserDataQosPolicy

	18.1.1.3.46. WireProtocolConfigQos

	18.1.1.3.47. WriterDataLifecycleQosPolicy

	18.1.1.3.48. WriterResourceLimitsQos

	18.1.1.4. Status
	18.1.1.4.1. BaseStatus

	18.1.1.4.2. DeadlineMissedStatus

	18.1.1.4.3. IncompatibleQosStatus

	18.1.1.4.4. InconsistentTopicStatus

	18.1.1.4.5. LivelinessChangedStatus

	18.1.1.4.6. MatchedStatus

	18.1.1.4.7. OfferedDeadlineMissedStatus

	18.1.1.4.8. OfferedIncompatibleQosStatus

	18.1.1.4.9. PublicationMatchedStatus

	18.1.1.4.10. QosPolicyCount

	18.1.1.4.11. QosPolicyCountSeq

	18.1.1.4.12. RequestedDeadlineMissedStatus

	18.1.1.4.13. RequestedIncompatibleQosStatus

	18.1.1.4.14. LivelinessLostStatus

	18.1.1.4.15. SampleLostStatus

	18.1.1.4.16. SampleRejectedStatus

	18.1.1.4.17. SampleRejectedStatusKind

	18.1.1.4.18. StatusMask

	18.1.1.4.19. SubscriptionMatchedStatus

	18.1.1.5. LoanableArray

	18.1.1.6. LoanableCollection

	18.1.1.7. LoanableSequence

	18.1.1.8. StackAllocatedSequence

	18.1.2. Domain
	18.1.2.1. DomainParticipant

	18.1.2.2. DomainParticipantFactory

	18.1.2.3. DomainParticipantFactoryQos

	18.1.2.4. DomainParticipantListener

	18.1.2.5. DomainParticipantQos

	18.1.3. Publisher
	18.1.3.1. DataWriter

	18.1.3.2. DataWriterListener

	18.1.3.3. DataWriterQos

	18.1.3.4. Publisher

	18.1.3.5. PublisherListener

	18.1.3.6. PublisherQos

	18.1.3.7. RTPSReliableWriterQos

	18.1.4. Subscriber
	18.1.4.1. DataReader

	18.1.4.2. DataReaderListener

	18.1.4.3. DataReaderQos

	18.1.4.4. InstanceStateKind

	18.1.4.5. ReaderResourceLimitsQos

	18.1.4.6. RTPSReliableReaderQos

	18.1.4.7. SampleInfo

	18.1.4.8. SampleStateKind

	18.1.4.9. Subscriber

	18.1.4.10. SubscriberListener

	18.1.4.11. SubscriberQos

	18.1.4.12. TypeConsistencyQos

	18.1.4.13. ViewStateKind

	18.1.5. Topic
	18.1.5.1. Topic

	18.1.5.2. TopicDataType

	18.1.5.3. TopicDescription

	18.1.5.4. TopicListener

	18.1.5.5. TopicQos

	18.1.5.6. TypeIdV1

	18.1.5.7. TypeInformation

	18.1.5.8. TypeObjectV1

	18.1.5.9. TypeSupport

 18.1. DDS DCPS PIM

18.1. DDS DCPS PIM

Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model (PIM) API

	18.1.1. Core
	18.1.1.1. Entity

	18.1.1.2. DomainEntity

	18.1.1.3. Policy
	18.1.1.3.1. DataRepresentationId

	18.1.1.3.2. DataRepresentationQosPolicy

	18.1.1.3.3. DataSharingQosPolicy

	18.1.1.3.4. DataSharingKind

	18.1.1.3.5. DeadlineQosPolicy

	18.1.1.3.6. DestinationOrderQosPolicy

	18.1.1.3.7. DestinationOrderQosPolicyKind

	18.1.1.3.8. DisablePositiveACKsQosPolicy

	18.1.1.3.9. DurabilityQosPolicy

	18.1.1.3.10. DurabilityQosPolicyKind

	18.1.1.3.11. DurabilityServiceQosPolicy

	18.1.1.3.12. EntityFactoryQosPolicy

	18.1.1.3.13. GenericDataQosPolicy

	18.1.1.3.14. GroupDataQosPolicy

	18.1.1.3.15. HistoryQosPolicy

	18.1.1.3.16. HistoryQosPolicyKind

	18.1.1.3.17. LatencyBudgetQosPolicy

	18.1.1.3.18. LifespanQosPolicy

	18.1.1.3.19. LivelinessQosPolicy

	18.1.1.3.20. LivelinessQosPolicyKind

	18.1.1.3.21. OwnershipQosPolicy

	18.1.1.3.22. OwnershipQosPolicyKind

	18.1.1.3.23. OwnershipStrengthQosPolicy

	18.1.1.3.24. ParticipantResourceLimitsQos

	18.1.1.3.25. Partition_t

	18.1.1.3.26. PartitionQosPolicy

	18.1.1.3.27. PresentationQosPolicy

	18.1.1.3.28. PresentationQosPolicyAccessScopeKind

	18.1.1.3.29. PropertyPolicyQos

	18.1.1.3.30. PublishModeQosPolicy

	18.1.1.3.31. PublishModeQosPolicyKind

	18.1.1.3.32. QosPolicy

	18.1.1.3.33. QosPolicyId_t

	18.1.1.3.34. ReaderDataLifecycleQosPolicy

	18.1.1.3.35. ReliabilityQosPolicy

	18.1.1.3.36. ReliabilityQosPolicyKind

	18.1.1.3.37. ResourceLimitsQosPolicy

	18.1.1.3.38. RTPSEndpointQos

	18.1.1.3.39. TimeBasedFilterQosPolicy

	18.1.1.3.40. TopicDataQosPolicy

	18.1.1.3.41. TransportConfigQos

	18.1.1.3.42. TransportPriorityQosPolicy

	18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	18.1.1.3.44. TypeConsistencyKind

	18.1.1.3.45. UserDataQosPolicy

	18.1.1.3.46. WireProtocolConfigQos

	18.1.1.3.47. WriterDataLifecycleQosPolicy

	18.1.1.3.48. WriterResourceLimitsQos

	18.1.1.4. Status
	18.1.1.4.1. BaseStatus

	18.1.1.4.2. DeadlineMissedStatus

	18.1.1.4.3. IncompatibleQosStatus

	18.1.1.4.4. InconsistentTopicStatus

	18.1.1.4.5. LivelinessChangedStatus

	18.1.1.4.6. MatchedStatus

	18.1.1.4.7. OfferedDeadlineMissedStatus

	18.1.1.4.8. OfferedIncompatibleQosStatus

	18.1.1.4.9. PublicationMatchedStatus

	18.1.1.4.10. QosPolicyCount

	18.1.1.4.11. QosPolicyCountSeq

	18.1.1.4.12. RequestedDeadlineMissedStatus

	18.1.1.4.13. RequestedIncompatibleQosStatus

	18.1.1.4.14. LivelinessLostStatus

	18.1.1.4.15. SampleLostStatus

	18.1.1.4.16. SampleRejectedStatus

	18.1.1.4.17. SampleRejectedStatusKind

	18.1.1.4.18. StatusMask

	18.1.1.4.19. SubscriptionMatchedStatus

	18.1.1.5. LoanableArray

	18.1.1.6. LoanableCollection

	18.1.1.7. LoanableSequence

	18.1.1.8. StackAllocatedSequence

	18.1.2. Domain
	18.1.2.1. DomainParticipant

	18.1.2.2. DomainParticipantFactory

	18.1.2.3. DomainParticipantFactoryQos

	18.1.2.4. DomainParticipantListener

	18.1.2.5. DomainParticipantQos

	18.1.3. Publisher
	18.1.3.1. DataWriter

	18.1.3.2. DataWriterListener

	18.1.3.3. DataWriterQos

	18.1.3.4. Publisher

	18.1.3.5. PublisherListener

	18.1.3.6. PublisherQos

	18.1.3.7. RTPSReliableWriterQos

	18.1.4. Subscriber
	18.1.4.1. DataReader

	18.1.4.2. DataReaderListener

	18.1.4.3. DataReaderQos

	18.1.4.4. InstanceStateKind

	18.1.4.5. ReaderResourceLimitsQos

	18.1.4.6. RTPSReliableReaderQos

	18.1.4.7. SampleInfo

	18.1.4.8. SampleStateKind

	18.1.4.9. Subscriber

	18.1.4.10. SubscriberListener

	18.1.4.11. SubscriberQos

	18.1.4.12. TypeConsistencyQos

	18.1.4.13. ViewStateKind

	18.1.5. Topic
	18.1.5.1. Topic

	18.1.5.2. TopicDataType

	18.1.5.3. TopicDescription

	18.1.5.4. TopicListener

	18.1.5.5. TopicQos

	18.1.5.6. TypeIdV1

	18.1.5.7. TypeInformation

	18.1.5.8. TypeObjectV1

	18.1.5.9. TypeSupport

 18.1.1. Core

18.1.1. Core

	18.1.1.1. Entity

	18.1.1.2. DomainEntity

	18.1.1.3. Policy
	18.1.1.3.1. DataRepresentationId

	18.1.1.3.2. DataRepresentationQosPolicy

	18.1.1.3.3. DataSharingQosPolicy

	18.1.1.3.4. DataSharingKind

	18.1.1.3.5. DeadlineQosPolicy

	18.1.1.3.6. DestinationOrderQosPolicy

	18.1.1.3.7. DestinationOrderQosPolicyKind

	18.1.1.3.8. DisablePositiveACKsQosPolicy

	18.1.1.3.9. DurabilityQosPolicy

	18.1.1.3.10. DurabilityQosPolicyKind

	18.1.1.3.11. DurabilityServiceQosPolicy

	18.1.1.3.12. EntityFactoryQosPolicy

	18.1.1.3.13. GenericDataQosPolicy

	18.1.1.3.14. GroupDataQosPolicy

	18.1.1.3.15. HistoryQosPolicy

	18.1.1.3.16. HistoryQosPolicyKind

	18.1.1.3.17. LatencyBudgetQosPolicy

	18.1.1.3.18. LifespanQosPolicy

	18.1.1.3.19. LivelinessQosPolicy

	18.1.1.3.20. LivelinessQosPolicyKind

	18.1.1.3.21. OwnershipQosPolicy

	18.1.1.3.22. OwnershipQosPolicyKind

	18.1.1.3.23. OwnershipStrengthQosPolicy

	18.1.1.3.24. ParticipantResourceLimitsQos

	18.1.1.3.25. Partition_t

	18.1.1.3.26. PartitionQosPolicy

	18.1.1.3.27. PresentationQosPolicy

	18.1.1.3.28. PresentationQosPolicyAccessScopeKind

	18.1.1.3.29. PropertyPolicyQos

	18.1.1.3.30. PublishModeQosPolicy

	18.1.1.3.31. PublishModeQosPolicyKind

	18.1.1.3.32. QosPolicy

	18.1.1.3.33. QosPolicyId_t

	18.1.1.3.34. ReaderDataLifecycleQosPolicy

	18.1.1.3.35. ReliabilityQosPolicy

	18.1.1.3.36. ReliabilityQosPolicyKind

	18.1.1.3.37. ResourceLimitsQosPolicy

	18.1.1.3.38. RTPSEndpointQos

	18.1.1.3.39. TimeBasedFilterQosPolicy

	18.1.1.3.40. TopicDataQosPolicy

	18.1.1.3.41. TransportConfigQos

	18.1.1.3.42. TransportPriorityQosPolicy

	18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	18.1.1.3.44. TypeConsistencyKind

	18.1.1.3.45. UserDataQosPolicy

	18.1.1.3.46. WireProtocolConfigQos

	18.1.1.3.47. WriterDataLifecycleQosPolicy

	18.1.1.3.48. WriterResourceLimitsQos

	18.1.1.4. Status
	18.1.1.4.1. BaseStatus

	18.1.1.4.2. DeadlineMissedStatus

	18.1.1.4.3. IncompatibleQosStatus

	18.1.1.4.4. InconsistentTopicStatus

	18.1.1.4.5. LivelinessChangedStatus

	18.1.1.4.6. MatchedStatus

	18.1.1.4.7. OfferedDeadlineMissedStatus

	18.1.1.4.8. OfferedIncompatibleQosStatus

	18.1.1.4.9. PublicationMatchedStatus

	18.1.1.4.10. QosPolicyCount

	18.1.1.4.11. QosPolicyCountSeq

	18.1.1.4.12. RequestedDeadlineMissedStatus

	18.1.1.4.13. RequestedIncompatibleQosStatus

	18.1.1.4.14. LivelinessLostStatus

	18.1.1.4.15. SampleLostStatus

	18.1.1.4.16. SampleRejectedStatus

	18.1.1.4.17. SampleRejectedStatusKind

	18.1.1.4.18. StatusMask

	18.1.1.4.19. SubscriptionMatchedStatus

	18.1.1.5. LoanableArray

	18.1.1.6. LoanableCollection

	18.1.1.7. LoanableSequence

	18.1.1.8. StackAllocatedSequence

 18.1.1.1. Entity

18.1.1.1. Entity

	
class fastdds.Entity(*args, **kwargs)

	The Entity class is the abstract base class for all the objects that support QoS policies, a listener and
a status condition.

	
close()

	This operation disables the Entity before closing it

	
enable()

	This operation enables the Entity

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_instance_handle()

	Retrieves the instance handler that represents the Entity

	Return type

	InstanceHandle_t

	Returns

	Reference to the InstanceHandle

	
get_status_changes()

	Retrieves the set of triggered statuses in the Entity

Triggered statuses are the ones whose value has changed
since the last time the application read the status.
When the entity is first created or if the entity is not enabled,
all communication statuses are in the non-triggered state,
so the list returned by the get_status_changes operation will be empty.
The list of statuses returned by the get_status_changes operation
refers to the status that are triggered on the Entity itself
and does not include statuses that apply to contained entities.

	Return type

	StatusMask

	Returns

	const reference to the StatusMask with the triggered statuses set to 1

	
get_status_mask()

	Retrieves the set of relevant statuses for the Entity

	Return type

	StatusMask

	Returns

	Reference to the StatusMask with the relevant statuses set to 1

	
get_statuscondition()

	Allows access to the StatusCondition associated with the Entity

	Return type

	StatusCondition

	Returns

	Reference to StatusCondition object

	
is_enabled()

	Checks if the Entity is enabled

	Return type

	boolean

	Returns

	true if enabled, false if not

	
property thisown

	The membership flag

 18.1.1.2. DomainEntity

18.1.1.2. DomainEntity

	
class fastdds.DomainEntity(*args, **kwargs)

	The DomainEntity class is a subclass of Entity created in order to differentiate between DomainParticipants
and the rest of Entities

	
property thisown

	The membership flag

 18.1.1.3. Policy

18.1.1.3. Policy

	18.1.1.3.1. DataRepresentationId

	18.1.1.3.2. DataRepresentationQosPolicy

	18.1.1.3.3. DataSharingQosPolicy

	18.1.1.3.4. DataSharingKind

	18.1.1.3.5. DeadlineQosPolicy

	18.1.1.3.6. DestinationOrderQosPolicy

	18.1.1.3.7. DestinationOrderQosPolicyKind

	18.1.1.3.8. DisablePositiveACKsQosPolicy

	18.1.1.3.9. DurabilityQosPolicy

	18.1.1.3.10. DurabilityQosPolicyKind

	18.1.1.3.11. DurabilityServiceQosPolicy

	18.1.1.3.12. EntityFactoryQosPolicy

	18.1.1.3.13. GenericDataQosPolicy

	18.1.1.3.14. GroupDataQosPolicy

	18.1.1.3.15. HistoryQosPolicy

	18.1.1.3.16. HistoryQosPolicyKind

	18.1.1.3.17. LatencyBudgetQosPolicy

	18.1.1.3.18. LifespanQosPolicy

	18.1.1.3.19. LivelinessQosPolicy

	18.1.1.3.20. LivelinessQosPolicyKind

	18.1.1.3.21. OwnershipQosPolicy

	18.1.1.3.22. OwnershipQosPolicyKind

	18.1.1.3.23. OwnershipStrengthQosPolicy

	18.1.1.3.24. ParticipantResourceLimitsQos

	18.1.1.3.25. Partition_t

	18.1.1.3.26. PartitionQosPolicy

	18.1.1.3.27. PresentationQosPolicy

	18.1.1.3.28. PresentationQosPolicyAccessScopeKind

	18.1.1.3.29. PropertyPolicyQos

	18.1.1.3.30. PublishModeQosPolicy

	18.1.1.3.31. PublishModeQosPolicyKind

	18.1.1.3.32. QosPolicy

	18.1.1.3.33. QosPolicyId_t

	18.1.1.3.34. ReaderDataLifecycleQosPolicy

	18.1.1.3.35. ReliabilityQosPolicy

	18.1.1.3.36. ReliabilityQosPolicyKind

	18.1.1.3.37. ResourceLimitsQosPolicy

	18.1.1.3.38. RTPSEndpointQos

	18.1.1.3.39. TimeBasedFilterQosPolicy

	18.1.1.3.40. TopicDataQosPolicy

	18.1.1.3.41. TransportConfigQos

	18.1.1.3.42. TransportPriorityQosPolicy

	18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	18.1.1.3.44. TypeConsistencyKind

	18.1.1.3.45. UserDataQosPolicy

	18.1.1.3.46. WireProtocolConfigQos

	18.1.1.3.47. WriterDataLifecycleQosPolicy

	18.1.1.3.48. WriterResourceLimitsQos

 18.1.1.3.1. DataRepresentationId

18.1.1.3.1. DataRepresentationId

	
class fastdds.XCDR_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

	

	
class fastdds.XML_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

	

	
class fastdds.XCDR2_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

	

 18.1.1.3.2. DataRepresentationQosPolicy

18.1.1.3.2. DataRepresentationQosPolicy

	
class fastdds.DataRepresentationQosPolicy

	With multiple standard data Representations available, and vendor-specific extensions possible, DataWriters and
DataReaders must be able to negotiate which data representation(s) to use. This negotiation shall occur based on
DataRepresentationQosPolicy.

Warning: If a writer’s offered representation is contained within a reader’s sequence, the offer satisfies the
request and the policies are compatible. Otherwise, they are incompatible.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property m_value

	
	List of DataRepresentationId.
	By default, empty list.

	
property thisown

	The membership flag

 18.1.1.3.3. DataSharingQosPolicy

18.1.1.3.3. DataSharingQosPolicy

	
class fastdds.DataSharingQosPolicy(*args)

	Qos Policy to configure the data sharing

Notes: Immutable Qos Policy

	
add_domain_id(*args)

	

	
automatic(*args)

	Overload 1:

Configures the DataSharing in automatic mode

The default shared memory directory of the OS is used.
A default domain ID is automatically computed.

Overload 2:

Configures the DataSharing in automatic mode

The default shared memory directory of the OS is used.

	Parameters

	domain_ids (std::vector< uint16_t,std::allocator< uint16_t > >) – the user configured DataSharing domain IDs (16 bits).

Overload 3:

Configures the DataSharing in automatic mode

A default domain ID is automatically computed.

	Parameters

	directory (string) – The shared memory directory to use.

Overload 4:

Configures the DataSharing in automatic mode

	Parameters

	
	directory (string) – The shared memory directory to use.

	domain_ids (std::vector< uint16_t,std::allocator< uint16_t > >) – the user configured DataSharing domain IDs (16 bits).

	
clear()

	Clears the QosPolicy object

	
domain_ids()

	Gets the set of DataSharing domain IDs.

Each domain ID is 64 bit long.
However, user-defined domain IDs are only 16 bit long,
while the rest of the 48 bits are used for the
automatically generated domain ID (if any).

	Automatic domain IDs use the 48 MSB and leave the 16 LSB as zero.

	User defined domain IDs use the 16 LSB and leave the 48 MSB as zero.

	Return type

	std::vector< uint64_t,std::allocator< uint64_t > >

	Returns

	the current DataSharing domain IDs

	
kind()

	
	Return type

	int

	Returns

	the current DataSharing configuration mode

	
max_domains()

	
	Return type

	int

	Returns

	the current configured maximum number of domain IDs

	
off()

	Configures the DataSharing in disabled mode

	
on(*args)

	Overload 1:

Configures the DataSharing in active mode

A default domain ID is automatically computed.

	Parameters

	directory (string) – The shared memory directory to use.
It is mandatory to provide a non-empty name or the creation of endpoints will fail.

Overload 2:

Configures the DataSharing in active mode

	Parameters

	
	directory (string) – The shared memory directory to use.
It is mandatory to provide a non-empty name or the creation of endpoints will fail.

	domain_ids (std::vector< uint16_t,std::allocator< uint16_t > >) – the user configured DataSharing domain IDs (16 bits).

	
set_max_domains(size)

	
	Parameters

	size (int) – the new maximum number of domain IDs

	
shm_directory()

	
	Return type

	string

	Returns

	the current DataSharing shared memory directory

	
property thisown

	The membership flag

 18.1.1.3.4. DataSharingKind

18.1.1.3.4. DataSharingKind

	
class fastdds.AUTO(*args: Any, **kwargs: Any)

	

	
class fastdds.ON(*args: Any, **kwargs: Any)

	

	
class fastdds.OFF(*args: Any, **kwargs: Any)

	

 18.1.1.3.5. DeadlineQosPolicy

18.1.1.3.5. DeadlineQosPolicy

	
class fastdds.DeadlineQosPolicy

	DataReader expects a new sample updating the value of each instance at least once every deadline period.
DataWriter indicates that the application commits to write a new value (using the DataWriter) for each instance managed
by the DataWriter at least once every deadline period.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property period

	Maximum time expected between samples.
It is inconsistent for a DataReader to have a DEADLINE period less than its TimeBasedFilterQosPolicy
minimum_separation.

By default, c_TimeInifinite.

	
property thisown

	The membership flag

 18.1.1.3.6. DestinationOrderQosPolicy

18.1.1.3.6. DestinationOrderQosPolicy

	
class fastdds.DestinationOrderQosPolicy

	Controls the criteria used to determine the logical order among changes made by Publisher entities to the same instance of
data (i.e., matching Topic and key).

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property kind

	
	DestinationOrderQosPolicyKind.
	By default, BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

	
property thisown

	The membership flag

 18.1.1.3.7. DestinationOrderQosPolicyKind

18.1.1.3.7. DestinationOrderQosPolicyKind

	
class fastdds.BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.8. DisablePositiveACKsQosPolicy

18.1.1.3.8. DisablePositiveACKsQosPolicy

	
class fastdds.DisablePositiveACKsQosPolicy

	Class DisablePositiveACKsQosPolicy to disable sending of positive ACKs

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property duration

	The duration to keep samples for (not serialized as not needed by reader).
By default, c_TimeInfinite

	
property enabled

	True if this QoS is enabled.
By default, false

	
property thisown

	The membership flag

 18.1.1.3.9. DurabilityQosPolicy

18.1.1.3.9. DurabilityQosPolicy

	
class fastdds.DurabilityQosPolicy

	This policy expresses if the data should ‘outlive’ their writing time.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
durabilityKind(*args)

	Overload 1:

Translates kind to rtps layer equivalent

	Return type

	int

	Returns

	fastrtps::rtps::DurabilityKind_t

Overload 2:

Set kind passing the rtps layer equivalent kind

	Parameters

	new_kind (int) – fastrtps::rtps::DurabilityKind_t

	
property kind

	DurabilityQosPolicyKind.

By default the value for DataReaders: VOLATILE_DURABILITY_QOS, for DataWriters TRANSIENT_LOCAL_DURABILITY_QOS

	
property thisown

	The membership flag

 18.1.1.3.10. DurabilityQosPolicyKind

18.1.1.3.10. DurabilityQosPolicyKind

	
class fastdds.VOLATILE_DURABILITY_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.TRANSIENT_LOCAL_DURABILITY_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.TRANSIENT_DURABILITY_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.PERSISTENT_DURABILITY_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.11. DurabilityServiceQosPolicy

18.1.1.3.11. DurabilityServiceQosPolicy

	
class fastdds.DurabilityServiceQosPolicy

	Specifies the configuration of the durability service. That is, the service that implements the DurabilityQosPolicy kind
of TRANSIENT and PERSISTENT.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property history_depth

	Number of most recent values that should be maintained on the History. It only have effect if the history_kind
is KEEP_LAST_HISTORY_QOS.

By default, 1.

	
property history_kind

	Controls the HistoryQosPolicy of the fictitious DataReader that stores the data within the durability service.

By default, KEEP_LAST_HISTORY_QOS.

	
property max_instances

	Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, LENGTH_UNLIMITED.

	
property max_samples

	Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all the instances
associated with it. Represents the maximum samples the middleware can store for any one DataWriter (or DataReader).
It is inconsistent for this value to be less than max_samples_per_instance.

By default, LENGTH_UNLIMITED.

	
property max_samples_per_instance

	Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.
It is inconsistent for this value to be greater than max_samples.

By default, LENGTH_UNLIMITED.

	
property service_cleanup_delay

	Control when the service is able to remove all information regarding a data-instance.

By default, c_TimeZero.

	
property thisown

	The membership flag

 18.1.1.3.12. EntityFactoryQosPolicy

18.1.1.3.12. EntityFactoryQosPolicy

	
class fastdds.EntityFactoryQosPolicy(*args)

	Controls the behavior of the entity when acting as a factory for other entities. In other words,
configures the side-effects of the create_* and delete_* operations.

Notes: Mutable Qos Policy

	
property autoenable_created_entities

	Specifies whether the entity acting as a factory automatically enables the instances it creates.
If True the factory will automatically enable each created Entity otherwise it will not.

By default, True.

	
clear()

	

	
property thisown

	The membership flag

 18.1.1.3.13. GenericDataQosPolicy

18.1.1.3.13. GenericDataQosPolicy

	
class fastdds.GenericDataQosPolicy(*args)

	Class GenericDataQosPolicy, base class to transmit user data during the discovery phase.

	
clear()

	Clears the QosPolicy object

	
dataVec()

	
	Return type

	eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

	Returns

	const reference to the internal raw data.

	
data_vec(*args)

	Overload 1:

Returns raw data vector.

	Return type

	eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

	Returns

	raw data as vector of octets.

Overload 2:

Returns raw data vector.

	Return type

	eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

	Returns

	raw data as vector of octets.

Overload 3:

Sets raw data vector.

	Parameters

	vec (eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type) – raw data to set.

	
getValue()

	Returns raw data vector.

	Return type

	eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

	Returns

	raw data as vector of octets.

	
resize(new_size)

	

	
setValue(vec)

	Sets raw data vector.

	Parameters

	vec (eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type) – raw data to set.

	
set_max_size(size)

	Set the maximum size of the user data and reserves memory for that much.

	Parameters

	size (int) – new maximum size of the user data. Zero for unlimited size

	
property thisown

	The membership flag

 18.1.1.3.14. GroupDataQosPolicy

18.1.1.3.14. GroupDataQosPolicy

	
class fastdds.GroupDataQosPolicy(*args)

	
	
property thisown

	The membership flag

 18.1.1.3.15. HistoryQosPolicy

18.1.1.3.15. HistoryQosPolicy

	
class fastdds.HistoryQosPolicy

	Specifies the behavior of the Service in the case where the value of a sample changes (one or more times) before it
can be successfully communicated to one or more existing subscribers. This QoS policy controls whether the Service
should deliver only the most recent value, attempt to deliver all intermediate values, or do something in between.
On the publishing side this policy controls the samples that should be maintained by the DataWriter on behalf of
existing DataReader entities. The behavior with regards to a DataReaderentities discovered after a sample is written
is controlled by the DURABILITY QoS policy. On the subscribing side it controls the samples that should be maintained
until the application “takes” them from the Service.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property depth

	History depth.
By default, 1. If a value other than 1 is specified, it should
be consistent with the settings of the ResourceLimitsQosPolicy.

Warning: Only takes effect if the kind is KEEP_LAST_HISTORY_QOS.

	
property kind

	
	HistoryQosPolicyKind.
	By default, KEEP_LAST_HISTORY_QOS.

	
property thisown

	The membership flag

 18.1.1.3.16. HistoryQosPolicyKind

18.1.1.3.16. HistoryQosPolicyKind

	
class fastdds.KEEP_LAST_HISTORY_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.KEEP_ALL_HISTORY_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.17. LatencyBudgetQosPolicy

18.1.1.3.17. LatencyBudgetQosPolicy

	
class fastdds.LatencyBudgetQosPolicy

	Specifies the maximum acceptable delay from the time the data is written until the data is inserted in the receiver’s
application-cache and the receiving application is notified of the fact.This policy is a hint to the Service, not something
that must be monitored or enforced. The Service is not required to track or alert the user of any violation.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property duration

	
	Maximum acceptable delay from the time data is written until it is received.
	By default, c_TimeZero.

	
property thisown

	The membership flag

 18.1.1.3.18. LifespanQosPolicy

18.1.1.3.18. LifespanQosPolicy

	
class fastdds.LifespanQosPolicy

	Specifies the maximum duration of validity of the data written by the DataWriter.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property duration

	Period of validity.
By default, c_TimeInfinite.

	
property thisown

	The membership flag

 18.1.1.3.19. LivelinessQosPolicy

18.1.1.3.19. LivelinessQosPolicy

	
class fastdds.LivelinessQosPolicy

	Determines the mechanism and parameters used by the application to determine whether an Entity is “active” (alive).
The “liveliness” status of an Entity is used to maintain instance ownership in combination with the setting of the
OwnershipQosPolicy.
The application is also informed via listener when an Entity is no longer alive.

The DataReader requests that liveliness of the writers is maintained by the requested means and loss of liveliness is
detected with delay not to exceed the lease_duration.

The DataWriter commits to signaling its liveliness using the stated means at intervals not to exceed the lease_duration.
Listeners are used to notify the DataReaderof loss of liveliness and DataWriter of violations to the liveliness contract.

	
property announcement_period

	
The period for automatic assertion of liveliness.
Only used for DataWriters with AUTOMATIC liveliness.
By default, c_TimeInfinite.

Warning: When not infinite, must be < lease_duration, and it is advisable to be less than 0.7*lease_duration.

	
clear()

	Clears the QosPolicy object

	
property kind

	Liveliness kind
By default, AUTOMATIC_LIVELINESS.

	
property lease_duration

	Period within which liveliness should be asserted.
On a DataWriter it represents the period it commits to signal its liveliness.
On a DataReader it represents the period without assertion after which a DataWriter is considered
inactive.
By default, c_TimeInfinite.

	
property thisown

	The membership flag

 18.1.1.3.20. LivelinessQosPolicyKind

18.1.1.3.20. LivelinessQosPolicyKind

	
class fastdds.AUTOMATIC_LIVELINESS_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.MANUAL_BY_PARTICIPANT_LIVELINESS_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.MANUAL_BY_TOPIC_LIVELINESS_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.21. OwnershipQosPolicy

18.1.1.3.21. OwnershipQosPolicy

	
class fastdds.OwnershipQosPolicy

	Specifies whether it is allowed for multiple DataWriters to write the same instance of the data and if so, how these
modifications should be arbitrated

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property kind

	OwnershipQosPolicyKind

	
property thisown

	The membership flag

 18.1.1.3.22. OwnershipQosPolicyKind

18.1.1.3.22. OwnershipQosPolicyKind

	
class fastdds.SHARED_OWNERSHIP_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.EXCLUSIVE_OWNERSHIP_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.23. OwnershipStrengthQosPolicy

18.1.1.3.23. OwnershipStrengthQosPolicy

	
class fastdds.OwnershipStrengthQosPolicy

	Specifies the value of the “strength” used to arbitrate among multiple DataWriter objects that attempt to modify the same
instance of a data-object (identified by Topic + key).This policy only applies if the OWNERSHIP QoS policy is of kind
EXCLUSIVE.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property thisown

	The membership flag

	
property value

	Strength
By default, 0.

 18.1.1.3.24. ParticipantResourceLimitsQos

18.1.1.3.24. ParticipantResourceLimitsQos

 18.1.1.3.25. Partition_t

18.1.1.3.25. Partition_t

	
class fastdds.Partition_t(ptr)

	
	
name()

	Getter for the partition name

	Return type

	string

	Returns

	name

	
size()

	Getter for the size

	Return type

	int

	Returns

	uint32_t with the size

	
property thisown

	The membership flag

 18.1.1.3.26. PartitionQosPolicy

18.1.1.3.26. PartitionQosPolicy

	
class fastdds.PartitionQosPolicy(*args)

	Set of strings that introduces a logical partition among the topics visible by the Publisher and Subscriber.
A DataWriter within a Publisher only communicates with a DataReader in a Subscriber if (in addition to matching the
Topic and having compatible QoS) the Publisher and Subscriber have a common partition name string.

The empty string (“”) is considered a valid partition that is matched with other partition names using the same rules of
string matching and regular-expression matching used for any other partition name.

Notes: Mutable Qos Policy

	
begin()

	Getter for the first position of the partition list

	Return type

	eprosima::fastdds::dds::PartitionQosPolicy::const_iterator

	Returns

	const_iterator

	
clear()

	Clears list of partition names

	
empty()

	Check if the set is empty

	Return type

	int

	Returns

	true if it is empty, false otherwise

	
end()

	Getter for the end of the partition list

	Return type

	eprosima::fastdds::dds::PartitionQosPolicy::const_iterator

	Returns

	const_iterator

	
getNames()

	Returns partition names.

	Return type

	std::vector< std::string,std::allocator< std::string > >

	Returns

	Vector of partition name strings.

	
max_size()

	Getter for the maximum size (in bytes)

	Return type

	int

	Returns

	uint32_t with the maximum size

	
names(*args)

	Overload 1:

Returns partition names.

	Return type

	std::vector< std::string,std::allocator< std::string > >

	Returns

	Vector of partition name strings.

Overload 2:

Overrides partition names

	Parameters

	nam (std::vector< std::string,std::allocator< std::string > >) – Vector of partition name strings.

	
push_back(name)

	Appends a name to the list of partition names.

	Parameters

	name (string) – Name to append.

	
setNames(nam)

	Overrides partition names

	Parameters

	nam (std::vector< std::string,std::allocator< std::string > >) – Vector of partition name strings.

	
set_max_size(size)

	Setter for the maximum size reserved for partitions (in bytes)

	Parameters

	size (int) – Size to be set

	
size()

	Getter for the number of partitions

	Return type

	int

	Returns

	uint32_t with the size

	
property thisown

	The membership flag

 18.1.1.3.27. PresentationQosPolicy

18.1.1.3.27. PresentationQosPolicy

	
class fastdds.PresentationQosPolicy

	Specifies how the samples representing changes to data instances are presented to the subscribing application.
This policy affects the application’s ability to specify and receive coherent changes and to see the relative
order of changes.access_scope determines the largest scope spanning the entities for which the order and coherency
of changes can be preserved. The two booleans control whether coherent access and ordered access are supported within
the scope access_scope.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Immutable Qos Policy

	
property access_scope

	
	Access Scope Kind
	By default, INSTANCE_PRESENTATION_QOS.

	
clear()

	Clears the QosPolicy object

	
property coherent_access

	Specifies support coherent access. That is, the ability to group a set of changes as a unit
on the publishing end such that they are received as a unit at the subscribing end.
by default, false.

	
property ordered_access

	Specifies support for ordered access to the samples received at the subscription end. That is,
the ability of the subscriber to see changes in the same order as they occurred on the publishing end.
By default, false.

	
property thisown

	The membership flag

 18.1.1.3.28. PresentationQosPolicyAccessScopeKind

18.1.1.3.28. PresentationQosPolicyAccessScopeKind

	
class fastdds.INSTANCE_PRESENTATION_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.TOPIC_PRESENTATION_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.GROUP_PRESENTATION_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.29. PropertyPolicyQos

18.1.1.3.29. PropertyPolicyQos

 18.1.1.3.30. PublishModeQosPolicy

18.1.1.3.30. PublishModeQosPolicy

	
class fastdds.PublishModeQosPolicy

	Class PublishModeQosPolicy, defines the publication mode for a specific writer.

	
clear()

	Clears the QosPolicy object

	
property flow_controller_name

	
Name of the flow controller used when publish mode kind is ASYNCHRONOUS_PUBLISH_MODE.

Since: 2.4.0

	
property kind

	
	PublishModeQosPolicyKind
	By default, SYNCHRONOUS_PUBLISH_MODE.

	
property thisown

	The membership flag

 18.1.1.3.31. PublishModeQosPolicyKind

18.1.1.3.31. PublishModeQosPolicyKind

	
class fastdds.SYNCHRONOUS_PUBLISH_MODE(*args: Any, **kwargs: Any)

	

	
class fastdds.ASYNCHRONOUS_PUBLISH_MODE(*args: Any, **kwargs: Any)

	

 18.1.1.3.32. QosPolicy

18.1.1.3.32. QosPolicy

	
class fastdds.QosPolicy(*args, **kwargs)

	Class QosPolicy, base for all QoS policies defined for Writers and Readers.

	
clear()

	Clears the QosPolicy object

	
property hasChanged

	Boolean that indicates if the Qos has been changed with respect to the default Qos.

	
send_always()

	Whether it should always be sent.

	Return type

	boolean

	Returns

	True if it should always be sent.

	
property thisown

	The membership flag

 18.1.1.3.33. QosPolicyId_t

18.1.1.3.33. QosPolicyId_t

	
class fastdds.INVALID_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.USERDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DURABILITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.PRESENTATION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DEADLINE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.LATENCYBUDGET_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.OWNERSHIP_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.OWNERSHIPSTRENGTH_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.LIVELINESS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TIMEBASEDFILTER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.PARTITION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.RELIABILITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DESTINATIONORDER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.HISTORY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.RESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.ENTITYFACTORY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.WRITERDATALIFECYCLE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.READERDATALIFECYCLE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TOPICDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.GROUPDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TRANSPORTPRIORITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.LIFESPAN_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DURABILITYSERVICE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DATAREPRESENTATION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.DISABLEPOSITIVEACKS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.PROPERTYPOLICY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.PUBLISHMODE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.READERRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.RTPSENDPOINT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.RTPSRELIABLEREADER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.RTPSRELIABLEWRITER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TRANSPORTCONFIG_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.TYPECONSISTENCY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.WIREPROTOCOLCONFIG_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.WRITERRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

	
class fastdds.NEXT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

	

 18.1.1.3.34. ReaderDataLifecycleQosPolicy

18.1.1.3.34. ReaderDataLifecycleQosPolicy

	
class fastdds.ReaderDataLifecycleQosPolicy

	Specifies the behavior of the DataReader with regards to the lifecycle of the data-instances it manages. Warning: This Qos Policy will be implemented in future releases. Notes: Mutable Qos Policy

	
property autopurge_disposed_samples_delay

	Indicates the duration the DataReader must retain information regarding instances that have the
instance_state NOT_ALIVE_DISPOSED.

By default, c_TimeInfinite.

	
property autopurge_no_writer_samples_delay

	Indicates the duration the DataReader must retain information regarding instances that have the
instance_state NOT_ALIVE_NO_WRITERS.

By default, c_TimeInfinite.

	
clear()

	

	
property thisown

	The membership flag

 18.1.1.3.35. ReliabilityQosPolicy

18.1.1.3.35. ReliabilityQosPolicy

	
class fastdds.ReliabilityQosPolicy

	Indicates the reliability of the endpoint.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property kind

	Defines the reliability kind of the endpoint.

By default, BEST_EFFORT_RELIABILITY_QOS for DataReaders and RELIABLE_RELIABILITY_QOS for DataWriters.

	
property max_blocking_time

	Defines the maximum period of time certain methods will be blocked.

Methods affected by this property are:
- DataWriter::write
- DataReader::takeNextData
- DataReader::readNextData

By default, 100 ms.

	
property thisown

	The membership flag

 18.1.1.3.36. ReliabilityQosPolicyKind

18.1.1.3.36. ReliabilityQosPolicyKind

	
class fastdds.BEST_EFFORT_RELIABILITY_QOS(*args: Any, **kwargs: Any)

	

	
class fastdds.RELIABLE_RELIABILITY_QOS(*args: Any, **kwargs: Any)

	

 18.1.1.3.37. ResourceLimitsQosPolicy

18.1.1.3.37. ResourceLimitsQosPolicy

	
class fastdds.ResourceLimitsQosPolicy

	Specifies the resources that the Service can consume in order to meet the requested QoS

Notes: Immutable Qos Policy

	
property allocated_samples

	Number of samples currently allocated.

By default, 100.

	
clear()

	Clears the QosPolicy object

	
property extra_samples

	Represents the extra number of samples available once the max_samples have been reached in the history.
This makes it possible, for example, to loan samples even with a full history. By default, 1.

	
property max_instances

	Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, 10.

Warning: It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

	
property max_samples

	Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all the
instances associated with it. Represents the maximum samples the middleware can store for any one DataWriter
(or DataReader).

By default, 5000.

Warning: It is inconsistent if max_samples < (max_instances * max_samples_per_instance).

	
property max_samples_per_instance

	Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.

By default, 400.

Warning: It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

	
property thisown

	The membership flag

 18.1.1.3.38. RTPSEndpointQos

18.1.1.3.38. RTPSEndpointQos

	
class fastdds.RTPSEndpointQos

	Qos Policy to configure the endpoint

	
property entity_id

	Entity ID, if the user wants to specify the EntityID of the endpoint.
By default, -1.

	
property external_unicast_locators

	The collection of external locators to use for communication.

	
property history_memory_policy

	Underlying History memory policy.
By default, PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

	
property ignore_non_matching_locators

	Whether locators that don’t match with the announced locators should be kept.

	
property multicast_locator_list

	Multicast locator list

	
property remote_locator_list

	Remote locator list

	
property thisown

	The membership flag

	
property unicast_locator_list

	Unicast locator list

	
property user_defined_id

	User Defined ID, used for StaticEndpointDiscovery.
By default, -1.

 18.1.1.3.39. TimeBasedFilterQosPolicy

18.1.1.3.39. TimeBasedFilterQosPolicy

	
class fastdds.TimeBasedFilterQosPolicy

	Filter that allows a DataReader to specify that it is interested only in (potentially) a subset of the values of the data.
The filter states that the DataReader does not want to receive more than one value each minimum_separation, regardless
of how fast the changes occur. It is inconsistent for a DataReader to have a minimum_separation longer than its
Deadline period.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property minimum_separation

	Minimum interval between samples. By default, c_TimeZero (the DataReader is interested in all values)

	
property thisown

	The membership flag

 18.1.1.3.40. TopicDataQosPolicy

18.1.1.3.40. TopicDataQosPolicy

	
class fastdds.TopicDataQosPolicy(*args)

	
	
property thisown

	The membership flag

 18.1.1.3.41. TransportConfigQos

18.1.1.3.41. TransportConfigQos

	
class fastdds.TransportConfigQos

	Qos Policy to configure the transport layer

	
clear()

	Clears the QosPolicy object

	
property listen_socket_buffer_size

	
Listen socket buffer for all listen resources. Zero value indicates to use default system buffer size.

By default, 0.

	
property send_socket_buffer_size

	Send socket buffer size for the send resource. Zero value indicates to use default system buffer size.

By default, 0.

	
property thisown

	The membership flag

	
property use_builtin_transports

	
	Set as false to disable the default UDPv4 implementation.
	By default, true.

	
property user_transports

	User defined transports to use alongside or in place of builtins.

 18.1.1.3.42. TransportPriorityQosPolicy

18.1.1.3.42. TransportPriorityQosPolicy

	
class fastdds.TransportPriorityQosPolicy

	This policy is a hint to the infrastructure as to how to set the priority of the underlying transport used to send the data.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in this version.

Notes: Mutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property thisown

	The membership flag

	
property value

	
	Priority
	By default, 0.

 18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

18.1.1.3.43. TypeConsistencyEnforcementQosPolicy

	
class fastdds.TypeConsistencyEnforcementQosPolicy

	The TypeConsistencyEnforcementQosPolicy defines the rules for determining whether the type used to publish a given data
stream is consistent with that used to subscribe to it. It applies to DataReaders.

Notes: Immutable Qos Policy

	
clear()

	Clears the QosPolicy object

	
property m_force_type_validation

	This option requires type information to be available in order to complete matching between a DataWriter and
DataReader when set to TRUE, otherwise matching can occur without complete type information when set to FALSE.

By default, false.

	
property m_ignore_member_names

	This option controls whether member names are taken into consideration for type assignability. If the option
is set to TRUE, member names are considered as part of assignability in addition to member IDs (so that members with
the same ID also have the same name). If the option is set to FALSE, then member names are not ignored.

By default, false.

	
property m_ignore_sequence_bounds

	This option controls whether sequence bounds are taken into consideration for type assignability. If the
option is set to TRUE, sequence bounds (maximum lengths) are not considered as part of the type assignability.
This means that a T2 sequence type with maximum length L2 would be assignable to a T1 sequence type with maximum
length L1, even if L2 is greater than L1. If the option is set to false, then sequence bounds are taken into
consideration for type assignability and in order for T1 to be assignable from T2 it is required that L1>= L2.

By default, true.

	
property m_ignore_string_bounds

	This option controls whether string bounds are taken into consideration for type assignability. If the option
is set to TRUE, string bounds (maximum lengths) are not considered as part of the type assignability. This means
that a T2 string type with maximum length L2 would be assignable to a T1 string type with maximum length L1, even
if L2 is greater than L1. If the option is set to false, then string bounds are taken into consideration for type
assignability and in order for T1 to be assignable from T2 it is required that L1>= L2.

By default, true.

	
property m_kind

	
	TypeConsistencyKind.
	By default, ALLOW_TYPE_COERCION.

	
property m_prevent_type_widening

	This option controls whether type widening is allowed. If the option is set to FALSE, type widening is
permitted. If the option is set to TRUE,it shall cause a wider type to not be assignable to a narrower type.

By default, false.

	
property thisown

	The membership flag

 18.1.1.3.44. TypeConsistencyKind

18.1.1.3.44. TypeConsistencyKind

	
class fastdds.DISALLOW_TYPE_COERCION(*args: Any, **kwargs: Any)

	

	
class fastdds.ALLOW_TYPE_COERCION(*args: Any, **kwargs: Any)

	

 18.1.1.3.45. UserDataQosPolicy

18.1.1.3.45. UserDataQosPolicy

	
class fastdds.UserDataQosPolicy(*args)

	Class TClassName, base template for data qos policies.
Data not known by the middleware, but distributed by means of built-in topics.
By default, zero-sized sequence.

Notes: Mutable Qos Policy

	
property thisown

	The membership flag

 18.1.1.3.46. WireProtocolConfigQos

18.1.1.3.46. WireProtocolConfigQos

	
class fastdds.WireProtocolConfigQos

	Qos Policy that configures the wire protocol

	
property builtin

	Builtin parameters.

	
clear()

	Clears the QosPolicy object

	
property default_external_unicast_locators

	The collection of external locators to use for communication on user created topics.

	
property default_multicast_locator_list

	Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the
case that it was defined with NO MulticastLocators. This is usually left empty.

	
property default_unicast_locator_list

	Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case
that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

	
property ignore_non_matching_locators

	Whether locators that don’t match with the announced locators should be kept.

	
property participant_id

	Participant ID
By default, -1.

	
property port

	Port Parameters

	
property prefix

	Optionally allows user to define the GuidPrefix_t

	
property thisown

	The membership flag

 18.1.1.3.47. WriterDataLifecycleQosPolicy

18.1.1.3.47. WriterDataLifecycleQosPolicy

	
class fastdds.WriterDataLifecycleQosPolicy

	Specifies the behavior of the DataWriter with regards to the lifecycle of the data-instances it manages. Warning: This Qos Policy will be implemented in future releases. Notes: Mutable Qos Policy

	
property autodispose_unregistered_instances

	Controls whether a DataWriter will automatically dispose instances each time they are unregistered.
The setting autodispose_unregistered_instances = TRUE indicates that unregistered instances will also be considered
disposed.

By default, true.

	
property thisown

	The membership flag

 18.1.1.3.48. WriterResourceLimitsQos

18.1.1.3.48. WriterResourceLimitsQos

	
class fastdds.WriterResourceLimitsQos

	Qos Policy to configure the limit of the writer resources

	
property matched_subscriber_allocation

	Matched subscribers allocation limits.

	
property reader_filters_allocation

	Reader filters allocation limits.

	
property thisown

	The membership flag

 18.1.1.4. Status

18.1.1.4. Status

	18.1.1.4.1. BaseStatus

	18.1.1.4.2. DeadlineMissedStatus

	18.1.1.4.3. IncompatibleQosStatus

	18.1.1.4.4. InconsistentTopicStatus

	18.1.1.4.5. LivelinessChangedStatus

	18.1.1.4.6. MatchedStatus

	18.1.1.4.7. OfferedDeadlineMissedStatus

	18.1.1.4.8. OfferedIncompatibleQosStatus

	18.1.1.4.9. PublicationMatchedStatus

	18.1.1.4.10. QosPolicyCount

	18.1.1.4.11. QosPolicyCountSeq

	18.1.1.4.12. RequestedDeadlineMissedStatus

	18.1.1.4.13. RequestedIncompatibleQosStatus

	18.1.1.4.14. LivelinessLostStatus

	18.1.1.4.15. SampleLostStatus

	18.1.1.4.16. SampleRejectedStatus

	18.1.1.4.17. SampleRejectedStatusKind

	18.1.1.4.18. StatusMask

	18.1.1.4.19. SubscriptionMatchedStatus

 18.1.1.4.1. BaseStatus

18.1.1.4.1. BaseStatus

	
class fastdds.BaseStatus

	A struct storing the base status

	
property thisown

	The membership flag

	
property total_count

	Total cumulative count

	
property total_count_change

	Increment since the last time the status was read

 18.1.1.4.2. DeadlineMissedStatus

18.1.1.4.2. DeadlineMissedStatus

	
class fastdds.DeadlineMissedStatus

	A struct storing the deadline status

	
property last_instance_handle

	Handle to the last instance missing the deadline

	
property thisown

	The membership flag

	
property total_count

	Total cumulative number of offered deadline periods elapsed during which a writer failed to provide data Missed deadlines accumulate, that is, each deadline period the total_count will be incremented by 1

	
property total_count_change

	The change in total_count since the last time the listener was called or the status was read

 18.1.1.4.3. IncompatibleQosStatus

18.1.1.4.3. IncompatibleQosStatus

	
class fastdds.IncompatibleQosStatus

	A struct storing the requested incompatible QoS status

	
property last_policy_id

	The id of the policy that was found to be incompatible the last time an incompatibility is detected

	
property policies

	A list of QosPolicyCount

	
property thisown

	The membership flag

	
property total_count

	Total cumulative number of times the concerned writer discovered a reader for the same topic The requested QoS is incompatible with the one offered by the writer

	
property total_count_change

	The change in total_count since the last time the listener was called or the status was read

 18.1.1.4.4. InconsistentTopicStatus

18.1.1.4.4. InconsistentTopicStatus

 18.1.1.4.5. LivelinessChangedStatus

18.1.1.4.5. LivelinessChangedStatus

	
class fastdds.LivelinessChangedStatus

	A struct storing the liveliness changed status

	
property alive_count

	The total number of currently active publishers that write the topic read by the subscriber This count increases when a newly matched publisher asserts its liveliness for the first time or when a publisher previously considered to be not alive reasserts its liveliness. The count decreases when a publisher considered alive fails to assert its liveliness and becomes not alive, whether because it was deleted normally or for some other reason

	
property alive_count_change

	The change in the alive_count since the last time the listener was called or the status was read

	
property last_publication_handle

	Handle to the last publisher whose change in liveliness caused this status to change

	
property not_alive_count

	The total count of current publishers that write the topic read by the subscriber that are no longer asserting their liveliness This count increases when a publisher considered alive fails to assert its liveliness and becomes not alive for some reason other than the normal deletion of that publisher. It decreases when a previously not alive publisher either reasserts its liveliness or is deleted normally

	
property not_alive_count_change

	The change in the not_alive_count since the last time the listener was called or the status was read

	
property thisown

	The membership flag

 18.1.1.4.6. MatchedStatus

18.1.1.4.6. MatchedStatus

	
class fastdds.MatchedStatus

	A structure storing a matching status

	
property current_count

	The number of writers currently matched to the concerned reader

	
property current_count_change

	The change in current_count since the last time the listener was called or the status was read

	
property thisown

	The membership flag

	
property total_count

	Total cumulative count the concerned reader discovered a match with a writer It found a writer for the same topic with a requested QoS that is compatible with that offered by the reader

	
property total_count_change

	The change in total_count since the last time the listener was called or the status was read

 18.1.1.4.7. OfferedDeadlineMissedStatus

18.1.1.4.7. OfferedDeadlineMissedStatus

 18.1.1.4.8. OfferedIncompatibleQosStatus

18.1.1.4.8. OfferedIncompatibleQosStatus

 18.1.1.4.9. PublicationMatchedStatus

18.1.1.4.9. PublicationMatchedStatus

	
class fastdds.PublicationMatchedStatus

	A structure storing the publication status

	
property last_subscription_handle

	Handle to the last reader that matched the writer causing the status to change

	
property thisown

	The membership flag

 18.1.1.4.10. QosPolicyCount

18.1.1.4.10. QosPolicyCount

	
class fastdds.QosPolicyCount(*args)

	A struct storing the id of the incompatible QoS Policy and the number of times it fails

	
property count

	Total number of times that the concerned writer discovered a reader for the same topic The requested QoS is incompatible with the one offered by the writer

	
property policy_id

	The id of the policy

	
property thisown

	The membership flag

 18.1.1.4.11. QosPolicyCountSeq

18.1.1.4.11. QosPolicyCountSeq

 18.1.1.4.12. RequestedDeadlineMissedStatus

18.1.1.4.12. RequestedDeadlineMissedStatus

 18.1.1.4.13. RequestedIncompatibleQosStatus

18.1.1.4.13. RequestedIncompatibleQosStatus

 18.1.1.4.14. LivelinessLostStatus

18.1.1.4.14. LivelinessLostStatus

 18.1.1.4.15. SampleLostStatus

18.1.1.4.15. SampleLostStatus

 18.1.1.4.16. SampleRejectedStatus

18.1.1.4.16. SampleRejectedStatus

	
class fastdds.SampleRejectedStatus

	A struct storing the sample rejected status

	
property last_instance_handle

	Handle to the instance being updated by the last sample that was rejected.

	
property last_reason

	Reason for rejecting the last sample rejected.
If no samples have been rejected, the reason is the special value NOT_REJECTED.

	
property thisown

	The membership flag

	
property total_count

	Total cumulative count of samples rejected by the DataReader.

	
property total_count_change

	The incremental number of samples rejected since the last time the listener was called or the status was read.

 18.1.1.4.17. SampleRejectedStatusKind

18.1.1.4.17. SampleRejectedStatusKind

	
class fastdds.NOT_REJECTED(*args: Any, **kwargs: Any)

	

	
class fastdds.REJECTED_BY_INSTANCES_LIMIT(*args: Any, **kwargs: Any)

	

	
class fastdds.REJECTED_BY_SAMPLES_LIMIT(*args: Any, **kwargs: Any)

	

	
class fastdds.REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT(*args: Any, **kwargs: Any)

	

 18.1.1.4.18. StatusMask

18.1.1.4.18. StatusMask

	
class fastdds.StatusMask(*args)

	StatusMask is a bitmap or bitset field.

This bitset is used to:
- determine which listener functions to call
- set conditions in dds::core::cond::StatusCondition
- indicate status changes when calling dds::core::Entity::status_changes

	
static all()

	Get all StatusMasks

	Return type

	StatusMask

	Returns

	StatusMask all

	
static data_available()

	get the statusmask associated with dds::core::status::data_available

	Return type

	StatusMask

	Returns

	statusmask data_available

	
static data_on_readers()

	Get the StatusMask associated with dds::core::status::data_on_readers

	Return type

	StatusMask

	Returns

	StatusMask data_on_readers

	
static inconsistent_topic()

	Get the StatusMask associated with dds::core::status::InconsistentTopicStatus

	Return type

	StatusMask

	Returns

	StatusMask inconsistent_topic

	
is_active(status)

	Checks if the status passed as parameter is 1 in the actual StatusMask
:type status: StatusMask
:param status: Status that need to be checked
:rtype: boolean
:return: true if the status is active and false if not

	
static liveliness_changed()

	Get the StatusMask associated with dds::core::status::LivelinessChangedStatus

	Return type

	StatusMask

	Returns

	StatusMask liveliness_changed

	
static liveliness_lost()

	Get the StatusMask associated with dds::core::status::LivelinessLostStatus

	Return type

	StatusMask

	Returns

	StatusMask liveliness_lost

	
static none()

	Get no StatusMasks

	Return type

	StatusMask

	Returns

	StatusMask none

	
static offered_deadline_missed()

	Get the StatusMask associated with dds::core::status::OfferedDeadlineMissedStatus

	Return type

	StatusMask

	Returns

	StatusMask offered_deadline_missed

	
static offered_incompatible_qos()

	Get the StatusMask associated with dds::core::status::OfferedIncompatibleQosStatus

	Return type

	StatusMask

	Returns

	StatusMask offered_incompatible_qos

	
static publication_matched()

	Get the statusmask associated with dds::core::status::PublicationMatchedStatus

	Return type

	StatusMask

	Returns

	StatusMask publication_matched

	
static requested_deadline_missed()

	Get the StatusMask associated with dds::core::status::RequestedDeadlineMissedStatus

	Return type

	StatusMask

	Returns

	StatusMask requested_deadline_missed

	
static requested_incompatible_qos()

	Get the StatusMask associated with dds::core::status::RequestedIncompatibleQosStatus

	Return type

	StatusMask

	Returns

	StatusMask requested_incompatible_qos

	
static sample_lost()

	Get the StatusMask associated with dds::core::status::SampleLostStatus

	Return type

	StatusMask

	Returns

	StatusMask sample_lost

	
static sample_rejected()

	Get the StatusMask associated with dds::core::status::SampleRejectedStatus

	Return type

	StatusMask

	Returns

	StatusMask sample_rejected

	
static subscription_matched()

	Get the statusmask associated with dds::core::status::SubscriptionMatchedStatus

	Return type

	StatusMask

	Returns

	StatusMask subscription_matched

	
property thisown

	The membership flag

 18.1.1.4.19. SubscriptionMatchedStatus

18.1.1.4.19. SubscriptionMatchedStatus

	
class fastdds.SubscriptionMatchedStatus

	A structure storing the subscription status

	
property last_publication_handle

	Handle to the last writer that matched the reader causing the status change

	
property thisown

	The membership flag

 18.1.1.5. LoanableArray

18.1.1.5. LoanableArray

 18.1.1.6. LoanableCollection

18.1.1.6. LoanableCollection

	
class fastdds.LoanableCollection(*args, **kwargs)

	A collection of generic opaque pointers that can receive the buffer from outside (loan).

This is an abstract class. See ‘LoanableSequence’ for details.

	
buffer()

	Get the pointer to the elements buffer.

The returned value may be nullptr if maximum() is 0.
Otherwise it is guaranteed that up to maximum() elements can be accessed.

	Return type

	void

	Returns

	the pointer to the elements buffer.

	
has_ownership()

	Get the ownership flag.

	Return type

	boolean

	Returns

	whether the collection has ownership of the buffer.

	
length(*args)

	Overload 1:

Get the number of elements currently accessible.

	Return type

	int

	Returns

	the number of elements currently accessible.

Overload 2:

Set the number of elements currently accessible.

This method tells the collection that a certain number of elements should be accessible.
If the new length is greater than the current ‘maximum()’ the collection should allocate
space for the new elements. If this is the case and the collection does not own the buffer
(i.e. ‘has_ownership()’ is false) then no allocation will be performed, the length will
remain unchanged, and false will be returned.

	Parameters

	[in] – new_length New number of elements to be accessible.

	Return type

	boolean

	Returns

	true if the new length was correctly set.

	
loan(buffer, new_maximum, new_length)

	Loan a buffer to the collection.

	Parameters

	
	[in] – buffer pointer to the buffer to be loaned.

	[in] – new_maximum number of allocated elements in buffer.

	[in] – new_length number of accessible elements in buffer.

	Return type

	boolean

	Returns

	false if preconditions are not met.

	Return type

	boolean

	Returns

	true if operation succeeds.

	
maximum()

	Get the maximum number of elements currently allocated.

	Return type

	int

	Returns

	the maximum number of elements currently allocated.

	
property thisown

	The membership flag

	
unloan(*args)

	Overload 1:

Remove the loan from the collection.

	Parameters

	
	[out] – maximum number of allocated elements on the returned buffer.

	[out] – length number of accessible elements on the returned buffer.

	Return type

	void

	Returns

	nullptr if preconditions are not met.

	Return type

	void

	Returns

	pointer to the previously loaned buffer of elements.

Overload 2:

Remove the loan from the collection.

	Return type

	void

	Returns

	nullptr if preconditions are not met.

	Return type

	void

	Returns

	pointer to the previously loaned buffer of elements.

 18.1.1.7. LoanableSequence

18.1.1.7. LoanableSequence

 18.1.1.8. StackAllocatedSequence

18.1.1.8. StackAllocatedSequence

 18.1.2. Domain

18.1.2. Domain

	18.1.2.1. DomainParticipant

	18.1.2.2. DomainParticipantFactory

	18.1.2.3. DomainParticipantFactoryQos

	18.1.2.4. DomainParticipantListener

	18.1.2.5. DomainParticipantQos

 18.1.2.1. DomainParticipant

18.1.2.1. DomainParticipant

	
class fastdds.DomainParticipant(*args, **kwargs)

	Class DomainParticipant used to group Publishers and Subscribers into a single working unit.

	
assert_liveliness()

	This operation manually asserts the liveliness of the DomainParticipant.
This is used in combination with the LIVELINESS QoS policy to indicate to the Service that the entity
remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter entities with
the LIVELINESS set to MANUAL_BY_PARTICIPANT and it only affects the liveliness of those DataWriter entities.
Otherwise, it has no effect.

Notes: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its
DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not
writing data regularly.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the liveliness was asserted, RETCODE_ERROR otherwise.

	
contains_entity(a_handle, recursive=True)

	This operation checks whether or not the given handle represents an Entity that was created from the
DomainParticipant.

	Parameters

	
	a_handle (InstanceHandle_t) – InstanceHandle of the entity to look for.

	recursive (boolean) – The containment applies recursively. That is, it applies both to entities
(TopicDescription, Publisher, or Subscriber) created directly using the DomainParticipant as well as
entities created using a contained Publisher, or Subscriber as the factory, and so forth. (default: true)

	Return type

	boolean

	Returns

	True if entity is contained. False otherwise.

	
create_contentfilteredtopic(*args)

	Overload 1:

Create a ContentFilteredTopic in this Participant.

	Parameters

	
	name (string) – Name of the ContentFilteredTopic

	related_topic (Topic) – Related Topic to being subscribed

	filter_expression (string) – Logic expression to create filter

	expression_parameters (std::vector< std::string,std::allocator< std::string > >) – Parameters to filter content

	Return type

	ContentFilteredTopic

	Returns

	Pointer to the created ContentFilteredTopic.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if related_topic does not belong to this participant.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if a topic with the specified name has already been created.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

Overload 2:

Create a ContentFilteredTopic in this Participant using a custom filter.

	Parameters

	
	name (string) – Name of the ContentFilteredTopic

	related_topic (Topic) – Related Topic to being subscribed

	filter_expression (string) – Logic expression to create filter

	expression_parameters (std::vector< std::string,std::allocator< std::string > >) – Parameters to filter content

	filter_class_name (string) – Name of the filter class to use

	Return type

	ContentFilteredTopic

	Returns

	Pointer to the created ContentFilteredTopic.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if related_topic does not belong to this participant.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if a topic with the specified name has already been created.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

	Return type

	ContentFilteredTopic

	Returns

	nullptr if the specified filter_class_name has not been registered.

	
create_multitopic(name, type_name, subscription_expression, expression_parameters)

	Create a MultiTopic in this Participant.

	Parameters

	
	name (string) – Name of the MultiTopic

	type_name (string) – Result type of the MultiTopic

	subscription_expression (string) – Logic expression to combine filter

	expression_parameters (std::vector< std::string,std::allocator< std::string > >) – Parameters to subscription content

	Return type

	eprosima::fastdds::dds::MultiTopic

	Returns

	Pointer to the created ContentFilteredTopic, nullptr in error case

	
create_publisher(*args)

	Create a Publisher in this Participant.

	Parameters

	
	qos (PublisherQos) – QoS of the Publisher.

	listener (PublisherListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Publisher

	Returns

	Pointer to the created Publisher.

	
create_publisher_with_profile(*args)

	Create a Publisher in this Participant.

	Parameters

	
	profile_name (string) – Publisher profile name.

	listener (PublisherListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Publisher

	Returns

	Pointer to the created Publisher.

	
create_subscriber(*args)

	Create a Subscriber in this Participant.

	Parameters

	
	qos (SubscriberQos) – QoS of the Subscriber.

	listener (SubscriberListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Subscriber

	Returns

	Pointer to the created Subscriber.

	
create_subscriber_with_profile(*args)

	Create a Subscriber in this Participant.

	Parameters

	
	profile_name (string) – Subscriber profile name.

	listener (SubscriberListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Subscriber

	Returns

	Pointer to the created Subscriber.

	
create_topic(*args)

	Create a Topic in this Participant.

	Parameters

	
	topic_name (string) – Name of the Topic.

	type_name (string) – Data type of the Topic.

	qos (TopicQos) – QoS of the Topic.

	listener (TopicListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Topic

	Returns

	Pointer to the created Topic.

	
create_topic_with_profile(*args)

	Create a Topic in this Participant.

	Parameters

	
	topic_name (string) – Name of the Topic.

	type_name (string) – Data type of the Topic.

	profile_name (string) – Topic profile name.

	listener (TopicListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all)

	Return type

	Topic

	Returns

	Pointer to the created Topic.

	
delete_contained_entities()

	Deletes all the entities that were created by means of the “create” methods

	Return type

	ReturnCode_t

	Returns

	RETURN_OK code if everything correct, error code otherwise

	
delete_contentfilteredtopic(a_contentfilteredtopic)

	Deletes an existing ContentFilteredTopic.

	Parameters

	a_contentfilteredtopic (ContentFilteredTopic) – ContentFilteredTopic to be deleted

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to
this participant or if it is referenced by any entity and RETCODE_OK if the ContentFilteredTopic was deleted.

	
delete_multitopic(a_multitopic)

	Deletes an existing MultiTopic.

	Parameters

	a_multitopic (eprosima::fastdds::dds::MultiTopic) – MultiTopic to be deleted

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to
this participant or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
delete_publisher(publisher)

	Deletes an existing Publisher.

	Parameters

	publisher (Publisher) – to be deleted.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the publisher does not belong to this participant or if it has active DataWriters,
RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
delete_subscriber(subscriber)

	Deletes an existing Subscriber.

	Parameters

	subscriber (Subscriber) – to be deleted.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the subscriber does not belong to this participant or if it has active DataReaders,
RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

	
delete_topic(topic)

	Deletes an existing Topic.

	Parameters

	topic (Topic) – to be deleted.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RETCODE_PRECONDITION_NOT_MET if the topic does not belong to
this participant or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

	
enable()

	This operation enables the DomainParticipant

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
find_topic(topic_name, timeout)

	Gives access to an existing (or ready to exist) enabled Topic.
It should be noted that the returned Topic is a local object that acts as a proxy to designate the global
concept of topic.
Topics obtained by means of find_topic, must also be deleted by means of delete_topic so that the local
resources can be released.
If a Topic is obtained multiple times by means of find_topic or create_topic, it must also be deleted that same
number of times using delete_topic.

	Parameters

	
	topic_name (string) – Topic name

	timeout (Duration_t) – Maximum time to wait for the Topic

	Return type

	Topic

	Returns

	Pointer to the existing Topic, nullptr in case of error or timeout

	
find_type(type_name)

	This method gives access to a registered type based on its name.

	Parameters

	type_name (string) – Name of the type

	Return type

	TypeSupport

	Returns

	TypeSupport corresponding to the type_name

	
get_builtin_subscriber()

	Allows access to the builtin Subscriber.

	Return type

	Subscriber

	Returns

	Pointer to the builtin Subscriber, nullptr in error case

	
get_current_time(current_time)

	This operation returns the current value of the time that the service uses to time-stamp data-writes
and to set the reception-timestamp for the data-updates it receives.

	Parameters

	current_time (Time_t) – Time_t reference where the current time is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_default_publisher_qos(*args)

	Overload 1:

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the
create_publisher operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

	Return type

	PublisherQos

	Returns

	Current default publisher qos.

Overload 2:

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the
create_publisher operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

	Parameters

	qos (PublisherQos) – PublisherQos reference where the default_publisher_qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_default_subscriber_qos(*args)

	Overload 1:

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be used
for newly created Subscriber entities in the case where the QoS policies are defaulted in the
create_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

	Return type

	SubscriberQos

	Returns

	Current default subscriber qos.

Overload 2:

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be used
for newly created Subscriber entities in the case where the QoS policies are defaulted in the
create_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

	Parameters

	qos (SubscriberQos) – SubscriberQos reference where the default_subscriber_qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_default_topic_qos(*args)

	Overload 1:

This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used
for newly created Topic entities in the case where the QoS policies are defaulted in the create_topic
operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful
call to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

	Return type

	TopicQos

	Returns

	Current default topic qos.

Overload 2:

This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used
for newly created Topic entities in the case where the QoS policies are defaulted in the create_topic
operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful
call to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

	Parameters

	qos (TopicQos) – TopicQos reference where the default_topic_qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_discovered_participant_data(participant_data, participant_handle)

	Retrieves the DomainParticipant data of a discovered not ignored participant.

participant_data Reference to the ParticipantBuiltinTopicData object to return the data
:type participant_handle: InstanceHandle_t
:param participant_handle: InstanceHandle of DomainParticipant to retrieve the data from
:rtype: ReturnCode_t
:return: RETCODE_OK if everything correct, PRECONDITION_NOT_MET if participant does not exist
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_discovered_participants(participant_handles)

	Retrieves the list of DomainParticipants that have been discovered in the domain and are not “ignored”.

participant_handles Reference to the vector where discovered participants will be returned
:rtype: ReturnCode_t
:return: RETCODE_OK if everything correct, error code otherwise
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_discovered_topic_data(topic_data, topic_handle)

	Retrieves the Topic data of a discovered not ignored topic.

topic_data Reference to the TopicBuiltinTopicData object to return the data
:type topic_handle: InstanceHandle_t
:param topic_handle: InstanceHandle of Topic to retrieve the data from
:rtype: ReturnCode_t
:return: RETCODE_OK if everything correct, PRECONDITION_NOT_MET if topic does not exist
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_discovered_topics(topic_handles)

	Retrieves the list of topics that have been discovered in the domain and are not “ignored”.

topic_handles Reference to the vector where discovered topics will be returned
:rtype: ReturnCode_t
:return: RETCODE_OK if everything correct, error code otherwise
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_domain_id()

	This operation retrieves the domain_id used to create the DomainParticipant.
The domain_id identifies the DDS domain to which the DomainParticipant belongs.

	Return type

	int

	Returns

	The Participant’s domain_id

	
get_instance_handle()

	Returns the DomainParticipant’s handle.

	Return type

	InstanceHandle_t

	Returns

	InstanceHandle of this DomainParticipant.

	
get_listener()

	Allows accessing the DomainParticipantListener.

	Return type

	DomainParticipantListener

	Returns

	DomainParticipantListener pointer

	
get_participant_names()

	Getter for the participant names

	Return type

	std::vector< std::string,std::allocator< std::string > >

	Returns

	Vector with the names

	
get_publisher_qos_from_profile(profile_name, qos)

	Fills the PublisherQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – Publisher profile name.

	qos (PublisherQos) – PublisherQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_qos(*args)

	Overload 1:

This operation returns the value of the DomainParticipant QoS policies

	Parameters

	qos (DomainParticipantQos) – DomainParticipantQos reference where the qos is going to be returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

This operation returns the value of the DomainParticipant QoS policies

	Return type

	DomainParticipantQos

	Returns

	A reference to the DomainParticipantQos

	
get_resource_event()

	Getter for the resource event

	Return type

	eprosima::fastrtps::rtps::ResourceEvent

	Returns

	A reference to the resource event

	
get_subscriber_qos_from_profile(profile_name, qos)

	Fills the SubscriberQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – Subscriber profile name.

	qos (SubscriberQos) – SubscriberQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_topic_qos_from_profile(profile_name, qos)

	Fills the TopicQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – Topic profile name.

	qos (TopicQos) – TopicQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_type_dependencies(_in)

	When a DomainParticipant receives an incomplete list of TypeIdentifiers in a
PublicationBuiltinTopicData or SubscriptionBuiltinTopicData, it may request the additional type
dependencies by invoking the getTypeDependencies operation.

	Parameters

	in (eprosima::fastrtps::types::TypeIdentifierSeq) – TypeIdentifier sequence

	Return type

	SampleIdentity

	Returns

	SampleIdentity

	
get_types(_in)

	A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects associated with a
list of TypeIdentifiers.

	Parameters

	in (eprosima::fastrtps::types::TypeIdentifierSeq) – TypeIdentifier sequence

	Return type

	SampleIdentity

	Returns

	SampleIdentity

	
guid()

	Getter for the Participant GUID

	Return type

	GUID_t

	Returns

	A reference to the GUID

	
ignore_participant(handle)

	Locally ignore a remote domain participant.

Notes: This action is not required to be reversible.

	Parameters

	handle (InstanceHandle_t) – Identifier of the remote participant to ignore

	Return type

	ReturnCode_t

	Returns

	RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
ignore_publication(handle)

	Locally ignore a datawriter.

Notes: This action is not required to be reversible.

	Parameters

	handle (InstanceHandle_t) – Identifier of the datawriter to ignore

	Return type

	ReturnCode_t

	Returns

	RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
ignore_subscription(handle)

	Locally ignore a datareader.

Notes: This action is not required to be reversible.

	Parameters

	handle (InstanceHandle_t) – Identifier of the datareader to ignore

	Return type

	ReturnCode_t

	Returns

	RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
ignore_topic(handle)

	Locally ignore a topic.

Notes: This action is not required to be reversible.

	Parameters

	handle (InstanceHandle_t) – Identifier of the topic to ignore

	Return type

	ReturnCode_t

	Returns

	RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
lookup_content_filter_factory(filter_class_name)

	Lookup a custom content filter factory previously registered with register_content_filter_factory.

	Parameters

	filter_class_name (string) – Name of the filter class. Cannot be nullptr.

	Return type

	IContentFilterFactory

	Returns

	nullptr if the given filter_class_name has not been previously registered on this DomainParticipant.
Otherwise, the content filter factory previously registered with the given filter_class_name.

	
lookup_topicdescription(topic_name)

	Looks up an existing, locally created ‘TopicDescription’, based on its name.
May be called on a disabled participant.

	Parameters

	topic_name (string) – Name of the ‘TopicDescription’ to search for.

	Return type

	TopicDescription

	Returns

	Pointer to the topic description, if it has been created locally. Otherwise, nullptr is returned.

Remarks: UNSAFE. It is unsafe to lookup a topic description while another thread is creating a topic.

	
new_remote_endpoint_discovered(partguid, userId, kind)

	This method can be used when using a StaticEndpointDiscovery mechanism different that the one
included in FastRTPS, for example when communicating with other implementations.
It indicates the Participant that an Endpoint from the XML has been discovered and
should be activated.

	Parameters

	
	partguid (GUID_t) – Participant GUID_t.

	userId (int) – User defined ID as shown in the XML file.

	kind (int) – EndpointKind (WRITER or READER)

	Return type

	boolean

	Returns

	True if correctly found and activated.

	
register_content_filter_factory(filter_class_name, filter_factory)

	Register a custom content filter factory, which can be used to create a ContentFilteredTopic.

DDS specifies a SQL-like content filter to be used by content filtered topics.
If this filter does not meet your filtering requirements, you can register a custom filter factory.

To use a custom filter, a factory for it must be registered in the following places:

	In any application that uses the custom filter factory to create a ContentFilteredTopic and the corresponding
DataReader.

	In each application that writes the data to the applications mentioned above.

For example, suppose Application A on the subscription side creates a Topic named X and a ContentFilteredTopic
named filteredX (and a corresponding DataReader), using a previously registered content filter factory, myFilterFactory.
With only that, you will have filtering at the subscription side.
If you also want to perform filtering in any application that publishes Topic X, then you also need to register
the same definition of the ContentFilterFactory myFilterFactory in that application.

Each filter_class_name can only be used to register a content filter factory once per DomainParticipant.

	Parameters

	
	filter_class_name (string) – Name of the filter class. Cannot be nullptr, must not exceed 255 characters, and must
be unique within this DomainParticipant.

	filter_factory (IContentFilterFactory) – Factory of content filters to be registered. Cannot be nullptr.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if any parameter is nullptr, or the filter_class_name exceeds 255 characters.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the filter_class_name has been already registered.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if filter_class_name is FASTDDS_SQLFILTER_NAME.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the filter is correctly registered.

	
register_remote_type(type_information, type_name, callback)

	Helps the user to solve all dependencies calling internally to the typelookup service
and registers the resulting dynamic type.
The registration will be perform asynchronously and the user will be notified through the
given callback, which receives the type_name as unique argument.
If the type is already registered, the function will return true, but the callback will not be called.
If the given type_information is enough to build the type without using the typelookup service,
it will return true and the callback will be never called.

	Parameters

	
	type_information (eprosima::fastrtps::types::TypeInformation) –

	type_name (string) –

	callback (std::function< void (std::string const &,eprosima::fastrtps::types::DynamicType_ptr const) >) –

	Return type

	ReturnCode_t

	Returns

	true if type is already available (callback will not be called). false if type isn’t available yet
(the callback will be called if negotiation is success, and ignored in other case).

	
register_type(*args)

	Overload 1:

Register a type in this participant.

	Parameters

	
	type (TypeSupport) – TypeSupport.

	type_name (string) – The name that will be used to identify the Type.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport
with the same name and RETCODE_OK if it is correctly registered.

Overload 2:

Register a type in this participant.

	Parameters

	type (TypeSupport) – TypeSupport.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport
with the same name and RETCODE_OK if it is correctly registered.

	
set_default_publisher_qos(qos)

	This operation sets a default value of the Publisher QoS policies which will be used for newly created
Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not,
the operation will have no effect and return false.

The special value PUBLISHER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_publisher_qos operation had never been called.

	Parameters

	qos (PublisherQos) – PublisherQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_default_subscriber_qos(qos)

	This operation sets a default value of the Subscriber QoS policies that will be used for newly created
Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

This operation will check that the resulting policies are self consistent; if they are not,
the operation will have no effect and return false.

The special value SUBSCRIBER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_subscriber_qos operation had never been called.

	Parameters

	qos (SubscriberQos) – SubscriberQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_default_topic_qos(qos)

	This operation sets a default value of the Topic QoS policies which will be used for newly created
Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation
will have no effect and return INCONSISTENT_POLICY.

The special value TOPIC_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_topic_qos operation had never been called.

	Parameters

	qos (TopicQos) – TopicQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_listener(*args)

	Overload 1:

Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

	Parameters

	listener (DomainParticipantListener) – new value for the DomainParticipantListener

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

Modifies the DomainParticipantListener.

	Parameters

	
	listener (DomainParticipantListener) – new value for the DomainParticipantListener

	mask (StatusMask) – StatusMask that holds statuses the listener responds to

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_qos(qos)

	This operation sets the value of the DomainParticipant QoS policies.

	Parameters

	qos (DomainParticipantQos) – DomainParticipantQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not
self consistent and RETCODE_OK if the qos is changed correctly.

	
property thisown

	The membership flag

	
unregister_content_filter_factory(filter_class_name)

	Unregister a custom content filter factory previously registered with register_content_filter_factory.

A filter_class_name can be unregistered only if it has been previously registered to the DomainParticipant with
register_content_filter_factory.

The unregistration of filter is not allowed if there are any existing ContentFilteredTopic objects that are
using the filter.

If there is any existing discovered DataReader with the same filter_class_name, filtering on the writer side will be
stopped, but this operation will not fail.

	Parameters

	filter_class_name (string) – Name of the filter class. Cannot be nullptr.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the filter_class_name is nullptr.

	Return type

	ReturnCode_t

	Returns

	RERCODE_PRECONDITION_NOT_MET if the filter_class_name has not been previously registered.

	Return type

	ReturnCode_t

	Returns

	RERCODE_PRECONDITION_NOT_MET if there is any ContentFilteredTopic referencing the filter.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the filter is correctly unregistered.

	
unregister_type(typeName)

	Unregister a type in this participant.

	Parameters

	typeName (string) – Name of the type

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the size of the name is 0, RERCODE_PRECONDITION_NOT_MET if there are entities using that
TypeSupport and RETCODE_OK if it is correctly unregistered.

 18.1.2.2. DomainParticipantFactory

18.1.2.2. DomainParticipantFactory

	
class fastdds.DomainParticipantFactory(*args, **kwargs)

	Class DomainParticipantFactory

	
check_xml_static_discovery(xml_file)

	Check the validity of the provided static discovery XML file

	Parameters

	xml_file (string) – xml file path

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the validation is successful, RETCODE_ERROR otherwise.

	
create_participant(*args)

	Create a Participant.

	Parameters

	
	domain_id (int) – Domain Id.

	qos (DomainParticipantQos) – DomainParticipantQos Reference.

	listener (DomainParticipantListener) – DomainParticipantListener Pointer (default: nullptr)

	mask (StatusMask) – StatusMask Reference (default: all)

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer. (nullptr if not created.)

	
create_participant_with_profile(*args)

	Overload 1:

Create a Participant.

	Parameters

	
	domain_id (int) – Domain Id.

	profile_name (string) – Participant profile name.

	listener (DomainParticipantListener) – DomainParticipantListener Pointer (default: nullptr)

	mask (StatusMask) – StatusMask Reference (default: all)

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer. (nullptr if not created.)

Overload 2:

Create a Participant.

	Parameters

	
	profile_name (string) – Participant profile name.

	listener (DomainParticipantListener) – DomainParticipantListener Pointer (default: nullptr)

	mask (StatusMask) – StatusMask Reference (default: all)

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer. (nullptr if not created.)

Overload 3:

Create a Participant.

	Parameters

	
	profile_name (string) – Participant profile name.

	listener (DomainParticipantListener) – DomainParticipantListener Pointer (default: nullptr)

	mask – StatusMask Reference (default: all)

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer. (nullptr if not created.)

Overload 4:

Create a Participant.

	Parameters

	
	profile_name (string) – Participant profile name.

	listener – DomainParticipantListener Pointer (default: nullptr)

	mask – StatusMask Reference (default: all)

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer. (nullptr if not created.)

	
delete_participant(part)

	Remove a Participant and all associated publishers and subscribers.

	Parameters

	part (DomainParticipant) – Pointer to the participant.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the participant has active entities, RETCODE_OK if the participant is correctly
deleted and RETCODE_ERROR otherwise.

	
get_default_participant_qos(*args)

	Overload 1:

This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which will
be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted in the
create_participant operation.
The values retrieved get_default_participant_qos will match the set of values specified on the last successful call
to set_default_participant_qos, or else, if the call was never made, the default values.

	Parameters

	qos (DomainParticipantQos) – DomainParticipantQos where the qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which will
be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted in the
create_participant operation.
The values retrieved get_default_participant_qos will match the set of values specified on the last successful call
to set_default_participant_qos, or else, if the call was never made, the default values.

	Return type

	DomainParticipantQos

	Returns

	A reference to the default DomainParticipantQos

	
static get_instance()

	Returns the DomainParticipantFactory singleton instance.

	Return type

	DomainParticipantFactory

	Returns

	A raw pointer to the DomainParticipantFactory singleton instance.

	
get_participant_qos_from_profile(profile_name, qos)

	Fills the DomainParticipantQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – DomainParticipant profile name.

	qos (DomainParticipantQos) – DomainParticipantQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_qos(qos)

	This operation returns the value of the DomainParticipantFactory QoS policies.

	Parameters

	qos (DomainParticipantFactoryQos) – DomaParticipantFactoryQos reference where the qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
static get_shared_instance()

	Returns the DomainParticipantFactory singleton instance.

	Return type

	std::shared_ptr< eprosima::fastdds::dds::DomainParticipantFactory >

	Returns

	A shared pointer to the DomainParticipantFactory singleton instance.

	
load_XML_profiles_file(xml_profile_file)

	Load profiles from XML file.

	Parameters

	xml_profile_file (string) – XML profile file.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

	
load_XML_profiles_string(data, length)

	Load profiles from XML string.

	Parameters

	
	data (string) – buffer containing xml data.

	length (int) – length of data

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

	
load_profiles()

	Load profiles from default XML file.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
lookup_participant(domain_id)

	This operation retrieves a previously created DomainParticipant belonging to specified domain_id.
If no such DomainParticipant exists, the operation will return ‘nullptr’.
If multiple DomainParticipant entities belonging to that domain_id exist,
then the operation will return one of them. It is not specified which one.

	Parameters

	domain_id (int) –

	Return type

	DomainParticipant

	Returns

	previously created DomainParticipant within the specified domain

	
lookup_participants(domain_id)

	Returns all participants that belongs to the specified domain_id.

	Parameters

	domain_id (int) –

	Return type

	std::vector< eprosima::fastdds::dds::DomainParticipant *,std::allocator< eprosima::fastdds::dds::DomainParticipant * > >

	Returns

	previously created DomainParticipants within the specified domain

	
set_default_participant_qos(qos)

	This operation sets a default value of the DomainParticipant QoS policies which will be used for
newly created DomainParticipant entities in the case where the QoS policies are defaulted in the
create_participant operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation
will have no effect and return INCONSISTENT_POLICY.

The special value PARTICIPANT_QOS_DEFAULT may be passed to this operation to indicate that the default
QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_participant_qos operation had never been called.

	Parameters

	qos (DomainParticipantQos) – DomainParticipantQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_qos(qos)

	This operation sets the value of the DomainParticipantFactory QoS policies. These policies
control the behavior of the object a factory for entities.

Note that despite having QoS, the DomainParticipantFactory is not an Entity.

This operation will check that the resulting policies are self consistent; if they are not,
the operation will have no effect and return INCONSISTENT_POLICY.

	Parameters

	qos (DomainParticipantFactoryQos) – DomainParticipantFactoryQos to be set.

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not
self consistent and RETCODE_OK if the qos is changed correctly.

	
property thisown

	The membership flag

 18.1.2.3. DomainParticipantFactoryQos

18.1.2.3. DomainParticipantFactoryQos

	
class fastdds.DomainParticipantFactoryQos

	Class DomainParticipantFactoryQos, contains all the possible Qos that can be set for a determined participant.
Please consult each of them to check for implementation details and default values.

	
entity_factory(*args)

	Overload 1:

Getter for EntityFactoryQosPolicy
:rtype: EntityFactoryQosPolicy
:return: EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy
:rtype: EntityFactoryQosPolicy
:return: EntityFactoryQosPolicy reference

Overload 3:

Setter for EntityFactoryQosPolicy
:type entity_factory: EntityFactoryQosPolicy
:param entity_factory: EntityFactoryQosPolicy

	
property thisown

	The membership flag

 18.1.2.4. DomainParticipantListener

18.1.2.4. DomainParticipantListener

	
class fastdds.DomainParticipantListener

	Class DomainParticipantListener, overrides behaviour towards certain events.

	
on_participant_discovery(participant, info)

	This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

	Parameters

	
	participant (DomainParticipant) – Pointer to the Participant which discovered the remote participant.

	info (eprosima::fastrtps::rtps::ParticipantDiscoveryInfo) – Remote participant information. User can take ownership of the object.

	
on_publisher_discovery(participant, info)

	This method is called when a new Publisher is discovered, or a previously discovered publisher changes
its QOS or is removed.

	Parameters

	
	participant (DomainParticipant) – Pointer to the Participant which discovered the remote publisher.

	info (eprosima::fastrtps::rtps::WriterDiscoveryInfo) – Remote publisher information. User can take ownership of the object.

	
on_subscriber_discovery(participant, info)

	This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes
its QOS or is removed.

	Parameters

	
	participant (DomainParticipant) – Pointer to the Participant which discovered the remote subscriber.

	info (eprosima::fastrtps::rtps::ReaderDiscoveryInfo) – Remote subscriber information. User can take ownership of the object.

	
on_type_dependencies_reply(participant, request_sample_id, dependencies)

	This method is called when the typelookup client received a reply to a getTypeDependencies request.
The user may want to retrieve these new types using the getTypes request and create a new
DynamicType using the retrieved TypeObject.

	
on_type_discovery(participant, request_sample_id, topic, identifier, object, dyn_type)

	This method is called when a participant discovers a new Type
The ownership of all object belongs to the caller so if needs to be used after the
method ends, a full copy should be perform (except for dyn_type due to its shared_ptr nature.
For example:
fastrtps::types::TypeIdentifier new_type_id = *identifier;

	
on_type_information_received(participant, topic_name, type_name, type_information)

	This method is called when a participant receives a TypeInformation while discovering another participant.

	
property thisown

	The membership flag

 18.1.2.5. DomainParticipantQos

18.1.2.5. DomainParticipantQos

	
class fastdds.DomainParticipantQos

	Class DomainParticipantQos, contains all the possible Qos that can be set for a determined participant.
Please consult each of them to check for implementation details and default values.

	
allocation(*args)

	Overload 1:

Getter for ParticipantResourceLimitsQos

	Return type

	ParticipantResourceLimitsQos

	Returns

	ParticipantResourceLimitsQos reference

Overload 2:

Getter for ParticipantResourceLimitsQos

	Return type

	ParticipantResourceLimitsQos

	Returns

	ParticipantResourceLimitsQos reference

Overload 3:

Setter for ParticipantResourceLimitsQos

	Parameters

	allocation (ParticipantResourceLimitsQos) – ParticipantResourceLimitsQos

	
entity_factory(*args)

	Overload 1:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 3:

Setter for EntityFactoryQosPolicy

	Parameters

	value (EntityFactoryQosPolicy) – EntityFactoryQosPolicy

	
flow_controllers(*args)

	Overload 1:

Getter for FlowControllerDescriptorList

	Return type

	FlowControllerDescriptorList

	Returns

	FlowControllerDescriptorList reference

Overload 2:

Getter for FlowControllerDescriptorList

	Return type

	FlowControllerDescriptorList

	Returns

	FlowControllerDescriptorList reference

	
name(*args)

	Overload 1:

Getter for the Participant name

	Return type

	string

	Returns

	name

Overload 2:

Setter for the Participant name

	Parameters

	value (string) – New name to be set.

	
properties(*args)

	Overload 1:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

Overload 2:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

Overload 3:

Setter for PropertyPolicyQos

	Parameters

	properties (PropertyPolicyQos) – PropertyPolicyQos

	
property thisown

	The membership flag

	
transport(*args)

	Overload 1:

Getter for TransportConfigQos

	Return type

	TransportConfigQos

	Returns

	TransportConfigQos reference

Overload 2:

Getter for TransportConfigQos

	Return type

	TransportConfigQos

	Returns

	TransportConfigQos reference

Overload 3:

Setter for TransportConfigQos

	Parameters

	transport (TransportConfigQos) – TransportConfigQos

	
user_data(*args)

	Overload 1:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

Overload 2:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

Overload 3:

Setter for UserDataQosPolicy

	Parameters

	value (UserDataQosPolicy) – UserDataQosPolicy

	
wire_protocol(*args)

	Overload 1:

Getter for WireProtocolConfigQos

	Return type

	WireProtocolConfigQos

	Returns

	WireProtocolConfigQos reference

Overload 2:

Getter for WireProtocolConfigQos

	Return type

	WireProtocolConfigQos

	Returns

	WireProtocolConfigQos reference

Overload 3:

Setter for WireProtocolConfigQos

	Parameters

	wire_protocol (WireProtocolConfigQos) – WireProtocolConfigQos

 18.1.3. Publisher

18.1.3. Publisher

	18.1.3.1. DataWriter

	18.1.3.2. DataWriterListener

	18.1.3.3. DataWriterQos

	18.1.3.4. Publisher

	18.1.3.5. PublisherListener

	18.1.3.6. PublisherQos

	18.1.3.7. RTPSReliableWriterQos

 18.1.3.1. DataWriter

18.1.3.1. DataWriter

	
class fastdds.DataWriter(*args, **kwargs)

	Class DataWriter, contains the actual implementation of the behaviour of the DataWriter.

	
assert_liveliness()

	This operation manually asserts the liveliness of the DataWriter. This is used in combination with the
LivelinessQosPolicy to indicate to the Service that the entity remains active.
This operation need only be used if the LIVELINESS setting is either MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC.
Otherwise, it has no effect.

Notes: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and its
DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not writing data
regularly.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if asserted, RETCODE_ERROR otherwise

	
clear_history()

	

	
dispose(data, handle)

	This operation requests the middleware to delete the data (the actual deletion is postponed until there is no
more use for that data in the whole system). In general, applications are made aware of the deletion by means of
operations on the DataReader objects that already knew that instance. This operation does not modify the value of
the instance. The instance parameter is passed just for the purposes of identifying the instance.
When this operation is used, the Service will automatically supply the value of the source_timestamp that is made
available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo. The constraints
on the values of the handle parameter and the corresponding error behavior are the same specified for the
unregister_instance operation.

data Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.
handle InstanceHandle of the data
:rtype: ReturnCode_t
:return: RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match with the one associated to the data,

RETCODE_OK if the data is correctly sent and RETCODE_ERROR otherwise.

	
dispose_w_timestamp(instance, handle, timestamp)

	This operation performs the same functions as ‘dispose’ except that the application provides the value
for the ‘source_timestamp’ that is made available to
DataReader objects by means of the ‘source_timestamp’
attribute inside the SampleInfo.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the ‘dispose’ operation.

This operation may return RETCODE_PRECONDITION_NOT_MET and RETCODE_BAD_PARAMETER under the same circumstances
described for the ‘dispose’ operation.

This operation may return RETCODE_TIMEOUT and RETCODE_OUT_OF_RESOURCES under the same circumstances described
for the ‘write’ operation.

	Parameters

	
	instance (void) – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle (InstanceHandle_t) – Instance’s key to be disposed.

	timestamp (Time_t) – Time_t used to set the source_timestamp.

	Return type

	ReturnCode_t

	Returns

	RTPS_DllAPI

	
enable()

	This operation enables the DataWriter

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the Publisher creating this
DataWriter is not enabled.

	
get_instance_handle()

	Returns the DataWriter’s InstanceHandle

	Return type

	InstanceHandle_t

	Returns

	Copy of the DataWriter InstanceHandle

	
get_key_value(key_holder, handle)

	This operation can be used to retrieve the instance key that corresponds to an
‘instance_handle’.
The operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t handle does not correspond to an existing
data-object known to the DataWriter. If the implementation is not able to check invalid handles then the result
in this situation is unspecified.

,out] key_holder Sample where the key fields will be returned.
handle Handle to the instance to retrieve the key values from.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
get_listener()

	Retrieves the listener for this DataWriter.

	Return type

	DataWriterListener

	Returns

	Pointer to the DataWriterListener

	
get_liveliness_lost_status(status)

	Returns the liveliness lost status

	Parameters

	status (LivelinessLostStatus) – Liveliness lost status struct

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_matched_subscription_data(subscription_data, subscription_handle)

	Retrieves in a subscription associated with the DataWriter

subscription_data subscription data struct
:type subscription_handle: InstanceHandle_t
:param subscription_handle: InstanceHandle_t of the subscription
:rtype: ReturnCode_t
:return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_matched_subscriptions(subscription_handles)

	Fills the given vector with the InstanceHandle_t of matched DataReaders

subscription_handles Vector where the InstanceHandle_t are returned
:rtype: ReturnCode_t
:return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_offered_deadline_missed_status(status)

	Returns the offered deadline missed status

status Deadline missed status struct
:rtype: ReturnCode_t
:return: RETCODE_OK

	
get_offered_incompatible_qos_status(status)

	Returns the offered incompatible qos status

status Offered incompatible qos status struct
:rtype: ReturnCode_t
:return: RETCODE_OK

	
get_publication_matched_status(status)

	Returns the publication matched status

status publication matched status struct
:rtype: ReturnCode_t
:return: RETCODE_OK

	
get_publisher()

	Getter for the Publisher that creates this DataWriter

	Return type

	Publisher

	Returns

	Pointer to the Publisher

	
get_qos(*args)

	Overload 1:

Retrieves the DataWriterQos for this DataWriter.

	Return type

	DataWriterQos

	Returns

	Reference to the current DataWriterQos

Overload 2:

Fills the DataWriterQos with the values of this DataWriter.

	Parameters

	qos (DataWriterQos) – DataWriterQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_sending_locators(locators)

	Get the list of locators from which this DataWriter may send data.

	Parameters

	[out] – locators LocatorList where the list of locators will be stored.

	Return type

	ReturnCode_t

	Returns

	NOT_ENABLED if the reader has not been enabled.

	Return type

	ReturnCode_t

	Returns

	OK if a list of locators is returned.

	
get_topic()

	Retrieves the topic for this DataWriter.

	Return type

	Topic

	Returns

	Pointer to the associated Topic

	
get_type()

	Get data type associated to the DataWriter

	Return type

	TypeSupport

	Returns

	Copy of the TypeSupport

	
guid()

	Returns the DataWriter’s GUID

	Return type

	GUID_t

	Returns

	Reference to the DataWriter GUID

	
loan_sample(*args)

	Get a pointer to the internal pool where the user could directly write.

This method can only be used on a DataWriter for a plain data type. It will provide the
user with a pointer to an internal buffer where the data type can be prepared for sending.

When using NO_LOAN_INITIALIZATION on the initialization parameter, which is the default,
no assumptions should be made on the contents where the pointer points to, as it may be an
old pointer being reused. See ‘LoanInitializationKind’ for more details.

Once the sample has been prepared, it can then be published by calling ‘write’.
After a successful call to ‘write’, the middleware takes ownership of the loaned pointer again,
and the user should not access that memory again.

If, for whatever reason, the sample is not published, the loan can be returned by calling
‘discard_loan’.

	Parameters

	
	[out] – sample Pointer to the sample on the internal pool.

	[in] – initialization How to initialize the loaned sample.

	Return type

	ReturnCode_t

	Returns

	ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not support loans.

	Return type

	ReturnCode_t

	Returns

	ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

	Return type

	ReturnCode_t

	Returns

	ReturnCode_t::RETCODE_OUT_OF_RESOURCES if the pool has been exhausted.

	Return type

	ReturnCode_t

	Returns

	ReturnCode_t::RETCODE_OK if a pointer to a sample is successfully obtained.

	
lookup_instance(instance)

	NOT YET IMPLEMENTED

Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept an
instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that
define the key.

instance Data pointer to the sample

	Return type

	InstanceHandle_t

	Returns

	handle of the given instance

	
register_instance(instance)

	Informs that the application will be modifying a particular instance.
It gives an opportunity to the middleware to pre-configure itself to improve performance.

instance Sample used to get the instance’s key.
:rtype: InstanceHandle_t
:return: Handle containing the instance’s key.

This handle could be used in successive write or dispose operations.
In case of error, HANDLE_NIL will be returned.

	
register_instance_w_timestamp(instance, timestamp)

	This operation performs the same function as register_instance and can be used instead of
‘register_instance’ in the cases where the application desires to specify the value for the
‘source_timestamp’.
The ‘source_timestamp’ potentially affects the relative
order in which readers observe events from multiple writers. See the QoS policy
‘DESTINATION_ORDER’.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for the ‘write’
operation.

This operation may return RETCODE_OUT_OF_RESOURCES under the same circumstances described for the
‘write’ operation.

	Parameters

	
	instance (void) – Sample used to get the instance’s key.

	timestamp (Time_t) – Time_t used to set the source_timestamp.

	Return type

	InstanceHandle_t

	Returns

	Handle containing the instance’s key.

	
set_listener(*args)

	

	
set_qos(qos)

	Establishes the DataWriterQos for this DataWriter.

	Parameters

	qos (DataWriterQos) – DataWriterQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not
self consistent and RETCODE_OK if the qos is changed correctly.

	
property thisown

	The membership flag

	
unregister_instance(instance, handle)

	This operation reverses the action of register_instance.
It should only be called on an instance that is currently registered.
Informs the middleware that the DataWriter is not intending to modify any more of that data instance.
Also indicates that the middleware can locally remove all information regarding that instance.

instance Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.
handle Instance’s key to be unregistered.
:rtype: ReturnCode_t
:return: Returns the operation’s result.

If the operation finishes successfully, ReturnCode_t::RETCODE_OK is returned.

	
unregister_instance_w_timestamp(instance, handle, timestamp)

	This operation performs the same function as ‘unregister_instance’ and can be used instead of
‘unregister_instance’ in the cases where the application desires to specify the value for the
‘source_timestamp’.
The ‘source_timestamp’ potentially affects the relative
order in which readers observe events from multiple writers. See the QoS policy
‘DESTINATION_ORDER’.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the ‘unregister_instance’ operation.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for the write
operation

	Parameters

	
	instance (void) – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle (InstanceHandle_t) – Instance’s key to be unregistered.

	timestamp (Time_t) – Time_t used to set the source_timestamp.

	Return type

	ReturnCode_t

	Returns

	Handle containing the instance’s key.

	
wait_for_acknowledgments(*args)

	Overload 1:

Waits the current thread until all writers have received their acknowledgments.

	Parameters

	max_wait (Duration_t) – Maximum blocking time for this operation

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the DataWriter receive the acknowledgments before the time expires and RETCODE_ERROR otherwise

Overload 2:

Block the current thread until the writer has received the acknowledgment corresponding to the given instance.
Operations performed on the same instance while the current thread is waiting will not be taken into
consideration, i.e. this method may return RETCODE_OK with those operations unacknowledged.

	Parameters

	
	instance (void) – Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL.

	handle (InstanceHandle_t) – Instance handle of the data.

	max_wait (Duration_t) – Maximum blocking time for this operation.

	Return type

	ReturnCode_t

	Returns

	RETCODE_NOT_ENABLED if the writer has not been enabled.

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if instance is not a valid pointer.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the topic does not have a key, the key is unknown to the writer,
or the key is not consistent with handle.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the DataWriter received the acknowledgments before the time expired.

	Return type

	ReturnCode_t

	Returns

	RETCODE_TIMEOUT otherwise.

	
write(*args)

	Overload 1:

Write data to the topic.

	Parameters

	data (void) – Pointer to the data

	Return type

	boolean

	Returns

	True if correct, false otherwise

Overload 2:

Write data with params to the topic.

	Parameters

	
	data (void) – Pointer to the data

	params (WriteParams) – Extra write parameters.

	Return type

	boolean

	Returns

	True if correct, false otherwise

Overload 3:

Write data with handle.

The special value HANDLE_NIL can be used for the parameter handle.This indicates that the identity of the
instance should be automatically deduced from the instance_data (by means of the key).

	Parameters

	
	data (void) – Pointer to the data

	handle (InstanceHandle_t) – InstanceHandle_t.

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match with the one associated to the data,
RETCODE_OK if the data is correctly sent and RETCODE_ERROR otherwise.

	
write_w_timestamp(data, handle, timestamp)

	This operation performs the same function as write except that it also provides the value for the
‘source_timestamp’ that is made available to DataReader
objects by means of the ‘eprosima::fastdds::dds::SampleInfo::source_timestamp’ attribute “source_timestamp”
inside the SampleInfo.
The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the ‘write’ operation. This operation may block and return RETCODE_TIMEOUT under the same
circumstances described for the ‘write’ operation.
This operation may return RETCODE_OUT_OF_RESOURCES, RETCODE_PRECONDITION_NOT_MET or RETCODE_BAD_PARAMETER under
the same circumstances described for the write operation.

	Parameters

	
	data (void) – Pointer to the data

	handle (InstanceHandle_t) – InstanceHandle_t

	timestamp (Time_t) – Time_t used to set the source_timestamp.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

 18.1.3.2. DataWriterListener

18.1.3.2. DataWriterListener

	
class fastdds.DataWriterListener

	Class DataWriterListener, allows the end user to implement callbacks triggered by certain events.

	
on_liveliness_lost(writer, status)

	Method called when the liveliness of a publisher is lost

	Parameters

	
	writer (DataWriter) – The publisher

	status (LivelinessLostStatus) – The liveliness lost status

	
on_offered_deadline_missed(writer, status)

	A method called when a deadline is missed

	Parameters

	
	writer (DataWriter) – Pointer to the associated Publisher

	status (OfferedDeadlineMissedStatus) – The deadline missed status

	
on_offered_incompatible_qos(writer, status)

	A method called when an incompatible QoS is offered

	Parameters

	
	writer (DataWriter) – Pointer to the associated Publisher

	status (OfferedIncompatibleQosStatus) – The deadline missed status

	
on_publication_matched(writer, info)

	This method is called when the Publisher is matched (or unmatched) against an endpoint.

	Parameters

	
	writer (DataWriter) – Pointer to the associated Publisher

	info (PublicationMatchedStatus) – Information regarding the matched subscriber

	
property thisown

	The membership flag

 18.1.3.3. DataWriterQos

18.1.3.3. DataWriterQos

	
class fastdds.DataWriterQos

	Class DataWriterQos, containing all the possible Qos that can be set for a determined DataWriter.
Although these values can be and are transmitted
during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library.
Please consult each of them to check for implementation details and default values.

	
data_sharing(*args)

	Overload 1:

Getter for DataSharingQosPolicy

	Return type

	DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

Overload 2:

Getter for DataSharingQosPolicy

	Return type

	DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

Overload 3:

Setter for DataSharingQosPolicy

	Parameters

	data_sharing (DataSharingQosPolicy) – new value for the DataSharingQosPolicy

	
deadline(*args)

	Overload 1:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

Overload 2:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

Overload 3:

Setter for DeadlineQosPolicy

	Parameters

	deadline (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

	
destination_order(*args)

	Overload 1:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

Overload 2:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

Overload 3:

Setter for DestinationOrderQosPolicy

	Parameters

	destination_order (DestinationOrderQosPolicy) – new value for the DestinationOrderQosPolicy

	
durability(*args)

	Overload 1:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

Overload 2:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

Overload 3:

Setter for DurabilityQosPolicy

	Parameters

	durability (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

	
durability_service(*args)

	Overload 1:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

Overload 2:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

Overload 3:

Setter for DurabilityServiceQosPolicy

	Parameters

	durability_service (DurabilityServiceQosPolicy) – new value for the DurabilityServiceQosPolicy

	
endpoint(*args)

	Overload 1:

Getter for RTPSEndpointQos

	Return type

	RTPSEndpointQos

	Returns

	RTPSEndpointQos reference

Overload 2:

Getter for RTPSEndpointQos
:rtype: RTPSEndpointQos
:return: RTPSEndpointQos reference

Overload 3:

Setter for RTPSEndpointQos

	Parameters

	endpoint (RTPSEndpointQos) – new value for the RTPSEndpointQos

	
get_writerqos(pqos, tqos)

	

	
history(*args)

	Overload 1:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

Overload 2:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

Overload 3:

Setter for HistoryQosPolicy

	Parameters

	history (HistoryQosPolicy) – new value for the HistoryQosPolicy

	
latency_budget(*args)

	Overload 1:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

Overload 2:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

Overload 3:

Setter for LatencyBudgetQosPolicy

	Parameters

	latency_budget (LatencyBudgetQosPolicy) – new value for the LatencyBudgetQosPolicy

	
lifespan(*args)

	Overload 1:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

Overload 2:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

Overload 3:

Setter for LifespanQosPolicy

	Parameters

	lifespan (LifespanQosPolicy) – new value for the LifespanQosPolicy

	
liveliness(*args)

	Overload 1:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

Overload 2:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

Overload 3:

Setter for LivelinessQosPolicy

	Parameters

	liveliness (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

	
ownership(*args)

	Overload 1:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

Overload 2:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

Overload 3:

Setter for OwnershipQosPolicy

	Parameters

	ownership (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

	
ownership_strength(*args)

	Overload 1:

Getter for OwnershipStrengthQosPolicy

	Return type

	OwnershipStrengthQosPolicy

	Returns

	OwnershipStrengthQosPolicy reference

Overload 2:

Getter for OwnershipStrengthQosPolicy

	Return type

	OwnershipStrengthQosPolicy

	Returns

	OwnershipStrengthQosPolicy reference

Overload 3:

Setter for OwnershipStrengthQosPolicy

	Parameters

	ownership_strength (OwnershipStrengthQosPolicy) – new value for the OwnershipStrengthQosPolicy

	
properties(*args)

	Overload 1:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

Overload 2:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

Overload 3:

Setter for PropertyPolicyQos

	Parameters

	properties (PropertyPolicyQos) – new value for the PropertyPolicyQos

	
publish_mode(*args)

	Overload 1:

Getter for PublishModeQosPolicy

	Return type

	PublishModeQosPolicy

	Returns

	PublishModeQosPolicy reference

Overload 2:

Getter for PublishModeQosPolicy

	Return type

	PublishModeQosPolicy

	Returns

	PublishModeQosPolicy reference

Overload 3:

Setter for PublishModeQosPolicy

	Parameters

	publish_mode (PublishModeQosPolicy) – new value for the PublishModeQosPolicy

	
reliability(*args)

	Overload 1:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

Overload 2:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

Overload 3:

Setter for ReliabilityQosPolicy

	Parameters

	reliability (ReliabilityQosPolicy) – new value for the ReliabilityQosPolicy

	
reliable_writer_qos(*args)

	Overload 1:

Getter for RTPSReliableWriterQos

	Return type

	RTPSReliableWriterQos

	Returns

	RTPSReliableWriterQos reference

Overload 2:

Getter for RTPSReliableWriterQos

	Return type

	RTPSReliableWriterQos

	Returns

	RTPSReliableWriterQos reference

Overload 3:

Setter for RTPSReliableWriterQos

	Parameters

	reliable_writer_qos (RTPSReliableWriterQos) – new value for the RTPSReliableWriterQos

	
resource_limits(*args)

	Overload 1:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

Overload 2:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

Overload 3:

Setter for ResourceLimitsQosPolicy

	Parameters

	resource_limits (ResourceLimitsQosPolicy) – new value for the ResourceLimitsQosPolicy

	
property thisown

	The membership flag

	
transport_priority(*args)

	Overload 1:

Getter for TransportPriorityQosPolicy

	Return type

	TransportPriorityQosPolicy

	Returns

	TransportPriorityQosPolicy reference

Overload 2:

Getter for TransportPriorityQosPolicy

	Return type

	TransportPriorityQosPolicy

	Returns

	TransportPriorityQosPolicy reference

Overload 3:

Setter for TransportPriorityQosPolicy

	Parameters

	transport_priority (TransportPriorityQosPolicy) – new value for the TransportPriorityQosPolicy

	
user_data(*args)

	Overload 1:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

Overload 2:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

Overload 3:

Setter for UserDataQosPolicy

	Parameters

	user_data (UserDataQosPolicy) – new value for the UserDataQosPolicy

	
writer_data_lifecycle(*args)

	Overload 1:

Getter for WriterDataLifecycleQosPolicy

	Return type

	WriterDataLifecycleQosPolicy

	Returns

	WriterDataLifecycleQosPolicy reference

Overload 2:

Getter for WriterDataLifecycleQosPolicy

	Return type

	WriterDataLifecycleQosPolicy

	Returns

	WriterDataLifecycleQosPolicy reference

Overload 3:

Setter for WriterDataLifecycleQosPolicy

	Parameters

	writer_data_lifecycle (WriterDataLifecycleQosPolicy) – new value for the WriterDataLifecycleQosPolicy

	
writer_resource_limits(*args)

	Overload 1:

Getter for WriterResourceLimitsQos

	Return type

	WriterResourceLimitsQos

	Returns

	WriterResourceLimitsQos reference

Overload 2:

Getter for WriterResourceLimitsQos

	Return type

	WriterResourceLimitsQos

	Returns

	WriterResourceLimitsQos reference

Overload 3:

Setter for WriterResourceLimitsQos

	Parameters

	writer_resource_limits (WriterResourceLimitsQos) – new value for the WriterResourceLimitsQos

	
class fastdds.DATAWRITER_QOS_DEFAULT(*args: Any, **kwargs: Any)

	

 18.1.3.4. Publisher

18.1.3.4. Publisher

	
class fastdds.Publisher(*args, **kwargs)

	Class Publisher, used to send data to associated subscribers.

	
begin_coherent_changes()

	Signals the beginning of a set of coherent cache changes using the Datawriters attached to the publisher

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
copy_from_topic_qos(writer_qos, topic_qos)

	Copies TopicQos into the corresponding DataWriterQos

writer_qos
topic_qos
:rtype: ReturnCode_t
:return: RETCODE_OK if successful, an error code otherwise
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
create_datawriter(*args)

	This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

	Parameters

	
	topic (Topic) – Topic the DataWriter will be listening

	qos – QoS of the DataWriter.

	listener (DataWriterListener) – Pointer to the listener (default: nullptr).

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all).

	Return type

	DataWriter

	Returns

	Pointer to the created DataWriter. nullptr if failed.

	
create_datawriter_with_profile(*args)

	This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

	Parameters

	
	topic (Topic) – Topic the DataWriter will be listening

	profile_name (string) – DataWriter profile name.

	listener (DataWriterListener) – Pointer to the listener (default: nullptr).

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all).

	Return type

	DataWriter

	Returns

	Pointer to the created DataWriter. nullptr if failed.

	
delete_contained_entities()

	Deletes all contained DataWriters

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

	
delete_datawriter(writer)

	This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to create the DataWriter.
If delete_datawriter is called on a different Publisher, the operation will have no effect and it will
return false.

The deletion of the DataWriter will automatically unregister all instances.
Depending on the settings of the WRITER_DATA_LIFECYCLE QosPolicy, the deletion of the DataWriter
may also dispose all instances.

	Parameters

	writer (DataWriter) – DataWriter to delete

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if it does not belong to this Publisher, RETCODE_OK if it is correctly deleted and
RETCODE_ERROR otherwise.

	
enable()

	This operation enables the Publisher

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the participant creating this
Publisher is not enabled.

	
end_coherent_changes()

	Signals the end of a set of coherent cache changes

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_datawriter_qos_from_profile(profile_name, qos)

	Fills the DataWriterQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – DataWriter profile name.

	qos (DataWriterQos) – DataWriterQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_datawriters(writers)

	Fills the given vector with all the datawriters of this publisher.

	Parameters

	writers (std::vector< eprosima::fastdds::dds::DataWriter *,std::allocator< eprosima::fastdds::dds::DataWriter * > >) – Vector where the DataWriters are returned

	Return type

	boolean

	Returns

	true

	
get_default_datawriter_qos(*args)

	Overload 1:

This operation returns the default value of the DataWriter QoS, that is, the QoS policies which will be used
for newly created DataWriter entities in the case where the QoS policies are defaulted in the
create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last
successful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

	Return type

	DataWriterQos

	Returns

	Current default WriterQos

Overload 2:

This operation retrieves the default value of the DataWriter QoS, that is, the QoS policies which will be used
for newly created DataWriter entities in the case where the QoS policies are defaulted in the
create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last
successful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

	Parameters

	qos (DataWriterQos) – Reference to the current default WriterQos.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_instance_handle()

	Returns the Publisher’s handle.

	Return type

	InstanceHandle_t

	Returns

	InstanceHandle of this Publisher.

	
get_listener()

	Retrieves the attached PublisherListener.

	Return type

	PublisherListener

	Returns

	PublisherListener pointer

	
get_participant()

	This operation returns the DomainParticipant to which the Publisher belongs.

	Return type

	DomainParticipant

	Returns

	Pointer to the DomainParticipant

	
get_qos(*args)

	Overload 1:

Allows accessing the Publisher Qos.

	Return type

	PublisherQos

	Returns

	PublisherQos reference

Overload 2:

Retrieves the Publisher Qos.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
has_datawriters()

	This operation checks if the publisher has DataWriters

	Return type

	boolean

	Returns

	true if the publisher has one or several DataWriters, false otherwise

	
lookup_datawriter(topic_name)

	This operation retrieves a previously created DataWriter belonging to the Publisher that is attached to a
Topic with a matching topic_name. If no such DataWriter exists, the operation will return nullptr.

If multiple DataWriter attached to the Publisher satisfy this condition, then the operation will return
one of them. It is not specified which one.

	Parameters

	topic_name (string) – Name of the Topic

	Return type

	DataWriter

	Returns

	Pointer to a previously created DataWriter associated to a Topic with the requested topic_name

	
resume_publications()

	Indicates to FastDDS that the modifications to the DataWriters are complete.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
set_default_datawriter_qos(qos)

	This operation sets a default value of the DataWriter QoS policies which will be used for newly created
DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation
will have no effect and return false.

The special value DATAWRITER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_datawriter_qos operation had never been called.

	Parameters

	qos (DataWriterQos) – DataWriterQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_listener(*args)

	Overload 1:

Modifies the PublisherListener, sets the mask to StatusMask::all()

	Parameters

	listener (PublisherListener) – new value for the PublisherListener

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

Modifies the PublisherListener.

	Parameters

	
	listener (PublisherListener) – new value for the PublisherListener

	mask (StatusMask) – StatusMask that holds statuses the listener responds to

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_qos(qos)

	Allows modifying the Publisher Qos.
The given Qos must be supported by the PublisherQos.

	Parameters

	qos (PublisherQos) – PublisherQos to be set

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not
self consistent and RETCODE_OK if the qos is changed correctly.

	
suspend_publications()

	Indicates to FastDDS that the contained DataWriters are about to be modified

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
property thisown

	The membership flag

	
wait_for_acknowledgments(max_wait)

	This operation blocks the calling thread until either all data written by the reliable DataWriter entities
is acknowledged by all matched reliable DataReader entities, or else the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of true indicates that all the samples written
have been acknowledged by all reliable matched data readers; a return value of false indicates that max_wait
elapsed before all the data was acknowledged.

	Parameters

	max_wait (Duration_t) – Maximum blocking time for this operation

	Return type

	ReturnCode_t

	Returns

	RETCODE_TIMEOUT if the function takes more than the maximum blocking time established, RETCODE_OK if the
Publisher receives the acknowledgments and RETCODE_ERROR otherwise.

 18.1.3.5. PublisherListener

18.1.3.5. PublisherListener

	
class fastdds.PublisherListener

	Class PublisherListener, allows the end user to implement callbacks triggered by certain events.
It inherits all the DataWriterListener callbacks.

	
property thisown

	The membership flag

 18.1.3.6. PublisherQos

18.1.3.6. PublisherQos

	
class fastdds.PublisherQos

	Class PublisherQos, containing all the possible Qos that can be set for a determined Publisher.
Although these values can be set and are transmitted
during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been
implemented in the library.
Please consult each of them to check for implementation details and default values.

	
entity_factory(*args)

	Overload 1:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 3:

Setter for EntityFactoryQosPolicy

	Parameters

	entity_factory (EntityFactoryQosPolicy) – EntityFactoryQosPolicy

	
group_data(*args)

	Overload 1:

Getter for GroupDataQosPolicy

	Return type

	GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

Overload 2:

Getter for GroupDataQosPolicy

	Return type

	GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

Overload 3:

Setter for GroupDataQosPolicy

	Parameters

	group_data (GroupDataQosPolicy) – GroupDataQosPolicy

	
partition(*args)

	Overload 1:

Getter for PartitionQosPolicy

	Return type

	PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

Overload 2:

Getter for PartitionQosPolicy

	Return type

	PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

Overload 3:

Setter for PartitionQosPolicy

	Parameters

	partition (PartitionQosPolicy) – PartitionQosPolicy

	
presentation(*args)

	Overload 1:

Getter for PresentationQosPolicy

	Return type

	PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

Overload 2:

Getter for PresentationQosPolicy

	Return type

	PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

Overload 3:

Setter for PresentationQosPolicy

	Parameters

	presentation (PresentationQosPolicy) – PresentationQosPolicy

	
property thisown

	The membership flag

	
class fastdds.PUBLISHER_QOS_DEFAULT(*args: Any, **kwargs: Any)

	

 18.1.3.7. RTPSReliableWriterQos

18.1.3.7. RTPSReliableWriterQos

	
class fastdds.RTPSReliableWriterQos

	Qos Policy to configure the DisablePositiveACKsQos and the writer timing attributes

	
property disable_heartbeat_piggyback

	Disable heartbeat piggyback mechanism.

	
property disable_positive_acks

	Disable positive acks QoS, implemented in the library.

	
property thisown

	The membership flag

	
property times

	Writer Timing Attributes

 18.1.4. Subscriber

18.1.4. Subscriber

	18.1.4.1. DataReader

	18.1.4.2. DataReaderListener

	18.1.4.3. DataReaderQos

	18.1.4.4. InstanceStateKind

	18.1.4.5. ReaderResourceLimitsQos

	18.1.4.6. RTPSReliableReaderQos

	18.1.4.7. SampleInfo

	18.1.4.8. SampleStateKind

	18.1.4.9. Subscriber

	18.1.4.10. SubscriberListener

	18.1.4.11. SubscriberQos

	18.1.4.12. TypeConsistencyQos

	18.1.4.13. ViewStateKind

 18.1.4.1. DataReader

18.1.4.1. DataReader

	
class fastdds.DataReader(*args, **kwargs)

	Class DataReader, contains the actual implementation of the behaviour of the Subscriber.

	
create_querycondition(sample_states, view_states, instance_states, query_expression, query_parameters)

	This operation creates a QueryCondition. The returned QueryCondition will be attached and belong to the
DataReader.

	Parameters

	
	[in] – sample_states Only data samples with sample_state matching one of these will trigger the created condition.

	[in] – view_states Only data samples with view_state matching one of these will trigger the created condition.

	[in] – instance_states Only data samples with instance_state matching one of these will trigger the created condition.

	[in] – query_expression Only data samples matching this query will trigger the created condition.

	[in] – query_parameters Value of the parameters on the query expression.

	Return type

	eprosima::fastdds::dds::QueryCondition

	Returns

	pointer to the created QueryCondition, nullptr in case of error.

	
create_readcondition(sample_states, view_states, instance_states)

	This operation creates a ReadCondition. The returned ReadCondition will be attached and belong to the
DataReader.

	Parameters

	
	[in] – sample_states Only data samples with sample_state matching one of these will trigger the created condition.

	[in] – view_states Only data samples with view_state matching one of these will trigger the created condition.

	[in] – instance_states Only data samples with instance_state matching one of these will trigger the created condition.

	Return type

	ReadCondition

	Returns

	pointer to the created ReadCondition, nullptr in case of error.

	
delete_contained_entities()

	This operation deletes all the entities that were created by means of the “create” operations on the DataReader.
That is, it deletes all contained ReadCondition and QueryCondition objects.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state where it cannot
be deleted.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
delete_readcondition(a_condition)

	This operation deletes a ReadCondition attached to the DataReader.

	Parameters

	a_condition (ReadCondition) – pointer to a ReadCondition belonging to the DataReader

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
enable()

	This operation enables the DataReader.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the Subscriber creating this
DataReader is not enabled.

	
get_first_untaken_info(info)

	Returns information about the first untaken sample.

	Parameters

	[out] – info Pointer to a SampleInfo_t structure to store first untaken sample information.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if sample info was returned. RETCODE_NO_DATA if there is no sample to take.

	
get_instance_handle()

	Getter for the associated InstanceHandle.

	Return type

	InstanceHandle_t

	Returns

	Copy of the InstanceHandle

	
get_key_value(key_holder, handle)

	NOT YET IMPLEMENTED

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The operation
will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to an existing
data-object known to the DataReader. If the implementation is not able to check invalid handles then the result
in this situation is unspecified.

,out] key_holder
handle

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_listener()

	Getter for the DataReaderListener

	Return type

	DataReaderListener

	Returns

	Pointer to the DataReaderListener

	
get_listening_locators(locators)

	Get the list of locators on which this DataReader is listening.

	Parameters

	[out] – locators LocatorList where the list of locators will be stored.

	Return type

	ReturnCode_t

	Returns

	NOT_ENABLED if the reader has not been enabled.

	Return type

	ReturnCode_t

	Returns

	OK if a list of locators is returned.

	
get_liveliness_changed_status(status)

	Get the liveliness changed status.

	Parameters

	[out] – status LivelinessChangedStatus object where the status is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_matched_publication_data(publication_data, publication_handle)

	Retrieves in a publication associated with the DataWriter

publication_data publication data struct
:type publication_handle: InstanceHandle_t
:param publication_handle: InstanceHandle_t of the publication
:rtype: ReturnCode_t
:return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_matched_publications(publication_handles)

	Fills the given vector with the InstanceHandle_t of matched DataReaders

publication_handles Vector where the InstanceHandle_t are returned
:rtype: ReturnCode_t
:return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_qos(*args)

	Overload 1:

Getter for the DataReaderQos.

	Return type

	DataReaderQos

	Returns

	Pointer to the DataReaderQos.

Overload 2:

Getter for the DataReaderQos.

	Parameters

	[in] – qos DataReaderQos where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_requested_deadline_missed_status(status)

	Get the requested deadline missed status.

	Return type

	ReturnCode_t

	Returns

	The deadline missed status.

	
get_requested_incompatible_qos_status(status)

	Get the requested incompatible qos status.

	Parameters

	[out] – status Requested incompatible qos status.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_sample_lost_status(status)

	Get the SAMPLE_LOST communication status

status SampleLostStatus object where the status is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_sample_rejected_status(status)

	Get the SAMPLE_REJECTED communication status

status SampleRejectedStatus object where the status is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_subscriber()

	Getter for the Subscriber
:rtype: Subscriber
:return: Subscriber pointer

	
get_subscription_matched_status(status)

	Returns the subscription matched status

status subscription matched status struct
:rtype: ReturnCode_t
:return: RETCODE_OK

	
get_topicdescription()

	Get TopicDescription.

	Return type

	TopicDescription

	Returns

	TopicDescription pointer.

	
get_unread_count(*args)

	Overload 1:

Get the number of samples pending to be read.
The number includes samples that may not yet be available to be read or taken by the user, due to samples
being received out of order.

	Return type

	int

	Returns

	the number of samples on the reader history that have never been read.

Overload 2:

Get the number of samples pending to be read.

	Parameters

	mark_as_read (boolean) – Whether the unread samples should be marked as read or not.

	Return type

	int

	Returns

	the number of samples on the reader history that have never been read.

	
guid(*args)

	Overload 1:

Get associated GUID.

	Return type

	GUID_t

	Returns

	Associated GUID

Overload 2:

Get associated GUID.

	Return type

	GUID_t

	Returns

	Associated GUID

	
is_sample_valid(data, info)

	Checks whether a loaned sample is still valid or is corrupted.
Calling this method on a sample which has not been loaned, or one for which the loan has been returned
yields undefined behavior.

	Parameters

	
	data (void) – Pointer to the sample data to check

	info (SampleInfo) – Pointer to the SampleInfo related to data

	Return type

	boolean

	Returns

	true if the sample is valid

	
lookup_instance(instance)

	Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept an
instance handle as an argument. The instance parameter is only used for the purpose of examining the fields that
define the key.

	Parameters

	[in] – instance Data pointer to the sample

	Return type

	InstanceHandle_t

	Returns

	handle of the given instance.

	Return type

	InstanceHandle_t

	Returns

	HANDLE_NIL if instance is nullptr.

	Return type

	InstanceHandle_t

	Returns

	HANDLE_NIL if there is no instance on the DataReader’s history with the same key as instance.

	
read(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of Data values from the DataReader. The caller can limit the size
of the returned collection with the max_samples parameter.

The properties of the data_values collection and the setting of the ‘PresentationQosPolicy’ may
impose further limits on the size of the returned ‘list.’

	If ‘PresentationQosPolicy::access_scope’ is ‘INSTANCE_PRESENTATION_QOS’, then the returned
collection is a ‘list’ where samples belonging to the same data-instance are consecutive.

	If ‘PresentationQosPolicy::access_scope’ is ‘TOPIC_PRESENTATION_QOS’ and
‘PresentationQosPolicy::ordered_access’ is set to false, then the returned collection is a
‘list’ where samples belonging to the same data-instance are consecutive.

	If ‘PresentationQosPolicy::access_scope’ is ‘TOPIC_PRESENTATION_QOS’ and
‘PresentationQosPolicy::ordered_access’ is set to true, then the returned collection is a
‘list’ where samples belonging to the same instance may or may not be consecutive. This is because to
preserve order it may be necessary to mix samples from different instances.

	If ‘PresentationQosPolicy::access_scope’ is ‘GROUP_PRESENTATION_QOS’ and
‘PresentationQosPolicy::ordered_access’ is set to false, then the returned collection is a
‘list’ where samples belonging to the same data instance are consecutive.

	If ‘PresentationQosPolicy::access_scope’ is ‘GROUP_PRESENTATION_QOS’ and
‘PresentationQosPolicy::ordered_access’ is set to true, then the returned collection contains at
most one sample. The difference in this case is due to the fact that it is required that the application
is able to read samples belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the
‘DestinationOrderQosPolicy’:

	If ‘DestinationOrderQosPolicy::kind’ is ‘BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS’, samples
belonging to the same instances will appear in the relative order in which there were received (FIFO,
earlier samples ahead of the later samples).

	If ‘DestinationOrderQosPolicy::kind’ is ‘BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS’, samples
belonging to the same instances will appear in the relative order implied by the source_timestamp (FIFO,
smaller values of source_timestamp ahead of the larger values).

The actual number of samples returned depends on the information that has been received by the middleware
as well as the ‘HistoryQosPolicy’, ‘ResourceLimitsQosPolicy’, and
‘ReaderResourceLimitsQos’:

	In the case where the ‘HistoryQosPolicy::kind’ is KEEP_LAST_HISTORY_QOS, the call will return at most
‘HistoryQosPolicy::depth’ samples per instance.

	The maximum number of samples returned is limited by ‘ResourceLimitsQosPolicy::max_samples’, and by
‘ReaderResourceLimitsQos::max_samples_per_read’.

	For multiple instances, the number of samples returned is additionally limited by the product
(‘ResourceLimitsQosPolicy::max_samples_per_instance’ * ‘ResourceLimitsQosPolicy::max_instances)’.

	If ReaderResourceLimitsQos::sample_infos_allocation has a maximum limit, the number of samples returned
may also be limited if insufficient ‘SampleInfo’ resources are available.

If the operation succeeds and the number of samples returned has been limited (by means of a maximum limit,
as listed above, or insufficient ‘SampleInfo’ resources), the call will complete successfully and provide
those samples the reader is able to return. The user may need to make additional calls, or return outstanding
loaned buffers in the case of insufficient resources, in order to access remaining samples.

In addition to the collection of samples, the read operation also uses a collection of ‘SampleInfo’
structures (sample_infos).

The initial (input) properties of the data_values and sample_infos collections will determine the
precise behavior of this operation. For the purposes of this description the collections are modeled as having
three properties:

	the current length (len, see ‘LoanableCollection::length())’

	the maximum length (max_len, see ‘LoanableCollection::maximum())’

	whether the collection container owns the memory of the elements within
(owns, see ‘LoanableCollection::has_ownership())’

The initial (input) values of the len, max_len, and owns properties for the data_values and
sample_infos collections govern the behavior of the read operation as specified by the following rules:

	The values of len, max_len, and owns for the two collections must be identical. Otherwise read
will fail with RETCODE_PRECONDITION_NOT_MET.

	On successful output, the values of len, max_len, and owns will be the same for both collections.

	If the input max_len == 0 , then the data_values and sample_infos collections will be
filled with elements that are ‘loaned’ by the DataReader. On output, owns will be false, len will
be set to the number of values returned, and max_len will be set to a value
verifying max_len >= len . The use of this variant allows for zero-copy access to the data and the
application will need to return the loan to the DataReader using the ‘return_loan’ operation.

	If the input max_len > 0 and the input owns == false , then the read operation will
fail with RETCODE_PRECONDITION_NOT_MET. This avoids the potential hard-to-detect memory leaks caused by an
application forgetting to return the loan.

	If input max_len > 0 and the input owns == true , then the read operation will copy
the Data values and SampleInfo values into the elements already inside the collections. On output, owns
will be true, len will be set to the number of values copied, and max_len will remain unchanged.
The use of this variant forces a copy but the application can control where the copy is placed and the
application will not need to return the loan. The number of samples copied depends on the values of
max_len and max_samples:

	If max_samples == LENGTH_UNLIMITED , then at most max_len values will be copied. The use of
this variant lets the application limit the number of samples returned to what the sequence can
accommodate.

	If max_samples <= max_len , then at most max_samples values will be copied. The use of this
variant lets the application limit the number of samples returned to fewer that what the sequence can
accommodate.

	If max_samples > max_len , then the read operation will fail with RETCODE_PRECONDITION_NOT_MET.
This avoids the potential confusion where the application expects to be able to access up to
max_samples, but that number can never be returned, even if they are available in the DataReader,
because the output sequence cannot accommodate them.

As described above, upon return the data_values and sample_infos collections may contain elements
‘loaned’ from the DataReader. If this is the case, the application will need to use the ‘return_loan’
operation to return the loan once it is no longer using the Data in the collection. Upon return from
‘return_loan’, the collection will have max_len == 0 and owns == false .

The application can determine whether it is necessary to return the loan or not based on the state of the
collections when the read operation was called, or by accessing the owns property. However, in many cases
it may be simpler to always call ‘return_loan’, as this operation is harmless (i.e., leaves all elements
unchanged) if the collection does not have a loan.

On output, the collection of Data values and the collection of SampleInfo structures are of the same length
and are in a one-to-one correspondence. Each SampleInfo provides information, such as the source_timestamp,
the sample_state, view_state, and instance_state, etc., about the corresponding sample.

Some elements in the returned collection may not have valid data. If the instance_state in the SampleInfo is
‘NOT_ALIVE_DISPOSED_INSTANCE_STATE’ or ‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE’, then the last sample for
that instance in the collection, that is, the one whose SampleInfo has sample_rank == 0 does not
contain valid data. Samples that contain no data do not count towards the limits imposed by the
‘ResourceLimitsQosPolicy’.

The act of reading a sample changes its sample_state to ‘READ_SAMPLE_STATE’. If the sample belongs
to the most recent generation of the instance, it will also set the view_state of the instance to be
‘NOT_NEW_VIEW_STATE’. It will not affect the instance_state of the instance.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

Important: If the samples “returned” by this method are loaned from the middleware (see ‘take’
for more information on memory loaning), it is important that their contents not be changed. Because the
memory in which the data is stored belongs to the middleware, any modifications made to the data will be
seen the next time the same samples are read or taken; the samples will no longer reflect the state that
was received from the network.

	Parameters

	
	[in,out] – data_values A LoanableCollection object where the received data samples will be returned.

	[in,out] – sample_infos A SampleInfoSeq object where the received sample info will be returned.

	[in] – max_samples The maximum number of samples to be returned. If the special value
‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described above.

	[in] – sample_states Only data samples with sample_state matching one of these will be returned.

	[in] – view_states Only data samples with view_state matching one of these will be returned.

	[in] – instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
read_instance(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader. The behavior is identical to
‘read’, except that all samples returned belong to the single specified instance whose handle is
a_handle.

Upon successful completion, the data collection will contain samples all belonging to the same instance.
The corresponding ‘SampleInfo’ verifies ‘SampleInfo::instance_handle’ == a_handle.

This operation is semantically equivalent to the ‘read’ operation, except in building the collection.
The DataReader will check that the sample belongs to the specified instance and otherwise it will not place
the sample in the returned collection.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions and
post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	[in,out] – data_values A LoanableCollection object where the received data samples will be returned.

	[in,out] – sample_infos A SampleInfoSeq object where the received sample info will be returned.

	[in] – max_samples The maximum number of samples to be returned. If the special value
‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	[in] – a_handle The specified instance to return samples for. The method will fail with
RETCODE_BAD_PARAMETER if the handle does not correspond to an existing
data-object known to the DataReader.

	[in] – sample_states Only data samples with sample_state matching one of these will be returned.

	[in] – view_states Only data samples with view_state matching one of these will be returned.

	[in] – instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
read_next_instance(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader where all the samples belong to a
single instance. The behavior is similar to ‘read_instance’, except that the actual instance is not
directly specified. Rather, the samples will all belong to the ‘next’ instance with instance_handle
‘greater’ than the specified ‘previous_handle’ that has available samples.

This operation implies the existence of a total order ‘greater-than’ relationship between the instance
handles. The specifics of this relationship are not all important and are implementation specific. The
important thing is that, according to the middleware, all instances are ordered relative to each other.
This ordering is between the instance handles, and should not depend on the state of the instance (e.g.
whether it has data or not) and must be defined even for instance handles that do not correspond to instances
currently managed by the DataReader. For the purposes of the ordering, it should be ‘as if’ each instance
handle was represented as an integer.

The behavior of this operation is ‘as if’ the DataReader invoked ‘read_instance’, passing the smallest
instance_handle among all the ones that: (a) are greater than previous_handle, and (b) have available
samples (i.e. samples that meet the constraints imposed by the specified states).

The special value ‘HANDLE_NIL’ is guaranteed to be ‘less than’ any valid instance_handle. So the use
of the parameter value previous_handle == ‘HANDLE_NIL’ will return the samples for the instance which
has the smallest instance_handle among all the instances that contain available samples.

This operation is intended to be used in an application-driven iteration, where the application starts by
passing previous_handle == ‘HANDLE_NIL’, examines the samples returned, and then uses the
instance_handle returned in the ‘SampleInfo’ as the value of the previous_handle argument to the
next call to ‘read_next_instance’. The iteration continues until ‘read_next_instance’ fails with
RETCODE_NO_DATA.

Note that it is possible to call the ‘read_next_instance’ operation with a previous_handle that does not
correspond to an instance currently managed by the DataReader. This is because as stated earlier the
‘greater-than’ relationship is defined even for handles not managed by the DataReader. One practical situation
where this may occur is when an application is iterating through all the instances, takes all the samples of a
‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE’ instance, returns the loan (at which point the instance information
may be removed, and thus the handle becomes invalid), and tries to read the next instance.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions and
post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	[in,out] – data_values A LoanableCollection object where the received data samples will be returned.

	[in,out] – sample_infos A SampleInfoSeq object where the received sample info will be returned.

	[in] – max_samples The maximum number of samples to be returned. If the special value
‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	[in] – previous_handle The ‘next smallest’ instance with a value greater than this value that has
available samples will be returned.

	[in] – sample_states Only data samples with sample_state matching one of these will be returned.

	[in] – view_states Only data samples with view_state matching one of these will be returned.

	[in] – instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
read_next_instance_w_condition(data_values, sample_infos, max_samples, previous_handle, a_condition)

	This operation accesses a collection of Data values from the DataReader. The behavior is identical to
‘read_next_instance’ except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with
‘smallest’ instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have samples
for which the specified ReadCondition evaluates to TRUE.

Similar to the operation ‘read_next_instance’ it is possible to call
‘read_next_instance_w_condition’ with a previous_handle that does not correspond to an instance currently
managed by the DataReader.

The behavior of the ‘read_next_instance_w_condition’ operation follows the same rules than the read operation
regarding the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar
to read, the ‘read_next_instance_w_condition’ operation may ‘loan’ elements to the output collections which
must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	previous_handle The ‘next smallest’ instance with a value greater than this value that has
	available samples will be returned.

a_condition A ReadCondition that returned data_values must pass

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
read_next_sample(data, info)

	This operation copies the next, non-previously accessed Data value from the DataReader; the operation
also copies the corresponding SampleInfo. The implied order among the samples stored in the DataReader is the
same as for the read operation.

The read_next_sample operation is semantically equivalent to the read operation where the input Data sequence
has max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE ,
the view_states = ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding the need for the
application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing is copied

	Parameters

	
	[out] – data Data pointer to store the sample

	[out] – info SampleInfo pointer to store the sample information

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
read_w_condition(data_values, sample_infos, max_samples, a_condition)

	This operation accesses via ‘read’ the samples that match the criteria specified in the ReadCondition.
This operation is especially useful in combination with QueryCondition to filter data samples based on the
content.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return
RETCODE_PRECONDITION_NOT_MET.

In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized QueryCondition, the
operation is equivalent to calling read and passing as sample_states, view_states and instance_states
the value of the corresponding attributes in a_condition. Using this operation the application can avoid
repeating the same parameters specified when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation. If the DataReader has no samples that
meet the constraints, the return value will be RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned.
a_condition A ReadCondition that returned data_values must pass

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
return_loan(data_values, sample_infos)

	This operation indicates to the DataReader that the application is done accessing the collection of
data_values and sample_infos obtained by some earlier invocation of ‘read’ or ‘take’ on the
DataReader.

The data_values and sample_infos must belong to a single related ‘pair’; that is, they should correspond
to a pair returned from a single call to read or take. The data_values and sample_infos must also have
been obtained from the same DataReader to which they are returned. If either of these conditions is not met,
the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

This operation allows implementations of the ‘read’ and ‘take’ operations to “loan” buffers from the
DataReader to the application and in this manner provide “zero-copy” access to the data. During the loan, the
DataReader will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or take calls. However,
as these buffers correspond to internal resources inside the DataReader, the application should not retain them
indefinitely.

The use of the ‘return_loan’ operation is only necessary if the read or take calls “loaned” buffers to the
application. This only occurs if the data_values and sample_infos collections had max_len == 0
at the time read or take was called. The application may also examine the owns property of the collection to
determine if there is an outstanding loan. However, calling ‘return_loan’ on a collection that does not have
a loan is safe and has no side effects.

If the collections had a loan, upon return from return_loan the collections will have max_len == 0 .

	Parameters

	
	[in,out] – data_values A LoanableCollection object where the received data samples were obtained from
an earlier invocation of read or take on this DataReader.

	[in,out] – sample_infos A SampleInfoSeq object where the received sample infos were obtained from
an earlier invocation of read or take on this DataReader.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
set_listener(*args)

	

	
set_qos(qos)

	Setter for the DataReaderQos.

	Parameters

	[in] – qos new value for the DataReaderQos.

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is
not self consistent and RETCODE_OK if the qos is changed correctly.

	
take(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data-samples from the DataReader and a corresponding collection of
SampleInfo structures, and ‘removes’ them from the DataReader. The operation will return either a ‘list’ of
samples or else a single sample. This is controlled by the ‘PresentationQosPolicy’ using the same logic
as for the ‘read’ operation.

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or ‘taken’ again. If the
sample belongs to the most recent generation of the instance, it will also set the view_state of the
instance to NOT_NEW. It will not affect the instance_state of the instance.

The behavior of the take operation follows the same rules than the ‘read’ operation regarding the
pre-conditions and post-conditions for the data_values and sample_infos collections. Similar to
‘read’, the take operation may ‘loan’ elements to the output collections which must then be returned by
means of ‘return_loan’. The only difference with ‘read’ is that, as stated, the samples returned by
take will no longer be accessible to successive calls to read or take.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

	Parameters

	
	[in,out] – data_values A LoanableCollection object where the received data samples will be returned.

	[in,out] – sample_infos A SampleInfoSeq object where the received sample info will be returned.

	[in] – max_samples The maximum number of samples to be returned. If the special value
‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	[in] – sample_states Only data samples with sample_state matching one of these will be returned.

	[in] – view_states Only data samples with view_state matching one of these will be returned.

	[in] – instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
take_instance(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the DataReader.

This operation has the same behavior as ‘read_instance’, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions and
post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	a_handle The specified instance to return samples for. The method will fail with
	RETCODE_BAD_PARAMETER if the handle does not correspond to an existing
data-object known to the DataReader.

sample_states Only data samples with sample_state matching one of these will be returned.
view_states Only data samples with view_state matching one of these will be returned.
instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
take_next_instance(*args)

	Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the DataReader.

This operation has the same behavior as ‘read_next_instance’, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation ‘read_next_instance’, it is possible to call this operation with a
previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions and
post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	previous_handle The ‘next smallest’ instance with a value greater than this value that has
	available samples will be returned.

sample_states Only data samples with sample_state matching one of these will be returned.
view_states Only data samples with view_state matching one of these will be returned.
instance_states Only data samples with instance_state matching one of these will be returned.

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
take_next_instance_w_condition(data_values, sample_infos, max_samples, previous_handle, a_condition)

	This operation accesses a collection of Data values from the DataReader. The behavior is identical to
‘read_next_instance’ except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’
instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have
samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation ‘read_next_instance’ it is possible to call ‘read_next_instance_w_condition’ with
a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the ‘read_next_instance_w_condition’ operation follows the same rules than the read operation
regarding the pre-conditions and post-conditions for the data_values and sample_infos collections. Similar
to read, the ‘read_next_instance_w_condition’ operation may ‘loan’ elements to the output collections which
must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

	previous_handle The ‘next smallest’ instance with a value greater than this value that has
	available samples will be returned.

a_condition A ReadCondition that returned data_values must pass

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
take_next_sample(data, info)

	This operation copies the next, non-previously accessed Data value from the DataReader and ‘removes’ it
from the DataReader so it is no longer accessible. The operation also copies the corresponding SampleInfo.

This operation is analogous to ‘read_next_sample’ except for the fact that the sample is ‘removed’ from the
DataReader.

	This operation is semantically equivalent to the ‘take’ operation where the input sequence has
	max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the
view_states = ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

This operation provides a simplified API to ’take’ samples avoiding the need for the application to manage
sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing is copied.

	Parameters

	
	[out] – data Data pointer to store the sample

	[out] – info SampleInfo pointer to store the sample information

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
take_w_condition(data_values, sample_infos, max_samples, a_condition)

	This operation is analogous to ‘read_w_condition’ except it accesses samples via the ‘take’ operation.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and return
RETCODE_PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the ‘take’ operation.

This operation is especially useful in combination with QueryCondition to filter data samples based on the
content.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned.
,out] sample_infos A SampleInfoSeq object where the received sample info will be returned.
max_samples The maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are.

a_condition A ReadCondition that returned data_values must pass

	Return type

	ReturnCode_t

	Returns

	Any of the standard return codes.

	
property thisown

	The membership flag

	
type()

	Getter for the data type.

	Return type

	TypeSupport

	Returns

	TypeSupport associated to the DataReader.

	
wait_for_historical_data(max_wait)

	NOT YET IMPLEMENTED

Method to block the current thread until an unread message is available.

max_wait Max blocking time for this operation.
:rtype: ReturnCode_t
:return: RETCODE_OK if there is new unread message, ReturnCode_t::RETCODE_TIMEOUT if timeout
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
wait_for_unread_message(timeout)

	Method to block the current thread until an unread message is available.

	Parameters

	[in] – timeout Max blocking time for this operation.

	Return type

	boolean

	Returns

	true if there is new unread message, false if timeout

 18.1.4.2. DataReaderListener

18.1.4.2. DataReaderListener

	
class fastdds.DataReaderListener

	Class DataReaderListener, it should be used by the end user to implement specific callbacks to certain actions.

	
on_data_available(reader)

	Virtual function to be implemented by the user containing the actions to be performed when new Data Messages are received.

	Parameters

	reader (DataReader) – DataReader

	
on_liveliness_changed(reader, status)

	Method called when the liveliness status associated to a subscriber changes

	Parameters

	
	reader (DataReader) – The DataReader

	status (eprosima::fastrtps::LivelinessChangedStatus) – The liveliness changed status

	
on_requested_deadline_missed(reader, status)

	Virtual method to be called when a topic misses the deadline period

	Parameters

	
	reader (DataReader) – DataReader

	status (eprosima::fastrtps::RequestedDeadlineMissedStatus) – The requested deadline missed status

	
on_requested_incompatible_qos(reader, status)

	Method called an incompatible QoS was requested.

	Parameters

	
	reader (DataReader) – The DataReader

	status (RequestedIncompatibleQosStatus) – The requested incompatible QoS status

	
on_sample_lost(reader, status)

	Method called when a sample was lost.

	Parameters

	
	reader (DataReader) – The DataReader

	status (SampleLostStatus) – The sample lost status

	
on_sample_rejected(reader, status)

	Method called when a sample was rejected.

	Parameters

	
	reader (DataReader) – The DataReader

	status (eprosima::fastrtps::SampleRejectedStatus) – The rejected status

	
on_subscription_matched(reader, info)

	Virtual method to be called when the subscriber is matched with a new Writer (or unmatched); i.e., when a writer publishing in the same topic is discovered.

	Parameters

	
	reader (DataReader) – DataReader

	info (SubscriptionMatchedStatus) – The subscription matched status

	
property thisown

	The membership flag

 18.1.4.3. DataReaderQos

18.1.4.3. DataReaderQos

	
class fastdds.DataReaderQos

	Class DataReaderQos, containing all the possible Qos that can be set for a determined DataReader.
Although these values can be set and are transmitted
during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library.
Please consult each of them to check for implementation details and default values.

	
data_sharing(*args)

	Overload 1:

Getter for DataSharingQosPolicy

	Return type

	DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

Overload 2:

Getter for DataSharingQosPolicy

	Return type

	DataSharingQosPolicy

	Returns

	DataSharingQosPolicy reference

Overload 3:

Setter for DataSharingQosPolicy

	Parameters

	data_sharing (DataSharingQosPolicy) – new value for the DataSharingQosPolicy

	
deadline(*args)

	Overload 1:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQosPolicy reference

Overload 2:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQosPolicy const reference

Overload 3:

Setter for DeadlineQosPolicy

	Parameters

	new_value (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

	
destination_order(*args)

	Overload 1:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy reference

Overload 2:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQosPolicy const reference

Overload 3:

Setter for DestinationOrderQosPolicy

	Parameters

	new_value (DestinationOrderQosPolicy) – new value for the DestinationOrderQosPolicy

	
durability(*args)

	Overload 1:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQosPolicy reference

Overload 2:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQosPolicy const reference

Overload 3:

Setter for DurabilityQosPolicy

	Parameters

	new_value (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

	
durability_service(*args)

	Overload 1:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy reference

Overload 2:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQosPolicy const reference

Overload 3:

Setter for DurabilityServiceQosPolicy

	Parameters

	new_value (DurabilityServiceQosPolicy) – new value for the DurabilityServiceQosPolicy

	
endpoint(*args)

	Overload 1:

Getter for RTPSEndpointQos

	Return type

	RTPSEndpointQos

	Returns

	RTPSEndpointQos reference

Overload 2:

Getter for RTPSEndpointQos

	Return type

	RTPSEndpointQos

	Returns

	RTPSEndpointQos const reference

Overload 3:

Setter for RTPSEndpointQos

	Parameters

	new_value (RTPSEndpointQos) – new value for the RTPSEndpointQos

	
expects_inline_qos(*args)

	Overload 1:

Getter for expectsInlineQos

	Return type

	boolean

	Returns

	expectsInlineQos

Overload 2:

Setter for expectsInlineQos

	Parameters

	new_value (boolean) – new value for the expectsInlineQos

	
get_readerqos(sqos)

	

	
history(*args)

	Overload 1:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQosPolicy reference

Overload 2:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQosPolicy const reference

Overload 3:

Setter for HistoryQosPolicy

	Parameters

	new_value (HistoryQosPolicy) – new value for the HistoryQosPolicy

	
latency_budget(*args)

	Overload 1:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy reference

Overload 2:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQosPolicy const reference

Overload 3:

Setter for LatencyBudgetQosPolicy

	Parameters

	new_value (LatencyBudgetQosPolicy) – new value for the LatencyBudgetQosPolicy

	
lifespan(*args)

	Overload 1:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQosPolicy reference

Overload 2:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQosPolicy const reference

Overload 3:

Setter for LifespanQosPolicy

	Parameters

	new_value (LifespanQosPolicy) – new value for the LifespanQosPolicy

	
liveliness(*args)

	Overload 1:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQosPolicy reference

Overload 2:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQosPolicy const reference

Overload 3:

Setter for LivelinessQosPolicy

	Parameters

	new_value (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

	
ownership(*args)

	Overload 1:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQosPolicy reference

Overload 2:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQosPolicy const reference

Overload 3:

Setter for OwnershipQosPolicy

	Parameters

	new_value (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

	
properties(*args)

	Overload 1:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos reference

Overload 2:

Getter for PropertyPolicyQos

	Return type

	PropertyPolicyQos

	Returns

	PropertyPolicyQos const reference

Overload 3:

Setter for PropertyPolicyQos

	Parameters

	new_value (PropertyPolicyQos) – new value for the PropertyPolicyQos

	
reader_data_lifecycle(*args)

	Overload 1:

Getter for ReaderDataLifecycleQosPolicy

	Return type

	ReaderDataLifecycleQosPolicy

	Returns

	ReaderDataLifecycleQosPolicy reference

Overload 2:

Getter for ReaderDataLifecycleQosPolicy

	Return type

	ReaderDataLifecycleQosPolicy

	Returns

	ReaderDataLifecycleQosPolicy const reference

Overload 3:

Setter for ReaderDataLifecycleQosPolicy

	Parameters

	new_value (ReaderDataLifecycleQosPolicy) – new value for the ReaderDataLifecycleQosPolicy

	
reader_resource_limits(*args)

	Overload 1:

Getter for ReaderResourceLimitsQos

	Return type

	ReaderResourceLimitsQos

	Returns

	ReaderResourceLimitsQos reference

Overload 2:

Getter for ReaderResourceLimitsQos

	Return type

	ReaderResourceLimitsQos

	Returns

	ReaderResourceLimitsQos const reference

Overload 3:

Setter for ReaderResourceLimitsQos

	Parameters

	new_value (ReaderResourceLimitsQos) – new value for the ReaderResourceLimitsQos

	
reliability(*args)

	Overload 1:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy reference

Overload 2:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQosPolicy const reference

Overload 3:

Setter for ReliabilityQosPolicy

	Parameters

	new_value (ReliabilityQosPolicy) – new value for the ReliabilityQosPolicy

	
reliable_reader_qos(*args)

	Overload 1:

Getter for RTPSReliableReaderQos

	Return type

	RTPSReliableReaderQos

	Returns

	RTPSReliableReaderQos reference

Overload 2:

Getter for RTPSReliableReaderQos

	Return type

	RTPSReliableReaderQos

	Returns

	RTPSReliableReaderQos const reference

Overload 3:

Setter for RTPSReliableReaderQos

	Parameters

	new_value (RTPSReliableReaderQos) – new value for the RTPSReliableReaderQos

	
resource_limits(*args)

	Overload 1:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy reference

Overload 2:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQosPolicy const reference

Overload 3:

Setter for ResourceLimitsQosPolicy

	Parameters

	new_value (ResourceLimitsQosPolicy) – new value for the ResourceLimitsQosPolicy

	
property thisown

	The membership flag

	
time_based_filter(*args)

	Overload 1:

Getter for TimeBasedFilterQosPolicy

	Return type

	TimeBasedFilterQosPolicy

	Returns

	TimeBasedFilterQosPolicy reference

Overload 2:

Getter for TimeBasedFilterQosPolicy

	Return type

	TimeBasedFilterQosPolicy

	Returns

	TimeBasedFilterQosPolicy const reference

Overload 3:

Setter for TimeBasedFilterQosPolicy

	Parameters

	new_value (TimeBasedFilterQosPolicy) – new value for the TimeBasedFilterQosPolicy

	
type_consistency(*args)

	Overload 1:

Getter for TypeConsistencyQos

	Return type

	TypeConsistencyQos

	Returns

	TypeConsistencyQos reference

Overload 2:

Getter for TypeConsistencyQos

	Return type

	TypeConsistencyQos

	Returns

	TypeConsistencyQos const reference

Overload 3:

Setter for TypeConsistencyQos

	Parameters

	new_value (TypeConsistencyQos) – new value for the TypeConsistencyQos

	
user_data(*args)

	Overload 1:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy reference

Overload 2:

Getter for UserDataQosPolicy

	Return type

	UserDataQosPolicy

	Returns

	UserDataQosPolicy const reference

Overload 3:

Setter for UserDataQosPolicy

	Parameters

	new_value (UserDataQosPolicy) – new value for the UserDataQosPolicy

	
class fastdds.DATAREADER_QOS_DEFAULT(*args: Any, **kwargs: Any)

	

 18.1.4.4. InstanceStateKind

18.1.4.4. InstanceStateKind

	
class fastdds.ALIVE_INSTANCE_STATE(*args: Any, **kwargs: Any)

	

	
class fastdds.NOT_ALIVE_DISPOSED_INSTANCE_STATE(*args: Any, **kwargs: Any)

	

	
class fastdds.NOT_ALIVE_NO_WRITERS_INSTANCE_STATE(*args: Any, **kwargs: Any)

	

 18.1.4.5. ReaderResourceLimitsQos

18.1.4.5. ReaderResourceLimitsQos

	
class fastdds.ReaderResourceLimitsQos

	Qos Policy to configure the limit of the reader resources

	
clear()

	

	
property matched_publisher_allocation

	Matched publishers allocation limits.

	
property max_samples_per_read

	Maximum number of samples to return on a single call to read / take.

This attribute is a signed integer to be consistent with the max_samples argument of
‘DataReader’ methods, but should always have a strict positive value. Bear in mind that
a big number here may cause the creation of the DataReader to fail due to pre-allocation of
internal resources.

Default value: 32.

	
property outstanding_reads_allocation

	Loaned collections allocation limits.

	
property sample_infos_allocation

	SampleInfo allocation limits.

	
property thisown

	The membership flag

 18.1.4.6. RTPSReliableReaderQos

18.1.4.6. RTPSReliableReaderQos

	
class fastdds.RTPSReliableReaderQos

	Qos Policy to configure the DisablePositiveACKsQos and the reader attributes

	
clear()

	

	
property disable_positive_ACKs

	Control the sending of positive ACKs

	
property thisown

	The membership flag

	
property times

	Times associated with the Reliable Readers events.

 18.1.4.7. SampleInfo

18.1.4.7. SampleInfo

	
class fastdds.SampleInfo

	SampleInfo is the information that accompanies each sample that is ‘read’ or ‘taken.’

	
property absolute_generation_rank

	the generation difference between the time the sample was received, and the time the most recent sample was received. The most recent sample used for the calculation may or may not be in the returned collection

	
property disposed_generation_count

	number of times the instance had become alive after it was disposed

	
property generation_rank

	the generation difference between the time the sample was received, and the time the most recent sample in the collection was received.

	
property instance_handle

	identifies locally the corresponding instance

	
property instance_state

	indicates whether the instance is currently in existence or, if it has been disposed, the reason why it was disposed.

	
property no_writers_generation_count

	number of times the instance had become alive after it was disposed because no writers

	
property publication_handle

	identifies locally the DataWriter that modified the instance Is the same InstanceHandle_t that is returned by the operation get_matched_publications on the DataReader

	
property reception_timestamp

	time provided by the DataReader when the sample was added to its history

	
property related_sample_identity

	Related Sample Identity (Extension for RPC)

	
property sample_identity

	Sample Identity (Extension for RPC)

	
property sample_rank

	number of samples related to the same instance that follow in the collection

	
property sample_state

	indicates whether or not the corresponding data sample has already been read

	
property source_timestamp

	time provided by the DataWriter when the sample was written

	
property thisown

	The membership flag

	
property valid_data

	whether the DataSample contains data or is only used to communicate of a change in the instance

	
property view_state

	indicates whether the DataReader has already seen samples for the most-current generation of the related instance.

 18.1.4.8. SampleStateKind

18.1.4.8. SampleStateKind

	
class fastdds.READ_SAMPLE_STATE(*args: Any, **kwargs: Any)

	

	
class fastdds.NOT_READ_SAMPLE_STATE(*args: Any, **kwargs: Any)

	

 18.1.4.9. Subscriber

18.1.4.9. Subscriber

	
class fastdds.Subscriber(*args, **kwargs)

	Class Subscriber, contains the public API that allows the user to control the reception of messages.
This class should not be instantiated directly.
DomainRTPSParticipant class should be used to correctly create this element.

	
begin_access()

	Indicates that the application is about to access the data samples in any of the DataReader objects
attached to the Subscriber.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
static copy_from_topic_qos(reader_qos, topic_qos)

	Copies TopicQos into the corresponding DataReaderQos

, out] reader_qos
topic_qos
:rtype: ReturnCode_t
:return: RETCODE_OK if successful, an error code otherwise
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
create_datareader(*args)

	This operation creates a DataReader. The returned DataReader will be attached and belong to the Subscriber.

	Parameters

	
	topic (TopicDescription) – Topic the DataReader will be listening.

	reader_qos (DataReaderQos) – QoS of the DataReader.

	listener (DataReaderListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all).

	Return type

	DataReader

	Returns

	Pointer to the created DataReader. nullptr if failed.

	
create_datareader_with_profile(*args)

	This operation creates a DataReader. The returned DataReader will be attached and belongs to the Subscriber.

	Parameters

	
	topic (TopicDescription) – Topic the DataReader will be listening.

	profile_name (string) – DataReader profile name.

	listener (DataReaderListener) – Pointer to the listener (default: nullptr)

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all).

	Return type

	DataReader

	Returns

	Pointer to the created DataReader. nullptr if failed.

	
delete_contained_entities()

	Deletes all contained DataReaders. If the DataReaders have any QueryCondition or ReadCondition, they are
deleted before the DataReader itself.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if successful, an error code otherwise

	
delete_datareader(reader)

	This operation deletes a DataReader that belongs to the Subscriber.

The delete_datareader operation must be called on the same Subscriber object used to create the DataReader.
If delete_datareader is called on a different Subscriber, the operation will have no effect and it will
return an error.

	Parameters

	reader (DataReader) – DataReader to delete

	Return type

	ReturnCode_t

	Returns

	RETCODE_PRECONDITION_NOT_MET if the datareader does not belong to this subscriber, RETCODE_OK if it is correctly
deleted and RETCODE_ERROR otherwise.

	
enable()

	This operation enables the Subscriber

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET if the participant creating this
Subscriber is not enabled.

	
end_access()

	Indicates that the application has finished accessing the data samples in DataReader objects managed by
the Subscriber.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_datareader_qos_from_profile(profile_name, qos)

	Fills the DataReaderQos with the values of the XML profile.

	Parameters

	
	profile_name (string) – DataReader profile name.

	qos (DataReaderQos) – DataReaderQos object where the qos is returned.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

	
get_datareaders(*args)

	Overload 1:

This operation allows the application to access the DataReader objects.

	Parameters

	readers (std::vector< eprosima::fastdds::dds::DataReader *,std::allocator< eprosima::fastdds::dds::DataReader * > >) – Vector of DataReader where the list of existing readers is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

This operation allows the application to access the DataReader objects that contain samples with the
specified sample_states, view_states, and instance_states.

readers Vector of DataReader where the list of existing readers is returned
:type sample_states: std::vector< eprosima::fastdds::dds::SampleStateKind,std::allocator< eprosima::fastdds::dds::SampleStateKind > >
:param sample_states: Vector of SampleStateKind
:type view_states: std::vector< eprosima::fastdds::dds::ViewStateKind,std::allocator< eprosima::fastdds::dds::ViewStateKind > >
:param view_states: Vector of ViewStateKind
:type instance_states: std::vector< eprosima::fastdds::dds::InstanceStateKind,std::allocator< eprosima::fastdds::dds::InstanceStateKind > >
:param instance_states: Vector of InstanceStateKind
:rtype: ReturnCode_t
:return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

	
get_default_datareader_qos(*args)

	Overload 1:

This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the
create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Return type

	DataReaderQos

	Returns

	Current default DataReaderQos.

Overload 2:

This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the
create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Return type

	DataReaderQos

	Returns

	Current default DataReaderQos.

Overload 3:

This operation retrieves the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the
create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

	Parameters

	qos (DataReaderQos) – DataReaderQos where the default_qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
get_instance_handle()

	Returns the Subscriber’s handle.

	Return type

	InstanceHandle_t

	Returns

	InstanceHandle of this Subscriber.

	
get_listener()

	Retrieves the attached SubscriberListener.

	Return type

	SubscriberListener

	Returns

	Pointer to the SubscriberListener

	
get_participant()

	This operation returns the DomainParticipant to which the Subscriber belongs.

	Return type

	DomainParticipant

	Returns

	DomainParticipant Pointer

	
get_qos(*args)

	Overload 1:

Allows accessing the Subscriber Qos.

	Return type

	SubscriberQos

	Returns

	SubscriberQos reference

Overload 2:

Retrieves the Subscriber Qos.

	Parameters

	qos (SubscriberQos) – SubscriberQos where the qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
has_datareaders()

	This operation checks if the subscriber has DataReaders

	Return type

	boolean

	Returns

	true if the subscriber has one or several DataReaders, false in other case

	
lookup_datareader(topic_name)

	This operation retrieves a previously-created DataReader belonging to the Subscriber that is attached to a
Topic with a matching topic_name. If no such DataReader exists, the operation will return nullptr.

If multiple DataReaders attached to the Subscriber satisfy this condition, then the operation will return
one of them. It is not specified which one.

	Parameters

	topic_name (string) – Name of the topic associated to the DataReader

	Return type

	DataReader

	Returns

	Pointer to a previously created DataReader created on a Topic with that topic_name

	
notify_datareaders()

	This operation invokes the operation on_data_available on the DataReaderListener objects attached to
contained DataReader entities.

This operation is typically invoked from the on_data_on_readers operation in the SubscriberListener.
That way the SubscriberListener can delegate to the DataReaderListener objects the handling of the data.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_default_datareader_qos(qos)

	This operation sets a default value of the DataReader QoS policies which will be used for newly created
DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation
will have no effect and return false.

The special value DATAREADER_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_datareader_qos operation had never been called.

	Parameters

	qos (DataReaderQos) – new value for DataReaderQos to set as default

	Return type

	ReturnCode_t

	Returns

	RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if the qos is changed correctly.

	
set_listener(*args)

	Overload 1:

Modifies the SubscriberListener, sets the mask to StatusMask::all()

	Parameters

	listener (SubscriberListener) – new value for SubscriberListener

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

Overload 2:

Modifies the SubscriberListener.

	Parameters

	
	listener (SubscriberListener) – new value for the SubscriberListener

	mask (StatusMask) – StatusMask that holds statuses the listener responds to.

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_qos(qos)

	Allows modifying the Subscriber Qos.
The given Qos must be supported by the SubscriberQos.

	Parameters

	qos (SubscriberQos) – new value for SubscriberQos

	Return type

	ReturnCode_t

	Returns

	RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RETCODE_INCONSISTENT_POLICY if the Qos is not
self consistent and RETCODE_OK if the qos is changed correctly.

	
property thisown

	The membership flag

 18.1.4.10. SubscriberListener

18.1.4.10. SubscriberListener

	
class fastdds.SubscriberListener

	Class SubscriberListener, it should be used by the end user to implement specific callbacks to certain actions.
It also inherits all DataReaderListener callbacks.

	
on_data_on_readers(sub)

	Virtual function to be implemented by the user containing the actions to be performed when a new
Data Message is available on any reader.

	Parameters

	sub (Subscriber) – Subscriber

	
property thisown

	The membership flag

 18.1.4.11. SubscriberQos

18.1.4.11. SubscriberQos

	
class fastdds.SubscriberQos

	Class SubscriberQos, contains all the possible Qos that can be set for a determined Subscriber.
Although these values can be set and are transmitted
during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library.
Please consult each of them to check for implementation details and default values.

	
entity_factory(*args)

	Overload 1:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy

	Return type

	EntityFactoryQosPolicy

	Returns

	EntityFactoryQosPolicy reference

Overload 3:

Setter for EntityFactoryQosPolicy

	Parameters

	entity_factory (EntityFactoryQosPolicy) – new value for the EntityFactoryQosPolicy

	
group_data(*args)

	Overload 1:

Getter for GroupDataQosPolicy

	Return type

	GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

Overload 2:

Getter for GroupDataQosPolicy

	Return type

	GroupDataQosPolicy

	Returns

	GroupDataQosPolicy reference

Overload 3:

Setter for GroupDataQosPolicy

	Parameters

	group_data (GroupDataQosPolicy) – new value for the GroupDataQosPolicy

	
partition(*args)

	Overload 1:

Getter for PartitionQosPolicy

	Return type

	PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

Overload 2:

Getter for PartitionQosPolicy

	Return type

	PartitionQosPolicy

	Returns

	PartitionQosPolicy reference

Overload 3:

Setter for PartitionQosPolicy

	Parameters

	partition (PartitionQosPolicy) – new value for the PartitionQosPolicy

	
presentation(*args)

	Overload 1:

Getter for PresentationQosPolicy

	Return type

	PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

Overload 2:

Getter for PresentationQosPolicy

	Return type

	PresentationQosPolicy

	Returns

	PresentationQosPolicy reference

Overload 3:

Setter for PresentationQosPolicy

	Parameters

	presentation (PresentationQosPolicy) – new value for the PresentationQosPolicy

	
property thisown

	The membership flag

	
class fastdds.SUBSCRIBER_QOS_DEFAULT(*args: Any, **kwargs: Any)

	

 18.1.4.12. TypeConsistencyQos

18.1.4.12. TypeConsistencyQos

	
class fastdds.TypeConsistencyQos

	Qos Policy to configure the XTypes Qos associated to the DataReader

	
clear()

	Clears the QosPolicy object

	
property representation

	Data Representation Qos.

	
property thisown

	The membership flag

	
property type_consistency

	Type consistency enforcement Qos.

 18.1.4.13. ViewStateKind

18.1.4.13. ViewStateKind

	
class fastdds.NEW_VIEW_STATE(*args: Any, **kwargs: Any)

	

	
class fastdds.NOT_NEW_VIEW_STATE(*args: Any, **kwargs: Any)

	

 18.1.5. Topic

18.1.5. Topic

	18.1.5.1. Topic

	18.1.5.2. TopicDataType

	18.1.5.3. TopicDescription

	18.1.5.4. TopicListener

	18.1.5.5. TopicQos

	18.1.5.6. TypeIdV1

	18.1.5.7. TypeInformation

	18.1.5.8. TypeObjectV1

	18.1.5.9. TypeSupport

 18.1.5.1. Topic

18.1.5.1. Topic

	
class fastdds.Topic(*args, **kwargs)

	Class Topic, represents the fact that both publications
and subscriptions are tied to a single data-type

	
get_impl()

	

	
get_listener()

	Retrieves the attached TopicListener.

	Return type

	TopicListener

	Returns

	pointer to TopicListener

	
get_participant()

	Getter for the DomainParticipant

	Return type

	DomainParticipant

	Returns

	DomainParticipant pointer

	
get_qos(*args)

	Overload 1:

Allows accessing the Topic Qos.

	Return type

	TopicQos

	Returns

	reference to TopicQos

Overload 2:

Retrieves the Topic Qos.

	Parameters

	qos (TopicQos) – TopicQos where the qos is returned

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_listener(*args)

	Modifies the TopicListener.

	Parameters

	
	listener (TopicListener) – new value for the TopicListener

	mask (StatusMask) – StatusMask that holds statuses the listener responds to (default: all).

	Return type

	ReturnCode_t

	Returns

	RETCODE_OK

	
set_qos(qos)

	Allows modifying the Topic Qos.
The given Qos must be supported by the Topic.

	Parameters

	qos (TopicQos) – new TopicQos value to set for the Topic.

	
property thisown

	The membership flag

 18.1.5.2. TopicDataType

18.1.5.2. TopicDataType

	
class fastdds.TopicDataType(*args, **kwargs)

	Class TopicDataType used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and get the key of a specific data type.
The user should created a class that inherits from this one, where Serialize and deserialize methods MUST be implemented.

	
auto_fill_type_information(*args)

	Overload 1:

Get the type information auto-fill configuration

	Return type

	boolean

	Returns

	true if the type information should be auto-filled

Overload 2:

Set type information auto-fill configuration

	Parameters

	auto_fill_type_information (boolean) – new value to set

	
auto_fill_type_object(*args)

	Overload 1:

Get the type object auto-fill configuration

	Return type

	boolean

	Returns

	true if the type object should be auto-filled

Overload 2:

Set the type object auto-fill configuration

	Parameters

	auto_fill_type_object (boolean) – new value to set

	
construct_sample(memory)

	Construct a sample on a memory location.

	Parameters

	memory (void) – Pointer to the memory location where the sample should be constructed.

	Return type

	boolean

	Returns

	whether this type supports in-place construction or not.

	
createData()

	Create a Data Type.

	Return type

	void

	Returns

	Void pointer to the created object.

	
deleteData(data)

	Remove a previously created object.

	Parameters

	data (void) – Pointer to the created Data.

	
deserialize(payload, data)

	Deserialize method, it should be implemented by the user, since it is abstract.

payload Pointer to the payload
data Pointer to the data
:rtype: boolean
:return: True if correct.

	
getKey(data, ihandle, force_md5=False)

	Get the key associated with the data.

data Pointer to the data.
ihandle Pointer to the Handle.
force_md5 Force MD5 checking.
:rtype: boolean
:return: True if correct.

	
getName()

	Get topic data type name

	Return type

	string

	Returns

	Topic data type name

	
getSerializedSizeProvider(data)

	Gets the SerializedSizeProvider function

	Parameters

	data (void) – Pointer

	Return type

	std::function< uint32_t () >

	Returns

	function

	
is_bounded()

	Checks if the type is bounded.

	
is_plain()

	Checks if the type is plain.

	
property m_isGetKeyDefined

	Indicates whether the method to obtain the key has been implemented.

	
property m_typeSize

	Maximum serialized size of the type in bytes. If the type has unbounded fields, and therefore cannot have a maximum size, use 0.

	
serialize(data, payload)

	Serialize method, it should be implemented by the user, since it is abstract.
It is VERY IMPORTANT that the user sets the SerializedPayload length correctly.

data Pointer to the data
payload Pointer to the payload
:rtype: boolean
:return: True if correct.

	
setName(nam)

	Set topic data type name

	Parameters

	nam (string) – Topic data type name

	
property thisown

	The membership flag

	
type_identifier(*args)

	Overload 1:

Get the type identifier

	Return type

	std::shared_ptr< eprosima::fastdds::dds::TypeIdV1 >

	Returns

	TypeIdV1

Overload 2:

Set type identifier

	Parameters

	id (TypeIdV1) – new value for TypeIdV1

Overload 3:

Set type identifier

	Parameters

	id (std::shared_ptr< eprosima::fastdds::dds::TypeIdV1 >) – shared pointer to TypeIdV1

	
type_information(*args)

	Overload 1:

Get the type information

	Return type

	std::shared_ptr< eprosima::fastdds::dds::xtypes::TypeInformation >

	Returns

	TypeInformation

Overload 2:

Set type information

	Parameters

	info (TypeInformation) – new value for TypeInformation

Overload 3:

Set type information

	Parameters

	info (std::shared_ptr< eprosima::fastdds::dds::xtypes::TypeInformation >) – shared pointer to TypeInformation

	
type_object(*args)

	Overload 1:

Get the type object

	Return type

	std::shared_ptr< eprosima::fastdds::dds::TypeObjectV1 >

	Returns

	TypeObjectV1

Overload 2:

Set type object

	Parameters

	object (TypeObjectV1) – new value for TypeObjectV1

Overload 3:

Set type object

	Parameters

	object (std::shared_ptr< eprosima::fastdds::dds::TypeObjectV1 >) – shared pointer to TypeObjectV1

 18.1.5.3. TopicDescription

18.1.5.3. TopicDescription

	
class fastdds.TopicDescription(*args, **kwargs)

	Class TopicDescription, represents the fact that both publications
and subscriptions are tied to a single data-type

	
get_impl()

	

	
get_name()

	Get the name used to create this TopicDescription.

	Return type

	string

	Returns

	the name used to create this TopicDescription.

	
get_participant()

	Get the DomainParticipant to which the TopicDescription belongs.

	Return type

	DomainParticipant

	Returns

	The DomainParticipant to which the TopicDescription belongs.

	
get_type_name()

	Get the associated type name.

	Return type

	string

	Returns

	the type name.

	
property thisown

	The membership flag

 18.1.5.4. TopicListener

18.1.5.4. TopicListener

	
class fastdds.TopicListener

	Class TopicListener, it should be used by the end user to implement specific callbacks to certain actions.

	
on_inconsistent_topic(topic, status)

	Virtual function to be implemented by the user containing the actions to be performed when
another topic exists with the same name but different characteristics.

	Parameters

	
	topic (Topic) – Topic

	status (InconsistentTopicStatus) – The inconsistent topic status

	
property thisown

	The membership flag

 18.1.5.5. TopicQos

18.1.5.5. TopicQos

	
class fastdds.TopicQos

	Class TopicQos, containing all the possible Qos that can be set for a determined Topic.
Although these values can be set and are transmitted
during the Endpoint Discovery Protocol, not all of the behaviour associated with them has been implemented in the library.
Please consult each of them to check for implementation details and default values.

	
deadline(*args)

	Overload 1:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQos reference

Overload 2:

Getter for DeadlineQosPolicy

	Return type

	DeadlineQosPolicy

	Returns

	DeadlineQos reference

Overload 3:

Setter for DeadlineQosPolicy

	Parameters

	deadline (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

	
destination_order(*args)

	Overload 1:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQos reference

Overload 2:

Getter for DestinationOrderQosPolicy

	Return type

	DestinationOrderQosPolicy

	Returns

	DestinationOrderQos reference

Overload 3:

Setter for DestinationOrderQosPolicy

	Parameters

	destination_order (DestinationOrderQosPolicy) – new value for the DestinationOrderQosPolicy

	
durability(*args)

	Overload 1:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQos reference

Overload 2:

Getter for DurabilityQosPolicy

	Return type

	DurabilityQosPolicy

	Returns

	DurabilityQos reference

Overload 3:

Setter for DurabilityQosPolicy

	Parameters

	durability (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

	
durability_service(*args)

	Overload 1:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQos reference

Overload 2:

Getter for DurabilityServiceQosPolicy

	Return type

	DurabilityServiceQosPolicy

	Returns

	DurabilityServiceQos reference

Overload 3:

Setter for DurabilityServiceQosPolicy

	Parameters

	durability_service (DurabilityServiceQosPolicy) – new value for the DurabilityServiceQosPolicy

	
history(*args)

	Overload 1:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQos reference

Overload 2:

Getter for HistoryQosPolicy

	Return type

	HistoryQosPolicy

	Returns

	HistoryQos reference

Overload 3:

Setter for HistoryQosPolicy

	Parameters

	history (HistoryQosPolicy) – new value for the HistoryQosPolicy

	
latency_budget(*args)

	Overload 1:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQos reference

Overload 2:

Getter for LatencyBudgetQosPolicy

	Return type

	LatencyBudgetQosPolicy

	Returns

	LatencyBudgetQos reference

Overload 3:

Setter for LatencyBudgetQosPolicy

	Parameters

	latency_budget (LatencyBudgetQosPolicy) – new value for the LatencyBudgetQosPolicy

	
lifespan(*args)

	Overload 1:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQos reference

Overload 2:

Getter for LifespanQosPolicy

	Return type

	LifespanQosPolicy

	Returns

	LifespanQos reference

Overload 3:

Setter for LifespanQosPolicy

	Parameters

	lifespan (LifespanQosPolicy) – new value for the LifespanQosPolicy

	
liveliness(*args)

	Overload 1:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQos reference

Overload 2:

Getter for LivelinessQosPolicy

	Return type

	LivelinessQosPolicy

	Returns

	LivelinessQos reference

Overload 3:

Setter for LivelinessQosPolicy

	Parameters

	liveliness (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

	
ownership(*args)

	Overload 1:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQos reference

Overload 2:

Getter for OwnershipQosPolicy

	Return type

	OwnershipQosPolicy

	Returns

	OwnershipQos reference

Overload 3:

Setter for OwnershipQosPolicy

	Parameters

	ownership (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

	
reliability(*args)

	Overload 1:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQos reference

Overload 2:

Getter for ReliabilityQosPolicy

	Return type

	ReliabilityQosPolicy

	Returns

	ReliabilityQos reference

Overload 3:

Setter for ReliabilityQosPolicy

	Parameters

	reliability (ReliabilityQosPolicy) – new value for the ReliabilityQosPolicy

	
resource_limits(*args)

	Overload 1:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQos reference

Overload 2:

Getter for ResourceLimitsQosPolicy

	Return type

	ResourceLimitsQosPolicy

	Returns

	ResourceLimitsQos reference

Overload 3:

Setter for ResourceLimitsQosPolicy

	Parameters

	resource_limits (ResourceLimitsQosPolicy) – new value for the ResourceLimitsQosPolicy

	
property thisown

	The membership flag

	
topic_data(*args)

	Overload 1:

Getter for TopicDataQosPolicy

	Return type

	TopicDataQosPolicy

	Returns

	TopicDataQos reference

Overload 2:

Getter for TopicDataQosPolicy

	Return type

	TopicDataQosPolicy

	Returns

	TopicDataQos reference

Overload 3:

Setter for TopicDataQosPolicy

	Parameters

	value (TopicDataQosPolicy) – new value for the TopicDataQosPolicy

	
transport_priority(*args)

	Overload 1:

Getter for TransportPriorityQosPolicy

	Return type

	TransportPriorityQosPolicy

	Returns

	TransportPriorityQos reference

Overload 2:

Getter for TransportPriorityQosPolicy

	Return type

	TransportPriorityQosPolicy

	Returns

	TransportPriorityQos reference

Overload 3:

Setter for TransportPriorityQosPolicy

	Parameters

	transport_priority (TransportPriorityQosPolicy) – new value for the TransportPriorityQosPolicy

	
class fastdds.TOPIC_QOS_DEFAULT(*args: Any, **kwargs: Any)

	

 18.1.5.6. TypeIdV1

18.1.5.6. TypeIdV1

	
class fastdds.TypeIdV1(*args)

	Class TypeIdV1

	
clear()

	Clears the QosPolicy object

	
get()

	Getter for the TypeIndentifier

	Return type

	eprosima::fastrtps::types::TypeIdentifier

	Returns

	TypeIdentifier reference

	
property m_type_identifier

	Type Identifier

	
property thisown

	The membership flag

 18.1.5.7. TypeInformation

18.1.5.7. TypeInformation

	
class fastdds.TypeInformation(*args)

	Class xtypes::TypeInformation

	
assigned(*args)

	Overload 1:

Check if it is assigned

	Return type

	boolean

	Returns

	true if assigned, false if not

Overload 2:

Setter for assigned boolean

	Parameters

	value (boolean) – Boolean to be set

	
clear()

	Clears the QosPolicy object

	
property thisown

	The membership flag

	
property type_information

	Type Information

 18.1.5.8. TypeObjectV1

18.1.5.8. TypeObjectV1

	
class fastdds.TypeObjectV1(*args)

	Class TypeObjectV1

	
clear()

	Clears the QosPolicy object

	
get()

	Getter for the TypeObject

	Return type

	eprosima::fastrtps::types::TypeObject

	Returns

	TypeObject reference

	
property m_type_object

	Type Object

	
property thisown

	The membership flag

 18.1.5.9. TypeSupport

18.1.5.9. TypeSupport

	
class fastdds.TypeSupport(*args)

	Notes: This class inherits from std::shared_ptr<TopicDataType>.
Class TypeSupport used to provide the DomainRTPSParticipant with the methods to serialize,
deserialize and get the key of a specific data type.
The user should created a class that inherits from this one,
where Serialize and deserialize methods MUST be implemented.

	
create_data()

	Creates new data

	Return type

	void

	Returns

	Pointer to the data

	
delete_data(data)

	Deletes data

	Parameters

	data (void) – Pointer to the data to delete

	
deserialize(payload, data)

	Deserializes the data

	Parameters

	
	payload (eprosima::fastrtps::rtps::SerializedPayload_t) – Pointer to payload

	data (void) – Pointer to data

	Return type

	boolean

	Returns

	true if it is deserialized correctly, false if not

	
empty()

	Check if the TypeSupport is empty

	Return type

	boolean

	Returns

	true if empty, false if not

	
get_key(data, i_handle, force_md5=False)

	Getter for the data key

	Parameters

	
	data (void) – Pointer to data

	i_handle (InstanceHandle_t) – InstanceHandle pointer to store the key

	force_md5 (boolean) – boolean to force md5 (default: false)

	Return type

	boolean

	Returns

	true if the key is returned, false if not

	
get_serialized_size_provider(data)

	Getter for the SerializedSizeProvider

	Parameters

	data (void) – Pointer to data

	Return type

	std::function< uint32_t () >

	Returns

	function

	
get_type_name()

	Getter for the type name

	Return type

	string

	Returns

	name of the data type

	
is_bounded()

	Checks if the type is bounded.

	
is_plain()

	Checks if the type is plain.

	
register_type(*args)

	Overload 1:

Registers the type on a participant

	Parameters

	participant (DomainParticipant) – DomainParticipant where the type is going to be registered

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the type name is empty, RETCODE_PRECONDITION_NOT_MET if there is another type with
the same name registered on the DomainParticipant and RETCODE_OK if it is registered correctly

Overload 2:

Registers the type on a participant

	Parameters

	
	participant (DomainParticipant) – DomainParticipant where the type is going to be registered

	type_name (string) – Name of the type to register

	Return type

	ReturnCode_t

	Returns

	RETCODE_BAD_PARAMETER if the type name is empty, RETCODE_PRECONDITION_NOT_MET if there is another type with
the same name registered on the DomainParticipant and RETCODE_OK if it is registered correctly

	
serialize(data, payload)

	Serializes the data

	Parameters

	
	data (void) – Pointer to data

	payload (eprosima::fastrtps::rtps::SerializedPayload_t) – Pointer to payload

	Return type

	boolean

	Returns

	true if it is serialized correctly, false if not

	
set(ptr)

	

	
property thisown

	The membership flag

 1. Introduction

1. Introduction

eProsima Fast DDS-Gen is a Java application that generates eProsima Fast DDS source code using the data types
defined in an IDL (Interface Definition Language) file.
This generated source code can be used in any Fast DDS application in order to define the data type of a topic,
which will later be used to publish or subscribe.
eProsima Fast DDS defines the data type exchanged in a Topic through two classes: the TypeSupport and the
TopicDataType. TopicDataType describes the data type exchanged between a publication and a subscription, i.e.
the data corresponding to a Topic; while TypeSupport encapsulates an instance of TopicDataType, providing
the functions needed to register the type and interact with the publication and subscription.
Please refer to Definition of data types for more information on data types.

To declare the structured data, the IDL format must be used.
IDL is a specification language, made by OMG [https://www.omg.org/] (Object Management Group), which describes an
interface in a language independent manner, allowing communication between software components that do not share the
same language.
The eProsima Fast DDS-Gen tool reads the IDL files and parses a subset of the
OMG IDL specification [https://www.omg.org/spec/IDL/4.2/] to generate
source code for data serialization.
This subset includes the data type descriptions included in Defining a data type via IDL.
The rest of the file content is ignored.

eProsima Fast DDS-Gen generated source code uses Fast CDR [https://github.com/eProsima/Fast-CDR], a C++11 library
that provides the data serialization and codification mechanisms.
Therefore, as stated in the RTPS standard [https://www.omg.org/spec/DDSI-RTPS/2.2/PDF], when the data are sent,
they are serialized and encoded using the corresponding Common Data Representation (CDR).
The CDR transfer syntax is a low-level representation for inter-agents transfer, mapping from OMG IDL data types to
byte streams.
Please refer to the official CDR specification [https://www.omg.org/cgi-bin/doc?formal/02-06-51] for more
information on the CDR transfer syntax (see PDF section 15.3).

The main feature of eProsima Fast DDS-Gen is to facilitate the implementation of DDS applications without the
knowledge of serialization or deserialization mechanisms.
With Fast DDS-Gen it is also possible to generate the C++ source code of a DDS application with a publisher and a
subscriber that uses the eProsima Fast DDS library (see Building a publish/subscribe application).
Fast DDS-Gen can also generate Python bindings for the data types in order to use them within a Python-based
Fast DDS application (see Building Python auxiliary libraries).

For installing Fast DDS-Gen, please refer to Linux installation of Fast DDS-Gen or to
Windows installation of Fast DDS-Gen.

 2. Usage

2. Usage

This section explains the usage of Fast DDS-Gen tool and briefly describes the generated files.

2.1. Running the Fast DDS-Gen Java application

First, the steps outlined in Linux installation of Fast DDS-Gen or
Window installation of Fast DDS-Gen must be accomplished for the installation of Fast DDS-Gen.
According to this section, an executable file for Linux and Windows that runs the Java Fast DDS-Gen application is
available in the scripts folder.
If the scripts folder path is added to the PATH environment variable, Fast DDS-Gen can be executed running
the following commands:

	Linux:

$ fastddsgen

	Windows:

> fastddsgen.bat

Note

In case the PATH has not been modified, these scripts can be found in the <fastddsgen_directory>/scripts
directory.

2.2. Supported options

The expected argument list of the application is:

fastddsgen [<options>] <IDL file> [<IDL file> ...]

Where the option choices are:

	Option

	Description

	-help

	Shows the help information.

	-version

	Shows the current version of eProsima Fast DDS-Gen.

	-d <directory>

	Sets the output directory where the generated files are created.

	-I <directory>

	Add directory to preprocessor include paths.

	-t <directory>

	Sets a specific directory as a temporary directory.

	-example <platform>

	Generates an example and a solution to compile the generated source code for a specific

platform. The help command shows the supported platforms.

	-replace

	Replaces the generated source code files even if they exist.

	-ppDisable

	Disables the preprocessor.

	-ppPath

	Specifies the preprocessor path.

	-typeobject

	Generates TypeObject files for the IDL provided and modifies MyType constructor to

register the TypeObject representation into the factory.

	-typeros2

	Generates type naming compatible with ROS 2

	-python

	Generates source code and a CMake solution to compile a library containing the data types

Python bindings required to run a Fast DDS Python-based application. This option is

incompatible with the -example and -typeobject ones.

	-cs

	Enables Case Sensitivity

Please refer to Dynamic Topic Types for more information on TypeObject representation.

 3. Building a publish/subscribe application

3. Building a publish/subscribe application

Fast DDS-Gen can be used to build a fully functional publication/subscription application from an IDL file that
defines the Topic under which messages are published and received.
The application generated allows for the creation of as many publishers and subscribers as
desired, all belonging to the same Domain and communicating using the same Topic.

	Background

	Prerequisites

	Create the application workspace

	Import linked libraries and its dependencies

	Installation from binaries

	Colcon installation

	Creating the IDL file with the data type

	Generating a minimal functional example

	Generate the Fast DDS source code

	Build the Fast DDS application

	Run the Fast DDS application

	Summary and next steps

3.1. Background

eProsima Fast DDS-Gen is a Java application that generates eProsima Fast DDS source code using the data types defined
in an IDL (Interface Definition Language) file.
This generated source code can be used in any Fast DDS application in order to define the data type of a topic,
which will later be used to publish or subscribe.
Please refer to Fast DDS-Gen introduction for more information.

3.2. Prerequisites

First of all, follow the steps outlined in the Installation Manual for the installation of
eProsima Fast DDS and all its dependencies.
Moreover, perform the steps outlined in Linux installation of Fast DDS-Gen or in
Window installation of Fast DDS-Gen, depending on the operating system,
for the installation of the eProsima Fast DDS-Gen tool.

3.3. Create the application workspace

The application workspace will have the following structure at the end of the project.
The file build/HelloWorld is the generated Fast DDS application.

.
└── FastDDSGenHelloWorld
 ├── build
 │ ├── CMakeCache.txt
 │ ├── CMakeFiles
 │ ├── cmake_install.cmake
 │ ├── HelloWorld
 │ ├── libHelloWorld_lib.a
 │ └── Makefile
 ├── CMakeLists.txt
 ├── HelloWorld.cxx
 ├── HelloWorld.h
 ├── HelloWorld.idl
 ├── HelloWorldPublisher.cxx
 ├── HelloWorldPublisher.h
 ├── HelloWorldPubSubMain.cxx
 ├── HelloWorldPubSubTypes.cxx
 ├── HelloWorldPubSubTypes.h
 ├── HelloWorldSubscriber.cxx
 └── HelloWorldSubscriber.h

Execute the following command to create the directory in which the files generated by Fast DDS-Gen will be saved.

mkdir FastDDSGenHelloWorld && cd FastDDSGenHelloWorld
mkdir build

3.4. Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries.
The way of making these accessible from the
workspace depends on the installation procedure followed in the Installation Manual.

3.4.1. Installation from binaries

If the installation from binaries has been followed, these libraries are already accessible from the workspace.

	On Linux: The header files can be found in directories /usr/include/fastrtps/ and
/usr/include/fastcdr/ for Fast DDS and Fast CDR respectively.
The compiled libraries of both can be found in the directory /usr/lib/.

	On Windows: The header files can be found in directories
C:\Program Files\eProsima\fastrtps 2.0.0\include\fastrtps and
C:\Program Files\eProsima\fastrtps 2.0.0\include\fastcdr\ for Fast DDS and Fast CDR respectively.
The compiled libraries of both can be found in the directory C:\Program Files\eProsima\fastrtps 2.0.0\lib\.

3.4.2. Colcon installation

If the Colcon installation has been followed, there are several ways to import the libraries.
To make these accessible only from the current shell session, run one of the following two commands.

	On Linux:

source <path/to/Fast-DDS/workspace>/install/setup.bash

	On Windows:

<path/to/Fast-DDS/workspace>/install/setup.bat

However, to make these accessible from any session, add the Fast DDS installation directory to the $PATH
variable in the shell configuration files running the following command.

	On Linux:

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

	On Windows: Open the Edit the system environment variables control panel and add
<path/to/Fast-DDS/workspace>/install/setup.bat to the PATH.

3.5. Creating the IDL file with the data type

To build a minimal application, the Topic must be defined by means of an IDL file.
For this example the Topic data type defined by IDL is just a string message.
Topics are explained in more detail in Topic, while the Topic data types to be defined using IDL are
presented in Definition of data types.
In the preferred text editor, create the HelloWorld.idl file with the following content and save it in the
FastDDSGenHelloWorld directory.

// HelloWorld.idl
struct HelloWorld
{
 string message;
};

Then, this file is translated to something Fast DDS understands.
For this, use the Fast DDS-Gen code generation tool, which can do two different things:

	Generate C++ definitions for a custom topic.

	Generate a functional example that uses the topic data.

The second option is the one used to create this publish/subscribe application, while the first option is applied
in this other tutorial: Writing a simple C++ publisher and subscriber application.

3.6. Generating a minimal functional example

If the steps outlined in the Installation Manual have been followed, then Fast DDS, Fast CDR, and
Fast-RTPS-Gen should be installed in the system.

3.6.1. Generate the Fast DDS source code

The application files are generated using the following command.
The -example option creates an example application, and the CMake files needed to build it.
In the workspace directory (FastDDSGenHelloWorld directory), execute one of the following commands according to the
installation followed and the operating system.

	On Linux:

	For an installation from binaries or a colcon installation:

<path-to-Fast-DDS-workspace>/src/fastddsgen/scripts/fastddsgen -example CMake HelloWorld.idl

	For a stand-alone installation, run:

<path-to-Fast-DDS-Gen>/scripts/fastddsgen -example CMake HelloWorld.idl

	On Windows:

	For a colcon installation:

<path-to-Fast-DDS-workspace>/src/fastddsgen/scripts/fastddsgen.bat -example CMake HelloWorld.idl

	For a stand-alone installation, run:

<path-to-Fast-DDS-Gen>/scripts/fastddsgen.bat -example CMake HelloWorld.idl

	For an installation from binaries, run:

fastddsgen.bat -example CMake HelloWorld.idl

Warning

The colcon installation does not build the fastddsgen.jar file although it does download the Fast DDS-Gen
repository. The following commands must be executed to build the Java executable:

cd <path-to-Fast-DDS-workspace>/src/fastddsgen
gradle assemble

3.6.2. Build the Fast DDS application

Then, compile the generated code executing the following commands from the FastDDSGenHelloWorld directory.

	On Linux:

cd build
cmake ..
make

	On Windows:

cd build
cmake -G "Visual Studio 15 2017 Win64" ..
cmake --build .

3.6.3. Run the Fast DDS application

The application build can be used to spawn any number of publishers and subscribers associated with the topic.

	On Linux:

./HelloWorld publisher
./HelloWorld subscriber

	On Windows:

HelloWorld.exe publisher
HelloWorld.exe subscriber

Each time <Enter> is pressed on the Publisher, a new datagram is generated, sent over the network and received by
Subscribers currently online.
If more than one subscriber is available, it can be seen that the message is equally received on all listening nodes.

The values on the custom IDL-generated data type can also be modified as indicated below.

HelloWorld sample; //Auto-generated container class for topic data from Fast DDS-Gen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

Warning

It may be necessary to set up a special rule in the Firewall for eprosima Fast DDS to work correctly on Windows.

3.7. Summary and next steps

In this tutorial, a publisher/subscriber DDS application using Fast DDS-Gen has been built.
The tutorial also describes how to generate IDL files that contain the description of the Topic data type.

To continue developing DDS applications please take a look at the
eProsima Fast DDS examples on github [https://github.com/eProsima/Fast-DDS/tree/master/examples]
for ideas on how to improve this basic application through different configuration
options, and also for examples of advanced Fast DDS features.

 4. Building Python auxiliary libraries

4. Building Python auxiliary libraries

eProsima Fast DDS-Gen can generate the required source files and CMake project to build the Python modules that
allow the use of the IDL defined data types within a Fast DDS Python-based application.
Each IDL file will result in a new Python module that will contain all the data types defined in the file.
The Python binding is generated building the provided solution using SWIG [http://www.swig.org/].

Calling eProsima Fast DDS-Gen with the option -python will generate these files.
eProsima Fast DDS-Gen will generate a .i file which will be processed by SWIG [http://www.swig.org/] and a CMake project to call SWIG [http://www.swig.org/]
first generating C++ files (for connecting C++ and Python) and Python files (Python module for your type) and
then compiling the C++ sources.

Before calling CMake, the Building process needs several Dependencies to be met.

4.1. Dependencies

4.1.1. SWIG

SWIG [http://www.swig.org/] is a development tool that allows connecting programs written in C/C++ with a variety of
other programming languages, among them Python.
SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG [http://www.swig.org/] can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install swig

4.1.2. Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG [http://www.swig.org/].
They can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install libpython3-dev

4.2. Building

Call CMake:

mkdir build
cd build
cmake ..
cmake --build .

This will create the Python files (.py) with the modules (one per each IDL file) that have to be imported within the
Python script.

 5. Defining a data type via IDL

5. Defining a data type via IDL

This section describes the data types that can be defined using IDL files, as well as other mechanisms for building
data types using IDL files.

	Supported IDL types

	Primitive types

	Arrays

	Sequences

	Maps

	Structures

	Unions

	Bitsets

	Enumerations

	Bitmasks

	Data types with a key

	Including other IDL files

	Annotations

	Forward declaration

	IDL 4.2 aliases

	IDL 4.2 comments

5.1. Supported IDL types

Be aware that Fast DDS-Gen is not case sensitive as it is specified in the
IDL specification [https://www.omg.org/spec/IDL/4.2/PDF].
To activate case sensitivity use option -cs when running Fast DDS-Gen (see
Supported options).

5.1.1. Primitive types

The following table shows the basic IDL types supported by Fast DDS-Gen and how they are mapped to C++11.

	IDL

	C++11

	char

	char

	octet

	uint8_t

	short

	int16_t

	unsigned short

	uint16_t

	long

	int32_t

	unsigned long

	uint32_t

	long long

	int64_t

	unsigned long long

	uint64_t

	float

	float

	double

	double

	long double

	long double

	boolean

	bool

	string

	std::string

5.1.2. Arrays

Fast DDS-Gen supports unidimensional and multidimensional arrays.
Arrays are always mapped to std::array containers.
The following table shows the array types supported and their mapping.

	IDL

	C++11

	char a[5]

	std::array<char,5> a

	octet a[5]

	std::array<uint8_t,5> a

	short a[5]

	std::array<int16_t,5> a

	unsigned short a[5]

	std::array<uint16_t,5> a

	long a[5]

	std::array<int32_t,5> a

	unsigned long a[5]

	std::array<uint32_t,5> a

	long long a[5]

	std::array<int64_t,5> a

	unsigned long long a[5]

	std::array<uint64_t,5> a

	float a[5]

	std::array<float,5> a

	double a[5]

	std::array<double,5> a

5.1.3. Sequences

Fast DDS-Gen supports sequences, which map into the std::vector container.
The following table represents how the map between IDL and C++11 is handled.

	IDL

	C++11

	sequence<char>

	std::vector<char>

	sequence<octet>

	std::vector<uint8_t>

	sequence<short>

	std::vector<int16_t>

	sequence<unsigned short>

	std::vector<uint16_t>

	sequence<long>

	std::vector<int32_t>

	sequence<unsigned long>

	std::vector<uint32_t>

	sequence<long long>

	std::vector<int64_t>

	sequence<unsigned long long>

	std::vector<uint64_t>

	sequence<float>

	std::vector<float>

	sequence<double>

	std::vector<double>

5.1.4. Maps

Fast DDS-Gen supports maps, which are equivalent to the std::map container.
The equivalence between types is handled in the same way as for sequences.

	IDL

	C++11

	map<char, unsigned long long>

	std::map<char, uint64_T>

Note

Only Primitive types are currently supported.

5.1.5. Structures

You can define an IDL structure with a set of members with multiple types.
It will be converted into a C++ class in which the members of the structure defined via IDL are mapped to private data
members of the class.
Furthermore, set() and get() member functions are created to access these private data members.

The following IDL structure:

struct Structure
{
 octet octet_value;
 long long_value;
 string string_value;
};

Would be converted to:

class Structure
{
public:
 Structure();
 ~Structure();
 Structure(const Structure &x);
 Structure(Structure &&x);
 Structure& operator=(const Structure &x);
 Structure& operator=(Structure &&x);

 void octet_value(uint8_t _octet_value);
 uint8_t octet_value() const;
 uint8_t& octet_value();
 void long_value(int64_t _long_value);
 int64_t long_value() const;
 int64_t& long_value();
 void string_value(const std::string
 &_string_value);
 void string_value(std::string &&_string_value);
 const std::string& string_value() const;
 std::string& string_value();

private:
 uint8_t m_octet_value;
 int64_t m_long_value;
 std::string m_string_value;
};

Structures can inherit from other structures, extending their member set.

struct ParentStruct
{
 octet parent_member;
};

struct ChildStruct : ParentStruct
{
 long child_member;
};

In this case, the resulting C++ code will be:

class ParentStruct
{
 octet parent_member;
};

class ChildStruct : public ParentStruct
{
 long child_member;
};

5.1.6. Unions

In IDL, a union is defined as a sequence of members with their own types and a discriminant that specifies which member
is in use.
An IDL union type is mapped as a C++ class with member functions to access the union members and the discriminant.

The following IDL union:

union Union switch(long)
{
 case 1:
 octet octet_value;
 case 2:
 long long_value;
 case 3:
 string string_value;
};

Would be converted to:

class Union
{
public:
 Union();
 ~Union();
 Union(const Union &x);
 Union(Union &&x);
 Union& operator=(const Union &x);
 Union& operator=(Union &&x);

 void d(int32_t __d);
 int32_t _d() const;
 int32_t& _d();

 void octet_value(uint8_t _octet_value);
 uint8_t octet_value() const;
 uint8_t& octet_value();
 void long_value(int64_t _long_value);
 int64_t long_value() const;
 int64_t& long_value();
 void string_value(const std::string
 &_string_value);
 void string_value(std:: string &&_string_value);
 const std::string& string_value() const;
 std::string& string_value();

private:
 int32_t m__d;
 uint8_t m_octet_value;
 int64_t m_long_value;
 std::string m_string_value;
};

5.1.7. Bitsets

Bitsets are a special kind of structure, which encloses a set of bits.
A bitset can represent up to 64 bits.
Each member is defined as bitfield and eases the access to a part of the bitset.

For example:

bitset MyBitset
{
 bitfield<3> a;
 bitfield<10> b;
 bitfield<12, int> c;
};

The type MyBitset will store a total of 25 bits (3 + 10 + 12) and will require 32 bits in memory
(lowest primitive type to store the bitset’s size).

	The bitfield ‘a’ allows us to access to the first 3 bits (0..2).

	The bitfield ‘b’ allows us to access to the next 10 bits (3..12).

	The bitfield ‘c’ allows us to access to the next 12 bits (13..24).

The resulting C++ code will be similar to:

class MyBitset
{
public:
 void a(char _a);
 char a() const;

 void b(uint16_t _b);
 uint16_t b() const;

 void c(int32_t _c);
 int32_t c() const;

private:
 std::bitset<25> m_bitset;
};

Internally, it is stored as a std::bitset.
For each bitfield, get() and set() member functions are generated with the smaller possible primitive
unsigned type to access it.
In the case of bitfield ‘c’, the user has established that this accessing type will be int, so the generated code
uses int32_t instead of automatically use uint16_t.

Bitsets can inherit from other bitsets, extending their member set.

bitset ParentBitset
{
 bitfield<3> parent_member;
};

bitset ChildBitset : ParentBitset
{
 bitfield<10> child_member;
};

In this case, the resulting C++ code will be:

class ParentBitset
{
 std::bitset<3> parent_member;
};

class ChildBitset : public ParentBitset
{
 std::bitset<10> child_member;
};

Note that in this case, ChildBitset will have two std::bitset data members, one belonging to
ParentBitset and the other belonging to ChildBitset.

5.1.8. Enumerations

An enumeration in IDL format is a collection of identifiers that have an associated numeric value.
An IDL enumeration type is mapped directly to the corresponding C++11 enumeration definition.

The following IDL enumeration:

enum Enumeration
{
 RED,
 GREEN,
 BLUE
};

Would be converted to:

enum Enumeration : uint32_t
{
 RED,
 GREEN,
 BLUE
};

5.1.9. Bitmasks

Bitmasks are a special kind of Enumeration to manage masks of bits.
It allows defining bit masks based on their position.

The following IDL bitmask:

@bit_bound(8)
bitmask MyBitMask
{
 @position(0) flag0,
 @position(1) flag1,
 @position(4) flag4,
 @position(6) flag6,
 flag7
};

Would be converted to:

enum MyBitMask : uint8_t
{
 flag0 = 0x01 << 0,
 flag1 = 0x01 << 1,
 flag4 = 0x01 << 4,
 flag6 = 0x01 << 6,
 flag7 = 0x01 << 7
};

The annotation bit_bound defines the width of the associated enumeration.
It must be a positive number between 1 and 64.
If omitted, it will be 32 bits.
For each flag, the user can use the annotation position to define the position of the flag.
If omitted, it will be auto incremented from the last defined flag, starting at 0.

5.1.10. Data types with a key

In order to use keyed topics, the user should define some key members inside the structure.
This is achieved by writing the @Key annotation before the members of the structure that are used as keys.
For example in the following IDL file the id and type field would be the keys:

struct MyType
{
 @Key long id;
 @Key string type;
 long positionX;
 long positionY;
};

Fast DDS-Gen automatically detects these tags and correctly generates the serialization methods for the key generation
function in TopicDataType (getKey()).
This function will obtain the 128-bit MD5 digest of the big-endian serialization of the Key Members.

5.2. Including other IDL files

Other IDL files can be included in addition to the current IDL file.
Fast DDS-Gen uses a C/C++ preprocessor for this purpose, and #include directive can be used to include an IDL
file.

#include "OtherFile.idl"
#include <AnotherFile.idl>

If Fast DDS-Gen does not find a C/C++ preprocessor in default system paths, the preprocessor path can be specified
using parameter -ppPath.
The parameter -ppDisable can be used to disable the usage of the C/C++ preprocessor.

5.3. Annotations

The application allows the user to define and use their own annotations as defined in the
OMG IDL 4.2 specification [https://www.omg.org/spec/IDL/4.2/].
User annotations will be passed to TypeObject generated code if the -typeobject argument was used.

@annotation MyAnnotation
{
 long value;
 string name;
};

Additionally, the following standard annotations are builtin (recognized and passed to TypeObject when unimplemented).

	Annotation

	Implemented behavior

	@id

	[Unimplemented] Assign a 32-bit integer identifier to an element.

	@autoid

	[Unimplemented] Automatically allocate identifiers to the elements.

	@optional

	[Unimplemented] Setting an element as optional.

	@extensibility

	[Unimplemented] Applied to any element which is constructed. Allow specifying how the

element is allowed to evolve.

	@final

	[Unimplemented] Shortcut for @extensibility(FINAL)

	@appendable

	[Unimplemented] Shortcut for @extensibility(APPENDABLE)

	@mutable

	[Unimplemented] Shortcut for @extensibility(MUTABLE)

	@position

	Setting a position to an element or group of elements. Used by bitmasks.

	@value

	[Unimplemented] Allow setting a constant value to any element.

	@key

	Alias for eProsima’s @Key annotation. Indicate that a data member is part of the key

(please refer to Topics, keys and instances for more information).

	@must_understand

	[Unimplemented] Indicate that the data member must be understood by any application

making use of that piece of data.

	@default_literal

	[Unimplemented] Allow selecting one member as the default within a collection.

	@default

	Allow specifying the default value of the annotated element.

	@range

	[Unimplemented] Allow specifying a range of allowed values for the annotated element.

	@min

	[Unimplemented] Allow specifying a minimum value for the annotated element.

	@max

	[Unimplemented] Allow specifying a maximum value for the annotated element.

	@unit

	[Unimplemented] Allow specifying a unit of measurement for the annotated element.

	@bit_bound

	Allow setting a size to a bitmasks.

	@external

	[Unimplemented] Force the annotated element to be placed in a dedicated data space.

	@nested

	[Unimplemented] Allow indicating that the objects from the type under annotation will

always be nested within another one.

	@verbatim

	[Unimplemented] Allow injecting some user-provided information into what the compiler

will generate.

	@service

	[Unimplemented] Allow indicating that an interface is to be treated as a service.

	@oneway

	[Unimplemented] Allow indicating that an operation is one way only, meaning that

related information flow will go from client to server but not back.

	@ami

	[Unimplemented] Allow indicating that an interface or an operation is to be made

callable asynchronously.

	@non_serialized

	The annotated member will be omitted from serialization.

Most unimplemented annotations are related to Extended Types.

5.4. Forward declaration

Fast DDS-Gen supports forward declarations.
This allows declaring inter-dependant structures, unions, etc.

struct ForwardStruct;

union ForwardUnion;

struct ForwardStruct
{
 ForwardUnion fw_union;
};

union ForwardUnion switch (long)
{
 case 0:
 ForwardStruct fw_struct;
 default:
 string empty;
};

5.5. IDL 4.2 aliases

IDL 4.2 allows using the following names for primitive types:

	int8

	uint8

	int16

	uint16

	int32

	uint32

	int64

	uint64

5.6. IDL 4.2 comments

There are two ways to write IDL comments:

	The characters /* start a comment, which terminates with the characters */.

	The characters // start a comment, which terminates at the end of the line on which they occur.

Please refer to the IDL 4.2 specification [https://www.omg.org/spec/IDL/4.2/PDF] (Section 7.2 Lexical Conventions)
for more information on IDL conventions.

/* MyStruct definition */
struct MyStruc
{
 string mymessage; // mymessage data member.
};

 1. CLI

1. CLI

The Fast DDS command line interface provides a set commands and sub-commands to perform, Fast DDS
related, maintenance and configuration tasks.

An executable file for Linux and Windows that runs the Fast DDS CLI application is
available in the tools folder.
If the tools/fastdds folder path is added to the PATH, or by sourcing the <path/to/fastdds>/install/setup.bash
configuration file, Fast DDS CLI can be executed running the following commands:

	Linux:

$ fastdds <command> [<command-args>]

	Windows:

> fastdds.bat <command> [<command-args>]

There are two verbs whose functionality is described in the following table:

	Verbs

	Description

	discovery

	Launches a server for Discovery Server.

	shm

	Allows manual cleaning of garbage files that may be generated by
Shared Memory Transport

1.1. discovery

This command launches a SERVER (or BACKUP) for Discovery Server. This server will manage
the discovery phases of the CLIENTS which are connected to it.
Clients must know how to reach the server, which is accomplished by specifying an IP address, the servers GUID
prefix, and a transport protocol like UDP or TCP.
Servers do not need any prior knowledge of their clients, but require a GUID prefix, and the listening IP address
where they may be reached.
For more information on the different Fast DDS discovery mechanisms and how to configure them, please refer to
Discovery.

Important

It is possible to interconnect servers (or backup servers) instantiated with fastdds discovery using
environment variable ROS_DISCOVERY_SERVER (see ROS_DISCOVERY_SERVER) or a XML configuration
file.

1.1.1. How to run

On a shell, execute:

fastdds discovery -i {0-255} [optional parameters]

Where the parameters are:

	Option

	Description

	-i --server-id

	Unique server identifier. Specifies zero based server position in

ROS_DISCOVERY_SERVER environment variable. Must be an integer in range [0, 255]

If not specified, it must be defined using a XML configuration file.

	-h -help

	Produce help message.

	-l --ip-address

	IPv4 address chosen to listen the clients. Defaults to any (0.0.0.0). Instead of an

address, a name can be specified (see Configure Discovery Server locators using names)

	-p --port

	UDP port chosen to listen the clients. Defaults to ‘11811’.

	-b --backup

	Creates a BACKUP server (see Discovery Protocol)

	-x --xml-file

	XML configuration file (see XML profiles). In this case, the default

configuration file is not loaded. The CLI options override XML configuration for

that specific parameter. The default profile in the XML file is loaded except if

a specific profile name is specified: profile_name@xml_file

The output is:

Server is running
 Participant Type: <SERVER|BACKUP>
 Server ID: <server-id>
 Server GUID prefix: 44.53.<server-id-in-hex>.5f.45.50.52.4f.53.49.4d.41
 Server Addresses: UDPv4:[<ip-address>]:<port>
 UDPv4:[<ip-address>]:<port>

Once the server is instantiated, the clients can be configured either programmatically or by XML (see
Discovery Server Settings), or using environment variable ROS_DISCOVERY_SERVER (see
ROS_DISCOVERY_SERVER)

1.1.2. Examples

	Launch a default server with id 0 (first on ROS_DISCOVERY_SERVER)
listening on all available interfaces on UDP port ‘11811’. Only one
server can use default values per machine.

fastdds discovery -i 0

Output:

Server is running
 Participant Type: SERVER
 Server ID: 0
 Server GUID prefix: 44.53.00.5f.45.50.52.4f.53.49.4d.41
 Server Addresses: UDPv4:[0.0.0.0]:11811

	Launch a default server with id 1 (second on ROS_DISCOVERY_SERVER)
listening on localhost with UDP port 14520. Only localhost clients
can reach the server defining as ROS_DISCOVERY_SERVER=;127.0.0.1:14520 .

fastdds discovery -i 1 -l 127.0.0.1 -p 14520

Output:

Server is running
 Participant Type: SERVER
 Server ID: 1
 Server GUID prefix: 44.53.01.5f.45.50.52.4f.53.49.4d.41
 Server Addresses: UDPv4:[127.0.0.1]:14520

This same output can be obtained loading the following XML configuration file DiscoveryServerCLI.xml:

<participant profile_name="participant_profile_discovery_server_cli" is_default_profile="true">
 <rtps>
 <prefix>44.53.01.5f.45.50.52.4f.53.49.4d.41</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>localhost</address>
 <port>14520</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
</participant>

<participant profile_name="second_participant_profile_discovery_server_cli">
 <rtps>
 <prefix>44.53.02.5f.45.50.52.4f.53.49.4d.41</prefix>
 <builtin>
 <discovery_config>
 <discoveryProtocol>SERVER</discoveryProtocol>
 </discovery_config>
 <metatrafficUnicastLocatorList>
 <locator>
 <udpv4>
 <address>192.168.36.34</address>
 <port>8783</port>
 </udpv4>
 </locator>
 <locator>
 <udpv4>
 <address>172.20.96.1</address>
 <port>51083</port>
 </udpv4>
 </locator>
 </metatrafficUnicastLocatorList>
 </builtin>
 </rtps>
</participant>

fastdds discovery -x [PATH_TO_FILE]/DiscoveryServerCLI.xml

	Launch a default server with id 2 (third on ROS_DISCOVERY_SERVER)
listening on WiFi (192.168.36.34) and Ethernet (172.20.96.1) local
interfaces with UDP ports 8783 and 51083 respectively
(addresses and ports are made up for the example).

fastdds discovery -i 2 -l 192.168.36.34 -p 8783 -l 172.20.96.1 -p 51083

Output:

Server is running
 Participant Type SERVER
 Server ID: 2
 Server GUID prefix: 44.53.02.5f.45.50.52.4f.53.49.4d.41
 Server Addresses: UDPv4:[192.168.36.34]:8783
 UDPv4:[172.20.96.1]:51083

Using the same XML configuration file of the previous example, the same output can be obtained loading a specific

fastdds discovery -x second_participant_profile_discovery_server_cli@[PATH_TO_FILE]/DiscoveryServerCLI.xml

	Launch a default server with id 3 (fourth on ROS_DISCOVERY_SERVER)
listening on 172.30.144.1 with UDP port 12345 and provided with a
backup file. If the server crashes it will automatically restore its
previous state when re-enacted.

fastdds discovery -i 3 -l 172.30.144.1 -p 12345 -b

Output:

Server is running
 Participant Type BACKUP
 Server ID: 3
 Server GUID prefix: 44.53.03.5f.45.50.52.4f.53.49.4d.41
 Server Addresses: UDPv4:[172.30.144.1]:12345

	Launch a default server with id 0 (first on ROS_DISCOVERY_SERVER)
listening on localhost with UDP port 14520. Only localhost clients
can reach the server defining as ROS_DISCOVERY_SERVER=localhost:14520.

fastdds discovery -i 0 -l localhost -p 14520

Output:

Server is running
Participant Type: SERVER
Server ID: 0
Server GUID prefix: 44.53.00.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[127.0.0.1]:14520

1.2. shm

Provides maintenance tasks related with Shared Memory Transport. Shared Memory transport creates
Segments, blocks of memory accessible from different processes.
Zombie files are memory blocks that were reserved by shared memory and are no longer in use which take up valuable
memory resources.
This tool finds and frees those memory allocations.

fastdds shm [<shm-command>]

	Sub-command

	Description

	clean

	Cleans SHM zombie files.

	Option

	Description

	-h -help

	Produce help message.

 1. Docker Images

1. Docker Images

eProsima provides the Fast DDS and the Fast DDS Suite Docker images for those who want a quick demonstration of Fast DDS running on an Ubuntu
platform.
They can be downloaded from eProsima’s downloads page [https://eprosima.com/index.php/downloads-all].

This Docker images were built for Ubuntu 22.04 (Focal Fossa).

To run a container you need Docker installed. From a terminal, run:

sudo apt install docker.io

	1.1. Fast DDS Image
	1.1.1. Fast DDS Examples

	1.2. Fast DDS Suite Image
	1.2.1. Fast DDS Examples

	1.2.2. Shapes Demo

	1.2.3. Fast DDS Monitor

	1.2.4. DDS Router

	1.2.5. PlotJuggler eProsima Edition

 1.1. Fast DDS Image

1.1. Fast DDS Image

This Docker image contains the Fast DDS library and its dependencies, ready to be used in a final user application.
This includes:

	eProsima Fast DDS libraries and examples: Fast DDS libraries bundled with several
examples that showcase a variety of capabilities of eProsima’s Fast DDS implementation.

To load this image into your Docker repository, from a terminal, run:

docker load -i "ubuntu-fastdds <FastDDS-Version>.tar"

You can run this Docker container as follows:

docker run -it ubuntu-fastdds:<FastDDS-Version>

From the resulting Bash Shell you can run each feature.

1.1.1. Fast DDS Examples

Included in this Docker container is a set of binary examples that showcase several functionalities of the
Fast DDS libraries.
These examples’ path can be accessed from a terminal by typing:

goToExamples

From this folder, you can access all examples, both for DDS and RTPS layers.

1.1.1.1. Hello World Example

This is a minimal example that will perform a Publisher/Subscriber match and start sending samples.

goToExamples
cd dds/HelloWorldExample/bin
tmux new-session "./DDSHelloWorldExample publisher 0 1000" \; \
 split-window "./DDSHelloWorldExample subscriber" \; \
 select-layout even-vertical

This example is not constrained to the current instance.
It’s possible to run several instances of this container to check the communication between them by running the
following from each container.

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample publisher

or

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample subscriber

1.1.1.2. Benchmark Example

This example creates either a Publisher or a Subscriber and on a successful match starts sending samples.
After a few seconds the process that launched the Publisher will show a report with the number of samples transmitted.

On the subscriber side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark subscriber udp

On the publisher side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark publisher udp

 1.2. Fast DDS Suite Image

1.2. Fast DDS Suite Image

This Docker image contains the complete Fast DDS suite. This includes:

	eProsima Fast DDS libraries and examples: Fast DDS libraries bundled with several
examples that showcase a variety of capabilities of eProsima’s Fast DDS implementation.

	Shapes Demo: eProsima Shapes Demo is an application in which Publishers and
Subscribers are shapes of different colors and sizes moving on a board. Each shape refers to its own topic: Square,
Triangle or Circle. A single instance of the eProsima Shapes Demo can publish on or subscribe to several topics at
a time.

You can read more about this application on the Shapes Demo documentation page [https://eprosima-shapes-demo.readthedocs.io/].

	Fast DDS Monitor: eProsima Fast DDS Monitor is a graphical desktop application aimed
at monitoring DDS environments deployed using the eProsima Fast DDS library. Thus, the user can monitor in real
time the status of publication/subscription communications between DDS entities. They can also choose from a wide
variety of communication parameters to be measured (latency, throughput, packet loss, etc.), as well as record and
compute in real time statistical measurements on these parameters (mean, variance, standard deviation, etc.).

You can read more about this application on the Fast DDS Monitor documentation page [https://fast-dds-monitor.readthedocs.io/].

	DDS Router: eProsima DDS Router is an end-user software application that enables
the connection of distributed DDS networks.
That is, DDS entities such as publishers and subscribers deployed in one geographic location and using a dedicated
local network will be able to communicate with other DDS entities deployed in different geographic areas on their own
dedicated local networks as if they were all on the same network through the use of eProsima DDS Router.
This is achieved by deploying a DDS Router on an edge device of each local network so that the DDS Router routes DDS
traffic from one network to the other through WAN communication.

You can read more about this application on the
DDS Router documentation website [https://eprosima-dds-router.readthedocs.io].

	Plotjuggler eProsima Edition: eProsima Fast DDS Visualizer Plugin is a plugin
for the PlotJuggler application.
PlotJuggler is a graphical desktop application providing visualization features
of data series, time series, X-Y plots.
It also adds data management features, such as
data import and export, custom and built-in data manipulation functions,
data series merges, etc.
Also, this software supports many different layouts, with dynamic, rich and user-friendly customization.

You can read more about this application on the
Plotjuggler eProsima Edition documentation website [https://plotjuggler-fastdds-plugins.readthedocs.io/en/latest/].

To load this image into your Docker repository, from a terminal run

docker load -i "ubuntu-fastdds-suite <FastDDS-Version>.tar"

You can run this Docker container as follows

xhost local:root
docker run -it --privileged -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix \
ubuntu-fastdds-suite:<FastDDS-Version>

From the resulting Bash Shell you can run each feature.

1.2.1. Fast DDS Examples

Included in this Docker container is a set of binary examples that showcase several functionalities of the
Fast DDS libraries. These examples’ path can be accessed from a terminal by typing

goToExamples

From this folder you can access all examples, both for DDS and RTPS. We detail the steps to launch two such
examples below.

1.2.1.1. Hello World Example

This is a minimal example that will perform a Publisher/Subscriber match and start sending samples.

goToExamples
cd dds/HelloWorldExample/bin
tmux new-session "./DDSHelloWorldExample publisher 0 1000" \; \
 split-window "./DDSHelloWorldExample subscriber" \; \
 select-layout even-vertical

This example is not constrained to the current instance. It’s possible to run several instances of this
container to check the communication between them by running the following from each container.

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample publisher

or

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample subscriber

1.2.1.2. Benchmark Example

This example creates either a Publisher or a Subscriber and on a successful match starts sending samples. After a
few seconds the process that launched the Publisher will show a report with the number of samples transmitted.

On the subscriber side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark subscriber udp

On the publisher side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark publisher udp

1.2.2. Shapes Demo

To launch the Shapes Demo, from a terminal run

ShapesDemo

eProsima Shapes Demo usage information can be found on the Shapes Demo documentation [https://eprosima-shapes-demo.readthedocs.io/en/latest/first_steps/first_steps.html].

1.2.3. Fast DDS Monitor

To launch the Fast DDS Monitor, from a terminal run

fastdds_monitor

eProsima Fast DDS Monitor user manual can be found on the Fast DDS Monitor documentation [https://fast-dds-monitor.readthedocs.io/en/latest/rst/user_manual/initialize_monitoring.html].

1.2.4. DDS Router

This example configures a DDS Router to communicate a publisher and subscriber running in different DDS Domains.

Run the following command to create the DDS Router yaml configuration file (/config.yml).

echo "version: v2.0
participants:
 - name: simple_dds_participant_0
 kind: local
 domain: 0
 - name: simple_dds_participant_1
 kind: local
 domain: 1" > /config.yml

Then execute the following command to run the Publisher in Domain 0, the Subscriber in Domain 1, and the
DDS Router communicating both Domains.

goToExamples
cd dds/BasicConfigurationExample/bin
tmux new-session \
 "ddsrouter --config-path /config.yml" \; \
 split-window -h "./BasicConfigurationExample publisher --domain 0 --interval 1000 --transport udp" \; \
 split-window -v "./BasicConfigurationExample subscriber --domain 1 --transport udp"

eProsima DDS Router usage information can be found on the DDS Router documentation [https://eprosima-dds-router.readthedocs.io/en/latest/rst/getting_started/project_overview.html].

1.2.5. PlotJuggler eProsima Edition

To launch the PlotJuggler eProsima Edition, from a terminal run

plotjuggler

eProsima PlotJuggler eProsima Edition usage information can be located on the PlotJuggler eProsima Edition User Manual [https://plotjuggler-fastdds-plugins.readthedocs.io/en/latest/].

 Version 2.7.2 (EOL)

 Information about the release lifecycle can be found
here [https://github.com/eProsima/Fast-DDS/blob/master/RELEASE_SUPPORT.md].

Version 2.7.2 (EOL)

This release includes the following improvements:

	Skip writer_removed processing for unaccounted instances.

	Improve GUID_t operator < performance.

This release also includes the following bugfixes:

	Fix complex member printing for DynamicDataHelper.

	Add python3 dependency.

	Fix selection of output locators.

	Fix data races when creating DataWriters.

	Fix null dereferences on XML parser.

	Send GAPs correctly when using separate sending.

	Install Statistics IDL file.

	Fixes for building in old compilers.

	Fix several deadlocks.

	Fix communication with asymmetric Ignore Participant flags.

	Fix notification lost.

	Fix StatelessWriter ACK check.

	Fix total_read_ to be consistent with Reader’s History after
DataReader::get_first_untaken_info().

	Fix doxygen documentation adding deprecated to ThroughputControllerDescriptor.

	Several dependencies fixes upgrading to Ubuntu 22.04.

	Ensure shared_mutex implementation is consistent throughout supported platforms.

	Fix StatisticsSubmessageData unaligned access.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Previous versions

Version 2.7.1 (EOL)

This release includes the following features in an ABI compatible way:

	Checking STATIC EDP XML Files by means of DomainParticipantFactory::check_xml_static_discovery().

	ReadCondition implementation.

This release includes the following improvements:

	Thread sanitizer CI.

	Overload get_unread_count().

	Improve read/take performance when using topic with a great number of keys.

	Improve rediscovery on lossy environments.

	New CMake option USE_THIRDPARTY_SHARED_MUTEX.

	Notify changes in bulk in RTPS readers.

This release includes the following bugfixes:

	Fix Fast CDR submodule update to v1.0.24.

	Fix access to some pointers.

	Fixed validation on ParameterPropertyList_t.

	Fixed acknowledgement in DataSharing.

	Fixed wrong usage of std::remove_if.

	Suppress OpenSSL 3.0 warnings.

	Fixed race condition in Logging module.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.7.0 (EOL)

This release includes the following improvements:

	Support for DDS SampleRejectedStatus API

	Support for DDS DataWriter methods:

	DataWriter::write_w_timestamp()

	DataWriter::register_instance_w_timestamp()

	DataWriter::unregister_instance_w_timestamp()

	DataWriter::dispose_w_timestamp()

	Support for DDS find_topic()

	Support for GCC 12

	Upgrade CMake minimum requirement to 3.16.3

	Add Windows DLL support to Dynamic Types API

Some bugfixes are also included:

	Deadlocks and data races

	Move deprecated OpenSSL cleanup function to match the right version

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.6.2

This release includes the following improvements:

	Support for GCC 12.

	Overload DataReader::get_unread_count().

	Improve read/take performance when using topic with a great number of keys.

	Improve rediscovery on lossy environments.

This release includes the following bugfixes:

	Fixed several deadlocks and data races.

	Fixed validation on ParameterPropertyList_t.

	Fixed wrong usage of std::remove_if.

	Fixed acknowledgement in DataSharing.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.6.1

This release includes the following improvements:

	Support for writer side content filtering

	Support hexadecimal values on SQL filter

	Support for DataWriter::get_key_value()

	Support for DataReader::lookup_instance()

	Support for SampleLostStatus on DataReader

	Improved doxygen documentation

Some bugfixes are also included:

	Fixed several lock order inversion issues

	Fixed data race when closing UDP channels

	Fixed empty partition validation checks

	Fixed corner case with reliable writers and samples with a huge number of fragments

	Other minor fixes and improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.6.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols on
dynamic libraries may have changed. Some API is also being deprecated.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on dynamic
libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Allow modifying remote server locators at runtime

	Add statistics physical information to DATA[p] using properties

	Content filter discovery information RTPS API

	Endpoint discovery RTPS API

	on_sample_lost RTPS API

	Transport layer API extension

	XML support for Fast DDS CLI

	New exchange format to reduce bandwidth in Static Discovery

It also includes the following improvements:

	Support lowercase keywords on SQL filter

	Separate initialization and enabling of BuiltinProtocols

	Add disable_positive_acks to Static Discovery XML

	Several updates in the DDS-PIM API

	Support for octet vectors on XML parser

	Update README and roadmap

	Update Fast-CDR submodule to v1.0.24

	Add new CMake option APPEND_PROJECT_NAME_TO_INCLUDEDIR

Some bugfixes are also included:

	Fix MatchedStatus last_*_handle

	Fix recommended statistics DataReaderQos to enable backwards compatibility

	Fixes for supporting Python bindings in Windows platforms

	Fix publishing physical data on statistics topic

	Other minor fixes and improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.5.2 (EOL)

This release includes the following improvements:

	Support lowercase keywords and hexadecimal values on SQL filter.

	Support for GCC 12.

This release includes the following bugfixes:

	Fix MatchedStatus last_*_handle.

	Fix recommended statistics DataReaderQos to enable backwards compatibility.

	Fix deadlocks and data races.

	Fix empty partition validation checks.

	Fix corner case with reliable writers and samples with a huge number of fragments.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.5.1 (EOL)

This release includes the following improvements:

	ContentFilterTopic filtering at the DataReader side.

	Release lifecycle.

This release includes the following bugfixes:

	XML parser fixes.

	Discovery Server fixes.

	Fix DataSharing sample validation.

	PKCS#11 support fixes.

	Test fixes.

	Doxygen documentation fixes.

	GAP message fix.

	Enable memory protection on DataSharing readers.

	TCP reconnection issues.

	Fix dynamic network interfaces feature.

	Several Security module fixes.

	STRICT_REALTIME fix.

	Suppress OpenSSL 3.0 warnings.

	Move optionparser to thirdparty.

	Thread-safe access to endpoints collections.

	MemberDescriptor fully qualified name.

	Setting QoS fix.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.5.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Support for PKCS#11 format URIs for private keys

	Added interfaces for content filter APIs

	Allow new network interfaces to be detected at runtime

	New API on DataWriter to wait for a specific instance to be acknowledged

	Added interfaces for concatenation of transports

	Allow XML profiles to be loaded from a string

	Allow disabling piggyback heartbeat on XML and DataWriter QoS

	New basic configuration example

It also includes the following improvements:

	Working implementation of instance_state and view_state

	Allow zero-valued keys

	Made some type aliases public to ease python bindings integration

	Improved performance by avoiding unnecessary payload copies for samples that are going to be rejected

	Removed unnecessary headers from Log module public headers

	Add support for Key annotation in TypeObjectFactory

	Only export public symbols on non-windows platforms

	Some documentation improvements

Some important bugfixes are also included:

	Fixed payload pool handling on EDPSimple destructor

	Fixed null dereference on XML parser

	Correctly export XTypes related methods on Windows

	Ensure correct boost singleton destruction order

	Avoid warning when environment file filename is empty

	Correctly set GUID of DataWriter and DataReader upon creation

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.4.2 (EOL)

This release includes the following improvements:

	Enable memory protection on DataSharing readers

	Add const overload of DataReader::guid()

	Set recommended statistics DataReaderQos to PREALLOCATED_WITH_REALLOC

	Allow fully qualified name on MemberDescriptor

This release includes the following bugfixes:

	Fix and refactor EDPSimple destructor

	Fix several build warnings on certain platforms

	Fix OSS fuzz issues

	Fix TCP synchronization issues

	Correct reporting of MatchedStatus last_*_handle

	Ensure correct boost singleton destruction order

	Fix inserting minimum CacheChange_t in GAP message

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 2.4.1 (EOL)

This release includes the following improvements:

	Fixed several flaky tests

	Improved bandwidth usage of GAPs and HEARTBEATs

	Correctly implement delete_contained_entities

	Use native inter-process on Windows

	Improved performance of unregister_instance

	Improved OSS-fuzz integration

	Support for partitions on DataWriterQoS and DataReaderQoS

	Some documentation improvements

	Removed unused macro to avoid naming clashes

This release includes the following bugfixes:

	Avoid bad_node_size exception when cross building

	Fixed build on old compilers

	Fixed buffers exhaustion when compiled with statistics

	Fixed runtime addition of Discovery Servers

	Fixed dangling sample references with big data

	Fixed history record issues with persistence

	Correctly disable DataReader on destruction

	Fixed alignment issues on XTypes QoS policies serialization

	Fixed reconnection to Discovery Server

	Correctly use builtin publisher for statistics DataWriters

	Fixed various GCC-11 warnings

	Use only public APIs from foonathan::memory

	Fixed installation directories for DDS examples

	Fixed read after free on security code

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.4.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Conditions and Wait-sets implementation.

	Flow controllers.

	Configure Discovery Server locators using names.

	Modifying remote servers list at run time.

	Environment file override.

It also includes the following improvements:

	Allow setting custom folder for data-sharing files.

	Allow setting persistence guid with static discovery.

	Check for NDEBUG in logInfo.

	Removed old unused CMake code.

	Fixed TLS behavior on TCP example.

	Prepare API for easy integration of python bindings.

	Improved statistics performance.

Some important bugfixes are also included:

	Fixed order of returned samples on topics with keys.

	Allow updating partitions to an empty set.

	Correctly propagate DomainParticipantQos updates.

	Avoid a volatile data-sharing reader to block a writer.

	Correctly give priority to intra-process over data-sharing.

	Fixed reallocation issue on LivelinessManager.

	Fixed deadline issue on volatile DataWriter

	Fixed STRICT_REALTIME silently not active with Unix POSIX systems.

	Fixed build errors with OpenSSL 3.0

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.5 (EOL)

This release includes the following improvements:

	Fixed several flaky tests.

	Use native inter-process on Windows.

	Support for partitions on DataWriterQoS and DataReaderQoS.

	Support for GCC 12.

	Correctly implement delete_contained_entities.

This release also includes the following bugfixes:

	Fixed deadline issue on volatile DataWriter.

	Allow updating partitions to an empty set.

	Fixed order of returned samples on topics with keys.

	Fixed issues in LivelinessManager.

	Correctly give priority to intra-process over data-sharing.

	Avoid bad_node_size exception when cross-building.

	Fixed build errors with OpenSSL 3.0.

	Avoid a volatile data-sharing reader to block a writer.

	Fixed history record issues with persistence.

	Correctly disable DataReader on destruction.

	Fixed various GCC 11 warnings.

	Fixed payload pool handling on EDPSimple destructor.

	Fixed read after free on security code.

	Fixed null dereference on XML parser.

	Ensure correct boost singleton destruction order.

	Enable memory protection on DataSharing readers.

	TCP reconnection issues.

	MemberDescriptor fully qualified name.

	Fix recommended statistics DataReaderQos to enable backwards compatibility.

	Fixed dangling sample references with big data.

	Fixed deadlocks and data races.

	Fixed reconnection to Discovery Server.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.4 (EOL)

This release includes the following improvements:

	Support of googletest using colcon

	Network latency reports source participant

	Update Fast DDS Gen to v2.0.2

This release includes the following bugfixes:

	Fix mutex lock count on PDPListener

	Limit SequenceNumberSet number of bits on deserialization

	Fix segmentation fault on discovery server

	Fix deadlock with security and timers

	Fix bug using not protected code in a test

	Fix deadlock with LivelinessManager

	Fix interval loop on events

	Fix run event when was cancelled

	Validate sequence range on CDRMessage::readSequenceNumberSet

	Fix subscription throughput data generation

	Allow examples to build on QNX

	Fix code on SHM clean

	Accept Statistics DataWriters in Discovery Server

	Fix read/take behavior when a future change is found

	Correctly handle deserialization errors on read_next_sample() / take_next_sample()

	Fixing SequenceNumberSet_t deserialization

	Proper history clean up when a reader unmatches a writer

	Unprotected code loaning samples

	Fix publication throughput statistic on volatile writers

	Fix Fast DDS CLI server name

	Several fixes in examples and tests

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.3 (EOL)

This release includes the following improvements:

	Added more durability kinds in Static Discovery xml parser

	Explicitly enable/disable data-sharing on performance tests

	Allow fully qualified name in TypeDescriptor

	Added missing DynamicData::get_union_id() method

	Change log severity in DiscoveryServer first announcement

	Several corrections to README

This release includes the following bugfixes:

	Fixed warnings and segfaults on 32-bit platforms

	Fixed UDPv6 behavior

	Fixed persistence guid issue on statistics writers

	Fixed static linking with open SSL

	Fixed statistics header file inclusion

	Fixed build on RedHat systems

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.2 (EOL)

This release includes the following feature:

	Statistics Module

It also includes the following improvements:

	Update Asio submodule and avoid exporting Asio API

	Improve Windows installers

	Ease Google Fuzz integration

	Improve Doxygen documentation on lifetime of pointers created with RTPSDomain

	Update Fast CDR to v1.0.21

This release includes the following bugfixes:

	Add a correct multicast address for UDPv6

	Recover from out-of-sync TCP datagrams

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.1 (EOL)

This release includes several bugfixes and improvements:

	Added Fast DDS Statistics Module implementation

	Fixed alignment issues on generated code calculation of maximum serialized size

	Fixed calculation of data-sharing domain id

	Fixed issues on data-sharing with volatile writers

	Fixed build issues on old compilers

	Fixed some tests when the library is built without security

	Fixed and exposed pull mode on writers

	Fixed handling of –data_sharing on latency test

	Fixed calculation of memory pools sizes on debug builds

	Correctly update memory policy on writers and readers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.3.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

	Unique network flows

	Discovery super-client

	Statistics module API

	New flow controller API

	Static discovery configuration from raw string

	Added reception timestamp to SampleInfo

	Exposing get_unread_count on DataReader

It also includes the following improvements:

	Data-sharing delivery internal refactor

	Additional metadata on persistence databases

	Refactor on ReturnCode_t to make it switch friendly

	Performance tests refactored to use DDS-PIM high-level API

	Receive const pointers on delete_xxx methods

	Discovery server improvements

	Made SOVERSION follow major.minor

Some important bugfixes are also included:

	Fixed shared memory usage on QNX

	Fixed reference counting on internal pools

	Fixed singleton destruction order

	Fixed interoperability issues with x-types information

	Fixed recovery of shared memory buffers

	Lifespan support in persistent writers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.2.1 (EOL)

This release includes the following improvements:

	Data-sharing delivery internal refactor.

	Performance tests refactored to use DDS-PIM high-level API.

	Discovery server improvements.

This release includes the following bugfixes:

	Fixed reference counting on internal pools.

	Fixed singleton destruction order.

	Fixed default multicast locators.

	Fixed interoperability issues with x-types information.

	Fixed Reader history issues.

	Fixed data races issues.

	Fixed shared memory issues.

	Fixed heartbeat and ACK issues.

	Fixed LivelinessManager issues.

	Fixed TCP reception synchronization.

	Fixed build issues on old compilers.

	Allow modifying Partition QoS in enabled entities.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.2.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

	Data Sharing delivery (avoids transport encapsulation for localhost communications)

	Complete DDS-PIM high-level API declarations

	Extension APIs allowing zero-copy delivery (both intra-process and inter-process)

	Upgrade to Quality Level 1

It also includes the following improvements:

	Code coverage policy

	Added several tests to increase coverage

	Increased GUID uniqueness

	Allow logInfo messages to be compiled on build types other than debug

Some important bugfixes are also included:

	Fixed timed events manager race condition

	Fixed payload protection issues with SHM transport

	Writers correctly handle infinite resource limits on keyed topics

	Fixed unsafe code on AESGCMGMAC plugin

	Several fixes for IPv6 (whitelists, address parser)

	Fixes on liveliness timing handling

	Fixed warnings building on C++20

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

Version 2.1.2

This release includes the following improvements:

	Allow fully qualified name in TypeDescriptor.

	Use native inter-process on Windows.

	Support for GCC 12.

	Support of googletest using colcon.

This release also includes the following bugfixes:

	Fixed recovery of shared memory buffers.

	Fixed issues in LivelinessManager.

	Fixed default multicast locators.

	Fixed TCP issues.

	Fixed deadlocks and data races.

	Fixed deadline issue on volatile DataWriter.

	Avoid bad_node_size exception when cross-building.

	Fixed order of returned samples on topics with keys.

	Allow updating partitions to an empty set.

	Suppress OpenSSL 3.0 warnings.

	MemberDescriptor fully qualified name.

	Fixed history record issues with persistence.

	Fixed reconnection to Discovery Server.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.1.1

This release includes the following bugfixes:

	Fixed race condition on security handshake

	Fixed SHM data corruption when using both payload and sub-message protection

	Fixed some interoperability issues

	Fixed race condition on timed-events thread

	Fixed usage of SHM on QNX systems

It also includes the following improvements:

	Increased uniqueness of GUID prefix

	Discovery server improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.1.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

Users of the RTPS low-level API should also be aware of the following API deprecations:

	History::reserve_Cache has been deprecated

	Methods RTPSWriter::new_change or RTPSReader::reserveCache should be used instead

	History::release_Cache has been deprecated

	Methods RTPSWriter::release_change or RTPSReader::releaseCache should be used instead

This release adds the following features:

	Support persistence for large data

	Added support for on_requested_incompatible_qos and on_offered_incompatible_qos

	SKIP_DEFAULT_XML environment variable

	Added FORCE value to THIRDPARTY cmake options

	New log consumer (StdOutErrConsumer)

	Added methods to get qos defined in XML Profile

	Support for persistence on TRANSIENT_LOCAL

It also includes the following improvements:

	Internal refactor for intra-process performance boost

	Allow usage of foonathan/memory library built without debug tool

	Large data support on performance tests

	Reduced flakiness of several tests

Some important bugfixes are also included:

	Fixed behavior of several DDS API methods

	Fixed interoperability issues with RTI connext

	Fixed DLL export of some methods

	Avoid redefinition of compiler defined macros

	Fixed some intra-process related segmentation faults and deadlocks

	Fixed large data payload protection issues on intra-process

	Fixed C++17 and VS 2019 warnings

	Fixed linker problems on some platforms

	Fixed transient local retransmission after participant drop

	Fixed assertion failure on persistent writers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.0.3 (EOL)

It also includes the following improvements:

	Increased uniqueness of GUID prefix (#1648)

	Upgrade Fast CDR to v1.0.20 (#1793)

This release includes the following bugfixes:

	Fixed some race conditions (#1540, #2023)

	Fixed SHM issues (#1644, #1895, #2266)

	Fixed some interoperability issues (#1624, #1752, #1849)

	Fixed Discovery Server 2.0 issues (#1639, #1651, #1761, #1796)

	Fixed several issues on QNX systems (#1744, #1773, #1776)

	Fix singleton destruction order (#1758)

	Fix heartbeat and ACK issues (#1865)

	Fix issues in LivelinessManager (#1872, #2147)

	Fix multicast issues (#1966, #1905)

	Fix TCP reception synchronization (#1981)

	XTypes standard compliance and fixes (#2006, #2278)

	Other minor fixes (#1558, #1734, #1814, #1935, #1978, #2121)

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.0.2 (EOL)

This release includes the following improvements:

	Improve QNX support

	Security improvements

	Fast DDS Quality Declaration (QL 2)

	Large traffic reduction when using Discovery Server (up to 85-90% for large deployments)

	Configuration of Clients of Discovery Server using an environment variable

	A CLI for Fast DDS:

	This can be used to launch a discovery server

	Clean SHM directories with one command

	Shared memory transport enabled by default

	Solved edge-case interoperability issue with CycloneDDS

	Add package.xml

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.0.1 (EOL)

This release includes the following bug fixes:

	Fixed sending GAPs to late joiners

	Fixed asserting liveliness on data reception

	Avoid calling OpenSSL_add_all_algorithms() when not required

Other improvements:

	Fixing warnings

PRs in merge order:
#1295 [https://github.com/eProsima/Fast-DDS/pull/1295],
#1300 [https://github.com/eProsima/Fast-DDS/pull/1300],
#1304 [https://github.com/eProsima/Fast-DDS/pull/1304],
#1290 [https://github.com/eProsima/Fast-DDS/pull/1290],
#1307 [https://github.com/eProsima/Fast-DDS/pull/1307].

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 2.0.0 (EOL)

This release has the following API breaks:

	eClock API, which was deprecated on v1.9.1, has been removed

	eprosima::fastrtps::rtps::RTPSDomain::createParticipant methods now have an additional first argument domain_id

	Data member domainId has been removed from eprosima::fastrtps::rtps::RTPSParticipantAttributes and added to
eprosima::fastrtps::ParticipantAttributes

Users should also be aware of the following deprecation announcement:

	All classes inside the namespace eprosima::fastrtps should be considered deprecated.
Equivalent functionality is offered through namespace eprosima::fastdds.

	Namespaces beneath eprosima::fastrtps are not included in this deprecation, i.e.
eprosima::fastrtps::rtps can still be used)

This release adds the following features:

	Added support for register/unregister/dispose instance

	Added DDS compliant API. This new API exposes all the functionality of the Publisher-Subscriber Fast RTPS API
adhering to the Data Distribution Service (DDS) version 1.4 specification [https://www.omg.org/spec/DDS/1.4]

	Added Security Logging Plugin (contributed by Cannonical Ltd.)

	Bump to FastCDR v1.0.14

It also includes the following bug fixes and improvements:

	Support for OpenSSL 1.1.1d and higher

	Support for latest versions of gtest

	Support for FreeBSD

	Fault tolerance improvements to Shared Memory transport

	Fixed segfault when no network interfaces are detected

	Correctly ignoring length of PID_SENTINEL on parameter list

	Improved traffic on PDP simple mode

	Reduced CPU and memory usage

Version 1.10.1 (EOL)

This release includes the following improvements:

	Add new CMake option: SHM_TRANSPORT_DEFAULT. Shared Memory (SHM) Transport disabled by default.

	Comply with the RTPS standard concerning PID_SENTINEL.

	Support for OpenSSL 1.1.1d.

This release includes the following bugfixes:

	Fix crash when there are no network interfaces.

	Several Shared Memory Transport fixes.

	Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 1.10.0 (EOL)

This release adds the following features:

	New built-in Shared Memory Transport

	Transport API refactored to support locator iterators

	Added subscriber API to retrieve info of first non-taken sample

	Added parameters to fully avoid dynamic allocations

	History of built-in endpoints can be configured

	Bump to FastCDR v1.0.13.

	Bump to Fast-RTPS-Gen v1.0.4.

	Require CMake 3.5 but use policies from 3.13

It also includes the following bug fixes and improvements:

	Fixed alignment on parameter lists

	Fixed error sending more than 256 fragments.

	Fix handling of STRICT_REALTIME.

	Fixed submessage_size calculation on last data_frag.

	Solved an issue when recreating a publishing participant with the same GUID.

	Solved an issue where a publisher could block on write for a long time when a new
subscriber (late joiner) is matched, if the publisher had already sent a large number
of messages.

	Correctly handling the case where lifespan expires at the same time on several samples.

	Solved some issues regarding liveliness on writers with no readers.

	Correctly removing changes from histories on keyed topics.

	Not reusing cache change when sample does not fit.

	Fixed custom wait_until methods when time is in the past.

	Several data races and ABBA locks fixed.

	Reduced CPU and memory usage.

	Reduced flakiness of liveliness tests.

	Allow for more use cases on performance tests.

Several bug fixes on discovery server:

	Fixed local host communications.

	Correctly trimming server history.

	Fixed backup server operation.

	Fixed timing issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

Version 1.9.5 (EOL)

This release includes the following improvements:

	Propagate serialization error when reading samples from Subscriber History.

	Improvements in test suite.

	Improvements to reduce memory consumption.

	Update CMake (3.5) using newer policies.

	Improve PDP StatefulWriter announcement.

	Performance improvements.

	Message receiver improvements.

	QoS Policies improvements.

This release includes the following bugfixes:

	Fix compiler warnings in Windows when building the test suite.

	Fix several data races.

	Fix History issues.

	Fix errors when sending data fragments.

	Fix strict real-time behavior.

	Fix in Discovery Server.

	Fix CMake option.

	Fix interoperability issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.9.4 (EOL)

This release adds the following features:

	Intra-process delivery mechanism is now active by default.

	Synchronous writers are now allowed to send fragments.

	New memory mode DYNAMIC_RESERVE on history pool.

	Performance tests can now be run on Windows and Mac.

	XML profiles for requester and replier.

It also includes the following bug fixes and improvements:

	Bump to FastCDR v1.0.12.

	Bump to Fast-RTPS-Gen v1.0.3.

	Fixed deadlock between PDP and StatefulReader.

	Improved CPU usage and allocations on timed events management.

	Performance improvements on reliable writers.

	Fixing bugs when Intra-process delivery is activated.

	Reducing dynamic allocations and memory footprint.

	Improvements and fixes on performance tests.

	Other minor bug fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.9.3 (EOL)

This release adds the following features:

	Participant discovery filtering flags.

	Intra-process delivery mechanism opt-in.

It also includes the following bug fixes and improvements:

	Bump to Fast-RTPS-Gen v1.0.2.

	Bring back compatibility with XTypes 1.1 on PID_TYPE_CONSISTENCY.

	Ensure correct alignment when reading a parameter list.

	Add CHECK_DOCUMENTATION cmake option.

	EntityId_t and GuidPrefix_t have now their own header files.

	Fix potential race conditions and deadlocks.

	Improve the case where check_acked_status is called between reader matching process and its acknack reception.

	RTPSMessageGroup_t instances now use the thread-local storage.

	FragmentedChangePitStop manager removed.

	Remove the data fragments vector on CacheChange_t.

	Only call find_package for TinyXML2 if third-party options are off

	Allow XMLProfileManager methods to not show error log messages if a profile is not found.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.9.2 (EOL)

This release includes the following feature:

	Multiple initial PDP announcements.

	Flag to avoid builtin multicast.

It also adds the following bug fixes and improvements:

	Bump to Fast-RTPS-Gen v1.0.1.

	Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.9.1 (EOL)

This release includes the following features:

	Fast-RTPS-Gen is now an independent project.

	Header eClock.h is now marked as deprecated.

It also adds the following bug fixes and improvements:

	Bump to FastCDR v1.0.11.

	Installation from sources documentation fixed.

	Fixed assertion on WriterProxy.

	Fixed potential fall through while parsing Parameters.

	Removed deprecated guards causing compilation errors in some 32 bits platforms.

	addTOCDRMessage method is now exported in the DLL, fixing issues related with Parameters’ constructors.

	Improve windows performance by avoiding usage of _Cnd_timedwait method.

	Fixed reported communication issues by sending multicast through localhost too.

	Fixed potential race conditions and deadlocks.

	Eliminating use of acceptMsgDirectTo.

	Discovery Server framework reconnect/recreate strategy.

	Removed unused folders.

	Restored subscriber API.

	SequenceNumber_t improvements.

	Added STRICT_REALTIME cmake option.

	SubscriberHistory improvements.

	Assertion of participant liveliness by receiving RTPS messages from the remote participant.

	Fixed error while setting next deadline event in create_new_change_with_params.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.9.0 (EOL)

This release includes the following features:

	Partial implementation of allocation QoS.

	Implementation of Discovery Server.

	Implementation of non-blocking calls.

It also adds the following bug fixes and improvements:

	Added sliding window to BitmapRange.

	Modified default behavior for unknown writers.

	A Flush() method was added to the logger to ensure all info is logged.

	A test for loading Duration_t from XML was added.

	Optimized WLP when removing local writers.

	Some liveliness tests were updated so that they are more stable on Windows.

	A fix was added to CMakeLists.txt for installing static libraries.

	A fix was added to performance tests so that they can run on the RT kernel.

	Fix for race condition on built-in protocols creation.

	Fix for setting nullptr in a fixed_string.

	Fix for v1.8.1 not building with -DBUILD_JAVA=ON.

	Fix for GAP messages not being sent in some cases.

	Fix for coverity report.

	Several memory issues fixes.

	fastrtps.repos file was updated.

	Documentation for building with Colcon was added.

	Change CMake configuration directory if INSTALLER_PLATFORM is set.

	IDL sub-module updated to current version.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.8.5 (EOL)

This release includes the following bugfixes:

	Fix Subscriber History to correctly notify late-joiners in case of KEEP_LAST, RELIABLE, and TRANSIENT_LOCAL.

	Fix Writer History behavior when there are no matched readers.

	Fix heartbeat and ACK issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.8.4 (EOL)

This release adds the following feature:

	XML profiles for requester and replier

It also has the following important bug fixes:

	Solved an issue when recreating a publishing participant with the same GUID (either on purpose or by chance)

	Solved an issue where a publisher could block on write for a long time when, after a large number of samples
have been sent, a new subscriber is matched.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

Version 1.8.3 (EOL)

This release adds the following bug fixes and improvements:

	Fix serialization of TypeConsistencyEnforcementQosPolicy.

	Bump to Fast-RTPS-Gen v1.0.2.

	Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

Version 1.8.2 (EOL)

This release includes the following features:

	Modified unknown writers default behavior.

	Multiple initial PDP announcements.

	Flag to avoid builtin multicast.

	STRICT_REALTIME compilation flag.

It also adds the following bug fixes and improvements:

	Fix for setting nullptr in a fixed string.

	Fix for not sending GAP in several cases.

	Solve Coverity report issues.

	Fix issue of fastddsgen failing to open IDL.g4 file.

	Fix unnamed lock in AESGCMGMAC_KeyFactory.cpp.

	Improve XMLProfiles example.

	Multicast is now sent through localhost too.

	BitmapRange now implements sliding window.

	Improve SequenceNumber_t struct.

	Participant’s liveliness is now asserted when receiving any RTPS message.

	Fix leak on RemoteParticipantLeaseDuration.

	Modified default values to improve behavior in Wi-Fi scenarios.

	SubscriberHistory improvements.

	Removed use of acceptMsgDirectTo.

	WLP improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

Version 1.8.1 (EOL)

This release includes the following features:

	Implementation of LivelinessQosPolicy QoS.

It also adds the following bug fixes and improvements:

	Fix for get_change on history, which was causing issues during discovery.

	Fix for announcement of participant state, which was sending ParticipantBuiltinData twice.

	Fix for closing multicast UDP channel.

	Fix for race conditions in SubscriberHistory, UDPTransportInterface and StatefulReader.

	Fix for lroundl error on Windows in Time_t.

	CDR & IDL submodules update.

	Use of java 1.8 or greater for fastddsgen.jar generation.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.8.0 (EOL)

This release included the following features:

	Implementation of IDL 4.2.

	Implementation of DeadlineQosPolicy QoS.

	Implementation of LifespanQosPolicy QoS.

	Implementation of DisablePositiveACKsQosPolicy QoS.

	Secure sockets on TCP transport (TLS over TCP).

It also adds the following improvements and bug fixes:

	Real-time improvements: non-blocking write calls for best-effort writers, addition of fixed size strings,
fixed size bitmaps, resource limited vectors, etc.

	Duration parameters now use nanoseconds.

	Configuration of participant mutation tries.

	Automatic calculation of the port when a value of 0 is received on the endpoint custom locators.

	Non-local addresses are now filtered from whitelists.

	Optimization of check for acked status for stateful writers.

	Linked libs are now not exposed when the target is a shared lib.

	Limitation on the domain ID has been added.

	UDP non-blocking send is now optional and configurable via XML.

	Fix for non-deterministic tests.

	Fix for ReaderProxy history being reloaded incorrectly in some cases.

	Fix for RTPS domain hostid being potentially not unique.

	Fix for participants with different lease expiration times failing to reconnect.

Known issues

	When using TPC transport, sometimes callbacks are not invoked when removing a participant due to a bug in ASIO.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.7.3 (EOL)

This release includes the following bugfixes:

	Remove inline specifier from public method not defined in header file.

	Fix FastRTPS-Gen version generation

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.7.2 (EOL)

This release fixes an important bug:

	Allocation limits on subscribers with a KEEP_LAST QoS was taken from resource limits configuration
and didn’t take history depth into account.

It also has the following improvements:

	Vendor FindThreads.cmake from CMake 3.14 release candidate to help with sanitizers.

	Fixed format of gradle file.

Some other minor bugs and performance improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.7.1 (EOL)

This release included the following features:

	LogFileConsumer added to the logging system.

	Handle FASTRTPS_DEFAULT_PROFILES_FILE environment variable indicating the default profiles XML file.

	XML parser made more restrictive and with better error messages.

It also fixes some important bugs:
* Fixed discovery issues related to the selected network interfaces on Windows.
* Improved discovery times.
* Workaround ASIO issue with multicast on QNX systems.
* Improved TCP transport performance.
* Improved handling of key-only data submessages.

Some other minor bugs and performance improvements.

KNOWN ISSUES

	Allocation limits on subscribers with a KEEP_LAST QoS is taken from resource limits configuration
and doesn’t take history depth into account.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

Version 1.7.0 (EOL)

This release included the following features:

	TCP Transport.

	Dynamic Topic Types.

	Security 1.1 compliance.

Also bug fixing, allocation and performance improvements.

Note: If you are upgrading from an older version, it is required to regenerate generated source from IDL files
using fastddsgen.

Version 1.6.0 (EOL)

This release included the following features:

	Persistence.

	Security access control plugin API and builtin Access control plugin: DDS:Access:Permissions plugin.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

Version 1.5.0 (EOL)

This release included the following features:

	Configuration of Fast RTPS entities through XML profiles.

	Added heartbeat piggyback support.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

Version 1.4.0 (EOL)

This release included the following:

	Added secure communications.

	Removed all Boost dependencies. Fast RTPS is not using Boost libraries anymore.

	Added compatibility with Android.

	Bug fixing.

Note: After upgrading to this release, it is advisable to regenerate generated source from IDL files using
fastddsgen.

Version 1.3.1 (EOL)

This release included the following:

	New examples that illustrate how to tweak Fast RTPS towards different applications.

	Improved support for embedded Linux.

	Bug fixing.

Version 1.3.0 (EOL)

This release introduced several new features:

	Unbound Arrays support: Now you can send variable size data arrays.

	Extended Fragmentation Configuration: It allows you to setup a Message/Fragment max size different to the standard
64Kb limit.

	Improved logging system: Get even more introspection about the status of your communications system.

	Static Discovery: Use XML to map your network and keep discovery traffic to a minimum.

	Stability and performance improvements: A new iteration of our built-in performance tests will make benchmarking
easier for you.

	ReadTheDocs Support: We improved our documentation format and now our installation and user manuals are available
online on ReadTheDocs.

Version 1.2.0 (EOL)

This release introduced two important new features:

	Flow Controllers: A mechanism to control how you use the available bandwidth avoiding data bursts.
The controllers allow you to specify the maximum amount of data to be sent in a specific period of time.
This is very useful when you are sending large messages requiring fragmentation.

	Discovery Listeners: Now the user can subscribe to the discovery information to know the entities present in the
network (Topics, Publishers & Subscribers) dynamically without prior knowledge of the system.
This enables the creation of generic tools to inspect your system.

But there is more:

	Full ROS 2 Support: Fast RTPS is used by ROS 2, the upcoming release of the Robot Operating System (ROS).

	Better documentation: More content and examples.

	Improved performance.

	Bug fixing.

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	absolute_generation_rank (fastdds.SampleInfo property)

 	access_scope (fastdds.PresentationQosPolicy property)

 	add_domain_id() (fastdds.DataSharingQosPolicy method)

 	alive_count (fastdds.LivelinessChangedStatus property)

 	alive_count_change (fastdds.LivelinessChangedStatus property)

 	ALIVE_INSTANCE_STATE (class in fastdds)

 	all() (fastdds.StatusMask static method)

 	allocated_samples (fastdds.ResourceLimitsQosPolicy property)

 	allocation() (fastdds.DomainParticipantQos method)

 	ALLOW_TYPE_COERCION (class in fastdds)

 	announcement_period (fastdds.LivelinessQosPolicy property)

 	assert_liveliness() (fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	
 	assigned() (fastdds.TypeInformation method)

 	ASYNCHRONOUS_PUBLISH_MODE (class in fastdds)

 	AUTO (class in fastdds)

 	auto_fill_type_information() (fastdds.TopicDataType method)

 	auto_fill_type_object() (fastdds.TopicDataType method)

 	autodispose_unregistered_instances (fastdds.WriterDataLifecycleQosPolicy property)

 	autoenable_created_entities (fastdds.EntityFactoryQosPolicy property)

 	automatic() (fastdds.DataSharingQosPolicy method)

 	AUTOMATIC_LIVELINESS_QOS (class in fastdds)

 	autopurge_disposed_samples_delay (fastdds.ReaderDataLifecycleQosPolicy property)

 	autopurge_no_writer_samples_delay (fastdds.ReaderDataLifecycleQosPolicy property)

B

 	
 	BaseStatus (class in fastdds)

 	begin() (fastdds.PartitionQosPolicy method)

 	begin_access() (fastdds.Subscriber method)

 	begin_coherent_changes() (fastdds.Publisher method)

 	BEST_EFFORT_RELIABILITY_QOS (class in fastdds)

 	BIT (C macro)

 	BIT0 (C macro)

 	BIT1 (C macro)

 	BIT2 (C macro)

 	BIT3 (C macro)

 	BIT4 (C macro)

 	BIT5 (C macro)

 	BIT6 (C macro)

 	
 	BIT7 (C macro)

 	buffer() (fastdds.LoanableCollection method)

 	builtin (fastdds.WireProtocolConfigQos property)

 	BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_READER (C macro)

 	BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_WRITER (C macro)

 	BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_READER (C macro)

 	BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_WRITER (C macro)

 	BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_READER (C macro)

 	BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_WRITER (C macro)

 	BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_READER (C macro)

 	BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_WRITER (C macro)

 	BUILTIN_PARTICIPANT_DATA_MAX_SIZE (C macro)

 	BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS (class in fastdds)

 	BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS (class in fastdds)

C

 	
 	C_B_BLUE (C macro)

 	C_B_CYAN (C macro)

 	C_B_GREEN (C macro)

 	C_B_MAGENTA (C macro)

 	C_B_RED (C macro)

 	C_B_WHITE (C macro)

 	C_B_YELLOW (C macro)

 	C_BLUE (C macro)

 	C_BRIGHT (C macro)

 	C_CYAN (C macro)

 	C_DEF (C macro)

 	C_GREEN (C macro)

 	C_MAGENTA (C macro)

 	C_RED (C macro)

 	C_WHITE (C macro)

 	C_YELLOW (C macro)

 	CDR_BE (C macro)

 	CDR_LE (C macro)

 	check_xml_static_discovery() (fastdds.DomainParticipantFactory method)

 	clear() (fastdds.DataRepresentationQosPolicy method)

 	(fastdds.DataSharingQosPolicy method)

 	(fastdds.DeadlineQosPolicy method)

 	(fastdds.DestinationOrderQosPolicy method)

 	(fastdds.DisablePositiveACKsQosPolicy method)

 	(fastdds.DurabilityQosPolicy method)

 	(fastdds.DurabilityServiceQosPolicy method)

 	(fastdds.EntityFactoryQosPolicy method)

 	(fastdds.GenericDataQosPolicy method)

 	(fastdds.HistoryQosPolicy method)

 	(fastdds.LatencyBudgetQosPolicy method)

 	(fastdds.LifespanQosPolicy method)

 	(fastdds.LivelinessQosPolicy method)

 	(fastdds.OwnershipQosPolicy method)

 	(fastdds.OwnershipStrengthQosPolicy method)

 	(fastdds.PartitionQosPolicy method)

 	(fastdds.PresentationQosPolicy method)

 	(fastdds.PublishModeQosPolicy method)

 	(fastdds.QosPolicy method)

 	(fastdds.ReaderDataLifecycleQosPolicy method)

 	(fastdds.ReaderResourceLimitsQos method)

 	(fastdds.ReliabilityQosPolicy method)

 	(fastdds.ResourceLimitsQosPolicy method)

 	(fastdds.RTPSReliableReaderQos method)

 	(fastdds.TimeBasedFilterQosPolicy method)

 	(fastdds.TransportConfigQos method)

 	(fastdds.TransportPriorityQosPolicy method)

 	(fastdds.TypeConsistencyEnforcementQosPolicy method)

 	(fastdds.TypeConsistencyQos method)

 	(fastdds.TypeIdV1 method)

 	(fastdds.TypeInformation method)

 	(fastdds.TypeObjectV1 method)

 	(fastdds.WireProtocolConfigQos method)

 	
 	clear_history() (fastdds.DataWriter method)

 	close() (fastdds.Entity method)

 	coherent_access (fastdds.PresentationQosPolicy property)

 	construct_sample() (fastdds.TopicDataType method)

 	contains_entity() (fastdds.DomainParticipant method)

 	copy_from_topic_qos() (fastdds.Publisher method)

 	(fastdds.Subscriber static method)

 	count (fastdds.QosPolicyCount property)

 	create_contentfilteredtopic() (fastdds.DomainParticipant method)

 	create_data() (fastdds.TypeSupport method)

 	create_datareader() (fastdds.Subscriber method)

 	create_datareader_with_profile() (fastdds.Subscriber method)

 	create_datawriter() (fastdds.Publisher method)

 	create_datawriter_with_profile() (fastdds.Publisher method)

 	create_multitopic() (fastdds.DomainParticipant method)

 	create_participant() (fastdds.DomainParticipantFactory method)

 	create_participant_with_profile() (fastdds.DomainParticipantFactory method)

 	create_publisher() (fastdds.DomainParticipant method)

 	create_publisher_with_profile() (fastdds.DomainParticipant method)

 	create_querycondition() (fastdds.DataReader method)

 	create_readcondition() (fastdds.DataReader method)

 	create_subscriber() (fastdds.DomainParticipant method)

 	create_subscriber_with_profile() (fastdds.DomainParticipant method)

 	create_topic() (fastdds.DomainParticipant method)

 	create_topic_with_profile() (fastdds.DomainParticipant method)

 	createData() (fastdds.TopicDataType method)

 	current_count (fastdds.MatchedStatus property)

 	current_count_change (fastdds.MatchedStatus property)

D

 	
 	data_available() (fastdds.StatusMask static method)

 	data_on_readers() (fastdds.StatusMask static method)

 	data_sharing() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	data_vec() (fastdds.GenericDataQosPolicy method)

 	DataReader (class in fastdds)

 	DATAREADER_QOS_DEFAULT (class in fastdds)

 	DataReaderListener (class in fastdds)

 	DataReaderQos (class in fastdds)

 	DATAREPRESENTATION_QOS_POLICY_ID (class in fastdds)

 	DataRepresentationQosPolicy (class in fastdds)

 	DataSharingQosPolicy (class in fastdds)

 	dataVec() (fastdds.GenericDataQosPolicy method)

 	DataWriter (class in fastdds)

 	DATAWRITER_QOS_DEFAULT (class in fastdds)

 	DataWriterListener (class in fastdds)

 	DataWriterQos (class in fastdds)

 	deadline() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	DEADLINE_QOS_POLICY_ID (class in fastdds)

 	DeadlineMissedStatus (class in fastdds)

 	DeadlineQosPolicy (class in fastdds)

 	default_external_unicast_locators (fastdds.WireProtocolConfigQos property)

 	default_multicast_locator_list (fastdds.WireProtocolConfigQos property)

 	default_unicast_locator_list (fastdds.WireProtocolConfigQos property)

 	delete_contained_entities() (fastdds.DataReader method)

 	(fastdds.DomainParticipant method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	delete_contentfilteredtopic() (fastdds.DomainParticipant method)

 	delete_data() (fastdds.TypeSupport method)

 	delete_datareader() (fastdds.Subscriber method)

 	delete_datawriter() (fastdds.Publisher method)

 	delete_multitopic() (fastdds.DomainParticipant method)

 	delete_participant() (fastdds.DomainParticipantFactory method)

 	delete_publisher() (fastdds.DomainParticipant method)

 	delete_readcondition() (fastdds.DataReader method)

 	delete_subscriber() (fastdds.DomainParticipant method)

 	delete_topic() (fastdds.DomainParticipant method)

 	deleteData() (fastdds.TopicDataType method)

 	depth (fastdds.HistoryQosPolicy property)

 	deserialize() (fastdds.TopicDataType method)

 	(fastdds.TypeSupport method)

 	destination_order() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	
 	DESTINATIONORDER_QOS_POLICY_ID (class in fastdds)

 	DestinationOrderQosPolicy (class in fastdds)

 	disable_heartbeat_piggyback (fastdds.RTPSReliableWriterQos property)

 	disable_positive_ACKs (fastdds.RTPSReliableReaderQos property)

 	disable_positive_acks (fastdds.RTPSReliableWriterQos property)

 	DISABLEPOSITIVEACKS_QOS_POLICY_ID (class in fastdds)

 	DisablePositiveACKsQosPolicy (class in fastdds)

 	DISALLOW_TYPE_COERCION (class in fastdds)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_PUBLICATION_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PUBLICATION_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_DETECTOR (C macro)

 	DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_ANNOUNCER (C macro)

 	DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_DETECTOR (C macro)

 	dispose() (fastdds.DataWriter method)

 	dispose_w_timestamp() (fastdds.DataWriter method)

 	disposed_generation_count (fastdds.SampleInfo property)

 	domain_ids() (fastdds.DataSharingQosPolicy method)

 	DomainEntity (class in fastdds)

 	DomainParticipant (class in fastdds)

 	DomainParticipantFactory (class in fastdds)

 	DomainParticipantFactoryQos (class in fastdds)

 	DomainParticipantListener (class in fastdds)

 	DomainParticipantQos (class in fastdds)

 	durability() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	DURABILITY_QOS_POLICY_ID (class in fastdds)

 	durability_service() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	durabilityKind() (fastdds.DurabilityQosPolicy method)

 	DurabilityQosPolicy (class in fastdds)

 	DURABILITYSERVICE_QOS_POLICY_ID (class in fastdds)

 	DurabilityServiceQosPolicy (class in fastdds)

 	duration (fastdds.DisablePositiveACKsQosPolicy property)

 	(fastdds.LatencyBudgetQosPolicy property)

 	(fastdds.LifespanQosPolicy property)

E

 	
 	empty() (fastdds.PartitionQosPolicy method)

 	(fastdds.TypeSupport method)

 	enable() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.Entity method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	enabled (fastdds.DisablePositiveACKsQosPolicy property)

 	end() (fastdds.PartitionQosPolicy method)

 	end_access() (fastdds.Subscriber method)

 	end_coherent_changes() (fastdds.Publisher method)

 	endpoint() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	Entity (class in fastdds)

 	entity_factory() (fastdds.DomainParticipantFactoryQos method)

 	(fastdds.DomainParticipantQos method)

 	(fastdds.PublisherQos method)

 	(fastdds.SubscriberQos method)

 	entity_id (fastdds.RTPSEndpointQos property)

 	ENTITYFACTORY_QOS_POLICY_ID (class in fastdds)

 	EntityFactoryQosPolicy (class in fastdds)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER (C macro)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER (C macro)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER (C macro)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER (C macro)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER (C macro)

 	ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER (C macro)

 	ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER (C macro)

 	ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER (C macro)

 	ENTITYID_RTPSParticipant (C macro)

 	ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER (C macro)

 	ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER (C macro)

 	ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER (C macro)

 	ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER (C macro)

 	ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER (C macro)

 	ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER (C macro)

 	ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER (C macro)

 	ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER (C macro)

 	ENTITYID_SEDP_BUILTIN_TOPIC_READER (C macro)

 	ENTITYID_SEDP_BUILTIN_TOPIC_WRITER (C macro)

 	ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER (C macro)

 	ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER (C macro)

 	ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_READER (C macro)

 	ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_WRITER (C macro)

 	ENTITYID_TL_SVC_REPLY_READER (C macro)

 	ENTITYID_TL_SVC_REPLY_WRITER (C macro)

 	ENTITYID_TL_SVC_REQ_READER (C macro)

 	ENTITYID_TL_SVC_REQ_WRITER (C macro)

 	ENTITYID_UNKNOWN (C macro)

 	eprosima::fastdds::dds::BaseStatus (C++ struct)

 	eprosima::fastdds::dds::BaseStatus::total_count (C++ member)

 	eprosima::fastdds::dds::BaseStatus::total_count_change (C++ member)

 	eprosima::fastdds::dds::Condition (C++ class)

 	eprosima::fastdds::dds::Condition::get_trigger_value (C++ function)

 	eprosima::fastdds::dds::ConditionSeq (C++ type)

 	eprosima::fastdds::dds::ContentFilteredTopic (C++ class)

 	eprosima::fastdds::dds::ContentFilteredTopic::get_expression_parameters (C++ function)

 	eprosima::fastdds::dds::ContentFilteredTopic::get_filter_expression (C++ function)

 	eprosima::fastdds::dds::ContentFilteredTopic::get_participant (C++ function)

 	eprosima::fastdds::dds::ContentFilteredTopic::get_related_topic (C++ function)

 	eprosima::fastdds::dds::ContentFilteredTopic::set_expression_parameters (C++ function)

 	eprosima::fastdds::dds::ContentFilteredTopic::set_filter_expression (C++ function)

 	eprosima::fastdds::dds::DataReader (C++ class)

 	eprosima::fastdds::dds::DataReader::create_querycondition (C++ function)

 	eprosima::fastdds::dds::DataReader::create_readcondition (C++ function)

 	eprosima::fastdds::dds::DataReader::delete_contained_entities (C++ function)

 	eprosima::fastdds::dds::DataReader::delete_readcondition (C++ function)

 	eprosima::fastdds::dds::DataReader::enable (C++ function)

 	eprosima::fastdds::dds::DataReader::get_first_untaken_info (C++ function)

 	eprosima::fastdds::dds::DataReader::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::DataReader::get_key_value (C++ function)

 	eprosima::fastdds::dds::DataReader::get_listener (C++ function)

 	eprosima::fastdds::dds::DataReader::get_listening_locators (C++ function)

 	eprosima::fastdds::dds::DataReader::get_liveliness_changed_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_matched_publication_data (C++ function)

 	eprosima::fastdds::dds::DataReader::get_matched_publications (C++ function)

 	eprosima::fastdds::dds::DataReader::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::DataReader::get_requested_deadline_missed_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_requested_incompatible_qos_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_sample_lost_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_sample_rejected_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_subscriber (C++ function)

 	eprosima::fastdds::dds::DataReader::get_subscription_matched_status (C++ function)

 	eprosima::fastdds::dds::DataReader::get_topicdescription (C++ function)

 	eprosima::fastdds::dds::DataReader::get_unread_count (C++ function), [1]

 	eprosima::fastdds::dds::DataReader::guid (C++ function), [1]

 	eprosima::fastdds::dds::DataReader::is_sample_valid (C++ function)

 	eprosima::fastdds::dds::DataReader::lookup_instance (C++ function)

 	eprosima::fastdds::dds::DataReader::read (C++ function)

 	eprosima::fastdds::dds::DataReader::read_instance (C++ function)

 	eprosima::fastdds::dds::DataReader::read_next_instance (C++ function)

 	eprosima::fastdds::dds::DataReader::read_next_instance_w_condition (C++ function)

 	eprosima::fastdds::dds::DataReader::read_next_sample (C++ function)

 	eprosima::fastdds::dds::DataReader::read_w_condition (C++ function)

 	eprosima::fastdds::dds::DataReader::return_loan (C++ function)

 	eprosima::fastdds::dds::DataReader::set_listener (C++ function), [1]

 	eprosima::fastdds::dds::DataReader::set_qos (C++ function)

 	eprosima::fastdds::dds::DataReader::take (C++ function)

 	eprosima::fastdds::dds::DataReader::take_instance (C++ function)

 	eprosima::fastdds::dds::DataReader::take_next_instance (C++ function)

 	eprosima::fastdds::dds::DataReader::take_next_instance_w_condition (C++ function)

 	eprosima::fastdds::dds::DataReader::take_next_sample (C++ function)

 	eprosima::fastdds::dds::DataReader::take_w_condition (C++ function)

 	eprosima::fastdds::dds::DataReader::type (C++ function)

 	eprosima::fastdds::dds::DataReader::wait_for_historical_data (C++ function)

 	eprosima::fastdds::dds::DataReader::wait_for_unread_message (C++ function)

 	eprosima::fastdds::dds::DataReader::~DataReader (C++ function)

 	eprosima::fastdds::dds::DATAREADER_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::DataReaderListener (C++ class)

 	eprosima::fastdds::dds::DataReaderListener::DataReaderListener (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_data_available (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_liveliness_changed (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_requested_deadline_missed (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_requested_incompatible_qos (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_sample_lost (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_sample_rejected (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::on_subscription_matched (C++ function)

 	eprosima::fastdds::dds::DataReaderListener::~DataReaderListener (C++ function)

 	eprosima::fastdds::dds::DataReaderQos (C++ class)

 	eprosima::fastdds::dds::DataReaderQos::data_sharing (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::DataReaderQos (C++ function)

 	eprosima::fastdds::dds::DataReaderQos::deadline (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::destination_order (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::durability (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::durability_service (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::endpoint (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::expects_inline_qos (C++ function), [1]

 	eprosima::fastdds::dds::DataReaderQos::history (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::latency_budget (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::lifespan (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::liveliness (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::ownership (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::properties (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::reader_data_lifecycle (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::reader_resource_limits (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::reliability (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::reliable_reader_qos (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::resource_limits (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::time_based_filter (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::type_consistency (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataReaderQos::user_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataRepresentationId (C++ enum)

 	eprosima::fastdds::dds::DataRepresentationId::XCDR2_DATA_REPRESENTATION (C++ enumerator)

 	eprosima::fastdds::dds::DataRepresentationId::XCDR_DATA_REPRESENTATION (C++ enumerator)

 	eprosima::fastdds::dds::DataRepresentationId::XML_DATA_REPRESENTATION (C++ enumerator)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy (C++ class)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy::DataRepresentationQosPolicy (C++ function)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy::m_value (C++ member)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy::operator== (C++ function)

 	eprosima::fastdds::dds::DataRepresentationQosPolicy::~DataRepresentationQosPolicy (C++ function)

 	eprosima::fastdds::dds::DataSharingKind (C++ enum)

 	eprosima::fastdds::dds::DataSharingKind::AUTO (C++ enumerator)

 	eprosima::fastdds::dds::DataSharingKind::OFF (C++ enumerator)

 	eprosima::fastdds::dds::DataSharingKind::ON (C++ enumerator)

 	eprosima::fastdds::dds::DataSharingQosPolicy (C++ class)

 	eprosima::fastdds::dds::DataSharingQosPolicy::add_domain_id (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::automatic (C++ function), [1], [2], [3]

 	eprosima::fastdds::dds::DataSharingQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::DataSharingQosPolicy (C++ function), [1]

 	eprosima::fastdds::dds::DataSharingQosPolicy::domain_ids (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::kind (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::max_domains (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::off (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::on (C++ function), [1]

 	eprosima::fastdds::dds::DataSharingQosPolicy::set_max_domains (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::shm_directory (C++ function)

 	eprosima::fastdds::dds::DataSharingQosPolicy::~DataSharingQosPolicy (C++ function)

 	eprosima::fastdds::dds::DataWriter (C++ class)

 	eprosima::fastdds::dds::DataWriter::assert_liveliness (C++ function)

 	eprosima::fastdds::dds::DataWriter::clear_history (C++ function)

 	eprosima::fastdds::dds::DataWriter::discard_loan (C++ function)

 	eprosima::fastdds::dds::DataWriter::dispose (C++ function)

 	eprosima::fastdds::dds::DataWriter::dispose_w_timestamp (C++ function)

 	eprosima::fastdds::dds::DataWriter::enable (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_key_value (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_listener (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_liveliness_lost_status (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_matched_subscription_data (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_matched_subscriptions (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_offered_deadline_missed_status (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_offered_incompatible_qos_status (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_publication_matched_status (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_publisher (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::DataWriter::get_sending_locators (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_topic (C++ function)

 	eprosima::fastdds::dds::DataWriter::get_type (C++ function)

 	eprosima::fastdds::dds::DataWriter::guid (C++ function)

 	eprosima::fastdds::dds::DataWriter::loan_sample (C++ function)

 	eprosima::fastdds::dds::DataWriter::LoanInitializationKind (C++ enum)

 	eprosima::fastdds::dds::DataWriter::LoanInitializationKind::CONSTRUCTED_LOAN_INITIALIZATION (C++ enumerator)

 	eprosima::fastdds::dds::DataWriter::LoanInitializationKind::NO_LOAN_INITIALIZATION (C++ enumerator)

 	eprosima::fastdds::dds::DataWriter::LoanInitializationKind::ZERO_LOAN_INITIALIZATION (C++ enumerator)

 	eprosima::fastdds::dds::DataWriter::lookup_instance (C++ function)

 	eprosima::fastdds::dds::DataWriter::register_instance (C++ function)

 	eprosima::fastdds::dds::DataWriter::register_instance_w_timestamp (C++ function)

 	eprosima::fastdds::dds::DataWriter::set_listener (C++ function), [1]

 	eprosima::fastdds::dds::DataWriter::set_qos (C++ function)

 	eprosima::fastdds::dds::DataWriter::unregister_instance (C++ function)

 	eprosima::fastdds::dds::DataWriter::unregister_instance_w_timestamp (C++ function)

 	eprosima::fastdds::dds::DataWriter::wait_for_acknowledgments (C++ function), [1]

 	eprosima::fastdds::dds::DataWriter::write (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriter::write_w_timestamp (C++ function)

 	eprosima::fastdds::dds::DATAWRITER_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::DataWriterListener (C++ class)

 	eprosima::fastdds::dds::DataWriterListener::DataWriterListener (C++ function)

 	eprosima::fastdds::dds::DataWriterListener::on_liveliness_lost (C++ function)

 	eprosima::fastdds::dds::DataWriterListener::on_offered_deadline_missed (C++ function)

 	eprosima::fastdds::dds::DataWriterListener::on_offered_incompatible_qos (C++ function)

 	eprosima::fastdds::dds::DataWriterListener::on_publication_matched (C++ function)

 	eprosima::fastdds::dds::DataWriterListener::~DataWriterListener (C++ function)

 	eprosima::fastdds::dds::DataWriterQos (C++ class)

 	eprosima::fastdds::dds::DataWriterQos::data_sharing (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::DataWriterQos (C++ function)

 	eprosima::fastdds::dds::DataWriterQos::deadline (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::destination_order (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::durability (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::durability_service (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::endpoint (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::history (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::latency_budget (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::lifespan (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::liveliness (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::ownership (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::ownership_strength (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::properties (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::publish_mode (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::reliability (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::reliable_writer_qos (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::representation (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::resource_limits (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::throughput_controller (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::transport_priority (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::user_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::writer_data_lifecycle (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::writer_resource_limits (C++ function), [1], [2]

 	eprosima::fastdds::dds::DataWriterQos::~DataWriterQos (C++ function)

 	eprosima::fastdds::dds::DeadlineMissedStatus (C++ struct)

 	eprosima::fastdds::dds::DeadlineMissedStatus::DeadlineMissedStatus (C++ function)

 	eprosima::fastdds::dds::DeadlineMissedStatus::last_instance_handle (C++ member)

 	eprosima::fastdds::dds::DeadlineMissedStatus::total_count (C++ member)

 	eprosima::fastdds::dds::DeadlineMissedStatus::total_count_change (C++ member)

 	eprosima::fastdds::dds::DeadlineMissedStatus::~DeadlineMissedStatus (C++ function)

 	eprosima::fastdds::dds::DeadlineQosPolicy (C++ class)

 	eprosima::fastdds::dds::DeadlineQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DeadlineQosPolicy::DeadlineQosPolicy (C++ function)

 	eprosima::fastdds::dds::DeadlineQosPolicy::period (C++ member)

 	eprosima::fastdds::dds::DeadlineQosPolicy::~DeadlineQosPolicy (C++ function)

 	eprosima::fastdds::dds::DestinationOrderQosPolicy (C++ class)

 	eprosima::fastdds::dds::DestinationOrderQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DestinationOrderQosPolicy::DestinationOrderQosPolicy (C++ function)

 	eprosima::fastdds::dds::DestinationOrderQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::DestinationOrderQosPolicy::~DestinationOrderQosPolicy (C++ function)

 	eprosima::fastdds::dds::DestinationOrderQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::DestinationOrderQosPolicyKind::BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DestinationOrderQosPolicyKind::BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy (C++ class)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::DisablePositiveACKsQosPolicy (C++ function)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::duration (C++ member)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::enabled (C++ member)

 	eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::~DisablePositiveACKsQosPolicy (C++ function)

 	eprosima::fastdds::dds::DomainEntity (C++ class)

 	eprosima::fastdds::dds::DomainEntity::DomainEntity (C++ function)

 	eprosima::fastdds::dds::DomainParticipant (C++ class)

 	eprosima::fastdds::dds::DomainParticipant::assert_liveliness (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::contains_entity (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_contentfilteredtopic (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::create_multitopic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_publisher (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_publisher_with_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_subscriber (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_subscriber_with_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_topic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::create_topic_with_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_contained_entities (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_contentfilteredtopic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_multitopic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_publisher (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_subscriber (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::delete_topic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::enable (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::find_topic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::find_type (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_builtin_subscriber (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_current_time (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_default_publisher_qos (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::get_default_subscriber_qos (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::get_default_topic_qos (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::get_discovered_participant_data (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_discovered_participants (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_discovered_topic_data (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_discovered_topics (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_domain_id (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_listener (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_participant_names (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_publisher_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::get_resource_event (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_subscriber_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_topic_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_type_dependencies (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::get_types (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::guid (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::has_active_entities (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::ignore_participant (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::ignore_publication (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::ignore_subscription (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::ignore_topic (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::lookup_content_filter_factory (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::lookup_topicdescription (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::new_remote_endpoint_discovered (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::register_content_filter_factory (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::register_remote_type (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::register_type (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipant::set_default_publisher_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::set_default_subscriber_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::set_default_topic_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::set_listener (C++ function), [1], [2], [3]

 	eprosima::fastdds::dds::DomainParticipant::set_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::unregister_content_filter_factory (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::unregister_type (C++ function)

 	eprosima::fastdds::dds::DomainParticipant::~DomainParticipant (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory (C++ class)

 	eprosima::fastdds::dds::DomainParticipantFactory::check_xml_static_discovery (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::create_participant (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::create_participant_with_profile (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipantFactory::delete_participant (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::get_default_participant_qos (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipantFactory::get_instance (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::get_participant_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::get_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::get_shared_instance (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::load_profiles (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::load_XML_profiles_file (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::load_XML_profiles_string (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::lookup_participant (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::lookup_participants (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::set_default_participant_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactory::set_qos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactoryQos (C++ class)

 	eprosima::fastdds::dds::DomainParticipantFactoryQos::DomainParticipantFactoryQos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantFactoryQos::entity_factory (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantFactoryQos::~DomainParticipantFactoryQos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener (C++ class)

 	eprosima::fastdds::dds::DomainParticipantListener::DomainParticipantListener (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_participant_discovery (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_publisher_discovery (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_subscriber_discovery (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_type_dependencies_reply (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_type_discovery (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::on_type_information_received (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::onParticipantAuthentication (C++ function)

 	eprosima::fastdds::dds::DomainParticipantListener::~DomainParticipantListener (C++ function)

 	eprosima::fastdds::dds::DomainParticipantQos (C++ class)

 	eprosima::fastdds::dds::DomainParticipantQos::allocation (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::DomainParticipantQos (C++ function)

 	eprosima::fastdds::dds::DomainParticipantQos::entity_factory (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::flow_controllers (C++ function), [1]

 	eprosima::fastdds::dds::DomainParticipantQos::FlowControllerDescriptorList (C++ type)

 	eprosima::fastdds::dds::DomainParticipantQos::name (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::properties (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::transport (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::user_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::wire_protocol (C++ function), [1], [2]

 	eprosima::fastdds::dds::DomainParticipantQos::~DomainParticipantQos (C++ function)

 	eprosima::fastdds::dds::DurabilityQosPolicy (C++ class)

 	eprosima::fastdds::dds::DurabilityQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DurabilityQosPolicy::durabilityKind (C++ function), [1]

 	eprosima::fastdds::dds::DurabilityQosPolicy::DurabilityQosPolicy (C++ function)

 	eprosima::fastdds::dds::DurabilityQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::DurabilityQosPolicy::~DurabilityQosPolicy (C++ function)

 	eprosima::fastdds::dds::DurabilityQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::DurabilityQosPolicyKind::PERSISTENT_DURABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DurabilityQosPolicyKind::TRANSIENT_DURABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DurabilityQosPolicyKind::TRANSIENT_LOCAL_DURABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DurabilityQosPolicyKind::VOLATILE_DURABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy (C++ class)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::DurabilityServiceQosPolicy (C++ function)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::history_depth (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::history_kind (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_instances (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_samples (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_samples_per_instance (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::service_cleanup_delay (C++ member)

 	eprosima::fastdds::dds::DurabilityServiceQosPolicy::~DurabilityServiceQosPolicy (C++ function)

 	eprosima::fastdds::dds::Entity (C++ class)

 	eprosima::fastdds::dds::Entity::close (C++ function)

 	eprosima::fastdds::dds::Entity::enable (C++ function)

 	eprosima::fastdds::dds::Entity::Entity (C++ function)

 	eprosima::fastdds::dds::Entity::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::Entity::get_status_changes (C++ function)

 	eprosima::fastdds::dds::Entity::get_status_mask (C++ function)

 	eprosima::fastdds::dds::Entity::get_statuscondition (C++ function)

 	eprosima::fastdds::dds::Entity::is_enabled (C++ function)

 	eprosima::fastdds::dds::EntityFactoryQosPolicy (C++ class)

 	eprosima::fastdds::dds::EntityFactoryQosPolicy::autoenable_created_entities (C++ member)

 	eprosima::fastdds::dds::EntityFactoryQosPolicy::EntityFactoryQosPolicy (C++ function), [1]

 	eprosima::fastdds::dds::EntityFactoryQosPolicy::~EntityFactoryQosPolicy (C++ function)

 	eprosima::fastdds::dds::FileConsumer (C++ class)

 	eprosima::fastdds::dds::FileConsumer::FileConsumer (C++ function), [1]

 	eprosima::fastdds::dds::GenericDataQosPolicy (C++ class)

 	eprosima::fastdds::dds::GenericDataQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::GenericDataQosPolicy::data_vec (C++ function), [1], [2]

 	eprosima::fastdds::dds::GenericDataQosPolicy::dataVec (C++ function)

 	eprosima::fastdds::dds::GenericDataQosPolicy::GenericDataQosPolicy (C++ function), [1]

 	eprosima::fastdds::dds::GenericDataQosPolicy::getValue (C++ function)

 	eprosima::fastdds::dds::GenericDataQosPolicy::operator= (C++ function), [1]

 	eprosima::fastdds::dds::GenericDataQosPolicy::set_max_size (C++ function)

 	eprosima::fastdds::dds::GenericDataQosPolicy::setValue (C++ function)

 	eprosima::fastdds::dds::GroupDataQosPolicy (C++ class)

 	eprosima::fastdds::dds::GuardCondition (C++ class)

 	eprosima::fastdds::dds::GuardCondition::get_trigger_value (C++ function)

 	eprosima::fastdds::dds::GuardCondition::set_trigger_value (C++ function)

 	eprosima::fastdds::dds::HistoryQosPolicy (C++ class)

 	eprosima::fastdds::dds::HistoryQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::HistoryQosPolicy::depth (C++ member)

 	eprosima::fastdds::dds::HistoryQosPolicy::HistoryQosPolicy (C++ function)

 	eprosima::fastdds::dds::HistoryQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::HistoryQosPolicy::~HistoryQosPolicy (C++ function)

 	eprosima::fastdds::dds::HistoryQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::HistoryQosPolicyKind::KEEP_ALL_HISTORY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::HistoryQosPolicyKind::KEEP_LAST_HISTORY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::IContentFilter (C++ struct)

 	eprosima::fastdds::dds::IContentFilter::evaluate (C++ function)

 	eprosima::fastdds::dds::IContentFilter::FilterSampleInfo (C++ struct)

 	eprosima::fastdds::dds::IContentFilter::FilterSampleInfo::related_sample_identity (C++ member)

 	eprosima::fastdds::dds::IContentFilter::FilterSampleInfo::sample_identity (C++ member)

 	eprosima::fastdds::dds::IContentFilterFactory (C++ struct)

 	eprosima::fastdds::dds::IContentFilterFactory::create_content_filter (C++ function)

 	eprosima::fastdds::dds::IContentFilterFactory::delete_content_filter (C++ function)

 	eprosima::fastdds::dds::IncompatibleQosStatus (C++ struct)

 	eprosima::fastdds::dds::IncompatibleQosStatus::last_policy_id (C++ member)

 	eprosima::fastdds::dds::IncompatibleQosStatus::policies (C++ member)

 	eprosima::fastdds::dds::IncompatibleQosStatus::total_count (C++ member)

 	eprosima::fastdds::dds::IncompatibleQosStatus::total_count_change (C++ member)

 	eprosima::fastdds::dds::InconsistentTopicStatus (C++ type)

 	eprosima::fastdds::dds::InstanceStateKind (C++ enum)

 	eprosima::fastdds::dds::InstanceStateKind::ALIVE_INSTANCE_STATE (C++ enumerator)

 	eprosima::fastdds::dds::InstanceStateKind::NOT_ALIVE_DISPOSED_INSTANCE_STATE (C++ enumerator)

 	eprosima::fastdds::dds::InstanceStateKind::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE (C++ enumerator)

 	eprosima::fastdds::dds::LatencyBudgetQosPolicy (C++ class)

 	eprosima::fastdds::dds::LatencyBudgetQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::LatencyBudgetQosPolicy::duration (C++ member)

 	eprosima::fastdds::dds::LatencyBudgetQosPolicy::LatencyBudgetQosPolicy (C++ function)

 	eprosima::fastdds::dds::LatencyBudgetQosPolicy::~LatencyBudgetQosPolicy (C++ function)

 	eprosima::fastdds::dds::LifespanQosPolicy (C++ class)

 	eprosima::fastdds::dds::LifespanQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::LifespanQosPolicy::duration (C++ member)

 	eprosima::fastdds::dds::LifespanQosPolicy::LifespanQosPolicy (C++ function)

 	eprosima::fastdds::dds::LifespanQosPolicy::~LifespanQosPolicy (C++ function)

 	eprosima::fastdds::dds::LivelinessChangedStatus (C++ struct)

 	eprosima::fastdds::dds::LivelinessChangedStatus::alive_count (C++ member)

 	eprosima::fastdds::dds::LivelinessChangedStatus::alive_count_change (C++ member)

 	eprosima::fastdds::dds::LivelinessChangedStatus::last_publication_handle (C++ member)

 	eprosima::fastdds::dds::LivelinessChangedStatus::not_alive_count (C++ member)

 	eprosima::fastdds::dds::LivelinessChangedStatus::not_alive_count_change (C++ member)

 	eprosima::fastdds::dds::LivelinessLostStatus (C++ type)

 	eprosima::fastdds::dds::LivelinessQosPolicy (C++ class)

 	eprosima::fastdds::dds::LivelinessQosPolicy::announcement_period (C++ member)

 	eprosima::fastdds::dds::LivelinessQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::LivelinessQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::LivelinessQosPolicy::lease_duration (C++ member)

 	eprosima::fastdds::dds::LivelinessQosPolicy::LivelinessQosPolicy (C++ function)

 	eprosima::fastdds::dds::LivelinessQosPolicy::~LivelinessQosPolicy (C++ function)

 	eprosima::fastdds::dds::LivelinessQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::LivelinessQosPolicyKind::AUTOMATIC_LIVELINESS_QOS (C++ enumerator)

 	eprosima::fastdds::dds::LivelinessQosPolicyKind::MANUAL_BY_PARTICIPANT_LIVELINESS_QOS (C++ enumerator)

 	eprosima::fastdds::dds::LivelinessQosPolicyKind::MANUAL_BY_TOPIC_LIVELINESS_QOS (C++ enumerator)

 	eprosima::fastdds::dds::LoanableArray (C++ struct)

 	eprosima::fastdds::dds::LoanableArray::buffer_for_loans (C++ function)

 	eprosima::fastdds::dds::LoanableCollection (C++ class)

 	eprosima::fastdds::dds::LoanableCollection::buffer (C++ function)

 	eprosima::fastdds::dds::LoanableCollection::has_ownership (C++ function)

 	eprosima::fastdds::dds::LoanableCollection::length (C++ function), [1]

 	eprosima::fastdds::dds::LoanableCollection::loan (C++ function)

 	eprosima::fastdds::dds::LoanableCollection::maximum (C++ function)

 	eprosima::fastdds::dds::LoanableCollection::unloan (C++ function), [1]

 	eprosima::fastdds::dds::LoanableSequence (C++ class)

 	eprosima::fastdds::dds::LoanableSequence::LoanableSequence (C++ function), [1], [2]

 	eprosima::fastdds::dds::LoanableSequence::operator= (C++ function)

 	eprosima::fastdds::dds::LoanableSequence::~LoanableSequence (C++ function)

 	eprosima::fastdds::dds::Log (C++ class)

 	eprosima::fastdds::dds::Log::ClearConsumers (C++ function)

 	eprosima::fastdds::dds::Log::Context (C++ struct)

 	eprosima::fastdds::dds::Log::Entry (C++ struct)

 	eprosima::fastdds::dds::Log::Flush (C++ function)

 	eprosima::fastdds::dds::Log::GetVerbosity (C++ function)

 	eprosima::fastdds::dds::Log::KillThread (C++ function)

 	eprosima::fastdds::dds::Log::Kind (C++ enum)

 	eprosima::fastdds::dds::Log::Kind::Error (C++ enumerator)

 	eprosima::fastdds::dds::Log::Kind::Info (C++ enumerator)

 	eprosima::fastdds::dds::Log::Kind::Warning (C++ enumerator)

 	eprosima::fastdds::dds::Log::QueueLog (C++ function)

 	eprosima::fastdds::dds::Log::RegisterConsumer (C++ function)

 	eprosima::fastdds::dds::Log::ReportFilenames (C++ function)

 	eprosima::fastdds::dds::Log::ReportFunctions (C++ function)

 	eprosima::fastdds::dds::Log::Reset (C++ function)

 	eprosima::fastdds::dds::Log::SetCategoryFilter (C++ function)

 	eprosima::fastdds::dds::Log::SetErrorStringFilter (C++ function)

 	eprosima::fastdds::dds::Log::SetFilenameFilter (C++ function)

 	eprosima::fastdds::dds::Log::SetVerbosity (C++ function)

 	eprosima::fastdds::dds::LogConsumer (C++ class)

 	eprosima::fastdds::dds::MatchedStatus (C++ struct)

 	eprosima::fastdds::dds::MatchedStatus::current_count (C++ member)

 	eprosima::fastdds::dds::MatchedStatus::current_count_change (C++ member)

 	eprosima::fastdds::dds::MatchedStatus::MatchedStatus (C++ function)

 	eprosima::fastdds::dds::MatchedStatus::total_count (C++ member)

 	eprosima::fastdds::dds::MatchedStatus::total_count_change (C++ member)

 	eprosima::fastdds::dds::MatchedStatus::~MatchedStatus (C++ function)

 	eprosima::fastdds::dds::OfferedDeadlineMissedStatus (C++ type)

 	eprosima::fastdds::dds::OfferedIncompatibleQosStatus (C++ type)

 	eprosima::fastdds::dds::OStreamConsumer (C++ class)

 	eprosima::fastdds::dds::OwnershipQosPolicy (C++ class)

 	eprosima::fastdds::dds::OwnershipQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::OwnershipQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::OwnershipQosPolicy::OwnershipQosPolicy (C++ function)

 	eprosima::fastdds::dds::OwnershipQosPolicy::~OwnershipQosPolicy (C++ function)

 	eprosima::fastdds::dds::OwnershipQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::OwnershipQosPolicyKind::EXCLUSIVE_OWNERSHIP_QOS (C++ enumerator)

 	eprosima::fastdds::dds::OwnershipQosPolicyKind::SHARED_OWNERSHIP_QOS (C++ enumerator)

 	eprosima::fastdds::dds::OwnershipStrengthQosPolicy (C++ class)

 	eprosima::fastdds::dds::OwnershipStrengthQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::OwnershipStrengthQosPolicy::OwnershipStrengthQosPolicy (C++ function)

 	eprosima::fastdds::dds::OwnershipStrengthQosPolicy::value (C++ member)

 	eprosima::fastdds::dds::OwnershipStrengthQosPolicy::~OwnershipStrengthQosPolicy (C++ function)

 	eprosima::fastdds::dds::PARTICIPANT_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::ParticipantResourceLimitsQos (C++ type)

 	eprosima::fastdds::dds::Partition_t (C++ class)

 	eprosima::fastdds::dds::Partition_t::name (C++ function)

 	eprosima::fastdds::dds::Partition_t::Partition_t (C++ function)

 	eprosima::fastdds::dds::Partition_t::size (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy (C++ class)

 	eprosima::fastdds::dds::PartitionQosPolicy::begin (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::const_iterator (C++ class)

 	eprosima::fastdds::dds::PartitionQosPolicy::const_iterator::const_iterator (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::empty (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::end (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::getNames (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::max_size (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::names (C++ function), [1]

 	eprosima::fastdds::dds::PartitionQosPolicy::PartitionQosPolicy (C++ function), [1], [2]

 	eprosima::fastdds::dds::PartitionQosPolicy::push_back (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::set_max_size (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::setNames (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::size (C++ function)

 	eprosima::fastdds::dds::PartitionQosPolicy::~PartitionQosPolicy (C++ function)

 	eprosima::fastdds::dds::PresentationQosPolicy (C++ class)

 	eprosima::fastdds::dds::PresentationQosPolicy::access_scope (C++ member)

 	eprosima::fastdds::dds::PresentationQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::PresentationQosPolicy::coherent_access (C++ member)

 	eprosima::fastdds::dds::PresentationQosPolicy::ordered_access (C++ member)

 	eprosima::fastdds::dds::PresentationQosPolicy::PresentationQosPolicy (C++ function)

 	eprosima::fastdds::dds::PresentationQosPolicy::~PresentationQosPolicy (C++ function)

 	eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind (C++ enum)

 	eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::GROUP_PRESENTATION_QOS (C++ enumerator)

 	eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::INSTANCE_PRESENTATION_QOS (C++ enumerator)

 	eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::TOPIC_PRESENTATION_QOS (C++ enumerator)

 	eprosima::fastdds::dds::PropertyPolicyQos (C++ type)

 	eprosima::fastdds::dds::PublicationMatchedStatus (C++ struct)

 	eprosima::fastdds::dds::PublicationMatchedStatus::last_subscription_handle (C++ member)

 	eprosima::fastdds::dds::Publisher (C++ class)

 	eprosima::fastdds::dds::Publisher::begin_coherent_changes (C++ function)

 	eprosima::fastdds::dds::Publisher::copy_from_topic_qos (C++ function)

 	eprosima::fastdds::dds::Publisher::create_datawriter (C++ function)

 	eprosima::fastdds::dds::Publisher::create_datawriter_with_profile (C++ function)

 	eprosima::fastdds::dds::Publisher::delete_contained_entities (C++ function)

 	eprosima::fastdds::dds::Publisher::delete_datawriter (C++ function)

 	eprosima::fastdds::dds::Publisher::enable (C++ function)

 	eprosima::fastdds::dds::Publisher::end_coherent_changes (C++ function)

 	eprosima::fastdds::dds::Publisher::get_datawriter_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::Publisher::get_datawriters (C++ function)

 	eprosima::fastdds::dds::Publisher::get_default_datawriter_qos (C++ function), [1]

 	eprosima::fastdds::dds::Publisher::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::Publisher::get_listener (C++ function)

 	eprosima::fastdds::dds::Publisher::get_participant (C++ function)

 	eprosima::fastdds::dds::Publisher::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::Publisher::has_datawriters (C++ function)

 	eprosima::fastdds::dds::Publisher::lookup_datawriter (C++ function)

 	eprosima::fastdds::dds::Publisher::resume_publications (C++ function)

 	eprosima::fastdds::dds::Publisher::set_default_datawriter_qos (C++ function)

 	eprosima::fastdds::dds::Publisher::set_listener (C++ function), [1]

 	eprosima::fastdds::dds::Publisher::set_qos (C++ function)

 	eprosima::fastdds::dds::Publisher::suspend_publications (C++ function)

 	eprosima::fastdds::dds::Publisher::wait_for_acknowledgments (C++ function)

 	eprosima::fastdds::dds::Publisher::~Publisher (C++ function)

 	eprosima::fastdds::dds::PUBLISHER_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::PublisherListener (C++ class)

 	eprosima::fastdds::dds::PublisherListener::PublisherListener (C++ function)

 	eprosima::fastdds::dds::PublisherListener::~PublisherListener (C++ function)

 	eprosima::fastdds::dds::PublisherQos (C++ class)

 	eprosima::fastdds::dds::PublisherQos::entity_factory (C++ function), [1], [2]

 	eprosima::fastdds::dds::PublisherQos::group_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::PublisherQos::partition (C++ function), [1], [2]

 	eprosima::fastdds::dds::PublisherQos::presentation (C++ function), [1], [2]

 	eprosima::fastdds::dds::PublisherQos::PublisherQos (C++ function)

 	eprosima::fastdds::dds::PublisherQos::~PublisherQos (C++ function)

 	eprosima::fastdds::dds::PublishModeQosPolicy (C++ class)

 	eprosima::fastdds::dds::PublishModeQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::PublishModeQosPolicy::flow_controller_name (C++ member)

 	eprosima::fastdds::dds::PublishModeQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::PublishModeQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::PublishModeQosPolicyKind::ASYNCHRONOUS_PUBLISH_MODE (C++ enumerator)

 	eprosima::fastdds::dds::PublishModeQosPolicyKind::SYNCHRONOUS_PUBLISH_MODE (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicy (C++ class)

 	eprosima::fastdds::dds::QosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::QosPolicy::hasChanged (C++ member)

 	eprosima::fastdds::dds::QosPolicy::QosPolicy (C++ function), [1], [2]

 	eprosima::fastdds::dds::QosPolicy::send_always (C++ function)

 	eprosima::fastdds::dds::QosPolicy::~QosPolicy (C++ function)

 	eprosima::fastdds::dds::QosPolicyCount (C++ struct)

 	eprosima::fastdds::dds::QosPolicyCount::count (C++ member)

 	eprosima::fastdds::dds::QosPolicyCount::policy_id (C++ member)

 	eprosima::fastdds::dds::QosPolicyCount::QosPolicyCount (C++ function), [1]

 	eprosima::fastdds::dds::QosPolicyCountSeq (C++ type)

 	eprosima::fastdds::dds::QosPolicyId_t (C++ enum)

 	eprosima::fastdds::dds::QosPolicyId_t::DATAREPRESENTATION_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::DEADLINE_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::DESTINATIONORDER_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::DISABLEPOSITIVEACKS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::DURABILITY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::DURABILITYSERVICE_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::ENTITYFACTORY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::GROUPDATA_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::HISTORY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::INVALID_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::LATENCYBUDGET_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::LIFESPAN_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::LIVELINESS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::NEXT_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::OWNERSHIP_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::OWNERSHIPSTRENGTH_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::PARTITION_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::PRESENTATION_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::PROPERTYPOLICY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::PUBLISHMODE_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::READERDATALIFECYCLE_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::READERRESOURCELIMITS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::RELIABILITY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::RESOURCELIMITS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::RTPSENDPOINT_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::RTPSRELIABLEREADER_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::RTPSRELIABLEWRITER_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TIMEBASEDFILTER_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TOPICDATA_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TRANSPORTCONFIG_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TRANSPORTPRIORITY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TYPECONSISTENCY_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::USERDATA_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::WIREPROTOCOLCONFIG_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::WRITERDATALIFECYCLE_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::QosPolicyId_t::WRITERRESOURCELIMITS_QOS_POLICY_ID (C++ enumerator)

 	eprosima::fastdds::dds::ReadCondition (C++ class)

 	eprosima::fastdds::dds::ReadCondition::get_datareader (C++ function)

 	eprosima::fastdds::dds::ReadCondition::get_instance_state_mask (C++ function)

 	eprosima::fastdds::dds::ReadCondition::get_sample_state_mask (C++ function)

 	eprosima::fastdds::dds::ReadCondition::get_trigger_value (C++ function)

 	eprosima::fastdds::dds::ReadCondition::get_view_state_mask (C++ function)

 	eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy (C++ class)

 	eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::autopurge_disposed_samples_delay (C++ member)

 	eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::autopurge_no_writer_samples_delay (C++ member)

 	eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::ReaderDataLifecycleQosPolicy (C++ function)

 	eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::~ReaderDataLifecycleQosPolicy (C++ function)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos (C++ class)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::matched_publisher_allocation (C++ member)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::max_samples_per_read (C++ member)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::outstanding_reads_allocation (C++ member)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::ReaderResourceLimitsQos (C++ function)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::sample_infos_allocation (C++ member)

 	eprosima::fastdds::dds::ReaderResourceLimitsQos::~ReaderResourceLimitsQos (C++ function)

 	eprosima::fastdds::dds::ReliabilityQosPolicy (C++ class)

 	eprosima::fastdds::dds::ReliabilityQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::ReliabilityQosPolicy::kind (C++ member)

 	eprosima::fastdds::dds::ReliabilityQosPolicy::max_blocking_time (C++ member)

 	eprosima::fastdds::dds::ReliabilityQosPolicy::ReliabilityQosPolicy (C++ function)

 	eprosima::fastdds::dds::ReliabilityQosPolicy::~ReliabilityQosPolicy (C++ function)

 	eprosima::fastdds::dds::ReliabilityQosPolicyKind (C++ enum)

 	eprosima::fastdds::dds::ReliabilityQosPolicyKind::BEST_EFFORT_RELIABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::ReliabilityQosPolicyKind::RELIABLE_RELIABILITY_QOS (C++ enumerator)

 	eprosima::fastdds::dds::RequestedDeadlineMissedStatus (C++ type)

 	eprosima::fastdds::dds::RequestedIncompatibleQosStatus (C++ type)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy (C++ class)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::allocated_samples (C++ member)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::extra_samples (C++ member)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_instances (C++ member)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_samples (C++ member)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_samples_per_instance (C++ member)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::ResourceLimitsQosPolicy (C++ function)

 	eprosima::fastdds::dds::ResourceLimitsQosPolicy::~ResourceLimitsQosPolicy (C++ function)

 	eprosima::fastdds::dds::RTPSEndpointQos (C++ class)

 	eprosima::fastdds::dds::RTPSEndpointQos::entity_id (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::external_unicast_locators (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::history_memory_policy (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::ignore_non_matching_locators (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::multicast_locator_list (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::remote_locator_list (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::unicast_locator_list (C++ member)

 	eprosima::fastdds::dds::RTPSEndpointQos::user_defined_id (C++ member)

 	eprosima::fastdds::dds::RTPSReliableReaderQos (C++ class)

 	eprosima::fastdds::dds::RTPSReliableReaderQos::disable_positive_ACKs (C++ member)

 	eprosima::fastdds::dds::RTPSReliableReaderQos::RTPSReliableReaderQos (C++ function)

 	eprosima::fastdds::dds::RTPSReliableReaderQos::times (C++ member)

 	eprosima::fastdds::dds::RTPSReliableReaderQos::~RTPSReliableReaderQos (C++ function)

 	eprosima::fastdds::dds::RTPSReliableWriterQos (C++ class)

 	eprosima::fastdds::dds::RTPSReliableWriterQos::disable_heartbeat_piggyback (C++ member)

 	eprosima::fastdds::dds::RTPSReliableWriterQos::disable_positive_acks (C++ member)

 	eprosima::fastdds::dds::RTPSReliableWriterQos::RTPSReliableWriterQos (C++ function)

 	eprosima::fastdds::dds::RTPSReliableWriterQos::times (C++ member)

 	eprosima::fastdds::dds::RTPSReliableWriterQos::~RTPSReliableWriterQos (C++ function)

 	eprosima::fastdds::dds::SampleInfo (C++ struct)

 	eprosima::fastdds::dds::SampleInfo::absolute_generation_rank (C++ member)

 	eprosima::fastdds::dds::SampleInfo::disposed_generation_count (C++ member)

 	eprosima::fastdds::dds::SampleInfo::generation_rank (C++ member)

 	eprosima::fastdds::dds::SampleInfo::instance_handle (C++ member)

 	eprosima::fastdds::dds::SampleInfo::instance_state (C++ member)

 	eprosima::fastdds::dds::SampleInfo::no_writers_generation_count (C++ member)

 	eprosima::fastdds::dds::SampleInfo::publication_handle (C++ member)

 	eprosima::fastdds::dds::SampleInfo::reception_timestamp (C++ member)

 	eprosima::fastdds::dds::SampleInfo::related_sample_identity (C++ member)

 	eprosima::fastdds::dds::SampleInfo::sample_identity (C++ member)

 	eprosima::fastdds::dds::SampleInfo::sample_rank (C++ member)

 	eprosima::fastdds::dds::SampleInfo::sample_state (C++ member)

 	eprosima::fastdds::dds::SampleInfo::source_timestamp (C++ member)

 	eprosima::fastdds::dds::SampleInfo::valid_data (C++ member)

 	eprosima::fastdds::dds::SampleInfo::view_state (C++ member)

 	eprosima::fastdds::dds::SampleLostStatus (C++ type)

 	eprosima::fastdds::dds::SampleRejectedStatus (C++ struct)

 	eprosima::fastdds::dds::SampleRejectedStatus::last_instance_handle (C++ member)

 	eprosima::fastdds::dds::SampleRejectedStatus::last_reason (C++ member)

 	eprosima::fastdds::dds::SampleRejectedStatus::total_count (C++ member)

 	eprosima::fastdds::dds::SampleRejectedStatus::total_count_change (C++ member)

 	eprosima::fastdds::dds::SampleRejectedStatusKind (C++ enum)

 	eprosima::fastdds::dds::SampleRejectedStatusKind::NOT_REJECTED (C++ enumerator)

 	eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_INSTANCES_LIMIT (C++ enumerator)

 	eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_SAMPLES_LIMIT (C++ enumerator)

 	eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT (C++ enumerator)

 	eprosima::fastdds::dds::SampleStateKind (C++ enum)

 	eprosima::fastdds::dds::SampleStateKind::NOT_READ_SAMPLE_STATE (C++ enumerator)

 	eprosima::fastdds::dds::SampleStateKind::READ_SAMPLE_STATE (C++ enumerator)

 	eprosima::fastdds::dds::StackAllocatedSequence (C++ struct)

 	eprosima::fastdds::dds::StatusCondition (C++ class)

 	eprosima::fastdds::dds::StatusCondition::get_enabled_statuses (C++ function)

 	eprosima::fastdds::dds::StatusCondition::get_entity (C++ function)

 	eprosima::fastdds::dds::StatusCondition::get_trigger_value (C++ function)

 	eprosima::fastdds::dds::StatusCondition::set_enabled_statuses (C++ function)

 	eprosima::fastdds::dds::StatusMask (C++ class)

 	eprosima::fastdds::dds::StatusMask::all (C++ function)

 	eprosima::fastdds::dds::StatusMask::data_available (C++ function)

 	eprosima::fastdds::dds::StatusMask::data_on_readers (C++ function)

 	eprosima::fastdds::dds::StatusMask::inconsistent_topic (C++ function)

 	eprosima::fastdds::dds::StatusMask::is_active (C++ function)

 	eprosima::fastdds::dds::StatusMask::liveliness_changed (C++ function)

 	eprosima::fastdds::dds::StatusMask::liveliness_lost (C++ function)

 	eprosima::fastdds::dds::StatusMask::MaskType (C++ type)

 	eprosima::fastdds::dds::StatusMask::none (C++ function)

 	eprosima::fastdds::dds::StatusMask::offered_deadline_missed (C++ function)

 	eprosima::fastdds::dds::StatusMask::offered_incompatible_qos (C++ function)

 	eprosima::fastdds::dds::StatusMask::operator<< (C++ function)

 	eprosima::fastdds::dds::StatusMask::operator>> (C++ function)

 	eprosima::fastdds::dds::StatusMask::publication_matched (C++ function)

 	eprosima::fastdds::dds::StatusMask::requested_deadline_missed (C++ function)

 	eprosima::fastdds::dds::StatusMask::requested_incompatible_qos (C++ function)

 	eprosima::fastdds::dds::StatusMask::sample_lost (C++ function)

 	eprosima::fastdds::dds::StatusMask::sample_rejected (C++ function)

 	eprosima::fastdds::dds::StatusMask::StatusMask (C++ function), [1]

 	eprosima::fastdds::dds::StatusMask::subscription_matched (C++ function)

 	eprosima::fastdds::dds::StdoutConsumer (C++ class)

 	eprosima::fastdds::dds::StdoutErrConsumer (C++ class)

 	eprosima::fastdds::dds::StdoutErrConsumer::stderr_threshold (C++ function), [1]

 	eprosima::fastdds::dds::StdoutErrConsumer::STDERR_THRESHOLD_DEFAULT (C++ member)

 	eprosima::fastdds::dds::Subscriber (C++ class)

 	eprosima::fastdds::dds::Subscriber::begin_access (C++ function)

 	eprosima::fastdds::dds::Subscriber::copy_from_topic_qos (C++ function)

 	eprosima::fastdds::dds::Subscriber::create_datareader (C++ function)

 	eprosima::fastdds::dds::Subscriber::create_datareader_with_profile (C++ function)

 	eprosima::fastdds::dds::Subscriber::delete_contained_entities (C++ function)

 	eprosima::fastdds::dds::Subscriber::delete_datareader (C++ function)

 	eprosima::fastdds::dds::Subscriber::enable (C++ function)

 	eprosima::fastdds::dds::Subscriber::end_access (C++ function)

 	eprosima::fastdds::dds::Subscriber::get_datareader_qos_from_profile (C++ function)

 	eprosima::fastdds::dds::Subscriber::get_datareaders (C++ function), [1]

 	eprosima::fastdds::dds::Subscriber::get_default_datareader_qos (C++ function), [1], [2]

 	eprosima::fastdds::dds::Subscriber::get_instance_handle (C++ function)

 	eprosima::fastdds::dds::Subscriber::get_listener (C++ function)

 	eprosima::fastdds::dds::Subscriber::get_participant (C++ function)

 	eprosima::fastdds::dds::Subscriber::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::Subscriber::has_datareaders (C++ function)

 	eprosima::fastdds::dds::Subscriber::lookup_datareader (C++ function)

 	eprosima::fastdds::dds::Subscriber::notify_datareaders (C++ function)

 	eprosima::fastdds::dds::Subscriber::set_default_datareader_qos (C++ function)

 	eprosima::fastdds::dds::Subscriber::set_listener (C++ function), [1]

 	eprosima::fastdds::dds::Subscriber::set_qos (C++ function)

 	eprosima::fastdds::dds::Subscriber::~Subscriber (C++ function)

 	eprosima::fastdds::dds::SUBSCRIBER_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::SubscriberListener (C++ class)

 	eprosima::fastdds::dds::SubscriberListener::on_data_on_readers (C++ function)

 	eprosima::fastdds::dds::SubscriberListener::SubscriberListener (C++ function)

 	eprosima::fastdds::dds::SubscriberListener::~SubscriberListener (C++ function)

 	eprosima::fastdds::dds::SubscriberQos (C++ class)

 	eprosima::fastdds::dds::SubscriberQos::entity_factory (C++ function), [1], [2]

 	eprosima::fastdds::dds::SubscriberQos::group_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::SubscriberQos::partition (C++ function), [1], [2]

 	eprosima::fastdds::dds::SubscriberQos::presentation (C++ function), [1], [2]

 	eprosima::fastdds::dds::SubscriberQos::SubscriberQos (C++ function)

 	eprosima::fastdds::dds::SubscriberQos::~SubscriberQos (C++ function)

 	eprosima::fastdds::dds::SubscriptionMatchedStatus (C++ struct)

 	eprosima::fastdds::dds::SubscriptionMatchedStatus::last_publication_handle (C++ member)

 	eprosima::fastdds::dds::TimeBasedFilterQosPolicy (C++ class)

 	eprosima::fastdds::dds::TimeBasedFilterQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::TimeBasedFilterQosPolicy::minimum_separation (C++ member)

 	eprosima::fastdds::dds::TimeBasedFilterQosPolicy::TimeBasedFilterQosPolicy (C++ function)

 	eprosima::fastdds::dds::TimeBasedFilterQosPolicy::~TimeBasedFilterQosPolicy (C++ function)

 	eprosima::fastdds::dds::Topic (C++ class)

 	eprosima::fastdds::dds::Topic::get_inconsistent_topic_status (C++ function)

 	eprosima::fastdds::dds::Topic::get_listener (C++ function)

 	eprosima::fastdds::dds::Topic::get_participant (C++ function)

 	eprosima::fastdds::dds::Topic::get_qos (C++ function), [1]

 	eprosima::fastdds::dds::Topic::set_listener (C++ function)

 	eprosima::fastdds::dds::Topic::set_qos (C++ function)

 	eprosima::fastdds::dds::TOPIC_QOS_DEFAULT (C++ member)

 	eprosima::fastdds::dds::TopicDataQosPolicy (C++ class)

 	eprosima::fastdds::dds::TopicDataType (C++ class)

 	eprosima::fastdds::dds::TopicDataType::auto_fill_type_information (C++ function), [1]

 	eprosima::fastdds::dds::TopicDataType::auto_fill_type_object (C++ function), [1]

 	eprosima::fastdds::dds::TopicDataType::construct_sample (C++ function)

 	eprosima::fastdds::dds::TopicDataType::createData (C++ function)

 	eprosima::fastdds::dds::TopicDataType::deleteData (C++ function)

 	eprosima::fastdds::dds::TopicDataType::deserialize (C++ function)

 	eprosima::fastdds::dds::TopicDataType::getKey (C++ function)

 	eprosima::fastdds::dds::TopicDataType::getName (C++ function)

 	eprosima::fastdds::dds::TopicDataType::getSerializedSizeProvider (C++ function)

 	eprosima::fastdds::dds::TopicDataType::is_bounded (C++ function)

 	eprosima::fastdds::dds::TopicDataType::is_plain (C++ function)

 	eprosima::fastdds::dds::TopicDataType::m_isGetKeyDefined (C++ member)

 	eprosima::fastdds::dds::TopicDataType::m_typeSize (C++ member)

 	eprosima::fastdds::dds::TopicDataType::serialize (C++ function)

 	eprosima::fastdds::dds::TopicDataType::setName (C++ function)

 	eprosima::fastdds::dds::TopicDataType::TopicDataType (C++ function)

 	eprosima::fastdds::dds::TopicDataType::type_identifier (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicDataType::type_information (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicDataType::type_object (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicDataType::~TopicDataType (C++ function)

 	eprosima::fastdds::dds::TopicDescription (C++ class)

 	eprosima::fastdds::dds::TopicDescription::get_name (C++ function)

 	eprosima::fastdds::dds::TopicDescription::get_participant (C++ function)

 	eprosima::fastdds::dds::TopicDescription::get_type_name (C++ function)

 	eprosima::fastdds::dds::TopicListener (C++ class)

 	eprosima::fastdds::dds::TopicListener::on_inconsistent_topic (C++ function)

 	eprosima::fastdds::dds::TopicListener::TopicListener (C++ function)

 	eprosima::fastdds::dds::TopicListener::~TopicListener (C++ function)

 	eprosima::fastdds::dds::TopicQos (C++ class)

 	eprosima::fastdds::dds::TopicQos::deadline (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::destination_order (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::durability (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::durability_service (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::history (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::latency_budget (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::lifespan (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::liveliness (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::ownership (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::reliability (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::representation (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::resource_limits (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::topic_data (C++ function), [1], [2]

 	eprosima::fastdds::dds::TopicQos::TopicQos (C++ function)

 	eprosima::fastdds::dds::TopicQos::transport_priority (C++ function), [1], [2]

 	eprosima::fastdds::dds::TransportConfigQos (C++ class)

 	eprosima::fastdds::dds::TransportConfigQos::clear (C++ function)

 	eprosima::fastdds::dds::TransportConfigQos::listen_socket_buffer_size (C++ member)

 	eprosima::fastdds::dds::TransportConfigQos::send_socket_buffer_size (C++ member)

 	eprosima::fastdds::dds::TransportConfigQos::TransportConfigQos (C++ function)

 	eprosima::fastdds::dds::TransportConfigQos::use_builtin_transports (C++ member)

 	eprosima::fastdds::dds::TransportConfigQos::user_transports (C++ member)

 	eprosima::fastdds::dds::TransportConfigQos::~TransportConfigQos (C++ function)

 	eprosima::fastdds::dds::TransportPriorityQosPolicy (C++ class)

 	eprosima::fastdds::dds::TransportPriorityQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::TransportPriorityQosPolicy::TransportPriorityQosPolicy (C++ function)

 	eprosima::fastdds::dds::TransportPriorityQosPolicy::value (C++ member)

 	eprosima::fastdds::dds::TransportPriorityQosPolicy::~TransportPriorityQosPolicy (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy (C++ class)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::clear (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_force_type_validation (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_member_names (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_sequence_bounds (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_string_bounds (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_kind (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_prevent_type_widening (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::TypeConsistencyEnforcementQosPolicy (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::~TypeConsistencyEnforcementQosPolicy (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyKind (C++ enum)

 	eprosima::fastdds::dds::TypeConsistencyKind::ALLOW_TYPE_COERCION (C++ enumerator)

 	eprosima::fastdds::dds::TypeConsistencyKind::DISALLOW_TYPE_COERCION (C++ enumerator)

 	eprosima::fastdds::dds::TypeConsistencyQos (C++ class)

 	eprosima::fastdds::dds::TypeConsistencyQos::clear (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyQos::representation (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyQos::type_consistency (C++ member)

 	eprosima::fastdds::dds::TypeConsistencyQos::TypeConsistencyQos (C++ function)

 	eprosima::fastdds::dds::TypeConsistencyQos::~TypeConsistencyQos (C++ function)

 	eprosima::fastdds::dds::TypeIdV1 (C++ class)

 	eprosima::fastdds::dds::TypeIdV1::clear (C++ function)

 	eprosima::fastdds::dds::TypeIdV1::get (C++ function)

 	eprosima::fastdds::dds::TypeIdV1::m_type_identifier (C++ member)

 	eprosima::fastdds::dds::TypeIdV1::TypeIdV1 (C++ function), [1], [2], [3]

 	eprosima::fastdds::dds::TypeIdV1::~TypeIdV1 (C++ function)

 	eprosima::fastdds::dds::TypeObjectV1 (C++ class)

 	eprosima::fastdds::dds::TypeObjectV1::clear (C++ function)

 	eprosima::fastdds::dds::TypeObjectV1::get (C++ function)

 	eprosima::fastdds::dds::TypeObjectV1::m_type_object (C++ member)

 	eprosima::fastdds::dds::TypeObjectV1::TypeObjectV1 (C++ function), [1], [2], [3]

 	eprosima::fastdds::dds::TypeObjectV1::~TypeObjectV1 (C++ function)

 	eprosima::fastdds::dds::TypeSupport (C++ class)

 	eprosima::fastdds::dds::TypeSupport::create_data (C++ function)

 	eprosima::fastdds::dds::TypeSupport::delete_data (C++ function)

 	eprosima::fastdds::dds::TypeSupport::deserialize (C++ function)

 	eprosima::fastdds::dds::TypeSupport::empty (C++ function)

 	eprosima::fastdds::dds::TypeSupport::get_key (C++ function)

 	eprosima::fastdds::dds::TypeSupport::get_serialized_size_provider (C++ function)

 	eprosima::fastdds::dds::TypeSupport::get_type_name (C++ function)

 	eprosima::fastdds::dds::TypeSupport::is_bounded (C++ function)

 	eprosima::fastdds::dds::TypeSupport::is_plain (C++ function)

 	eprosima::fastdds::dds::TypeSupport::operator= (C++ function), [1]

 	eprosima::fastdds::dds::TypeSupport::register_type (C++ function), [1]

 	eprosima::fastdds::dds::TypeSupport::serialize (C++ function)

 	eprosima::fastdds::dds::TypeSupport::TypeSupport (C++ function), [1], [2], [3], [4]

 	eprosima::fastdds::dds::UserDataQosPolicy (C++ class)

 	eprosima::fastdds::dds::ViewStateKind (C++ enum)

 	eprosima::fastdds::dds::ViewStateKind::NEW_VIEW_STATE (C++ enumerator)

 	eprosima::fastdds::dds::ViewStateKind::NOT_NEW_VIEW_STATE (C++ enumerator)

 	eprosima::fastdds::dds::WaitSet (C++ class)

 	eprosima::fastdds::dds::WaitSet::attach_condition (C++ function)

 	eprosima::fastdds::dds::WaitSet::detach_condition (C++ function)

 	eprosima::fastdds::dds::WaitSet::get_conditions (C++ function)

 	eprosima::fastdds::dds::WaitSet::wait (C++ function)

 	eprosima::fastdds::dds::WireProtocolConfigQos (C++ class)

 	eprosima::fastdds::dds::WireProtocolConfigQos::builtin (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::clear (C++ function)

 	eprosima::fastdds::dds::WireProtocolConfigQos::default_external_unicast_locators (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::default_multicast_locator_list (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::default_unicast_locator_list (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::ignore_non_matching_locators (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::participant_id (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::port (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::prefix (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::throughput_controller (C++ member)

 	eprosima::fastdds::dds::WireProtocolConfigQos::WireProtocolConfigQos (C++ function)

 	eprosima::fastdds::dds::WireProtocolConfigQos::~WireProtocolConfigQos (C++ function)

 	eprosima::fastdds::dds::WriterDataLifecycleQosPolicy (C++ class)

 	eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::autodispose_unregistered_instances (C++ member)

 	eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::WriterDataLifecycleQosPolicy (C++ function)

 	eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::~WriterDataLifecycleQosPolicy (C++ function)

 	eprosima::fastdds::dds::WriterResourceLimitsQos (C++ class)

 	eprosima::fastdds::dds::WriterResourceLimitsQos::matched_subscriber_allocation (C++ member)

 	eprosima::fastdds::dds::WriterResourceLimitsQos::reader_filters_allocation (C++ member)

 	eprosima::fastdds::dds::WriterResourceLimitsQos::WriterResourceLimitsQos (C++ function)

 	eprosima::fastdds::dds::WriterResourceLimitsQos::~WriterResourceLimitsQos (C++ function)

 	eprosima::fastdds::dds::xtypes::TypeInformation (C++ class)

 	eprosima::fastdds::dds::xtypes::TypeInformation::assigned (C++ function), [1]

 	eprosima::fastdds::dds::xtypes::TypeInformation::clear (C++ function)

 	eprosima::fastdds::dds::xtypes::TypeInformation::type_information (C++ member)

 	eprosima::fastdds::dds::xtypes::TypeInformation::TypeInformation (C++ function), [1], [2], [3]

 	eprosima::fastdds::dds::xtypes::TypeInformation::~TypeInformation (C++ function)

 	eprosima::fastdds::rtps::c_VendorId_eProsima (C++ member)

 	eprosima::fastdds::rtps::c_VendorId_Unknown (C++ member)

 	eprosima::fastdds::rtps::ChainingTransport (C++ class)

 	eprosima::fastdds::rtps::ChainingTransport::AddDefaultOutputLocator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::ChainingTransport (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::CloseInputChannel (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::configureInitialPeerLocator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::DoInputLocatorsMatch (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::fillMetatrafficMulticastLocator (C++ function)

 	
 	eprosima::fastdds::rtps::ChainingTransport::fillMetatrafficUnicastLocator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::fillUnicastLocator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::getDefaultMetatrafficMulticastLocators (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::getDefaultMetatrafficUnicastLocators (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::getDefaultUnicastLocators (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::init (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::is_local_locator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::is_locator_allowed (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::IsInputChannelOpen (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::IsLocatorSupported (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::max_recv_buffer_size (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::NormalizeLocator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::OpenInputChannel (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::OpenOutputChannel (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::receive (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::RemoteToMainLocal (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::select_locators (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::send (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::transform_remote_locator (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::update_network_interfaces (C++ function)

 	eprosima::fastdds::rtps::ChainingTransport::~ChainingTransport (C++ function)

 	eprosima::fastdds::rtps::ChainingTransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::ChainingTransportDescriptor::low_level_descriptor (C++ member)

 	eprosima::fastdds::rtps::ChainingTransportDescriptor::max_message_size (C++ function)

 	eprosima::fastdds::rtps::ChainingTransportDescriptor::min_send_buffer_size (C++ function)

 	eprosima::fastdds::rtps::ContentFilterProperty (C++ class)

 	eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration (C++ struct)

 	eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration::expression_initial_size (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration::expression_parameters (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::content_filtered_topic_name (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::ContentFilterProperty (C++ function)

 	eprosima::fastdds::rtps::ContentFilterProperty::expression_parameters (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::filter_class_name (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::filter_expression (C++ member)

 	eprosima::fastdds::rtps::ContentFilterProperty::related_topic_name (C++ member)

 	eprosima::fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT (C++ member)

 	eprosima::fastdds::rtps::FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT (C++ member)

 	eprosima::fastdds::rtps::FlowControllerDescriptor (C++ struct)

 	eprosima::fastdds::rtps::FlowControllerDescriptor::max_bytes_per_period (C++ member)

 	eprosima::fastdds::rtps::FlowControllerDescriptor::name (C++ member)

 	eprosima::fastdds::rtps::FlowControllerDescriptor::period_ms (C++ member)

 	eprosima::fastdds::rtps::FlowControllerDescriptor::scheduler (C++ member)

 	eprosima::fastdds::rtps::FlowControllerSchedulerPolicy (C++ enum)

 	eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::FIFO (C++ enumerator)

 	eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::HIGH_PRIORITY (C++ enumerator)

 	eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::PRIORITY_WITH_RESERVATION (C++ enumerator)

 	eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::ROUND_ROBIN (C++ enumerator)

 	eprosima::fastdds::rtps::LocatorList (C++ class)

 	eprosima::fastdds::rtps::LocatorList::assign (C++ function)

 	eprosima::fastdds::rtps::LocatorList::begin (C++ function), [1]

 	eprosima::fastdds::rtps::LocatorList::clear (C++ function)

 	eprosima::fastdds::rtps::LocatorList::empty (C++ function)

 	eprosima::fastdds::rtps::LocatorList::end (C++ function), [1]

 	eprosima::fastdds::rtps::LocatorList::erase (C++ function)

 	eprosima::fastdds::rtps::LocatorList::isValid (C++ function)

 	eprosima::fastdds::rtps::LocatorList::LocatorList (C++ function), [1], [2]

 	eprosima::fastdds::rtps::LocatorList::operator= (C++ function), [1]

 	eprosima::fastdds::rtps::LocatorList::operator== (C++ function)

 	eprosima::fastdds::rtps::LocatorList::push_back (C++ function), [1]

 	eprosima::fastdds::rtps::LocatorList::reserve (C++ function)

 	eprosima::fastdds::rtps::LocatorList::resize (C++ function)

 	eprosima::fastdds::rtps::LocatorList::size (C++ function)

 	eprosima::fastdds::rtps::LocatorList::swap (C++ function)

 	eprosima::fastdds::rtps::LocatorList::~LocatorList (C++ function)

 	eprosima::fastdds::rtps::LocatorListConstIterator (C++ type)

 	eprosima::fastdds::rtps::LocatorListIterator (C++ type)

 	eprosima::fastdds::rtps::Locators (C++ class)

 	eprosima::fastdds::rtps::Locators::Locators (C++ function), [1]

 	eprosima::fastdds::rtps::Locators::operator!= (C++ function)

 	eprosima::fastdds::rtps::Locators::operator* (C++ function)

 	eprosima::fastdds::rtps::Locators::operator++ (C++ function)

 	eprosima::fastdds::rtps::Locators::operator== (C++ function)

 	eprosima::fastdds::rtps::LocatorsIterator (C++ struct)

 	eprosima::fastdds::rtps::LocatorsIterator::operator!= (C++ function)

 	eprosima::fastdds::rtps::LocatorsIterator::operator* (C++ function)

 	eprosima::fastdds::rtps::LocatorsIterator::operator++ (C++ function)

 	eprosima::fastdds::rtps::LocatorsIterator::operator== (C++ function)

 	eprosima::fastdds::rtps::operator<< (C++ function)

 	eprosima::fastdds::rtps::operator>> (C++ function)

 	eprosima::fastdds::rtps::RemoteServerAttributes (C++ class)

 	eprosima::fastdds::rtps::RemoteServerAttributes::guidPrefix (C++ member)

 	eprosima::fastdds::rtps::RemoteServerAttributes::metatrafficMulticastLocatorList (C++ member)

 	eprosima::fastdds::rtps::RemoteServerAttributes::metatrafficUnicastLocatorList (C++ member)

 	eprosima::fastdds::rtps::RemoteServerList_t (C++ type)

 	eprosima::fastdds::rtps::s_defaultTTL (C++ member)

 	eprosima::fastdds::rtps::s_IPv4AddressAny (C++ member)

 	eprosima::fastdds::rtps::s_IPv6AddressAny (C++ member)

 	eprosima::fastdds::rtps::s_maximumInitialPeersRange (C++ member)

 	eprosima::fastdds::rtps::s_maximumMessageSize (C++ member)

 	eprosima::fastdds::rtps::s_minimumSocketBuffer (C++ member)

 	eprosima::fastdds::rtps::SendResourceList (C++ type)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::healthy_check_timeout_ms (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::max_message_size (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::min_send_buffer_size (C++ function)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::port_queue_capacity (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::rtps_dump_file (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::segment_size (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::SharedMemTransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::SharedMemTransportDescriptor::~SharedMemTransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::SocketTransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::interfaceWhiteList (C++ member)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::min_send_buffer_size (C++ function)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::receiveBufferSize (C++ member)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::sendBufferSize (C++ member)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::SocketTransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::SocketTransportDescriptor::TTL (C++ member)

 	eprosima::fastdds::rtps::SocketTransportDescriptor::~SocketTransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::add_listener_port (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::apply_security (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::calculate_crc (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::check_crc (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::enable_tcp_nodelay (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::keep_alive_frequency_ms (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::keep_alive_timeout_ms (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::listening_ports (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::logical_port_increment (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::logical_port_range (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::max_logical_port (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TCPTransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::TCPTransportDescriptor::tls_config (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig (C++ struct)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::add_option (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::add_verify_mode (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::cert_chain_file (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::default_verify_path (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::get_option (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::get_verify_mode (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::handshake_role (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::operator== (C++ function)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::options (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::password (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::private_key_file (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::rsa_private_key_file (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::server_name (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole (C++ enum)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::CLIENT (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::DEFAULT (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::SERVER (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions (C++ enum)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::DEFAULT_WORKAROUNDS (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_COMPRESSION (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_SSLV2 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_SSLV3 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_1 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_2 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_3 (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NONE (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::SINGLE_DH_USE (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode (C++ enum)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::UNUSED (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_CLIENT_ONCE (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERT (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_NONE (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_PEER (C++ enumerator)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::tmp_dh_file (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_depth (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_file (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_mode (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_paths (C++ member)

 	eprosima::fastdds::rtps::TCPTransportDescriptor::~TCPTransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::get_WAN_address (C++ function)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::set_WAN_address (C++ function), [1]

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::TCPv4TransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::wan_addr (C++ member)

 	eprosima::fastdds::rtps::TCPv4TransportDescriptor::~TCPv4TransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor::TCPv6TransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::TCPv6TransportDescriptor::~TCPv6TransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::DestinationLocatorFilter (C++ type)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_ack_nack_messages_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_data_frag_messages_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_data_messages_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_gap_messages_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_heartbeat_messages_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropAckNackMessagesPercentage (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropDataFragMessagesPercentage (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropDataMessagesPercentage (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropGapMessagesPercentage (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropHeartbeatMessagesPercentage (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropLogLength (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropParticipantBuiltinTopicData (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropPublicationBuiltinTopicData (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropSubscriptionBuiltinTopicData (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::filter (C++ type)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::locator_filter_ (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::sequenceNumberDataMessagesToDrop (C++ member)

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::test_UDPv4TransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::~test_UDPv4TransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface (C++ struct)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::create_transport (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::max_initial_peers_range (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::max_message_size (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::maxInitialPeersRange (C++ member)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::maxMessageSize (C++ member)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::min_send_buffer_size (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::operator= (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::operator== (C++ function)

 	eprosima::fastdds::rtps::TransportDescriptorInterface::TransportDescriptorInterface (C++ function), [1]

 	eprosima::fastdds::rtps::TransportDescriptorInterface::~TransportDescriptorInterface (C++ function)

 	eprosima::fastdds::rtps::TransportInterface (C++ class)

 	eprosima::fastdds::rtps::TransportInterface::AddDefaultOutputLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::CloseInputChannel (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::configureInitialPeerLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::DoInputLocatorsMatch (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::fillMetatrafficMulticastLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::fillMetatrafficUnicastLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::fillUnicastLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::get_configuration (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::getDefaultMetatrafficMulticastLocators (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::getDefaultMetatrafficUnicastLocators (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::getDefaultUnicastLocators (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::init (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::is_local_locator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::is_locator_allowed (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::IsInputChannelOpen (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::IsLocatorSupported (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::kind (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::max_recv_buffer_size (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::NormalizeLocator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::OpenInputChannel (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::OpenOutputChannel (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::operator= (C++ function), [1]

 	eprosima::fastdds::rtps::TransportInterface::RemoteToMainLocal (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::select_locators (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::shutdown (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::transform_remote_locator (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::TransportInterface (C++ function), [1]

 	eprosima::fastdds::rtps::TransportInterface::update_network_interfaces (C++ function)

 	eprosima::fastdds::rtps::TransportInterface::~TransportInterface (C++ function)

 	eprosima::fastdds::rtps::TransportReceiverInterface (C++ class)

 	eprosima::fastdds::rtps::TransportReceiverInterface::OnDataReceived (C++ function)

 	eprosima::fastdds::rtps::TransportReceiverInterface::~TransportReceiverInterface (C++ function)

 	eprosima::fastdds::rtps::UDPTransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::UDPTransportDescriptor::m_output_udp_socket (C++ member)

 	eprosima::fastdds::rtps::UDPTransportDescriptor::non_blocking_send (C++ member)

 	eprosima::fastdds::rtps::UDPTransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::UDPTransportDescriptor::operator== (C++ function)

 	eprosima::fastdds::rtps::UDPTransportDescriptor::UDPTransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::UDPTransportDescriptor::~UDPTransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::UDPv4TransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::UDPv4TransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::UDPv4TransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::UDPv4TransportDescriptor::UDPv4TransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::UDPv4TransportDescriptor::~UDPv4TransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::UDPv6TransportDescriptor (C++ struct)

 	eprosima::fastdds::rtps::UDPv6TransportDescriptor::create_transport (C++ function)

 	eprosima::fastdds::rtps::UDPv6TransportDescriptor::operator= (C++ function)

 	eprosima::fastdds::rtps::UDPv6TransportDescriptor::UDPv6TransportDescriptor (C++ function), [1]

 	eprosima::fastdds::rtps::UDPv6TransportDescriptor::~UDPv6TransportDescriptor (C++ function)

 	eprosima::fastdds::rtps::VendorId_t (C++ type)

 	eprosima::fastdds::statistics::ACKNACK_COUNT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::DATA_COUNT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::dds::DataReaderQos (C++ class)

 	eprosima::fastdds::statistics::dds::DataReaderQos::DataReaderQos (C++ function)

 	eprosima::fastdds::statistics::dds::DataWriterQos (C++ class)

 	eprosima::fastdds::statistics::dds::DataWriterQos::DataWriterQos (C++ function)

 	eprosima::fastdds::statistics::dds::DomainParticipant (C++ class)

 	eprosima::fastdds::statistics::dds::DomainParticipant::disable_statistics_datawriter (C++ function)

 	eprosima::fastdds::statistics::dds::DomainParticipant::enable_statistics_datawriter (C++ function)

 	eprosima::fastdds::statistics::dds::DomainParticipant::enable_statistics_datawriter_with_profile (C++ function)

 	eprosima::fastdds::statistics::dds::DomainParticipant::narrow (C++ function), [1]

 	eprosima::fastdds::statistics::dds::STATISTICS_DATAREADER_QOS (C++ member)

 	eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS (C++ member)

 	eprosima::fastdds::statistics::DISCOVERY_TOPIC (C++ member)

 	eprosima::fastdds::statistics::EDP_PACKETS_TOPIC (C++ member)

 	eprosima::fastdds::statistics::GAP_COUNT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::HEARTBEAT_COUNT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::HISTORY_LATENCY_TOPIC (C++ member)

 	eprosima::fastdds::statistics::NACKFRAG_COUNT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::NETWORK_LATENCY_TOPIC (C++ member)

 	eprosima::fastdds::statistics::PDP_PACKETS_TOPIC (C++ member)

 	eprosima::fastdds::statistics::PHYSICAL_DATA_TOPIC (C++ member)

 	eprosima::fastdds::statistics::PUBLICATION_THROUGHPUT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::RESENT_DATAS_TOPIC (C++ member)

 	eprosima::fastdds::statistics::RTPS_LOST_TOPIC (C++ member)

 	eprosima::fastdds::statistics::RTPS_SENT_TOPIC (C++ member)

 	eprosima::fastdds::statistics::SAMPLE_DATAS_TOPIC (C++ member)

 	eprosima::fastdds::statistics::SUBSCRIPTION_THROUGHPUT_TOPIC (C++ member)

 	eprosima::fastrtps::c_TimeInfinite (C++ member)

 	eprosima::fastrtps::c_TimeInvalid (C++ member)

 	eprosima::fastrtps::c_TimeZero (C++ member)

 	eprosima::fastrtps::Duration_t (C++ type)

 	eprosima::fastrtps::operator!= (C++ function)

 	eprosima::fastrtps::operator+ (C++ function)

 	eprosima::fastrtps::operator- (C++ function)

 	eprosima::fastrtps::operator< (C++ function)

 	eprosima::fastrtps::operator<< (C++ function)

 	eprosima::fastrtps::operator<= (C++ function)

 	eprosima::fastrtps::operator== (C++ function)

 	eprosima::fastrtps::operator> (C++ function)

 	eprosima::fastrtps::operator>= (C++ function)

 	eprosima::fastrtps::rtps::AuthenticatedPeerCredentialToken (C++ type)

 	eprosima::fastrtps::rtps::BinaryProperty (C++ class)

 	eprosima::fastrtps::rtps::BinaryPropertyHelper (C++ class)

 	eprosima::fastrtps::rtps::BinaryPropertySeq (C++ type)

 	eprosima::fastrtps::rtps::BuiltinAttributes (C++ class)

 	eprosima::fastrtps::rtps::BuiltinAttributes::avoid_builtin_multicast (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::discovery_config (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::initialPeersList (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::metatraffic_external_unicast_locators (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::metatrafficMulticastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::metatrafficUnicastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::mutation_tries (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::readerHistoryMemoryPolicy (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::readerPayloadSize (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::typelookup_config (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::use_WriterLivelinessProtocol (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::writerHistoryMemoryPolicy (C++ member)

 	eprosima::fastrtps::rtps::BuiltinAttributes::writerPayloadSize (C++ member)

 	eprosima::fastrtps::rtps::BuiltinEndpointSet_t (C++ type)

 	eprosima::fastrtps::rtps::c_default_RTPSParticipantAllocationAttributes (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_ReaderLiveliness (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_ReaderLivelinessSecure (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_RTPSParticipant (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SEDPPubReader (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SEDPPubWriter (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SEDPSubReader (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SEDPSubWriter (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SPDPReader (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_SPDPWriter (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_reader (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_writer (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_reader (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_writer (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_Unknown (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_WriterLiveliness (C++ member)

 	eprosima::fastrtps::rtps::c_EntityId_WriterLivelinessSecure (C++ member)

 	eprosima::fastrtps::rtps::c_Guid_Unknown (C++ member)

 	eprosima::fastrtps::rtps::c_GuidPrefix_Unknown (C++ member)

 	eprosima::fastrtps::rtps::c_InstanceHandle_Unknown (C++ member)

 	eprosima::fastrtps::rtps::c_ProtocolVersion (C++ member)

 	eprosima::fastrtps::rtps::c_ProtocolVersion_2_0 (C++ member)

 	eprosima::fastrtps::rtps::c_ProtocolVersion_2_1 (C++ member)

 	eprosima::fastrtps::rtps::c_ProtocolVersion_2_2 (C++ member)

 	eprosima::fastrtps::rtps::c_ProtocolVersion_2_3 (C++ member)

 	eprosima::fastrtps::rtps::c_SequenceNumber_Unknown (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t (C++ struct)

 	eprosima::fastrtps::rtps::CacheChange_t::CacheChange_t (C++ function), [1]

 	eprosima::fastrtps::rtps::CacheChange_t::contains_first_fragment (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::copy (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::copy_not_memcpy (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::get_missing_fragments (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::getFragmentCount (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::getFragmentSize (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::inline_qos (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::instanceHandle (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::is_fully_assembled (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::isRead (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::kind (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::sequenceNumber (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::serializedPayload (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::setFragmentSize (C++ function)

 	eprosima::fastrtps::rtps::CacheChange_t::sourceTimestamp (C++ member)

 	eprosima::fastrtps::rtps::CacheChange_t::writerGUID (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t (C++ struct)

 	eprosima::fastrtps::rtps::CDRMessage_t::buffer (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t::CDRMessage_t (C++ function), [1]

 	eprosima::fastrtps::rtps::CDRMessage_t::length (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t::max_size (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t::msg_endian (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t::pos (C++ member)

 	eprosima::fastrtps::rtps::CDRMessage_t::reserved_size (C++ member)

 	eprosima::fastrtps::rtps::ChangeForReader_t (C++ class)

 	eprosima::fastrtps::rtps::ChangeForReader_t::getChange (C++ function)

 	eprosima::fastrtps::rtps::ChangeForReaderCmp (C++ struct)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t (C++ enum)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t::ACKNOWLEDGED (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t::REQUESTED (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNACKNOWLEDGED (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNDERWAY (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNSENT (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeKind_t (C++ enum)

 	eprosima::fastrtps::rtps::ChangeKind_t::ALIVE (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_DISPOSED (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_DISPOSED_UNREGISTERED (C++ enumerator)

 	eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_UNREGISTERED (C++ enumerator)

 	eprosima::fastrtps::rtps::Count_t (C++ type)

 	eprosima::fastrtps::rtps::DataHolder (C++ class)

 	eprosima::fastrtps::rtps::DataHolderHelper (C++ class)

 	eprosima::fastrtps::rtps::DataHolderSeq (C++ type)

 	eprosima::fastrtps::rtps::DiscoveryProtocol (C++ enum)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::BACKUP (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::CLIENT (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::EXTERNAL (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::NONE (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::SERVER (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::SIMPLE (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoveryProtocol::SUPER_CLIENT (C++ enumerator)

 	eprosima::fastrtps::rtps::DiscoverySettings (C++ class)

 	eprosima::fastrtps::rtps::DiscoverySettings::discoveryProtocol (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::discoveryServer_client_syncperiod (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::getStaticEndpointXMLFilename (C++ function)

 	eprosima::fastrtps::rtps::DiscoverySettings::ignoreParticipantFlags (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::initial_announcements (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::leaseDuration (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::leaseDuration_announcementperiod (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::m_DiscoveryServers (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::m_PDPfactory (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::m_simpleEDP (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::setStaticEndpointXMLFilename (C++ function)

 	eprosima::fastrtps::rtps::DiscoverySettings::static_edp_xml_config (C++ function), [1]

 	eprosima::fastrtps::rtps::DiscoverySettings::use_SIMPLE_EndpointDiscoveryProtocol (C++ member)

 	eprosima::fastrtps::rtps::DiscoverySettings::use_STATIC_EndpointDiscoveryProtocol (C++ member)

 	eprosima::fastrtps::rtps::DurabilityKind_t (C++ type)

 	eprosima::fastrtps::rtps::Endianness_t (C++ enum)

 	eprosima::fastrtps::rtps::Endianness_t::BIGEND (C++ enumerator)

 	eprosima::fastrtps::rtps::Endianness_t::LITTLEEND (C++ enumerator)

 	eprosima::fastrtps::rtps::Endpoint (C++ class)

 	eprosima::fastrtps::rtps::Endpoint::getAttributes (C++ function)

 	eprosima::fastrtps::rtps::Endpoint::getGuid (C++ function)

 	eprosima::fastrtps::rtps::Endpoint::getMutex (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes (C++ class)

 	eprosima::fastrtps::rtps::EndpointAttributes::data_sharing_configuration (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::durabilityKind (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::endpointKind (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::external_unicast_locators (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::getEntityID (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::getUserDefinedID (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::ignore_non_matching_locators (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::multicastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::ownershipKind (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::persistence_guid (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::properties (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::reliabilityKind (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::remoteLocatorList (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::set_data_sharing_configuration (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::setEntityID (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::setUserDefinedID (C++ function)

 	eprosima::fastrtps::rtps::EndpointAttributes::topicKind (C++ member)

 	eprosima::fastrtps::rtps::EndpointAttributes::unicastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::EndpointKind_t (C++ type)

 	eprosima::fastrtps::rtps::EntityId_t (C++ struct)

 	eprosima::fastrtps::rtps::EntityId_t::cmp (C++ function)

 	eprosima::fastrtps::rtps::EntityId_t::EntityId_t (C++ function), [1], [2], [3]

 	eprosima::fastrtps::rtps::EntityId_t::operator< (C++ function)

 	eprosima::fastrtps::rtps::EntityId_t::operator= (C++ function)

 	eprosima::fastrtps::rtps::EntityId_t::to_uint32 (C++ function)

 	eprosima::fastrtps::rtps::Exception (C++ class)

 	eprosima::fastrtps::rtps::Exception::minor (C++ function), [1]

 	eprosima::fastrtps::rtps::Exception::raise (C++ function)

 	eprosima::fastrtps::rtps::Exception::what (C++ function)

 	eprosima::fastrtps::rtps::Exception::~Exception (C++ function)

 	eprosima::fastrtps::rtps::FragmentNumber_t (C++ type)

 	eprosima::fastrtps::rtps::FragmentNumberSet_t (C++ type)

 	eprosima::fastrtps::rtps::GUID_t (C++ struct)

 	eprosima::fastrtps::rtps::GUID_t::entityId (C++ member)

 	eprosima::fastrtps::rtps::GUID_t::GUID_t (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::GUID_t::guidPrefix (C++ member)

 	eprosima::fastrtps::rtps::GUID_t::is_builtin (C++ function)

 	eprosima::fastrtps::rtps::GUID_t::is_on_same_host_as (C++ function)

 	eprosima::fastrtps::rtps::GUID_t::is_on_same_process_as (C++ function)

 	eprosima::fastrtps::rtps::GuidPrefix_t (C++ struct)

 	eprosima::fastrtps::rtps::GuidPrefix_t::cmp (C++ function)

 	eprosima::fastrtps::rtps::GuidPrefix_t::GuidPrefix_t (C++ function)

 	eprosima::fastrtps::rtps::GuidPrefix_t::operator!= (C++ function)

 	eprosima::fastrtps::rtps::GuidPrefix_t::operator< (C++ function)

 	eprosima::fastrtps::rtps::GuidPrefix_t::operator== (C++ function)

 	eprosima::fastrtps::rtps::History (C++ class)

 	eprosima::fastrtps::rtps::History::changesBegin (C++ function)

 	eprosima::fastrtps::rtps::History::changesEnd (C++ function)

 	eprosima::fastrtps::rtps::History::find_change (C++ function)

 	eprosima::fastrtps::rtps::History::find_change_nts (C++ function)

 	eprosima::fastrtps::rtps::History::get_earliest_change (C++ function)

 	eprosima::fastrtps::rtps::History::get_max_change (C++ function)

 	eprosima::fastrtps::rtps::History::get_min_change (C++ function)

 	eprosima::fastrtps::rtps::History::getHistorySize (C++ function)

 	eprosima::fastrtps::rtps::History::getMutex (C++ function)

 	eprosima::fastrtps::rtps::History::getTypeMaxSerialized (C++ function)

 	eprosima::fastrtps::rtps::History::isFull (C++ function)

 	eprosima::fastrtps::rtps::History::m_att (C++ member)

 	eprosima::fastrtps::rtps::History::matches_change (C++ function)

 	eprosima::fastrtps::rtps::History::release_Cache (C++ function)

 	eprosima::fastrtps::rtps::History::remove_all_changes (C++ function)

 	eprosima::fastrtps::rtps::History::remove_change (C++ function), [1]

 	eprosima::fastrtps::rtps::History::remove_change_nts (C++ function)

 	eprosima::fastrtps::rtps::History::reserve_Cache (C++ function), [1]

 	eprosima::fastrtps::rtps::HistoryAttributes (C++ class)

 	eprosima::fastrtps::rtps::HistoryAttributes::extraReservedCaches (C++ member)

 	eprosima::fastrtps::rtps::HistoryAttributes::HistoryAttributes (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::HistoryAttributes::initialReservedCaches (C++ member)

 	eprosima::fastrtps::rtps::HistoryAttributes::maximumReservedCaches (C++ member)

 	eprosima::fastrtps::rtps::HistoryAttributes::memoryPolicy (C++ member)

 	eprosima::fastrtps::rtps::HistoryAttributes::payloadMaxSize (C++ member)

 	eprosima::fastrtps::rtps::IChangePool (C++ class)

 	eprosima::fastrtps::rtps::IChangePool::release_cache (C++ function)

 	eprosima::fastrtps::rtps::IChangePool::reserve_cache (C++ function)

 	eprosima::fastrtps::rtps::IdentityStatusToken (C++ type)

 	eprosima::fastrtps::rtps::IdentityToken (C++ type)

 	eprosima::fastrtps::rtps::iHandle2GUID (C++ function), [1]

 	eprosima::fastrtps::rtps::InitialAnnouncementConfig (C++ struct)

 	eprosima::fastrtps::rtps::InitialAnnouncementConfig::count (C++ member)

 	eprosima::fastrtps::rtps::InitialAnnouncementConfig::period (C++ member)

 	eprosima::fastrtps::rtps::InstanceHandle_t (C++ struct)

 	eprosima::fastrtps::rtps::InstanceHandle_t::isDefined (C++ function)

 	eprosima::fastrtps::rtps::InstanceHandle_t::operator= (C++ function), [1]

 	eprosima::fastrtps::rtps::InstanceHandle_t::value (C++ member)

 	eprosima::fastrtps::rtps::IPayloadPool (C++ class)

 	eprosima::fastrtps::rtps::IPayloadPool::get_payload (C++ function), [1]

 	eprosima::fastrtps::rtps::IPayloadPool::release_payload (C++ function)

 	eprosima::fastrtps::rtps::IsAddressDefined (C++ function)

 	eprosima::fastrtps::rtps::IsLocatorValid (C++ function)

 	eprosima::fastrtps::rtps::LivelinessData (C++ struct)

 	eprosima::fastrtps::rtps::LivelinessData::count (C++ member)

 	eprosima::fastrtps::rtps::LivelinessData::guid (C++ member)

 	eprosima::fastrtps::rtps::LivelinessData::kind (C++ member)

 	eprosima::fastrtps::rtps::LivelinessData::lease_duration (C++ member)

 	eprosima::fastrtps::rtps::LivelinessData::LivelinessData (C++ function)

 	eprosima::fastrtps::rtps::LivelinessData::operator!= (C++ function)

 	eprosima::fastrtps::rtps::LivelinessData::operator== (C++ function)

 	eprosima::fastrtps::rtps::LivelinessData::status (C++ member)

 	eprosima::fastrtps::rtps::LivelinessData::time (C++ member)

 	eprosima::fastrtps::rtps::Locator_t (C++ class)

 	eprosima::fastrtps::rtps::Locator_t::address (C++ member)

 	eprosima::fastrtps::rtps::Locator_t::get_address (C++ function), [1]

 	eprosima::fastrtps::rtps::Locator_t::kind (C++ member)

 	eprosima::fastrtps::rtps::Locator_t::Locator_t (C++ function), [1], [2], [3], [4]

 	eprosima::fastrtps::rtps::Locator_t::operator= (C++ function)

 	eprosima::fastrtps::rtps::Locator_t::port (C++ member)

 	eprosima::fastrtps::rtps::Locator_t::set_address (C++ function)

 	eprosima::fastrtps::rtps::Locator_t::set_Invalid_Address (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector (C++ class)

 	eprosima::fastrtps::rtps::LocatorSelector::add_entry (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::clear (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::enable (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::for_each (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::is_selected (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::iterator (C++ class)

 	eprosima::fastrtps::rtps::LocatorSelector::iterator::operator!= (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::iterator::operator* (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::iterator::operator++ (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::iterator::operator== (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::IteratorIndex (C++ struct)

 	eprosima::fastrtps::rtps::LocatorSelector::LocatorSelector (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::remove_entry (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::reset (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::select (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::selected_size (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::selection_start (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::state_has_changed (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelector::transport_starts (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry (C++ struct)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::enable (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::enabled (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState (C++ struct)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::EntryState (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::multicast (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::unicast (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::LocatorSelectorEntry (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::multicast (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::remote_guid (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::reset (C++ function)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::state (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::transport_should_process (C++ member)

 	eprosima::fastrtps::rtps::LocatorSelectorEntry::unicast (C++ member)

 	eprosima::fastrtps::rtps::MatchingInfo (C++ class)

 	eprosima::fastrtps::rtps::MatchingInfo::MatchingInfo (C++ function), [1]

 	eprosima::fastrtps::rtps::MatchingInfo::remoteEndpointGuid (C++ member)

 	eprosima::fastrtps::rtps::MatchingInfo::status (C++ member)

 	eprosima::fastrtps::rtps::MatchingStatus (C++ enum)

 	eprosima::fastrtps::rtps::MatchingStatus::MATCHED_MATCHING (C++ enumerator)

 	eprosima::fastrtps::rtps::MatchingStatus::REMOVED_MATCHING (C++ enumerator)

 	eprosima::fastrtps::rtps::MemoryManagementPolicy (C++ enum)

 	eprosima::fastrtps::rtps::MemoryManagementPolicy::DYNAMIC_RESERVE_MEMORY_MODE (C++ enumerator)

 	eprosima::fastrtps::rtps::MemoryManagementPolicy::DYNAMIC_REUSABLE_MEMORY_MODE (C++ enumerator)

 	eprosima::fastrtps::rtps::MemoryManagementPolicy::PREALLOCATED_MEMORY_MODE (C++ enumerator)

 	eprosima::fastrtps::rtps::MemoryManagementPolicy::PREALLOCATED_WITH_REALLOC_MEMORY_MODE (C++ enumerator)

 	eprosima::fastrtps::rtps::octet (C++ type)

 	eprosima::fastrtps::rtps::operator!= (C++ function), [1], [2], [3], [4], [5]

 	eprosima::fastrtps::rtps::operator+ (C++ function), [1]

 	eprosima::fastrtps::rtps::operator- (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::operator< (C++ function), [1], [2], [3], [4]

 	eprosima::fastrtps::rtps::operator<< (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	eprosima::fastrtps::rtps::operator<= (C++ function), [1]

 	eprosima::fastrtps::rtps::operator== (C++ function), [1], [2], [3], [4], [5], [6], [7], [8]

 	eprosima::fastrtps::rtps::operator> (C++ function), [1]

 	eprosima::fastrtps::rtps::operator>= (C++ function), [1]

 	eprosima::fastrtps::rtps::operator>> (C++ function), [1], [2], [3], [4]

 	eprosima::fastrtps::rtps::participant_stateless_message_reader_entity_id (C++ member)

 	eprosima::fastrtps::rtps::participant_stateless_message_writer_entity_id (C++ member)

 	eprosima::fastrtps::rtps::participant_volatile_message_secure_reader_entity_id (C++ member)

 	eprosima::fastrtps::rtps::participant_volatile_message_secure_writer_entity_id (C++ member)

 	eprosima::fastrtps::rtps::ParticipantAuthenticationInfo (C++ struct)

 	eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::guid (C++ member)

 	eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::status (C++ member)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo (C++ struct)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS (C++ enum)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_PARTICIPANT (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_PARTICIPANT (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::DROPPED_PARTICIPANT (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::REMOVED_PARTICIPANT (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::info (C++ member)

 	eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::status (C++ member)

 	eprosima::fastrtps::rtps::ParticipantFilteringFlags (C++ enum)

 	eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_DIFFERENT_HOST (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_DIFFERENT_PROCESS (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_SAME_PROCESS (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantFilteringFlags::NO_FILTER (C++ enumerator)

 	eprosima::fastrtps::rtps::ParticipantProxyData (C++ class)

 	eprosima::fastrtps::rtps::ParticipantProxyData::clear (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::copy (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::default_locators (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::get_backup_stamp (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::get_persistence_guid (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::get_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::get_serialized_size (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_availableBuiltinEndpoints (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_expectsInlineQos (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_guid (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_manualLivelinessCount (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_participantName (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_protocolVersion (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::m_VendorId (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::metatraffic_locators (C++ member)

 	eprosima::fastrtps::rtps::ParticipantProxyData::readFromCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::set_backup_stamp (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::set_persistence_guid (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::set_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::updateData (C++ function)

 	eprosima::fastrtps::rtps::ParticipantProxyData::writeToCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::PermissionsCredentialToken (C++ type)

 	eprosima::fastrtps::rtps::PermissionsToken (C++ type)

 	eprosima::fastrtps::rtps::PortParameters (C++ class)

 	eprosima::fastrtps::rtps::PortParameters::domainIDGain (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::getMulticastPort (C++ function)

 	eprosima::fastrtps::rtps::PortParameters::getUnicastPort (C++ function)

 	eprosima::fastrtps::rtps::PortParameters::offsetd0 (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::offsetd1 (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::offsetd2 (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::offsetd3 (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::participantIDGain (C++ member)

 	eprosima::fastrtps::rtps::PortParameters::portBase (C++ member)

 	eprosima::fastrtps::rtps::Property (C++ class)

 	eprosima::fastrtps::rtps::PropertyHelper (C++ class)

 	eprosima::fastrtps::rtps::PropertyPolicy (C++ class)

 	eprosima::fastrtps::rtps::PropertyPolicy::binary_properties (C++ function), [1]

 	eprosima::fastrtps::rtps::PropertyPolicy::properties (C++ function), [1]

 	eprosima::fastrtps::rtps::PropertyPolicyHelper (C++ class)

 	eprosima::fastrtps::rtps::PropertyPolicyHelper::find_property (C++ function), [1]

 	eprosima::fastrtps::rtps::PropertyPolicyHelper::get_properties_with_prefix (C++ function)

 	eprosima::fastrtps::rtps::PropertyPolicyHelper::length (C++ function)

 	eprosima::fastrtps::rtps::PropertySeq (C++ type)

 	eprosima::fastrtps::rtps::ProtocolVersion_t (C++ struct)

 	eprosima::fastrtps::rtps::ReaderAttributes (C++ class)

 	eprosima::fastrtps::rtps::ReaderAttributes::disable_positive_acks (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::endpoint (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::expectsInlineQos (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::liveliness_kind_ (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::liveliness_lease_duration (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::matched_writers_allocation (C++ member)

 	eprosima::fastrtps::rtps::ReaderAttributes::times (C++ member)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo (C++ struct)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS (C++ enum)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_READER (C++ enumerator)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_READER (C++ enumerator)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::REMOVED_READER (C++ enumerator)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::info (C++ member)

 	eprosima::fastrtps::rtps::ReaderDiscoveryInfo::status (C++ member)

 	eprosima::fastrtps::rtps::ReaderHistory (C++ class)

 	eprosima::fastrtps::rtps::ReaderHistory::add_change (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::can_change_be_added_nts (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::completed_change (C++ function), [1]

 	eprosima::fastrtps::rtps::ReaderHistory::matches_change (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::ReaderHistory (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::received_change (C++ function), [1]

 	eprosima::fastrtps::rtps::ReaderHistory::remove_change (C++ function), [1]

 	eprosima::fastrtps::rtps::ReaderHistory::remove_change_nts (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::remove_changes_with_guid (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::remove_fragmented_changes_until (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::writer_unmatched (C++ function)

 	eprosima::fastrtps::rtps::ReaderHistory::writer_update_its_ownership_strength_nts (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener (C++ class)

 	eprosima::fastrtps::rtps::ReaderListener::on_data_available (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::on_liveliness_changed (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::on_requested_incompatible_qos (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::on_sample_lost (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::on_sample_rejected (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::on_writer_discovery (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::onNewCacheChangeAdded (C++ function)

 	eprosima::fastrtps::rtps::ReaderListener::onReaderMatched (C++ function), [1]

 	eprosima::fastrtps::rtps::ReaderProxyData (C++ class)

 	eprosima::fastrtps::rtps::ReaderProxyData::clear (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::copy (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::get_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::get_serialized_size (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::is_update_allowed (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::m_qos (C++ member)

 	eprosima::fastrtps::rtps::ReaderProxyData::plugin_security_attributes_ (C++ member)

 	eprosima::fastrtps::rtps::ReaderProxyData::readFromCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::security_attributes_ (C++ member)

 	eprosima::fastrtps::rtps::ReaderProxyData::set_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::update (C++ function)

 	eprosima::fastrtps::rtps::ReaderProxyData::writeToCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::ReaderTimes (C++ class)

 	eprosima::fastrtps::rtps::ReaderTimes::heartbeatResponseDelay (C++ member)

 	eprosima::fastrtps::rtps::ReaderTimes::initialAcknackDelay (C++ member)

 	eprosima::fastrtps::rtps::ReliabilityKind_t (C++ type)

 	eprosima::fastrtps::rtps::RemoteLocatorList (C++ struct)

 	eprosima::fastrtps::rtps::RemoteLocatorList::add_multicast_locator (C++ function)

 	eprosima::fastrtps::rtps::RemoteLocatorList::add_unicast_locator (C++ function)

 	eprosima::fastrtps::rtps::RemoteLocatorList::multicast (C++ member)

 	eprosima::fastrtps::rtps::RemoteLocatorList::operator= (C++ function)

 	eprosima::fastrtps::rtps::RemoteLocatorList::RemoteLocatorList (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::RemoteLocatorList::unicast (C++ member)

 	eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes (C++ struct)

 	eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes::max_multicast_locators (C++ member)

 	eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes::max_unicast_locators (C++ member)

 	eprosima::fastrtps::rtps::RTPSDomain (C++ class)

 	eprosima::fastrtps::rtps::RTPSDomain::createParticipant (C++ function), [1]

 	eprosima::fastrtps::rtps::RTPSDomain::createRTPSReader (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::RTPSDomain::createRTPSWriter (C++ function), [1], [2], [3], [4]

 	eprosima::fastrtps::rtps::RTPSDomain::removeRTPSParticipant (C++ function)

 	eprosima::fastrtps::rtps::RTPSDomain::removeRTPSReader (C++ function)

 	eprosima::fastrtps::rtps::RTPSDomain::removeRTPSWriter (C++ function)

 	eprosima::fastrtps::rtps::RTPSDomain::stopAll (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant (C++ class)

 	eprosima::fastrtps::rtps::RTPSParticipant::announceRTPSParticipantState (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::enable (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::get_domain_id (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::get_new_entity_id (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getGuid (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getMaxDataSize (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getMaxMessageSize (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getParticipantNames (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getRTPSParticipantAttributes (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::getRTPSParticipantID (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::is_security_enabled_for_reader (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::is_security_enabled_for_writer (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::newRemoteReaderDiscovered (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::newRemoteWriterDiscovered (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::registerReader (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::registerWriter (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::resetRTPSParticipantAnnouncement (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::set_check_type_function (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::set_listener (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::stopRTPSParticipantAnnouncement (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::typelookup_manager (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::update_attributes (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::updateReader (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::updateWriter (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipant::wlp (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes (C++ struct)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::content_filter (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::data_limits (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::locators (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::participants (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::readers (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::send_buffers (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::total_readers (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::total_writers (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::writers (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes (C++ class)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::allocation (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::builtin (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::default_external_unicast_locators (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::defaultMulticastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::defaultUnicastLocatorList (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::flow_controllers (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::getName (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::ignore_non_matching_locators (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::listenSocketBufferSize (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::participantID (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::port (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::prefix (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::properties (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::sendSocketBufferSize (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::setName (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::throughputController (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::useBuiltinTransports (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::userData (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantAttributes::userTransports (C++ member)

 	eprosima::fastrtps::rtps::RTPSParticipantListener (C++ class)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_dependencies_reply (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_discovery (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_information_received (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::onParticipantDiscovery (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::onReaderDiscovery (C++ function)

 	eprosima::fastrtps::rtps::RTPSParticipantListener::onWriterDiscovery (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader (C++ class)

 	eprosima::fastrtps::rtps::RTPSReader::assert_writer_liveliness (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::begin_sample_access_nts (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::change_read_by_user (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::change_removed_by_history (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::end_sample_access_nts (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::expectsInlineQos (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::get_content_filter (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::getHistory (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::getListener (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::is_sample_valid (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::isInCleanState (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::liveliness_changed_status_ (C++ member)

 	eprosima::fastrtps::rtps::RTPSReader::matched_writer_add (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::matched_writer_is_matched (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::matched_writer_remove (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::nextUnreadCache (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::nextUntakenCache (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::processDataFragMsg (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::processDataMsg (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::processGapMsg (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::processHeartbeatMsg (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::releaseCache (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::reserveCache (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::set_content_filter (C++ function)

 	eprosima::fastrtps::rtps::RTPSReader::setListener (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter (C++ class)

 	eprosima::fastrtps::rtps::RTPSWriter::calculateMaxDataSize (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::deliver_sample_nts (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_announcement_period (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_kind (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_lease_duration (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_separate_sending (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_seq_num_max (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::get_seq_num_min (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::getListener (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::getMaxDataSize (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::getRTPSParticipant (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::getTypeMaxSerialized (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::is_acked_by_all (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::is_datasharing_compatible (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::isAsync (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::liveliness_lost_status_ (C++ member)

 	eprosima::fastrtps::rtps::RTPSWriter::matched_reader_add (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::matched_reader_is_matched (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::matched_reader_remove (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::new_change (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::process_acknack (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::process_nack_frag (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::reader_data_filter (C++ function), [1]

 	eprosima::fastrtps::rtps::RTPSWriter::release_change (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::remove_older_changes (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::send_nts (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::set_separate_sending (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::try_remove_change (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::updateAttributes (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::wait_for_acknowledgement (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriter::wait_for_all_acked (C++ function)

 	eprosima::fastrtps::rtps::RTPSWriterPublishMode (C++ enum)

 	eprosima::fastrtps::rtps::RTPSWriterPublishMode::ASYNCHRONOUS_WRITER (C++ enumerator)

 	eprosima::fastrtps::rtps::RTPSWriterPublishMode::SYNCHRONOUS_WRITER (C++ enumerator)

 	eprosima::fastrtps::rtps::SampleIdentity (C++ class)

 	eprosima::fastrtps::rtps::SampleIdentity::operator< (C++ function)

 	eprosima::fastrtps::rtps::SampleIdentity::operator= (C++ function), [1]

 	eprosima::fastrtps::rtps::SampleIdentity::SampleIdentity (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::sedp_builtin_publications_secure_reader (C++ member)

 	eprosima::fastrtps::rtps::sedp_builtin_publications_secure_writer (C++ member)

 	eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_reader (C++ member)

 	eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_writer (C++ member)

 	eprosima::fastrtps::rtps::SendBuffersAllocationAttributes (C++ struct)

 	eprosima::fastrtps::rtps::SendBuffersAllocationAttributes::dynamic (C++ member)

 	eprosima::fastrtps::rtps::SendBuffersAllocationAttributes::preallocated_number (C++ member)

 	eprosima::fastrtps::rtps::SequenceNumber_t (C++ struct)

 	eprosima::fastrtps::rtps::SequenceNumber_t::operator++ (C++ function)

 	eprosima::fastrtps::rtps::SequenceNumber_t::operator+= (C++ function)

 	eprosima::fastrtps::rtps::SequenceNumber_t::SequenceNumber_t (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::SequenceNumber_t::to64long (C++ function)

 	eprosima::fastrtps::rtps::SequenceNumberDiff (C++ struct)

 	eprosima::fastrtps::rtps::SequenceNumberHash (C++ struct)

 	eprosima::fastrtps::rtps::SequenceNumberSet_t (C++ type)

 	eprosima::fastrtps::rtps::SerializedPayload_t (C++ struct)

 	eprosima::fastrtps::rtps::SerializedPayload_t::copy (C++ function)

 	eprosima::fastrtps::rtps::SerializedPayload_t::data (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::empty (C++ function)

 	eprosima::fastrtps::rtps::SerializedPayload_t::encapsulation (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::length (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::max_size (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::pos (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::representation_header_size (C++ member)

 	eprosima::fastrtps::rtps::SerializedPayload_t::reserve_fragmented (C++ function)

 	eprosima::fastrtps::rtps::SerializedPayload_t::SerializedPayload_t (C++ function), [1]

 	eprosima::fastrtps::rtps::SimpleEDPAttributes (C++ class)

 	eprosima::fastrtps::rtps::SimpleEDPAttributes::use_PublicationReaderANDSubscriptionWriter (C++ member)

 	eprosima::fastrtps::rtps::SimpleEDPAttributes::use_PublicationWriterANDSubscriptionReader (C++ member)

 	eprosima::fastrtps::rtps::sort_seqNum (C++ function)

 	eprosima::fastrtps::rtps::SubmessageFlag (C++ type)

 	eprosima::fastrtps::rtps::ThroughputControllerDescriptor (C++ struct)

 	eprosima::fastrtps::rtps::ThroughputControllerDescriptor::bytesPerPeriod (C++ member)

 	eprosima::fastrtps::rtps::ThroughputControllerDescriptor::periodMillisecs (C++ member)

 	eprosima::fastrtps::rtps::Time_t (C++ class)

 	eprosima::fastrtps::rtps::Time_t::fraction (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::Time_t::from_ns (C++ function)

 	eprosima::fastrtps::rtps::Time_t::nanosec (C++ function), [1]

 	eprosima::fastrtps::rtps::Time_t::now (C++ function)

 	eprosima::fastrtps::rtps::Time_t::seconds (C++ function), [1], [2]

 	eprosima::fastrtps::rtps::Time_t::Time_t (C++ function), [1], [2], [3]

 	eprosima::fastrtps::rtps::Time_t::to_ns (C++ function)

 	eprosima::fastrtps::rtps::Token (C++ type)

 	eprosima::fastrtps::rtps::TopicKind_t (C++ type)

 	eprosima::fastrtps::rtps::TypeLookupSettings (C++ class)

 	eprosima::fastrtps::rtps::TypeLookupSettings::use_client (C++ member)

 	eprosima::fastrtps::rtps::TypeLookupSettings::use_server (C++ member)

 	eprosima::fastrtps::rtps::VariableLengthDataLimits (C++ struct)

 	eprosima::fastrtps::rtps::VariableLengthDataLimits::max_datasharing_domains (C++ member)

 	eprosima::fastrtps::rtps::VariableLengthDataLimits::max_partitions (C++ member)

 	eprosima::fastrtps::rtps::VariableLengthDataLimits::max_properties (C++ member)

 	eprosima::fastrtps::rtps::VariableLengthDataLimits::max_user_data (C++ member)

 	eprosima::fastrtps::rtps::WriteParams (C++ class)

 	eprosima::fastrtps::rtps::WriteParams::related_sample_identity (C++ function), [1], [2], [3]

 	eprosima::fastrtps::rtps::WriteParams::sample_identity (C++ function), [1], [2], [3]

 	eprosima::fastrtps::rtps::WriteParams::source_timestamp (C++ function), [1], [2], [3]

 	eprosima::fastrtps::rtps::WriteParams::WRITE_PARAM_DEFAULT (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes (C++ class)

 	eprosima::fastrtps::rtps::WriterAttributes::disable_heartbeat_piggyback (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::disable_positive_acks (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::endpoint (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::flow_controller_name (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::keep_duration (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::liveliness_announcement_period (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::liveliness_kind (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::liveliness_lease_duration (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::matched_readers_allocation (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::mode (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::throughputController (C++ member)

 	eprosima::fastrtps::rtps::WriterAttributes::times (C++ member)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo (C++ struct)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS (C++ enum)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_WRITER (C++ enumerator)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_WRITER (C++ enumerator)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::REMOVED_WRITER (C++ enumerator)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::info (C++ member)

 	eprosima::fastrtps::rtps::WriterDiscoveryInfo::status (C++ member)

 	eprosima::fastrtps::rtps::WriterHistory (C++ class)

 	eprosima::fastrtps::rtps::WriterHistory::add_change (C++ function), [1]

 	eprosima::fastrtps::rtps::WriterHistory::matches_change (C++ function)

 	eprosima::fastrtps::rtps::WriterHistory::remove_change (C++ function), [1]

 	eprosima::fastrtps::rtps::WriterHistory::remove_change_nts (C++ function)

 	eprosima::fastrtps::rtps::WriterHistory::remove_min_change (C++ function)

 	eprosima::fastrtps::rtps::WriterHistory::WriterHistory (C++ function)

 	eprosima::fastrtps::rtps::WriterListener (C++ class)

 	eprosima::fastrtps::rtps::WriterListener::on_liveliness_lost (C++ function)

 	eprosima::fastrtps::rtps::WriterListener::on_offered_incompatible_qos (C++ function)

 	eprosima::fastrtps::rtps::WriterListener::on_reader_discovery (C++ function)

 	eprosima::fastrtps::rtps::WriterListener::onWriterChangeReceivedByAll (C++ function)

 	eprosima::fastrtps::rtps::WriterListener::onWriterMatched (C++ function), [1]

 	eprosima::fastrtps::rtps::WriterProxyData (C++ class)

 	eprosima::fastrtps::rtps::WriterProxyData::clear (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::copy (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::get_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::get_serialized_size (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::is_update_allowed (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::m_qos (C++ member)

 	eprosima::fastrtps::rtps::WriterProxyData::plugin_security_attributes_ (C++ member)

 	eprosima::fastrtps::rtps::WriterProxyData::readFromCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::security_attributes_ (C++ member)

 	eprosima::fastrtps::rtps::WriterProxyData::set_sample_identity (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::update (C++ function)

 	eprosima::fastrtps::rtps::WriterProxyData::writeToCDRMessage (C++ function)

 	eprosima::fastrtps::rtps::WriterTimes (C++ struct)

 	eprosima::fastrtps::rtps::WriterTimes::heartbeatPeriod (C++ member)

 	eprosima::fastrtps::rtps::WriterTimes::initialHeartbeatDelay (C++ member)

 	eprosima::fastrtps::rtps::WriterTimes::nackResponseDelay (C++ member)

 	eprosima::fastrtps::rtps::WriterTimes::nackSupressionDuration (C++ member)

 	eprosima::fastrtps::Time_t (C++ struct)

 	eprosima::fastrtps::Time_t::now (C++ function)

 	eprosima::fastrtps::Time_t::Time_t (C++ function), [1], [2]

 	eprosima::fastrtps::Time_t::to_ns (C++ function)

 	EXCLUSIVE_OWNERSHIP_QOS (class in fastdds)

 	expects_inline_qos() (fastdds.DataReaderQos method)

 	external_unicast_locators (fastdds.RTPSEndpointQos property)

 	extra_samples (fastdds.ResourceLimitsQosPolicy property)

F

 	
 	FASTDDS_SEQUENCE (C macro)

 	FASTDDS_SQLFILTER_NAME (C macro)

 	FASTDDS_STATUS_COUNT (C macro)

 	
 	find_topic() (fastdds.DomainParticipant method)

 	find_type() (fastdds.DomainParticipant method)

 	flow_controller_name (fastdds.PublishModeQosPolicy property)

 	flow_controllers() (fastdds.DomainParticipantQos method)

G

 	
 	generation_rank (fastdds.SampleInfo property)

 	GenericDataQosPolicy (class in fastdds)

 	get() (fastdds.TypeIdV1 method)

 	(fastdds.TypeObjectV1 method)

 	get_builtin_subscriber() (fastdds.DomainParticipant method)

 	get_current_time() (fastdds.DomainParticipant method)

 	get_datareader_qos_from_profile() (fastdds.Subscriber method)

 	get_datareaders() (fastdds.Subscriber method)

 	get_datawriter_qos_from_profile() (fastdds.Publisher method)

 	get_datawriters() (fastdds.Publisher method)

 	get_default_datareader_qos() (fastdds.Subscriber method)

 	get_default_datawriter_qos() (fastdds.Publisher method)

 	get_default_participant_qos() (fastdds.DomainParticipantFactory method)

 	get_default_publisher_qos() (fastdds.DomainParticipant method)

 	get_default_subscriber_qos() (fastdds.DomainParticipant method)

 	get_default_topic_qos() (fastdds.DomainParticipant method)

 	get_discovered_participant_data() (fastdds.DomainParticipant method)

 	get_discovered_participants() (fastdds.DomainParticipant method)

 	get_discovered_topic_data() (fastdds.DomainParticipant method)

 	get_discovered_topics() (fastdds.DomainParticipant method)

 	get_domain_id() (fastdds.DomainParticipant method)

 	get_first_untaken_info() (fastdds.DataReader method)

 	get_impl() (fastdds.Topic method)

 	(fastdds.TopicDescription method)

 	get_instance() (fastdds.DomainParticipantFactory static method)

 	get_instance_handle() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.Entity method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	get_key() (fastdds.TypeSupport method)

 	get_key_value() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	get_listener() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	(fastdds.Topic method)

 	get_listening_locators() (fastdds.DataReader method)

 	get_liveliness_changed_status() (fastdds.DataReader method)

 	get_liveliness_lost_status() (fastdds.DataWriter method)

 	get_matched_publication_data() (fastdds.DataReader method)

 	get_matched_publications() (fastdds.DataReader method)

 	get_matched_subscription_data() (fastdds.DataWriter method)

 	get_matched_subscriptions() (fastdds.DataWriter method)

 	get_name() (fastdds.TopicDescription method)

 	get_offered_deadline_missed_status() (fastdds.DataWriter method)

 	get_offered_incompatible_qos_status() (fastdds.DataWriter method)

 	get_participant() (fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	(fastdds.Topic method)

 	(fastdds.TopicDescription method)

 	
 	get_participant_names() (fastdds.DomainParticipant method)

 	get_participant_qos_from_profile() (fastdds.DomainParticipantFactory method)

 	get_publication_matched_status() (fastdds.DataWriter method)

 	get_publisher() (fastdds.DataWriter method)

 	get_publisher_qos_from_profile() (fastdds.DomainParticipant method)

 	get_qos() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.DomainParticipantFactory method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	(fastdds.Topic method)

 	get_readerqos() (fastdds.DataReaderQos method)

 	get_requested_deadline_missed_status() (fastdds.DataReader method)

 	get_requested_incompatible_qos_status() (fastdds.DataReader method)

 	get_resource_event() (fastdds.DomainParticipant method)

 	get_sample_lost_status() (fastdds.DataReader method)

 	get_sample_rejected_status() (fastdds.DataReader method)

 	get_sending_locators() (fastdds.DataWriter method)

 	get_serialized_size_provider() (fastdds.TypeSupport method)

 	get_shared_instance() (fastdds.DomainParticipantFactory static method)

 	get_status_changes() (fastdds.Entity method)

 	get_status_mask() (fastdds.Entity method)

 	get_statuscondition() (fastdds.Entity method)

 	get_subscriber() (fastdds.DataReader method)

 	get_subscriber_qos_from_profile() (fastdds.DomainParticipant method)

 	get_subscription_matched_status() (fastdds.DataReader method)

 	get_topic() (fastdds.DataWriter method)

 	get_topic_qos_from_profile() (fastdds.DomainParticipant method)

 	get_topicdescription() (fastdds.DataReader method)

 	get_type() (fastdds.DataWriter method)

 	get_type_dependencies() (fastdds.DomainParticipant method)

 	get_type_name() (fastdds.TopicDescription method)

 	(fastdds.TypeSupport method)

 	get_types() (fastdds.DomainParticipant method)

 	get_unread_count() (fastdds.DataReader method)

 	get_writerqos() (fastdds.DataWriterQos method)

 	getKey() (fastdds.TopicDataType method)

 	getName() (fastdds.TopicDataType method)

 	getNames() (fastdds.PartitionQosPolicy method)

 	getSerializedSizeProvider() (fastdds.TopicDataType method)

 	getValue() (fastdds.GenericDataQosPolicy method)

 	group_data() (fastdds.PublisherQos method)

 	(fastdds.SubscriberQos method)

 	GROUP_PRESENTATION_QOS (class in fastdds)

 	GROUPDATA_QOS_POLICY_ID (class in fastdds)

 	GroupDataQosPolicy (class in fastdds)

 	guid() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

H

 	
 	has_datareaders() (fastdds.Subscriber method)

 	has_datawriters() (fastdds.Publisher method)

 	has_ownership() (fastdds.LoanableCollection method)

 	hasChanged (fastdds.QosPolicy property)

 	history() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	
 	history_depth (fastdds.DurabilityServiceQosPolicy property)

 	history_kind (fastdds.DurabilityServiceQosPolicy property)

 	history_memory_policy (fastdds.RTPSEndpointQos property)

 	HISTORY_QOS_POLICY_ID (class in fastdds)

 	HistoryQosPolicy (class in fastdds)

I

 	
 	ignore_non_matching_locators (fastdds.RTPSEndpointQos property)

 	(fastdds.WireProtocolConfigQos property)

 	ignore_participant() (fastdds.DomainParticipant method)

 	ignore_publication() (fastdds.DomainParticipant method)

 	ignore_subscription() (fastdds.DomainParticipant method)

 	ignore_topic() (fastdds.DomainParticipant method)

 	IncompatibleQosStatus (class in fastdds)

 	inconsistent_topic() (fastdds.StatusMask static method)

 	instance_handle (fastdds.SampleInfo property)

 	
 	INSTANCE_PRESENTATION_QOS (class in fastdds)

 	instance_state (fastdds.SampleInfo property)

 	INVALID_QOS_POLICY_ID (class in fastdds)

 	is_active() (fastdds.StatusMask method)

 	is_bounded() (fastdds.TopicDataType method)

 	(fastdds.TypeSupport method)

 	is_enabled() (fastdds.Entity method)

 	is_plain() (fastdds.TopicDataType method)

 	(fastdds.TypeSupport method)

 	is_sample_valid() (fastdds.DataReader method)

K

 	
 	KEEP_ALL_HISTORY_QOS (class in fastdds)

 	KEEP_LAST_HISTORY_QOS (class in fastdds)

 	kind (fastdds.DestinationOrderQosPolicy property)

 	(fastdds.DurabilityQosPolicy property)

 	(fastdds.HistoryQosPolicy property)

 	(fastdds.LivelinessQosPolicy property)

 	(fastdds.OwnershipQosPolicy property)

 	(fastdds.PublishModeQosPolicy property)

 	(fastdds.ReliabilityQosPolicy property)

 	
 	kind() (fastdds.DataSharingQosPolicy method)

L

 	
 	last_instance_handle (fastdds.DeadlineMissedStatus property)

 	(fastdds.SampleRejectedStatus property)

 	last_policy_id (fastdds.IncompatibleQosStatus property)

 	last_publication_handle (fastdds.LivelinessChangedStatus property)

 	(fastdds.SubscriptionMatchedStatus property)

 	last_reason (fastdds.SampleRejectedStatus property)

 	last_subscription_handle (fastdds.PublicationMatchedStatus property)

 	latency_budget() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	LATENCYBUDGET_QOS_POLICY_ID (class in fastdds)

 	LatencyBudgetQosPolicy (class in fastdds)

 	lease_duration (fastdds.LivelinessQosPolicy property)

 	length() (fastdds.LoanableCollection method)

 	lifespan() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	LIFESPAN_QOS_POLICY_ID (class in fastdds)

 	LifespanQosPolicy (class in fastdds)

 	listen_socket_buffer_size (fastdds.TransportConfigQos property)

 	liveliness() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	liveliness_changed() (fastdds.StatusMask static method)

 	liveliness_lost() (fastdds.StatusMask static method)

 	LIVELINESS_QOS_POLICY_ID (class in fastdds)

 	
 	LivelinessChangedStatus (class in fastdds)

 	LivelinessQosPolicy (class in fastdds)

 	load_profiles() (fastdds.DomainParticipantFactory method)

 	load_XML_profiles_file() (fastdds.DomainParticipantFactory method)

 	load_XML_profiles_string() (fastdds.DomainParticipantFactory method)

 	loan() (fastdds.LoanableCollection method)

 	loan_sample() (fastdds.DataWriter method)

 	LoanableCollection (class in fastdds)

 	LOCATOR_ADDRESS_INVALID (C macro)

 	LOCATOR_INVALID (C macro)

 	LOCATOR_KIND_INVALID (C macro)

 	LOCATOR_KIND_RESERVED (C macro)

 	LOCATOR_KIND_SHM (C macro)

 	LOCATOR_KIND_TCPv4 (C macro)

 	LOCATOR_KIND_TCPv6 (C macro)

 	LOCATOR_KIND_UDPv4 (C macro)

 	LOCATOR_KIND_UDPv6 (C macro)

 	LOCATOR_PORT_INVALID (C macro)

 	lookup_content_filter_factory() (fastdds.DomainParticipant method)

 	lookup_datareader() (fastdds.Subscriber method)

 	lookup_datawriter() (fastdds.Publisher method)

 	lookup_instance() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	lookup_participant() (fastdds.DomainParticipantFactory method)

 	lookup_participants() (fastdds.DomainParticipantFactory method)

 	lookup_topicdescription() (fastdds.DomainParticipant method)

M

 	
 	m_force_type_validation (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_ignore_member_names (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_ignore_sequence_bounds (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_ignore_string_bounds (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_isGetKeyDefined (fastdds.TopicDataType property)

 	m_kind (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_prevent_type_widening (fastdds.TypeConsistencyEnforcementQosPolicy property)

 	m_type_identifier (fastdds.TypeIdV1 property)

 	m_type_object (fastdds.TypeObjectV1 property)

 	m_typeSize (fastdds.TopicDataType property)

 	m_value (fastdds.DataRepresentationQosPolicy property)

 	MANUAL_BY_PARTICIPANT_LIVELINESS_QOS (class in fastdds)

 	MANUAL_BY_TOPIC_LIVELINESS_QOS (class in fastdds)

 	matched_publisher_allocation (fastdds.ReaderResourceLimitsQos property)

 	
 	matched_subscriber_allocation (fastdds.WriterResourceLimitsQos property)

 	MatchedStatus (class in fastdds)

 	max_blocking_time (fastdds.ReliabilityQosPolicy property)

 	max_domains() (fastdds.DataSharingQosPolicy method)

 	max_instances (fastdds.DurabilityServiceQosPolicy property)

 	(fastdds.ResourceLimitsQosPolicy property)

 	max_samples (fastdds.DurabilityServiceQosPolicy property)

 	(fastdds.ResourceLimitsQosPolicy property)

 	max_samples_per_instance (fastdds.DurabilityServiceQosPolicy property)

 	(fastdds.ResourceLimitsQosPolicy property)

 	max_samples_per_read (fastdds.ReaderResourceLimitsQos property)

 	max_size() (fastdds.PartitionQosPolicy method)

 	maximum() (fastdds.LoanableCollection method)

 	minimum_separation (fastdds.TimeBasedFilterQosPolicy property)

 	multicast_locator_list (fastdds.RTPSEndpointQos property)

N

 	
 	name() (fastdds.DomainParticipantQos method)

 	(fastdds.Partition_t method)

 	names() (fastdds.PartitionQosPolicy method)

 	new_remote_endpoint_discovered() (fastdds.DomainParticipant method)

 	NEW_VIEW_STATE (class in fastdds)

 	NEXT_QOS_POLICY_ID (class in fastdds)

 	no_writers_generation_count (fastdds.SampleInfo property)

 	none() (fastdds.StatusMask static method)

 	
 	not_alive_count (fastdds.LivelinessChangedStatus property)

 	not_alive_count_change (fastdds.LivelinessChangedStatus property)

 	NOT_ALIVE_DISPOSED_INSTANCE_STATE (class in fastdds)

 	NOT_ALIVE_NO_WRITERS_INSTANCE_STATE (class in fastdds)

 	NOT_NEW_VIEW_STATE (class in fastdds)

 	NOT_READ_SAMPLE_STATE (class in fastdds)

 	NOT_REJECTED (class in fastdds)

 	notify_datareaders() (fastdds.Subscriber method)

O

 	
 	OFF (class in fastdds)

 	off() (fastdds.DataSharingQosPolicy method)

 	offered_deadline_missed() (fastdds.StatusMask static method)

 	offered_incompatible_qos() (fastdds.StatusMask static method)

 	ON (class in fastdds)

 	on() (fastdds.DataSharingQosPolicy method)

 	on_data_available() (fastdds.DataReaderListener method)

 	on_data_on_readers() (fastdds.SubscriberListener method)

 	on_inconsistent_topic() (fastdds.TopicListener method)

 	on_liveliness_changed() (fastdds.DataReaderListener method)

 	on_liveliness_lost() (fastdds.DataWriterListener method)

 	on_offered_deadline_missed() (fastdds.DataWriterListener method)

 	on_offered_incompatible_qos() (fastdds.DataWriterListener method)

 	on_participant_discovery() (fastdds.DomainParticipantListener method)

 	on_publication_matched() (fastdds.DataWriterListener method)

 	on_publisher_discovery() (fastdds.DomainParticipantListener method)

 	on_requested_deadline_missed() (fastdds.DataReaderListener method)

 	
 	on_requested_incompatible_qos() (fastdds.DataReaderListener method)

 	on_sample_lost() (fastdds.DataReaderListener method)

 	on_sample_rejected() (fastdds.DataReaderListener method)

 	on_subscriber_discovery() (fastdds.DomainParticipantListener method)

 	on_subscription_matched() (fastdds.DataReaderListener method)

 	on_type_dependencies_reply() (fastdds.DomainParticipantListener method)

 	on_type_discovery() (fastdds.DomainParticipantListener method)

 	on_type_information_received() (fastdds.DomainParticipantListener method)

 	ordered_access (fastdds.PresentationQosPolicy property)

 	outstanding_reads_allocation (fastdds.ReaderResourceLimitsQos property)

 	ownership() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	OWNERSHIP_QOS_POLICY_ID (class in fastdds)

 	ownership_strength() (fastdds.DataWriterQos method)

 	OwnershipQosPolicy (class in fastdds)

 	OWNERSHIPSTRENGTH_QOS_POLICY_ID (class in fastdds)

 	OwnershipStrengthQosPolicy (class in fastdds)

P

 	
 	participant_id (fastdds.WireProtocolConfigQos property)

 	PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID (class in fastdds)

 	partition() (fastdds.PublisherQos method)

 	(fastdds.SubscriberQos method)

 	PARTITION_QOS_POLICY_ID (class in fastdds)

 	Partition_t (class in fastdds)

 	PartitionQosPolicy (class in fastdds)

 	period (fastdds.DeadlineQosPolicy property)

 	PERSISTENT_DURABILITY_QOS (class in fastdds)

 	PL_CDR_BE (C macro)

 	PL_CDR_LE (C macro)

 	policies (fastdds.IncompatibleQosStatus property)

 	policy_id (fastdds.QosPolicyCount property)

 	port (fastdds.WireProtocolConfigQos property)

 	prefix (fastdds.WireProtocolConfigQos property)

 	presentation() (fastdds.PublisherQos method)

 	(fastdds.SubscriberQos method)

 	
 	PRESENTATION_QOS_POLICY_ID (class in fastdds)

 	PresentationQosPolicy (class in fastdds)

 	properties() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.DomainParticipantQos method)

 	PROPERTYPOLICY_QOS_POLICY_ID (class in fastdds)

 	publication_handle (fastdds.SampleInfo property)

 	publication_matched() (fastdds.StatusMask static method)

 	PublicationMatchedStatus (class in fastdds)

 	publish_mode() (fastdds.DataWriterQos method)

 	Publisher (class in fastdds)

 	PUBLISHER_QOS_DEFAULT (class in fastdds)

 	PublisherListener (class in fastdds)

 	PublisherQos (class in fastdds)

 	PUBLISHMODE_QOS_POLICY_ID (class in fastdds)

 	PublishModeQosPolicy (class in fastdds)

 	push_back() (fastdds.PartitionQosPolicy method)

Q

 	
 	QosPolicy (class in fastdds)

 	
 	QosPolicyCount (class in fastdds)

R

 	
 	read() (fastdds.DataReader method)

 	read_instance() (fastdds.DataReader method)

 	read_next_instance() (fastdds.DataReader method)

 	read_next_instance_w_condition() (fastdds.DataReader method)

 	read_next_sample() (fastdds.DataReader method)

 	READ_SAMPLE_STATE (class in fastdds)

 	read_w_condition() (fastdds.DataReader method)

 	reader_data_lifecycle() (fastdds.DataReaderQos method)

 	reader_filters_allocation (fastdds.WriterResourceLimitsQos property)

 	reader_resource_limits() (fastdds.DataReaderQos method)

 	READERDATALIFECYCLE_QOS_POLICY_ID (class in fastdds)

 	ReaderDataLifecycleQosPolicy (class in fastdds)

 	READERRESOURCELIMITS_QOS_POLICY_ID (class in fastdds)

 	ReaderResourceLimitsQos (class in fastdds)

 	reception_timestamp (fastdds.SampleInfo property)

 	register_content_filter_factory() (fastdds.DomainParticipant method)

 	register_instance() (fastdds.DataWriter method)

 	register_instance_w_timestamp() (fastdds.DataWriter method)

 	register_remote_type() (fastdds.DomainParticipant method)

 	register_type() (fastdds.DomainParticipant method)

 	(fastdds.TypeSupport method)

 	REJECTED_BY_INSTANCES_LIMIT (class in fastdds)

 	REJECTED_BY_SAMPLES_LIMIT (class in fastdds)

 	REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT (class in fastdds)

 	related_sample_identity (fastdds.SampleInfo property)

 	reliability() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	RELIABILITY_QOS_POLICY_ID (class in fastdds)

 	ReliabilityQosPolicy (class in fastdds)

 	
 	reliable_reader_qos() (fastdds.DataReaderQos method)

 	RELIABLE_RELIABILITY_QOS (class in fastdds)

 	reliable_writer_qos() (fastdds.DataWriterQos method)

 	remote_locator_list (fastdds.RTPSEndpointQos property)

 	representation (fastdds.TypeConsistencyQos property)

 	requested_deadline_missed() (fastdds.StatusMask static method)

 	requested_incompatible_qos() (fastdds.StatusMask static method)

 	resize() (fastdds.GenericDataQosPolicy method)

 	resource_limits() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	RESOURCELIMITS_QOS_POLICY_ID (class in fastdds)

 	ResourceLimitsQosPolicy (class in fastdds)

 	resume_publications() (fastdds.Publisher method)

 	return_loan() (fastdds.DataReader method)

 	RTPSENDPOINT_QOS_POLICY_ID (class in fastdds)

 	RTPSEndpointQos (class in fastdds)

 	RTPSMESSAGE_COMMON_DATA_PAYLOAD_SIZE (C macro)

 	RTPSMESSAGE_COMMON_RTPS_PAYLOAD_SIZE (C macro)

 	RTPSMESSAGE_DATA_EXTRA_INLINEQOS_SIZE (C macro)

 	RTPSMESSAGE_DATA_MIN_LENGTH (C macro)

 	RTPSMESSAGE_DEFAULT_SIZE (C macro)

 	RTPSMESSAGE_HEADER_SIZE (C macro)

 	RTPSMESSAGE_INFOTS_SIZE (C macro)

 	RTPSMESSAGE_OCTETSTOINLINEQOS_DATAFRAGSUBMSG (C macro)

 	RTPSMESSAGE_OCTETSTOINLINEQOS_DATASUBMSG (C macro)

 	RTPSMESSAGE_SUBMESSAGEHEADER_SIZE (C macro)

 	RTPSRELIABLEREADER_QOS_POLICY_ID (class in fastdds)

 	RTPSReliableReaderQos (class in fastdds)

 	RTPSRELIABLEWRITER_QOS_POLICY_ID (class in fastdds)

 	RTPSReliableWriterQos (class in fastdds)

S

 	
 	sample_identity (fastdds.SampleInfo property)

 	sample_infos_allocation (fastdds.ReaderResourceLimitsQos property)

 	sample_lost() (fastdds.StatusMask static method)

 	sample_rank (fastdds.SampleInfo property)

 	sample_rejected() (fastdds.StatusMask static method)

 	sample_state (fastdds.SampleInfo property)

 	SampleInfo (class in fastdds)

 	SampleRejectedStatus (class in fastdds)

 	send_always() (fastdds.QosPolicy method)

 	send_socket_buffer_size (fastdds.TransportConfigQos property)

 	serialize() (fastdds.TopicDataType method)

 	(fastdds.TypeSupport method)

 	service_cleanup_delay (fastdds.DurabilityServiceQosPolicy property)

 	set() (fastdds.TypeSupport method)

 	set_default_datareader_qos() (fastdds.Subscriber method)

 	set_default_datawriter_qos() (fastdds.Publisher method)

 	set_default_participant_qos() (fastdds.DomainParticipantFactory method)

 	set_default_publisher_qos() (fastdds.DomainParticipant method)

 	set_default_subscriber_qos() (fastdds.DomainParticipant method)

 	set_default_topic_qos() (fastdds.DomainParticipant method)

 	set_listener() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	(fastdds.Topic method)

 	
 	set_max_domains() (fastdds.DataSharingQosPolicy method)

 	set_max_size() (fastdds.GenericDataQosPolicy method)

 	(fastdds.PartitionQosPolicy method)

 	set_qos() (fastdds.DataReader method)

 	(fastdds.DataWriter method)

 	(fastdds.DomainParticipant method)

 	(fastdds.DomainParticipantFactory method)

 	(fastdds.Publisher method)

 	(fastdds.Subscriber method)

 	(fastdds.Topic method)

 	setName() (fastdds.TopicDataType method)

 	setNames() (fastdds.PartitionQosPolicy method)

 	setValue() (fastdds.GenericDataQosPolicy method)

 	SHARED_OWNERSHIP_QOS (class in fastdds)

 	shm_directory() (fastdds.DataSharingQosPolicy method)

 	size() (fastdds.Partition_t method)

 	(fastdds.PartitionQosPolicy method)

 	source_timestamp (fastdds.SampleInfo property)

 	StatusMask (class in fastdds)

 	Subscriber (class in fastdds)

 	SUBSCRIBER_QOS_DEFAULT (class in fastdds)

 	SubscriberListener (class in fastdds)

 	SubscriberQos (class in fastdds)

 	subscription_matched() (fastdds.StatusMask static method)

 	SubscriptionMatchedStatus (class in fastdds)

 	suspend_publications() (fastdds.Publisher method)

 	SYNCHRONOUS_PUBLISH_MODE (class in fastdds)

T

 	
 	take() (fastdds.DataReader method)

 	take_instance() (fastdds.DataReader method)

 	take_next_instance() (fastdds.DataReader method)

 	take_next_instance_w_condition() (fastdds.DataReader method)

 	take_next_sample() (fastdds.DataReader method)

 	take_w_condition() (fastdds.DataReader method)

 	thisown (fastdds.BaseStatus property)

 	(fastdds.DataReader property)

 	(fastdds.DataReaderListener property)

 	(fastdds.DataReaderQos property)

 	(fastdds.DataRepresentationQosPolicy property)

 	(fastdds.DataSharingQosPolicy property)

 	(fastdds.DataWriter property)

 	(fastdds.DataWriterListener property)

 	(fastdds.DataWriterQos property)

 	(fastdds.DeadlineMissedStatus property)

 	(fastdds.DeadlineQosPolicy property)

 	(fastdds.DestinationOrderQosPolicy property)

 	(fastdds.DisablePositiveACKsQosPolicy property)

 	(fastdds.DomainEntity property)

 	(fastdds.DomainParticipant property)

 	(fastdds.DomainParticipantFactory property)

 	(fastdds.DomainParticipantFactoryQos property)

 	(fastdds.DomainParticipantListener property)

 	(fastdds.DomainParticipantQos property)

 	(fastdds.DurabilityQosPolicy property)

 	(fastdds.DurabilityServiceQosPolicy property)

 	(fastdds.Entity property)

 	(fastdds.EntityFactoryQosPolicy property)

 	(fastdds.GenericDataQosPolicy property)

 	(fastdds.GroupDataQosPolicy property)

 	(fastdds.HistoryQosPolicy property)

 	(fastdds.IncompatibleQosStatus property)

 	(fastdds.LatencyBudgetQosPolicy property)

 	(fastdds.LifespanQosPolicy property)

 	(fastdds.LivelinessChangedStatus property)

 	(fastdds.LivelinessQosPolicy property)

 	(fastdds.LoanableCollection property)

 	(fastdds.MatchedStatus property)

 	(fastdds.OwnershipQosPolicy property)

 	(fastdds.OwnershipStrengthQosPolicy property)

 	(fastdds.Partition_t property)

 	(fastdds.PartitionQosPolicy property)

 	(fastdds.PresentationQosPolicy property)

 	(fastdds.PublicationMatchedStatus property)

 	(fastdds.Publisher property)

 	(fastdds.PublisherListener property)

 	(fastdds.PublisherQos property)

 	(fastdds.PublishModeQosPolicy property)

 	(fastdds.QosPolicy property)

 	(fastdds.QosPolicyCount property)

 	(fastdds.ReaderDataLifecycleQosPolicy property)

 	(fastdds.ReaderResourceLimitsQos property)

 	(fastdds.ReliabilityQosPolicy property)

 	(fastdds.ResourceLimitsQosPolicy property)

 	(fastdds.RTPSEndpointQos property)

 	(fastdds.RTPSReliableReaderQos property)

 	(fastdds.RTPSReliableWriterQos property)

 	(fastdds.SampleInfo property)

 	(fastdds.SampleRejectedStatus property)

 	(fastdds.StatusMask property)

 	(fastdds.Subscriber property)

 	(fastdds.SubscriberListener property)

 	(fastdds.SubscriberQos property)

 	(fastdds.SubscriptionMatchedStatus property)

 	(fastdds.TimeBasedFilterQosPolicy property)

 	(fastdds.Topic property)

 	(fastdds.TopicDataQosPolicy property)

 	(fastdds.TopicDataType property)

 	(fastdds.TopicDescription property)

 	(fastdds.TopicListener property)

 	(fastdds.TopicQos property)

 	(fastdds.TransportConfigQos property)

 	(fastdds.TransportPriorityQosPolicy property)

 	(fastdds.TypeConsistencyEnforcementQosPolicy property)

 	(fastdds.TypeConsistencyQos property)

 	(fastdds.TypeIdV1 property)

 	(fastdds.TypeInformation property)

 	(fastdds.TypeObjectV1 property)

 	(fastdds.TypeSupport property)

 	(fastdds.UserDataQosPolicy property)

 	(fastdds.WireProtocolConfigQos property)

 	(fastdds.WriterDataLifecycleQosPolicy property)

 	(fastdds.WriterResourceLimitsQos property)

 	
 	time_based_filter() (fastdds.DataReaderQos method)

 	TIME_T_INFINITE_NANOSECONDS (C macro)

 	TIME_T_INFINITE_SECONDS (C macro)

 	TIMEBASEDFILTER_QOS_POLICY_ID (class in fastdds)

 	TimeBasedFilterQosPolicy (class in fastdds)

 	times (fastdds.RTPSReliableReaderQos property)

 	(fastdds.RTPSReliableWriterQos property)

 	Topic (class in fastdds)

 	topic_data() (fastdds.TopicQos method)

 	TOPIC_PRESENTATION_QOS (class in fastdds)

 	TOPIC_QOS_DEFAULT (class in fastdds)

 	TOPICDATA_QOS_POLICY_ID (class in fastdds)

 	TopicDataQosPolicy (class in fastdds)

 	TopicDataType (class in fastdds)

 	TopicDescription (class in fastdds)

 	TopicListener (class in fastdds)

 	TopicQos (class in fastdds)

 	total_count (fastdds.BaseStatus property)

 	(fastdds.DeadlineMissedStatus property)

 	(fastdds.IncompatibleQosStatus property)

 	(fastdds.MatchedStatus property)

 	(fastdds.SampleRejectedStatus property)

 	total_count_change (fastdds.BaseStatus property)

 	(fastdds.DeadlineMissedStatus property)

 	(fastdds.IncompatibleQosStatus property)

 	(fastdds.MatchedStatus property)

 	(fastdds.SampleRejectedStatus property)

 	TRANSIENT_DURABILITY_QOS (class in fastdds)

 	TRANSIENT_LOCAL_DURABILITY_QOS (class in fastdds)

 	transport() (fastdds.DomainParticipantQos method)

 	transport_priority() (fastdds.DataWriterQos method)

 	(fastdds.TopicQos method)

 	TRANSPORTCONFIG_QOS_POLICY_ID (class in fastdds)

 	TransportConfigQos (class in fastdds)

 	TRANSPORTPRIORITY_QOS_POLICY_ID (class in fastdds)

 	TransportPriorityQosPolicy (class in fastdds)

 	type() (fastdds.DataReader method)

 	type_consistency (fastdds.TypeConsistencyQos property)

 	type_consistency() (fastdds.DataReaderQos method)

 	type_identifier() (fastdds.TopicDataType method)

 	type_information (fastdds.TypeInformation property)

 	type_information() (fastdds.TopicDataType method)

 	type_object() (fastdds.TopicDataType method)

 	TYPECONSISTENCY_QOS_POLICY_ID (class in fastdds)

 	TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID (class in fastdds)

 	TypeConsistencyEnforcementQosPolicy (class in fastdds)

 	TypeConsistencyQos (class in fastdds)

 	TypeIdV1 (class in fastdds)

 	TypeInformation (class in fastdds)

 	TYPELOOKUP_DATA_MAX_SIZE (C macro)

 	TypeObjectV1 (class in fastdds)

 	TypeSupport (class in fastdds)

U

 	
 	unicast_locator_list (fastdds.RTPSEndpointQos property)

 	unloan() (fastdds.LoanableCollection method)

 	unregister_content_filter_factory() (fastdds.DomainParticipant method)

 	unregister_instance() (fastdds.DataWriter method)

 	unregister_instance_w_timestamp() (fastdds.DataWriter method)

 	unregister_type() (fastdds.DomainParticipant method)

 	use_builtin_transports (fastdds.TransportConfigQos property)

 	
 	user_data() (fastdds.DataReaderQos method)

 	(fastdds.DataWriterQos method)

 	(fastdds.DomainParticipantQos method)

 	user_defined_id (fastdds.RTPSEndpointQos property)

 	user_transports (fastdds.TransportConfigQos property)

 	USERDATA_QOS_POLICY_ID (class in fastdds)

 	UserDataQosPolicy (class in fastdds)

V

 	
 	valid_data (fastdds.SampleInfo property)

 	value (fastdds.OwnershipStrengthQosPolicy property)

 	(fastdds.TransportPriorityQosPolicy property)

 	
 	view_state (fastdds.SampleInfo property)

 	VOLATILE_DURABILITY_QOS (class in fastdds)

W

 	
 	wait_for_acknowledgments() (fastdds.DataWriter method)

 	(fastdds.Publisher method)

 	wait_for_historical_data() (fastdds.DataReader method)

 	wait_for_unread_message() (fastdds.DataReader method)

 	wire_protocol() (fastdds.DomainParticipantQos method)

 	WIREPROTOCOLCONFIG_QOS_POLICY_ID (class in fastdds)

 	WireProtocolConfigQos (class in fastdds)

 	
 	write() (fastdds.DataWriter method)

 	write_w_timestamp() (fastdds.DataWriter method)

 	writer_data_lifecycle() (fastdds.DataWriterQos method)

 	writer_resource_limits() (fastdds.DataWriterQos method)

 	WRITERDATALIFECYCLE_QOS_POLICY_ID (class in fastdds)

 	WriterDataLifecycleQosPolicy (class in fastdds)

 	WRITERRESOURCELIMITS_QOS_POLICY_ID (class in fastdds)

 	WriterResourceLimitsQos (class in fastdds)

X

 	
 	XCDR2_DATA_REPRESENTATION (class in fastdds)

 	
 	XCDR_DATA_REPRESENTATION (class in fastdds)

 	XML_DATA_REPRESENTATION (class in fastdds)

 SWIG

SWIG

SWIG is a development tool that allows connecting programs written in C/C++ with a variety of
other programming languages, among them Python.
SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install swig

Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG.
They can be installed directly from the package manager of the appropriate Linux distribution.
For Ubuntu, please run:

sudo apt install libpython3-dev

 Version 1.10.0 (EOL)

Version 1.10.0 (EOL)

This release adds the following features:

	New built-in Shared Memory Transport

	Transport API refactored to support locator iterators

	Added subscriber API to retrieve info of first non-taken sample

	Added parameters to fully avoid dynamic allocations

	History of built-in endpoints can be configured

	Bump to FastCDR v1.0.13.

	Bump to Fast-RTPS-Gen v1.0.4.

	Require CMake 3.5 but use policies from 3.13

It also includes the following bug fixes and improvements:

	Fixed alignment on parameter lists

	Fixed error sending more than 256 fragments.

	Fix handling of STRICT_REALTIME.

	Fixed submessage_size calculation on last data_frag.

	Solved an issue when recreating a publishing participant with the same GUID.

	Solved an issue where a publisher could block on write for a long time when a new
subscriber (late joiner) is matched, if the publisher had already sent a large number
of messages.

	Correctly handling the case where lifespan expires at the same time on several samples.

	Solved some issues regarding liveliness on writers with no readers.

	Correctly removing changes from histories on keyed topics.

	Not reusing cache change when sample does not fit.

	Fixed custom wait_until methods when time is in the past.

	Several data races and ABBA locks fixed.

	Reduced CPU and memory usage.

	Reduced flakiness of liveliness tests.

	Allow for more use cases on performance tests.

Several bug fixes on discovery server:

	Fixed local host communications.

	Correctly trimming server history.

	Fixed backup server operation.

	Fixed timing issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 1.10.1 (EOL)

Version 1.10.1 (EOL)

This release includes the following improvements:

	Add new CMake option: SHM_TRANSPORT_DEFAULT. Shared Memory (SHM) Transport disabled by default.

	Comply with the RTPS standard concerning PID_SENTINEL.

	Support for OpenSSL 1.1.1d.

This release includes the following bugfixes:

	Fix crash when there are no network interfaces.

	Several Shared Memory Transport fixes.

	Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 1.2.0 (EOL)

Version 1.2.0 (EOL)

This release introduced two important new features:

	Flow Controllers: A mechanism to control how you use the available bandwidth avoiding data bursts.
The controllers allow you to specify the maximum amount of data to be sent in a specific period of time.
This is very useful when you are sending large messages requiring fragmentation.

	Discovery Listeners: Now the user can subscribe to the discovery information to know the entities present in the
network (Topics, Publishers & Subscribers) dynamically without prior knowledge of the system.
This enables the creation of generic tools to inspect your system.

But there is more:

	Full ROS 2 Support: Fast RTPS is used by ROS 2, the upcoming release of the Robot Operating System (ROS).

	Better documentation: More content and examples.

	Improved performance.

	Bug fixing.

 Version 1.3.0 (EOL)

Version 1.3.0 (EOL)

This release introduced several new features:

	Unbound Arrays support: Now you can send variable size data arrays.

	Extended Fragmentation Configuration: It allows you to setup a Message/Fragment max size different to the standard
64Kb limit.

	Improved logging system: Get even more introspection about the status of your communications system.

	Static Discovery: Use XML to map your network and keep discovery traffic to a minimum.

	Stability and performance improvements: A new iteration of our built-in performance tests will make benchmarking
easier for you.

	ReadTheDocs Support: We improved our documentation format and now our installation and user manuals are available
online on ReadTheDocs.

 Version 1.3.1 (EOL)

Version 1.3.1 (EOL)

This release included the following:

	New examples that illustrate how to tweak Fast RTPS towards different applications.

	Improved support for embedded Linux.

	Bug fixing.

 Version 1.4.0 (EOL)

Version 1.4.0 (EOL)

This release included the following:

	Added secure communications.

	Removed all Boost dependencies. Fast RTPS is not using Boost libraries anymore.

	Added compatibility with Android.

	Bug fixing.

Note: After upgrading to this release, it is advisable to regenerate generated source from IDL files using
fastddsgen.

 Version 1.5.0 (EOL)

Version 1.5.0 (EOL)

This release included the following features:

	Configuration of Fast RTPS entities through XML profiles.

	Added heartbeat piggyback support.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

 Version 1.6.0 (EOL)

Version 1.6.0 (EOL)

This release included the following features:

	Persistence.

	Security access control plugin API and builtin Access control plugin: DDS:Access:Permissions plugin.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

 Version 1.7.0 (EOL)

Version 1.7.0 (EOL)

This release included the following features:

	TCP Transport.

	Dynamic Topic Types.

	Security 1.1 compliance.

Also bug fixing, allocation and performance improvements.

Note: If you are upgrading from an older version, it is required to regenerate generated source from IDL files
using fastddsgen.

 Version 1.7.1 (EOL)

Version 1.7.1 (EOL)

This release included the following features:

	LogFileConsumer added to the logging system.

	Handle FASTRTPS_DEFAULT_PROFILES_FILE environment variable indicating the default profiles XML file.

	XML parser made more restrictive and with better error messages.

It also fixes some important bugs:
* Fixed discovery issues related to the selected network interfaces on Windows.
* Improved discovery times.
* Workaround ASIO issue with multicast on QNX systems.
* Improved TCP transport performance.
* Improved handling of key-only data submessages.

Some other minor bugs and performance improvements.

KNOWN ISSUES

	Allocation limits on subscribers with a KEEP_LAST QoS is taken from resource limits configuration
and doesn’t take history depth into account.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.7.2 (EOL)

Version 1.7.2 (EOL)

This release fixes an important bug:

	Allocation limits on subscribers with a KEEP_LAST QoS was taken from resource limits configuration
and didn’t take history depth into account.

It also has the following improvements:

	Vendor FindThreads.cmake from CMake 3.14 release candidate to help with sanitizers.

	Fixed format of gradle file.

Some other minor bugs and performance improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.7.3 (EOL)

Version 1.7.3 (EOL)

This release includes the following bugfixes:

	Remove inline specifier from public method not defined in header file.

	Fix FastRTPS-Gen version generation

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.8.0 (EOL)

Version 1.8.0 (EOL)

This release included the following features:

	Implementation of IDL 4.2.

	Implementation of DeadlineQosPolicy QoS.

	Implementation of LifespanQosPolicy QoS.

	Implementation of DisablePositiveACKsQosPolicy QoS.

	Secure sockets on TCP transport (TLS over TCP).

It also adds the following improvements and bug fixes:

	Real-time improvements: non-blocking write calls for best-effort writers, addition of fixed size strings,
fixed size bitmaps, resource limited vectors, etc.

	Duration parameters now use nanoseconds.

	Configuration of participant mutation tries.

	Automatic calculation of the port when a value of 0 is received on the endpoint custom locators.

	Non-local addresses are now filtered from whitelists.

	Optimization of check for acked status for stateful writers.

	Linked libs are now not exposed when the target is a shared lib.

	Limitation on the domain ID has been added.

	UDP non-blocking send is now optional and configurable via XML.

	Fix for non-deterministic tests.

	Fix for ReaderProxy history being reloaded incorrectly in some cases.

	Fix for RTPS domain hostid being potentially not unique.

	Fix for participants with different lease expiration times failing to reconnect.

Known issues

	When using TPC transport, sometimes callbacks are not invoked when removing a participant due to a bug in ASIO.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.8.1 (EOL)

Version 1.8.1 (EOL)

This release includes the following features:

	Implementation of LivelinessQosPolicy QoS.

It also adds the following bug fixes and improvements:

	Fix for get_change on history, which was causing issues during discovery.

	Fix for announcement of participant state, which was sending ParticipantBuiltinData twice.

	Fix for closing multicast UDP channel.

	Fix for race conditions in SubscriberHistory, UDPTransportInterface and StatefulReader.

	Fix for lroundl error on Windows in Time_t.

	CDR & IDL submodules update.

	Use of java 1.8 or greater for fastddsgen.jar generation.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.8.2 (EOL)

Version 1.8.2 (EOL)

This release includes the following features:

	Modified unknown writers default behavior.

	Multiple initial PDP announcements.

	Flag to avoid builtin multicast.

	STRICT_REALTIME compilation flag.

It also adds the following bug fixes and improvements:

	Fix for setting nullptr in a fixed string.

	Fix for not sending GAP in several cases.

	Solve Coverity report issues.

	Fix issue of fastddsgen failing to open IDL.g4 file.

	Fix unnamed lock in AESGCMGMAC_KeyFactory.cpp.

	Improve XMLProfiles example.

	Multicast is now sent through localhost too.

	BitmapRange now implements sliding window.

	Improve SequenceNumber_t struct.

	Participant’s liveliness is now asserted when receiving any RTPS message.

	Fix leak on RemoteParticipantLeaseDuration.

	Modified default values to improve behavior in Wi-Fi scenarios.

	SubscriberHistory improvements.

	Removed use of acceptMsgDirectTo.

	WLP improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

 Version 1.8.3 (EOL)

Version 1.8.3 (EOL)

This release adds the following bug fixes and improvements:

	Fix serialization of TypeConsistencyEnforcementQosPolicy.

	Bump to Fast-RTPS-Gen v1.0.2.

	Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

 Version 1.8.4 (EOL)

Version 1.8.4 (EOL)

This release adds the following feature:

	XML profiles for requester and replier

It also has the following important bug fixes:

	Solved an issue when recreating a publishing participant with the same GUID (either on purpose or by chance)

	Solved an issue where a publisher could block on write for a long time when, after a large number of samples
have been sent, a new subscriber is matched.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen

 Version 1.8.5 (EOL)

Version 1.8.5 (EOL)

This release includes the following bugfixes:

	Fix Subscriber History to correctly notify late-joiners in case of KEEP_LAST, RELIABLE, and TRANSIENT_LOCAL.

	Fix Writer History behavior when there are no matched readers.

	Fix heartbeat and ACK issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.0 (EOL)

Version 1.9.0 (EOL)

This release includes the following features:

	Partial implementation of allocation QoS.

	Implementation of Discovery Server.

	Implementation of non-blocking calls.

It also adds the following bug fixes and improvements:

	Added sliding window to BitmapRange.

	Modified default behavior for unknown writers.

	A Flush() method was added to the logger to ensure all info is logged.

	A test for loading Duration_t from XML was added.

	Optimized WLP when removing local writers.

	Some liveliness tests were updated so that they are more stable on Windows.

	A fix was added to CMakeLists.txt for installing static libraries.

	A fix was added to performance tests so that they can run on the RT kernel.

	Fix for race condition on built-in protocols creation.

	Fix for setting nullptr in a fixed_string.

	Fix for v1.8.1 not building with -DBUILD_JAVA=ON.

	Fix for GAP messages not being sent in some cases.

	Fix for coverity report.

	Several memory issues fixes.

	fastrtps.repos file was updated.

	Documentation for building with Colcon was added.

	Change CMake configuration directory if INSTALLER_PLATFORM is set.

	IDL sub-module updated to current version.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.1 (EOL)

Version 1.9.1 (EOL)

This release includes the following features:

	Fast-RTPS-Gen is now an independent project.

	Header eClock.h is now marked as deprecated.

It also adds the following bug fixes and improvements:

	Bump to FastCDR v1.0.11.

	Installation from sources documentation fixed.

	Fixed assertion on WriterProxy.

	Fixed potential fall through while parsing Parameters.

	Removed deprecated guards causing compilation errors in some 32 bits platforms.

	addTOCDRMessage method is now exported in the DLL, fixing issues related with Parameters’ constructors.

	Improve windows performance by avoiding usage of _Cnd_timedwait method.

	Fixed reported communication issues by sending multicast through localhost too.

	Fixed potential race conditions and deadlocks.

	Eliminating use of acceptMsgDirectTo.

	Discovery Server framework reconnect/recreate strategy.

	Removed unused folders.

	Restored subscriber API.

	SequenceNumber_t improvements.

	Added STRICT_REALTIME cmake option.

	SubscriberHistory improvements.

	Assertion of participant liveliness by receiving RTPS messages from the remote participant.

	Fixed error while setting next deadline event in create_new_change_with_params.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.2 (EOL)

Version 1.9.2 (EOL)

This release includes the following feature:

	Multiple initial PDP announcements.

	Flag to avoid builtin multicast.

It also adds the following bug fixes and improvements:

	Bump to Fast-RTPS-Gen v1.0.1.

	Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.3 (EOL)

Version 1.9.3 (EOL)

This release adds the following features:

	Participant discovery filtering flags.

	Intra-process delivery mechanism opt-in.

It also includes the following bug fixes and improvements:

	Bump to Fast-RTPS-Gen v1.0.2.

	Bring back compatibility with XTypes 1.1 on PID_TYPE_CONSISTENCY.

	Ensure correct alignment when reading a parameter list.

	Add CHECK_DOCUMENTATION cmake option.

	EntityId_t and GuidPrefix_t have now their own header files.

	Fix potential race conditions and deadlocks.

	Improve the case where check_acked_status is called between reader matching process and its acknack reception.

	RTPSMessageGroup_t instances now use the thread-local storage.

	FragmentedChangePitStop manager removed.

	Remove the data fragments vector on CacheChange_t.

	Only call find_package for TinyXML2 if third-party options are off

	Allow XMLProfileManager methods to not show error log messages if a profile is not found.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.4 (EOL)

Version 1.9.4 (EOL)

This release adds the following features:

	Intra-process delivery mechanism is now active by default.

	Synchronous writers are now allowed to send fragments.

	New memory mode DYNAMIC_RESERVE on history pool.

	Performance tests can now be run on Windows and Mac.

	XML profiles for requester and replier.

It also includes the following bug fixes and improvements:

	Bump to FastCDR v1.0.12.

	Bump to Fast-RTPS-Gen v1.0.3.

	Fixed deadlock between PDP and StatefulReader.

	Improved CPU usage and allocations on timed events management.

	Performance improvements on reliable writers.

	Fixing bugs when Intra-process delivery is activated.

	Reducing dynamic allocations and memory footprint.

	Improvements and fixes on performance tests.

	Other minor bug fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 1.9.5 (EOL)

Version 1.9.5 (EOL)

This release includes the following improvements:

	Propagate serialization error when reading samples from Subscriber History.

	Improvements in test suite.

	Improvements to reduce memory consumption.

	Update CMake (3.5) using newer policies.

	Improve PDP StatefulWriter announcement.

	Performance improvements.

	Message receiver improvements.

	QoS Policies improvements.

This release includes the following bugfixes:

	Fix compiler warnings in Windows when building the test suite.

	Fix several data races.

	Fix History issues.

	Fix errors when sending data fragments.

	Fix strict real-time behavior.

	Fix in Discovery Server.

	Fix CMake option.

	Fix interoperability issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 2.0.0 (EOL)

Version 2.0.0 (EOL)

This release has the following API breaks:

	eClock API, which was deprecated on v1.9.1, has been removed

	eprosima::fastrtps::rtps::RTPSDomain::createParticipant methods now have an additional first argument domain_id

	Data member domainId has been removed from eprosima::fastrtps::rtps::RTPSParticipantAttributes and added to
eprosima::fastrtps::ParticipantAttributes

Users should also be aware of the following deprecation announcement:

	All classes inside the namespace eprosima::fastrtps should be considered deprecated.
Equivalent functionality is offered through namespace eprosima::fastdds.

	Namespaces beneath eprosima::fastrtps are not included in this deprecation, i.e.
eprosima::fastrtps::rtps can still be used)

This release adds the following features:

	Added support for register/unregister/dispose instance

	Added DDS compliant API. This new API exposes all the functionality of the Publisher-Subscriber Fast RTPS API
adhering to the Data Distribution Service (DDS) version 1.4 specification [https://www.omg.org/spec/DDS/1.4]

	Added Security Logging Plugin (contributed by Cannonical Ltd.)

	Bump to FastCDR v1.0.14

It also includes the following bug fixes and improvements:

	Support for OpenSSL 1.1.1d and higher

	Support for latest versions of gtest

	Support for FreeBSD

	Fault tolerance improvements to Shared Memory transport

	Fixed segfault when no network interfaces are detected

	Correctly ignoring length of PID_SENTINEL on parameter list

	Improved traffic on PDP simple mode

	Reduced CPU and memory usage

 Version 2.0.1 (EOL)

Version 2.0.1 (EOL)

This release includes the following bug fixes:

	Fixed sending GAPs to late joiners

	Fixed asserting liveliness on data reception

	Avoid calling OpenSSL_add_all_algorithms() when not required

Other improvements:

	Fixing warnings

PRs in merge order:
#1295 [https://github.com/eProsima/Fast-DDS/pull/1295],
#1300 [https://github.com/eProsima/Fast-DDS/pull/1300],
#1304 [https://github.com/eProsima/Fast-DDS/pull/1304],
#1290 [https://github.com/eProsima/Fast-DDS/pull/1290],
#1307 [https://github.com/eProsima/Fast-DDS/pull/1307].

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.0.2 (EOL)

Version 2.0.2 (EOL)

This release includes the following improvements:

	Improve QNX support

	Security improvements

	Fast DDS Quality Declaration (QL 2)

	Large traffic reduction when using Discovery Server (up to 85-90% for large deployments)

	Configuration of Clients of Discovery Server using an environment variable

	A CLI for Fast DDS:

	This can be used to launch a discovery server

	Clean SHM directories with one command

	Shared memory transport enabled by default

	Solved edge-case interoperability issue with CycloneDDS

	Add package.xml

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.0.3 (EOL)

Version 2.0.3 (EOL)

It also includes the following improvements:

	Increased uniqueness of GUID prefix (#1648)

	Upgrade Fast CDR to v1.0.20 (#1793)

This release includes the following bugfixes:

	Fixed some race conditions (#1540, #2023)

	Fixed SHM issues (#1644, #1895, #2266)

	Fixed some interoperability issues (#1624, #1752, #1849)

	Fixed Discovery Server 2.0 issues (#1639, #1651, #1761, #1796)

	Fixed several issues on QNX systems (#1744, #1773, #1776)

	Fix singleton destruction order (#1758)

	Fix heartbeat and ACK issues (#1865)

	Fix issues in LivelinessManager (#1872, #2147)

	Fix multicast issues (#1966, #1905)

	Fix TCP reception synchronization (#1981)

	XTypes standard compliance and fixes (#2006, #2278)

	Other minor fixes (#1558, #1734, #1814, #1935, #1978, #2121)

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.1.0

Version 2.1.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

Users of the RTPS low-level API should also be aware of the following API deprecations:

	History::reserve_Cache has been deprecated

	Methods RTPSWriter::new_change or RTPSReader::reserveCache should be used instead

	History::release_Cache has been deprecated

	Methods RTPSWriter::release_change or RTPSReader::releaseCache should be used instead

This release adds the following features:

	Support persistence for large data

	Added support for on_requested_incompatible_qos and on_offered_incompatible_qos

	SKIP_DEFAULT_XML environment variable

	Added FORCE value to THIRDPARTY cmake options

	New log consumer (StdOutErrConsumer)

	Added methods to get qos defined in XML Profile

	Support for persistence on TRANSIENT_LOCAL

It also includes the following improvements:

	Internal refactor for intra-process performance boost

	Allow usage of foonathan/memory library built without debug tool

	Large data support on performance tests

	Reduced flakiness of several tests

Some important bugfixes are also included:

	Fixed behavior of several DDS API methods

	Fixed interoperability issues with RTI connext

	Fixed DLL export of some methods

	Avoid redefinition of compiler defined macros

	Fixed some intra-process related segmentation faults and deadlocks

	Fixed large data payload protection issues on intra-process

	Fixed C++17 and VS 2019 warnings

	Fixed linker problems on some platforms

	Fixed transient local retransmission after participant drop

	Fixed assertion failure on persistent writers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.1.1

Version 2.1.1

This release includes the following bugfixes:

	Fixed race condition on security handshake

	Fixed SHM data corruption when using both payload and sub-message protection

	Fixed some interoperability issues

	Fixed race condition on timed-events thread

	Fixed usage of SHM on QNX systems

It also includes the following improvements:

	Increased uniqueness of GUID prefix

	Discovery server improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.1.2

Version 2.1.2

This release includes the following improvements:

	Allow fully qualified name in TypeDescriptor.

	Use native inter-process on Windows.

	Support for GCC 12.

	Support of googletest using colcon.

This release also includes the following bugfixes:

	Fixed recovery of shared memory buffers.

	Fixed issues in LivelinessManager.

	Fixed default multicast locators.

	Fixed TCP issues.

	Fixed deadlocks and data races.

	Fixed deadline issue on volatile DataWriter.

	Avoid bad_node_size exception when cross-building.

	Fixed order of returned samples on topics with keys.

	Allow updating partitions to an empty set.

	Suppress OpenSSL 3.0 warnings.

	MemberDescriptor fully qualified name.

	Fixed history record issues with persistence.

	Fixed reconnection to Discovery Server.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

 Version 2.2.0 (EOL)

Version 2.2.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

	Data Sharing delivery (avoids transport encapsulation for localhost communications)

	Complete DDS-PIM high-level API declarations

	Extension APIs allowing zero-copy delivery (both intra-process and inter-process)

	Upgrade to Quality Level 1

It also includes the following improvements:

	Code coverage policy

	Added several tests to increase coverage

	Increased GUID uniqueness

	Allow logInfo messages to be compiled on build types other than debug

Some important bugfixes are also included:

	Fixed timed events manager race condition

	Fixed payload protection issues with SHM transport

	Writers correctly handle infinite resource limits on keyed topics

	Fixed unsafe code on AESGCMGMAC plugin

	Several fixes for IPv6 (whitelists, address parser)

	Fixes on liveliness timing handling

	Fixed warnings building on C++20

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.2.1 (EOL)

Version 2.2.1 (EOL)

This release includes the following improvements:

	Data-sharing delivery internal refactor.

	Performance tests refactored to use DDS-PIM high-level API.

	Discovery server improvements.

This release includes the following bugfixes:

	Fixed reference counting on internal pools.

	Fixed singleton destruction order.

	Fixed default multicast locators.

	Fixed interoperability issues with x-types information.

	Fixed Reader history issues.

	Fixed data races issues.

	Fixed shared memory issues.

	Fixed heartbeat and ACK issues.

	Fixed LivelinessManager issues.

	Fixed TCP reception synchronization.

	Fixed build issues on old compilers.

	Allow modifying Partition QoS in enabled entities.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.0 (EOL)

Version 2.3.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

	Unique network flows

	Discovery super-client

	Statistics module API

	New flow controller API

	Static discovery configuration from raw string

	Added reception timestamp to SampleInfo

	Exposing get_unread_count on DataReader

It also includes the following improvements:

	Data-sharing delivery internal refactor

	Additional metadata on persistence databases

	Refactor on ReturnCode_t to make it switch friendly

	Performance tests refactored to use DDS-PIM high-level API

	Receive const pointers on delete_xxx methods

	Discovery server improvements

	Made SOVERSION follow major.minor

Some important bugfixes are also included:

	Fixed shared memory usage on QNX

	Fixed reference counting on internal pools

	Fixed singleton destruction order

	Fixed interoperability issues with x-types information

	Fixed recovery of shared memory buffers

	Lifespan support in persistent writers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.1 (EOL)

Version 2.3.1 (EOL)

This release includes several bugfixes and improvements:

	Added Fast DDS Statistics Module implementation

	Fixed alignment issues on generated code calculation of maximum serialized size

	Fixed calculation of data-sharing domain id

	Fixed issues on data-sharing with volatile writers

	Fixed build issues on old compilers

	Fixed some tests when the library is built without security

	Fixed and exposed pull mode on writers

	Fixed handling of –data_sharing on latency test

	Fixed calculation of memory pools sizes on debug builds

	Correctly update memory policy on writers and readers

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.2 (EOL)

Version 2.3.2 (EOL)

This release includes the following feature:

	Statistics Module

It also includes the following improvements:

	Update Asio submodule and avoid exporting Asio API

	Improve Windows installers

	Ease Google Fuzz integration

	Improve Doxygen documentation on lifetime of pointers created with RTPSDomain

	Update Fast CDR to v1.0.21

This release includes the following bugfixes:

	Add a correct multicast address for UDPv6

	Recover from out-of-sync TCP datagrams

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.3 (EOL)

Version 2.3.3 (EOL)

This release includes the following improvements:

	Added more durability kinds in Static Discovery xml parser

	Explicitly enable/disable data-sharing on performance tests

	Allow fully qualified name in TypeDescriptor

	Added missing DynamicData::get_union_id() method

	Change log severity in DiscoveryServer first announcement

	Several corrections to README

This release includes the following bugfixes:

	Fixed warnings and segfaults on 32-bit platforms

	Fixed UDPv6 behavior

	Fixed persistence guid issue on statistics writers

	Fixed static linking with open SSL

	Fixed statistics header file inclusion

	Fixed build on RedHat systems

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.4 (EOL)

Version 2.3.4 (EOL)

This release includes the following improvements:

	Support of googletest using colcon

	Network latency reports source participant

	Update Fast DDS Gen to v2.0.2

This release includes the following bugfixes:

	Fix mutex lock count on PDPListener

	Limit SequenceNumberSet number of bits on deserialization

	Fix segmentation fault on discovery server

	Fix deadlock with security and timers

	Fix bug using not protected code in a test

	Fix deadlock with LivelinessManager

	Fix interval loop on events

	Fix run event when was cancelled

	Validate sequence range on CDRMessage::readSequenceNumberSet

	Fix subscription throughput data generation

	Allow examples to build on QNX

	Fix code on SHM clean

	Accept Statistics DataWriters in Discovery Server

	Fix read/take behavior when a future change is found

	Correctly handle deserialization errors on read_next_sample() / take_next_sample()

	Fixing SequenceNumberSet_t deserialization

	Proper history clean up when a reader unmatches a writer

	Unprotected code loaning samples

	Fix publication throughput statistic on volatile writers

	Fix Fast DDS CLI server name

	Several fixes in examples and tests

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.3.5 (EOL)

Version 2.3.5 (EOL)

This release includes the following improvements:

	Fixed several flaky tests.

	Use native inter-process on Windows.

	Support for partitions on DataWriterQoS and DataReaderQoS.

	Support for GCC 12.

	Correctly implement delete_contained_entities.

This release also includes the following bugfixes:

	Fixed deadline issue on volatile DataWriter.

	Allow updating partitions to an empty set.

	Fixed order of returned samples on topics with keys.

	Fixed issues in LivelinessManager.

	Correctly give priority to intra-process over data-sharing.

	Avoid bad_node_size exception when cross-building.

	Fixed build errors with OpenSSL 3.0.

	Avoid a volatile data-sharing reader to block a writer.

	Fixed history record issues with persistence.

	Correctly disable DataReader on destruction.

	Fixed various GCC 11 warnings.

	Fixed payload pool handling on EDPSimple destructor.

	Fixed read after free on security code.

	Fixed null dereference on XML parser.

	Ensure correct boost singleton destruction order.

	Enable memory protection on DataSharing readers.

	TCP reconnection issues.

	MemberDescriptor fully qualified name.

	Fix recommended statistics DataReaderQos to enable backwards compatibility.

	Fixed dangling sample references with big data.

	Fixed deadlocks and data races.

	Fixed reconnection to Discovery Server.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.4.0 (EOL)

Version 2.4.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Conditions and Wait-sets implementation.

	Flow controllers.

	Configure Discovery Server locators using names.

	Modifying remote servers list at run time.

	Environment file override.

It also includes the following improvements:

	Allow setting custom folder for data-sharing files.

	Allow setting persistence guid with static discovery.

	Check for NDEBUG in logInfo.

	Removed old unused CMake code.

	Fixed TLS behavior on TCP example.

	Prepare API for easy integration of python bindings.

	Improved statistics performance.

Some important bugfixes are also included:

	Fixed order of returned samples on topics with keys.

	Allow updating partitions to an empty set.

	Correctly propagate DomainParticipantQos updates.

	Avoid a volatile data-sharing reader to block a writer.

	Correctly give priority to intra-process over data-sharing.

	Fixed reallocation issue on LivelinessManager.

	Fixed deadline issue on volatile DataWriter

	Fixed STRICT_REALTIME silently not active with Unix POSIX systems.

	Fixed build errors with OpenSSL 3.0

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.4.1 (EOL)

Version 2.4.1 (EOL)

This release includes the following improvements:

	Fixed several flaky tests

	Improved bandwidth usage of GAPs and HEARTBEATs

	Correctly implement delete_contained_entities

	Use native inter-process on Windows

	Improved performance of unregister_instance

	Improved OSS-fuzz integration

	Support for partitions on DataWriterQoS and DataReaderQoS

	Some documentation improvements

	Removed unused macro to avoid naming clashes

This release includes the following bugfixes:

	Avoid bad_node_size exception when cross building

	Fixed build on old compilers

	Fixed buffers exhaustion when compiled with statistics

	Fixed runtime addition of Discovery Servers

	Fixed dangling sample references with big data

	Fixed history record issues with persistence

	Correctly disable DataReader on destruction

	Fixed alignment issues on XTypes QoS policies serialization

	Fixed reconnection to Discovery Server

	Correctly use builtin publisher for statistics DataWriters

	Fixed various GCC-11 warnings

	Use only public APIs from foonathan::memory

	Fixed installation directories for DDS examples

	Fixed read after free on security code

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.4.2 (EOL)

Version 2.4.2 (EOL)

This release includes the following improvements:

	Enable memory protection on DataSharing readers

	Add const overload of DataReader::guid()

	Set recommended statistics DataReaderQos to PREALLOCATED_WITH_REALLOC

	Allow fully qualified name on MemberDescriptor

This release includes the following bugfixes:

	Fix and refactor EDPSimple destructor

	Fix several build warnings on certain platforms

	Fix OSS fuzz issues

	Fix TCP synchronization issues

	Correct reporting of MatchedStatus last_*_handle

	Ensure correct boost singleton destruction order

	Fix inserting minimum CacheChange_t in GAP message

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source
from IDL files using fastddsgen.

 Version 2.5.0 (EOL)

Version 2.5.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on
two of the three public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of
symbols on dynamic libraries may have changed.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of
symbols on dynamic libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Support for PKCS#11 format URIs for private keys

	Added interfaces for content filter APIs

	Allow new network interfaces to be detected at runtime

	New API on DataWriter to wait for a specific instance to be acknowledged

	Added interfaces for concatenation of transports

	Allow XML profiles to be loaded from a string

	Allow disabling piggyback heartbeat on XML and DataWriter QoS

	New basic configuration example

It also includes the following improvements:

	Working implementation of instance_state and view_state

	Allow zero-valued keys

	Made some type aliases public to ease python bindings integration

	Improved performance by avoiding unnecessary payload copies for samples that are going to be rejected

	Removed unnecessary headers from Log module public headers

	Add support for Key annotation in TypeObjectFactory

	Only export public symbols on non-windows platforms

	Some documentation improvements

Some important bugfixes are also included:

	Fixed payload pool handling on EDPSimple destructor

	Fixed null dereference on XML parser

	Correctly export XTypes related methods on Windows

	Ensure correct boost singleton destruction order

	Avoid warning when environment file filename is empty

	Correctly set GUID of DataWriter and DataReader upon creation

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.5.1 (EOL)

Version 2.5.1 (EOL)

This release includes the following improvements:

	ContentFilterTopic filtering at the DataReader side.

	Release lifecycle.

This release includes the following bugfixes:

	XML parser fixes.

	Discovery Server fixes.

	Fix DataSharing sample validation.

	PKCS#11 support fixes.

	Test fixes.

	Doxygen documentation fixes.

	GAP message fix.

	Enable memory protection on DataSharing readers.

	TCP reconnection issues.

	Fix dynamic network interfaces feature.

	Several Security module fixes.

	STRICT_REALTIME fix.

	Suppress OpenSSL 3.0 warnings.

	Move optionparser to thirdparty.

	Thread-safe access to endpoints collections.

	MemberDescriptor fully qualified name.

	Setting QoS fix.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.5.2 (EOL)

Version 2.5.2 (EOL)

This release includes the following improvements:

	Support lowercase keywords and hexadecimal values on SQL filter.

	Support for GCC 12.

This release includes the following bugfixes:

	Fix MatchedStatus last_*_handle.

	Fix recommended statistics DataReaderQos to enable backwards compatibility.

	Fix deadlocks and data races.

	Fix empty partition validation checks.

	Fix corner case with reliable writers and samples with a huge number of fragments.

	Other minor fixes and improvements.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.6.0

Version 2.6.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

	Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols on
dynamic libraries may have changed. Some API is also being deprecated.

	Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on dynamic
libraries may have changed.

	Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

	Allow modifying remote server locators at runtime

	Add statistics physical information to DATA[p] using properties

	Content filter discovery information RTPS API

	Endpoint discovery RTPS API

	on_sample_lost RTPS API

	Transport layer API extension

	XML support for Fast DDS CLI

	New exchange format to reduce bandwidth in Static Discovery

It also includes the following improvements:

	Support lowercase keywords on SQL filter

	Separate initialization and enabling of BuiltinProtocols

	Add disable_positive_acks to Static Discovery XML

	Several updates in the DDS-PIM API

	Support for octet vectors on XML parser

	Update README and roadmap

	Update Fast-CDR submodule to v1.0.24

	Add new CMake option APPEND_PROJECT_NAME_TO_INCLUDEDIR

Some bugfixes are also included:

	Fix MatchedStatus last_*_handle

	Fix recommended statistics DataReaderQos to enable backwards compatibility

	Fixes for supporting Python bindings in Windows platforms

	Fix publishing physical data on statistics topic

	Other minor fixes and improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.6.1

Version 2.6.1

This release includes the following improvements:

	Support for writer side content filtering

	Support hexadecimal values on SQL filter

	Support for DataWriter::get_key_value()

	Support for DataReader::lookup_instance()

	Support for SampleLostStatus on DataReader

	Improved doxygen documentation

Some bugfixes are also included:

	Fixed several lock order inversion issues

	Fixed data race when closing UDP channels

	Fixed empty partition validation checks

	Fixed corner case with reliable writers and samples with a huge number of fragments

	Other minor fixes and improvements

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.6.2

Version 2.6.2

This release includes the following improvements:

	Support for GCC 12.

	Overload DataReader::get_unread_count().

	Improve read/take performance when using topic with a great number of keys.

	Improve rediscovery on lossy environments.

This release includes the following bugfixes:

	Fixed several deadlocks and data races.

	Fixed validation on ParameterPropertyList_t.

	Fixed wrong usage of std::remove_if.

	Fixed acknowledgement in DataSharing.

	Other minor fixes.

Note

If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen.
If you are upgrading from any older version, regenerating the code is highly recommended.

 Version 2.7.0 (EOL)

Version 2.7.0 (EOL)

Th