
Fast DDS Documentation
Release 2.8.2

eProsima

Apr 18, 2023

INTRODUCTION

1 Fast DDS-Gen 3

2 RTPS Wire Protocol 5

3 Main Features 7

4 Contacts and Commercial support 9

5 Contributing to the documentation 11

6 Structure of the documentation 13
6.1 DDS API . 13
6.2 Fast DDS-Gen . 14
6.3 RTPS Wire Protocol . 14
6.4 Main Features . 14
6.5 Contacts and Commercial support . 16
6.6 Contributing to the documentation . 16
6.7 Structure of the documentation . 16
6.8 Linux installation from binaries . 16
6.9 Windows installation from binaries . 18
6.10 Linux installation from sources . 19
6.11 Windows installation from sources . 29
6.12 Mac OS installation from sources . 35
6.13 CMake options . 41
6.14 Getting Started . 45
6.15 Library Overview . 81
6.16 DDS Layer . 85
6.17 RTPS Layer . 244
6.18 Discovery . 252
6.19 Transport Layer . 282
6.20 Persistence Service . 319
6.21 Security . 323
6.22 Logging . 351
6.23 Statistics Module . 360
6.24 XML profiles . 371
6.25 Environment variables . 429
6.26 PropertyPolicyQos Options . 433
6.27 Dynamic Topic Types . 441
6.28 Typical Use-Cases . 460
6.29 ROS 2 using Fast DDS middleware . 511
6.30 C++ API Reference . 525

i

6.31 Python API Reference . 801
6.32 Introduction . 934
6.33 Usage . 935
6.34 Building a publish/subscribe application . 936
6.35 Building Python auxiliary libraries . 941
6.36 Defining a data type via IDL . 942
6.37 CLI . 952
6.38 Docker Images . 956
6.39 Version 2.8.2 (EOL) . 961
6.40 Previous versions . 962

Index 995

ii

Fast DDS Documentation, Release 2.8.2

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.

2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.

3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LTS releases.

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that
want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

INTRODUCTION 1

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.8.2

2 INTRODUCTION

CHAPTER

ONE

FAST DDS-GEN

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

3

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/

Fast DDS Documentation, Release 2.8.2

4 Chapter 1. Fast DDS-Gen

CHAPTER

TWO

RTPS WIRE PROTOCOL

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

5

https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.8.2

6 Chapter 2. RTPS Wire Protocol

CHAPTER

THREE

MAIN FEATURES

• Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

• Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

• Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

• Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

• Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

• Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

• Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

• Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

• Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

• Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

• Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

• Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

• Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

• Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

7

Fast DDS Documentation, Release 2.8.2

• High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

• Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

• Low resources consumption. eProsima Fast DDS:

– Allows to preallocate resources, to minimize dynamic resource allocation.

– Avoids the use of unbounded resources.

– Minimizes the need to copy data.

• Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

• Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

8 Chapter 3. Main Features

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

CHAPTER

FOUR

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

9

https://eprosima.com/
mailto:support@eprosima.com

Fast DDS Documentation, Release 2.8.2

10 Chapter 4. Contacts and Commercial support

CHAPTER

FIVE

CONTRIBUTING TO THE DOCUMENTATION

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

11

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

Fast DDS Documentation, Release 2.8.2

12 Chapter 5. Contributing to the documentation

CHAPTER

SIX

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.

• Installation Manual

• Fast DDS

• Fast DDS-Gen

• Release Notes

eProsima Fast DDS is a C++ implementation of the DDS (Data Distribution Service) Specification, a protocol defined
by the Object Management Group (OMG). The eProsima Fast DDS library provides both an Application Programming
Interface (API) and a communication protocol that deploy a Data-Centric Publisher-Subscriber (DCPS) model, with
the purpose of establishing efficient and reliable information distribution among Real-Time Systems. eProsima Fast
DDS is predictable, scalable, flexible, and efficient in resource handling. For meeting these requirements, it makes use
of typed interfaces and hinges on a many-to-many distributed network paradigm that neatly allows separation of the
publisher and subscriber sides of the communication. eProsima Fast DDS comprises:

1. The DDS API implementation.

2. Fast DDS-Gen, a generation tool for bridging typed interfaces with the middleware implementation.

3. The underlying RTPS wire protocol implementation.

For all the above, eProsima Fast DDS has been chosen as the default middleware supported by the Robot Operating
System 2 (ROS 2) in every long term (LTS) releases and most of the non-LTS releases.

6.1 DDS API

The communication model adopted by DDS is a many-to-many unidirectional data exchange where the applications
that produce the data publish it to the local caches of subscribers belonging to applications that consume the data. The
information flow is regulated by Quality of Service (QoS) policies established between the entities in charge of the data
exchange.

As a data-centric model, DDS builds on the concept of a “global data space” accessible to all interested applications.
Applications that want to contribute information declare their intent to become publishers, whereas applications that

13

http://www.eprosima.com/
https://www.omg.org/spec/DDS/About-DDS/
https://www.omg.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/

Fast DDS Documentation, Release 2.8.2

want to access portions of the data space declare their intent to become subscribers. Each time a publisher posts new
data into this space, the middleware propagates the information to all interested subscribers.

The communication happens across domains, i. e. isolated abstract planes that link all the distributed applications able
to communicate with each other. Only entities belonging to a same domain can interact, and the matching between
entities subscribing to data and entities publishing them is mediated by topics. Topics are unambiguous identifiers that
associate a name, which is unique in the domain, to a data type and a set of attached data-specific QoS.

DDS entities are modeled either as classes or typed interfaces. The latter imply a more efficient resource handling as
knowledge of the data type prior to the execution allows allocating memory in advance rather than dynamically.

Fig. 1: Conceptual diagram of how information flows within DDS domains. Only entities belonging to the same domain
can discover each other through matching topics, and consequently exchange data between publishers and subscribers.

6.2 Fast DDS-Gen

Relying on interfaces implies the need for a generation tool that translates type descriptions into appropriate implemen-
tations that fill the gap between the interfaces and the middleware. This task is carried out by a dedicated generation
tool, Fast DDS-Gen, a Java application that generates source code using the data types defined in an Interface Definition
Language (IDL) file.

6.3 RTPS Wire Protocol

The protocol used by eProsima Fast DDS to exchange messages over standard networks is the Real-Time Publish-
Subscribe protocol (RTPS), an interoperability wire protocol for DDS defined and maintained by the OMG consortium.
This protocol provides publisher-subscriber communications over transports such as TCP/UDP/IP, and guarantees com-
patibility among different DDS implementations.

Given its publish-subscribe roots and its specification designed for meeting the same requirements addressed by the
DDS application domain, the RTPS protocol maps to many DDS concepts and is therefore a natural choice for DDS
implementations. All the RTPS core entities are associated with an RTPS domain, which represents an isolated com-
munication plane where endpoints match. The entities specified in the RTPS protocol are in one-to-one correspondence
with the DDS entities, thus allowing the communication to occur.

6.4 Main Features

• Two API Layers. eProsima Fast DDS comprises a high-level DDS compliant layer focused on usability and a
lower-level RTPS compliant layer that provides finer access to the RTPS protocol.

• Real-Time behaviour. eProsima Fast DDS can be configured to offer real-time features, guaranteeing responses
within specified time constrains.

• Built-in Discovery Server. eProsima Fast DDS is based on the dynamical discovery of existing publishers and
subscribers, and performs this task continuously without the need to contacting or setting any servers. However,
a Client-Server discovery as well as other discovery paradigms can also be configured.

• Sync and Async publication modes. eProsima Fast DDS supports both synchronous and asynchronous data
publication.

14 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/IDL/About-IDL/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/About-DDSI-RTPS/

Fast DDS Documentation, Release 2.8.2

• Best effort and reliable communication. eProsima Fast DDS supports an optional reliable communication
paradigm over Best Effort communications protocols such as UDP. Furthermore, another way of setting a reliable
communication is to use our TCP transport.

• Transport layers. eProsima Fast DDS implements an architecture of pluggable transports. The current version
implements five transports: UDPv4, UDPv6, TCPv4, TCPv6 and SHM (shared memory).

• Security. eProsima Fast DDS can be configured to provide secure communications. For this purpose, it im-
plements pluggable security at three levels: authentication of remote participants, access control of entities and
encryption of data.

• Statistics Module. eProsima Fast DDS can be configured to gather and provide information about the data being
exchanged by the user application.

• Throughput controllers. We support user-configurable throughput controllers, that can be used to limit the
amount of data to be sent under certain conditions.

• Plug-and-play Connectivity. New applications and services are automatically discovered, and can join and
leave the network at any time without the need for reconfiguration.

• Scalability and Flexibility. DDS builds on the concept of a global data space. The middleware is in charge of
propagating the information between publishers and subscribers. This guarantees that the distributed network is
adaptable to reconfigurations and scalable to a large number of entities.

• Application Portability. The DDS specification includes a platform specific mapping to IDL, allowing an ap-
plication using DDS to switch among DDS implementations with only a re-compile.

• Extensibility. eProsima Fast DDS allows the protocol to be extended and enhanced with new services without
breaking backwards compatibility and interoperability.

• Configurability and Modularity. eProsima Fast DDS provides an intuitive way to be configured, either through
code or XML profiles. Modularity allows simple devices to implement a subset of the protocol and still participate
in the network.

• High performance. eProsima Fast DDS uses a static low-level serialization library, Fast CDR, a C++ library
that serializes according to the standard CDR serialization mechanism defined in the RTPS Specification (see
the Data Encapsulation chapter as a reference).

• Easy to use. The project comes with an out-of-the-box example, the DDSHelloWorld (see Getting Started)
that puts into communication a publisher and a subscriber, showcasing how eProsima Fast DDS is deployed.
Additionally, the interactive demo ShapesDemo is available for the user to dive into the DDS world. The DDS
and the RTPS layers are thoroughly explained in the DDS Layer and RTPS Layer sections.

• Low resources consumption. eProsima Fast DDS:

– Allows to preallocate resources, to minimize dynamic resource allocation.

– Avoids the use of unbounded resources.

– Minimizes the need to copy data.

• Multi-platform. The OS dependencies are treated as pluggable modules. Users may easily implement platform
modules using the eProsima Fast DDS library on their target platforms. By default, the project can run over
Linux, Windows and MacOS.

• Free and Open Source. The Fast DDS library, the underneath RTPS library, the generator tool, the internal
dependencies (such as eProsima Fast CDR) and the external ones (such as the foonathan library) are free and
open source.

6.4. Main Features 15

https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/

Fast DDS Documentation, Release 2.8.2

6.5 Contacts and Commercial support

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

6.6 Contributing to the documentation

Fast DDS-Docs is an open source project, and as such all contributions, both in the form of feedback and content
generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted in our
GitHub repository.

6.7 Structure of the documentation

This documentation is organized into the sections below.

• Installation Manual

• Fast DDS

• Fast DDS-Gen

• Release Notes

6.8 Linux installation from binaries

The instructions for installing eProsima Fast DDS in a Linux environment from binaries are provided in this page.

• Install

– Contents

– Run an application

– Including Fast-DDS in a CMake project

• Uninstall

6.8.1 Install

The latest release of eProsima Fast DDS for Linux is available at the eProsima website Downloads tab. Once down-
loaded, extract the contents in your preferred directory. Then, to install eProsima Fast DDS and all its dependencies in
the system, execute the install.sh script with administrative privileges:

cd <extraction_directory>
sudo ./install.sh

16 Chapter 6. Structure of the documentation

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md
https://eprosima.com/index.php/downloads-all

Fast DDS Documentation, Release 2.8.2

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Linux installation
from sources page.

Contents

The src folder contains the following packages:

• foonathan_memory_vendor, an STL compatible C++ memory allocator library.

• fastcdr, a C++ library for data serialization according to the CDR standard (Section 10.2.1.2 OMG CDR).

• fastrtps, the core library of eProsima Fast DDS library.

• fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

In case any of these components is unwanted, it can be simply renamed or removed from the src directory.

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, /usr/local/lib/. There are two possibilities:

• Prepare the environment locally by typing in the console used for running the eProsima Fast DDS instance the
command:

export LD_LIBRARY_PATH=/usr/local/lib/

• Add it permanently to the PATH by executing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

Including Fast-DDS in a CMake project

The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake API.

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

$ cmake -Bbuildexample -DFASTDDS_STATIC=ON .
$ cmake --build buildexample --target install

6.8. Linux installation from binaries 17

https://github.com/foonathan/memory
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.8.2

6.8.2 Uninstall

To uninstall all installed components, execute the uninstall.sh script (with administrative privileges):

cd <extraction_directory>
sudo ./uninstall.sh

Warning: If any of the other components were already installed in some other way in the system, they will be
removed as well. To avoid it, edit the script before executing it.

6.9 Windows installation from binaries

The instructions for installing eProsima Fast DDS in a Windows environment from binaries are provided in this page.
It is organized as follows:

• Requirements

– Visual Studio

• Install

– Contents

– Environment variables

– Including Fast-DDS in a CMake project

First of all, the Requirements detailed below need to be met.

6.9.1 Requirements

The installation of eProsima Fast DDS in a Windows environment from binaries requires the following tools to be
installed in the system:

• Visual Studio

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++. Finally,
click Modify at the bottom right.

18 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/

Fast DDS Documentation, Release 2.8.2

6.9.2 Install

The latest release of eProsima Fast DDS for Windows is available at the company website downloads page. Once down-
loaded, execute the installer and follow the instructions, choosing the preferred Visual Studio version and architecture
when prompted.

Note: By default, eProsima Fast DDS does not compile tests. To activate them, please refer to the Windows installation
from sources page.

Contents

By default, the installation will download all the available packages, namely:

• foonathan_memory_vendor, an STL compatible C++ memory allocator library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• fastddsgen, a Java application that generates source code using the data types defined in an IDL file.

Environment variables

eProsima Fast DDS requires the following environment variable setup in order to function properly:

• FASTRTPSHOME: Root folder where eProsima Fast DDS is installed.

• Additions to the PATH: The location of eProsima Fast DDS scripts and libraries should be appended to the PATH.

These variables are set automatically by checking the corresponding box during the installation process.

Including Fast-DDS in a CMake project

The installer deploys CMake config files that simplify to incorporate Fast-DDS to any CMake project via the
find_package CMake API.

By setting the CMake variable FASTDDS_STATIC is possible to choose the desired linkage (dynamic or static library)
in the CMake generator stage. If the variable is missing defaults to dynamic linking.

For example in order to build the examples statically linked to Fast-DDS do:

> cmake -Bbuildexample -DFASTDDS_STATIC=ON .
> cmake --build buildexample --target install

6.10 Linux installation from sources

The instructions for installing the Fast DDS library, the Fast DDS Python bindings and the Fast DDS-Gen generation
tool from sources are provided in this page. It is organized as follows:

• Fast DDS library installation

– Requirements

6.10. Linux installation from sources 19

https://eprosima.com/index.php/downloads-all
https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.8.2

– Dependencies

– Colcon installation

– CMake installation

• Fast DDS Python bindings installation

– Requirements

– Dependencies

– Colcon installation

– CMake installation

• Fast DDS-Gen installation

– Requirements

– Compiling Fast DDS-Gen

6.10.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Linux environment from sources. The
following packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocator library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima Fast DDS in a Linux environment from sources requires the following tools to be installed
in the system:

• CMake, g++, pip3, wget and git

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, g++, pip3, wget and git using the package manager of the appropriate Linux distribution. For example,
on Ubuntu use the command:

sudo apt install cmake g++ python3-pip wget git

20 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51
https://cmake.org
https://gcc.gnu.org/
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/

Fast DDS Documentation, Release 2.8.2

Dependencies

eProsima Fast DDS has the following dependencies, when installed from sources in a Linux environment:

• Asio and TinyXML2 libraries

• OpenSSL

• Libp11 and SoftHSM libraries

• Gtest [optional]

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Install libp11 using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libp11-dev libengine-pkcs11-openssl

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Install SoftHSM using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the
command:

sudo apt install softhsm2

Note that the softhsm2 package creates a new group called softhsm. In order to grant access to the HSM module a user
must belong to this group.

sudo usermod -a -G softhsm <user>

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files (usually /etc/ssl/openssl.cnf) must be updated specifying the libp11 and hardware module
(here SoftHSM) dynamic libraries location.

6.10. Linux installation from sources 21

https://www.openssl.org/
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/

Fast DDS Documentation, Release 2.8.2

This configuration step can be avoided using p11kit which allows OpenSSL to find PKCS#11 devices on runtime
without static configuration. This kit is often available through the Linux distribution package manager. On Ubuntu,
for example:

sudo apt install libengine-pkcs11-openssl

Once installed, to check p11kit is able to find the SoftHSM module use:

p11-kit list-modules

In order to check if OpenSSL is able to access PKCS#11 engine use:

openssl engine pkcs11 -t

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: Mind that under non-root users, pip3may install python colcon and vcs executables in $HOME/.local/
bin, for instance when running with --user. To be able to run these applications, make sure that pip3 binary
installation directory is in your $PATH ($HOME/.local/bin is normally introduced while login on an interactive
non-root shell).

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

mkdir ~/Fast-DDS
cd ~/Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src
vcs import src < fastrtps.repos

3. Build the packages:

colcon build

22 Chapter 6. Structure of the documentation

https://github.com/p11-glue/p11-kit
https://github.com/p11-glue/p11-kit
https://www.opendnssec.org/softhsm/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.8.2

Note: Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

• Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

• Foonathan memory

cd ~/Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

• Fast CDR

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

6.10. Linux installation from sources 23

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.8.2

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

• Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

• Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.2 Fast DDS Python bindings installation

This section provides the instructions for installing Fast DDS Python bindings in a Linux environment from sources.
Fast DDS Python bindings is an extension of Fast DDS which provides access to the Fast DDS API through Python.
Therefore, its installation is an extension of the installation of Fast DDS.

Fast DDS Python bindings source code consists on several .i files which will be processed by SWIG. Then C++ files
(for connecting C++ and Python) and Python files (Python module for Fast DDS) will be generated.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

24 Chapter 6. Structure of the documentation

https://github.com/google/googletest
http://www.swig.org/

Fast DDS Documentation, Release 2.8.2

Requirements

The installation of Fast DDS Python bindings in a Linux environment from sources requires the following tools to be
installed in the system:

• Fast DDS requirements

• SWIG

• Header files and static library for Python

SWIG

SWIG is a development tool that allows connecting programs written in C/C++ with a variety of other programming
languages, among them Python. SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG can be installed directly from the package manager of the appropriate Linux distribution. For Ubuntu, please
run:

sudo apt install swig

Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG. They can be installed
directly from the package manager of the appropriate Linux distribution. For Ubuntu, please run:

sudo apt install libpython3-dev

Dependencies

Fast DDS Python bindings has the following dependencies, when installed from sources in a Linux environment:

• Fast DDS dependencies

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile Fast DDS Python bindings and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2. Create a Fast-DDS-python directory and download the repos file that will be used to install Fast DDS Python
bindings and its dependencies:

6.10. Linux installation from sources 25

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.8.2

mkdir ~/Fast-DDS-python
cd ~/Fast-DDS-python
wget https://raw.githubusercontent.com/eProsima/Fast-DDS-python/main/fastdds_python.
→˓repos
mkdir src
vcs import src < fastdds_python.repos

3. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using Fast DDS Python bindings, the colcon overlay built in the dedicated
Fast-DDS-python directory must be sourced. There are two possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS-python/install/setup.bash

• Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

echo 'source ~/Fast-DDS-python/install/setup.bash' >> ~/.bashrc

CMake installation

This section explains how to compile Fast DDS Python bindings with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS-python directory where to download and build Fast DDS Python bindings and its depen-
dencies:

mkdir ~/Fast-DDS-python

2. Clone the following dependencies and compile them using CMake.

• Foonathan memory

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

• Fast CDR

26 Chapter 6. Structure of the documentation

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.8.2

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

• Fast DDS

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

3. Once all dependencies are installed, install Fast DDS Python bindings:

cd ~/Fast-DDS-python
git clone https://github.com/eProsima/Fast-DDS-python.git
mkdir -p Fast-DDS-python/fastdds_python/build
cd Fast-DDS-python/fastdds_python/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS-python/install
cmake --build . --target install

Global installation

To install Fast DDS Python bindings system-wide instead of locally, remove all the flags that appear in the con-
figuration steps of Fast-CDR, Fast-DDS and Fast-DDS-python, and change the first in the configuration step of
foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Note: Installation on system directories may need of permissions. Maybe permissions have to be granted through
sudo.

sudo cmake --build . --target install

Run an application

When running an instance of an application using Fast DDS Python bindings, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

• Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

• Add it permanently it to the PATH, by typing:

6.10. Linux installation from sources 27

https://github.com/eProsima/Fast-DDS.git

Fast DDS Documentation, Release 2.8.2

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

6.10.3 Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Linux environment from sources. Fast DDS-Gen
is a Java application that generates source code using the data types defined in an IDL file. Please refer to Introduction
for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

• Java JDK

• Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. To install
Java JDK, run:

sudo apt install openjdk-8-jdk

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

Note: If Fast DDS has already been installed following Colcon installation, skip cloning Fast DDS-Gen’s repository,
as it can be already be found under the src directory within the colcon workspace.

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

Note: If errors occur during compilation or you do not wish to install gradle, an executable script is included which
will download a gradle temporarily for the compilation step.

./gradlew assemble

28 Chapter 6. Structure of the documentation

https://gradle.org/install

Fast DDS Documentation, Release 2.8.2

Contents

The Fast-DDS-Gen folder contains the following packages:

• share/fastddsgen, where the generated Java application is.

• scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable.

6.11 Windows installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

• Fast DDS library installation

– Requirements

– Dependencies

– Colcon installation

– CMake installation

• Fast DDS-Gen installation

– Requirements

– Compiling Fast DDS-Gen

6.11.1 Fast DDS library installation

This section provides the instructions for installing eProsima Fast DDS in a Windows environment from sources. The
following packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocator library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

6.11. Windows installation from sources 29

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.8.2

Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

• Visual Studio

• Chocolatey

• CMake, pip3, wget and git

• Gtest [optional]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++. Finally,
click Modify at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

and add next argument to the colcon call

colcon build --cmake-args -Dgtest_force_shared_crt=ON

30 Chapter 6. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest

Fast DDS Documentation, Release 2.8.2

Dependencies

eProsima Fast RTPS has the following dependencies, when installed from sources in a Windows environment:

• Asio and TinyXML2 libraries

• OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

• Asio

• TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

Libp11 and SoftHSM libraries

Libp11 provides PKCS#11 support for OpenSSL. This is an optional dependency, that is needed only when eprosima
Fast DDS is used with security and PKCS#11 URIs.

Download the latest libp11 version for Windows from this repository and follow the installation instructions

SoftHSM is a software implementation of an HSM (Hardware Security Module). If eProsima Fast DDS tests are
activated and libp11 is installed on the system, SoftHSM is additionally required to run tests of PKCS#11 features.

Download the SoftHSM for Windows installer from this repository. Execute the installer and follow the installation
instructions.

OpenSSL access HSM and other hardware devices through its engine functionality. In order to set up a new engine the
OpenSSL configuration files must be updated specifying the libp11 and hardware module (here SoftHSM) dynamic
libraries location.

OpenSSL on Windows references its default configuration file through the OPENSSL_CONF environment variable.
By default OpenSSL installs two identical default configuration files:

• C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf mimics the Linux distributions one.

• C:\Program Files\OpenSSL-Win64\bin\openssl.cfg kept for backward compatibility.

6.11. Windows installation from sources 31

https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html
https://github.com/OpenSC/libp11/
https://github.com/OpenSC/libp11
https://github.com/OpenSC/libp11/blob/master/INSTALL.md
https://www.opendnssec.org/softhsm/
https://github.com/disig/SoftHSM2-for-Windows
https://github.com/OpenSC/libp11/
https://www.opendnssec.org/softhsm/

Fast DDS Documentation, Release 2.8.2

Neither of them are loaded by default. In order to direct OpenSSL to load one of them or any other we must set the
variable:

cmd> set OPENSSL_CONF=C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf
powershell> $Env:OPENSSL_CONF="C:\Program Files\OpenSSL-Win64\bin\cnf\openssl.cnf"

Once we have hinted OpenSSL the configuration file to use we must modify it to set up the new PKCS#11 engine
following the OpenSSL guidelines replacing the binaries path with the proper ones. For example, before any section
in the configuration file we introduce:

openssl_conf = openssl_init

at the end of the file we include the engine devoted sections. Note to use POSIX path separator instead of the windows
one.

[openssl_init]
engines = engine_section

[engine_section]
pkcs11 = pkcs11_section

[pkcs11_section]
engine_id = pkcs11
dynamic_path = C:/Program Files/libp11/src/pkcs11.dll
MODULE_PATH = C:/Program Files (x86)/SoftHSM2/lib/softhsm2-x64.dll
init = 0

A proper set up can be verified using OpenSSL command line tool:

openssl engine pkcs11 -t

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

and add the path to the vcs executable to the PATH from the Edit the system environment variables control panel.

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

32 Chapter 6. Structure of the documentation

https://www.openssl.org/docs/man1.1.1/man5/config.html#Engine-Configuration-Module
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.8.2

mkdir ~\Fast-DDS
cd ~\Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos -
→˓output fastrtps.repos
mkdir src
vcs import src --input fastrtps.repos

Finally, use colcon to compile all software:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

• Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control
panel, and adding ~/Fast-DDS/install/setup.bat to the PATH.

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Open a command prompt, and create a Fast-DDS directory where to download and build eProsima Fast DDS
and its dependencies:

mkdir %USERPROFILE%\Fast-DDS

2. Clone the following dependencies and compile them using CMake.

• Fast DDS depends on Foonathan memory. To ease the dependency management, eProsima provides a
vendor package Foonathan memory vendor, which downloads and builds a specific revision of Foonathan
memory if the library is not found in the system.

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

• Fast CDR

6.11. Windows installation from sources 33

https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/Fast-CDR.git

Fast DDS Documentation, Release 2.8.2

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
cd Fast-CDR
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd %USERPROFILE%\Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
cd Fast-DDS
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=%USERPROFILE%/Fast-DDS/install ..
cmake --build . --target install

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove the CMAKE_INSTALL_PREFIX flags that appear
in the configuration steps of Fast-CDR and Fast-DDS.

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the Fast DDS and Fast CDR installation directories:

• Fast DDS: C:\Program Files\fastrtps

• Fast CDR: C:\Program Files\fastcdr

6.11.2 Fast DDS-Gen installation

This section outlines the instructions for installing Fast DDS-Gen in a Windows environment from sources. Fast
DDS-Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to
Introduction for more information.

34 Chapter 6. Structure of the documentation

https://github.com/google/googletest

Fast DDS Documentation, Release 2.8.2

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

• Java JDK

• Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way.

Compiling Fast DDS-Gen

Once the requirements above are met, install Fast DDS-Gen by following the steps below:

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

Contents

The Fast-DDS-Gen folder contains the following packages:

• share/fastddsgen, where the generated Java application is.

• scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any directory, add the scripts folder path to the PATH environment
variable.

6.12 Mac OS installation from sources

The instructions for installing both the Fast DDS library and the Fast DDS-Gen generation tool from sources are
provided in this page. It is organized as follows:

• Fast DDS library installation

– Requirements

– Dependencies

6.12. Mac OS installation from sources 35

https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install

Fast DDS Documentation, Release 2.8.2

– Colcon installation

– CMake installation

• Fast DDS-Gen installation

– Requirements

– Compiling Fast DDS-Gen

6.12.1 Fast DDS library installation

This section describes the instructions for installing eProsima Fast DDS in a Mac OS environment from sources. The
following packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocator library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon) or the CMake) installation instructions.

Requirements

The installation of eProsima Fast DDS in a MacOS environment from sources requires the following tools to be installed
in the system:

• Homebrew

• Xcode Command Line Tools

• CMake, g++, pip3, wget and git

• Gtest [optional]

Homebrew

Homebrew is a macOS package manager, it is needed to install some of eProsima Fast DDS’s dependencies. To install
it open a terminal window and run the following command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install.sh)"

Xcode Command Line Tools

The Xcode command line tools package is separate from Xcode and allows for command line development in mac.
The previous step should have installed Xcode CLI, to check the correct installation run the following command:

gcc --version

36 Chapter 6. Structure of the documentation

https://github.com/foonathan/memory
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.8.2

CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Install CMake, pip3 and wget using the Homebrew package manager:

brew install cmake python3 wget

Gtest

GTest is a unit testing library for C++. By default, eProsima Fast DDS does not compile tests. It is possible to activate
them with the opportune CMake configuration options when calling colcon or CMake. For more details, please refer
to the CMake options section. Also add the Gtest repository into the workspace directory.

git clone https://github.com/google/googletest src/googletest-distribution

Dependencies

eProsima Fast DDS has the following dependencies, when installed from binaries in a Linux environment:

• Asio and TinyXML2 libraries

• OpenSSL

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using Homebrew:

brew install asio tinyxml2

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using Homebrew:

brew install openssl@1.1

Colcon installation

colcon is a command line tool based on CMake aimed at building sets of software packages. This section explains how
to use it to compile eProsima Fast DDS and its dependencies.

1. Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

2. Create a Fast-DDS directory and download the repos file that will be used to install eProsima Fast DDS and its
dependencies:

6.12. Mac OS installation from sources 37

https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://www.openssl.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

Fast DDS Documentation, Release 2.8.2

mkdir ~/Fast-DDS
cd ~/Fast-DDS
wget https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
mkdir src
vcs import src < fastrtps.repos

3. Build the packages:

colcon build

Note: The --cmake-args option allows to pass the CMake configuration options to the colcon build
command. In Mac OS the location of OpenSSL is not found automatically and therefore has to be passed
explicitly: --cmake-args -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl -DOPENSSL_LIBRARIES=/usr/
local/opt/openssl/lib. This is only required when building with Security. For more information on the specific
syntax, please refer to the CMake specific arguments page of the colcon manual.

Run an application

When running an instance of an application using eProsima Fast DDS, the colcon overlay built in the dedicated
Fast-DDS directory must be sourced. There are two possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

source ~/Fast-DDS/install/setup.bash

• Add the sourcing of the colcon overlay permanently to the PATH, by typing the following:

touch ~/.bash_profile
echo 'source ~/Fast-DDS/install/setup.bash' >> ~/.bash_profile

CMake installation

This section explains how to compile eProsima Fast DDS with CMake, either locally or globally.

Local installation

1. Create a Fast-DDS directory where to download and build eProsima Fast DDS and its dependencies:

mkdir ~/Fast-DDS

2. Clone the following dependencies and compile them using CMake.

• Foonathan memory

cd ~/Fast-DDS
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DBUILD_SHARED_LIBS=ON
sudo cmake --build . --target install

38 Chapter 6. Structure of the documentation

https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

Fast DDS Documentation, Release 2.8.2

• Fast CDR

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install
sudo cmake --build . --target install

3. Once all dependencies are installed, install eProsima Fast DDS:

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_PATH=~/Fast-DDS/
→˓install
sudo cmake --build . --target install

Note: By default, eProsima Fast DDS does not compile tests. However, they can be activated by downloading and
installing Gtest.

Global installation

To install eProsima Fast DDS system-wide instead of locally, remove all the flags that appear in the configuration steps
of Fast-CDR and Fast-DDS, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

Run an application

When running an instance of an application using eProsima Fast DDS, it must be linked with the library where the
packages have been installed, which in the case of system-wide installation is: /usr/local/lib/ (if local installation
is used, adjust for the correct directory). There are two possibilities:

• Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

• Add it permanently it to the PATH, by typing:

touch ~/.bash_profile
echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bash_profile

6.12. Mac OS installation from sources 39

https://github.com/eProsima/Fast-CDR.git
https://github.com/google/googletest

Fast DDS Documentation, Release 2.8.2

6.12.2 Fast DDS-Gen installation

This section provides the instructions for installing Fast DDS-Gen in a Mac OS environment from sources. Fast DDS-
Gen is a Java application that generates source code using the data types defined in an IDL file. Please refer to Intro-
duction for more information.

Requirements

In order to compile Fast DDS-Gen, the following packages need to be installed in the system:

• Java JDK

• Gradle

Java JDK

The JDK is a development environment for building applications and components using the Java language. Download
and install it at the following the steps given in the Oracle website.

Gradle

Gradle is an open-source build automation tool. Download and install the last stable version of Gradle in the preferred
way. with Homebrew it would be running the command:

brew install gradle

Note: If errors occur during compilation or you do not wish to install gradle, an executable script is included which
will download gradle temporarily for the compilation step.

./gradlew assemble

Compiling Fast DDS-Gen

Once the requirements above are met, compile Fast DDS-Gen by following the steps below:

cd ~
git clone --recursive https://github.com/eProsima/Fast-DDS-Gen.git
cd Fast-DDS-Gen
gradle assemble

40 Chapter 6. Structure of the documentation

https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install

Fast DDS Documentation, Release 2.8.2

Contents

The Fast-DDS-Gen folder contains the following packages:

• share/fastddsgen, where the generated Java application is.

• scripts, containing some user friendly scripts.

Note: To make these scripts accessible from any shell session and directory, add the scripts folder path to the
PATH environment variable using the method described above.

6.13 CMake options

eProsima Fast DDS provides numerous CMake options for changing the behavior and configuration of Fast DDS.
These options allow the user to enable/disable certain Fast DDS settings by defining these options to ON/OFF at the
CMake execution. This section is structured as follows: first, the CMake options for the general configuration of Fast
DDS are described; then, the options related to the third party libraries are presented; finally, the possible options for
the building of Fast DDS tests are defined.

6.13.1 General options

The Fast DDS CMake options for configuring general settings are shown below, together with their description and
dependency on other options.

6.13. CMake options 41

Fast DDS Documentation, Release 2.8.2

Option Description Possible values Default
EPROSIMA_INSTALLER Creates a build for

Windows binary in-
stallers. Specifically
it adds to the list of
components to install
(CPACK_COMPONENTS_ALL)
the libraries correspond-
ing to the Microsoft
Visual C++ com-
piler (MSVC). Setting
EPROSIMA_INSTALLER
to ON has the following
effects on other options:

• EPROSIMA_BUILD
is set to ON.

•
BUILD_DOCUMENTATION
is set to ON.

•
INSTALL_EXAMPLES
is set to ON.

ON OFF OFF

EPROSIMA_BUILD Activates internal Fast
DDS builds. It is set to ON
if EPROSIMA_INSTALLER
is ON. Setting
EPROSIMA_BUILD to
ON has the following
effects on other options:

• INTERNAL_DEBUG
is set to ON.

•
COMPILE_EXAMPLES
is set to ON if
EPROSIMA_INSTALLER
is OFF.

•
THIRDPARTY_fastcdr
is set to ON if it was
not set to FORCE.

• THIRDPARTY_Asio
is set to ON if it was
not set to FORCE.

•
THIRDPARTY_TinyXML2
is set to ON if it was
not set to FORCE.

•
THIRDPARTY_android-ifaddrs
is set to ON if it was
not set to FORCE.

•
EPROSIMA_BUILD_TESTS
is set to ON if
EPROSIMA_INSTALLER
is OFF.

ON OFF OFF

BUILD_SHARED_LIBS Builds internal libraries as
shared libraries, i.e. cause
add_library() CMake
function to create shared
libraries if on. All li-
braries are built shared un-
less the library was explic-
itly added as a static li-
brary.

ON OFF ON

SECURITY Activates the Fast DDS
security module. Please
refer to Security for more
information on security
module.

ON OFF OFF

NO_TLS Disables Transport Layer
Security (TLS) Support.
Please refer to TLS over
TCP for more information
on Fast DDS TLS config-
uration.

ON OFF OFF

SHM_TRANSPORT_DEFAULT Adds Shared Memory
transport (SHM) to the
default transports. Please
refer to SHM section for
more information on Fast
DDS SHM transport.

ON OFF ON

FASTDDS_STATISTICS Enables the Fast DDS
Statistics module. Please
refer to Statistics Module
for more information on
this module.

ON OFF OFF

COMPILE_EXAMPLES Builds the Fast DDS
examples. It is set to ON
if EPROSIMA_BUILD
is ON and
EPROSIMA_INSTALLER
is OFF. These exam-
ples can be found in
the eProsima Fast DDS
GitHub repository.

ON OFF OFF

INSTALL_EXAMPLES Installs the Fast DDS ex-
amples, i.e. adds the Fast
DDS examples to the list
of components to install
(CPACK_COMPONENTS_ALL).
It is set to ON if
EPROSIMA_INSTALLER is
ON.

ON OFF OFF

BUILD_DOCUMENTATION Uses doxygen to cre-
ate the Fast DDS API
reference documenta-
tion. It is set to ON if
EPROSIMA_INSTALLER
is ON or if
CHECK_DOCUMENTATION
is ON.

ON OFF OFF

CHECK_DOCUMENTATION Downloads Fast DDS
documentation from
Read the Docs media
servers. The documen-
tation files are extracted
in the doc/manual di-
rectory, updating any
previous version al-
ready downloaded. If
CHECK_DOCUMENTATION
is ON,
BUILD_DOCUMENTATION
is set to ON.

ON OFF OFF

STRICT_REALTIME Enables a strict real-time
behaviour. Please refer to
the Real-Time Use Case
for more information on
Fast DDS real-time con-
figuration.

ON OFF OFF

SQLITE3_SUPPORT Builds the SQLITE3
Plugin, which enables the
TRANSIENT_DURABILITY_QOS
and
PERSISTENT_DURABILITY_QOS
options for the Durabil-
ityQosPolicyKind and
therefore the Persistence
Service.

ON OFF ON

APPEND_PROJECT_NAME_TO_INCLUDEDIRWhen ON headers are
installed to a path end-
ing with a folder called
fastrtps. This avoids
include directory search
order issues when over-
riding this package from a
merged catkin, ament, or
colcon workspace.

ON OFF OFF

USE_THIRDPARTY_SHARED_MUTEXWhen ON a custom
implementation of
shared_mutex is used
instead of the STL one.
The C++ Standard has
not yet (C++20) imposed
any requirements on
shared_mutex priority
policies implementation,
as POSIX does, thus each
platform made its own
choices:

• Windows &
Boost defaults to
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP.

• Linux & Mac
defaults to
PTHREAD_RWLOCK_PREFER_READER_NP.

Fast-DDS re-
quires the use of
PTHREAD_RWLOCK_PREFER_READER_NP
which is the one enforced
in its deadlock preven-
tion logic. Fast-DDS
will test the framework
STL implementation
(if available) and will
only use it if it enforces
PTHREAD_RWLOCK_PREFER_READER_NP.
Otherwise it will automat-
ically fallback to a custom
implementation. This flag
will enforce the use of the
custom implementation in
all cases. Note that setting
the flag OFF will not pre-
vent the use of the custom
implementation in those
frameworks that default to
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP.
This flag prevents spu-
rious thread sanitizer
reports on GCC/Clang
STL implementations.

ON OFF OFF (Linux & Mac), ON
(Windows)

SANITIZER Adds run-time instrumen-
tation to the code. Sup-
ported options are:

• Thread enables
Thread Sanitizer.

• Address enables
Address Sanitizer.

OFF Address Thread OFF

42 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples
https://github.com/eProsima/Fast-DDS/tree/master/examples
https://man7.org/linux/man-pages/man3/pthread_rwlockattr_setkind_np.3.html

Fast DDS Documentation, Release 2.8.2

6.13.2 Log options

Fast DDS uses its own configurable Log module with different verbosity levels. Please, refer to Logging section for
more information.

This module can be configured using Fast DDS CMake arguments regarding the following options.

Option Description Possible
values

De-
fault

LOG_CONSUMER_DEFAULTSelects the default log consumer for the logging module. AUTO has the same
behavior as STDOUT. For more information, please refer to Log consumers.

AUTO
STDOUT
STDOUTERR

AUTO

LOG_NO_INFO Deactivates Info Log level. If Fast DDS is built in debug mode for Single-Config
generators, the default value will be OFF.

ON OFF ON

FASTDDS_ENFORCE_LOG_INFOEnables Info Log level even on non Debug configurations. This option only takes
action if LOG_NO_INFO is set to OFF (see Disable Logging Module). Mind that
this may entail a significant performance hit.

ON OFF OFF

LOG_NO_WARNINGDeactivates Warning Log level. ON OFF OFF
LOG_NO_ERRORDeactivates Error Log level. ON OFF OFF
INTERNAL_DEBUGActivates compilation of log messages (See Disable Logging Module). More-

over, INTERNAL_DEBUG is set to ON if EPROSIMA_BUILD is ON.
ON OFF OFF

6.13.3 Third-party libraries options

Fast DDS relies on the eProsima FastCDR library for serialization mechanisms. Moreover, Fast DDS requires two
external dependencies for its proper operation: Asio and TinyXML2. Asio is a cross-platform C++ library for network
and low-level I/O programming, while TinyXML2 parses the XML profile files, so Fast DDS can use them (see XML
profiles). These three libraries (eProsima FastCDR, Asio and TinyXML2) can be installed by the user, or downloaded
on the Fast DDS build. In the latter case, they are referred to as Fast DDS internal third-party libraries. This can be
done by setting either THIRDPARTY or EPROSIMA_BUILD to ON.

These libraries can also be configured using Fast DDS CMake options.

6.13. CMake options 43

https://github.com/eProsima/Fast-CDR

Fast DDS Documentation, Release 2.8.2

Op-
tion

Description Pos-
si-
ble
val-
ues

De-
fault

THIRDPARTY_fastcdrON activates the use of the internal Fast CDR third-party library if it is not found elsewhere
in the system. FORCE activates the use of the internal Fast CDR third-party library regardless
of whether it can be found elsewhere in the system. OFF deactivates the use of the internal
Fast CDR third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is
ON.

ON
OFF
FORCE

OFF

THIRDPARTY_AsioON activates the use of the internal Asio third-party library if it is not found elsewhere in
the system. FORCE activates the use of the internal Asio third-party library regardless of
whether it can be found elsewhere in the system. OFF deactivates the use of the internal Asio
third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD is ON.

ON
OFF
FORCE

OFF

THIRDPARTY_TinyXML2ON activates the use of the internal TinyXML2 third-party library if it is not found elsewhere
in the system. FORCE activates the use of the internal TinyXML2 third-party library regard-
less of whether it can be found elsewhere in the system. OFF deactivates the use of the internal
TinyXML2 third-party library. If it is not set to FORCE, it is set to ON if EPROSIMA_BUILD
is ON.

ON
OFF
FORCE

OFF

THIRDPARTY_android-ifaddrsandroid-ifaddrs is an implementation of getifaddrs() for Android. Only used if ANDROID
is 1. ON activates the use of the internal android-ifaddrs third-party library if it is not found
elsewhere in the system. FORCE activates the use of the internal android-ifaddrs third-party
library regardless of whether it can be found elsewhere in the system. OFF deactivates the
use of the internal android-ifaddrs third-party library. If it is not set to FORCE, it is set to ON
if EPROSIMA_BUILD is ON.

ON
OFF
FORCE

OFF

THIRDPARTYUnless they are otherwise specified, sets value of all third-party git submod-
ules THIRDPARTY_fastcdr, THIRDPARTY_Asio, THIRDPARTY_TinyXML2, and
THIRDPARTY_android-ifaddrs.

ON
OFF
FORCE

OFF

THIRDPARTY_UPDATEActivates the update of all third-party git submodules. ON
OFF

ON

Note: ANDROID is a CMake environment variable that is set to 1 if the target system (CMAKE_SYSTEM_NAME) is Android.

6.13.4 Test options

eProsima Fast DDS comes with a full set of tests for continuous integration. The types of tests are: unit tests, black-box
tests, performance tests, profiling tests, and XTypes tests. The building and execution of these tests is specified by the
Fast DDS CMake options shown in the table below.

44 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Option Description Possible
values

De-
fault

GTEST_INDIVIDUALActivate the individual building of GoogleTest tests, since Fast DDS tests are
implemented using the GoogleTest framework. However, the test are compiled
if EPROSIMA_BUILD is set to ON. Therefore, if GTEST_INDIVIDUAL is OFF and
EPROSIMA_BUILD is ON, the tests are processed as a single major test.

ON OFF OFF

FASTRTPS_API_TESTSEnables the building of black-box tests for the verification of RTPS communications
using the Fast DDS RTPS-layer API.

ON OFF OFF

FASTDDS_PIM_API_TESTSEnables the building of black-box tests for the verification of DDS communications
using the Fast DDS DDS-layer API.

ON OFF OFF

PERFORMANCE_TESTSActivates the building of performance tests, except for the video test, which requires
both PERFORMANCE_TESTS and VIDEO_TESTS to be set to ON.

ON OFF OFF

PROFILING_TESTSActivates the building of profiling tests using Valgrind. ON OFF OFF
EPROSIMA_BUILD_TESTSActivates the building of black-box, unit, xtypes, RTPS communication and

DDS communication tests. It is set to ON if EPROSIMA_BUILD is ON and
EPROSIMA_INSTALLER is OFF.

ON OFF OFF

VIDEO_TESTSIf PERFORMANCE_TESTS is ON, it will activate the building of video performance
tests.

ON OFF OFF

DISABLE_UDPV6_TESTSDisables UDPv6 tests. ON OFF OFF
INSTALL_ANDROID_TESTSAndroid cross-compilation only. Marks the tests for installation on the connected

device/emulator.
ON OFF OFF

ANDROID_TESTING_ROOTAndroid cross-compilation only. Path on the Android device/emulator to use for
installing and running the tests.

Valid
Unix
filesystem
path
string

""

6.14 Getting Started

This section defines the concepts of DDS and RTPS. It also provides a step-by-step tutorial on how to write a simple
Fast DDS (formerly Fast RTPS) publish/subscribe application.

6.14.1 What is DDS?

The Data Distribution Service (DDS) is a data-centric communication protocol used for distributed software application
communications. It describes the communications Application Programming Interfaces (APIs) and Communication
Semantics that enable communication between data providers and data consumers.

Since it is a Data-Centric Publish Subscribe (DCPS) model, three key application entities are defined in its implemen-
tation: publication entities, which define the information-generating objects and their properties; subscription entities,
which define the information-consuming objects and their properties; and configuration entities that define the types
of information that are transmitted as topics, and create the publisher and subscriber with its Quality of Service (QoS)
properties, ensuring the correct performance of the above entities.

DDS uses QoS to define the behavioral characteristics of DDS Entities. QoS are comprised of individual QoS policies
(objects of type deriving from QoSPolicy). These are described in Policy.

6.14. Getting Started 45

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.8.2

The DCPS conceptual model

In the DCPS model, four basic elements are defined for the development of a system of communicating applications.

• Publisher. It is the DCPS entity in charge of the creation and configuration of the DataWriters it implements.
The DataWriter is the entity in charge of the actual publication of the messages. Each one will have an assigned
Topic under which the messages are published. See Publisher for further details.

• Subscriber. It is the DCPS Entity in charge of receiving the data published under the topics to which it sub-
scribes. It serves one or more DataReader objects, which are responsible for communicating the availability of
new data to the application. See Subscriber for further details.

• Topic. It is the entity that binds publications and subscriptions. It is unique within a DDS domain. Through the
TopicDescription, it allows the uniformity of data types of publications and subscriptions. See Topic for further
details.

• Domain. This is the concept used to link all publishers and subscribers, belonging to one or more applications,
which exchange data under different topics. These individual applications that participate in a domain are called
DomainParticipant. The DDS Domain is identified by a domain ID. The DomainParticipant defines the domain
ID to specify the DDS domain to which it belongs. Two DomainParticipants with different IDs are not aware of
each other’s presence in the network. Hence, several communication channels can be created. This is applied in
scenarios where several DDS applications are involved, with their respective DomainParticipants communicating
with each other, but these applications must not interfere. The DomainParticipant acts as a container for other
DCPS Entities, acts as a factory for Publisher, Subscriber and Topic Entities, and provides administrative
services in the domain. See Domain for further details.

These elements are shown in the figure below.

Fig. 2: DCPS model entities in the DDS Domain.

6.14.2 What is RTPS?

The Real-Time Publish Subscribe (RTPS) protocol, developed to support DDS applications, is a publication-
subscription communication middleware over best-effort transports such as UDP/IP. Furthermore, Fast DDS provides
support for TCP and Shared Memory (SHM) transports.

It is designed to support both unicast and multicast communications.

At the top of RTPS, inherited from DDS, the Domain can be found, which defines a separate plane of communication.
Several domains can coexist at the same time independently. A domain contains any number of RTPSParticipants,
that is, elements capable of sending and receiving data. To do this, the RTPSParticipants use their Endpoints:

• RTPSWriter: Endpoint able to send data.

• RTPSReader: Endpoint able to receive data.

A RTPSParticipant can have any number of writer and reader endpoints.

Fig. 3: RTPS high-level architecture

Communication revolves around Topics, which define and label the data being exchanged. The topics do not belong to a
specific participant. The participant, through the RTPSWriters, makes changes in the data published under a topic, and
through the RTPSReaders receives the data associated with the topics to which it subscribes. The communication unit
is called Change, which represents an update in the data that is written under a Topic. RTPSReaders/RTPSWriters
register these changes on their History, a data structure that serves as a cache for recent changes.

46 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

In the default configuration of eProsima Fast DDS, when you publish a change through a RTPSWriter endpoint, the
following steps happen behind the scenes:

1. The change is added to the RTPSWriter’s history cache.

2. The RTPSWriter sends the change to any RTPSReaders it knows about.

3. After receiving data, RTPSReaders update their history cache with the new change.

However, Fast DDS supports numerous configurations that allow you to change the behavior of RTPSWrit-
ers/RTPSReaders. A modification in the default configuration of the RTPS entities implies a change in the data exchange
flow between RTPSWriters and RTPSReaders. Moreover, by choosing Quality of Service (QoS) policies, you can af-
fect how these history caches are managed in several ways, but the communication loop remains the same. You can
continue reading section RTPS Layer to learn more about the implementation of the RTPS protocol in Fast DDS.

6.14.3 Writing a simple C++ publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using C++ API
step by step. It is also possible to self-generate a similar example to the one implemented in this section by using the
eProsima Fast DDS-Gen tool. This additional approach is explained in Building a publish/subscribe application.

• Background

• Prerequisites

• Create the application workspace

• Import linked libraries and its dependencies

– Installation from binaries and manual installation

– Colcon installation

• Configure the CMake project

• Build the topic data type

– CMakeLists.txt

• Write the Fast DDS publisher

– Examining the code

– CMakeLists.txt

• Write the Fast DDS subscriber

– Examining the code

– CMakeLists.txt

• Putting all together

• Summary

• Next steps

6.14. Getting Started 47

Fast DDS Documentation, Release 2.8.2

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files build/
DDSHelloWorldPublisher and build/DDSHelloWorldSubscriber are the Publisher application and Subscriber
application respectively.

.
workspace_DDSHelloWorld

build
CMakeCache.txt
CMakeFiles
cmake_install.cmake
DDSHelloWorldPublisher
DDSHelloWorldSubscriber
Makefile

CMakeLists.txt
src

HelloWorld.cxx
HelloWorld.h
HelloWorld.idl
HelloWorldPublisher.cpp
HelloWorldPubSubTypes.cxx
HelloWorldPubSubTypes.h
HelloWorldSubscriber.cpp

Let’s create the directory tree first.

mkdir workspace_DDSHelloWorld && cd workspace_DDSHelloWorld
mkdir src build

48 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries. Depending on the installation procedure followed
the process of making these libraries available for our DDS application will be slightly different.

Installation from binaries and manual installation

If we have followed the installation from binaries or the manual installation, these libraries are already accessible from
the workspace. On Linux, the header files can be found in directories /usr/include/fastrtps/ and /usr/include/fastcdr/
for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory /usr/lib/.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Configure the CMake project

We will use the CMake tool to manage the building of the project. With your preferred text editor, create a new file called
CMakeLists.txt and copy and paste the following code snippet. Save this file in the root directory of your workspace.
If you have followed these steps, it should be workspace_DDSHelloWorld.

cmake_minimum_required(VERSION 3.12.4)

if(NOT CMAKE_VERSION VERSION_LESS 3.0)
cmake_policy(SET CMP0048 NEW)

endif()

project(DDSHelloWorld)

Find requirements
if(NOT fastcdr_FOUND)

find_package(fastcdr REQUIRED)
endif()

if(NOT fastrtps_FOUND)
find_package(fastrtps REQUIRED)

endif()

Set C++11
include(CheckCXXCompilerFlag)
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_COMPILER_IS_CLANG OR

(continues on next page)

6.14. Getting Started 49

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

CMAKE_CXX_COMPILER_ID MATCHES "Clang")
check_cxx_compiler_flag(-std=c++11 SUPPORTS_CXX11)
if(SUPPORTS_CXX11)

add_compile_options(-std=c++11)
else()

message(FATAL_ERROR "Compiler doesn't support C++11")
endif()

endif()

In each section we will complete this file to include the specific generated files.

Build the topic data type

eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate a functional example that uses your topic data.

It will be the former that will be followed in this tutorial. To see an example of application of the latter you can check
this other example. See Introduction for further details. For this project, we will use the Fast DDS-Gen application to
define the data type of the messages that will be sent by the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

cd src && touch HelloWorld.idl

This creates the HelloWorld.idl file in the src directory. Open the file in a text editor and copy and paste the following
snippet of code.

struct HelloWorld
{

unsigned long index;
string message;

};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and
a message of type std::string. All that remains is to generate the source code that implements this data type in
C++11. To do this, run the following command from the src directory.

<path/to/Fast DDS-Gen>/scripts/fastddsgen HelloWorld.idl

This must have generated the following files:

• HelloWorld.cxx: HelloWorld type definition.

• HelloWorld.h: Header file for HelloWorld.cxx.

• HelloWorldPubSubTypes.cxx: Serialization and Deserialization code for the HelloWorld type.

• HelloWorldPubSubTypes.h: Header file for HelloWorldPubSubTypes.cxx.

50 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

CMakeLists.txt

Include the following code snippet at the end of the CMakeList.txt file you created earlier. This includes the files we
have just created.

message(STATUS "Configuring HelloWorld publisher/subscriber example...")
file(GLOB DDS_HELLOWORLD_SOURCES_CXX "src/*.cxx")

Write the Fast DDS publisher

From the src directory in the workspace, run the following command to download the HelloWorldPublisher.cpp file.

wget -O HelloWorldPublisher.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/

→˓DDSHelloWorld/src/HelloWorldPublisher.cpp

This is the C++ source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

1 // Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software

10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14

15 /**
16 * @file HelloWorldPublisher.cpp
17 *
18 */
19

20 #include "HelloWorldPubSubTypes.h"
21

22 #include <fastdds/dds/domain/DomainParticipantFactory.hpp>
23 #include <fastdds/dds/domain/DomainParticipant.hpp>
24 #include <fastdds/dds/topic/TypeSupport.hpp>
25 #include <fastdds/dds/publisher/Publisher.hpp>
26 #include <fastdds/dds/publisher/DataWriter.hpp>
27 #include <fastdds/dds/publisher/DataWriterListener.hpp>
28

29 using namespace eprosima::fastdds::dds;
30

31 class HelloWorldPublisher
32 {
33 private:

(continues on next page)

6.14. Getting Started 51

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

34

35 HelloWorld hello_;
36

37 DomainParticipant* participant_;
38

39 Publisher* publisher_;
40

41 Topic* topic_;
42

43 DataWriter* writer_;
44

45 TypeSupport type_;
46

47 class PubListener : public DataWriterListener
48 {
49 public:
50

51 PubListener()
52 : matched_(0)
53 {
54 }
55

56 ~PubListener() override
57 {
58 }
59

60 void on_publication_matched(
61 DataWriter*,
62 const PublicationMatchedStatus& info) override
63 {
64 if (info.current_count_change == 1)
65 {
66 matched_ = info.total_count;
67 std::cout << "Publisher matched." << std::endl;
68 }
69 else if (info.current_count_change == -1)
70 {
71 matched_ = info.total_count;
72 std::cout << "Publisher unmatched." << std::endl;
73 }
74 else
75 {
76 std::cout << info.current_count_change
77 << " is not a valid value for PublicationMatchedStatus current␣

→˓count change." << std::endl;
78 }
79 }
80

81 std::atomic_int matched_;
82

83 } listener_;
84

(continues on next page)

52 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

85 public:
86

87 HelloWorldPublisher()
88 : participant_(nullptr)
89 , publisher_(nullptr)
90 , topic_(nullptr)
91 , writer_(nullptr)
92 , type_(new HelloWorldPubSubType())
93 {
94 }
95

96 virtual ~HelloWorldPublisher()
97 {
98 if (writer_ != nullptr)
99 {

100 publisher_->delete_datawriter(writer_);
101 }
102 if (publisher_ != nullptr)
103 {
104 participant_->delete_publisher(publisher_);
105 }
106 if (topic_ != nullptr)
107 {
108 participant_->delete_topic(topic_);
109 }
110 DomainParticipantFactory::get_instance()->delete_participant(participant_);
111 }
112

113 //!Initialize the publisher
114 bool init()
115 {
116 hello_.index(0);
117 hello_.message("HelloWorld");
118

119 DomainParticipantQos participantQos;
120 participantQos.name("Participant_publisher");
121 participant_ = DomainParticipantFactory::get_instance()->create_participant(0,␣

→˓participantQos);
122

123 if (participant_ == nullptr)
124 {
125 return false;
126 }
127

128 // Register the Type
129 type_.register_type(participant_);
130

131 // Create the publications Topic
132 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_

→˓DEFAULT);
133

134 if (topic_ == nullptr)
(continues on next page)

6.14. Getting Started 53

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

135 {
136 return false;
137 }
138

139 // Create the Publisher
140 publisher_ = participant_->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);
141

142 if (publisher_ == nullptr)
143 {
144 return false;
145 }
146

147 // Create the DataWriter
148 writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &

→˓listener_);
149

150 if (writer_ == nullptr)
151 {
152 return false;
153 }
154 return true;
155 }
156

157 //!Send a publication
158 bool publish()
159 {
160 if (listener_.matched_ > 0)
161 {
162 hello_.index(hello_.index() + 1);
163 writer_->write(&hello_);
164 return true;
165 }
166 return false;
167 }
168

169 //!Run the Publisher
170 void run(
171 uint32_t samples)
172 {
173 uint32_t samples_sent = 0;
174 while (samples_sent < samples)
175 {
176 if (publish())
177 {
178 samples_sent++;
179 std::cout << "Message: " << hello_.message() << " with index: " << hello_

→˓.index()
180 << " SENT" << std::endl;
181 }
182 std::this_thread::sleep_for(std::chrono::milliseconds(1000));
183 }
184 }

(continues on next page)

54 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

185 };
186

187 int main(
188 int argc,
189 char** argv)
190 {
191 std::cout << "Starting publisher." << std::endl;
192 int samples = 10;
193

194 HelloWorldPublisher* mypub = new HelloWorldPublisher();
195 if(mypub->init())
196 {
197 mypub->run(static_cast<uint32_t>(samples));
198 }
199

200 delete mypub;
201 return 0;
202 }

Examining the code

At the beginning of the file we have a Doxygen style comment block with the @file field that tells us the name of the
file.

/**
* @file HelloWorldPublisher.cpp
*
*/

Below are the includes of the C++ headers. The first one includes the HelloWorldPubSubTypes.h file with the serial-
ization and deserialization functions of the data type that we have defined in the previous section.

#include "HelloWorldPubSubTypes.h"

The next block includes the C++ header files that allow the use of the Fast DDS API.

• DomainParticipantFactory. Allows for the creation and destruction of DomainParticipant objects.

• DomainParticipant. Acts as a container for all other Entity objects and as a factory for the Publisher, Sub-
scriber, and Topic objects.

• TypeSupport. Provides the participant with the functions to serialize, deserialize and get the key of a specific
data type.

• Publisher. It is the object responsible for the creation of DataWriters.

• DataWriter. Allows the application to set the value of the data to be published under a given Topic.

• DataWriterListener. Allows the redefinition of the functions of the DataWriterListener.

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/domain/DomainParticipant.hpp>
#include <fastdds/dds/topic/TypeSupport.hpp>
#include <fastdds/dds/publisher/Publisher.hpp>

(continues on next page)

6.14. Getting Started 55

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

#include <fastdds/dds/publisher/DataWriter.hpp>
#include <fastdds/dds/publisher/DataWriterListener.hpp>

Next, we define the namespace that contains the eProsima Fast DDS classes and functions that we are going to use in
our application.

using namespace eprosima::fastdds::dds;

The next line creates the HelloWorldPublisher class that implements a publisher.

class HelloWorldPublisher

Continuing with the private data members of the class, the hello_ data member is defined as an object of the
HelloWorld class that defines the data type we created with the IDL file. Next, the private data members correspond-
ing to the participant, publisher, topic, DataWriter and data type are defined. The type_ object of the TypeSupport
class is the object that will be used to register the topic data type in the DomainParticipant.

private:

HelloWorld hello_;

DomainParticipant* participant_;

Publisher* publisher_;

Topic* topic_;

DataWriter* writer_;

TypeSupport type_;

Then, the PubListener class is defined by inheriting from the DataWriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions. Finally, the listener_ object of the class is defined as an
instance of PubListener.

class PubListener : public DataWriterListener
{
public:

PubListener()
: matched_(0)

{
}

~PubListener() override
{
}

void on_publication_matched(
(continues on next page)

56 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DataWriter*,
const PublicationMatchedStatus& info) override

{
if (info.current_count_change == 1)
{

matched_ = info.total_count;
std::cout << "Publisher matched." << std::endl;

}
else if (info.current_count_change == -1)
{

matched_ = info.total_count;
std::cout << "Publisher unmatched." << std::endl;

}
else
{

std::cout << info.current_count_change
<< " is not a valid value for PublicationMatchedStatus current count␣

→˓change." << std::endl;
}

}

std::atomic_int matched_;

} listener_;

The public constructor and destructor of the HelloWorldPublisher class are defined below. The constructor initial-
izes the private data members of the class to nullptr, with the exception of the TypeSupport object, that is initialized
as an instance of the HelloWorldPubSubType class. The class destructor removes these data members and thus cleans
the system memory.

HelloWorldPublisher()
: participant_(nullptr)
, publisher_(nullptr)
, topic_(nullptr)
, writer_(nullptr)
, type_(new HelloWorldPubSubType())

{
}

virtual ~HelloWorldPublisher()
{

if (writer_ != nullptr)
{

publisher_->delete_datawriter(writer_);
}
if (publisher_ != nullptr)
{

participant_->delete_publisher(publisher_);
}
if (topic_ != nullptr)
{

participant_->delete_topic(topic_);
(continues on next page)

6.14. Getting Started 57

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}
DomainParticipantFactory::get_instance()->delete_participant(participant_);

}

Continuing with the public member functions of the HelloWorldPublisher class, the next snippet of code defines
the public publisher’s initialization member function. This function performs several actions:

1. Initializes the content of the HelloWorld type hello_ structure members.

2. Assigns a name to the participant through the QoS of the DomainParticipant.

3. Uses the DomainParticipantFactory to create the participant.

4. Registers the data type defined in the IDL.

5. Creates the topic for the publications.

6. Creates the publisher.

7. Creates the DataWriter with the listener previously created.

As you can see, the QoS configuration for all entities, except for the participant’s name, is the default configuration
(PARTICIPANT_QOS_DEFAULT, PUBLISHER_QOS_DEFAULT, TOPIC_QOS_DEFAULT, DATAWRITER_QOS_DEFAULT).
The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the publisher
bool init()
{

hello_.index(0);
hello_.message("HelloWorld");

DomainParticipantQos participantQos;
participantQos.name("Participant_publisher");
participant_ = DomainParticipantFactory::get_instance()->create_participant(0,␣

→˓participantQos);

if (participant_ == nullptr)
{

return false;
}

// Register the Type
type_.register_type(participant_);

// Create the publications Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_

→˓DEFAULT);

if (topic_ == nullptr)
{

return false;
}

// Create the Publisher
publisher_ = participant_->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);

(continues on next page)

58 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (publisher_ == nullptr)
{

return false;
}

// Create the DataWriter
writer_ = publisher_->create_datawriter(topic_, DATAWRITER_QOS_DEFAULT, &listener_);

if (writer_ == nullptr)
{

return false;
}
return true;

}

To make the publication, the public member function publish() is implemented. In the DataWriter’s listener callback
which states that the DataWriter has matched with a DataReader that listens to the publication topic, the data member
matched_ is updated. It contains the number of DataReaders discovered. Therefore, when the first DataReader has
been discovered, the application starts to publish. This is simply the writing of a change by the DataWriter object.

//!Send a publication
bool publish()
{

if (listener_.matched_ > 0)
{

hello_.index(hello_.index() + 1);
writer_->write(&hello_);
return true;

}
return false;

}

The public run function executes the action of publishing a given number of times, waiting for 1 second between
publications.

//!Run the Publisher
void run(

uint32_t samples)
{

uint32_t samples_sent = 0;
while (samples_sent < samples)
{

if (publish())
{

samples_sent++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.

→˓index()
<< " SENT" << std::endl;

}
std::this_thread::sleep_for(std::chrono::milliseconds(1000));

}
}

6.14. Getting Started 59

Fast DDS Documentation, Release 2.8.2

Finally, the HelloWorldPublisher is initialized and run in main.

int main(
int argc,
char** argv)

{
std::cout << "Starting publisher." << std::endl;
int samples = 10;

HelloWorldPublisher* mypub = new HelloWorldPublisher();
if(mypub->init())
{

mypub->run(static_cast<uint32_t>(samples));
}

delete mypub;
return 0;

}

CMakeLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable(DDSHelloWorldPublisher src/HelloWorldPublisher.cpp ${DDS_HELLOWORLD_
→˓SOURCES_CXX})
target_link_libraries(DDSHelloWorldPublisher fastrtps fastcdr)

At this point the project is ready for building, compiling and running the publisher application. From the build directory
in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldPublisher

Write the Fast DDS subscriber

From the src directory in the workspace, execute the following command to download the HelloWorldSubscriber.cpp
file.

wget -O HelloWorldSubscriber.cpp \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/C++/

→˓DDSHelloWorld/src/HelloWorldSubscriber.cpp

This is the C++ source code for the subscriber application. The application runs a subscriber until it receives 10 samples
under the topic HelloWorldTopic. At this point the subscriber stops.

1 // Copyright 2016 Proyectos y Sistemas de Mantenimiento SL (eProsima).
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.

(continues on next page)

60 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software

10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14

15 /**
16 * @file HelloWorldSubscriber.cpp
17 *
18 */
19

20 #include "HelloWorldPubSubTypes.h"
21

22 #include <fastdds/dds/domain/DomainParticipantFactory.hpp>
23 #include <fastdds/dds/domain/DomainParticipant.hpp>
24 #include <fastdds/dds/topic/TypeSupport.hpp>
25 #include <fastdds/dds/subscriber/Subscriber.hpp>
26 #include <fastdds/dds/subscriber/DataReader.hpp>
27 #include <fastdds/dds/subscriber/DataReaderListener.hpp>
28 #include <fastdds/dds/subscriber/qos/DataReaderQos.hpp>
29 #include <fastdds/dds/subscriber/SampleInfo.hpp>
30

31 using namespace eprosima::fastdds::dds;
32

33 class HelloWorldSubscriber
34 {
35 private:
36

37 DomainParticipant* participant_;
38

39 Subscriber* subscriber_;
40

41 DataReader* reader_;
42

43 Topic* topic_;
44

45 TypeSupport type_;
46

47 class SubListener : public DataReaderListener
48 {
49 public:
50

51 SubListener()
52 : samples_(0)
53 {
54 }
55

56 ~SubListener() override
(continues on next page)

6.14. Getting Started 61

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

57 {
58 }
59

60 void on_subscription_matched(
61 DataReader*,
62 const SubscriptionMatchedStatus& info) override
63 {
64 if (info.current_count_change == 1)
65 {
66 std::cout << "Subscriber matched." << std::endl;
67 }
68 else if (info.current_count_change == -1)
69 {
70 std::cout << "Subscriber unmatched." << std::endl;
71 }
72 else
73 {
74 std::cout << info.current_count_change
75 << " is not a valid value for SubscriptionMatchedStatus current␣

→˓count change" << std::endl;
76 }
77 }
78

79 void on_data_available(
80 DataReader* reader) override
81 {
82 SampleInfo info;
83 if (reader->take_next_sample(&hello_, &info) == ReturnCode_t::RETCODE_OK)
84 {
85 if (info.valid_data)
86 {
87 samples_++;
88 std::cout << "Message: " << hello_.message() << " with index: " <<␣

→˓hello_.index()
89 << " RECEIVED." << std::endl;
90 }
91 }
92 }
93

94 HelloWorld hello_;
95

96 std::atomic_int samples_;
97

98 } listener_;
99

100 public:
101

102 HelloWorldSubscriber()
103 : participant_(nullptr)
104 , subscriber_(nullptr)
105 , topic_(nullptr)
106 , reader_(nullptr)

(continues on next page)

62 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

107 , type_(new HelloWorldPubSubType())
108 {
109 }
110

111 virtual ~HelloWorldSubscriber()
112 {
113 if (reader_ != nullptr)
114 {
115 subscriber_->delete_datareader(reader_);
116 }
117 if (topic_ != nullptr)
118 {
119 participant_->delete_topic(topic_);
120 }
121 if (subscriber_ != nullptr)
122 {
123 participant_->delete_subscriber(subscriber_);
124 }
125 DomainParticipantFactory::get_instance()->delete_participant(participant_);
126 }
127

128 //!Initialize the subscriber
129 bool init()
130 {
131 DomainParticipantQos participantQos;
132 participantQos.name("Participant_subscriber");
133 participant_ = DomainParticipantFactory::get_instance()->create_participant(0,␣

→˓participantQos);
134

135 if (participant_ == nullptr)
136 {
137 return false;
138 }
139

140 // Register the Type
141 type_.register_type(participant_);
142

143 // Create the subscriptions Topic
144 topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_

→˓DEFAULT);
145

146 if (topic_ == nullptr)
147 {
148 return false;
149 }
150

151 // Create the Subscriber
152 subscriber_ = participant_->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);
153

154 if (subscriber_ == nullptr)
155 {
156 return false;

(continues on next page)

6.14. Getting Started 63

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

157 }
158

159 // Create the DataReader
160 reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &

→˓listener_);
161

162 if (reader_ == nullptr)
163 {
164 return false;
165 }
166

167 return true;
168 }
169

170 //!Run the Subscriber
171 void run(
172 uint32_t samples)
173 {
174 while(listener_.samples_ < samples)
175 {
176 std::this_thread::sleep_for(std::chrono::milliseconds(100));
177 }
178 }
179 };
180

181 int main(
182 int argc,
183 char** argv)
184 {
185 std::cout << "Starting subscriber." << std::endl;
186 int samples = 10;
187

188 HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
189 if(mysub->init())
190 {
191 mysub->run(static_cast<uint32_t>(samples));
192 }
193

194 delete mysub;
195 return 0;
196 }

64 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the includes of the C++ header files. In
these, the files that include the publisher class are replaced by the subscriber class and the data writer class by the data
reader class.

• Subscriber. It is the object responsible for the creation and configuration of DataReaders.

• DataReader. It is the object responsible for the actual reception of the data. It registers in the application the
topic (TopicDescription) that identifies the data to be read and accesses the data received by the subscriber.

• DataReaderListener. This is the listener assigned to the data reader.

• DataReaderQoS. Structure that defines the QoS of the DataReader.

• SampleInfo. It is the information that accompanies each sample that is ‘read’ or ‘taken.’

#include <fastdds/dds/domain/DomainParticipantFactory.hpp>
#include <fastdds/dds/subscriber/SampleInfo.hpp>

The next line defines the HelloWorldSubscriber class that implements a subscriber.

class HelloWorldSubscriber

Starting with the private data members of the class, it is worth mentioning the implementation of the data reader listener.
The private data members of the class will be the participant, the subscriber, the topic, the data reader, and the data
type. As it was the case with the data writer, the listener implements the callbacks to be executed in case an event
occurs. The first overridden callback of the SubListener is the on_subscription_matched(), which is the analog of
the on_publication_matched() callback of the DataWriter.

void on_subscription_matched(
DataReader*,
const SubscriptionMatchedStatus& info) override

{
if (info.current_count_change == 1)
{

std::cout << "Subscriber matched." << std::endl;
}
else if (info.current_count_change == -1)
{

std::cout << "Subscriber unmatched." << std::endl;
}
else
{

std::cout << info.current_count_change
<< " is not a valid value for SubscriptionMatchedStatus current count␣

→˓change" << std::endl;
}

}

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampleInfo class is defined,
which determines whether a sample has already been read or taken. Each time a sample is read, the counter of samples
received is increased.

6.14. Getting Started 65

Fast DDS Documentation, Release 2.8.2

void on_data_available(
DataReader* reader) override

{
SampleInfo info;
if (reader->take_next_sample(&hello_, &info) == ReturnCode_t::RETCODE_OK)
{

if (info.valid_data)
{

samples_++;
std::cout << "Message: " << hello_.message() << " with index: " << hello_.

→˓index()
<< " RECEIVED." << std::endl;

}
}

}

The public constructor and destructor of the class is defined below.

HelloWorldSubscriber()
: participant_(nullptr)
, subscriber_(nullptr)
, topic_(nullptr)
, reader_(nullptr)
, type_(new HelloWorldPubSubType())

{
}

virtual ~HelloWorldSubscriber()
{

if (reader_ != nullptr)
{

subscriber_->delete_datareader(reader_);
}
if (topic_ != nullptr)
{

participant_->delete_topic(topic_);
}
if (subscriber_ != nullptr)
{

participant_->delete_subscriber(subscriber_);
}
DomainParticipantFactory::get_instance()->delete_participant(participant_);

}

Next comes the subscriber initialization public member function. This is the same as the initialization public mem-
ber function defined for the HelloWorldPublisher. The QoS configuration for all entities, except for the partici-
pant’s name, is the default QoS (PARTICIPANT_QOS_DEFAULT, SUBSCRIBER_QOS_DEFAULT, TOPIC_QOS_DEFAULT,
DATAREADER_QOS_DEFAULT). The default value of the QoS of each DDS Entity can be checked in the DDS standard.

//!Initialize the subscriber
bool init()
{

DomainParticipantQos participantQos;
(continues on next page)

66 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/About-DDS/

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

participantQos.name("Participant_subscriber");
participant_ = DomainParticipantFactory::get_instance()->create_participant(0,␣

→˓participantQos);

if (participant_ == nullptr)
{

return false;
}

// Register the Type
type_.register_type(participant_);

// Create the subscriptions Topic
topic_ = participant_->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_

→˓DEFAULT);

if (topic_ == nullptr)
{

return false;
}

// Create the Subscriber
subscriber_ = participant_->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

if (subscriber_ == nullptr)
{

return false;
}

// Create the DataReader
reader_ = subscriber_->create_datareader(topic_, DATAREADER_QOS_DEFAULT, &listener_);

if (reader_ == nullptr)
{

return false;
}

return true;
}

The public member function run() ensures that the subscriber runs until all the samples have been received. This
member function implements an active wait of the subscriber, with a 100ms sleep interval to ease the CPU.

//!Run the Subscriber
void run(

uint32_t samples)
{

while(listener_.samples_ < samples)
{

std::this_thread::sleep_for(std::chrono::milliseconds(100));
}

}

6.14. Getting Started 67

Fast DDS Documentation, Release 2.8.2

Finally, the participant that implements a subscriber is initialized and run in main.

int main(
int argc,
char** argv)

{
std::cout << "Starting subscriber." << std::endl;
int samples = 10;

HelloWorldSubscriber* mysub = new HelloWorldSubscriber();
if(mysub->init())
{

mysub->run(static_cast<uint32_t>(samples));
}

delete mysub;
return 0;

}

CMakeLists.txt

Include at the end of the CMakeList.txt file you created earlier the following code snippet. This adds all the source files
needed to build the executable, and links the executable and the library together.

add_executable(DDSHelloWorldSubscriber src/HelloWorldSubscriber.cpp ${DDS_HELLOWORLD_
→˓SOURCES_CXX})
target_link_libraries(DDSHelloWorldSubscriber fastrtps fastcdr)

At this point the project is ready for building, compiling and running the subscriber application. From the build direc-
tory in the workspace, run the following commands.

cmake ..
cmake --build .
./DDSHelloWorldSubscriber

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

./DDSHelloWorldPublisher

./DDSHelloWorldSubscriber

68 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Summary

In this tutorial you have built a publisher and a subscriber DDS application. You have also learned how to build the
CMake file for source code compilation, and how to include and use the Fast DDS and Fast CDR libraries in your
project.

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.14.4 Writing a simple Python publisher and subscriber application

This section details how to create a simple Fast DDS application with a publisher and a subscriber using Python API
step by step.

• Background

• Prerequisites

• Create the application workspace

• Import linked libraries and its dependencies

– Colcon installation

• Build the topic data type

– CMakeLists.txt

• Write the Fast DDS publisher

– Examining the code

• Write the Fast DDS subscriber

– Examining the code

• Putting all together

• Summary

• Next steps

Background

DDS is a data-centric communications middleware that implements the DCPS model. This model is based on the
development of a publisher, a data generating element; and a subscriber, a data consuming element. These entities
communicate by means of the topic, an element that binds both DDS entities. Publishers generate information under a
topic and subscribers subscribe to this same topic to receive information.

6.14. Getting Started 69

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds

Fast DDS Documentation, Release 2.8.2

Prerequisites

First of all, you need to follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and
all its dependencies. You also need to have completed the steps outlined in the Installation Manual for the installation
of the eProsima Fast DDS-Gen tool. Moreover, all the commands provided in this tutorial are outlined for a Linux
environment.

Create the application workspace

The application workspace will have the following structure at the end of the project. Files HelloWorldPublisher.py
and HelloWorldSubscriber.py are the Publisher application and Subscriber application respectively.

.
CMakeCache.txt
CMakeFiles
CMakeLists.txt
HelloWorld.cxx
HelloWorld.h
HelloWorld.i
HelloWorld.idl
HelloWorld.py
HelloWorldPubSubTypes.cxx
HelloWorldPubSubTypes.h
HelloWorldPubSubTypes.i
HelloWorldPublisher.py
HelloWorldSubscriber.py
Makefile
_HelloWorldWrapper.so
cmake_install.cmake
libHelloWorld.so

Let’s create the directory tree first.

mkdir workspace_HelloWorld && cd workspace_HelloWorld

Import linked libraries and its dependencies

The DDS application requires the Fast DDS, Fast CDR and Fast DDS Python bindings libraries. Depending on the
installation procedure followed the process of making these libraries available for our DDS application will be slightly
different.

Colcon installation

From a Colcon installation there are several ways to import the libraries. If the libraries need to be available just for
the current session, run the following command.

source <path/to/Fast-DDS-python/workspace>/install/setup.bash

They can be made accessible from any session by adding the Fast DDS installation directory to your $PATH variable in
the shell configuration files for the current user running the following command.

70 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

echo 'source <path/to/Fast-DDS-python/workspace>/install/setup.bash' >> ~/.bashrc

This will set up the environment after each of this user’s logins.

Build the topic data type

eProsima Fast DDS-Gen is a Java application that generates source code using the data types defined in an Interface
Description Language (IDL) file. This application can do two different things:

1. Generate C++ definitions for your custom topic.

2. Generate SWIG interface files to generate the Python bindings for your custom topic.

For this project, we will use the Fast DDS-Gen application to define the data type of the messages that will be sent by
the publishers and received by the subscribers.

In the workspace directory, execute the following commands:

touch HelloWorld.idl

This creates the HelloWorld.idl file. Open the file in a text editor and copy and paste the following snippet of code.

struct HelloWorld
{

unsigned long index;
string message;

};

By doing this we have defined the HelloWorld data type, which has two elements: an index of type uint32_t and a
message of type std::string. All that remains is to generate the source code that implements this data type in C++11
and the SWIG interface files for the Python bindings. To do this, run the following command.

<path/to/Fast DDS-Gen>/scripts/fastddsgen -python HelloWorld.idl

This must have generated the following files:

• HelloWorld.cxx: HelloWorld C++ type definition.

• HelloWorld.h: C++ header file for HelloWorld.cxx.

• HelloWorld.i: SWIG interface file for HelloWorld C++ type definition.

• HelloWorldPubSubTypes.cxx: C+`Serialization and Deserialization code for the HelloWorld type.

• HelloWorldPubSubTypes.h: C++ header file for HelloWorldPubSubTypes.cxx.

• HelloWorldPubSubTypes.i: SWIG interface file for C++ Serialization and Deserialization code.

• CMakeLists.txt: CMake file to generate C++ source code and Python module from the SWIG interface files,
compile and generate C++ libraries.

• HelloWorld.py: Python module to be imported by your Python example.

6.14. Getting Started 71

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/

Fast DDS Documentation, Release 2.8.2

CMakeLists.txt

At this point the project is ready for building, compiling and generating Python bindings for this data type. From the
workspace, run the following commands.

cmake .
make

Write the Fast DDS publisher

From the workspace, run the following command to download the HelloWorldPublisher.py file.

wget -O HelloWorldPublisher.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/

→˓Python/HelloWorld/HelloWorldPublisher.py

This is the Python source code for the publisher application. It is going to send 10 publications under the topic Hel-
loWorldTopic.

1 # Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software

10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14 """
15 HelloWorld Publisher
16 """
17 from threading import Condition
18 import time
19

20 import fastdds
21 import HelloWorld
22

23 DESCRIPTION = """HelloWorld Publisher example for Fast DDS python bindings"""
24 USAGE = ('python3 HelloWorldPublisher.py')
25

26 class WriterListener (fastdds.DataWriterListener) :
27 def __init__(self, writer) :
28 self._writer = writer
29 super().__init__()
30

31

32 def on_publication_matched(self, datawriter, info) :
33 if (0 < info.current_count_change) :

(continues on next page)

72 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

34 print ("Publisher matched subscriber {}".format(info.last_subscription_
→˓handle))

35 self._writer._cvDiscovery.acquire()
36 self._writer._matched_reader += 1
37 self._writer._cvDiscovery.notify()
38 self._writer._cvDiscovery.release()
39 else :
40 print ("Publisher unmatched subscriber {}".format(info.last_subscription_

→˓handle))
41 self._writer._cvDiscovery.acquire()
42 self._writer._matched_reader -= 1
43 self._writer._cvDiscovery.notify()
44 self._writer._cvDiscovery.release()
45

46

47 class Writer:
48

49

50 def __init__(self):
51 self._matched_reader = 0
52 self._cvDiscovery = Condition()
53 self.index = 0
54

55 factory = fastdds.DomainParticipantFactory.get_instance()
56 self.participant_qos = fastdds.DomainParticipantQos()
57 factory.get_default_participant_qos(self.participant_qos)
58 self.participant = factory.create_participant(0, self.participant_qos)
59

60 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
61 self.topic_data_type.setName("HelloWorld")
62 self.type_support = fastdds.TypeSupport(self.topic_data_type)
63 self.participant.register_type(self.type_support)
64

65 self.topic_qos = fastdds.TopicQos()
66 self.participant.get_default_topic_qos(self.topic_qos)
67 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_

→˓type.getName(), self.topic_qos)
68

69 self.publisher_qos = fastdds.PublisherQos()
70 self.participant.get_default_publisher_qos(self.publisher_qos)
71 self.publisher = self.participant.create_publisher(self.publisher_qos)
72

73 self.listener = WriterListener(self)
74 self.writer_qos = fastdds.DataWriterQos()
75 self.publisher.get_default_datawriter_qos(self.writer_qos)
76 self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.

→˓listener)
77

78

79 def write(self):
80 data = HelloWorld.HelloWorld()
81 data.message("Hello World")

(continues on next page)

6.14. Getting Started 73

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

82 data.index(self.index)
83 self.writer.write(data)
84 print("Sending {message} : {index}".format(message=data.message(), index=data.

→˓index()))
85 self.index = self.index + 1
86

87

88 def wait_discovery(self) :
89 self._cvDiscovery.acquire()
90 print ("Writer is waiting discovery...")
91 self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
92 self._cvDiscovery.release()
93 print("Writer discovery finished...")
94

95

96 def run(self):
97 self.wait_discovery()
98 for x in range(10) :
99 time.sleep(1)

100 self.write()
101 self.delete()
102

103

104 def delete(self):
105 factory = fastdds.DomainParticipantFactory.get_instance()
106 self.participant.delete_contained_entities()
107 factory.delete_participant(self.participant)
108

109

110 if __name__ == '__main__':
111 print('Starting publisher.')
112 writer = Writer()
113 writer.run()
114 exit()

Examining the code

At the beginning of the file we import the Fast DDS Python bindings.

import fastdds

and also the Python module generated by Fast-DDS-Gen as described in Build the topic data type section.

import HelloWorld

Then, the WriterListener class is defined by inheriting from the DataWriterListener class. This class overrides
the default DataWriter listener callbacks, which allows the execution of routines in case of an event. The overridden
callback on_publication_matched() allows the definition of a series of actions when a new DataReader is detected
listening to the topic under which the DataWriter is publishing. The info.current_count_change() detects these
changes of DataReaders that are matched to the DataWriter. This is a member in the MatchedStatus structure that
allows tracking changes in the status of subscriptions.

74 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

class WriterListener (fastdds.DataWriterListener) :
def __init__(self, writer) :

self._writer = writer
super().__init__()

def on_publication_matched(self, datawriter, info) :
if (0 < info.current_count_change) :

print ("Publisher matched subscriber {}".format(info.last_subscription_
→˓handle))

self._writer._cvDiscovery.acquire()
self._writer._matched_reader += 1
self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

else :
print ("Publisher unmatched subscriber {}".format(info.last_subscription_

→˓handle))
self._writer._cvDiscovery.acquire()
self._writer._matched_reader -= 1
self._writer._cvDiscovery.notify()
self._writer._cvDiscovery.release()

The next block creates the Writer class that implements a publisher.

class Writer:

The publisher’s initialization member function of the Writer class are defined below. This function performs several
actions:

1. Uses the DomainParticipantFactory to create the participant.

2. Registers the data type defined in the IDL.

3. Creates the topic for the publications.

4. Creates the publisher.

5. Creates the DataWriter with the listener previously created.

def __init__(self):
self._matched_reader = 0
self._cvDiscovery = Condition()
self.index = 0

factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_qos)
self.participant = factory.create_participant(0, self.participant_qos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")
self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()
(continues on next page)

6.14. Getting Started 75

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

self.participant.get_default_topic_qos(self.topic_qos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.

→˓getName(), self.topic_qos)

self.publisher_qos = fastdds.PublisherQos()
self.participant.get_default_publisher_qos(self.publisher_qos)
self.publisher = self.participant.create_publisher(self.publisher_qos)

self.listener = WriterListener(self)
self.writer_qos = fastdds.DataWriterQos()
self.publisher.get_default_datawriter_qos(self.writer_qos)
self.writer = self.publisher.create_datawriter(self.topic, self.writer_qos, self.

→˓listener)

To make the publication, the public member function write() is implemented. This is simply the writing of a change
by the DataWriter object.

def write(self):
data = HelloWorld.HelloWorld()
data.message("Hello World")
data.index(self.index)
self.writer.write(data)
print("Sending {message} : {index}".format(message=data.message(), index=data.

→˓index()))
self.index = self.index + 1

To detect when a DataReader has matched, the public member function wait_discovery() is implemented. In
the DataWriter’s listener callback which states that the DataWriter has matched with a DataReader that listens to the
publication topic, the data member _matched_reader is updated. It contains the number of DataReaders discovered.
Therefore, when the first DataReader has been discovered, the application starts to publish.

def wait_discovery(self) :
self._cvDiscovery.acquire()
print ("Writer is waiting discovery...")
self._cvDiscovery.wait_for(lambda : self._matched_reader != 0)
self._cvDiscovery.release()
print("Writer discovery finished...")

The public run function waits until a DataReader is discovered and executes the action of publishing 10 samples.

def run(self):
self.wait_discovery()
for x in range(10) :

time.sleep(1)
self.write()

self.delete()

Finally, the Writer is initialized and run in main.

if __name__ == '__main__':
print('Starting publisher.')
writer = Writer()

(continues on next page)

76 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

writer.run()
exit()

Write the Fast DDS subscriber

From the workspace, run the following command to download the HelloWorldSubscriber.py file.

wget -O HelloWorldSubscriber.py \
https://raw.githubusercontent.com/eProsima/Fast-RTPS-docs/master/code/Examples/

→˓Python/HelloWorld/HelloWorldSubscriber.py

This is the Python source code for the subscriber application. The application runs a subscriber until the user press
Ctrl+C receiving samples under the topic HelloWorldTopic.

1 # Copyright 2022 Proyectos y Sistemas de Mantenimiento SL (eProsima).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software

10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14 """
15 HelloWorld Subscriber
16 """
17 import signal
18

19 import fastdds
20 import HelloWorld
21

22 DESCRIPTION = """HelloWorld Subscriber example for Fast DDS python bindings"""
23 USAGE = ('python3 HelloWorldSubscriber.py')
24

25 # To capture ctrl+C
26 def signal_handler(sig, frame):
27 print('Interrupted!')
28

29 class ReaderListener(fastdds.DataReaderListener):
30

31

32 def __init__(self):
33 super().__init__()
34

35

36 def on_subscription_matched(self, datareader, info) :
37 if (0 < info.current_count_change) :

(continues on next page)

6.14. Getting Started 77

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

38 print ("Subscriber matched publisher {}".format(info.last_publication_
→˓handle))

39 else :
40 print ("Subscriber unmatched publisher {}".format(info.last_publication_

→˓handle))
41

42

43 def on_data_available(self, reader):
44 info = fastdds.SampleInfo()
45 data = HelloWorld.HelloWorld()
46 reader.take_next_sample(data, info)
47

48 print("Received {message} : {index}".format(message=data.message(), index=data.
→˓index()))

49

50

51 class Reader:
52

53

54 def __init__(self):
55 factory = fastdds.DomainParticipantFactory.get_instance()
56 self.participant_qos = fastdds.DomainParticipantQos()
57 factory.get_default_participant_qos(self.participant_qos)
58 self.participant = factory.create_participant(0, self.participant_qos)
59

60 self.topic_data_type = HelloWorld.HelloWorldPubSubType()
61 self.topic_data_type.setName("HelloWorld")
62 self.type_support = fastdds.TypeSupport(self.topic_data_type)
63 self.participant.register_type(self.type_support)
64

65 self.topic_qos = fastdds.TopicQos()
66 self.participant.get_default_topic_qos(self.topic_qos)
67 self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_

→˓type.getName(), self.topic_qos)
68

69 self.subscriber_qos = fastdds.SubscriberQos()
70 self.participant.get_default_subscriber_qos(self.subscriber_qos)
71 self.subscriber = self.participant.create_subscriber(self.subscriber_qos)
72

73 self.listener = ReaderListener()
74 self.reader_qos = fastdds.DataReaderQos()
75 self.subscriber.get_default_datareader_qos(self.reader_qos)
76 self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos,␣

→˓self.listener)
77

78

79 def delete(self):
80 factory = fastdds.DomainParticipantFactory.get_instance()
81 self.participant.delete_contained_entities()
82 factory.delete_participant(self.participant)
83

84

(continues on next page)

78 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

85 def run(self):
86 signal.signal(signal.SIGINT, signal_handler)
87 print('Press Ctrl+C to stop')
88 signal.pause()
89 self.delete()
90

91

92 if __name__ == '__main__':
93 print('Creating subscriber.')
94 reader = Reader()
95 reader.run()
96 exit()

Examining the code

Since the source code of both the publisher and subscriber applications is mostly identical, this document will focus
on the main differences between them, omitting the parts of the code that have already been explained.

Following the same structure as in the publisher explanation, the first step is the implementation of the data reader
listener. The first overridden callback of the ReaderListener is the on_subscription_matched(), which is the analog
of the on_publication_matched() callback of the DataWriter.

def on_subscription_matched(self, datareader, info) :
if (0 < info.current_count_change) :

print ("Subscriber matched publisher {}".format(info.last_publication_handle))
else :

print ("Subscriber unmatched publisher {}".format(info.last_publication_handle))

The second overridden callback is on_data_available(). In this, the next received sample that the data reader can
access is taken and processed to display its content. It is here that the object of the SampleInfo class is defined, which
determines whether a sample has already been read or taken.

def on_data_available(self, reader):
info = fastdds.SampleInfo()
data = HelloWorld.HelloWorld()
reader.take_next_sample(data, info)

The next line defines the Reader class that implements a subscriber.

class Reader:

Next comes the subscriber initialization public member function. This is the same as the initialization public member
function defined for the Writer.

def __init__(self):
factory = fastdds.DomainParticipantFactory.get_instance()
self.participant_qos = fastdds.DomainParticipantQos()
factory.get_default_participant_qos(self.participant_qos)
self.participant = factory.create_participant(0, self.participant_qos)

self.topic_data_type = HelloWorld.HelloWorldPubSubType()
self.topic_data_type.setName("HelloWorld")

(continues on next page)

6.14. Getting Started 79

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

self.type_support = fastdds.TypeSupport(self.topic_data_type)
self.participant.register_type(self.type_support)

self.topic_qos = fastdds.TopicQos()
self.participant.get_default_topic_qos(self.topic_qos)
self.topic = self.participant.create_topic("HelloWorldTopic", self.topic_data_type.

→˓getName(), self.topic_qos)

self.subscriber_qos = fastdds.SubscriberQos()
self.participant.get_default_subscriber_qos(self.subscriber_qos)
self.subscriber = self.participant.create_subscriber(self.subscriber_qos)

self.listener = ReaderListener()
self.reader_qos = fastdds.DataReaderQos()
self.subscriber.get_default_datareader_qos(self.reader_qos)
self.reader = self.subscriber.create_datareader(self.topic, self.reader_qos, self.

→˓listener)

The public member function run() ensures that the subscriber runs until the user press Ctrl+C.

def run(self):
signal.signal(signal.SIGINT, signal_handler)
print('Press Ctrl+C to stop')
signal.pause()
self.delete()

Finally, the participant that implements a subscriber is initialized and run in main.

if __name__ == '__main__':
print('Creating subscriber.')
reader = Reader()
reader.run()
exit()

Putting all together

Finally, from the build directory, run the publisher and subscriber applications from two terminals.

python3 HelloWorldPublisher.py
python3 HelloWorldSubscriber.py

Summary

In this tutorial you have built a Python publisher and a subscriber DDS application. You have also learned how to
generate from an IDL file the specific Python module for your Topic data type.

80 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Next steps

In the eProsima Fast DDS Github repository you will find more complex examples that implement DDS communication
for a multitude of use cases and scenarios. You can find them here.

6.15 Library Overview

Fast DDS (formerly Fast RTPS) is an efficient and high-performance implementation of the DDS specification, a data-
centric communications middleware (DCPS) for distributed application software. This section reviews the architecture,
operation and key features of Fast DDS.

6.15.1 Architecture

The architecture of Fast DDS is shown in the figure below, where a layer model with the following different environ-
ments can be seen.

• Application layer. The user application that makes use of the Fast DDS API for the implementation of commu-
nications in distributed systems.

• Fast DDS layer. Robust implementation of the DDS communications middleware. It allows the deployment
of one or more DDS domains in which DomainParticipants within the same domain exchange messages by
publishing/subscribing under a domain topic.

• RTPS layer. Implementation of the Real-Time Publish-Subscribe (RTPS) protocol for interoperability with DDS
applications. This layer acts an abstraction layer of the transport layer.

• Transport Layer. Fast DDS can be used over various transport protocols such as unreliable transport protocols
(UDP), reliable transport protocols (TCP), or shared memory transport protocols (SHM).

Fig. 4: Fast DDS layer model architecture

DDS Layer

Several key elements for communication are defined in the DDS layer of Fast DDS. The user will create these elements
in their application, thus incorporating DDS application elements and creating a data-centric communication system.
Fast DDS, following the DDS specification, defines these elements involved in communication as Entities. A DDS
Entity is any object that supports Quality of Service configuration (QoS), and that implements a listener.

• QoS. The mechanism by which the behavior of each of the entities is defined.

• Listener. The mechanism by which the entities are notified of the possible events that arise during the applica-
tion’s execution.

Below are listed the DDS Entities together with their description and functionality. For a more detailed explanation of
each entity, their QoS, and their listeners, please refer to DDS Layer section.

• Domain. A positive integer which identifies the DDS domain. Each DomainParticipant will have an assigned
DDS domain, so that DomainParticipants in the same domain can communicate, as well as isolate commu-
nications between DDS domains. This value must be given by the application developer when creating the
DomainParticipants.

• DomainParticipant. Object containing other DDS entities such as publishers, subscribers, topics and multi-
topics. It is the entity that allows the creation of the previous entities it contains, as well as the configuration of
their behavior.

6.15. Library Overview 81

https://github.com/eProsima/Fast-DDS-python/tree/master/fastdds_python_example
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.8.2

• Publisher. The Publisher publishes data under a topic using a DataWriter, which writes the data to the transport.
It is the entity that creates and configures the DataWriter entities it contains, and may contain one or more of
them.

• DataWriter. It is the entity in charge of publishing messages. The user must provide a Topic when creating
this entity which will be the Topic under which the data will be published. Publication is done by writing the
data-objects as a change in the DataWriterHistory.

• DataWriterHistory. This is a list of changes to the data-objects. When the DataWriter proceeds to publish data
under a specific Topic, it actually creates a change in this data. It is this change that is registered in the History.
These changes are then sent to the DataReader that subscribes to that specific topic.

• Subscriber. The Subscriber subscribes to a topic using a DataReader, which reads the data from the transport.
It is the entity that creates and configures the DataReader entities it contains, and may contain one or more
DataReader entities.

• DataReader. It is the entity that subscribes to the topics for the reception of publications. The user must
provide a subscription Topic when creating this entity. A DataReader receives the messages as changes in its
HistoryDataReader.

• DataReaderHistory. It contains the changes in the data-objects that the DataReader receives as a result of
subscribing to a certain Topic.

• Topic. Entity that binds Publishers’ DataWriters with Subscribers’ DataReaders.

RTPS layer

As mentioned above, the RTPS protocol in Fast DDS allows the abstraction of DDS application entities from the
transport layer. According to the graph shown above, the RTPS layer has four main Entities.

• RTPSDomain. It is the extension of the DDS domain to the RTPS protocol.

• RTPSParticipant. Entity containing other RTPS entities. It allows the configuration and creation of the entities
it contains.

• RTPSWriter. The source of the messages. It reads the changes written in the DataWriterHistory and transmits
them to all the RTPSReaders to which it has previously matched.

• RTPSReader. Receiving entity of the messages. It writes the changes reported by the RTPSWriter into the
DataReaderHistory.

For a more detailed explanation of each entity, their attributes, and their listeners, please refer to RTPS Layer section.

Transport layer

Fast DDS supports the implementation of applications over various transport protocols. Those are UDPv4, UDPv6,
TCPv4, TCPv6 and Shared Memory Transport (SHM). By default, a DomainParticipant implements a UDPv4 and
a SHM transport protocol. The configuration of all supported transport protocols is detailed in the Transport Layer
section.

82 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.15.2 Programming and execution model

Fast DDS is concurrent and event-based. The following explains the multithreading model that governs the operation
of Fast DDS as well as the possible events.

Concurrency and multithreading

Fast DDS implements a concurrent multithreading system. Each DomainParticipant spawns a set of threads to take care
of background tasks such as logging, message reception, and asynchronous communication. This should not impact
the way you use the library, i.e. the Fast DDS API is thread safe, so you can fearlessly call any methods on the same
DomainParticipant from different threads. However, this multithreading implementation must be taken into account
when external functions access to resources that are modified by threads running internally in the library. An example
of this is the modified resources in the entity listener callbacks. The following is a brief overview of how Fast DDS
multithreading schedule work:

• Main thread: Managed by the application.

• Event thread: Each DomainParticipant owns one of these. It processes periodic and triggered time events.

• Asynchronous writer thread: This thread manages asynchronous writes for all DomainParticipants. Even for
synchronous writers, some forms of communication must be initiated in the background.

• Reception threads: DomainParticipants spawn a thread for each reception channel, where the concept of a channel
depends on the transport layer (e.g. a UDP port).

Event-driven architecture

There is a time-event system that enables Fast DDS to respond to certain conditions, as well as schedule periodic
operations. Few of them are visible to the user since most are related to DDS and RTPS metadata. However, the user
can define in their application periodic time-events by inheriting from the TimedEvent class.

6.15.3 Functionalities

Fast DDS has some added features that can be implemented and configured by the user in their application. These are
outlined below.

Discovery Protocols

The discovery protocols define the mechanisms by which DataWriters publishing under a given Topic, and DataRead-
ers subscribing to that same Topic are matched, so that they can start sharing data. This applies at any point in the
communication process. Fast DDS provides the following discovery mechanisms:

• Simple Discovery. This is the default discovery mechanism, which is defined in the RTPS standard and provides
compatibility with other DDS implementations. Here the DomainParticipants are discovered individually at an
early stage to subsequently match the DataWriter and DataReader they implement.

• Discovery Server. This discovery mechanism uses a centralized discovery architecture, where servers act as
hubs for meta traffic discovery.

• Static Discovery. This implements the discovery of DomainParticipants to each other but it is possible to skip
the discovery of the entities contained in each DomainParticipant (DataReader/DataWriter) if these entities are
known in advance by the remote DomainParticipants.

6.15. Library Overview 83

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.8.2

• Manual Discovery. This mechanism is only compatible with the RTPS layer. It allows the user to man-
ually match and unmatch RTPSParticipants, RTPSWriters, and RTPSReaders using whatever external meta-
information channel of its choice.

The detailed explanation and configuration of all the discovery protocols implemented in Fast DDS can be seen in the
Discovery section.

Security

Fast DDS can be configured to provide secure communications by implementing pluggable security at three levels:

• Authentication of remote DomainParticipants. The DDS:Auth:PKI-DH plugin provides authentication using a
trusted Certificate Authority (CA) and ECDSA Digital Signature Algorithms to perform the mutual authentica-
tion. It also establishes a shared secret using Elliptic Curve Diffie-Hellman (ECDH) Key Agreement protocol.

• Access control of entities. The DDS:Access:Permissions plugin provides access control to DomainParticipants
at the DDS Domain and Topic level.

• Encryption of data. The DDS:Crypto:AES-GCM-GMAC plugin provides authenticated encryption using Ad-
vanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

More information about security configuration in Fast DDS is available in the Security section.

Logging

Fast DDS provides an extensible Logging system. Log class is the entry point of the Logging system. It exposes
three macro definitions to ease its usage: logInfo, logWarning and logError. Moreover, it allows the definition of
new categories, in addition to those already available (INFO_MSG, WARN_MSG and ERROR_MSG). It provides filtering by
category using regular expressions, as well as control of the verbosity of the Logging system. Details of the possible
Logging system configurations can be found in the Logging section.

XML profiles configuration

Fast DDS offers the possibility to make changes in its default settings by using XML profile configuration files. Thus,
the behavior of the DDS Entities can be modified without the need for the user to implement any program source code
or re-build an existing application.

The user has XML tags for each of the API functionalities. Therefore, it is possible to build and configure DomainPar-
ticipant profiles through the <participant> tag, or the DataWriter and DataReader profiles with the <data_writer>
and <data_reader> tags respectively.

For a better understanding of how to write and use these XML profiles configuration files you can continue reading the
XML profiles section.

Environment variables

Environment variables are those variables that are defined outside the scope of the program, through operating system
functionalities. Fast DDS relies on environment variables so that the user can easily customize the default settings
of DDS applications. Please, refer to the Environment variables section for a complete list and description of the
environment variables affecting Fast DDS.

84 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.16 DDS Layer

eProsima Fast DDS exposes two different APIs to interact with the communication service at different levels. The
main API is the Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model
(PIM) API, or DDS DCPS PIM for short, which is defined by the Data Distribution Service (DDS) version 1.4 speci-
fication, to which Fast DDS complies. This section is devoted to explain the main characteristics and modes-of-use of
this API under Fast DDS, providing an in depth explanation of the five modules into which it is divided:

• Core: It defines the abstract classes and interfaces that are refined by the other modules. It also provides the
Quality of Service (QoS) definitions, as well as support for the notification-based interaction style with the mid-
dleware.

• Domain: It contains the DomainParticipant class that acts as an entry-point of the Service, as well as a factory
for many of the classes. The DomainParticipant also acts as a container for the other objects that make up the
Service.

• Publisher: It describes the classes used on the publication side, including Publisher and DataWriter classes,
as well as the PublisherListener and DataWriterListener interfaces.

• Subscriber: It describes the classes used on the subscription side, including Subscriber and DataReader
classes, as well as the SubscriberListener and DataReaderListener interfaces.

• Topic: It describes the classes used to define communication topics and data types, including Topic and
TopicDescription classes, as well as TypeSupport, and the TopicListener interface.

6.16.1 Core

This module defines the infrastructure classes and types that will be used by the other ones. It contains the definition
of Entity class, QoS policies, and Statuses.

• Entity: An Entity is a DDS communication object that has a Status and can be configured with Policies.

• Policy: Each of the configuration objects that govern the behavior of an Entity.

• Status: Each of the objects associated with an Entity, whose values represent the communication status of that
Entity.

Entity

Entity is the abstract base class for all the DDS entities, meaning an object that supports QoS policies, a listener, and
statuses.

Types of Entities

• DomainParticipant: This entity is the entry-point of the Service and acts as a factory for Publishers, Subscribers,
and Topics. See DomainParticipant for further details.

• Publisher: It acts as a factory that can create any number of DataWriters. See Publisher for further details.

• Subscriber: It acts as a factory that can create any number of DataReaders. See Subscriber for further details.

• Topic: This entity fits between the publication and subscription entities and acts as a channel. See Topic for
further details.

• DataWriter: Is the object responsible for the data distribution. See DataWriter for further details.

• DataReader: Is the object used to access the received data. See DataReader for further details.

6.16. DDS Layer 85

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.8.2

The following figure shows the hierarchy between all DDS entities:

Common Entity Characteristics

All entity types share some characteristics that are common to the concept of an entity. Those are:

Entity Identifier

Each entity is identified by a unique ID, which is shared between the DDS entity and its corresponding RTPS entity if
it exists. That ID is stored on an Instance Handle object declared on Entity base class, which can be accessed using the
getter function get_instance_handle().

QoS policy

The behavior of each entity can be configured with a set of configuration policies. For each entity type, there
is a corresponding Quality of Service (QoS) class that groups all the policies that affect said entity type. Users
can create instances of these QoS classes, modify the contained policies to their needs, and use them to configure
the entities, either during their creation or at a later time with the set_qos() function that every entity exposes
(DomainParticipant::set_qos(), Publisher::set_qos(), Subscriber::set_qos(), Topic::set_qos(),
DataWriter::set_qos(), DataReader::set_qos()). See Policy for a list of the available policies and their de-
scription. The QoS classes and the policies they contain are explained in the documentation for each entity type.

Listener

A listener is an object with functions that an entity will call in response to events. Therefore, the listener acts as an
asynchronous notification system that allows the entity to notify the application about the Status changes in the entity.

All entity types define an abstract listener interface, which contains the callback functions that the entity will trigger to
communicate the Status changes to the application. Users can implement their own listeners inheriting from these in-
terfaces and implementing the callbacks that are needed on their application. Then they can link these listeners to each
entity, either during their creation or at a later time with the set_listener() function that every entity exposes
(DomainParticipant::set_listener(), Publisher::set_listener(), Subscriber::set_listener(),
Topic::set_listener(), DataWriter::set_listener(), DataReader::set_listener()). The listener in-
terfaces that each entity type and their callbacks are explained in the documentation for each entity type. When an
event occurs it is handled by the lowest level entity with a listener that is non-null and has the corresponding callback
enabled in its StatusMask . Higher level listeners inherit from the lower level ones as shown in the following diagram:

Fig. 5: Listeners inheritance diagram.

Note: The on_data_on_readers() callback intercepts messages before on_data_available(). This implies
that if DomainParticipantListener is enabled, users should take into account that by default the listener uses
StatusMask::all(). As the callback entity hierarchy is kept, the on_data_on_readers() is going to be called in
this case. If an application wants to use on_data_available() instead, the corresponding bit of StatusMask should
be disabled.

86 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Important: Using StatusMask::none() when creating the Entity only disables the DDS standard callbacks. Any
callback specific to Fast DDS is always enabled.

Warning: Only one thread is created to listen for every listener implemented, so it is encouraged to keep listener
functions simple, leaving the process of such information to the proper class.

Warning: Do not create or delete any Entity within the scope of a Listener member function, since it could lead
to an undefined behavior. It is recommended instead to use the Listener class as an information channel and the
upper Entity class to encapsulate such behaviour.

Status

Each entity is associated with a set of status objects whose values represent the communication status of that entity.
The changes on these status values are the ones that trigger the invocation of the appropriate Listener callback to
asynchronously inform the application. See Status for a list of all the status objects and a description of their content.
There you can also find which status applies to which entity type.

StatusCondition

Every entity owns a StatusCondition that will be notified whenever its enabled statuses change. The StatusCondition
provides the link between an Entity and a Wait-set. See section Conditions and Wait-sets for more information.

Enabling Entities

All the entities can be created either enabled or not enabled. By default, the factories are configured to create the
entities enabled, but it can be changed using the EntityFactoryQosPolicy on enabled factories. A disabled factory
creates disabled entities regardless of its QoS. A disabled entity has its operations limited to the following ones:

• Set/Get the entity QoS Policy.

• Set/Get the entity Listener.

• Create/Delete subentities.

• Get the Status of the entity, even if they will not change.

• Lookup operations.

Any other function called in this state will return NOT_ENABLED.

6.16. DDS Layer 87

Fast DDS Documentation, Release 2.8.2

Policy

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each
entity will behave. To increase the flexibility of the system, the QoS is decomposed in several QoS Policies that can be
configured independently. However, there may be cases where several policies conflict. Those conflicts are notified to
the user through the ReturnCodes that the QoS setter functions returns.

Each Qos Policy has a unique ID defined in the QosPolicyId_t enumerator. This ID is used in some Status instances
to identify the specific Qos Policy to which the Status refers.

There are QoS Policies that are immutable, which means that only can be specified either at the entity creation or before
calling the enable operation.

Each DDS Entity has a specific set of QoS Policies that can be a mix of Standard QoS Policies, XTypes Extensions and
eProsima Extensions.

Standard QoS Policies

This section explains each of the DDS standard QoS Policies:

• DeadlineQosPolicy

• DestinationOrderQosPolicy

• DurabilityQosPolicy

• DurabilityServiceQosPolicy

• EntityFactoryQosPolicy

• GroupDataQosPolicy

• HistoryQosPolicy

• LatencyBudgetQosPolicy

• LifespanQosPolicy

• LivelinessQosPolicy

• OwnershipQosPolicy

• OwnershipStrengthQosPolicy

• PartitionQosPolicy

• PresentationQosPolicy

• ReaderDataLifecycleQosPolicy

• ReliabilityQosPolicy

• ResourceLimitsQosPolicy

• TimeBasedFilterQosPolicy

• TopicDataQosPolicy

• TransportPriorityQosPolicy

• UserDataQosPolicy

• WriterDataLifecycleQosPolicy

88 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DeadlineQosPolicy

This QoS policy raises an alarm when the frequency of new samples falls below a certain threshold. It is useful for
cases where data is expected to be updated periodically (see DeadlineQosPolicy).

On the publishing side, the deadline defines the maximum period in which the application is expected to supply a new
sample. On the subscribing side, it defines the maximum period in which new samples should be received.

For Topics with keys, this QoS is applied by key. Suppose that the positions of some vehicles have to be published
periodically. In that case, it is possible to set the ID of the vehicle as the key of the data type and the deadline QoS to
the desired publication period.

List of QoS Policy data members:

Data Member Name Type Default Value
period Duration_t c_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

Compatibility Rule

To maintain the compatibility between DeadlineQosPolicy in DataReaders and DataWriters, the offered deadline pe-
riod (configured on the DataWriter) must be less than or equal to the requested deadline period (configured on the
DataReader), otherwise, the entities are considered to be incompatible.

The DeadlineQosPolicy must be set consistently with the TimeBasedFilterQosPolicy, which means that the deadline
period must be higher or equal to the minimum separation.

Example

C++

DeadlineQosPolicy deadline;
//The DeadlineQosPolicy is default constructed with an infinite period.
//Change the period to 1 second
deadline.period.seconds = 1;
deadline.period.nanosec = 0;

6.16. DDS Layer 89

Fast DDS Documentation, Release 2.8.2

XML

<data_writer profile_name="writer_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
<nanosec>0</nanosec>

</period>
</deadline>

</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_deadline_profile">
<qos>

<deadline>
<period>

<sec>1</sec>
<nanosec>0</nanosec>

</period>
</deadline>

</qos>
</data_reader>

DestinationOrderQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Multiple DataWriters can send messages in the same Topic using the same key, and on the DataReader side all those
messages are stored within the same instance of data (see DestinationOrderQosPolicy). This QoS policy controls
the criteria used to determine the logical order of those messages. The behavior of the system depends on the value of
the DestinationOrderQosPolicyKind.

List of QoS Policy data members:

Data Member
Name

Type Default Value

kind DestinationOrderQosPoli-
cyKind

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

90 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DestinationOrderQosPolicyKind

There are two possible values (see DestinationOrderQosPolicyKind):

• BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the
reception time at each DataReader, which means that the last received value should be the one kept. This option
may cause that each DataReader ends up with a different final value, since the DataReaders may receive the data
at different times.

• BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS: This indicates that the data is ordered based on the
DataWriter timestamp at the time the message is sent. This option guarantees the consistency of the final value.

Both options depend on the values of the OwnershipQosPolicy and OwnershipStrengthQosPolicy, meaning that if the
Ownership is set to EXCLUSIVE and the last value came from a DataWriter with low ownership strength, it will be
discarded.

Compatibility Rule

To maintain the compatibility between DestinationOrderQosPolicy in DataReaders and DataWriters when they have
different kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the
different kinds is:

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS < BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

Table with the possible combinations:

DataWriter kind DataReader kind Compati-
bility

BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOSBY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOSYes
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOSBY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOSNo
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOSBY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOSYes
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOSBY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOSYes

DurabilityQosPolicy

A DataWriter can send messages throughout a Topic even if there are no DataReaders on the network. Moreover, a
DataReader that joins to the Topic after some data has been written could be interested in accessing that information
(see DurabilityQosPolicy).

The DurabilityQoSPolicy defines how the system will behave regarding those samples that existed on the Topic before
the DataReader joins. The behavior of the system depends on the value of the DurabilityQosPolicyKind.

List of QoS Policy data members:

Data Member
Name

Type Default Value

kind Durabili-
tyQosPolicyKind

VOLATILE_DURABILITY_QOS for DataReaders
TRANSIENT_LOCAL_DURABILITY_QOS for DataWriters

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

6.16. DDS Layer 91

Fast DDS Documentation, Release 2.8.2

Important: In order to receive past samples in the DataReader, besides setting this Qos Policy, it is required that the
ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

DurabilityQosPolicyKind

There are four possible values (see DurabilityQosPolicyKind):

• VOLATILE_DURABILITY_QOS: Past samples are ignored and a joining DataReader receives samples generated
after the moment it matches.

• TRANSIENT_LOCAL_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples.

• TRANSIENT_DURABILITY_QOS: When a new DataReader joins, its History is filled with past samples, which are
stored on persistent storage (see Persistence Service).

• PERSISTENT_DURABILITY_QOS: (Not Implemented): All the samples are stored on a permanent storage, so that
they can outlive a system session.

Compatibility Rule

To maintain the compatibility between DurabilityQosPolicy in DataReaders and DataWriters when they have different
kind values, the DataWriter kind must be higher or equal to the DataReader kind. And the order between the different
kinds is:

VOLATILE_DURABILITY_QOS < TRANSIENT_LOCAL_DURABILITY_QOS < TRANSIENT_DURABILITY_QOS <
PERSISTENT_DURABILITY_QOS

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
VOLATILE_DURABILITY_QOS VOLATILE_DURABILITY_QOS Yes
VOLATILE_DURABILITY_QOS TRANSIENT_LOCAL_DURABILITY_QOS No
VOLATILE_DURABILITY_QOS TRANSIENT_DURABILITY_QOS No
TRANSIENT_LOCAL_DURABILITY_QOS VOLATILE_DURABILITY_QOS Yes
TRANSIENT_LOCAL_DURABILITY_QOS TRANSIENT_LOCAL_DURABILITY_QOS Yes
TRANSIENT_LOCAL_DURABILITY_QOS TRANSIENT_DURABILITY_QOS No
TRANSIENT_DURABILITY_QOS VOLATILE_DURABILITY_QOS Yes
TRANSIENT_DURABILITY_QOS TRANSIENT_LOCAL_DURABILITY_QOS Yes
TRANSIENT_DURABILITY_QOS TRANSIENT_DURABILITY_QOS Yes

92 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

DurabilityQosPolicy durability;
//The DurabilityQosPolicy is default constructed with kind = VOLATILE_DURABILITY_QOS
//Change the kind to TRANSIENT_LOCAL_DURABILITY_QOS
durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS;

XML

<data_writer profile_name="writer_xml_conf_durability_profile">
<qos>

<durability>
<kind>TRANSIENT_LOCAL</kind>

</durability>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_durability_profile">
<qos>

<durability>
<kind>VOLATILE</kind>

</durability>
</qos>

</data_reader>

DurabilityServiceQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy is used to configure the HistoryQosPolicy and ResourceLimitsQosPolicy of the fictitious
DataReader and DataWriter used when the DurabilityQosPolicy kind is set to TRANSIENT_DURABILITY_QOS or
PERSISTENT_DURABILITY_QOS (see DurabilityServiceQosPolicy).

Those entities are used to simulate the persistent storage. The fictitious DataReader reads the data written on the
Topic and stores it, so that if the user DataWriter does not have the information requested by the user DataReaders, the
fictitious DataWriter takes care of sending that information.

List of QoS Policy data members:

Data Member Name Type Default Value
service_cleanup_delay Duration_t c_TimeZero
history_kind HistoryQosPolicyKind KEEP_LAST_HISTORY_QOS
history_depth int32_t 1
max_samples int32_t -1 (Length Unlimited)
max_instances int32_t -1 (Length Unlimited)
max_samples_per_instance int32_t -1 (Length Unlimited)

6.16. DDS Layer 93

Fast DDS Documentation, Release 2.8.2

• service_cleanup_delay: It controls when the service can remove all the information regarding a data in-
stance. That information is kept until all the following conditions are met:

– The instance has been explicitly disposed and its InstanceState becomes
NOT_ALIVE_DISPOSED_INSTANCE_STATE.

– There is not any alive DataWriter writing the instance, which means that all existing writers either unregister
the instance or lose their liveliness.

– A time interval longer than the one established on the service_cleanup_delay has elapsed since the
moment the service detected that the two previous conditions were met.

• history_kind : Controls the kind of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

• history_depth : Controls the depth of the HistoryQosPolicy associated with the Durability Service fictitious
entities.

• max_samples: Controls the maximum number of samples of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities. This value must be higher than the maximum number of samples per
instance.

• max_instances: Controls the maximum number of instances of the ResourceLimitsQosPolicy associated with
the Durability Service fictitious entities.

• max_samples_per_instance: Controls the maximum number of samples within an instance of the Resource-
LimitsQosPolicy associated with the Durability Service fictitious entities. This value must be lower than the
maximum number of samples.

Note: This QoS Policy concerns to Topic and DataWriter entities.

It cannot be changed on enabled entities.

EntityFactoryQosPolicy

This QoS Policy controls the behavior of an Entity when it acts as a factory for other entities. By default, all the entities
are created enabled, but if you change the value of the autoenable_created_entities to false, the new entities
will be created disabled (see EntityFactoryQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value
autoenable_created_entities bool true

Note: This QoS Policy concerns to DomainParticipantFactory (as factory for DomainParticipant), DomainParticipant
(as factory for Publisher, Subscriber and Topic), Publisher (as factory for DataWriter) and Subscriber (as factory for
DataReader).

It can be changed on enabled entities, but it only affects those entities created after the change.

94 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

EntityFactoryQosPolicy entity_factory;
//The EntityFactoryQosPolicy is default constructed with autoenable_created_entities =␣
→˓true
//Change it to false
entity_factory.autoenable_created_entities = false;

XML

This QoS Policy cannot be configured using XML for the moment.

GroupDataQosPolicy

Allows the application to attach additional information to created Publishers or Subscribers. This data is common to
all DataWriters/DataReaders belonging to the Publisher/Subscriber and it is propagated by means of the built-in topics
(see GroupDataQosPolicy).

This QoS Policy can be used in combination with DataWriter and DataReader listeners to implement a matching policy
similar to the PartitionQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
collection std::vector<octet> Empty vector

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It can be changed on enabled entities.

Example

C++

GroupDataQosPolicy group_data;
//The GroupDataQosPolicy is default constructed with an empty collection
//Collection is a private member so you need to use getters and setters to access
//Add data to the collection
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = group_data.data_vec(); // Getter function

//Add two new octets to group data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;

(continues on next page)

6.16. DDS Layer 95

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

vec.push_back(val);
group_data.data_vec(vec); //Setter function

XML

<data_writer profile_name="writer_xml_conf_groupdata_profile">
<qos>

<groupData>
<value>3.a</value>

</groupData>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_groupdata_profile">
<qos>

<groupData>
<value>3.a</value>

</groupData>
</qos>

</data_reader>

HistoryQosPolicy

This QoS Policy controls the behavior of the system when the value of an instance changes one or more times before
it can be successfully communicated to the existing DataReader entities.

List of QoS Policy data members:

Data Member Name Type Default Value
kind HistoryQosPolicyKind KEEP_LAST_HISTORY_QOS
depth int32_t 1

• kind : Controls if the service should deliver only the most recent values, all the intermediate values or do some-
thing in between. See HistoryQosPolicyKind for further details.

• depth : Establishes the maximum number of samples that must be kept on the history. It only has effect if the
kind is set to KEEP_LAST_HISTORY_QOS and it needs to be consistent with the ResourceLimitsQosPolicy, which
means that its value must be lower or equal to max_samples_per_instance.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

96 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

HistoryQosPolicyKind

There are two possible values (see HistoryQosPolicyKind):

• KEEP_LAST_HISTORY_QOS: The service will only attempt to keep the most recent values of the instance and
discard the older ones. The maximum number of samples to keep and deliver is defined by the depth of the
HistoryQosPolicy, which needs to be consistent with the ResourceLimitsQosPolicy settings. If the limit defined
by depth is reached, the system will discard the oldest sample to make room for a new one.

• KEEP_ALL_HISTORY_QOS: The service will attempt to keep all the values of the instance until it can be delivered
to all the existing Subscribers. If this option is selected, the depth will not have any effect, so the history is
only limited by the values set in ResourceLimitsQosPolicy. If the limit is reached, the behavior of the system
depends on the ReliabilityQosPolicy, if its kind is BEST_EFFORT the older values will be discarded, but if it is
RELIABLE the service blocks the DataWriter until the old values are delivered to all existing Subscribers.

Example

C++

HistoryQosPolicy history;
//The HistoryQosPolicy is default constructed with kind = KEEP_LAST and depth = 1.
//Change the depth to 20
history.depth = 20;
//You can also change the kind to KEEP_ALL but after that the depth will not have effect.
history.kind = KEEP_ALL_HISTORY_QOS;

XML

<topic>
<historyQos>

<kind>KEEP_LAST</kind> <!-- string -->
<depth>20</depth> <!-- uint32 -->

</historyQos>
</topic>

LatencyBudgetQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the maximum acceptable delay from the time the data is written until the data is inserted
on the DataReader History and notified of the fact. That delay by default is set to 0 in order to optimize the internal
operations (see LatencyBudgetQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value
duration Duration_t c_TimeZero

6.16. DDS Layer 97

Fast DDS Documentation, Release 2.8.2

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It can be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

Compatibility Rule

To maintain the compatibility between LatencyBudgetQosPolicy in DataReaders and DataWriters, the DataWriter du-
ration must be lower or equal to the DataReader duration.

LifespanQosPolicy

Each data sample written by a DataWriter has an associated expiration time beyond which the data is removed
from the DataWriter and DataReader history as well as from the transient and persistent information caches (see
LifespanQosPolicy).

By default, the duration is infinite, which means that there is not a maximum duration for the validity of the samples
written by the DataWriter.

The expiration time is computed by adding the duration to the source timestamp, which can be calculated automatically
if write() member function is called or supplied by the application by means of write_w_timestamp() member
function. The DataReader is allowed to use the reception timestamp instead of the source timestamp.

List of QoS Policy data members:

Data Member Name Type Default Value
duration Duration_t c_TimeInfinite

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It can be changed on enabled entities.

Example

C++

LifespanQosPolicy lifespan;
//The LifespanQosPolicy is default constructed with duration set to infinite.
//Change the duration to 5 s
lifespan.duration = {5, 0};

98 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

<data_writer profile_name="writer_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>5</sec>
<nanosec>0</nanosec>

</duration>
</lifespan>

</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_lifespan_profile">
<qos>

<lifespan>
<duration>

<sec>5</sec>
<nanosec>0</nanosec>

</duration>
</lifespan>

</qos>
</data_reader>

LivelinessQosPolicy

This QoS Policy controls the mechanism used by the service to ensure that a particular entity on the network is still
alive. There are different settings that allow distinguishing between applications where data is updated periodically
and applications where data is changed sporadically. It also allows customizing the application regarding the kind of
failures that should be detected by the liveliness mechanism (see LivelinessQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value
kind LivelinessQosPolicyKind AUTOMATIC_LIVELINESS_QOS
lease_duration Duration_t c_TimeInfinite
announcement_period Duration_t c_TimeInfinite

• kind : This data member establishes if the service needs to assert the liveliness automatically or if it needs to
wait until the liveliness is asserted by the publishing side. See LivelinessQosPolicyKind for further details.

• lease_duration: Amount of time to wait since the last time the DataWriter asserts its liveliness to consider
that it is no longer alive.

• announcement_period : Amount of time between consecutive liveliness messages sent by the
DataWriter. This data member only takes effect if the kind is AUTOMATIC_LIVELINESS_QOS or
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS and needs to be lower than the lease_duration.

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

6.16. DDS Layer 99

Fast DDS Documentation, Release 2.8.2

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

LivelinessQosPolicyKind

There are three possible values (see LivelinessQosPolicyKind):

• AUTOMATIC_LIVELINESS_QOS: The service takes the responsibility for renewing the leases at the required rates,
as long as the local process where the participant is running and the link connecting it to remote participants exists,
the entities within the remote participant will be considered alive. This kind is suitable for applications that only
need to detect whether a remote application is still running.

• The two Manual modes require that the application on the publishing side asserts the liveliness periodically before
the lease_duration timer expires. Publishing any new data value implicitly asserts the DataWriter’s liveliness,
but it can be done explicitly by calling the assert_liveliness member function.

– MANUAL_BY_PARTICIPANT_LIVELINESS_QOS: If one of the entities in the publishing side asserts its live-
liness, the service deduces that all other entities within the same DomainParticipant are also alive.

– MANUAL_BY_TOPIC_LIVELINESS_QOS: This mode is more restrictive and requires that at least one instance
within the DataWriter is asserted to consider that the DataWriter is alive.

Compatibility Rule

To maintain the compatibility between LivelinessQosPolicy in DataReaders and DataWriters, the DataWriter kind must
be higher or equal to the DataReader kind. And the order between the different kinds is:

|AUTOMATIC_LIVELINESS_QOS-api| < |MANUAL_BY_PARTICIPANT_LIVELINESS_QOS-api| < |MANUAL_BY_
→˓TOPIC_LIVELINESS_QOS-api|

Table with the possible combinations:

DataWriter kind DataReader kind Compatibil-
ity

AUTOMATIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
AUTOMATIC_LIVELINESS_QOS MANUAL_BY_PARTICIPANT_LIVELINESS_QOS No
AUTOMATIC_LIVELINESS_QOS MANUAL_BY_TOPIC_LIVELINESS_QOS No
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS MANUAL_BY_PARTICIPANT_LIVELINESS_QOS Yes
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS MANUAL_BY_TOPIC_LIVELINESS_QOS No
MANUAL_BY_TOPIC_LIVELINESS_QOS AUTOMATIC_LIVELINESS_QOS Yes
MANUAL_BY_TOPIC_LIVELINESS_QOS MANUAL_BY_PARTICIPANT_LIVELINESS_QOS Yes
MANUAL_BY_TOPIC_LIVELINESS_QOS MANUAL_BY_TOPIC_LIVELINESS_QOS Yes

Additionally, the lease_duration of the DataWriter must not be greater than the lease_duration of the
DataReader.

100 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

LivelinessQosPolicy liveliness;
//The LivelinessQosPolicy is default constructed with kind = AUTOMATIC
//Change the kind to MANUAL_BY_PARTICIPANT
liveliness.kind = MANUAL_BY_PARTICIPANT_LIVELINESS_QOS;
//The LivelinessQosPolicy is default constructed with lease_duration set to infinite
//Change the lease_duration to 1 second
liveliness.lease_duration = {1, 0};
//The LivelinessQosPolicy is default constructed with announcement_period set to infinite
//Change the announcement_period to 1 ms
liveliness.announcement_period = {0, 1000000};

XML

<data_writer profile_name="writer_xml_conf_liveliness_profile">
<qos>
<liveliness>
<announcement_period>
<sec>0</sec>
<nanosec>1000000</nanosec>

</announcement_period>
<lease_duration>
<sec>1</sec>

</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_liveliness_profile">
<qos>

<liveliness>
<lease_duration>

<sec>1</sec>
</lease_duration>
<kind>AUTOMATIC</kind>

</liveliness>
</qos>

</data_reader>

6.16. DDS Layer 101

Fast DDS Documentation, Release 2.8.2

OwnershipQosPolicy

This QoS Policy specifies whether it is allowed for multiple DataWriters to update the same instance of data, and if so,
how these modifications should be arbitrated (see OwnershipQosPolicy).

List of QoS Policy data members:

Data Member Name Type Default Value
kind OwnershipQosPolicyKind SHARED_OWNERSHIP_QOS

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

OwnershipQosPolicyKind

There are two possible values (see OwnershipQosPolicyKind):

• SHARED_OWNERSHIP_QOS: This option indicates that the service does not enforce unique ownership for each
instance. In this case, multiple DataWriters are allowed to update the same data instance and all the updates are
made available to the existing DataReaders. Those updates are also subject to the TimeBasedFilterQosPolicy or
HistoryQosPolicy settings, so they can be filtered.

• EXCLUSIVE_OWNERSHIP_QOS: This option indicates that each instance can only be updated by one DataWriter,
meaning that at any point in time a single DataWriter owns each instance and is the only one whose modifi-
cations will be visible for the existing DataReaders. The owner can be changed dynamically according to the
highest strength between the alive DataWriters, which has not violated the deadline contract concerning the data
instances. That strength can be changed using the OwnershipStrengthQosPolicy. In case two DataWriters have
the same strength value, the DataWriter with a lower GUID value would be the owner of the topic.

Compatibility Rule

To maintain the compatibility between OwnershipQosPolicy in DataReaders and DataWriters, the DataWriter kind
must be equal to the DataReader kind.

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
SHARED_OWNERSHIP_QOS SHARED_OWNERSHIP_QOS Yes
SHARED_OWNERSHIP_QOS EXCLUSIVE_OWNERSHIP_QOS No
EXCLUSIVE_OWNERSHIP_QOS SHARED_OWNERSHIP_QOS No
EXCLUSIVE_OWNERSHIP_QOS EXCLUSIVE_OWNERSHIP_QOS Yes

102 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

OwnershipQosPolicy ownership;
//The OwnershipQosPolicy is default constructed with kind = SHARED.
//Change the kind to EXCLUSIVE
ownership.kind = EXCLUSIVE_OWNERSHIP_QOS;

XML

<data_writer profile_name="writer_xml_conf_ownership_profile">
<qos>
<ownership>

<kind>EXCLUSIVE</kind>
</ownership>

</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_ownership_profile">
<qos>

<ownership>
<kind>EXCLUSIVE</kind>

</ownership>
</qos>

</data_reader>

OwnershipStrengthQosPolicy

This QoS Policy specifies the value of the strength used to arbitrate among multiple DataWriters that attempt to modify
the same data instance. It is only applicable if the OwnershipQosPolicy kind is set to EXCLUSIVE_OWNERSHIP_QOS.
See OwnershipStrengthQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
value uint32_t 0

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

6.16. DDS Layer 103

Fast DDS Documentation, Release 2.8.2

Example

C++

OwnershipStrengthQosPolicy ownership_strength;
//The OwnershipStrengthQosPolicy is default constructed with value 0
//Change the strength to 10
ownership_strength.value = 10;

XML

<data_writer profile_name="writer_xml_conf_ownership_strength_profile">
<qos>

<ownershipStrength>
<value>10</value>

</ownershipStrength>
</qos>

</data_writer>

PartitionQosPolicy

This Qos Policy allows the introduction of a logical partition inside the physical partition introduced by a domain. For
a DataReader to see the changes made by a DataWriter, not only the Topic must match, but also they have to share at
least one logical partition (see PartitionQosPolicy).

The empty string is also considered as a valid partition and it matches with other partition names using the same rules
of string matching and regular-expression matching used for any other partition name.

List of QoS Policy data members:

Data Member Name Type Default Value
max_size uint32_t 0 (Length Unlimited)
names SerializedPayload_t Empty List

• max_size: Maximum size for the list of partition names.

• names: List of partition names.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

Partitions can also be explicitly defined at the endpoint level to override this configuration. Information to do so can
be found here.

It can be changed on enabled Publishers and Subscribers.

104 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

PartitionQosPolicy partitions;
//The PartitionsQosPolicy is default constructed with max_size = 0.
//Max_size is a private member so you need to use getters and setters to access
//Change the max_size to 20
partitions.set_max_size(20); //Setter function
//The PartitionsQosPolicy is default constructed with an empty list of partitions
//Partitions is a private member so you need to use getters and setters to access
//Add new partitions
std::vector<std::string> part = partitions.names(); //Getter function
part.push_back("part1");
part.push_back("part2");
partitions.names(part); //Setter function

XML

<data_writer profile_name="pub_partition_example">
<qos>

<partition>
<names>

<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>
</data_writer>

<data_reader profile_name="sub_partition_example">
<qos>

<partition>
<names>

<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>
</data_reader>

6.16. DDS Layer 105

Fast DDS Documentation, Release 2.8.2

PresentationQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies how the samples representing changes to data instances are presented to the subscribing
application. It controls the extent to which changes to data instances can be made dependent on each other, as well as
the kind of dependencies that can be propagated and maintained. See PresentationQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
access_scope PresentationQosPolicyAccessScopeKind INSTANCE_PRESENTATION_QOS
coherent_access bool false
ordered_access bool false

• access_scope: Determines the largest scope spanning the entities for which the order and coherency can be
preserved. See PresentationQosPolicyAccessScopeKind for further details.

• coherent_access: Controls whether the service will preserve grouping of changes made on the publishing
side, such that they are received as a unit on the subscribing side.

• ordered_access: Controls whether the service supports the ability of the subscriber to see changes in the same
order as they occurred on the publishing side.

Note: This QoS Policy concerns to Publisher and Subscriber entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

PresentationQosPolicyAccessScopeKind

There are three possible values, which have different behaviors depending on the values of coherent_access and or-
dered_access variables (see PresentationQosPolicyAccessScopeKind):

• INSTANCE_PRESENTATION_QOS: The changes to a data instance do not need to be coherent nor ordered with
respect to the changes to any other instance, which means that the order and coherent changes apply to each
instance separately.

– Enabling the coherent_access, in this case, has no effect on how the subscriber can access the data as the
scope is limited to each instance, changes to separate instances are considered independent and thus cannot
be grouped by a coherent change.

– Enabling the ordered_access, in this case, only affects to the changes within the same instance. There-
fore, the changes made to two instances are not necessarily seen in the order they occur even if the same
application thread and DataWriter made them.

• TOPIC_PRESENTATION_QOS: The scope spans to all the instances within the same DataWriter.

– Enabling the coherent_access makes that the grouping made with changes within the same DataWriter
will be available as coherent with respect to other changes to instances in that DataWriter, but will not be
grouped with changes made to instances belonging to different DataWriters.

106 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

– Enabling the ordered_access means that the changes made by a single DataWriter are made available to
the subscribers in the same order that they occur, but the changes made to instances through different
DataWriters are not necessarily seen in order.

• GROUP_PRESENTATION_QOS: The scope spans to all the instances belonging to DataWriters within the same
Publisher.

– Enabling the coherent_access, means that the coherent changes made to instances through DataWriters
attached to a common Publisher are made available as a unit to remote subscribers.

– Enabling the ordered_access with this scope makes that the changes done by any of the DataWriters attached
to the same Publisher are made available to the subscribers in the same order they occur.

Compatibility Rule

To maintain the compatibility between PresentationQosPolicy in DataReaders and DataWriters, the Publisher
access_scope must be higher or equal to the Subscriber access_scope. And the order between the different access
scopes is:

|INSTANCE_PRESENTATION_QOS-api| < |TOPIC_PRESENTATION_QOS-api| < |GROUP_PRESENTATION_QOS-
→˓api|

Table with the possible combinations:

Publisher scope Subscriber scope Compatibility
INSTANCE_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS Yes
INSTANCE_PRESENTATION_QOS TOPIC_PRESENTATION_QOS No
INSTANCE_PRESENTATION_QOS GROUP_PRESENTATION_QOS No
TOPIC_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS Yes
TOPIC_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
TOPIC_PRESENTATION_QOS GROUP_PRESENTATION_QOS No
GROUP_PRESENTATION_QOS INSTANCE_PRESENTATION_QOS Yes
GROUP_PRESENTATION_QOS TOPIC_PRESENTATION_QOS Yes
GROUP_PRESENTATION_QOS GROUP_PRESENTATION_QOS Yes

Additionally, the coherent_access and ordered_access of the Subscriber can only be enabled if they are also enabled on
the Publisher.

ReaderDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataReader with respect to the lifecycle of the data instances it manages,
that is, the instances that have been received and for which the DataReader maintains some internal resources. The
DataReader maintains the samples that have not been taken by the application, subject to the constraints imposed by
HistoryQosPolicy and ResourceLimitsQosPolicy. See ReaderDataLifecycleQosPolicy.

Under normal circumstances, the DataReader can only reclaim the resources associated with data instances if there
are no writers and all the samples have been taken. But this fact can cause problems if the application does not take
those samples as the service will prevent the DataReader from reclaiming the resources and they will remain in the
DataReader indefinitely. This QoS exist to avoid that situation.

6.16. DDS Layer 107

Fast DDS Documentation, Release 2.8.2

List of QoS Policy data members:

Data Member Name Type Default Value
autopurge_no_writer_samples_delay Duration_t c_TimeInfinite
autopurge_disposed_samples_delay Duration_t c_TimeInfinite

• autopurge_no_writer_samples_delay: Defines the maximum duration the DataReader
must retain the information regarding an instance once its instance_state becomes
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE. After this time elapses, the DataReader purges all the in-
ternal information of the instance, including the untaken samples that will be lost.

• autopurge_disposed_samples_delay: Defines the maximum duration the DataReader must retain the infor-
mation regarding an instance once its instance_state becomes NOT_ALIVE_DISPOSED_INSTANCE_STATE.
After this time elapses, the DataReader purges all the samples for the instance.

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

ReliabilityQosPolicy

This QoS Policy indicates the level of reliability offered and requested by the service. See ReliabilityQosPolicy.

List of QoS Policy data members:

Data Member
Name

Type Default Value

kind ReliabilityQosPol-
icyKind

BEST_EFFORT_RELIABILITY_QOS for DataReaders
RELIABLE_RELIABILITY_QOS for DataWriters

max_blocking_timeDuration_t 100 ms

• kind : Specifies the behavior of the service regarding delivery of the samples. See ReliabilityQosPolicyKind for
further details.

• max_blocking_time: Configures the maximum duration that the write operation can be blocked.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Important: Setting this QoS Policy to BEST_EFFORT_RELIABILITY_QOS affects to the DurabilityQosPolicy, making
the endpoints behave as VOLATILE_DURABILITY_QOS.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

108 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReliabilityQosPolicyKind

There are two possible values ():

• BEST_EFFORT_RELIABILITY_QOS: It indicates that it is acceptable not to retransmit the missing samples, so
the messages are sent without waiting for an arrival confirmation. Presumably new values for the samples are
generated often enough that it is not necessary to re-send any sample. However, the data samples sent by the
same DataWriter will be stored in the DataReader history in the same order they occur. In other words, even if
the DataReader misses some data samples, an older value will never overwrite a newer value.

• RELIABLE_RELIABILITY_QOS: It indicates that the service will attempt to deliver all samples of the
DataWriter’s history expecting an arrival confirmation from the DataReader. The data samples sent by the same
DataWriter cannot be made available to the DataReader if there are previous samples that have not been received
yet. The service will retransmit the lost data samples in order to reconstruct a correct snapshot of the DataWriter
history before it is accessible by the DataReader.

This option may block the write operation, hence the max_blocking_time is set that will unblock it once the
time expires. But if the max_blocking_time expires before the data is sent, the write operation will return an
error.

Compatibility Rule

To maintain the compatibility between ReliabilityQosPolicy in DataReaders and DataWriters, the DataWriter kind must
be higher or equal to the DataReader kind. And the order between the different kinds is:

|BEST_EFFORT_RELIABILITY_QOS-api| < |RELIABLE_RELIABILITY_QOS-api|

Table with the possible combinations:

DataWriter kind DataReader kind Compatibility
BEST_EFFORT_RELIABILITY_QOS BEST_EFFORT_RELIABILITY_QOS Yes
BEST_EFFORT_RELIABILITY_QOS RELIABLE_RELIABILITY_QOS No
RELIABLE_RELIABILITY_QOS BEST_EFFORT_RELIABILITY_QOS Yes
RELIABLE_RELIABILITY_QOS RELIABLE_RELIABILITY_QOS Yes

Example

C++

ReliabilityQosPolicy reliability;
//The ReliabilityQosPolicy is default constructed with kind = BEST_EFFORT
//Change the kind to RELIABLE
reliability.kind = RELIABLE_RELIABILITY_QOS;
//The ReliabilityQosPolicy is default constructed with max_blocking_time = 100ms
//Change the max_blocking_time to 1s
reliability.max_blocking_time = {1, 0};

6.16. DDS Layer 109

Fast DDS Documentation, Release 2.8.2

XML

<data_writer profile_name="writer_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>RELIABLE</kind>
<max_blocking_time>

<sec>1</sec>
<nanosec>0</nanosec>

</max_blocking_time>
</reliability>

</qos>
</data_writer>

<data_reader profile_name="reader_xml_conf_reliability_profile">
<qos>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>
</qos>

</data_reader>

ResourceLimitsQosPolicy

This QoS Policy controls the resources that the service can use in order to meet the requirements imposed by the
application and other QoS Policies. See ResourceLimitsQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
max_samples int32_t 5000
max_instances int32_t 10
max_samples_per_instance int32_t 400
allocated_samples int32_t 100
extra_samples int32_t 1

• max_samples: Controls the maximum number of samples that the DataWriter or DataReader can manage across
all the instances associated with it. In other words, it represents the maximum samples that the middleware can
store for a DataReader or DataWriter.

• max_instances: Controls the maximum number of instances that a DataWriter or DataReader can manage.

• max_samples_per_instance: Controls the maximum number of samples within an instance that the
DataWriter or DataReader can manage.

• allocated_samples: States the number of samples that will be allocated on initialization.

• extra_samples: States the number of extra samples that will be allocated on the pool, so the maximum number
of samples on the pool will be max_samples plus extra_samples. These extra samples act as a reservoir of
samples even when the history is full.

Note: This QoS Policy concerns to Topic, DataWriter and DataReader entities.

110 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

It cannot be changed on enabled entities.

Consistency Rule

To maintain the consistency within the ResourceLimitsQosPolicy, the values of the data members must follow the next
conditions:

• The value of max_samples must be higher or equal to the value of max_samples_per_instance.

• The value established for the HistoryQosPolicy depth must be lower or equal to the value stated for
max_samples_per_instance.

Example

C++

ResourceLimitsQosPolicy resource_limits;
//The ResourceLimitsQosPolicy is default constructed with max_samples = 5000
//Change max_samples to 200
resource_limits.max_samples = 200;
//The ResourceLimitsQosPolicy is default constructed with max_instances = 10
//Change max_instances to 20
resource_limits.max_instances = 20;
//The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance = 400
//Change max_samples_per_instance to 100 as it must be lower than max_samples
resource_limits.max_samples_per_instance = 100;
//The ResourceLimitsQosPolicy is default constructed with allocated_samples = 100
//Change allocated_samples to 50
resource_limits.allocated_samples = 50;

XML

<data_writer profile_name="writer_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_instance>100</max_samples_per_instance>
<allocated_samples>50</allocated_samples>

</resourceLimitsQos>
</topic>

</data_writer>

<data_reader profile_name="reader_xml_conf_resource_limits_profile">
<topic>

<resourceLimitsQos>
<max_samples>200</max_samples>
<max_instances>20</max_instances>
<max_samples_per_instance>100</max_samples_per_instance>

(continues on next page)

6.16. DDS Layer 111

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<allocated_samples>50</allocated_samples>
</resourceLimitsQos>

</topic>
</data_reader>

TimeBasedFilterQosPolicy

Warning: This QoS Policy will be implemented in future releases.

Filter that allows a DataReader to specify that it is interested only in a subset of the values of the data. This filter states
that the DataReader does not want to receive more than one value each minimum_separation, regardless of how fast
the changes occur. See TimeBasedFilterQosPolicy.

The minimum_separation must be lower than the DeadlineQosPolicy period . By default, the
minimum_separation is zero, which means that the DataReader is potentially interested in all the values.

List of QoS Policy data members:

Data Member Name Type Default Value
minimum_separation Duration_t c_TimeZero

Note: This QoS Policy concerns to DataReader entities.

It can be changed on enabled entities.

TopicDataQosPolicy

Allows the application to attach additional information to a created Topic so that when it is discovered by a remote
application, it can access the data and use it. See TopicDataQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
collection std::vector<octet> Empty vector

Note: This QoS Policy concerns to Topic entities.

It can be changed even if it is already created.

112 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
TopicDataQosPolicy topic_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = topic_data.data_vec(); // Getter Function

//Add two new octets to topic data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;
vec.push_back(val);
topic_data.data_vec(vec); //Setter Function

XML

<data_writer profile_name="writer_xml_conf_topicdata_profile">
<qos>

<topicData>
<value>3.a</value>

</topicData>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_topicdata_profile">
<qos>

<topicData>
<value>3.a</value>

</topicData>
</qos>

</data_reader>

TransportPriorityQosPolicy

Warning: This QoS Policy will be implemented in future releases.

The purpose of this QoS Policy is to allow the service to take advantage of those transports capable of sending
messages with different priorities. It establishes the priority of the underlying transport used to send the data. See
TransportPriorityQosPolicy

You can choose any value within the 32-bit range for the priority. The higher the value, the higher the priority.

List of QoS Policy data members:

Data Member Name Type Default Value
value uint32_t 0

Note: This QoS Policy concerns to Topic and DataWriter entities.

6.16. DDS Layer 113

Fast DDS Documentation, Release 2.8.2

It can be changed on enabled entities.

UserDataQosPolicy

Allows the application to attach additional information to the Entity object so that when the entity is discovered the
remote application can access the data and use it. For example, it can be used to attach the security credentials to
authenticate the source from the remote application. See UserDataQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
collection std::vector<octet> Empty vector

Note: This QoS Policy concerns to all DDS entities.

It can be changed on enabled entities.

Example

C++

//The TopicDataQosPolicy is default constructed with an empty vector.
UserDataQosPolicy user_data;
std::vector<eprosima::fastrtps::rtps::octet> vec;
vec = user_data.data_vec(); // Getter Function

//Add two new octets to user data vector
eprosima::fastrtps::rtps::octet val = 3;
vec.push_back(val);
val = 10;
vec.push_back(val);
user_data.data_vec(vec); //Setter Function

XML

<participant profile_name="participant_xml_conf_userdata_profile">
<rtps>

<userData>
<value>3.a</value>

</userData>
</rtps>

</participant>

<data_writer profile_name="writer_xml_conf_userdata_profile">
<qos>

<userData>
<value>3.a</value>

</userData>
</qos>

(continues on next page)

114 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</data_writer>

<data_reader profile_name="reader_xml_conf_userdata_profile">
<qos>

<userData>
<value>3.a</value>

</userData>
</qos>

</data_reader>

WriterDataLifecycleQosPolicy

Warning: This QoS Policy will be implemented in future releases.

This QoS Policy specifies the behavior of the DataWriter with respect to the lifecycle of the data instances it manages
, that is, the instance that has been either explicitly registered with the DataWriter using the register operations or
implicitly by directly writing data.

The autodispose_unregistered_instances controls whether a DataWriter will automatically dispose an instance
each time it is unregistered. Even if it is disabled, the application can still get the same result if it uses the dispose
operation before unregistering the instance.

List of QoS Policy data members:

Data Member Name Type Default Value
autodispose_unregistered_instances bool true

Note: This QoS Policy concerns to DataWriter entities.

It can be changed on enabled entities.

eProsima Extensions

The eProsima QoS Policies extensions are those that allow changing the values of the RTPS layer configurable settings.

• DataSharingQosPolicy

• DisablePositiveACKsQosPolicy

• FlowControllersQos

• ParticipantResourceLimitsQos

• PropertyPolicyQos

• PublishModeQosPolicy

• ReaderResourceLimitsQos

• RTPSEndpointQos

6.16. DDS Layer 115

Fast DDS Documentation, Release 2.8.2

• RTPSReliableReaderQos

• RTPSReliableWriterQos

• TransportConfigQos

• TypeConsistencyQos

• WireProtocolConfigQos

• WriterResourceLimitsQos

DataSharingQosPolicy

This additional QoS allows configuring the data-sharing delivery communication between a writer and a reader. Please,
see Data-sharing delivery for a description of the data-sharing delivery functionality.

List of QoS Policy data members:

Data Member Type Accessor Default Value
Data-sharing kind DataSharingKind kind() AUTO
Shared memory directory string shm_directory() Empty string
Maximum domain number uint32_t max_domains() 0 (unlimited)
Data-sharing domain IDs vector<uint64_t> domain_ids() Empty

• Data-sharing kind: Specifies the behavior of data-sharing delivery. See DataSharingKind for a description of
possible values and their effect.

• Shared memory directory: The directory that will be used for the memory-mapped files. If none is configured,
then the system default directory will be used.

• Maximum domain number: Establishes the maximum number of data-sharing domain IDs in the local or remote
endpoints. Domain IDs are exchanged between data-sharing delivery compatible endpoints. If this value is lower
that the size of the list for any remote endpoint, the matching may fail. A value of zero represents unlimited
number of IDs.

• Data sharing domain IDs: The list of data-sharing domain IDs configured for the current DataWriter or
DataReader. If no ID is provided, the system will create a unique one for the current machine.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

DataSharingKind

There are three possible values (see DataSharingKind):

• OFF: The data-sharing delivery is disabled. No communication will be performed using data-sharing delivery
functionality.

• ON: The data-sharing delivery is manually enabled. An error will occur if the current topic is not compatible
with data-sharing delivery. Communication with remote entities that share at least one data-sharing domain ID
will be done using data-sharing delivery functionality.

• AUTO: data-sharing delivery will be activated if the current topic is compatible with data-sharing, and deactivated
if not.

116 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Data-sharing configuration helper functions

In order to set the data-sharing delivery configuration, one of the following helper member functions must be used.
There is one for each DataSharingKind flavor:

Function Resulting DataSharingKind Shared memory directory Data sharing domain IDs
automatic() AUTO Optional Optional
on() ON Mandatory Optional
off() OFF N/A N/A

Instead of defining the data-sharing domain IDs on these helper functions, you can add them later with the
add_domain_id() function. Beware that adding a new domain ID counts as modifying the QosPolicy, so it must
be done before the entity is enabled.

Example

C++

DataSharingQosPolicy datasharing;

// Configure the DataSharing as AUTO with two user-defined IDs
std::vector<uint16_t> ids;
ids.push_back(0x1234);
ids.push_back(0xABCD);
datasharing.automatic(ids);

// Alternatively, configure with no IDs and add them afterwards
datasharing.automatic();
datasharing.add_domain_id(uint16_t(0x1234));
datasharing.add_domain_id(uint16_t(0xABCD));

// Or you can leave the IDs empty and the system will create one for you
// unique for the current machine
datasharing.automatic();

XML

<data_writer profile_name="writer_profile_qos_datasharing">
<qos>

<data_sharing>
<kind>AUTOMATIC</kind>
<domain_ids>

<domainId>0x1234</domainId>
<domainId>0xABCD</domainId>

</domain_ids>
</data_sharing>

</qos>
</data_writer>

(continues on next page)

6.16. DDS Layer 117

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<data_reader profile_name="reader_profile_qos_datasharing">
<qos>

<data_sharing>
<kind>AUTOMATIC</kind>
<domain_ids>

<domainId>0x1234</domainId>
<domainId>0xABCD</domainId>

</domain_ids>
</data_sharing>

</qos>
</data_reader>

DisablePositiveACKsQosPolicy

This additional QoS allows reducing network traffic when strict reliable communication is not required and bandwidth
is limited. It consists in changing the default behavior by which positive acks are sent from readers to writers. Instead,
only negative acks will be sent when a reader is missing a sample, but writers will keep data for a sufficient time before
considering it as acknowledged. See DisablePositiveACKsQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
enabled bool false
duration Duration_t c_TimeInfinite

• enabled : Specifies if the QoS is enabled or not. If it is true means that the positive acks are disabled and the
DataReader only sends negative acks. Otherwise, both positive and negative acks are sent.

• duration: State the duration that the DataWriters keep the data before considering it as acknowledged. This
value does not apply to DataReaders.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

Warning: For DataWriters and DataReaders to match, they must follow the compatibility rule. See Compatibility
Rule for further details.

Compatibility Rule

To maintain the compatibility between DisablePositiveACKsQosPolicy in DataReaders and DataWriters, the
DataReader cannot have this QoS enabled if the DataWriter have it disabled.

Table with the possible combinations:

118 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DataWriter enabled value DataReader enabled value Compatibility
true true Yes
true false Yes
false true No
false false Yes

Example

C++

DisablePositiveACKsQosPolicy disable_acks;
//The DisablePositiveACKsQosPolicy is default constructed with enabled = false
//Change enabled to true
disable_acks.enabled = true;
//The DisablePositiveACKsQosPolicy is default constructed with infinite duration
//Change the duration to 1 second
disable_acks.duration = {1, 0};

XML

<data_writer profile_name="writer_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>
<duration>

<sec>1</sec>
</duration>

</disablePositiveAcks>
</qos>

</data_writer>

<data_reader profile_name="reader_xml_conf_disable_positive_acks_profile">
<qos>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>
</qos>

</data_reader>

6.16. DDS Layer 119

Fast DDS Documentation, Release 2.8.2

FlowControllersQos

This QoS configures the list of flow controllers of a participant, so they can later be used on its DataWriters. It is a
vector of shared pointers to FlowControllerDescriptor, which has the following fields:

Data Member Name Type Default Value
name const char *
scheduler FlowControllerSchedulerPolicy FIFO
max_bytes_per_period int32_t 0 (i.e. infinite)
period_ms uint64_t 100

Please refer to Flow Controllers section for more information.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

ParticipantResourceLimitsQos

This QoS configures allocation limits and the use of physical memory for internal resources. See
ParticipantResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type
locators RemoteLocatorsAllocationAttributes
participants ResourceLimitedContainerConfig
readers ResourceLimitedContainerConfig
writers ResourceLimitedContainerConfig
send_buffers SendBuffersAllocationAttributes
data_limits VariableLengthDataLimits
content_filter ContentFilterProperty::AllocationConfiguration

• locators: Defines the limits for collections of remote locators.

• participants: Specifies the allocation behavior and limits for collections dependent on the total number of
participants.

• readers: Specifies the allocation behavior and limits for collections dependent on the total number of readers
per participant.

• writers: Specifies the allocation behavior and limits for collections dependent on the total number of writers
per participant.

• send_buffers: Defines the allocation behavior and limits for the send buffer manager.

• data_limits: States the limits for variable-length data.

• content_filter: States the limits for content-filter discovery information.

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

120 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

RemoteLocatorsAllocationAttributes

This structure holds the limits for the remote locators’ collections. See RemoteLocatorsAllocationAttributes.

List of structure members:

Member Name Type Default Value
max_unicast_locators size_t 4
max_multicast_locators size_t 1

• max_unicast_locators: This member controls the maximum number of unicast locators to keep for each
discovered remote entity. It is recommended to use the highest number of local addresses found on all the
systems belonging to the same domain.

• max_multicast_locators: This member controls the maximum number of multicast locators to keep for each
discovered remote entity. The default value is usually enough, as it does not make sense to add more than one
multicast locator per entity.

ResourceLimitedContainerConfig

This structure holds the limits of a resource limited collection, as well as the allocation configuration, which can be
fixed size or dynamic size.

List of structure members:

Member Name Type Default Value
initial size_t 0
maximum size_t std::numeric_limits<size_t>::max()
increment size_t 1 (dynamic size), 0 (fixed size)

• initial: Indicates the number of elements to preallocate in the collection.

• maximum: Specifies the maximum number of elements allowed in the collection.

• increment: States the number of items to add when the reserved capacity limit is reached. This member has a
different default value depending on the allocation configuration chosen.

SendBuffersAllocationAttributes

This structure holds the limits for the allocations of the send buffers. See SendBuffersAllocationAttributes.

List of structure members:

Member Name Type Default Value
preallocated_number size_t 0
dynamic bool false

• preallocated_number: This member controls the initial number of send buffers to be allocated. The default
value will perform an initial guess of the number of buffers required, based on the number of threads from which
a send operation could be started.

• dynamic: This member controls how the buffer manager behaves when a send buffer is not available. When
true, a new buffer will be created. Otherwise, it will wait for a buffer to be returned.

6.16. DDS Layer 121

Fast DDS Documentation, Release 2.8.2

VariableLengthDataLimits

This structure holds the limits for variable-length data. See VariableLengthDataLimits.

List of structure members:

Member Name Type Default Value
max_properties size_t 0
max_user_data size_t 0
max_partitions size_t 0

• max_properties: Defines the maximum size, in octets, of the properties data in the local or remote participant.

• max_user_data: Establishes the maximum size, in octets, of the user data in the local or remote participant.

• max_partitions: States the maximum size, in octets, of the partitions data in the local or remote participant.

ContentFilterProperty::AllocationConfiguration

This structure holds the limits for content-filter related discovery information. See
ContentFilterProperty::AllocationConfiguration.

List of structure members:

Member Name Type Default Value
expression_initial_size size_t 0
expression_parameters ResourceLimitedContainerConfig {0, 100, 1}

• expression_initial_size: Preallocated size of the filter expression.

• expression_parameters: Allocation configuration for the list of expression parameters.

Example

C++

ParticipantResourceLimitsQos participant_limits;
//Set the maximum size of participant resource limits collection to 3 and it allocation␣
→˓configuration to fixed size
participant_limits.participants =␣
→˓eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(

3u);
//Set the maximum size of reader's resource limits collection to 2 and its allocation␣
→˓configuration to fixed size
participant_limits.readers = eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_
→˓size_configuration(2u);
//Set the maximum size of writer's resource limits collection to 1 and its allocation␣
→˓configuration to fixed size
participant_limits.writers = eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_
→˓size_configuration(1u);
//Set the maximum size of the partition data to 256
participant_limits.data_limits.max_partitions = 256u;

(continues on next page)

122 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

//Set the maximum size of the user data to 256
participant_limits.data_limits.max_user_data = 256u;
//Set the maximum size of the properties data to 512
participant_limits.data_limits.max_properties = 512u;
//Set the preallocated filter expression size to 512
participant_limits.content_filter.expression_initial_size = 512u;
//Set the maximum number of expression parameters to 4 and its allocation configuration␣
→˓to fixed size
participant_limits.content_filter.expression_parameters =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(4u);

XML

<!--
<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-->

<participant profile_name="participant_alloc_qos_example">
<rtps>

<allocation>
<!-- We know we have 3 participants on the domain -->
<total_participants>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_readers>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</total_readers>
<!-- We know we have at most 1 writer on each participant -->
<total_writers>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

<!-- content_filter cannot be configured using XML (yet) -->
</allocation>

</rtps>
</participant>

6.16. DDS Layer 123

Fast DDS Documentation, Release 2.8.2

PropertyPolicyQos

This additional QoS Policy (PropertyPolicyQos) stores name/value pairs that can be used to configure certain DDS
settings that cannot be configured directly using an standard QoS Policy. For the complete list of settings that can be
configured with this QoS Policy, please refer to PropertyPolicyQos Options.

This QoS also allows to add custom user properties that could be sent to the external entities. This could be done by
setting as true the propagate value of the Property.

Example

C++

PropertyPolicyQos property_policy;
//Add new property for the Auth:PKI-DH plugin
property_policy.properties().emplace_back("dds.sec.auth.plugin", "builtin.PKI-DH");
//Add new property for the Access:Permissions plugin
property_policy.properties().emplace_back(eprosima::fastrtps::rtps::Property("dds.sec.
→˓access.plugin",

"builtin.Access-Permissions"));

//Add new user custom property to send to external Participants
property_policy.properties().emplace_back("Custom Property Name", "Custom value", true);

XML

<participant profile_name="secure_participant_conf_all_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>

<!-- Activate Access:Permissions plugin -->
<property>

<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>

<!-- User Custom Property to send externally -->
<property>

<name>Custom Property Name</name>
<value>Custom value</value>
<propagate>true</propagate>

</property>
</properties>

</propertiesPolicy>
(continues on next page)

124 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</rtps>
</participant>

PublishModeQosPolicy

This QoS Policy configures how the DataWriter sends the data. See PublishModeQosPolicy.

It also configures the name of the flow controller to use when asynchronous publishing is used. It should be the name
of a flow controller registered on the creation of the DomainParticipant. See FlowControllersQos.

List of QoS Policy data members:

Data Member Name Type Default Value
kind PublishModeQosPolicyKind SYNCHRONOUS_PUBLISH_MODE
flow_controller_name const char * FASTDDS_FLOW_CONTROLLER_DEFAULT

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

PublishModeQosPolicyKind

There are two possible values (see PublishModeQosPolicyKind):

• SYNCHRONOUS_PUBLISH_MODE: The data is sent in the context of the user thread that calls the write operation.

• ASYNCHRONOUS_PUBLISH_MODE: An internal thread takes the responsibility of sending the data asynchronously.
The write operation returns before the data is actually sent.

Example

C++

PublishModeQosPolicy publish_mode;
//The PublishModeQosPolicy is default constructed with kind = SYNCHRONOUS
//Change the kind to ASYNCHRONOUS
publish_mode.kind = ASYNCHRONOUS_PUBLISH_MODE;

6.16. DDS Layer 125

Fast DDS Documentation, Release 2.8.2

XML

<data_writer profile_name="writer_profile_qos_publishmode">
<qos>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>
</qos>

</data_writer>

ReaderResourceLimitsQos

This QoS Policy states the limits for the matched DataWriters’ resource limited collections based on the maximum
number of DataWriters that are going to match with the DataReader. See ReaderResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type
matched_publisher_allocation ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

ReaderResourceLimitsQos reader_limits;
//Set the maximum size for writer matched resource limits collection to 1 and its␣
→˓allocation configuration to fixed size
reader_limits.matched_publisher_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<data_reader profile_name="alloc_qos_example_sub">
<!-- we know we will only have one matching publisher -->
<matchedPublishersAllocation>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</matchedPublishersAllocation>
</data_reader>

126 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

RTPSEndpointQos

This QoS Policy configures the aspects of an RTPS endpoint, such as the list of locators, the identifiers, and the history
memory policy. See RTPSEndpointQos.

List of QoS Policy data members:

Data Member Name Type Default Value
unicast_locator_list LocatorList Empty List
multicast_locator_list LocatorList Empty List
remote_locator_list LocatorList Empty List
external_unicast_locators ExternalLocators Empty
ignore_non_matching_locators bool false
user_defined_id int16_t -1
entity_id int16_t -1
history_memory_policy MemoryManagementPolicy PREALLOCATED_MEMORY_MODE

• unicast_locator_list: Defines the list of unicast locators associated to the DDS Entity. DataReaders and
DataWriters inherit the list of unicast locators set in the DomainParticipant, but it can be changed by means of
this QoS.

• multicast_locator_list: Stores the list of multicast locators associated to the DDS Entity. By default,
DataReaders and DataWriters do not use any multicast locator, but it can be changed by means of this QoS.

• remote_locator_list: States the list of remote locators associated to the DDS Entity.

• external_unicast_locators: Defines the External Locators to announce for the communication with this
DDS Entity.

• ignore_non_matching_locators: Defines whether to ignore locators received on announcements from other
DDS entities when they don’t match with any of the locators announced by this DDS Entity.

• user_defined_id : Establishes the unique identifier used for StaticEndpointDiscovery.

• entity_id : The user can specify the identifier for the endpoint.

• history_memory_policy: Indicates the way the memory is managed in terms of dealing with the
CacheChanges.

Note: This QoS Policy concerns to DataWriter and DataReader entities.

It cannot be changed on enabled entities.

MemoryManagementPolicy

There are four possible values (see MemoryManagementPolicy):

• PREALLOCATED_MEMORY_MODE: This option sets the size to the maximum of each data type. It produces the
largest memory footprint but the smallest allocation count.

• PREALLOCATED_WITH_REALLOC_MEMORY_MODE: This option set the size to the default for each data type and
it requires reallocation when a bigger message arrives. It produces a lower memory footprint at the expense of
increasing the allocation count.

• DYNAMIC_RESERVE_MEMORY_MODE: This option allocates the size dynamically at the time of message arrival. It
produces the least memory footprint but the highest allocation count.

6.16. DDS Layer 127

Fast DDS Documentation, Release 2.8.2

• DYNAMIC_REUSABLE_MEMORY_MODE: This option is similar to DYNAMIC_RESERVE_MEMORY_MODE, but the allo-
cated memory is reused for future messages.

Example

C++

RTPSEndpointQos endpoint;
//Add new unicast locator with port 7800
eprosima::fastrtps::rtps::Locator_t new_unicast_locator;
new_unicast_locator.port = 7800;
endpoint.unicast_locator_list.push_back(new_unicast_locator);
//Add new multicast locator with IP 239.255.0.4 and port 7900
eprosima::fastrtps::rtps::Locator_t new_multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
endpoint.multicast_locator_list.push_back(new_multicast_locator);
// Add an external locator with IP 100.100.100.10, port 12345, mask 24, externality 1,␣
→˓and cost 0
eprosima::fastdds::rtps::LocatorWithMask external_locator;
external_locator.kind = LOCATOR_KIND_UDPv4;
external_locator.port = 12345;
external_locator.mask(24);
endpoint.external_unicast_locators[1][0].push_back(external_locator);
// Drop non matching locators
endpoint.ignore_non_matching_locators = true;
//Set 3 as user defined id
endpoint.user_defined_id = 3;
//Set 4 as entity id
endpoint.entity_id = 4;
//The RTPSEndpointQos is default constructed with history_memory_policy = PREALLOCATED
//Change the history_memory_policy to DYNAMIC_RESERVE
endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_RESERVE_MEMORY_MODE;

XML

<data_writer profile_name="writer_xml_conf_unicast_locators_profile">
<userDefinedID>3</userDefinedID>
<entityID>2</entityID> <!-- Int16 -->
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
(continues on next page)

128 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<port>7900</port>
</udpv4>

</locator>
</multicastLocatorList>
<external_unicast_locators>

<udpv4 externaliy="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>12345</port>

</udpv4>
</external_unicast_locators>
<ignore_non_matching_locators>true</ignore_non_matching_locators>
<!-- The history memory policy is changed to DYNAMIC_RESERVE -->
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

</data_writer>

<data_reader profile_name="reader_xml_conf_unicast_locators_profile">
<userDefinedID>5</userDefinedID>
<entityID>4</entityID> <!-- Int16 -->
<unicastLocatorList>

<locator>
<udpv4>

<port>7800</port>
</udpv4>

</locator>
</unicastLocatorList>
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
<external_unicast_locators>

<udpv4 externaliy="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>12345</port>

</udpv4>
</external_unicast_locators>
<ignore_non_matching_locators>true</ignore_non_matching_locators>
<historyMemoryPolicy>PREALLOCATED_WITH_REALLOC</historyMemoryPolicy>

</data_reader>

6.16. DDS Layer 129

Fast DDS Documentation, Release 2.8.2

RTPSReliableReaderQos

This RTPS QoS Policy allows the configuration of several RTPS reliable reader’s aspects. See
RTPSReliableReaderQos.

List of QoS Policy data members:

Data Member Name Type
times ReaderTimes
disable_positive_ACKs DisablePositiveACKsQosPolicy

• times: Defines the duration of the RTPSReader events. See ReaderTimes for further details.

• disable_positive_ACKs: Configures the settings to disable the positive acks. See DisablePositiveACK-
sQosPolicy for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

ReaderTimes

This structure defines the times associated with the Reliable Readers’ events. See ReaderTimes.

List of structure members:

Member Name Type Default Value
initialAcknackDelay Duration_t 70 ms
heartbeatResponseDelay Duration_t 5 ms

• initialAcknackDelay: Defines the duration of the initial acknack delay.

• heartbeatResponseDelay: Establishes the duration of the delay applied when a heartbeat message is received.

Example

C++

RTPSReliableReaderQos reliable_reader_qos;
//The RTPSReliableReaderQos is default constructed with initialAcknackDelay = 70 ms
//Change the initialAcknackDelay to 70 nanoseconds
reliable_reader_qos.times.initialAcknackDelay = {0, 70};
//The RTPSReliableWriterQos is default constructed with heartbeatResponseDelay = 5 ms
//Change the heartbeatResponseDelay to 5 nanoseconds
reliable_reader_qos.times.heartbeatResponseDelay = {0, 5};
//You can also change the DisablePositiveACKsQosPolicy. For further details see␣
→˓DisablePositiveACKsQosPolicy section.
reliable_reader_qos.disable_positive_ACKs.enabled = true;

130 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

<data_reader profile_name="sub_profile_name">
<times> <!-- readerTimesType -->

<initialAcknackDelay> <!-- DURATION -->
<sec>0</sec>
<nanosec>70</nanosec>

</initialAcknackDelay>
<heartbeatResponseDelay> <!-- DURATION -->

<sec>0</sec>
<nanosec>5</nanosec>

</heartbeatResponseDelay>
</times>
<!--You can also change the values of DisablePositiveACKsQosPolicy.-->
<!--See DisablePositiveACKsQosPolicy section for further details-->

</data_reader>

RTPSReliableWriterQos

This RTPS QoS Policy allows the configuration of several RTPS reliable writer’s aspects. See
RTPSReliableWriterQos.

List of QoS Policy data members:

Data Member Name Type
times WriterTimes
disable_positive_acks DisablePositiveACKsQosPolicy
disable_heartbeat_piggyback DisableHeartbeatPiggyback

• times: Defines the duration of the RTPSWriter events. See WriterTimes for further details.

• disable_positive_acks: Configures the settings to disable the positive acks. See DisablePositiveACK-
sQosPolicy for further details.

• disable_heartbeat_piggyback : Configures the settings to disable the heartbeat piggyback mechanism. See
DisableHeartbeatPiggyback for further details.

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

WriterTimes

This structure defines the times associated with the Reliable Writers’ events.

List of structure members:

Member Name Type Default Value
initialHeartbeatDelay Duration_t 12ms
heartbeatPeriod Duration_t 3s
nackResponseDelay Duration_t 5ms
nackSupressionDuration Duration_t 0s

6.16. DDS Layer 131

Fast DDS Documentation, Release 2.8.2

• initialHeartbeatDelay: Defines duration of the initial heartbeat delay.

• heartbeatPeriod : Specifies the interval between periodic heartbeats.

• nackResponseDelay: Establishes the duration of the delay applied to the response of an ACKNACK message.

• nackSupressionDuration: The RTPSWriter ignores the nack messages received after sending the data until
the duration time elapses.

DisableHeartbeatPiggyback

Besides sending heartbeats periodically using the heartbeatPeriod (see WriterTimes), reliable DataWriters also use
a mechanism to append a heartbeat submessage in the same message where data is being delivered to the DataReaders.
This mechanism acts in specific situations where the reliable communication state must be up to date to maintain
optimal communication:

• When the DataWriter sends as many bytes to the socket as the length of the socket buffer, a heartbeat submessage
is appended after the last data.

• When the DataWriter’s history is full, the DataWriter starts to append heartbeat submessages after each data.

This mechanism can be disabled using this policy.

Example

C++

RTPSReliableWriterQos reliable_writer_qos;
//The RTPSReliableWriterQos is default constructed with initialHeartbeatDelay = 12 ms
//Change the initialHeartbeatDelay to 20 nanoseconds
reliable_writer_qos.times.initialHeartbeatDelay = {0, 20};
//The RTPSReliableWriterQos is default constructed with heartbeatPeriod = 3 s
//Change the heartbeatPeriod to 5 seconds
reliable_writer_qos.times.heartbeatPeriod = {5, 0};
//The RTPSReliableWriterQos is default constructed with nackResponseDelay = 5 ms
//Change the nackResponseDelay to 10 nanoseconds
reliable_writer_qos.times.nackResponseDelay = {0, 10};
//The RTPSReliableWriterQos is default constructed with nackSupressionDuration = 0 s
//Change the nackSupressionDuration to 20 nanoseconds
reliable_writer_qos.times.nackSupressionDuration = {0, 20};
//You can also change the DisablePositiveACKsQosPolicy. For further details see␣
→˓DisablePositiveACKsQosPolicy section.
reliable_writer_qos.disable_positive_acks.enabled = true;
//The RTPSReliableWriterQos is default constructed with disable_heartbeat_piggyback =␣
→˓false
//Disable the heartbeat piggyback mechanism.
reliable_writer_qos.disable_heartbeat_piggyback = true;

132 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

<data_writer profile_name="pub_profile_name">
<times> <!-- writerTimesType -->

<initialHeartbeatDelay> <!-- DURATION -->
<sec>0</sec>
<nanosec>20</nanosec>

</initialHeartbeatDelay>
<heartbeatPeriod> <!-- DURATION -->

<sec>5</sec>
<nanosec>0</nanosec>

</heartbeatPeriod>
<nackResponseDelay> <!-- DURATION -->

<sec>0</sec>
<nanosec>10</nanosec>

</nackResponseDelay>
<nackSupressionDuration> <!-- DURATION -->

<sec>0</sec>
<nanosec>20</nanosec>

</nackSupressionDuration>
</times>

<!--You can also change the values of DisablePositiveACKsQosPolicy.-->
<!--See DisablePositiveACKsQosPolicy section for further details-->

<!--Disable heartbeat piggyback mechanism.-->
<disable_heartbeat_piggyback>true</disable_heartbeat_piggyback>

</data_writer>

TransportConfigQos

This QoS Policy allows the configuration of the transport layer settings. See TransportConfigQos.

List of QoS Policy data members:

Data Member Name Type Default
Value

user_transports std::vector<std::shared_ptr<TransportDescriptorInterface>>Empty
vector

use_builtin_transports bool true
send_socket_buffer_size uint32_t 0
listen_socket_buffer_sizeuint32_t 0

• user_transports: This data member defines the list of transports to use alongside or in place of builtins.

• use_builtin_transports: It controls whether the built-in transport layer is enabled or disabled. If it is set to
false, the default UDPv4 implementation is disabled.

• send_socket_buffer_size: By default, Fast DDS creates socket buffers using the system default size. This
data member allows to change the send socket buffer size used to send data.

• listen_socket_buffer_size: The listen socket buffer size is also created with the system default size, but it
can be changed using this data member.

6.16. DDS Layer 133

Fast DDS Documentation, Release 2.8.2

Note: This QoS Policy concerns to DomainParticipant entities.

It cannot be changed on enabled entities.

TransportDescriptorInterface

This structure is the base for the data type used to define transport configuration.

List of structure members:

Member Name Type
maxMessageSize uint32_t
maxInitialPeersRange uint32_t

• maxMessageSize: This member sets the maximum size in bytes of the transport’s message buffer.

• maxInitialPeersRange: This member states the maximum number of guessed initial peers to try to connect.

Example

C++

TransportConfigQos transport;
//Add new transport to the list of user transports
std::shared_ptr<eprosima::fastdds::rtps::UDPv4TransportDescriptor> descriptor =

std::make_shared<eprosima::fastdds::rtps::UDPv4TransportDescriptor>();
descriptor->sendBufferSize = 9126;
descriptor->receiveBufferSize = 9126;
transport.user_transports.push_back(descriptor);
//Set use_builtin_transports to false
transport.use_builtin_transports = false;

XML

<transport_descriptors>
<transport_descriptor>

<transport_id>my_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="my_transport">
<rtps>

<userTransports>
<transport_id>my_transport</transport_id>

</userTransports>
(continues on next page)

134 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<useBuiltinTransports>false</useBuiltinTransports>
</rtps>

</participant>

TypeConsistencyQos

This QoS Policy allows the configuration of the XTypes extension QoS on the DataReader. See TypeConsistencyQos.

List of QoS Policy data members:

Data Member Name Type
type_consistency TypeConsistencyEnforcementQosPolicy
representation DataRepresentationQosPolicy

• type_consistency: It states the rules for the data types compatibility. See TypeConsistencyEnforcemen-
tQosPolicy for further details.

• representation: It specifies the data representations valid for the entities. See DataRepresentationQosPolicy
for further details.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

Example

C++

TypeConsistencyQos consistency_qos;
//You can change the DataRepresentationQosPolicy. For further details see␣
→˓DataRepresentationQosPolicySection section.
consistency_qos.representation.m_value.push_back(DataRepresentationId_t::XCDR2_DATA_
→˓REPRESENTATION);
//You can change the TypeConsistencyEnforcementQosPolicy. For further details see␣
→˓TypeConsistencyEnforcementQosPolicy section.
consistency_qos.type_consistency.m_kind = TypeConsistencyKind::ALLOW_TYPE_COERCION;

XML

This QoS Policy cannot be configured using XML for the moment.

6.16. DDS Layer 135

Fast DDS Documentation, Release 2.8.2

WireProtocolConfigQos

This QoS Policy allows the configuration of the wire protocol. See WireProtocolConfigQos.

List of QoS Policy data members:

Data Member Name Type Default Value
prefix GuidPrefix_t 0
participant_id int32_t -1
builtin BuiltinAttributes
port PortParameters
throughput_controller ThroughputControllerDescriptor
default_unicast_locator_list LocatorList Empty List
default_multicast_locator_list LocatorList Empty List
default_external_unicast_locators ExternalLocators Empty
ignore_non_matching_locators bool false

• prefix: This data member allows the user to set manually the GUID prefix.

• participant_id : It sets the participant identifier. By default, it will be automatically generated by the Domain.

• builtin: This data member allows the configuration of the built-in parameters.

• port: This data member allows the configuration of the port parameters and gains related to the RTPS protocol
(Well Known Ports).

• throughput_controller: It allows the configuration of the throughput settings.

• default_unicast_locator_list: States the default list of unicast locators to be used for any endpoint defined
inside the RTPSParticipant in the case that it was defined without unicast locators. This list should include at
least one locator.

• default_multicast_locator_list: Stores the default list of multicast locators to be used for any endpoint
defined inside the RTPSParticipant in the case that it was defined without multicast locators. This list is usually
left empty.

• default_external_unicast_locators: Defines the External Locators to be used for any endpoint defined
inside the participant in the case that it was defined without unicast locators.

• ignore_non_matching_locators: Defines whether to ignore locators received on announcements from other
DDS participants when they don’t match with any of the locators announced by this DDS participant.

Note: This QoS Policy concerns to DomainParticipant entities.

Important: The only mutable field on enabled entities is m_DiscoveryServers, which is contained in
discovery_config within builtin (see Modifying remote servers list at run time).

136 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ThroughputControllerDescriptor

This structure allows to limit the output bandwidth. See ThroughputControllerDescriptor.

List of structure members:

Member Name Type
bytesPerPeriod uint32_t
periodMillisecs uint32_t

• bytesPerPeriod : This member states the number of bytes that this controller will allow in a given period.

• periodMillisecs: It specifies the window of time in which no more than bytesPerPeriod bytes are allowed.

Warning: This has been deprecated in favor of FlowControllersQos

Example

C++

WireProtocolConfigQos wire_protocol;
//Set the guid prefix
std::istringstream("72.61.73.70.66.61.72.6d.74.65.73.74") >> wire_protocol.prefix;
//Configure Builtin Attributes
wire_protocol.builtin.discovery_config.discoveryProtocol =

eprosima::fastrtps::rtps::DiscoveryProtocol_t::SERVER;
//Add locator to unicast list
eprosima::fastrtps::rtps::Locator_t server_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(server_locator, "192.168.10.57");
server_locator.port = 56542;
wire_protocol.builtin.metatrafficUnicastLocatorList.push_back(server_locator);
// Add a metatraffix external locator with IP 100.100.100.10, port 34567, mask 24,␣
→˓externality 1, and cost 0
eprosima::fastdds::rtps::LocatorWithMask meta_external_locator;
meta_external_locator.kind = LOCATOR_KIND_UDPv4;
meta_external_locator.port = 34567;
meta_external_locator.mask(24);
wire_protocol.builtin.metatraffic_external_unicast_locators[1][0].push_back(meta_
→˓external_locator);
// Limit to 300kb per second.
eprosima::fastrtps::rtps::ThroughputControllerDescriptor␣
→˓slowPublisherThroughputController{300000, 1000};
wire_protocol.throughput_controller = slowPublisherThroughputController;
//Add locator to default unicast locator list
eprosima::fastrtps::rtps::Locator_t unicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(unicast_locator, 192, 168, 1, 41);
unicast_locator.port = 7400;
wire_protocol.default_unicast_locator_list.push_back(unicast_locator);
//Add locator to default multicast locator list
eprosima::fastrtps::rtps::Locator_t multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(multicast_locator, 192, 168, 1, 41);

(continues on next page)

6.16. DDS Layer 137

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

multicast_locator.port = 7400;
wire_protocol.default_multicast_locator_list.push_back(multicast_locator);
// Add a default external locator with IP 100.100.100.10, port 23456, mask 24,␣
→˓externality 1, and cost 0
eprosima::fastdds::rtps::LocatorWithMask external_locator;
external_locator.kind = LOCATOR_KIND_UDPv4;
external_locator.port = 23456;
external_locator.mask(24);
wire_protocol.default_external_unicast_locators[1][0].push_back(external_locator);
// Drop non matching locators
wire_protocol.ignore_non_matching_locators = true;

XML

<participant profile_name="UDP SERVER" is_default_profile="true">
<rtps>

<prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
<metatraffic_external_unicast_locators>

<udpv4 externaliy="1" cost="0" mask="24">
<address>100.100.100.10</address>
<port>34567</port>

</udpv4>
</metatraffic_external_unicast_locators>

</builtin>
<throughputController>

<bytesPerPeriod>300000</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>
<defaultUnicastLocatorList>

<locator>
<udpv4>

<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>

</defaultUnicastLocatorList>

(continues on next page)

138 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<defaultMulticastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, like UDP -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>

</defaultMulticastLocatorList>

<default_external_unicast_locators>
<udpv4 externaliy="1" cost="0" mask="24">

<address>100.100.100.10</address>
<port>23456</port>

</udpv4>
</default_external_unicast_locators>

<ignore_non_matching_locators>true</ignore_non_matching_locators>
</rtps>

</participant>

WriterResourceLimitsQos

This QoS Policy states the limits for the matched DataReaders’ resource limited collections based on the maximum
number of DataReaders that are going to match with the DataWriter. See WriterResourceLimitsQos.

List of QoS Policy data members:

Data Member Name Type
matched_subscriber_allocation ResourceLimitedContainerConfig
reader_filters_allocation ResourceLimitedContainerConfig

Note: This QoS Policy concerns to DataWriter entities.

It cannot be changed on enabled entities.

Example

C++

WriterResourceLimitsQos writer_limits;
//Set the maximum size for reader matched resource limits collection to 3 and its␣
→˓allocation configuration to fixed size
writer_limits.matched_subscriber_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(3u);
// Set the maximum number of writer side content filters to 1 and its allocation␣
→˓configuration to fixed size

(continues on next page)

6.16. DDS Layer 139

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

writer_limits.reader_filters_allocation =
eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_configuration(1u);

XML

<data_writer profile_name="alloc_qos_example_pub_for_topic_1">
<!-- we know we will have three matching subscribers -->
<matchedSubscribersAllocation>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

XTypes Extensions

This section explain those QoS Policy extensions defined in the XTypes Specification:

• DataRepresentationQosPolicy

• TypeConsistencyEnforcementQosPolicy

DataRepresentationQosPolicy

This XTypes QoS Policy states which data representations will be used by the DataWriters and DataReaders.

The DataWriters offer a single data representation that will be used to communicate with the matched DataRead-
ers. The DataReaders can request one or more data representations and in order to have communication with
the DataWriter, the offered data representation needs to be contained within the DataReader request. See
DataRepresentationQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
m_value std::vector<DataRepresentationId> Empty vector

Note: This QoS Policy concerns to Topic, DataReader and DataWriter entities.

It cannot be changed on enabled entities.

140 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-XTypes/

Fast DDS Documentation, Release 2.8.2

DataRepresentationId

There are three possible values (see DataRepresentationId):

• XCDR_DATA_REPRESENTATION: This option corresponds to the first version of the Extended CDR Representation
encoding.

• XML_DATA_REPRESENTATION: This option corresponds to the XML Data Representation.

• XCDR2_DATA_REPRESENTATION: This option corresponds to the second version of the Extended CDR Repre-
sentation encoding.

Example

C++

DataRepresentationQosPolicy data_representation;
//Add XCDR v1 data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t::XCDR_DATA_REPRESENTATION);
//Add XML data representation to the list of valid representations
data_representation.m_value.push_back(DataRepresentationId_t::XML_DATA_REPRESENTATION);

XML

This QoS Policy cannot be configured using XML for the moment.

TypeConsistencyEnforcementQosPolicy

This XTypes QoS Policy extension defines the rules for determining whether the data type used in the DataWriter is
consistent with the one used in the DataReader. See TypeConsistencyEnforcementQosPolicy.

List of QoS Policy data members:

Data Member Name Type Default Value
m_kind TypeConsistencyKind ALLOW_TYPE_COERCION
m_ignore_sequence_bounds bool true
m_ignore_string_bounds bool true
m_ignore_member_names bool true
m_prevent_type_widening bool true
m_force_type_validation bool true

• m_kind : It determines whether the type in the DataWriter type must be equal to the type in the DataReader or
not. See TypeConsistencyKind for further details.

• m_ignore_sequence_bounds: This data member controls whether the sequence bounds are taken into account
for type assignability or not. If its value is true, the sequences maximum lengths are not considered, which means
that a sequence T2 with length L2 would be assignable to a sequence T1 with length L1, even if L2 is greater
than L1. But if it is false, L1 must be higher or equal to L2 to consider the sequences as assignable.

• m_ignore_string_bounds: It controls whether the string bounds are considered for type assignation or not.
If its value is true, the strings maximum lengths are not considered, which means that a string S2 with length L2
would be assignable to a string S1 with length L1, even if L2 is greater than L1. But if it is false, L1 must be
higher or equal to L2 to consider the strings as assignable.

6.16. DDS Layer 141

Fast DDS Documentation, Release 2.8.2

• m_ignore_member_names: This boolean controls whether the member names are taken into consideration for
type assignability or not. If it is true, apart from the member ID, the member names are considered as part of
assignability, which means that the members with the same ID must also have the same name. But if the value
is false, the member names are ignored.

• m_prevent_type_widening: This data member controls whether the type widening is allowed or not. If it is
false, the type widening is permitted, but if true, a wider type cannot be assignable to a narrower type.

• m_force_type_validation: It controls if the service needs the type information to complete the matching
between a DataWriter and a DataReader. If it is enabled, it must have the Complete Type Information, otherwise
it is not necessary.

Note: This QoS Policy concerns to DataReader entities.

It cannot be changed on enabled entities.

TypeConsistencyKind

There are two possible values:

• DISALLOW_TYPE_COERCION: The DataWriter and the DataReader must support the same data type in order to
communicate.

• ALLOW_TYPE_COERCION: The DataWriter and the DataReader do not need to support the same data type in order
to communicate as long as the DataReader’s type is assignable from the DataWriter’s type.

Example

C++

TypeConsistencyEnforcementQosPolicy type_enforcement;
//The TypeConsistencyEnforcementQosPolicy is default constructed with kind = ALLOW_TYPE_
→˓COERCION
//Change the kind to DISALLOW_TYPE_COERCION
type_enforcement.m_kind = TypeConsistencyKind::DISALLOW_TYPE_COERCION;
//Configures the system to ignore the sequence sizes in assignations
type_enforcement.m_ignore_sequence_bounds = true;
//Configures the system to ignore the string sizes in assignations
type_enforcement.m_ignore_string_bounds = true;
//Configures the system to ignore the member names. Members with same ID could have␣
→˓different names
type_enforcement.m_ignore_member_names = true;
//Configures the system to allow type widening
type_enforcement.m_prevent_type_widening = false;
//Configures the system to not use the complete Type Information in entities match␣
→˓process
type_enforcement.m_force_type_validation = false;

142 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

This QoS Policy cannot be configured using XML for the moment.

Status

Each Entity is associated with a set of Status objects whose values represent the communication status of that Entity.
Changes on the status values occur due to communication events related to each of the entities, e.g., when new data
arrives, a new participant is discovered, or a remote endpoint is lost. The status is decomposed into several status objects,
each concerning a different aspect of the communication, so that each of these status objects can vary independently
of the others.

Changes on a status object trigger the corresponding Listener callbacks that allow the Entity to inform the application
about the event. For a given status object with name fooStatus, the entity listener interface defines a callback function
on_foo() that will be called when the status changes. Beware that some statuses have data members that are reset every
time the corresponding listener is called. The only exception to this rule is when the entity has no listener attached, so
the callback cannot be called. See the documentation of each status for details.

Conditions and Wait-sets provide the application with an alternative mechanism to make it aware of changes on status
objects, by means of a StatusCondition. The advantage of this mechanism is that the application can wait for changes
on several entities at the same time. It will also help the determinism of your system, as the notification is not processed
on an internal thread, as it is done when using listeners.

The entities expose functions to access the value of its statuses. For a given status with name fooStatus, the entity
exposes a member function get_foo() to access the data in its fooStatus. The only exceptions are DataOnReaders
and DataAvailable. These getter functions return a read-only struct where all data members are public and accessible
to the application. Beware that some statuses have data members that are reset every time the getter function is called
by the application. See the documentation of each status for details.

The following subsections describe each of the status objects, their data members, and to which Entity type they concern.
The next table offers a quick reference as well as the corresponding bit for each status in the StatusMask .

Status Name Entity Listener callback Accessor Bit
InconsistentTopicStatus Topic on_inconsistent_topic() get_inconsistent_topic_status()0
OfferedDeadline-
MissedStatus

DataWriter on_offered_deadline_missed()get_offered_deadline_missed_status()1

RequestedDeadline-
MissedStatus

DataReaderon_requested_deadline_missed()get_requested_deadline_missed_status()2

OfferedIncompatible-
QosStatus

DataWriter on_offered_incompatible_qos()get_offered_incompatible_qos_status()5

RequestedIncompati-
bleQosStatus

DataReaderon_requested_incompatible_qos()get_requested_incompatible_qos_status()6

SampleLostStatus DataReaderon_sample_lost() get_sample_lost_status() 7
SampleRejectedStatus DataReaderon_sample_rejected() get_sample_rejected_status() 8
DataOnReaders Sub-

scriber
on_data_on_readers() N/A 9

DataAvailable DataReaderon_data_available() N/A 10
LivelinessLostStatus DataWriter on_liveliness_lost() get_liveliness_lost_status() 11
LivelinessChangedSta-
tus

DataReaderon_liveliness_changed() get_liveliness_changed_status()12

PublicationMatched-
Status

DataWriter on_publication_matched() get_publication_matched_status()13

SubscriptionMatched-
Status

DataReaderon_subscription_matched()get_subscription_matched_status()14

6.16. DDS Layer 143

Fast DDS Documentation, Release 2.8.2

InconsistentTopicStatus

This status changes every time an inconsistent remote Topic is discovered, that is, one with the same name but different
characteristics than the current Topic. See InconsistentTopicStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t

• total_count: Total cumulative count of inconsistent Topics discovered since the creation of the current Topic.

• total_count_change: The change in total_count since the last time on_inconsistent_topic() was
called or the status was read.

Warning: Currently this status is not supported and will be implemented in future releases. As a result, trying to
access this status will return NOT_SUPPORTED and the corresponding listener will never be called.

DataOnReaders

This status becomes active every time there is new data available for the application on any DataReader belonging to
the current Subscriber. There is no getter function to access this status, as it does not keep track of any information
related to the data itself. Its only purpose is to trigger the on_data_on_readers() callback on the listener attached
to the DataReader.

DataAvailable

This status becomes active every time there is new data available for the application on the DataReader. There is no
getter function to access this status, as it does not keep track of any information related to the data itself. Its only
purpose is to trigger the on_data_available() callback on the listener attached to the DataReader.

LivelinessChangedStatus

This status changes every time the liveliness status of a matched DataWriter has changed. Either because a DataWriter
that was inactive has become active or the other way around. See LivelinessChangedStatus.

List of status data members:

Data Member Name Type
alive_count int32_t
not_alive_count int32_t
alive_count_change int32_t
not_alive_count_change int32_t
last_publication_handle InstanceHandle_t

• alive_count: Total number of currently active DataWriters. This count increases every time a newly matched
DataWriter asserts its liveliness or a DataWriter that was considered not alive reasserts its liveliness. It decreases
every time an active DataWriter becomes not alive, either because it failed to asserts its liveliness or because it
was deleted for any reason.

144 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• not_alive_count: Total number of matched DataWriters that are currently considered not alive. This count
increases every time an active DataWriter becomes not alive because it fails to assert its liveliness. It decreases
every time a DataWriter that was considered not alive reasserts its liveliness. Normal matching and unmatching
of DataWriters does not affect this count.

• alive_count_change: The change in alive_count since the last time on_liveliness_changed() was
called or the status was read. It can have positive or negative values.

• not_alive_count_change: The change in not_alive_count since the last time
on_liveliness_changed() was called or the status was read. It can have positive or negative values.

• last_publication_handle: Handle to the last DataWriter whose liveliness status was changed. If no liveli-
ness has ever changed, it will have value c_InstanceHandle_Unknown.

RequestedDeadlineMissedStatus

This status changes every time the DataReader does not receive data within the deadline period configured on its
DataReaderQos. See RequestedDeadlineMissedStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
last_instance_handle InstanceHandle_t

• total_count: Total cumulative count of missed deadlines for any instance read by the current DataReader. As
the deadline period applies to each instance of the Topic independently, the count will will be incremented by
one for each instance for which data was not received in the deadline period.

• total_count_change: The change in total_count since the last time
on_requested_deadline_missed() was called or the status was read. It can only have zero or posi-
tive values.

• last_instance_handle: Handle to the last instance that missed the deadline. If no deadline was ever missed,
it will have value c_InstanceHandle_Unknown.

RequestedIncompatibleQosStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a com-
mon partition, but with a QoS configuration incompatible with the one defined on the DataReader. See
RequestedIncompatibleQosStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
last_policy_id QosPolicyId_t
policies QosPolicyCountSeq

• total_count: Total cumulative count of DataWriters found matching the Topic and with a common partition,
but with a QoS configuration that is incompatible with the one defined on the DataReader.

6.16. DDS Layer 145

Fast DDS Documentation, Release 2.8.2

• total_count_change: The change in total_count since the last time
on_requested_incompatible_qos() was called or the status was read. It can only have zero or posi-
tive values.

• last_policy_id : The policy ID of one of the policies that was found to be incompatible with the current
DataReader. If more than one policy happens to be incompatible, only one of them will be reported in this
member.

• policies: A collection that holds, for each policy, the total number of times that the policy was found to be
incompatible with the one offered by a remote DataWriter that matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for each policy.

QosPolicyCountSeq

Holds a QosPolicyCount for each Policy, indexed by its QosPolicyId_t. Therefore, the Qos Policy with ID N will be
at position N in the sequence. See QosPolicyCountSeq.

DataReader* data_reader =
subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);

// Get how many times ReliabilityQosPolicy was not compatible with a remote writer
RequestedIncompatibleQosStatus status;
data_reader->get_requested_incompatible_qos_status(status);
uint32_t incompatible_reliability_count = status.policies[RELIABILITY_QOS_POLICY_ID].
→˓count;

QosPolicyCount

This structure holds a counter for a policy. See QosPolicyCount.

List of data members:

Data Member Name Type
policy_id QosPolicyId_t
count int32_t

• policy_id : The ID of the policy.

• count: The counter value for the policy.

SampleLostStatus

This status changes every time a new data sample is lost and will never be received. See SampleLostStatus.

There are two different criteria for considering a sample as lost depending on the reliability():

• When using BEST_EFFORT_RELIABILITY_QOS, a not yet received sample is considered lost whenever a sample
with a greater sequence number is received.

• When using RELIABLE_RELIABILITY_QOS, a not yet received sample is considered lost whenever the
DataWriter informs, through an RTPS HEARTBEAT submessage, that the sample is not available anymore.

List of status data members:

146 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Data Member Name Type
total_count int32_t
total_count_change int32_t

• total_count: Total cumulative count of lost samples under the Topic of the current DataReader.

• total_count_change: The change in total_count since the last time on_sample_lost() was called or the
status was read. It can only be positive or zero.

SampleRejectedStatus

This status changes every time an incoming data sample is rejected by the DataReader. The reason for the rejection is
defined by SampleRejectedStatusKind. For further information see SampleRejectedStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
last_reason SampleRejectedStatusKind
last_instance_handle InstanceHandle_t

• total_count: Total cumulative count of rejected samples under the Topic of the current DataReader.

• total_count_change: The change in total_count since the last time on_sample_rejected() was called
or the status was read. It can only be positive or zero.

• last_reason: The reason for rejecting the last rejected sample. If no sample was ever rejected, it will have
value NOT_REJECTED. See SampleRejectedStatusKind for further details.

• last_instance_handle: Handle to the last instance whose sample was rejected. If no sample was ever re-
jected, it will have value c_InstanceHandle_Unknown.

SampleRejectedStatusKind

In Fast DDS, samples can be rejected due to resource limit reasons. However, the fact that the samples are rejected
does not imply that they are lost, i.e. a rejected sample may be accepted in the future.

SampleRejectedStatusKind specifies the reason of the rejection:

• NOT_REJECTED specifies that the samples were not rejected.

• REJECTED_BY_SAMPLES_LIMIT specifies that the samples were rejected because there were not enough re-
sources to stored them. This can happen even when there are free resources if those resources must be guaran-
teed to be available for other samples. This situation, which arises in the RTPS layer, occurs when there are yet
to be received samples with lower sequence number and there is not enough resources for all of them (because
max_samples has been reached).

• REJECTED_BY_INSTANCES_LIMIT specifies that the samples were rejected because there were not enough re-
sources to allocate the samples’ instances. This situation, which arises in the DDS layer, more precisely in the
in the DataReader’s history, occurs when the sample corresponds to a new instance for which the middleware
should reserve resources but the history’s number of instances has already reached max_instances.

• REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT specifies that the samples were rejected because there were
not enough resources within their instance to stored them. This situation, which arises in the DDS layer, more pre-
cisely in the DataReader’s history, occurs when the DataReader is configured with KEEP_ALL_HISTORY_QOS
and the instance’s number of samples has reached max_samples_per_instance.

6.16. DDS Layer 147

Fast DDS Documentation, Release 2.8.2

SubscriptionMatchedStatus

This status changes every time the DataReader finds a DataWriter that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataWriter that was previously considered to be matched.
See SubscriptionMatchedStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
current_count int32_t
current_count_change int32_t
last_publication_handle InstanceHandle_t

• total_count: Total cumulative count of remote DataWriters that have been discovered publishing on the same
Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

• total_count_change: The change in total_count since the last time on_subscription_matched() was
called or the status was read. It can only have zero or positive values.

• current_count: The number of remote DataWriters currently matched to the DataReader.

• current_count_change: The change in current_count since the last time on_subscription_matched()
was called or the status was read. It can have positive or negative values.

• last_publication_handle: Handle to the last DataWriter that matched the DataReader. If no matching ever
happened, it will have value c_InstanceHandle_Unknown.

LivelinessLostStatus

This status changes every time the DataWriter failed to assert its liveliness during the period configured on its
DataWriterQos. This means that matched DataReader entities will consider the DataWriter as no longer alive. See
LivelinessLostStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t

• total_count: Total cumulative count of times that the DataWriter failed to assert its liveliness during the
period configured on its DataWriterQos, becoming considered not alive. This count does not change when the
DataWriter is already considered not alive and simply remains not alive for another liveliness period.

• total_count_change: The change in total_count since the last time on_liveliness_lost() was called
or the status was read. It can only have zero or positive values.

148 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

OfferedDeadlineMissedStatus

This status changes every time the DataWriter fails to provide data within the deadline period configured on its
DataWriterQos. See OfferedDeadlineMissedStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
last_instance_handle InstanceHandle_t

• total_count: Total cumulative count of missed deadlines for any instance written by the current DataWriter.
As the deadline period applies to each instance of the Topic independently, the count will will be incremented
by one for each instance for which data was not sent in the deadline period.

• total_count_change: The change in total_count since the last time on_offered_deadline_missed()
was called or the status was read. It can only have zero or positive values.

• last_instance_handle: Handle to the last instance that missed the deadline. If no deadline was ever missed,
it will have value c_InstanceHandle_Unknown.

OfferedIncompatibleQosStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a common
partition, but with a QoS configuration that is incompatible with the one defined on the DataWriter. See
OfferedIncompatibleQosStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
last_policy_id QosPolicyId_t
policies QosPolicyCountSeq

• total_count: Total cumulative count of DataReaders found matching the Topic and with a common partition,
but with a QoS configuration that is incompatible with the one defined on the DataWriter.

• total_count_change: The change in total_count since the last time on_offered_incompatible_qos()
was called or the status was read. It can only have zero or positive values.

• last_policy_id : The policy ID of one of the policies that was found to be incompatible with the current
DataWriter. If more than one policy happens to be incompatible, only one of them will be reported in this
member.

• policies: A collection that holds, for each policy, the total number of times that the policy was found to be
incompatible with the one requested by a remote DataReader that matched the Topic and with a common partition.
See QosPolicyCountSeq and QosPolicyCount for more information the information that is stored for each policy.

6.16. DDS Layer 149

Fast DDS Documentation, Release 2.8.2

PublicationMatchedStatus

This status changes every time the DataWriter finds a DataReader that matches the Topic and has a common partition
and a compatible QoS, or has ceased to be matched with a DataReader that was previously considered to be matched.
See PublicationMatchedStatus.

List of status data members:

Data Member Name Type
total_count int32_t
total_count_change int32_t
current_count int32_t
current_count_change int32_t
last_subscription_handle InstanceHandle_t

• total_count: Total cumulative count of remote DataReaders that have been discovered publishing on the same
Topic and has a common partition and a compatible QoS. They may not all be matched at the moment.

• total_count_change: The change in total_count since the last time on_publication_matched() was
called or the status was read. It can only have zero or positive values.

• current_count: The number of remote DataReaders currently matched to the DataWriter.

• current_count_change: The change in current_count since the last time on_publication_matched()
was called or the status was read. It can have positive or negative values.

• last_subscription_handle: Handle to the last DataReader that matched the DataWriter. If no matching ever
happened, it will have value c_InstanceHandle_Unknown.

Conditions and Wait-sets

Conditions (in conjunction with wait-sets) provide an alternative mechanism to allow the middleware to notify com-
munication status changes (including arrival of data) to the application.

This mechanism is wait-based. Its general use pattern is as follows:

• The application indicates which relevant information it wants to get, by means of Condition objects (Guard-
Condition, StatusCondition, or ReadCondition) and attaching them to a Wait-set via the attach_condition()
call.

• It then waits on that Wait-set via the wait() call until the trigger value of one or several Condition objects
become true.

• It then uses the result of the wait() (i.e., the list of Condition objects with trigger_value == true) to actually get
the information by calling:

– get_status_changes(), then checking if any of the changes is relevant using the
StatusMask::is_active() method on the result and finally calling get_<communication_status>
on the relevant Entity, when the condition is a StatusCondition and the status changes refer to plain
communication status. Refer to Status for additional information on the different statuses that can be
queried.

– get_status_changes() and then Subscriber::get_datareaders() on the relevant Subscriber,
when the condition is a StatusCondition and the status changes refer to DataOnReaders.

– get_status_changes() and then DataReader::read()/DataReader::take() on the relevant
DataReader, when the condition is a StatusCondition and the status changes refer to DataAvailable.

150 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

– Directly DataReader::read_w_condition()/DataReader::take_w_condition() on the
DataReader with the Condition as a parameter, when it is a ReadCondition

• When a Condition is no longer relevant it can be detached from a Wait-set via the detach_condition() call.

The first step is usually done in an initialization phase, while the others are put in the application main loop.

class ApplicationJob
{

WaitSet wait_set_;
GuardCondition terminate_condition_;
std::thread thread_;

void main_loop()
{

// Main loop is repeated until the terminate condition is triggered
while (false == terminate_condition_.get_trigger_value())
{

// Wait for any of the conditions to be triggered
ReturnCode_t ret_code;
ConditionSeq triggered_conditions;
ret_code = wait_set_.wait(triggered_conditions, eprosima::fastrtps::c_

→˓TimeInfinite);
if (ReturnCode_t::RETCODE_OK != ret_code)
{

// ... handle error
continue;

}

// Process triggered conditions
for (Condition* cond : triggered_conditions)
{

StatusCondition* status_cond = dynamic_cast<StatusCondition*>(cond);
if (nullptr != status_cond)
{

Entity* entity = status_cond->get_entity();
StatusMask changed_statuses = entity->get_status_changes();

// Process status. Liveliness changed and data available are␣
→˓depicted as an example

if (changed_statuses.is_active(StatusMask::liveliness_changed()))
{

std::cout << "Liveliness changed reported for entity " << entity-
→˓>get_instance_handle() <<

std::endl;
}

if (changed_statuses.is_active(StatusMask::data_available()))
{

std::cout << "Data avilable on reader " << entity->get_instance_
→˓handle() << std::endl;

FooSeq data_seq;
SampleInfoSeq info_seq;

(continues on next page)

6.16. DDS Layer 151

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DataReader* reader = static_cast<DataReader*>(entity);

// Process all the samples until no one is returned
while (ReturnCode_t::RETCODE_OK == reader->take(data_seq, info_

→˓seq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE))

{
// Both info_seq.length() and data_seq.length() will have␣

→˓the number of samples returned
for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)
{

// Only samples for which valid_data is true should be␣
→˓accessed

if (info_seq[n].valid_data)
{

// Process sample on data_seq[n]
}

}

// must return the loaned sequences when done processing
reader->return_loan(data_seq, info_seq);

}
}

}
}

}
}

public:

ApplicationJob(
const std::vector<DataReader*>& readers,
const std::vector<DataWriter*>& writers)

{
// Add a GuardCondition, so we can signal the processing thread to stop
wait_set_.attach_condition(terminate_condition_);

// Add the status condition of every reader and writer
for (DataReader* reader : readers)
{

wait_set_.attach_condition(reader->get_statuscondition());
}
for (DataWriter* writer : writers)
{

wait_set_.attach_condition(writer->get_statuscondition());
}

thread_ = std::thread(&ApplicationJob::main_loop, this);
}

~ApplicationJob()

(continues on next page)

152 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Signal the GuardCondition to force the WaitSet to wake up
terminate_condition_.set_trigger_value(true);
// Wait for the thread to finish
thread_.join();

}

};

// Application initialization
ReturnCode_t ret_code;
std::vector<DataReader*> application_readers;
std::vector<DataWriter*> application_writers;

// Create the participant, topics, readers, and writers.
ret_code = create_dds_application(application_readers, application_writers);
if (ReturnCode_t::RETCODE_OK != ret_code)
{

// ... handle error
return;

}

{
ApplicationJob main_loop_thread(application_readers, application_writers);

// ... wait for application termination signaling (signal handler, user input, etc)

// ... Destructor of ApplicationJob takes care of stopping the processing thread
}

// Destroy readers, writers, topics, and participant
destroy_dds_application();

Calling the wait() operation on the Wait-set will block the calling thread if the trigger value of all the conditions
attached to it are false. The thread will wake up, and the wait() operation will return RETCODE_OK, whenever the
trigger value of any of the attached conditions becomes true.

GuardCondition

A condition for which the trigger value is completely controlled by the application via its set_trigger_value()
operation.

6.16. DDS Layer 153

Fast DDS Documentation, Release 2.8.2

StatusCondition

A condition that triggers whenever there are changes on the communication statuses of an Entity.

The sensitivity of the StatusCondition to a particular communication status is controlled by the list of enabled_statuses
set on the condition by means of the set_enabled_statuses() operation.

ReadCondition

A condition that triggers whenever the DataReader that created it contains at least a sample with SampleState, View-
State, and InstanceState matching those of the ReadCondition.

The fact that the trigger value of a ReadCondition is dependent on the presence of samples on the associated DataReader
implies that a single take operation can potentially change the trigger value of several ReadCondition conditions. For
example, if all samples are taken, any ReadCondition associated with the DataReader that were triggered before, will
see their trigger value changed to false. Note that this does not guarantee that WaitSet objects that were separately
attached to those conditions will not be woken up. Once we have trigger_value == true on a condition, it may wake up
the attached Wait-set. The condition transitioning to trigger_value == false does not necessarily ‘unwakeup’ the Wait-
set, as ‘unwakening’ may not be possible in general. The consequence is that an application blocked on a Wait-set may
return from the wait with a list of conditions, some of which are no longer triggered. This also may be the consequence
of user actions. A user manually calling set_trigger_value() could potentially trigger the same behavior. This is
unavoidable if multiple threads are concurrently waiting on separate Wait-set objects and taking data associated with
the same DataReader entity.

To elaborate further, consider the following example: A ReadCondition that has a sample_state_mask = {NOT_READ}
will have trigger_value == true whenever a new sample arrives and will transition to false as soon as all the newly-arrived
samples are either read (so their status changes to READ) or taken (so they are no longer managed by the DataReader).
However, if the same ReadCondition had a sample_state_mask = {READ, NOT_READ}, then the trigger_value would
only become false once all the newly-arrived samples are taken (it is not sufficient to read them as that would only
change the SampleState to READ which overlaps the mask on the ReadCondition).

6.16.2 Domain

A domain represents a separate communication plane. It creates a logical separation among the Entities that share
a common communication infrastructure. Conceptually, it can be seen as a virtual network linking all applications
running on the same domain and isolating them from applications running on different domains. This way, several
independent distributed applications can coexist in the same physical network without interfering, or even being aware
of each other.

Every domain has a unique identifier, called domainId, that is implemented as a uint32 value. Applications that share
this domainId belong to the same domain and will be able to communicate.

For an application to be added to a domain, it must create an instance of DomainParticipant with the appropriate
domainId. Instances of DomainParticipant are created through the DomainParticipantFactory singleton.

Partitions introduce another entity isolation level within the domain. While DomainParticipant will be able to com-
municate with each other if they are in the same domain, it is still possible to isolate their Publishers and Subscribers
assigning them to different Partitions.

Fig. 6: Domain class diagram

154 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DomainParticipant

A DomainParticipant is the entry point of the application to a domain. Every DomainParticipant is linked to a single
domain from its creation, and contains all the Entities related to that domain. It also acts as a factory for Publisher,
Subscriber and Topic.

The behavior of the DomainParticipant can be modified with the QoS values specified on DomainPartici-
pantQos. The QoS values can be set at the creation of the DomainParticipant, or modified later with
DomainParticipant::set_qos() member function.

As an Entity, DomainParticipant accepts a DomainParticipantListener that will be notified of status changes on the
DomainParticipant instance.

DomainParticipantQos

DomainParticipantQos controls the behavior of the DomainParticipant. Internally it contains the following
QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
UserDataQosPolicy user_data() Yes
EntityFactoryQosPolicy entity_factory() Yes
ParticipantResourceLimitsQos allocation() No
PropertyPolicyQos properties() No
WireProtocolConfigQos wire_protocol() No*
TransportConfigQos transport() No
FlowControllersQos flow_controllers() No

Important: The only mutable field in WireProtocolConfigQos is m_DiscoveryServers, which is contained in
discovery_config within builtin (see Modifying remote servers list at run time).

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created DomainParticipant can be modified using the
DomainParticipant::set_qos() member function. Trying to modify an immutable QosPolicy on an already
enabled DomainParticipant will result on an error. In such case, no changes will be applied and the DomainParticipant
will keep its previous DomainParticipantQos.

// Create a DomainParticipant with default DomainParticipantQos
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos = participant->get_qos();

// Modify QoS attributes
qos.entity_factory().autoenable_created_entities = false;

(continues on next page)

6.16. DDS Layer 155

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Assign the new Qos to the object
participant->set_qos(qos);

Default DomainParticipantQos

The default DomainParticipantQos refers to the value returned by the get_default_participant_qos() member
function on the DomainParticipantFactory singleton. The special value PARTICIPANT_QOS_DEFAULT can be used as
QoS argument on create_participant() or DomainParticipant::set_qos()member functions to indicate that
the current default DomainParticipantQos should be used.

When the system starts, the default DomainParticipantQos is equivalent to the default constructed value
DomainParticipantQos(). The default DomainParticipantQos can be modified at any time using the
set_default_participant_qos() member function on the DomainParticipantFactory singleton. Modifying the
default DomainParticipantQos will not affect already existing DomainParticipant instances.

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos_type1 = DomainParticipantFactory::get_instance()->get_default_
→˓participant_qos();

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(qos_type1) !=

ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a DomainParticipant with the new default DomainParticipantQos.
DomainParticipant* participant_with_qos_type1 =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant_with_qos_type1)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DomainParticipantQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(qos_type2) !=

ReturnCode_t::RETCODE_OK)
{

(continues on next page)

156 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Error
return;

}

// Create a Topic with the new default TopicQos.
DomainParticipant* participant_with_qos_type2 =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant_with_qos_type2)
{

// Error
return;

}

// Resetting the default DomainParticipantQos to the original default constructed values
if (DomainParticipantFactory::get_instance()->set_default_participant_qos(PARTICIPANT_
→˓QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (DomainParticipantFactory::get_instance()->set_default_participant_
→˓qos(DomainParticipantQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

set_default_participant_qos() member function also accepts the value PARTICIPANT_QOS_DEFAULT as
input argument. This will reset the current default DomainParticipantQos to the default constructed value
DomainParticipantQos().

// Create a custom DomainParticipantQos
DomainParticipantQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DomainParticipant with a custom DomainParticipantQos

DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_
→˓participant(0, custom_qos);
if (nullptr == participant)
{

// Error
return;

}

(continues on next page)

6.16. DDS Layer 157

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Set the QoS on the participant to the default
if (participant->set_qos(PARTICIPANT_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (participant->set_qos(DomainParticipantFactory::get_instance()->get_default_
→˓participant_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value PARTICIPANT_QOS_DEFAULT has different meaning depending on where it is used:

• On create_participant() and DomainParticipant::set_qos() it refers to the default DomainPartici-
pantQos as returned by get_default_participant_qos().

• On set_default_participant_qos() it refers to the default constructed DomainParticipantQos().

DomainParticipantListener

DomainParticipantListener is an abstract class defining the callbacks that will be triggered in response to state
changes on the DomainParticipant. By default, all these callbacks are empty and do nothing. The user should imple-
ment a specialization of this class overriding the callbacks that are needed on the application. Callbacks that are not
overridden will maintain their empty implementation.

DomainParticipantListener inherits from TopicListener, PublisherListener, and SubscriberListener. Therefore, it has
the ability to react to every kind of event that is reported to any of its attached Entities. Since events are always notified
to the most specific Entity Listener that can handle the event, callbacks that DomainParticipantListener inherits from
other Listeners will only be called if no other Entity was able to handle the event, either because it has no Listener
attached, or because the callback is disabled by the StatusMask on the Entity.

Additionally, DomainParticipantListener adds the following callbacks:

• on_participant_discovery(): A new DomainParticipant is discovered in the same domain, a previously
known DomainParticipant has been removed, or some DomainParticipant has changed its QoS.

• on_subscriber_discovery(): A new Subscriber is discovered in the same domain, a previously known Sub-
scriber has been removed, or some Subscriber has changed its QoS.

• on_publisher_discovery(): A new Publisher is discovered in the same domain, a previously known Pub-
lisher has been removed, or some Publisher has changed its QoS.

• on_type_discovery(): A new data Type is discovered in the same domain.

• on_type_dependencies_reply(): The Type lookup client received a replay to a getTypeDependencies()
request. This callback can be used to retrieve the new type using the getTypes() request and create a new
dynamic type using the retrieved type object.

• on_type_information_received(): A new TypeInformation has been received from a newly discovered
DomainParticipant.

158 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• onParticipantAuthentication(): Informs about the result of the authentication process of a remote Do-
mainParticipant (either on failure or success).

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomDomainParticipantListener : public DomainParticipantListener
{

public:

CustomDomainParticipantListener()
: DomainParticipantListener()

{
}

virtual ~CustomDomainParticipantListener()
{
}

virtual void on_participant_discovery(
DomainParticipant* /*participant*/,
eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&& info)

{
if (info.status ==␣

→˓eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERED_PARTICIPANT)
{

std::cout << "New participant discovered" << std::endl;
}
else if (info.status ==␣

→˓eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::REMOVED_PARTICIPANT ||
info.status ==␣

→˓eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DROPPED_PARTICIPANT)
{

std::cout << "New participant lost" << std::endl;
}

}

#if HAVE_SECURITY
virtual void onParticipantAuthentication(

DomainParticipant* /*participant*/,
eprosima::fastrtps::rtps::ParticipantAuthenticationInfo&& info)

{
if (info.status ==␣

→˓eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::AUTHORIZED_PARTICIPANT)
{

std::cout << "A participant was authorized" << std::endl;
}
else if (info.status ==␣

→˓eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::UNAUTHORIZED_PARTICIPANT)
{

std::cout << "A participant failed authorization" << std::endl;
}

(continues on next page)

6.16. DDS Layer 159

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

#endif // if HAVE_SECURITY

virtual void on_subscriber_discovery(
DomainParticipant* /*participant*/,
eprosima::fastrtps::rtps::ReaderDiscoveryInfo&& info)

{
if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_

→˓READER)
{

std::cout << "New subscriber discovered" << std::endl;
}
else if (info.status == eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_

→˓READER)
{

std::cout << "New subscriber lost" << std::endl;
}

}

virtual void on_publisher_discovery(
DomainParticipant* /*participant*/,
eprosima::fastrtps::rtps::WriterDiscoveryInfo&& info)

{
if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERED_

→˓WRITER)
{

std::cout << "New publisher discovered" << std::endl;
}
else if (info.status == eprosima::fastrtps::rtps::WriterDiscoveryInfo::REMOVED_

→˓WRITER)
{

std::cout << "New publisher lost" << std::endl;
}

}

virtual void on_type_discovery(
DomainParticipant* participant,
const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
const eprosima::fastrtps::string_255& topic,
const eprosima::fastrtps::types::TypeIdentifier* identifier,
const eprosima::fastrtps::types::TypeObject* object,
eprosima::fastrtps::types::DynamicType_ptr dyn_type)

{
(void)participant, (void)request_sample_id, (void)topic, (void)identifier,␣

→˓(void)object, (void)dyn_type;
std::cout << "New data type discovered" << std::endl;

}

virtual void on_type_dependencies_reply(
DomainParticipant* participant,

(continues on next page)

160 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
const eprosima::fastrtps::types::TypeIdentifierWithSizeSeq& dependencies)

{
(void)participant, (void)request_sample_id, (void)dependencies;
std::cout << "Answer to a request for type dependencies was received" <<␣

→˓std::endl;
}

virtual void on_type_information_received(
DomainParticipant* participant,
const eprosima::fastrtps::string_255 topic_name,
const eprosima::fastrtps::string_255 type_name,
const eprosima::fastrtps::types::TypeInformation& type_information)

{
(void)participant, (void)topic_name, (void)type_name, (void)type_information;
std::cout << "New data type information received" << std::endl;

}

};

DomainParticipantFactory

The sole purpose of this class is to allow the creation and destruction of DomainParticipant objects.
DomainParticipantFactory itself has no factory, it is a singleton object that can be accessed through the
get_instance() static member function on the DomainParticipantFactory class.

The behavior of the DomainParticipantFactory can be modified with the QoS values specified on DomainPar-
ticipantFactoryQos. Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory::set_qos() member function.

DomainParticipantFactory does not accept any Listener, since it is not an Entity.

DomainParticipantFactoryQos

DomainParticipantFactoryQos controls the behavior of the DomainParticipantFactory. Internally it contains the fol-
lowing QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
EntityFactoryQosPolicy entity_factory() Yes

Since the DomainParticipantFactory is a singleton, its QoS can only be modified with the
DomainParticipantFactory::set_qos() member function.

DomainParticipantFactoryQos qos;

// Setting autoenable_created_entities to true makes the created DomainParticipants
// to be enabled upon creation
qos.entity_factory().autoenable_created_entities = true;
if (DomainParticipantFactory::get_instance()->set_qos(qos) != ReturnCode_t::RETCODE_OK)
{

(continues on next page)

6.16. DDS Layer 161

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Error
return;

}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.
// The returned DomainParticipant is already enabled
DomainParticipant* enabled_participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == enabled_participant)
{

// Error
return;

}

// Setting autoenable_created_entities to false makes the created DomainParticipants
// to be disabled upon creation
qos.entity_factory().autoenable_created_entities = false;
if (DomainParticipantFactory::get_instance()->set_qos(qos) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a DomainParticipant with the new DomainParticipantFactoryQos.
// The returned DomainParticipant is disabled and will need to be enabled explicitly
DomainParticipant* disabled_participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == disabled_participant)
{

// Error
return;

}

Loading profiles from an XML file

To create Entities based on XML profiles, the file containing such profiles must be loaded first.

If the profile is described in one of the default loaded files, it will be automatically available on initialization. Otherwise,
load_XML_profiles_file()member function can be used to load the profiles in the XML. See section XML profiles
for more information regarding XML profile format and automatic loading.

Once loaded, the name of the profiles can be used to create Entities that will have QoS settings according to the profile
specifications.

// Load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Profiles can now be used to create Entities
DomainParticipant* participant_with_profile =

DomainParticipantFactory::get_instance()->create_participant_with_profile(0,
→˓"participant_profile"); (continues on next page)

162 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (nullptr == participant_with_profile)
{

// Error
return;

}

Creating a DomainParticipant

Creation of a DomainParticipant is done with the create_participant() member function on the DomainPartici-
pantFactory singleton, that acts as a factory for the DomainParticipant.

Mandatory arguments are:

• The DomainId that identifies the domain where the DomainParticipant will be created.

• The DomainParticipantQos describing the behavior of the DomainParticipant. If the provided value is
TOPIC_QOS_DEFAULT, the value of the DomainParticipantQos is used.

Optional arguments are:

• A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantListener.
By default all events are enabled.

Warning: Following the DDSI-RTPS V2.2 standard (Section 9.6.1.1), the default ports are calculated depending
on the DomainId, as it is explained in section Well Known Ports. Thus, it is encouraged to use DomainId lower
than 200 (over DomainId 233 default port assign will fail consistently).

create_participant() will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant with default DomainParticipantQos and no Listener
// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.
DomainParticipant* participant_with_default_attributes =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant_with_default_attributes)
{

// Error
return;

}

// A custom DomainParticipantQos can be provided to the creation method
DomainParticipantQos custom_qos;

// Modify QoS attributes
// (...)

DomainParticipant* participant_with_custom_qos =
DomainParticipantFactory::get_instance()->create_participant(0, custom_qos);

if (nullptr == participant_with_custom_qos)
(continues on next page)

6.16. DDS Layer 163

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

// Create a DomainParticipant with default QoS and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
// The value PARTICIPANT_QOS_DEFAULT is used to denote the default QoS.
CustomDomainParticipantListener custom_listener;
DomainParticipant* participant_with_default_qos_and_custom_listener =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT,

&custom_listener);
if (nullptr == participant_with_default_qos_and_custom_listener)
{

// Error
return;

}

Profile based creation of a DomainParticipant

Instead of using a DomainParticipantQos, the name of a profile can be used to create a DomainParticipant with the
create_participant_with_profile() member function on the DomainParticipantFactory singleton.

Mandatory arguments are:

• The DomainId that identifies the domain where the DomainParticipant will be created. Do not use DomainId
higher than 200 (see Creating a DomainParticipant).

• The name of the profile to be applied to the DomainParticipant.

Optional arguments are:

• A Listener derived from DomainParticipantListener, implementing the callbacks that will be triggered in re-
sponse to events and state changes on the DomainParticipant. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DomainParticipantListener.
By default all events are enabled.

create_participant_with_profile() will return a null pointer if there was an error during the operation, e.g if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant using a profile and no Listener
DomainParticipant* participant_with_profile =

DomainParticipantFactory::get_instance()->create_participant_with_profile(0,
→˓"participant_profile");
if (nullptr == participant_with_profile)
{

(continues on next page)

164 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Error
return;

}

// Create a DomainParticipant using a profile and a custom Listener.
// CustomDomainParticipantListener inherits from DomainParticipantListener.
CustomDomainParticipantListener custom_listener;
DomainParticipant* participant_with_profile_and_custom_listener =

DomainParticipantFactory::get_instance()->create_participant_with_profile(0,
→˓"participant_profile",

&custom_listener);
if (nullptr == participant_with_profile_and_custom_listener)
{

// Error
return;

}

Deleting a DomainParticipant

A DomainParticipant can be deleted with the delete_participant() member function on the DomainParticipant-
Factory singleton.

Note: A DomainParticipant can only be deleted if all Entities belonging to the participant (Publisher, Subscriber or
Topic) have already been deleted. Otherwise, the function will issue an error and the DomainParticipant will not be
deleted. This can be performed by using the delete_contained_entities() member function of the DomainPar-
ticipant.

// Create a DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Use the DomainParticipant to communicate
// (...)

// Delete entities created by the DomainParticipant
if (participant->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{

// DomainParticipant failed to delete the entities it created.
return;

}

// Delete the DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) !=␣
→˓ReturnCode_t::RETCODE_OK) (continues on next page)

6.16. DDS Layer 165

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

Partitions

Partitions introduce a logical entity isolation level concept inside the physical isolation induced by a Domain. They
represent another level to separate Publishers and Subscribers beyond Domain and Topic. For a Publisher to commu-
nicate with a Subscriber, they have to belong at least to one common partition. In this sense, partitions represent a light
mechanism to provide data separation among endpoints:

• Unlike Domain and Topic, Partitions can be changed dynamically during the life cycle of the endpoint with
little cost. Specifically, no new threads are launched, no new memory is allocated, and the change history is
not affected. Beware that modifying the Partition membership of endpoints will trigger the announcement of
the new QoS configuration, and as a result, new endpoint matching may occur, depending on the new Partition
configuration. Changes on the memory allocation and running threads may occur due to the matching of remote
endpoints.

• Unlike Domain and Topic, an endpoint can belong to several Partitions at the same time. For certain data to be
shared over different Topics, there must be a different Publisher for each Topic, each of them sharing its own
history of changes. On the other hand, a single Publisher can share the same data over different Partitions using
a single topic data change, thus reducing network overload.

The Partition membership of an endpoint can be configured on the PartitionQosPolicy data member of the PublisherQos
or SubscriberQos objects. This member holds a list of Partition name strings. If no Partition is defined for an entity, it
will be automatically included in the default nameless Partition. Therefore, a Publisher and a Subscriber that specify
no Partition will still be able to communicate through the default nameless Partition.

Warning: Partitions are linked to the endpoint and not to the changes. This means that the endpoint history is
oblivious to modifications in the Partitions. For example, if a Publisher switches Partitions and afterwards needs to
resend some older change again, it will deliver it to the new Partition set, regardless of which Partitions were defined
when the change was created. This means that a late joiner Subscriber may receive changes that were created when
another set of Partitions was active.

Wildcards in Partitions

Partition name entries can have wildcards following the naming conventions defined by the POSIX fnmatch API
(1003.2-1992 section B.6). Entries with wildcards can match several names, allowing an endpoint to easily be included
in several Partitions. Two Partition names with wildcards will match if either of them matches the other one according
to fnmatch. That is, the matching is checked both ways. For example, consider the following configuration:

• A Publisher with Partition part*

• A Subscriber with Partition partition*

Even though partition* does not match part*, these Publisher and Subscriber will communicate between them
because part* matches partition*.

Note that a Partition with name * will match any other partition except the default Partition.

166 Chapter 6. Structure of the documentation

https://standards.ieee.org/standard/1003_2-1992.html

Fast DDS Documentation, Release 2.8.2

Full example

Given a system with the following Partition configuration:

Participant_1 Pub_11 {“Partition_1”, “Partition_2”}
Pub_12 {“*”}

Participant_2 Pub_21 {}
Pub_22 {“Partition*”}

Participant_3 Subs_31 {“Partition_1”}
Subs_32 {“Partition_2”}
Subs_33 {“Partition_3”}
Subs_34 {}

The endpoints will finally match the Partitions depicted on the following table. Note that Pub_12 does not match the
default Partition.

Participant_1 Participant_2 Participant_3
Pub_11 Pub_12 Pub_21 Pub_22 Subs_31 Subs_32 Subs_33 Subs_34

Partition_1 X X × X X × × ×
Partition_2 X X × X × X × ×
Partition_3 × X × X × × X ×
{default} × × X × × × × X

The following table provides the communication matrix for the given example:

Participant_1 Participant_2
Pub_11 Pub_12 Pub_21 Pub_22

Participant_3 Subs_31 X X × X
Subs_32 X X × X
Subs_33 × X × X
Subs_34 × × X ×

The following piece of code shows the set of parameters needed for the use case depicted in this example.

6.16. DDS Layer 167

Fast DDS Documentation, Release 2.8.2

C++

PublisherQos pub_11_qos;
pub_11_qos.partition().push_back("Partition_1");
pub_11_qos.partition().push_back("Partition_2");

PublisherQos pub_12_qos;
pub_12_qos.partition().push_back("*");

PublisherQos pub_21_qos;
//No partitions defined for pub_21

PublisherQos pub_22_qos;
pub_22_qos.partition().push_back("Partition*");

SubscriberQos subs_31_qos;
subs_31_qos.partition().push_back("Partition_1");

SubscriberQos subs_32_qos;
subs_32_qos.partition().push_back("Partition_2");

SubscriberQos subs_33_qos;
subs_33_qos.partition().push_back("Partition_3");

SubscriberQos subs_34_qos;
//No partitions defined for subs_34

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_writer profile_name="pub_11">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_1</name>
<name>Partition_2</name>

</names>
</partition>

</qos>
</data_writer>

<data_writer profile_name="pub_12">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>*</name>
</names>

</partition>
</qos>

</data_writer>

<data_writer profile_name="pub_21">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
</data_writer>

<data_writer profile_name="pub_22">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition*</name>
</names>

</partition>
</qos>

</data_writer>

<data_reader profile_name="subs_31">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_1</name>
</names>

</partition>
</qos>

</data_reader>

<data_reader profile_name="subs_32">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_2</name>
</names>

</partition>
</qos>

</data_reader>

<data_reader profile_name="subs_33">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
<qos>

<partition>
<names>

<name>Partition_3</name>
</names>

</partition>
</qos>

</data_reader>

<data_reader profile_name="subs_34">
<topic>

<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>

</topic>
</data_reader>

</profiles>

168 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.16.3 Publisher

A publication is defined by the association of a DataWriter to a Publisher. To start publishing the values of a data
instance, the application creates a new DataWriter in a Publisher. This DataWriter will be bound to the Topic that
describes the data type that is being transmitted. Remote subscriptions that match with this Topic will be able to
receive the data value updates from the DataWriter.

Publisher

The Publisher acts on behalf of one or several DataWriter objects that belong to it. It serves as a container that allows
grouping different DataWriter objects under a common configuration given by the PublisherQos of the Publisher.

DataWriter objects that belong to the same Publisher do not have any other relation among each other beyond the
PublisherQos of the Publisher and act independently otherwise. Specifically, a Publisher can host DataWriter objects
for different Topics and data types.

PublisherQos

PublisherQos controls the behavior of the Publisher. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy presentation() Yes
PartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data() Yes
EntityFactoryQosPolicy entity_factory() Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created Publisher can be modified using the Publisher::set_qos()member function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Publisher with default PublisherQos
Publisher* publisher =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
(continues on next page)

6.16. DDS Layer 169

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

PublisherQos qos = publisher->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
publisher->set_qos(qos);

Default PublisherQos

The default PublisherQos refers to the value returned by the get_default_publisher_qos() member function
on the DomainParticipant instance. The special value PUBLISHER_QOS_DEFAULT can be used as QoS argument on
create_publisher() or Publisher::set_qos() member functions to indicate that the current default Publish-
erQos should be used.

When the system starts, the default PublisherQos is equivalent to the default constructed value PublisherQos(). The
default PublisherQos can be modified at any time using the set_default_publisher_qos()member function on the
DomainParticipant instance. Modifying the default PublisherQos will not affect already existing Publisher instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
PublisherQos qos_type1 = participant->get_default_publisher_qos();

// Modify QoS attributes
// (...)

// Set as the new default PublisherQos
if (participant->set_default_publisher_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_qos_type1 =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_type1)
{

// Error
return;

}

(continues on next page)

170 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Get the current QoS or create a new one from scratch
PublisherQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default PublisherQos
if (participant->set_default_publisher_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a Publisher with the new default PublisherQos.
Publisher* publisher_with_qos_type2 =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_qos_type2)
{

// Error
return;

}

// Resetting the default PublisherQos to the original default constructed values
if (participant->set_default_publisher_qos(PUBLISHER_QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_publisher_qos(PublisherQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

set_default_publisher_qos() member function also accepts the special value PUBLISHER_QOS_DEFAULT as in-
put argument. This will reset the current default PublisherQos to default constructed value PublisherQos().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a custom PublisherQos
(continues on next page)

6.16. DDS Layer 171

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

PublisherQos custom_qos;

// Modify QoS attributes
// (...)

// Create a publisher with a custom PublisherQos
Publisher* publisher = participant->create_publisher(custom_qos);
if (nullptr == publisher)
{

// Error
return;

}

// Set the QoS on the publisher to the default
if (publisher->set_qos(PUBLISHER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (publisher->set_qos(participant->get_default_publisher_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value PUBLISHER_QOS_DEFAULT has different meaning depending on where it is used:

• On create_publisher() and Publisher::set_qos() it refers to the default PublisherQos. as returned by
get_default_publisher_qos().

• On set_default_publisher_qos() it refers to the default constructed PublisherQos().

PublisherListener

PublisherListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the Publisher. By default, all these callbacks are empty and do nothing. The user should implement a specialization of
this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

PublisherListener inherits from DataWriterListener. Therefore, it has the ability to react to all events that are re-
ported to the DataWriter. Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that PublisherListener inherits from DataWriterListener will only be called if the triggering DataWriter
has no Listener attached, or if the callback is disabled by the StatusMask on the DataWriter.

PublisherListener does not add any new callback. Please, refer to the DataWriterListener for the list of inherited
callbacks and override examples.

172 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Creating a Publisher

A Publisher always belongs to a DomainParticipant. Creation of a Publisher is done with the create_publisher()
member function on the DomainParticipant instance, that acts as a factory for the Publisher.

Mandatory arguments are:

• The PublisherQos describing the behavior of the Publisher. If the provided value is PUBLISHER_QOS_DEFAULT,
the value of the Default PublisherQos is used.

Optional arguments are:

• A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher() will return a null pointer if there was an error during the operation, e.g. if the provided QoS is
not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Publisher with default PublisherQos and no Listener
// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.
Publisher* publisher_with_default_qos =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher_with_default_qos)
{

// Error
return;

}

// A custom PublisherQos can be provided to the creation method
PublisherQos custom_qos;

// Modify QoS attributes
// (...)

Publisher* publisher_with_custom_qos =
participant->create_publisher(custom_qos);

if (nullptr == publisher_with_custom_qos)
{

// Error
return;

}

// Create a Publisher with default QoS and a custom Listener.
(continues on next page)

6.16. DDS Layer 173

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// CustomPublisherListener inherits from PublisherListener.
// The value PUBLISHER_QOS_DEFAULT is used to denote the default QoS.
CustomPublisherListener custom_listener;
Publisher* publisher_with_default_qos_and_custom_listener =

participant->create_publisher(PUBLISHER_QOS_DEFAULT, &custom_listener);
if (nullptr == publisher_with_default_qos_and_custom_listener)
{

// Error
return;

}

Profile based creation of a Publisher

Instead of using a PublisherQos, the name of a profile can be used to create a Publisher with the
create_publisher_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:

• A string with the name that identifies the Publisher.

Optional arguments are:

• A Listener derived from PublisherListener, implementing the callbacks that will be triggered in response to
events and state changes on the Publisher. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the PublisherListener. By
default all events are enabled.

create_publisher_with_profile() will return a null pointer if there was an error during the operation, e.g. if the
provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Publisher using a profile and no Listener
Publisher* publisher_with_profile =

participant->create_publisher_with_profile("publisher_profile");
if (nullptr == publisher_with_profile)
{

// Error
(continues on next page)

174 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

return;
}

// Create a Publisher using a profile and a custom Listener.
// CustomPublisherListener inherits from PublisherListener.
CustomPublisherListener custom_listener;
Publisher* publisher_with_profile_and_custom_listener =

participant->create_publisher_with_profile("publisher_profile", &custom_
→˓listener);
if (nullptr == publisher_with_profile_and_custom_listener)
{

// Error
return;

}

Deleting a Publisher

A Publisher can be deleted with the delete_publisher()member function on the DomainParticipant instance where
the Publisher was created.

Note: A Publisher can only be deleted if all Entities belonging to the Publisher (DataWriters) have already been
deleted. Otherwise, the function will issue an error and the Publisher will not be deleted. This can be performed by
using the delete_contained_entities() member function of the Publisher.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Publisher
Publisher* publisher =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{

// Error
return;

}

// Use the Publisher to communicate
// (...)

// Delete the entities the Publisher created.
if (publisher->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{

(continues on next page)

6.16. DDS Layer 175

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Publisher failed to delete the entities it created.
return;

}

// Delete the Publisher
if (participant->delete_publisher(publisher) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

DataWriter

A DataWriter is attached to exactly one Publisher that acts as a factory for it. Additionally, each DataWriter is bound
to a single Topic since its creation. This Topic must exist prior to the creation of the DataWriter, and must be bound to
the data type that the DataWriter wants to publish.

The effect of creating a new DataWriter in a Publisher for a specific Topic is to initiate a new publication with the name
and data type described by the Topic.

Once the DataWriter is created, the application can inform of changes in the data value using the write() member
function on the DataWriter. These changes will be transmitted to all subscriptions matched with this publication.

DataWriterQos

DataWriterQos controls the behavior of the DataWriter. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability() No
DurabilityServiceQosPolicy durability_service() Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget() Yes
LivelinessQosPolicy liveliness() No
ReliabilityQosPolicy reliability() No (*)
DestinationOrderQosPolicy destination_order() No
HistoryQosPolicy history() Yes
ResourceLimitsQosPolicy resource_limits() Yes
TransportPriorityQosPolicy transport_priority() Yes
LifespanQosPolicy lifespan() Yes
UserDataQosPolicy user_data() Yes
OwnershipQosPolicy ownership() No
OwnershipStrengthQosPolicy ownership_strength() Yes
WriterDataLifecycleQosPolicy writer_data_lifecycle() Yes
PublishModeQosPolicy publish_mode() Yes
DataRepresentationQosPolicy representation() Yes
PropertyPolicyQos properties() Yes
RTPSReliableWriterQos reliable_writer_qos() Yes
RTPSEndpointQos endpoint() Yes
WriterResourceLimitsQos writer_resource_limits() Yes
ThroughputControllerDescriptor throughput_controller() Yes
DataSharingQosPolicy data_sharing() No

176 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The following non-consolidated property-assigned QoS apply to DataWriters:

Property name Non-consolidated QoS
fastdds.push_mode DataWriter operating mode QoS Policy
partitions Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataWriter can be modified using the DataWriter::set_qos() member
function.

// Create a DataWriter with default DataWriterQos
DataWriter* data_writer =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DataWriterQos qos = data_writer->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
data_writer->set_qos(qos);

Default DataWriterQos

The default DataWriterQos refers to the value returned by the get_default_datawriter_qos() member func-
tion on the Publisher instance. The special value DATAWRITER_QOS_DEFAULT can be used as QoS argument
on create_datawriter() or DataWriter::set_qos() member functions to indicate that the current default
DataWriterQos should be used.

When the system starts, the default DataWriterQos is equivalent to the default constructed value DataWriterQos().
The default DataWriterQos can be modified at any time using the set_default_datawriter_qos() member func-
tion on the Publisher instance. Modifying the default DataWriterQos will not affect already existing DataWriter in-
stances.

// Get the current QoS or create a new one from scratch
DataWriterQos qos_type1 = publisher->get_default_datawriter_qos();

// Modify QoS attributes
// (...)

// Set as the new default DataWriterQos
(continues on next page)

6.16. DDS Layer 177

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (publisher->set_default_datawriter_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a DataWriter with the new default DataWriterQos.
DataWriter* data_writer_with_qos_type1 =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_type1)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DataWriterQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default DataWriterQos
if (publisher->set_default_datawriter_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a DataWriter with the new default DataWriterQos.
DataWriter* data_writer_with_qos_type2 =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_qos_type2)
{

// Error
return;

}

// Resetting the default DataWriterQos to the original default constructed values
if (publisher->set_default_datawriter_qos(DATAWRITER_QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (publisher->set_default_datawriter_qos(DataWriterQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

178 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

set_default_datawriter_qos() member function also accepts the special value DATAWRITER_QOS_DEFAULT as
input argument. This will reset the current default DataWriterQos to default constructed value DataWriterQos().

// Create a custom DataWriterQos
DataWriterQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DataWriter with a custom DataWriterQos
DataWriter* data_writer = publisher->create_datawriter(topic, custom_qos);
if (nullptr == data_writer)
{

// Error
return;

}

// Set the QoS on the DataWriter to the default
if (data_writer->set_qos(DATAWRITER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (data_writer->set_qos(publisher->get_default_datawriter_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value DATAWRITER_QOS_DEFAULT has different meaning depending on where it is used:

• On create_datawriter() and DataWriter::set_qos() it refers to the default DataWriterQos as returned
by get_default_datawriter_qos().

• On set_default_datawriter_qos() it refers to the default constructed DataWriterQos().

DataWriterListener

DataWriterListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the DataWriter. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

DataWriterListener defines the following callbacks:

• on_publication_matched(): The DataWriter has found a DataReader that matches the Topic and has a com-
mon partition and a compatible QoS, or has ceased to be matched with a DataReader that was previously con-
sidered to be matched.

• on_offered_deadline_missed(): The DataWriter failed to provide data within the deadline period config-
ured on its DataWriterQos. It will be called for each deadline period and data instance for which the DataWriter

6.16. DDS Layer 179

Fast DDS Documentation, Release 2.8.2

failed to provide data.

• on_offered_incompatible_qos(): The DataWriter has found a DataReader that matches the Topic and has
a common partition, but with a requested QoS that is incompatible with the one defined on the DataWriter.

• on_liveliness_lost(): The DataWriter did not respect the liveliness configuration on its DataWriterQos,
and therefore, DataReader entities will consider the DataWriter as no longer active.

class CustomDataWriterListener : public DataWriterListener
{

public:

CustomDataWriterListener()
: DataWriterListener()

{
}

virtual ~CustomDataWriterListener()
{
}

virtual void on_publication_matched(
DataWriter* writer,
const PublicationMatchedStatus& info)

{
(void)writer
;
if (info.current_count_change == 1)
{

std::cout << "Matched a remote Subscriber for one of our Topics" <<␣
→˓std::endl;

}
else if (info.current_count_change == -1)
{

std::cout << "Unmatched a remote Subscriber" << std::endl;
}

}

virtual void on_offered_deadline_missed(
DataWriter* writer,
const OfferedDeadlineMissedStatus& status)

{
(void)writer, (void)status;
std::cout << "Some data could not be delivered on time" << std::endl;

}

virtual void on_offered_incompatible_qos(
DataWriter* /*writer*/,
const OfferedIncompatibleQosStatus& status)

{
std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << status.

→˓last_policy_id <<
")" << std::endl;

(continues on next page)

180 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

virtual void on_liveliness_lost(
DataWriter* writer,
const LivelinessLostStatus& status)

{
(void)writer, (void)status;
std::cout << "Liveliness lost. Matched Subscribers will consider us offline" <<␣

→˓std::endl;
}

};

Creating a DataWriter

A DataWriter always belongs to a Publisher. Creation of a DataWriter is done with the create_datawriter()
member function on the Publisher instance, that acts as a factory for the DataWriter.

Mandatory arguments are:

• A Topic bound to the data type that will be transmitted.

• The DataWriterQos describing the behavior of the DataWriter. If the provided value is
DATAWRITER_QOS_DEFAULT, the value of the Default DataWriterQos is used.

Optional arguments are:

• A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter() will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DataWriter with default DataWriterQos and no Listener
// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.
DataWriter* data_writer_with_default_qos =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer_with_default_qos)
{

// Error
return;

}

// A custom DataWriterQos can be provided to the creation method
DataWriterQos custom_qos;

// Modify QoS attributes
// (...)

DataWriter* data_writer_with_custom_qos =
publisher->create_datawriter(topic, custom_qos);

(continues on next page)

6.16. DDS Layer 181

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (nullptr == data_writer_with_custom_qos)
{

// Error
return;

}

// Create a DataWriter with default QoS and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
// The value DATAWRITER_QOS_DEFAULT is used to denote the default QoS.
CustomDataWriterListener custom_listener;
DataWriter* data_writer_with_default_qos_and_custom_listener =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT, &custom_listener);
if (nullptr == data_writer_with_default_qos_and_custom_listener)
{

// Error
return;

}

Profile based creation of a DataWriter

Instead of using a DataWriterQos, the name of a profile can be used to create a DataWriter with the
create_datawriter_with_profile() member function on the Publisher instance.

Mandatory arguments are:

• A Topic bound to the data type that will be transmitted.

• A string with the name that identifies the DataWriter.

Optional arguments are:

• A Listener derived from DataWriterListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataWriter. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DataWriterListener. By
default all events are enabled.

create_datawriter_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DataWriter using a profile and no Listener
DataWriter* data_writer_with_profile =

publisher->create_datawriter_with_profile(topic, "data_writer_profile");
if (nullptr == data_writer_with_profile)
{

// Error
return;

}
(continues on next page)

182 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Create a DataWriter using a profile and a custom Listener.
// CustomDataWriterListener inherits from DataWriterListener.
CustomDataWriterListener custom_listener;
DataWriter* data_writer_with_profile_and_custom_listener =

publisher->create_datawriter_with_profile(topic, "data_writer_profile", &custom_
→˓listener);
if (nullptr == data_writer_with_profile_and_custom_listener)
{

// Error
return;

}

Deleting a DataWriter

A DataWriter can be deleted with the delete_datawriter() member function on the Publisher instance where the
DataWriter was created.

// Create a DataWriter
DataWriter* data_writer =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{

// Error
return;

}

// Use the DataWriter to communicate
// (...)

// Delete the DataWriter
if (publisher->delete_datawriter(data_writer) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Publishing data

The user informs of a change in the value of a data instance with the write()member function on the DataWriter. This
change will then be communicated to every DataReader matched with the DataWriter. As a side effect, this operation
asserts liveliness on the DataWriter itself, the Publisher and the DomainParticipant.

The function takes two arguments:

• A pointer to the data instance with the new values.

• The handler to the instance.

An empty (i.e., default constructed InstanceHandle_t) instance handler can be used for the argument handle. This
indicates that the identity of the instance should be automatically deduced from the key of the instance data. Alter-

6.16. DDS Layer 183

Fast DDS Documentation, Release 2.8.2

natively, the member function write() is overloaded to take only the pointer to the data instance, which will always
deduced the identity from the key of the instance data.

If the handle is not empty, then it must correspond to the value obtained with the getKey() of the TypeSupport
instance. Otherwise the write function will fail with RETCODE_PRECONDITION_NOT_MET.

// Register the data type in the DomainParticipant.
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topic* custom_topic =

participant->create_topic("topic_name", custom_type_support.get_type_name(),␣
→˓TOPIC_QOS_DEFAULT);
if (nullptr == custom_topic)
{

// Error
return;

}

// Create a DataWriter
DataWriter* data_writer =

publisher->create_datawriter(custom_topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == data_writer)
{

// Error
return;

}

// Get a data instance
void* data = custom_type_support->createData();

// Fill the data values
// (...)

// Publish the new value, deduce the instance handle
if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) != ReturnCode_
→˓t::RETCODE_OK)
{

// Error
return;

}

// The data instance can be reused to publish new values,
// but delete it at the end to avoid leaks
custom_type_support->deleteData(data);

184 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Blocking of the write operation

If the reliability kind is set to RELIABLE on the DataWriterQos, the write() operation may block. Specifically, if
the limits specified in the configured resource limits have been reached, the write() operation will block waiting for
space to become available. Under these circumstances, the reliability max_blocking_time configures the maximum
time the write operation may block waiting. If max_blocking_time elapses before the DataWriter is able to store the
modification without exceeding the limits, the write operation will fail and return TIMEOUT.

Borrowing a data buffer

When the user calls write() with a new sample value, the data is copied from the given sample to the DataWriter’s
memory. For large data types this copy can consume significant time and memory resources. Instead, the DataWriter
can loan a sample from its memory to the user, and the user can fill this sample with the required values. When write()
is called with such a loaned sample, the DataWriter does not copy its contents, as it already owns the buffer.

To use loaned data samples in publications, perform the following steps:

1. Get a reference to a loaned sample using loan_sample().

2. Use the reference to build the data sample.

3. Write the sample using write().

Once write() has been called with a loaned sample, the loan is considered returned, and it is not safe to make any
changes on the contents of the sample.

If function loan_sample() is called but the sample is never written, the loan must be returned to the DataWriter using
discard_loan(). Otherwise the DataWriter may run out of samples.

// Borrow a data instance
void* data = nullptr;
if (ReturnCode_t::RETCODE_OK == data_writer->loan_sample(data))
{

bool error = false;

// Fill the data values
// (...)

if (error)
{

// Return the loan without publishing
data_writer->discard_loan(data);
return;

}

// Publish the new value
if (data_writer->write(data, eprosima::fastrtps::rtps::InstanceHandle_t()) !=␣

→˓ReturnCode_t::RETCODE_OK)
{

// Error
return;

}
}

// The data instance can be reused to publish new values,
(continues on next page)

6.16. DDS Layer 185

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// but delete it at the end to avoid leaks
custom_type_support->deleteData(data);

6.16.4 Subscriber

A subscription is defined by the association of a DataReader to a Subscriber. To start receiving updates of a publication,
the application creates a new DataReader in a Subscriber. This DataReader will be bound to the Topic that describes
the data type that is going to be received. The DataReader will then start receiving data value updates from remote
publications that match this Topic.

When the Subscriber receives data, it informs the application that new data is available. Then, the application can use
the DataReader to get the received data.

Fig. 7: Subscriber class diagram

Subscriber

The Subscriber acts on behalf of one or several DataReader objects that belong to it. It serves as a container that
allows grouping different DataReader objects under a common configuration given by the SubscriberQos of the Sub-
scriber.

DataReader objects that belong to the same Subscriber do not have any other relation among each other beyond the
SubscriberQos of the Subscriber and act independently otherwise. Specifically, a Subscriber can host DataReader
objects for different topics and data types.

SubscriberQos

SubscriberQos controls the behavior of the Subscriber. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
PresentationQosPolicy presentation() Yes
PartitionQosPolicy partition() Yes
GroupDataQosPolicy group_data() Yes
EntityFactoryQosPolicy entity_factory() Yes

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

The QoS value of a previously created Subscriber can be modified using the Subscriber::set_qos()member func-
tion.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

(continues on next page)

186 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

// Create a Subscriber with default SubscriberQos
Subscriber* subscriber =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos qos = subscriber->get_qos();

// Modify QoS attributes
qos.entity_factory().autoenable_created_entities = false;

// Assign the new Qos to the object
subscriber->set_qos(qos);

Default SubscriberQos

The default SubscriberQos refers to the value returned by the get_default_subscriber_qos() member function
on the DomainParticipant instance. The special value SUBSCRIBER_QOS_DEFAULT can be used as QoS argument
on create_subscriber() or Subscriber::set_qos() member functions to indicate that the current default Sub-
scriberQos should be used.

When the system starts, the default SubscriberQos is equivalent to the default constructed value SubscriberQos().
The default SubscriberQos can be modified at any time using the set_default_subscriber_qos()member function
on the DomainParticipant instance. Modifying the default SubscriberQos will not affect already existing Subscriber
instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos qos_type1 = participant->get_default_subscriber_qos();

// Modify QoS attributes
// (...)

// Set as the new default SubscriberQos
if (participant->set_default_subscriber_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{

(continues on next page)

6.16. DDS Layer 187

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Error
return;

}

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_qos_type1 =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qos_type1)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
SubscriberQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default SubscriberQos
if (participant->set_default_subscriber_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a Subscriber with the new default SubscriberQos.
Subscriber* subscriber_with_qos_type2 =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_qos_type2)
{

// Error
return;

}

// Resetting the default SubscriberQos to the original default constructed values
if (participant->set_default_subscriber_qos(SUBSCRIBER_QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_subscriber_qos(SubscriberQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

set_default_subscriber_qos() member function also accepts the special value SUBSCRIBER_QOS_DEFAULT as
input argument. This will reset the current default SubscriberQos to default constructed value SubscriberQos().

188 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a custom SubscriberQos
SubscriberQos custom_qos;

// Modify QoS attributes
// (...)

// Create a subscriber with a custom SubscriberQos
Subscriber* subscriber = participant->create_subscriber(custom_qos);
if (nullptr == subscriber)
{

// Error
return;

}

// Set the QoS on the subscriber to the default
if (subscriber->set_qos(SUBSCRIBER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (subscriber->set_qos(participant->get_default_subscriber_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value SUBSCRIBER_QOS_DEFAULT has different meaning depending on where it is used:

• On create_subscriber() and Subscriber::set_qos() it refers to the default SubscriberQos as returned
by get_default_subscriber_qos().

• On set_default_subscriber_qos() it refers to the default constructed SubscriberQos().

6.16. DDS Layer 189

Fast DDS Documentation, Release 2.8.2

SubscriberListener

SubscriberListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the Subscriber. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

SubscriberListener inherits from DataReaderListener. Therefore, it has the ability to react to all events that are reported
to the DataReader. Since events are always notified to the most specific Entity Listener that can handle the event,
callbacks that SubscriberListener inherits from DataReaderListener will only be called if the triggering DataReader
has no Listener attached, or if the callback is disabled by the StatusMask on the DataReader.

Additionally, SubscriberListener adds the following callback:

• on_data_on_readers(): New data is available on any DataReader belonging to this Subscriber. There is no
queuing of invocations to this callback, meaning that if several new data changes are received at once, only one
callback invocation may be issued for all of them, instead of one per change. If the application is retrieving the
received data on this callback, it must keep reading data until no new changes are left.

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomSubscriberListener : public SubscriberListener
{

public:

CustomSubscriberListener()
: SubscriberListener()

{
}

virtual ~CustomSubscriberListener()
{
}

virtual void on_data_on_readers(
Subscriber* sub)

{
(void)sub;
std::cout << "New data available" << std::endl;

}

};

190 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Creating a Subscriber

A Subscriber always belongs to a DomainParticipant. Creation of a Subscriber is done with the
create_subscriber()member function on the DomainParticipant instance, that acts as a factory for the Subscriber.

Mandatory arguments are:

• The SubscriberQos describing the behavior of the Subscriber. If the provided value is
SUBSCRIBER_QOS_DEFAULT, the value of the Default SubscriberQos is used.

Optional arguments are:

• A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

create_subscriber() will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Subscriber with default SubscriberQos and no Listener
// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.
Subscriber* subscriber_with_default_qos =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber_with_default_qos)
{

// Error
return;

}

// A custom SubscriberQos can be provided to the creation method
SubscriberQos custom_qos;

// Modify QoS attributes
// (...)

Subscriber* subscriber_with_custom_qos =
participant->create_subscriber(custom_qos);

if (nullptr == subscriber_with_custom_qos)
{

// Error
return;

}

// Create a Subscriber with default QoS and a custom Listener.
(continues on next page)

6.16. DDS Layer 191

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// CustomSubscriberListener inherits from SubscriberListener.
// The value SUBSCRIBER_QOS_DEFAULT is used to denote the default QoS.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_default_qos_and_custom_listener =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, &custom_listener);
if (nullptr == subscriber_with_default_qos_and_custom_listener)
{

// Error
return;

}

Profile based creation of a Subscriber

Instead of using a SubscriberQos, the name of a profile can be used to create a Subscriber with the
create_subscriber_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:

• A string with the name that identifies the Subscriber.

Optional arguments are:

• A Listener derived from SubscriberListener, implementing the callbacks that will be triggered in response to
events and state changes on the Subscriber. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the SubscriberListener. By
default all events are enabled.

create_subscriber_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Subscriber using a profile and no Listener
Subscriber* subscriber_with_profile =

participant->create_subscriber_with_profile("subscriber_profile");
if (nullptr == subscriber_with_profile)
{

// Error
(continues on next page)

192 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

return;
}

// Create a Subscriber using a profile and a custom Listener.
// CustomSubscriberListener inherits from SubscriberListener.
CustomSubscriberListener custom_listener;
Subscriber* subscriber_with_profile_and_custom_listener =

participant->create_subscriber_with_profile("subscriber_profile", &custom_
→˓listener);
if (nullptr == subscriber_with_profile_and_custom_listener)
{

// Error
return;

}

Deleting a Subscriber

A Subscriber can be deleted with the delete_subscriber() member function on the DomainParticipant instance
where the Subscriber was created.

Note: A Subscriber can only be deleted if all Entities belonging to the Subscriber (DataReaders) have already been
deleted. Otherwise, the function will issue an error and the Subscriber will not be deleted. This can be performed by
using the delete_contained_entities() member function of the Subscriber.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Subscriber
Subscriber* subscriber =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{

// Error
return;

}

// Use the Subscriber to communicate
// (...)

// Delete the entities the subscriber created
if (subscriber->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{

(continues on next page)

6.16. DDS Layer 193

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Subscriber failed to delete the entities it created
return;

}

// Delete the Subscriber
if (participant->delete_subscriber(subscriber) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

DataReader

A DataReader is attached to exactly one Subscriber that acts as a factory for it. Additionally, each DataReader is
bound to a single Topic since its creation. This Topic must exist prior to the creation of the DataReader, and must be
bound to the data type that the DataReader wants to publish.

The effect of creating a new DataReader in a Subscriber for a specific Topic is to initiate a new subscription with the
name and data type described by the Topic.

Once the DataReader is created, the application will be informed when changes in the data value are received
from remote publications. These changes can then be retrieved using the DataReader::read_next_sample() or
DataReader::take_next_sample() member functions of the DataReader.

DataReaderQos

DataReaderQoS controls the behavior of the DataReader. Internally it contains the following QosPolicy objects:

QosPolicy class Accessor/Mutator Mutable
DurabilityQosPolicy durability() No
DurabilityServiceQosPolicy durability_service() Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget() Yes
LivelinessQosPolicy liveliness() No
ReliabilityQosPolicy reliability() No (*)
DestinationOrderQosPolicy destination_order() No
HistoryQosPolicy history() No
ResourceLimitsQosPolicy resource_limits() No
LifespanQosPolicy lifespan() Yes
UserDataQosPolicy user_data() Yes
OwnershipQosPolicy ownership() No
PropertyPolicyQos properties() Yes
RTPSEndpointQos endpoint() Yes
ReaderResourceLimitsQos reader_resource_limits() Yes
RTPSEndpoinTimeBasedFilterQosPolicytQos time_based_filter() Yes
ReaderDataLifecycleQosPolicy reader_data_lifecycle() Yes
RTPSReliableReaderQos reliable_reader_qos() Yes
TypeConsistencyQos type_consistency() Yes
DataSharingQosPolicy data_sharing() No
boolean expects_inline_qos() Yes

194 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The following non-consolidated property-assigned QoS apply to DataReaders:

Property name Non-consolidated QoS
partitions Endpoint Partitions

Refer to the detailed description of each QosPolicy class for more information about their usage and default values.

Note: Reliability kind (whether the publication is reliable or best effort) is not mutable. However, the
max_blocking_time data member of ReliabilityQosPolicy can be modified any time.

The QoS value of a previously created DataReader can be modified using the DataReader::set_qos() member
function.

// Create a DataReader with default DataReaderQos
DataReader* data_reader =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DataReaderQos qos = data_reader->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
data_reader->set_qos(qos);

Default DataReaderQos

The default DataReaderQos refers to the value returned by the get_default_datareader_qos() member func-
tion on the Subscriber instance. The special value DATAREADER_QOS_DEFAULT can be used as QoS argument
on create_datareader() or DataReader::set_qos() member functions to indicate that the current default
DataReaderQos should be used.

When the system starts, the default DataReaderQos is equivalent to the default constructed value DataReaderQos().
The default DataReaderQos can be modified at any time using the set_default_datareader_qos() member func-
tion on the Subscriber instance. Modifying the default DataReaderQos will not affect already existing DataReader
instances.

// Get the current QoS or create a new one from scratch
DataReaderQos qos_type1 = subscriber->get_default_datareader_qos();

// Modify QoS attributes
// (...)

// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_qos(qos_type1) != ReturnCode_t::RETCODE_OK)

(continues on next page)

6.16. DDS Layer 195

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

// Create a DataReader with the new default DataReaderQos.
DataReader* data_reader_with_qos_type1 =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_type1)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
DataReaderQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default DataReaderQos
if (subscriber->set_default_datareader_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a DataReader with the new default DataReaderQos.
DataReader* data_reader_with_qos_type2 =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_qos_type2)
{

// Error
return;

}

// Resetting the default DataReaderQos to the original default constructed values
if (subscriber->set_default_datareader_qos(DATAREADER_QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (subscriber->set_default_datareader_qos(DataReaderQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

set_default_datareader_qos() member function also accepts the special value DATAREADER_QOS_DEFAULT as

196 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

input argument. This will reset the current default DataReaderQos to default constructed value DataReaderQos().

// Create a custom DataReaderQos
DataReaderQos custom_qos;

// Modify QoS attributes
// (...)

// Create a DataWriter with a custom DataReaderQos
DataReader* data_reader = subscriber->create_datareader(topic, custom_qos);
if (nullptr == data_reader)
{

// Error
return;

}

// Set the QoS on the DataWriter to the default
if (data_reader->set_qos(DATAREADER_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (data_reader->set_qos(subscriber->get_default_datareader_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value DATAREADER_QOS_DEFAULT has different meaning depending on where it is used:

• On create_datareader() and DataReader::set_qos() it refers to the default DataReaderQos as returned
by get_default_datareader_qos().

• On set_default_datareader_qos() it refers to the default constructed DataReaderQos().

DataReaderListener

DataReaderListener is an abstract class defining the callbacks that will be triggered in response to state changes on
the DataReader. By default, all these callbacks are empty and do nothing. The user should implement a specialization
of this class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain
their empty implementation.

DataReaderListener defines the following callbacks:

• on_data_available(): There is new data available for the application on the DataReader. There is no queuing
of invocations to this callback, meaning that if several new data changes are received at once, only one callback
invocation may be issued for all of them, instead of one per change. If the application is retrieving the received
data on this callback, it must keep reading data until no new changes are left.

• on_subscription_matched(): The DataReader has found a DataWriter that matches the Topic and has a
common partition and a compatible QoS, or has ceased to be matched with a DataWriter that was previously

6.16. DDS Layer 197

Fast DDS Documentation, Release 2.8.2

considered to be matched. It is also triggered when a matched DataWriter has changed its DataWriterQos.

• on_requested_deadline_missed(): The DataReader did not receive data within the deadline period config-
ured on its DataReaderQos. It will be called for each deadline period and data instance for which the DataReader
missed data.

• on_requested_incompatible_qos(): The DataReader has found a DataWriter that matches the Topic and
has a common partition, but with a QoS that is incompatible with the one defined on the DataReader.

• on_liveliness_changed(): The liveliness status of a matched DataWriter has changed. Either a DataWriter
that was inactive has become active or the other way around.

• on_sample_rejected(): A received data sample was rejected. See SampleRejectedStatus for further informa-
tion.

• on_sample_lost(): A data sample was lost and will never be received. See SampleLostStatus for further
information.

Important: For more information about callbacks and its hierarchy, please refer to Listener.

class CustomDataReaderListener : public DataReaderListener
{

public:

CustomDataReaderListener()
: DataReaderListener()

{
}

virtual ~CustomDataReaderListener()
{
}

virtual void on_data_available(
DataReader* reader)

{
(void)reader;
std::cout << "Received new data message" << std::endl;

}

virtual void on_subscription_matched(
DataReader* reader,
const SubscriptionMatchedStatus& info)

{
(void)reader;
if (info.current_count_change == 1)
{

std::cout << "Matched a remote DataWriter" << std::endl;
}
else if (info.current_count_change == -1)
{

std::cout << "Unmatched a remote DataWriter" << std::endl;
}

(continues on next page)

198 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

virtual void on_requested_deadline_missed(
DataReader* reader,
const eprosima::fastrtps::RequestedDeadlineMissedStatus& info)

{
(void)reader, (void)info;
std::cout << "Some data was not received on time" << std::endl;

}

virtual void on_liveliness_changed(
DataReader* reader,
const eprosima::fastrtps::LivelinessChangedStatus& info)

{
(void)reader;
if (info.alive_count_change == 1)
{

std::cout << "A matched DataWriter has become active" << std::endl;
}
else if (info.not_alive_count_change == 1)
{

std::cout << "A matched DataWriter has become inactive" << std::endl;
}

}

virtual void on_sample_rejected(
DataReader* reader,
const eprosima::fastrtps::SampleRejectedStatus& info)

{
(void)reader, (void)info;
std::cout << "A received data sample was rejected" << std::endl;

}

virtual void on_requested_incompatible_qos(
DataReader* /*reader*/,
const RequestedIncompatibleQosStatus& info)

{
std::cout << "Found a remote Topic with incompatible QoS (QoS ID: " << info.last_

→˓policy_id <<
")" << std::endl;

}

virtual void on_sample_lost(
DataReader* reader,
const SampleLostStatus& info)

{
(void)reader, (void)info;
std::cout << "A data sample was lost and will not be received" << std::endl;

}

};

6.16. DDS Layer 199

Fast DDS Documentation, Release 2.8.2

Creating a DataReader

A DataReader always belongs to a Subscriber. Creation of a DataReader is done with the create_datareader()
member function on the Subscriber instance, that acts as a factory for the DataReader.

Mandatory arguments are:

• A Topic bound to the data type that will be transmitted.

• The DataReaderQos describing the behavior of the DataReader. If the provided value is
DATAREADER_QOS_DEFAULT, the value of the Default DataReaderQos is used.

Optional arguments are:

• A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader() will return a null pointer if there was an error during the operation, e.g. if the provided QoS
is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DataReader with default DataReaderQos and no Listener
// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.
DataReader* data_reader_with_default_qos =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader_with_default_qos)
{

// Error
return;

}

// A custom DataReaderQos can be provided to the creation method
DataReaderQos custom_qos;

// Modify QoS attributes
// (...)

DataReader* data_reader_with_custom_qos =
subscriber->create_datareader(topic, custom_qos);

if (nullptr == data_reader_with_custom_qos)
{

// Error
return;

}

// Create a DataReader with default QoS and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
// The value DATAREADER_QOS_DEFAULT is used to denote the default QoS.
CustomDataReaderListener custom_listener;
DataReader* data_reader_with_default_qos_and_custom_listener =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT, &custom_listener);
if (nullptr == data_reader_with_default_qos_and_custom_listener)
{

// Error
(continues on next page)

200 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

return;
}

Profile based creation of a DataReader

Instead of using a DataReaderQos, the name of a profile can be used to create a DataReader with the
create_datareader_with_profile() member function on the Subscriber instance.

Mandatory arguments are:

• A Topic bound to the data type that will be transmitted.

• A string with the name that identifies the DataReader.

Optional arguments are:

• A Listener derived from DataReaderListener, implementing the callbacks that will be triggered in response to
events and state changes on the DataReader. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the DataReaderListener. By
default all events are enabled.

create_datareader_with_profile() will return a null pointer if there was an error during the operation, e.g. if
the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DataReader using a profile and no Listener
DataReader* data_reader_with_profile =

subscriber->create_datareader_with_profile(topic, "data_reader_profile");
if (nullptr == data_reader_with_profile)
{

// Error
return;

}

// Create a DataReader using a profile and a custom Listener.
// CustomDataReaderListener inherits from DataReaderListener.
CustomDataReaderListener custom_listener;
DataReader* data_reader_with_profile_and_custom_listener =

subscriber->create_datareader_with_profile(topic, "data_reader_profile", &custom_
→˓listener);
if (nullptr == data_reader_with_profile_and_custom_listener)
{

// Error
return;

}

6.16. DDS Layer 201

Fast DDS Documentation, Release 2.8.2

Deleting a DataReader

A DataReader can be deleted with the delete_datareader()member function on the Subscriber instance where the
DataReader was created.

Note: A DataReader can only be deleted if all Entities belonging to the DataReader (QueryConditions) have already
been deleted. Otherwise, the function will issue an error and the DataReader will not be deleted. This can be performed
by using the delete_contained_entities() member function of the DataReader.

// Create a DataReader
DataReader* data_reader =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{

// Error
return;

}

// Use the DataReader to communicate
// (...)

// Delete the entities the DataReader created
if (data_reader->delete_contained_entities() != ReturnCode_t::RETCODE_OK)
{

// DataReader failed to delete the entities it created.
return;

}

// Delete the DataReader
if (subscriber->delete_datareader(data_reader) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

SampleInfo

When a sample is retrieved from the DataReader, in addition to the sample data, a SampleInfo instance is returned.
This object contains additional information that complements the returned data value and helps on it interpretation.
For example, if the valid_data value is false, the DataReader is not informing the application about a new value in
the data instance, but a change on its status, and the returned data value must be discarded.

Please, refer to the section Accessing received data for more information regarding how received data can be accessed
on the DataReader.

The following sections describe the data members of SampleInfo and the meaning of each one in relation to the
returned sample data.

• sample_state

• view_state

• instance_state

202 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• disposed_generation_count

• no_writers_generation_count

• sample_rank

• generation_rank

• absolute_generation_rank

• source_timestamp

• instance_handle

• publication_handle

• valid_data

• sample_identity

• related_sample_identity

sample_state

sample_state indicates whether or not the corresponding data sample has already been read previously. It can take
one of these values:

• READ: This is the first time this data sample has been retrieved.

• NOT_READ: The data sample has already been read or taken previously.

view_state

view_state indicates whether or not this is the very first sample of this data instance that the DataReader retrieves. It
can take one of these values:

• NEW: This is the first time a sample of this instance is retrieved.

• NOT_NEW: Other samples of this instance have been retrieved previously.

instance_state

instance_state indicates whether the instance is currently in existence or it has been disposed. In the latter case, it
also provides information about the reason for the disposal. It can take one of these values:

• ALIVE: The instance is currently in existence.

• NOT_ALIVE_DISPOSED: A remote DataWriter disposed the instance.

• NOT_ALIVE_NO_WRITERS: The DataReader disposed the instance because no remote DataWriter that was
publishing the instance is alive.

6.16. DDS Layer 203

Fast DDS Documentation, Release 2.8.2

disposed_generation_count

disposed_generation_count indicates the number of times the instance had become alive after it was disposed.

no_writers_generation_count

no_writers_generation_count indicates the number of times the instance had become alive after it was disposed
as NOT_ALIVE_NO_WRITERS.

sample_rank

sample_rank indicates the number of samples of the same instance that have been received after this one. For example,
a value of 5 means that there are 5 newer samples available on the DataReader.

Note: Currently the sample_rank is not implemented, and its value is always set to 0. It will be implemented on a
future release of Fast DDS.

generation_rank

generation_rank indicates the number of times the instance was disposed and become alive again between the time
the sample was received and the time the most recent sample of the same instance that is still held in the collection was
received.

Note: Currently the generation_rank is not implemented, and its value is always set to 0. It will be implemented
on a future release of Fast DDS.

absolute_generation_rank

absolute_generation_rank indicates the number of times the instance was disposed and become alive again be-
tween the time the sample was received and the time the most recent sample of the same instance (which may not be
in the collection) was received.

Note: Currently the absolute_generation_rank is not implemented, and its value is always set to 0. It will be
implemented on a future release of Fast DDS.

204 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

source_timestamp

source_timestamp holds the time stamp provided by the DataWriter when the sample was published.

instance_handle

instance_handle handles of the local instance.

publication_handle

publication_handle handles of the DataWriter that published the data change.

valid_data

valid_data is a boolean that indicates whether the data sample contains a change in the value or not. Samples with
this value set to false are used to communicate a change in the instance status, e.g., a change in the liveliness of the
instance. In this case, the data sample should be dismissed as all the relevant information is in the data members of
SampleInfo.

sample_identity

sample_identity is an extension for requester-replier configuration. It contains the DataWriter and the sequence
number of the current message, and it is used by the replier to fill the related_sample_identity when it sends the reply.

related_sample_identity

related_sample_identity is an extension for requester-replier configuration. On reply messages, it contains the
sample_identity of the related request message. It is used by the requester to be able to link each reply to the appropriate
request.

Accessing received data

The application can access and consume the data values received on the DataReader by reading or taking.

• Reading is done with any of the following member functions:

– DataReader::read_next_sample() reads the next, non-previously accessed data value available on the
DataReader, and stores it in the provided data buffer.

– DataReader::read(), DataReader::read_instance(), and DataReader::read_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

• Taking is done with any of the following member functions:

– DataReader::take_next_sample() reads the next, non-previously accessed data value available on the
DataReader, and stores it in the provided data buffer.

– DataReader::take(), DataReader::take_instance(), and DataReader::take_next_instance()
provide mechanisms to get a collection of samples matching certain conditions.

When taking data, the returned samples are also removed from the DataReader, so they are no longer accessible.

6.16. DDS Layer 205

Fast DDS Documentation, Release 2.8.2

When there is no data in the DataReader matching the required conditions, all the operations will return NO_DATA and
output parameter will remain unchanged.

In addition to the data values, the data access operations also provide SampleInfo instances with additional information
that help interpreting the returned data values, like the originating DataWriter or the publication time stamp. Please,
refer to the SampleInfo section for an extensive description of its contents.

Loaning and Returning Data and SampleInfo Sequences

The DataReader::read() and DataReader::take() operations (and their variants) return information to the ap-
plication in two sequences:

• Received DDS data samples in a sequence of the data type

• Corresponding information about each DDS sample in a SampleInfo sequence

These sequences are parameters that are passed by the application code into the DataReader::read() and
DataReader::take() operations. When the passed sequences are empty (they are initialized but have a maximum
length of 0), the middleware will fill those sequences with memory directly loaned from the receive queue itself. There
is no copying of the data or SampleInfo when the contents of the sequences are loaned. This is certainly the most
efficient way for the application code to retrieve the data.

When doing so, however, the code must return the loaned sequences back to the middleware, so that they can be
reused by the receive queue. If the application does not return the loan by calling the DataReader::return_loan()
operation, then Fast DDS will eventually run out of memory to store DDS data samples received from the network for
that DataReader. See the code below for an example of borrowing and returning loaned sequences.

// Sequences are automatically initialized to be empty (maximum == 0)
FooSeq data_seq;
SampleInfoSeq info_seq;

// with empty sequences, a take() or read() will return loaned
// sequence elements
ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,

LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);

// process the returned data

// must return the loaned sequences when done processing
data_reader->return_loan(data_seq, info_seq);

Processing returned data

After calling the DataReader::read() or DataReader::take() operations, accessing the data on the returned
sequences is quite easy. The sequences API provides a length() operation returning the number of elements in the
collections. The application code just needs to check this value and use the [] operator to access the corresponding
elements. Elements on the DDS data sequence should only be accessed when the corresponding element on the Sam-
pleInfo sequence indicate that valid data is present.

// Sequences are automatically initialized to be empty (maximum == 0)
FooSeq data_seq;
SampleInfoSeq info_seq;

(continues on next page)

206 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// with empty sequences, a take() or read() will return loaned
// sequence elements
ReturnCode_t ret_code = data_reader->take(data_seq, info_seq,

LENGTH_UNLIMITED, ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_INSTANCE_STATE);

// process the returned data
if (ret_code == ReturnCode_t::RETCODE_OK)
{

// Both info_seq.length() and data_seq.length() will have the number of samples␣
→˓returned

for (FooSeq::size_type n = 0; n < info_seq.length(); ++n)
{

// Only samples for which valid_data is true should be accessed
if (info_seq[n].valid_data)
{

// Do something with data_seq[n]
}

}

// must return the loaned sequences when done processing
data_reader->return_loan(data_seq, info_seq);

}

Accessing data on callbacks

When the DataReader receives new data values from any matching DataWriter, it informs the application through two
Listener callbacks:

• on_data_available().

• on_data_on_readers().

These callbacks can be used to retrieve the newly arrived data, as in the following example.

class CustomizedDataReaderListener : public DataReaderListener
{

public:

CustomizedDataReaderListener()
: DataReaderListener()

{
}

virtual ~CustomizedDataReaderListener()
{
}

virtual void on_data_available(
DataReader* reader)

{
(continues on next page)

6.16. DDS Layer 207

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

// Keep taking data until there is nothing to take
while (reader->take_next_sample(&data, &info) == ReturnCode_t::RETCODE_OK)
{

if (info.valid_data)
{

// Do something with the data
std::cout << "Received new data value for topic "

<< reader->get_topicdescription()->get_name()
<< std::endl;

}
else
{

std::cout << "Remote writer for topic "
<< reader->get_topicdescription()->get_name()
<< " is dead" << std::endl;

}
}

}

};

Note: If several new data changes are received at once, the callbacks may be triggered just once, instead of once per
change. The application must keep reading or taking until no new changes are available.

Accessing data with a waiting thread

Wait-sets and DataAvailable status condition

Instead of relying on the Listener to try and get new data values, the application can also dedicate a thread to wait until
any new data is available on the DataReader. This can be done using a wait-set to wait for a change on the DataAvailable
status.

// Create a DataReader
DataReader* data_reader =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{

// Error
return;

}

// Prepare a wait-set to wait for data on the DataReader
WaitSet wait_set;
StatusCondition& condition = data_reader->get_statuscondition();
condition.set_enabled_statuses(StatusMask::data_available());

(continues on next page)

208 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

wait_set.attach_condition(condition);

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima::fastrtps::Duration_t timeout (5, 0);

// Loop reading data as it arrives
// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote DataWriter dies
while (true)
{

ConditionSeq active_conditions;
if (ReturnCode_t::RETCODE_OK == wait_set.wait(active_conditions, timeout))
{

while (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{

if (info.valid_data)
{

// Do something with the data
std::cout << "Received new data value for topic "

<< topic->get_name()
<< std::endl;

}
else
{

// If the remote writer is not alive, we exit the reading loop
std::cout << "Remote writer for topic "

<< topic->get_name()
<< " is dead" << std::endl;

break;
}

}
}
else
{

std::cout << "No data this time" << std::endl;
}

}

6.16. DDS Layer 209

Fast DDS Documentation, Release 2.8.2

DataReader non-blocking calls

The same could be achieved using the DataReader::wait_for_unread_message() member function, that blocks
until a new data sample is available or the given timeout expires. If no new data was available after the timeout expired,
it will return with value false. This function returning with value true means there is new data available on the
DataReader ready for the application to retrieve.

// Create a DataReader
DataReader* data_reader =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == data_reader)
{

// Error
return;

}

// Create a data and SampleInfo instance
Foo data;
SampleInfo info;

//Define a timeout of 5 seconds
eprosima::fastrtps::Duration_t timeout (5, 0);

// Loop reading data as it arrives
// This will make the current thread to be dedicated exclusively to
// waiting and reading data until the remote DataWriter dies
while (true)
{

if (data_reader->wait_for_unread_message(timeout))
{

if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{

if (info.valid_data)
{

// Do something with the data
std::cout << "Received new data value for topic "

<< topic->get_name()
<< std::endl;

}
else
{

// If the remote writer is not alive, we exit the reading loop
std::cout << "Remote writer for topic "

<< topic->get_name()
<< " is dead" << std::endl;

break;
}

}
}
else
{

std::cout << "No data this time" << std::endl;
}

(continues on next page)

210 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

6.16.5 Topic

A Topic conceptually fits between publications and subscriptions. Each publication channel must be unambiguously
identified by the subscriptions in order to receive only the data flow they are interested in, and not data from other
publications. A Topic serves this purpose, allowing publications and subscriptions that share the same Topic to match
and start communicating. In that sense, the Topic acts as a description for a data flow.

Publications are always linked to a single Topic, while subscriptions are linked to a broader concept of TopicDescription.

Fig. 8: Topic class diagram

Topics, keys and instances

By definition, a Topic is linked to a single data type, so each data sample related to a Topic could be understood as an
update on the information described by the data type. However, it is possible to include a logical separation and have,
within the same Topic, several instances referring to the same data type. Thus, the received data sample will be an
update for a specific instance of that Topic. Therefore, a Topic identifies data of a single type, ranging from one single
instance to a whole collection of instances of that given type, as shown in the figure below.

The different instances gathered under the same topic are distinguishable by means of one or more data fields that form
the key to that data set. The key description has to be indicated to the middleware. The rule is simple: different data
values with the same key value represent successive data samples for the same instance, while different data values
with different keys represent different topic instances. If no key is provided, the data set associated with the Topic is
restricted to a single instance. Please refer to Data types with a key for more information about how to set the key in
eProsima Fast DDS.

6.16. DDS Layer 211

Fast DDS Documentation, Release 2.8.2

Instance advantages

The advantage of using instances instead of creating a new DataWriter, DataReader, and Topic is that the corresponding
entity is already created and discovered. Consequently, there is less memory usage, and no new discovery (with the
related metatraffic involved as explained in Discovery) is necessary. Another advantage is that several QoS are applied
per topic instance; e.g. the HistoryQosPolicy is kept for each instance in the DataWriter. Thus, instances could be
tuned to a wide range of applications.

Instance lifecycle

When reading or taking data from the DataReader (as explained in Accessing received data), a SampleInfo is also re-
turned. This SampleInfo provides additional information about the instance lifecycle, specifically with the view_state,
instance_state, disposed_generation_count, and no_writers_generation_count. The diagram below shows the state-
chart of instance_state and view_state for a single instance.

212 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Practical applications

This section provides a couple of examples to help clarify the use of DDS instances.

Commercial flights tracking

Airspace and the air traffic going through it are typically managed by the air traffic controllers that are in charge of
organizing the air traffic, preventing collisions, and providing information. In this scenario, each air traffic control
center takes responsibility for a specific flight area and delivers the data to the airspace traffic management system,
which unifies the flight information.

Any time an air traffic control center discovers a plane coming into its controlled flight zone, tracking information about
that specific flight is notified to the airspace traffic management center. Such a flow of information could be imple-
mented by means of DDS by creating a specific Topic where the information related to the flight location is published.
In that case, the management center would be required to create, if not existing previously, the corresponding Topic
and DataReader to have access to the flight information, with the corresponding memory consumption and discovery
metatraffic required. On the other hand, a cleverer implementation could leverage topic instances to relay the infor-
mation from the local air traffic control centers to the airspace traffic management center. The topic instances might
be identified using the airline name and the flight number (i.e. IBERIA 1234) as Topic instance key. The sample data
being relayed would be the location of each flight being tracked at any given time. The following IDL defines the data
described model:

struct FlightPosition
{

// Unique ID: airline name
@key string<256> airline_name;

// Unique ID: flight number
@key short flight_number;

// Coordinates
double latitude;
double longitude;
double altitude;

};

Once a new flight is discovered by a control center, the corresponding instance is registered into the system:

// Create data sample
FlightPosition first_flight_position;

// Specify the flight instance
first_flight_position.airline_name("IBERIA");
first_flight_position.flight_number(1234);

// Register instance
eprosima::fastrtps::rtps::InstanceHandle_t first_flight_handle =

data_writer->register_instance(&first_flight_position);

register_instance() returns an InstanceHandle_t which can be used to efficiently call the next operations (i.e.
write(), dispose(), or unregister_instance()) over the instance. The returned InstanceHandle_t contains
the instance keyhash so it does not have to be recalculated again from the data sample. In case of following this
approach, the application must take charge of mapping the instance handles to the corresponding instances.

6.16. DDS Layer 213

Fast DDS Documentation, Release 2.8.2

// Update position value received from the plane
first_flight_position.latitude(39.08);
first_flight_position.longitude(-84.21);
first_flight_position.altitude(1500);

// Write sample to the instance
data_writer->write(&first_flight_position, first_flight_handle);

On the other hand, the user application could directly call the DataWriter instance operations with a NIL instance
handle. In this case, the instance handle would be calculated every time an operation is done over the instance, which
can be time consuming depending on the specific data type being used.

// New data sample
FlightPosition second_flight_position;

// New instance
second_flight_position.airline_name("RYANAIR");
second_flight_position.flight_number(4321);

// Update plane location
second_flight_position.latitude(40.02);
second_flight_position.longitude(-84.32);
second_flight_position.altitude(5000);

// Write sample directly without registering the instance
data_writer->write(&second_flight_position);

Warning: The correct management of the instance handles in the user application is paramount. Otherwise, a
sample corresponding to a different instance could wrongly update the instance which handle the user has passed to
the operation (if a non NIL instance is provided, the instance handle is not recalculated, trusting that the one passed
by the user is the correct one). The following code updates the first instance of this example with the information
coming from the second instance.

data_writer->write(&second_flight_position, first_flight_handle);

Once the plane leaves the controlled area, the air traffic control center may unregister the instance. Unregistering
implies that the DataWriter for this specific center has no more information about the unregistered instance, and in this
way the matched DataReaders in the management center are notified. The flight is still in the air but out of scope of
this particular DataWriter. The instance is alive but no longer tracked by this center.

data_writer->unregister_instance(&first_flight_position, first_flight_handle);
data_writer->unregister_instance(&second_flight_position, HANDLE_NIL);

Finally, when the flight lands, the instance may be disposed. This means, in this specific example, that as far as the
DataWriter knows, the instance no longer exists and should be considered not alive. With this operation, the DataWriter
conveys this information to the matched DataReaders.

data_writer->dispose(&first_flight_position, first_flight_handle);
data_writer->dispose(&second_flight_position, HANDLE_NIL);

From the management center point of view, the samples are read using the same DataReader subscribed to the Topic
where the instances are being published. However, valid_data must be checked to ensure that the sample received

214 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

contains a data sample. Otherwise, a change of the instance state is being notified. Instance lifecycle contains a diagram
showing the instance statechart.

if (ReturnCode_t::RETCODE_OK == data_reader->take_next_sample(&data, &info))
{

if (info.valid_data)
{

// Data sample has been received
}
else if (info.instance_state == NOT_ALIVE_DISPOSED_INSTANCE_STATE)
{

// A remote DataWriter has disposed the instance
}
else if (info.instance_state == NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
{

// None of the matched DataWriters are writing in the instance.
// The instance can be safely disposed.

}
}

Relational databases

Consider now that the air traffic management center wants to keep a database with the flights being tracked. Using
DDS instances, maintaining a relational database is almost direct. The instance key (unique identifier of the instance)
is analogous to the primary key of the database. Thus, the airspace traffic management center can keep the latest update
for each instance in a table like the one below:

Instance handle [PK] Data
1 Position1
2 Position2
3 Position3
4 Position4
5 Position5

In this case, every time a new sample is received, the corresponding instance entry in the database will be updated
with the latest known location. Disposing the instance may translate in erasing the corresponding data from the
database. In this scenario, registering and unregistering the instances does not reflect in the database, although if
the instance_state and view_state are also persisted, then the instance lifecycle could be tracked as well. A
DataWriter communicating that it is going to be publishing data about a specific instance is of no interest to the database
until a new data is received and then an insert is directly done with the new discovered instance.

Historical data can also be stored in the relational database, even though depending on the use case, a time series
database might be considered to improve efficiency. In the scenario being considered, the sample timestamp could be
used, besides the instance handle, as primary key to be able to access the historical tracking data of an specific flight.

Instance handle [PK] Source Timestamp [PK] Data
1 1 Position1
2 1 Position2
1 2 Position3
1 3 Position4
2 2 Position5

6.16. DDS Layer 215

Fast DDS Documentation, Release 2.8.2

In this case, looking for a specific instance handle would return the flight tracking information:

Instance handle [Fixed] Source Timestamp Data
1 1 Position1
1 2 Position3
1 3 Position4

Whereas looking for a specific timestamp would allow to have a picture of the different flight locations at a specific
time:

Instance handle Source Timestamp [Fixed] Data
1 2 Position3
2 2 Position5

TopicDescription

TopicDescription is an abstract class that serves as the base for all classes describing a data flow. Applications will
not create instances of TopicDescription directly, they must create instances of one of its specializations instead.
At the moment, the only specializations implemented are Topic, and ContentFilteredTopic.

Topic

A Topic is a specialization of the broader concept of TopicDescription. A Topic represents a single data flow between
Publisher and Subscriber, providing:

• The name to identify the data flow.

• The data type that is transmitted on that flow.

• The QoS values related to the data itself.

The behavior of the Topic can be modified with the QoS values specified on TopicQos. The QoS values can be set at
the creation of the Topic, or modified later with the Topic::set_qos() member function.

Like other Entities, Topic accepts a Listener that will be notified of status changes on the Topic.

Please refer to Creating a Topic for more information about how to create a Topic.

TopicQos

TopicQos controls the behavior of the Topic. Internally it contains the following QosPolicy objects:

216 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

QosPolicy class Accessor Mutable
TopicDataQosPolicy topic_data() Yes
DurabilityQosPolicy durability() Yes
DurabilityServiceQosPolicy durability_service() Yes
DeadlineQosPolicy deadline() Yes
LatencyBudgetQosPolicy latency_budget() Yes
LivelinessQosPolicy liveliness() Yes
ReliabilityQosPolicy reliability() Yes
DestinationOrderQosPolicy destination_order() Yes
HistoryQosPolicy history() Yes
ResourceLimitsQosPolicy resource_limits() Yes
TransportPriorityQosPolicy transport_priority() Yes
LifespanQosPolicy lifespan() Yes
OwnershipQosPolicy ownership() Yes
DataRepresentationQosPolicy representation() Yes

Refer to the detailed description of each QosPolicy-api class for more information about their usage and default values.

The QoS value of a previously created Topic can be modified using the Topic::set_qos() member function.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Topic with default TopicQos
Topic* topic =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos qos = topic->get_qos();

// Modify QoS attributes
// (...)

// Assign the new Qos to the object
topic->set_qos(qos);

6.16. DDS Layer 217

Fast DDS Documentation, Release 2.8.2

Default TopicQos

The default TopicQos refers to the value returned by the get_default_topic_qos() member function on the Do-
mainParticipant instance. The special value TOPIC_QOS_DEFAULT can be used as QoS argument on create_topic()
or Topic::set_qos() member functions to indicate that the current default TopicQos should be used.

When the system starts, the default TopicQos is equivalent to the default constructed value TopicQos(). The default
TopicQos can be modified at any time using the get_default_topic_qos()member function on the DomainPartic-
ipant instance. Modifying the default TopicQos will not affect already existing Topic instances.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos qos_type1 = participant->get_default_topic_qos();

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (participant->set_default_topic_qos(qos_type1) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Create a Topic with the new default TopicQos.
Topic* topic_with_qos_type1 =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_qos_type1)
{

// Error
return;

}

// Get the current QoS or create a new one from scratch
TopicQos qos_type2;

// Modify QoS attributes
// (...)

// Set as the new default TopicQos
if (participant->set_default_topic_qos(qos_type2) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

(continues on next page)

218 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

// Create a Topic with the new default TopicQos.
Topic* topic_with_qos_type2 =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_qos_type2)
{

// Error
return;

}

// Resetting the default TopicQos to the original default constructed values
if (participant->set_default_topic_qos(TOPIC_QOS_DEFAULT)

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following
if (participant->set_default_topic_qos(TopicQos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

get_default_topic_qos() member function also accepts the value TOPIC_QOS_DEFAULT as input argument. This
will reset the current default TopicQos to default constructed value TopicQos().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a custom TopicQos
TopicQos custom_qos;

// Modify QoS attributes
// (...)

// Create a topic with a custom TopicQos
Topic* topic = participant->create_topic("TopicName", "DataTypeName", custom_qos);
if (nullptr == topic)
{

// Error
return;

(continues on next page)

6.16. DDS Layer 219

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

// Set the QoS on the topic to the default
if (topic->set_qos(TOPIC_QOS_DEFAULT) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// The previous instruction is equivalent to the following:
if (topic->set_qos(participant->get_default_topic_qos())

!= ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Note: The value TOPIC_QOS_DEFAULT has different meaning depending on where it is used:

• On create_topic() and Topic::set_qos() it refers to the default TopicQos as returned by
get_default_topic_qos().

• On get_default_topic_qos() it refers to the default constructed TopicQos().

ContentFilteredTopic

A ContentFilteredTopic is a specialization of the broader concept of TopicDescription. A ContentFilteredTopic is
a Topic with filtering properties. It makes it possible to subscribe to a Topic while at the same time specify interest on
a subset of the Topic’s data.

Important: Note that a ContentFilteredTopic can only be used to create a DataReader, not a DataWriter.

A ContentFilteredTopic provides a relationship between a Topic, called the related topic, and some user-defined filtering
properties:

• A filter expression, which establishes a logical expression on the content of the related topic. It is similar to the
WHERE clause in a SQL statement.

• A list of expression parameters, which give values to the parameters present in the filter expression. There
must be one parameter string for each parameter in the filter expression.

Note that a ContentFilteredTopic is not an Entity, and thus it has neither QoS nor listener. A DataReader created with
a ContentFilteredTopic will use the QoS from the related topic. Multiple DataReaders can be created for the same
ContentFilteredTopic, and changing the filter properties of a ContentFilteredTopic will affect all DataReaders using it.

Please refer to Filtering data on a Topic and Where is filtering applied: writer vs reader side for more information
about how to use ContentFilteredTopic.

220 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

TopicListener

TopicListener is an abstract class defining the callbacks that will be triggered in response to state changes on the
Topic. By default, all these callbacks are empty and do nothing. The user should implement a specialization of this
class overriding the callbacks that are needed on the application. Callbacks that are not overridden will maintain their
empty implementation.

TopicListener has the following callback:

• on_inconsistent_topic(): A remote Topic is discovered with the same name but different characteristics as
another locally created Topic.

Warning: Currently on_inconsistent_topic() is not implemented (it will never be called), and will be im-
plemented on a future release of Fast DDS.

class CustomTopicListener : public TopicListener
{

public:

CustomTopicListener()
: TopicListener()

{
}

virtual ~CustomTopicListener()
{
}

virtual void on_inconsistent_topic(
Topic* topic,
InconsistentTopicStatus status)

{
(void)topic, (void)status;
std::cout << "Inconsistent topic received discovered" << std::endl;

}

};

Definition of data types

The definition of the data type exchanged in a Topic is divided in two classes: the TypeSupport and the
TopicDataType.

TopicDataType describes the data type exchanged between a publication and a subscription, i.e., the data corresponding
to a Topic. The user has to create a specialized class for each specific type that will be used by the application.

Any specialization of TopicDataType must be registered in the DomainParticipant before it can be used to create Topic
objects. A TypeSupport object encapsulates an instance of TopicDataType, providing the functions needed to register
the type and interact with the publication and subscription. To register the data type, create a new TypeSupport with a
TopicDataType instance and use the register_type() member function on the TypeSupport. Then the Topic can be
created with the registered type name.

6.16. DDS Layer 221

Fast DDS Documentation, Release 2.8.2

Note: Registering two different data types on the same DomainParticipant with identical names is not allowed and
will issue an error. However, it is allowed to register the same data type within the same DomainParticipant, with the
same or different names. If the same data type is registered twice on the same DomainParticipant with the same name,
the second registering will have no effect, but will not issue any error.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Register the data type in the DomainParticipant.
// If nullptr is used as name argument, the one returned by the type itself is used
TypeSupport custom_type_support(new CustomDataType());
custom_type_support.register_type(participant, nullptr);

// The previous instruction is equivalent to the following one
// Even if we are registering the same data type with the same name twice, no error will␣
→˓be issued
custom_type_support.register_type(participant, custom_type_support.get_type_name());

// Create a Topic with the registered type.
Topic* topic =

participant->create_topic("topic_name", custom_type_support.get_type_name(),␣
→˓TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Create an alias for the same data type using a different name.
custom_type_support.register_type(participant, "data_type_name");

// We can now use the aliased name to If no name is given, it uses the name returned by␣
→˓the type itself
Topic* another_topic =

participant->create_topic("other_topic_name", "data_type_name", TOPIC_QOS_
→˓DEFAULT);
if (nullptr == another_topic)
{

// Error
return;

}

222 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Dynamic data types

Instead of directly writing the specialized TopicDataType class, it is possible to dynamically define data types follow-
ing the OMG Extensible and Dynamic Topic Types for DDS interface. Data types can also be described on an XML
file that is dynamically loaded.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Load the XML file with the type description
eprosima::fastrtps::xmlparser::XMLProfileManager::loadXMLFile("example_type.xml");

// Retrieve the an instance of the desired type and register it
eprosima::fastrtps::types::DynamicType_ptr dyn_type =

eprosima::fastrtps::xmlparser::XMLProfileManager::getDynamicTypeByName(
→˓"DynamicType")->build();
TypeSupport dyn_type_support(new eprosima::fastrtps::types::DynamicPubSubType(dyn_type));
dyn_type_support.register_type(participant, nullptr);

// Create a Topic with the registered type.
Topic* topic =

participant->create_topic("topic_name", dyn_type_support.get_type_name(), TOPIC_
→˓QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

A complete description of the dynamic definition of types can be found on the Dynamic Topic Types section.

Data types with a key

Data types that define a set of fields to form a unique key can distinguish different data sets within the same data type.

To define a keyed Topic, the getKey() member function on the TopicDataType has to be overridden to return the
appropriate key value according to the data fields. Additionally, the m_isGetKeyDefined data member needs to be
set to true to let the entities know that this is a keyed Topic and that getKey() should be used. Types that do not
define a key will have m_isGetKeyDefined set to false.

There are three ways to implement keys on the TopicDataType:

• Adding a @Key annotation to the members that form the key in the IDL file when using Fast DDS-Gen.

• Adding the attribute Key to the member and its parents when using Dynamic Topic Types.

• Manually implementing the getKey() member function on the TopicDataType and setting the
m_isGetKeyDefined data member value to true.

6.16. DDS Layer 223

Fast DDS Documentation, Release 2.8.2

Data types with key are used to define data sub flows on a single Topic. Data values with the same key on the same
Topic represent data from the same sub-flow, while data values with different keys on the same Topic represent data
from different sub-flows. The middleware keeps these sub-flows separated, but all will be restricted to the same QoS
values of the Topic. If no key is provided, the data set associated with the Topic is restricted to a single flow.

Creating a Topic

A Topic always belongs to a DomainParticipant. Creation of a Topic is done with the create_topic() member
function on the DomainParticipant instance, that acts as a factory for the Topic.

Mandatory arguments are:

• A string with the name that identifies the Topic.

• The name of the registered data type that will be transmitted.

• The TopicQos describing the behavior of the Topic. If the provided value is TOPIC_QOS_DEFAULT, the value of
the Default TopicQos is used.

Optional arguments are:

• A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic() will return a null pointer if there was an error during the operation, e.g. if the provided QoS is not
compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Topic with default TopicQos and no Listener
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
Topic* topic_with_default_qos =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic_with_default_qos)
{

// Error
return;

}

// A custom TopicQos can be provided to the creation method
TopicQos custom_qos;

// Modify QoS attributes
// (...)

Topic* topic_with_custom_qos =
(continues on next page)

224 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

participant->create_topic("TopicName", "DataTypeName", custom_qos);
if (nullptr == topic_with_custom_qos)
{

// Error
return;

}

// Create a Topic with default QoS and a custom Listener.
// CustomTopicListener inherits from TopicListener.
// The symbol TOPIC_QOS_DEFAULT is used to denote the default QoS.
CustomTopicListener custom_listener;
Topic* topic_with_default_qos_and_custom_listener =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT, &
→˓custom_listener);
if (nullptr == topic_with_default_qos_and_custom_listener)
{

// Error
return;

}

Profile based creation of a Topic

Instead of using a TopicQos, the name of a profile can be used to create a Topic with the
create_topic_with_profile() member function on the DomainParticipant instance.

Mandatory arguments are:

• A string with the name that identifies the Topic.

• The name of the registered data type that will be transmitted.

• The name of the profile to be applied to the Topic.

Optional arguments are:

• A Listener derived from TopicListener, implementing the callbacks that will be triggered in response to events
and state changes on the Topic. By default empty callbacks are used.

• A StatusMask that activates or deactivates triggering of individual callbacks on the TopicListener. By default
all events are enabled.

create_topic_with_profile() will return a null pointer if there was an error during the operation, e.g. if the
provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.

Note: XML profiles must have been loaded previously. See Loading profiles from an XML file.

// First load the XML with the profiles
DomainParticipantFactory::get_instance()->load_XML_profiles_file("profiles.xml");

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);

(continues on next page)

6.16. DDS Layer 225

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (nullptr == participant)
{

// Error
return;

}

// Create a Topic using a profile and no Listener
Topic* topic_with_profile =

participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_
→˓profile");
if (nullptr == topic_with_profile)
{

// Error
return;

}

// Create a Topic using a profile and a custom Listener.
// CustomTopicListener inherits from TopicListener.
CustomTopicListener custom_listener;
Topic* topic_with_profile_and_custom_listener =

participant->create_topic_with_profile("TopicName", "DataTypeName", "topic_
→˓profile", &custom_listener);
if (nullptr == topic_with_profile_and_custom_listener)
{

// Error
return;

}

Deleting a Topic

A Topic can be deleted with the delete_topic() member function on the DomainParticipant instance where the
Topic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Topic
Topic* topic =

participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}
(continues on next page)

226 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Use the Topic to communicate
// (...)

// Delete the Topic
if (participant->delete_topic(topic) != ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

Filtering data on a Topic

Creating a ContentFilteredTopic

A ContentFilteredTopic always belongs to a DomainParticipant. Creation of a ContentFilteredTopic is done with the
create_contentfilteredtopic() member function on the DomainParticipant instance, that acts as a factory
for the ContentFilteredTopic.

Mandatory arguments are:

• A string with the name that identifies the ContentFilteredTopic.

• The related Topic being filtered.

• A string with the filter expression indicating the conditions for a sample to be returned.

• A list of strings with the value of the parameters present on the filter expression.

Optional arguments are:

• A string with the name of the filter class to use for the filter creation. This allows the user to create filters different
from the standard SQL like one (please refer to Using custom filters). Defaults to FASTDDS_SQLFILTER_NAME
(DDSSQL).

Important: Setting an empty string as filter expression results in the disabling of the filtering. This can be used to
enable/disable the DataReader filtering capabilities at any given time by simply updating the filter expression.

create_contentfilteredtopic() will return a null pointer if there was an error during the operation, e.g. if the
related Topic belongs to a different DomainParticipant, a Topic with the same name already exists, syntax errors on the
filter expression, or missing parameter values. It is advisable to check that the returned value is a valid pointer.

Note: Different filter classes may impose different requirements on the related Topic, the expression, or the parameters.
The default filter class, in particular, requires that a TypeObject for the related Topic’s type has been registered. When
using fastddsgen to generate your type support code, remember to include the -typeobject option so the TypeObject
registration code is generated.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)

(continues on next page)

6.16. DDS Layer 227

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

// Create the Topic.
/* IDL
*
* struct HelloWorld
* {
* long index;
* string message;
* }
*
*/
Topic* topic =

participant->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Create a ContentFilteredTopic using an expression with no parameters
std::string expression = "message like 'Hello*'";
std::vector<std::string> parameters;
ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic1", topic,␣
→˓expression, parameters);
if (nullptr == filter_topic)
{

// Error
return;

}

// Create a ContentFilteredTopic using an expression with parameters
expression = "message like %0 or index > %1";
parameters.push_back("'*world*'");
parameters.push_back("20");
ContentFilteredTopic* filter_topic_with_parameters =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic2", topic,␣
→˓expression, parameters);
if (nullptr == filter_topic_with_parameters)
{

// Error
return;

}

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber* subscriber =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)

(continues on next page)

228 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

DataReader* reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_
→˓QOS_DEFAULT);
if (nullptr == reader_on_filter)
{

// Error
return;

}

DataReader* reader_on_filter_with_parameters =
subscriber->create_datareader(filter_topic_with_parameters, DATAREADER_QOS_

→˓DEFAULT);
if (nullptr == reader_on_filter_with_parameters)
{

// Error
return;

}

Updating the filter expression and parameters

A ContentFilteredTopic provides several member functions for the management of the filter expression and the expres-
sion parameters:

• The filter expression can be retrieved with the get_filter_expression() member function.

• The expression parameters can be retrieved with the get_expression_parameters() member function.

• The expression parameters can be modified using the set_expression_parameters() member function.

• The filter expression can be modified along with the expression parameters using the
set_filter_expression() member function.

// This lambda prints all the information of a ContentFilteredTopic
auto print_filter_info = [](

const ContentFilteredTopic* filter_topic)
{

std::cout << "ContentFilteredTopic info for '" << filter_topic->get_name() <
→˓< "':" << std::endl;

std::cout << " - Related Topic: " << filter_topic->get_related_topic()->get_
→˓name() << std::endl;

std::cout << " - Expression: " << filter_topic->get_filter_expression() <
→˓< std::endl;

std::cout << " - Parameters:" << std::endl;

std::vector<std::string> parameters;
filter_topic->get_expression_parameters(parameters);
size_t i = 0;
for (const std::string& parameter : parameters)
{

(continues on next page)

6.16. DDS Layer 229

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

std::cout << " " << i++ << ": " << parameter << std::endl;
}

};

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Topic
/* IDL
*
* struct HelloWorld
* {
* long index;
* string message;
* }
*
*/
Topic* topic =

participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_
→˓DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic", topic,
→˓"index > 10", {});
if (nullptr == filter_topic)
{

// Error
return;

}

// Print the information
print_filter_info(filter_topic);

// Use the ContentFilteredTopic on DataReader objects.
// (...)

// Update the expression
if (ReturnCode_t::RETCODE_OK !=

filter_topic->set_filter_expression("message like %0 or index > %1", {"'Hello*'",
→˓ "15"})) (continues on next page)

230 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
// Error
return;

}

// Print the updated information
print_filter_info(filter_topic);

// Update the parameters
if (ReturnCode_t::RETCODE_OK !=

filter_topic->set_expression_parameters({"'*world*'", "222"}))
{

// Error
return;

}

// Print the updated information
print_filter_info(filter_topic);

Deleting a ContentFilteredTopic

A ContentFilteredTopic can be deleted with the delete_contentfilteredtopic() member function on the Do-
mainParticipant instance where the ContentFilteredTopic was created.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create a Topic
/* IDL
*
* struct HelloWorld
* {
* long index;
* string message;
* }
*
*/
Topic* topic =

participant->create_topic("HelloWorldTopic", "HelloWorldTopic", TOPIC_QOS_
→˓DEFAULT);
if (nullptr == topic)
{

// Error
return;

(continues on next page)

6.16. DDS Layer 231

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

// Create a ContentFilteredTopic
ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic", topic,
→˓"index > 10", {});
if (nullptr == filter_topic)
{

// Error
return;

}

// Use the ContentFilteredTopic on DataReader objects.
// (...)

// Delete the ContentFilteredTopic
if (ReturnCode_t::RETCODE_OK != participant->delete_contentfilteredtopic(filter_topic))
{

// Error
return;

}

The default SQL-like filter

Filter expressions used by ContentFilteredTopic API may use a subset of SQL syntax, extended with the possibility to
use program variables in the SQL expression. This section shows this default SQL-like syntax and how to use it.

• Grammar

• Like condition

• Match condition

• Type comparisons

• Example

Grammar

The allowed SQL expressions are defined with the BNF-grammar below.

The following conventions are made:

• “Terminals” are quoted.

• TOKENS are typeset in code block with black font color.

Expression ::= FilterExpression
FilterExpression ::= Condition
Condition ::= Predicate |

Condition "AND" Condition |
Condition "OR" Condition |
"NOT" Condition |

232 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

"(" Condition ")"
Predicate ::= ComparisonPredicate |

BetweenPredicate
ComparisonPredicate ::= FIELDNAME RelOp Parameter |

Parameter RelOp FIELDNAME |
FIELDNAME RelOp FIELDNAME

BetweenPredicate ::= FIELDNAME "BETWEEN" Range |
FIELDNAME "NOT BETWEEN" Range

RelOp ::= "=" | ">" | ">=" | "<" | "<=" |
"<>" | "!=" | like | match

Range ::= Parameter "AND" Parameter
Parameter ::= BOOLEANVALUE |

INTEGERVALUE |
CHARVALUE |
FLOATVALUE |
STRINGVALUE |
ENUMERATEDVALUE |
PARAMETER

“Terminals” and TOKENS are case sensitive but both uppercase and lowercase are supported.

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

• FIELDNAME: is a reference to a field in the data-structure. The dot . is used to navigate through nested
structures. The number of dots that may be used in a FIELDNAME is unlimited. The FIELDNAME can refer
to fields at any depth in the data structure. The names of the field are those specified in the IDL definition of the
corresponding structure.

FIELDNAME ::= FieldNamePart ("." FieldNamePart)*
FieldNamePart ::= Identifier ("[" Integer "]")?

An example of FIELDNAMEs:

Filter expression

"points[0] = 0 AND color.red < 100"

Associated IDL

struct Color
{

octet red;
octet green;
octet blue;

};

struct Shape
{

long points[4];
Color color;

};

• BOOLEANVALUE: Can either be true of false, case sensitive.

6.16. DDS Layer 233

Fast DDS Documentation, Release 2.8.2

BOOLEANVALUE ::= ["TRUE", "true", "FALSE", "false"]

• INTEGERVALUE: Any series of digits, optionally preceded by a plus or minus sign, representing a decimal
integer value within the range of the system. A hexadecimal number is preceded by 0x and must be a valid
hexadecimal expression.

INTEGERVALUE ::= (["+","-"])? Integer
Integer ::= (["0"-"9"])+ | ["0x","0X"](["0"-"9", "A"-"F", "a"-"f"])+

An example of INTEGERVALUE:

value = -10

• CHARVALUE: A single character enclosed between single quotes.

CHARVALUE ::= "'" Character "'"
Character ::= ~["\n"]

An example of CHARVALUE:

value = 'c'

• FLOATVALUE: Any series of digits, optionally preceded by a plus or minus sign and optionally including
a floating point (.). A power-of-ten expression may be postfixed, which has the syntax e:sup:n, where n is a
number, optionally preceded by a plus or minus sign.

FLOATVALUE ::= (["+"], "-"])? (Integer Exponent | Integer Fractional | Integer Fractional Exponent)
Fractional ::= "." Integer
Exponent ::= ["e","E"] (["+"], "-"])? Integer

An example of FLOATVALUE:

value = 10.1e-10

• STRINGVALUE: Any series of characters encapsulated in single quotes, except a new-line character or a right
quote. A string starts with a left or right quote, but ends with a right quote.

STRINGVALUE ::= ["'"] ~["'", "\r", "\n"] ["'"]

An example of STRINGVALUE:

value = 'This is a string'

• ENUMERATEDVALUE: An enumerated value is a reference to a value declared within an enumeration. Enu-
merated values consist of the name of the enumeration label enclosed in single quotes. The name used for the
enumeration label must correspond to the label names specified in the IDL definition of the enumeration.

ENUMERATEDVALUE ::= ["'"] ~["'", "\r", "\n"] ["'"]

234 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

An example of ENUMERATEDVALUE:

Filter expression

value = 'ENUM_VALUE_1'

Associated IDL

enum MyEnum
{

ENUM_VALUE_1,
ENUM_VALUE_2,
ENUM_VALUE_3

};

struct Enumerators
{

MyEnum value;
};

• PARAMETER: A parameter is of the form %n, where n represents a natural number (zero included) smaller
than 100. It refers to the n + 1 th argument in the given context.

PARAMETER ::= ["%"] ["0"-"9"] (["0"-"9"])?

An example of PARAMETER:

value = %1

Like condition

The like operator is similar as the one defined by SQL. This operator can only be used with strings. There are two
wildcards that could be used in conjunction with this operator

• The percent sign % (or its alias *) represents zero, one, or multiple characters.

• The underscore sign _ (or its alias ?) represents one single character.

All wildcards can also be used in combinations.

An example of like operator

Filter expression

"str like '%bird%'"

Associated IDL

struct Like
{

string str;
};

where string There are birds flying will return true.

6.16. DDS Layer 235

https://www.w3schools.com/sql/sql_like.asp

Fast DDS Documentation, Release 2.8.2

Match condition

The match operator performs a full-text search using a regular expression. This operator can only be used with strings.
It uses the Basic Regular Expression (BRE) defined by POSIX.

An example of match operator

Filter expression

"str match '^The'"

Associated IDL

struct Like
{

string str;
};

where string There are birds flying will return true.

Type comparisons

For the supported operators in the grammar, next table shows the type compatibility.

Operator1 | Operator2 BOOLEAN INTEGER FLOAT CHAR STRING ENUM
BOOLEAN
INTEGER
FLOAT
CHAR
STRING
ENUM *

(*) Only for the same enumerated type.

Example

Assuming Topic Shape has next IDL definition.

struct Shape
{

long x,
long y,
long z,
long width,
long height

};

An example of filter expression would be:

"x < 23 AND y > 50 AND width BETWEEN %0 AND %1"

A ContentFilteredTopic may be created using this filter expression as explained in section Creating a ContentFiltered-
Topic.

236 Chapter 6. Structure of the documentation

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03

Fast DDS Documentation, Release 2.8.2

ContentFilteredTopic* sql_filter_topic =
participant->create_contentfilteredtopic("Shape", topic,

"x < 23 AND y > 50 AND width BETWEEN %0 AND %1",
{"10", "20"});

In this example parameters are used. Internally the ContentFilteredTopic will be created with the filter expression
below, after setting the provided parameters.

"x < 23 AND y > 50 AND width BETWEEN 10 AND 20"

Using custom filters

Fast DDS API supports the creation and later registration of user’s custom filters to be used in the creation of a
ContentFilteredTopic. Required steps for using a Custom Filter are:

• Creating the Custom Filter

• Creating the Factory for the Custom Filter

• Registering the Factory

• Creating a ContentFilteredTopic using the Custom Filter

Creating the Custom Filter

A custom filter must be implemented by a class which inherits from IContentFilter. Only one function must be
implemented, overriding evaluate(). Each time a sample is received by a DataReader, this function is called with
next arguments.

• payload - The serialized payload of the sample which the custom filter has to evaluate.

• sample_info - The extra information which accompanies the sample.

• reader_guid - The GUID of the reader for which the filter is being evaluated.

The function returns a boolean where true implies the sample is accepted and false rejects the sample.

Next snippet code shows an example of Custom Filter which deserialize the index field from a serialized sample and
rejects samples where index > low_mark_ and index < high_mark_.

class MyCustomFilter : public IContentFilter
{
public:

MyCustomFilter(
int low_mark,
int high_mark)

: low_mark_(low_mark)
, high_mark_(high_mark)

{
}

bool evaluate(
const SerializedPayload& payload,
const FilterSampleInfo& sample_info,

(continues on next page)

6.16. DDS Layer 237

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

const GUID_t& reader_guid) const override
{

// Deserialize the `index` field from the serialized sample.
/* IDL
*
* struct HelloWorld
* {
* long index;
* string message;
* }
*/
eprosima::fastcdr::FastBuffer fastbuffer(reinterpret_cast<char*>(payload.data),␣

→˓payload.length);
eprosima::fastcdr::Cdr deser(fastbuffer, eprosima::fastcdr::Cdr::DEFAULT_ENDIAN,

eprosima::fastcdr::Cdr::DDS_CDR);
// Deserialize encapsulation.
deser.read_encapsulation();
int index = 0;

// Deserialize `index` field.
try
{

deser >> index;
}
catch (eprosima::fastcdr::exception::NotEnoughMemoryException& /*exception*/)
{

return false;
}

// Custom filter: reject samples where index > low_mark_ and index < high_mark_.
if (index > low_mark_ && index < high_mark_)
{

return false;
}

return true;
}

private:

int low_mark_ = 0;
int high_mark_ = 0;

};

238 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Creating the Factory for the Custom Filter

Fast DDS creates filters through a factory. Therefore a factory which provides instantiating of a Custom Filter must be
implemented.

A Custom Filter’s factory has to inherit from IContentFilterFactory. This interface requires two functions to be
implemented.

Each time a Custom Filter has to be created or updated, create_contentfilteredtopic() calls internally
create_content_filter() with these arguments:

• filter_class_name - Filter class name for which the factory is being called. It allows using the same factory
for different filter classes.

• type_name - Type name of the topic being filtered.

• data_type - Type support object of the topic being filtered.

• filter_expression - Custom filter expression.

• filter_parameters - Values to set for the filter parameters (where custom filter expression has its pattern to
substitute them).

• filter_instance - When a filter is being created, it will be nullptr on input, and will have the pointer to
the created filter instance on output. When a filter is being updated, it will have a previously returned pointer on
input.

This function should return the result of the operation.

When a Custom Filter should be removed, delete_contentfilteredtopic() calls internally
delete_content_filter(). The factory must remove the provided Custom Filter’s instance.

Next snippet code shows an example of Custom Filter’s factory which manages instances of the Custom Filter imple-
mented in the previous section.

class MyCustomFilterFactory : public IContentFilterFactory
{
public:

ReturnCode_t create_content_filter(
const char* filter_class_name, // My custom filter class name is 'MY_CUSTOM_

→˓FILTER'.
const char* type_name, // This custom filter only supports one type:

→˓'HelloWorld'.
const TopicDataType* /*data_type*/, // Not used in this implementation.
const char* filter_expression, // This Custom Filter doesn't implement a␣

→˓filter expression.
const ParameterSeq& filter_parameters, // Always need two parameters to be␣

→˓set: low_mark and high_mark.
IContentFilter*& filter_instance) override

{
// Check the ContentFilteredTopic should be created by my factory.
if (0 != strcmp(filter_class_name, "MY_CUSTOM_FILTER"))
{

return ReturnCode_t::RETCODE_BAD_PARAMETER;
}

// Check the ContentFilteredTopic is created for the unique type this Custom␣
→˓Filter supports.

(continues on next page)

6.16. DDS Layer 239

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

if (0 != strcmp(type_name, "HelloWorld"))
{

return ReturnCode_t::RETCODE_BAD_PARAMETER;
}

// Check that the two mandatory filter parameters are set.
if (2 != filter_parameters.length())
{

return ReturnCode_t::RETCODE_BAD_PARAMETER;
}

// If there is an update, delete previous instance.
if (nullptr != filter_instance)
{

delete(dynamic_cast<MyCustomFilter*>(filter_instance));
}

// Instantiation of the Custom Filter.
filter_instance = new MyCustomFilter(std::stoi(filter_parameters[0]),␣

→˓std::stoi(filter_parameters[1]));

return ReturnCode_t::RETCODE_OK;
}

ReturnCode_t delete_content_filter(
const char* filter_class_name,
IContentFilter* filter_instance) override

{
// Check the ContentFilteredTopic should be created by my factory.
if (0 != strcmp(filter_class_name, "MY_CUSTOM_FILTER"))
{

return ReturnCode_t::RETCODE_BAD_PARAMETER;
}

// Deletion of the Custom Filter.
delete(dynamic_cast<MyCustomFilter*>(filter_instance));

return ReturnCode_t::RETCODE_OK;
}

};

240 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Registering the Factory

To be able to use the Custom Filter in an application, the Custom Filter’s factory must be registered
in the DomainParticipant. Next snippet code shows how to register a factory through API function
register_content_filter_factory().

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create Custom Filter Factory
MyCustomFilterFactory* factory = new MyCustomFilterFactory();

// Registration of the factory
if (ReturnCode_t::RETCODE_OK !=

participant->register_content_filter_factory("MY_CUSTOM_FILTER", factory))
{

// Error
return;

}

Creating a ContentFilteredTopic using the Custom Filter

Creating a ContentFilteredTopic explains how to create a ContentFilteredTopic. In the case of using a Custom
Filter, create_contentfilteredtopic() has an overload adding an argument to select the Custom Filter.

Next snippet code shows how to create a ContentFilteredTopic using the Custom Filter.

// Create a DomainParticipant in the desired domain
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Create the Topic.
Topic* topic =

participant->create_topic("HelloWorldTopic", "HelloWorld", TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

(continues on next page)

6.16. DDS Layer 241

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

// Create a ContentFilteredTopic selecting the Custom Filter and using no expression␣
→˓with two parameters
// Filter expression cannot be an empty one even when it is not used by the custom␣
→˓filter, as that effectively
// disables any filtering
std::string expression = " ";
std::vector<std::string> parameters;
parameters.push_back("10"); // Parameter for low_mark
parameters.push_back("20"); // Parameter for low_mark
ContentFilteredTopic* filter_topic =

participant->create_contentfilteredtopic("HelloWorldFilteredTopic1", topic,␣
→˓expression, parameters,

"MY_CUSTOM_FILTER");
if (nullptr == filter_topic)
{

// Error
return;

}

// The ContentFilteredTopic instances can then be used to create DataReader objects.
Subscriber* subscriber =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{

// Error
return;

}

DataReader* reader_on_filter = subscriber->create_datareader(filter_topic, DATAREADER_
→˓QOS_DEFAULT);
if (nullptr == reader_on_filter)
{

// Error
return;

}

Important: Even though this specific custom filtering example is not using the filter expression, mind that the expres-
sion cannot be an empty string as that disables filtering as explained in Creating a ContentFilteredTopic.

Note: Deleting a ContentFilteredTopic which uses a Custom Filter is done exactly in the same manner explained in
Deleting a ContentFilteredTopic.

242 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Where is filtering applied: writer vs reader side

Content filters may be evaluated on either side, as the DataWriter obtains the filter expression from the DataReader
during discovery. Filtering on the writer side can save network bandwidth at the cost of increasing CPU usage on the
writer.

Conditions for writer side filtering

A DataWriter will perform filter evaluation in the DataReader stead whenever all of the following conditions are met;
filtering will otherwise be performed by the DataReader.

• The DataWriter has infinite liveliness. See LivelinessQosPolicy.

• Communication with the DataReader is neither intra-process nor data-sharing.

• The DataReader is not using multicast.

• The DataWriter is filtering for no more DataReaders than the maximum value set on
reader_filters_allocation.

– There is a resource-limit policy on DataWriterQos that controls the allocation behavior of writer-side fil-
tering resources. Setting a maximum value of 0 disables filter evaluation on the writer side. A maximum
value of 32 (the default value) means the writer will perform filter evaluation for up to 32 readers.

– If the DataWriter is evaluating filters for writer_resource_limits.reader_filters_allocation.
maximum DataReaders, and a new filtered DataReader is created, then the filter for the newly created
DataReader will be evaluated on the reader side.

Discovery race condition

On applications where the filter expression and/or the expression parameters are updated, there may be a situation
where the DataWriter will apply the old version of the filter until it receives updated information through discovery.
This may imply that a publication made a short time after the DataReader updated the filter, but before the updated
discovery information is received by the DataWriter, may not be sent to the DataReader, even if the new filter would
have told otherwise. Publications made after the updated discovery information is received will use the updated filter.

If some critical application considers this race condition issue unbearable, filtering on the writer side can be disabled
by setting the maximum value on reader_filters_allocation to 0.

Fast DDS-Gen for data types source code generation

eProsima Fast DDS comes with a built-in source code generation tool, Fast DDS-Gen, which eases the process of
translating an IDL specification of a data type to a functional implementation. Thus, this tool automatically generates
the source code of a data type defined using IDL. A basic use of the tool is described below. To learn about all the
features that Fast DDS offers, please refer to Fast DDS-Gen section.

6.16. DDS Layer 243

Fast DDS Documentation, Release 2.8.2

Basic usage

Fast DDS can be executed by calling fastddsgen on Linux or fastddsgen.bat on Windows. The IDL file containing the
data type definition is given with the <IDLfile> argument.

Linux

fastddsgen [<options>] <IDLfile> [<IDLfile> ...]

Windows

fastddsgen.bat [<options>] <IDLfile> [<IDLfile> ...]

Among the available arguments defined in Usage, the main Fast DDS-Gen options for data type source code generation
are the following:

• -replace: It replaces existing files in case the data type files have been previously generated.

• -help: It lists the currently supported platforms and Visual Studio versions.

• -typeobject: It builds additional files for TypeObject generation and management (see TypeObject).

• -example: It generates a basic example of a DDS application and the files to build it for the given platform.
Thus, Fast DDS-Gen tool can generate a sample application using the provided data type, together with a Make-
file, to compile it on Linux distributions, and a Visual Studio project for Windows. To see an example of this
please refer to tutorial Building a publish/subscribe application.

Output files

Fast DDS-Gen outputs several files. Assuming the IDL file had the name “Mytype”, and none of the above options
have been defined, these files are:

• MyType.cxx/.h: Type definition.

• MyTypePubSubType.cxx/.h: Serialization and deserialization source code for the data type. It also defines the
getKey()member function of the MyTypePubSubType class in case the topic implements keys (see Data types
with a key).

If the -typeobject argument was used, MyType.cxx is modified to register the TypeObject representation in the
TypeObjectFactory, and these files will also be generated:

• MyTypeTypeObject.cxx/.h: TypeObject representation for MyType IDL.

6.17 RTPS Layer

The lower level RTPS Layer of eprosima Fast DDS serves an implementation of the protocol defined in the RTPS
standard. This layer provides more control over the internals of the communication protocol than the DDS Layer, so
advanced users have finer control over the library’s functionalities.

244 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.8.2

6.17.1 Relation to the DDS Layer

Elements of this layer map one-to-one with elements from the DDS Layer, with a few additions. This correspondence
is shown in the following table:

DDS Layer RTPS Layer
Domain RTPSDomain
DomainParticipant RTPSParticipant
DataWriter RTPSWriter
DataReader RTPSReader

6.17.2 How to use the RTPS Layer

We will now go over the use of the RTPS Layer like we did with the DDS Layer one, explaining the new features it
presents.

We recommend you to look at the two examples describing how to use the RTPS layer that come with the distribution
while reading this section. They are located in examples/cpp/rtps/AsSocket and examples/cpp/rtps/Registered

Managing the Participant

Creating a RTPSParticipant is done with RTPSDomain::createParticipant().
RTPSParticipantAttributes structure is used to configure the RTPSParticipant upon creation.

RTPSParticipantAttributes participant_attr;
participant_attr.setName("participant");
RTPSParticipant* participant = RTPSDomain::createParticipant(0, participant_attr);

Managing the Writers and Readers

As the RTPS standard specifies, RTPSWriters and RTPSReaders are always associated with a History element. In
the DDS Layer, its creation and management is hidden, but in the RTPS Layer, you have full control over its creation
and configuration.

Writers are created with RTPSDomain::createRTPSWriter() and configured with a WriterAttributes structure.
They also need a WriterHistory which is configured with a HistoryAttributes structure.

HistoryAttributes history_attr;
WriterHistory* history = new WriterHistory(history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, history);

Similar to the creation of Writers, Readers are created with RTPSDomain::createRTPSReader() and configured with
a ReaderAttributes structure. A HistoryAttributes structure is used to configure the required ReaderHistory.
Note that in this case, you can provide a specialization of ReaderListener class that implements your callbacks:

class MyReaderListener : public ReaderListener
{

// Callbacks override
};
MyReaderListener listener;

(continues on next page)

6.17. RTPS Layer 245

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/AsSocket
https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/rtps/Registered

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

HistoryAttributes history_attr;
ReaderHistory* history = new ReaderHistory(history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, history, &
→˓listener);

Using the History to Send and Receive Data

In the RTPS Protocol, Readers and Writers save the data about a topic in their associated Histories. Each piece of data
is represented by a Change, which eprosima Fast DDS implements as CacheChange_t. Changes are always managed
by the History.

You can add a new CacheChange_t to the History of the Writer to send data. The procedure is as follows:

1. Request a CacheChange_t from the Writer with RTPSWriter::new_change(). In order to allocate enough
memory, you need to provide a callback that returns the maximum number bytes in the payload.

2. Fill the CacheChange_t with the data.

3. Add it to the History with WriterHistory::add_change().

The Writer will take care of everything to communicate the data to the Readers.

//Request a change from the writer
CacheChange_t* change = writer->new_change([]() -> uint32_t

{
return 255;

}, ALIVE);
//Write serialized data into the change
change->serializedPayload.length = sprintf((char*) change->serializedPayload.data, "My␣
→˓example string %d", 2) + 1;
//Insert change into the history. The Writer takes care of the rest.
history->add_change(change);

If your topic data type has several fields, you will have to provide functions to serialize and deserialize your data in and
out of the CacheChange_t. Fast DDS-Gen does this for you.

You can receive data from within the ReaderListener::onNewCacheChangeAdded callback, as we did in the DDS
Layer:

1. The callback receives a CacheChange_t parameter containing the received data.

2. Process the data within the received CacheChange_t.

3. Inform the Reader’s History that the change is not needed anymore.

class MyReaderListener : public ReaderListener
{
public:

MyReaderListener()
{
}

~MyReaderListener()
{

(continues on next page)

246 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

}

void onNewCacheChangeAdded(
RTPSReader* reader,
const CacheChange_t* const change)

{
// The incoming message is enclosed within the `change` in the function parameters
printf("%s\n", change->serializedPayload.data);
// Once done, remove the change
reader->getHistory()->remove_change((CacheChange_t*)change);

}

};

6.17.3 Configuring Readers and Writers

One of the benefits of using the RTPS Layer is that it provides new configuration possibilities while maintaining the
options from the DDS layer. For example, you can set a Writer or a Reader as a Reliable or Best-Effort endpoint as
previously:

writer_attr.endpoint.reliabilityKind = BEST_EFFORT;

Setting the data durability kind

The Durability parameter defines the behavior of the Writer regarding samples already sent when a new Reader matches.
eProsima Fast DDS offers three Durability options:

• VOLATILE (default): Messages are discarded as they are sent. If a new Reader matches after message n, it will
start received from message n+1.

• TRANSIENT_LOCAL: The Writer saves a record of the last k messages it has sent. If a new reader matches
after message n, it will start receiving from message n-k

• TRANSIENT: As TRANSIENT_LOCAL, but the record of messages will be saved to persistent storage, so it
will be available if the writer is destroyed and recreated, or in case of an application crash.

To choose your preferred option:

writer_attr.endpoint.durabilityKind = TRANSIENT_LOCAL;

Because in the RTPS Layer you have control over the History, in TRANSIENT_LOCAL and TRANSIENT modes the
Writer sends all changes you have not explicitly released from the History.

6.17. RTPS Layer 247

Fast DDS Documentation, Release 2.8.2

6.17.4 Configuring the History

The History has its own configuration structure, the HistoryAttributes.

Changing the maximum size of the payload

You can choose the maximum size of the Payload that can go into a CacheChange_t. Be sure to choose a size that
allows it to hold the biggest possible piece of data:

history_attr.payloadMaxSize = 250;//Defaults to 500 bytes

Changing the size of the History

You can specify a maximum amount of changes for the History to hold and an initial amount of allocated changes:

history_attr.initialReservedCaches = 250; //Defaults to 500
history_attr.maximumReservedCaches = 500; //Defaults to 0 = Unlimited Changes

When the initial amount of reserved changes is lower than the maximum, the History will allocate more changes as
they are needed until it reaches the maximum size.

6.17.5 Using a custom Payload Pool

A Payload is defined as the data the user wants to transmit between a Writer and a Reader. RTPS needs to add
some metadata to this Payload in order to manage the communication between the endpoints. Therefore, this Pay-
load is encapsulated inside the SerializedPayload_t field of the CacheChange_t, while the rest of the fields of the
CacheChange_t provide the required metadata.

WriterHistory and ReaderHistory provide an interface for the user to interact with these changes: Changes to be
transmitted by the Writer are added to its WriterHistory, and changes already processed on the Reader can be removed
from the ReaderHistory. In this sense, the History acts as a buffer for changes that are not fully processed yet.

During a normal execution, new changes are added to the History and old ones are removed from it. In order to manage
the lifecycle of the Payloads contained in these changes, Readers and Writers use a pool object, an implementation of
the IPayloadPool interface. Different pool implementations allow for different optimizations. For example, Payloads
of different size could be retrieved from different preallocated memory chunks.

Writers and Readers can automatically select a default Payload pool implementation that best suits
the configuration given in HistoryAttributes. However, a custom Payload pool can be given to
RTPSDomain::createRTPSWriter() and RTPSDomain::createRTPSReader() functions. Writers and Readers
will use the provided pool when a new CacheChange_t is requested or released.

IPayloadPool interface

• IPayloadPool::get_payload overload with size parameter:

Ties an empty Payload of the requested size to a CacheChange_t instance. The Payload can then be filled with
the required data.

• IPayloadPool::get_payload overload with SerializadPayload parameter:

Copies the given Payload data to a new Payload from the pool and ties it to the CacheChange_t instance. This
overload also takes a pointer to the pool that owns the original Payload. This allows certain optimizations, like
sharing the Payload if the original one comes form this same pool, therefore avoiding the copy operation.

248 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• IPayloadPool::release_payload :

Returns the Payload tied to a CacheChange_t to the pool, and breaks the tie.

Important: When implementing a custom Payload pool, make sure that the allocated Payloads fulfill the requirements
of standard RTPS serialization. Specifically, the Payloads must be large enough to accommodate the serialized user
data plus the 4 octets of the SerializedPayloadHeader as specified in section 10.2 of the RTPS standard.

For example, if we know the upper bound of the serialized user data, we may consider implementing a pool that always
allocates Payloads of a fixed size, large enough to hold any of this data. If the serialized user data has at most N octets,
then the allocated Payloads must have at least N+4 octets.

Note that the size requested to IPayloadPool::get_payload already considers this 4 octet header.

Default Payload pool implementation

If no custom Payload pool is provided to the Writer or Reader, Fast DDS will automatically use the default implemen-
tation that best matches the memoryPolicy configuration of the History.

PREALLOCATED_MEMORY_MODE

All payloads will have a data buffer of fixed size, equal to the value of payloadMaxSize, regardless of the size requested
to IPayloadPool::get_payload . Released Payloads can be reused for another CacheChange_t. This reduces
memory allocation operations at the cost of higher memory usage.

During the initialization of the History, initialReservedCaches Payloads are preallocated for the initially allocated
CacheChange_t.

PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Payloads are guaranteed to have a data buffer at least as large as the maximum between the requested size and
payloadMaxSize. Released Payloads can be reused for another CacheChange_t. If there is at least one free Pay-
load with a buffer size equal or larger to the requested one, no memory allocation is done.

During the initialization of the History, initialReservedCaches Payloads are preallocated for the initially allocated
CacheChange_t.

DYNAMIC_RESERVE_MEMORY_MODE

Every time a Payload is requested, a new one is allocated in memory with the appropriate size. payloadMaxSize is
ignored. The memory of released Payloads is always deallocated, so there are never free Payloads in the pool. This
reduces memory usage at the cost of frequent memory allocations.

No preallocation of Payloads is done in the initialization of the History,

DYNAMIC_REUSABLE_MEMORY_MODE

Payloads are guaranteed to have a data buffer at least as large as the requested size. payloadMaxSize is ignored.

Released Payloads can be reused for another CacheChange_t. If there is at least one free Payload with a buffer size
equal or larger to the requested one, no memory allocation is done.

6.17. RTPS Layer 249

https://www.omg.org/spec/DDSI-RTPS/2.2

Fast DDS Documentation, Release 2.8.2

Example using a custom Payload pool

// A simple payload pool that reserves and frees memory each time
class CustomPayloadPool : public IPayloadPool
{

bool get_payload(
uint32_t size,
CacheChange_t& cache_change) override

{
// Reserve new memory for the payload buffer
octet* payload = new octet[size];

// Assign the payload buffer to the CacheChange and update sizes
cache_change.serializedPayload.data = payload;
cache_change.serializedPayload.length = size;
cache_change.serializedPayload.max_size = size;

// Tell the CacheChange who needs to release its payload
cache_change.payload_owner(this);

return true;
}

bool get_payload(
SerializedPayload_t& data,
IPayloadPool*& /* data_owner */,
CacheChange_t& cache_change) override

{
// Reserve new memory for the payload buffer
octet* payload = new octet[data.length];

// Copy the data
memcpy(payload, data.data, data.length);

// Assign the payload buffer to the CacheChange and update sizes
cache_change.serializedPayload.data = payload;
cache_change.serializedPayload.length = data.length;
cache_change.serializedPayload.max_size = data.length;

// Tell the CacheChange who needs to release its payload
cache_change.payload_owner(this);

return true;
}

bool release_payload(
CacheChange_t& cache_change) override

{
// Ensure precondition
assert(this == cache_change.payload_owner());

// Dealloc the buffer of the payload
delete[] cache_change.serializedPayload.data;

(continues on next page)

250 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Reset sizes and pointers
cache_change.serializedPayload.data = nullptr;
cache_change.serializedPayload.length = 0;
cache_change.serializedPayload.max_size = 0;

// Reset the owner of the payload
cache_change.payload_owner(nullptr);

return true;
}

};

std::shared_ptr<CustomPayloadPool> payload_pool = std::make_shared<CustomPayloadPool>();

// A writer using the custom payload pool
HistoryAttributes writer_history_attr;
WriterHistory* writer_history = new WriterHistory(writer_history_attr);
WriterAttributes writer_attr;
RTPSWriter* writer = RTPSDomain::createRTPSWriter(participant, writer_attr, payload_pool,
→˓ writer_history);

// A reader using the same instance of the custom payload pool
HistoryAttributes reader_history_attr;
ReaderHistory* reader_history = new ReaderHistory(reader_history_attr);
ReaderAttributes reader_attr;
RTPSReader* reader = RTPSDomain::createRTPSReader(participant, reader_attr, payload_pool,
→˓ reader_history);

// Write and Read operations work as usual, but take the Payloads from the pool.
// Requesting a change to the Writer will provide one with an empty Payload taken from␣
→˓the pool
CacheChange_t* change = writer->new_change([]() -> uint32_t

{
return 255;

}, ALIVE);

// Write serialized data into the change and add it to the history
change->serializedPayload.length = sprintf((char*) change->serializedPayload.data, "My␣
→˓example string %d", 2) + 1;
writer_history->add_change(change);

6.17. RTPS Layer 251

Fast DDS Documentation, Release 2.8.2

6.18 Discovery

Fast DDS, as a Data Distribution Service (DDS) implementation, provides discovery mechanisms that allow for au-
tomatically finding and matching DataWriters and DataReaders across DomainParticipants so they can start sharing
data. This discovery is performed, for all the mechanisms, in two phases.

6.18.1 Discovery phases

1. Participant Discovery Phase (PDP): During this phase the DomainParticipants acknowledge each other’s
existence. To do that, each DomainParticipant sends periodic announcement messages, which specify, among
other things, unicast addresses (IP and port) where the DomainParticipant is listening for incoming meta and
user data traffic. Two given DomainParticipants will match when they exist in the same DDS Domain. By
default, the announcement messages are sent using well-known multicast addresses and ports (calculated using
the DomainId). Furthermore, it is possible to specify a list of addresses to send announcements using unicast (see
in Initial peers). Moreover, is is also possible to configure the periodicity of such announcements (see Discovery
Configuration).

2. Endpoint Discovery Phase (EDP): During this phase, the DataWriters and DataReaders acknowledge each
other. To do that, the DomainParticipants share information about their DataWriters and DataReaders with each
other, using the communication channels established during the PDP. This information contains, among other
things, the Topic and data type (see Topic). For two endpoints to match, their topic and data type must coincide.
Once DataWriter and DataReader have matched, they are ready for sending/receiving user data traffic.

Important: It is possible to use the PDP phase to transmit information about the host, user, and process (physical
information) in which the DomainParticipant is running. Please refer to Physical Data in Discovery Information
for more information about how to configure the transmitted physical data.

6.18.2 Discovery mechanisms

Fast DDS provides the following discovery mechanisms:

• Simple Discovery: This is the default mechanism. It upholds the RTPS standard for both PDP and EDP, and
therefore provides compatibility with any other DDS and RTPS implementations.

• Static Discovery: This mechanisms uses the Simple Participant Discovery Protocol (SPDP) for the PDP phase
(as specified by the RTPS standard), but allows for skipping the Simple Endpoint Discovery Protocol (SEDP)
phase when all the DataWriters’ and DataReaders’ IPs and ports, data types, and Topics are known beforehand.

• Discovery Server: This discovery mechanism uses a centralized discovery architecture, where a DomainPartici-
pant, referred as Server, acts as a hub for meta traffic discovery.

• Manual Discovery: This mechanism is only compatible with the RTPS layer. It disables the PDP, letting the user
to manually match and unmatch RTPSParticipants, RTPSReaders, and RTPSWriters using whatever exter-
nal meta-information channel of its choice. Therefore, the user must access the RTPSParticipant implemented
by the DomainParticipant and directly match the RTPS Entities.

252 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

6.18.3 Discovery settings

The following sections list and describe the settings available for each of the previously defined discovery mechanisms,
as well as how to define the DomainParticipantListener discovery callbacks.

General Discovery Settings

Some discovery settings are shared across the different discovery mechanisms. These settings are defined under the
builtin public data member of the WireProtocolConfigQos class. These are:

Name Description Type De-
fault

Discovery
Protocol

The discovery protocol to use (see Discovery mechanisms). DiscoveryProtocolSIMPLE

Ignore Par-
ticipant
flags

Filter discovery traffic for DomainParticipants in the same pro-
cess, in different processes, or in different hosts.

ParticipantFilteringFlagsNO_FILTER

Lease Dura-
tion

Indicates for how much time should a remote DomainParticipant
consider the local DomainParticipant to be alive.

Duration_t 20 s

Announce-
ment Period

The period for the DomainParticipant to send PDP announce-
ments.

Duration_t 3 s

Discovery Protocol

Specifies the discovery protocol to use (see Discovery mechanisms). The possible values are:

Dis-
covery
Mecha-
nism

Pos-
sible
val-
ues

Description

Simple SIMPLE Simple discovery protocol as specified in RTPS standard.
Static STATIC SPDP with manual EDP specified in XML files.
Dis-
covery
Server

SERVER The DomainParticipant acts as a hub for discovery traffic, receiving and distributing discov-
ery information.

CLIENT The DomainParticipant acts as a client for discovery traffic. It sends its discovery information
to the server, and it receives only the information that is relevant to it.

SUPER_CLIENTThe DomainParticipant acts as a client for discovery traffic. It sends its discovery information
to the server, and it receives all other discovery information from the server.

BACKUP Creates a SERVER DomainParticipant which has a persistent sqlite database. A BACKUP
server can load the a database on start. This type of sever makes the Discovery Server
architecture resilient to server destruction.

Manual NONE Disables PDP phase, therefore the is no EDP phase. All matching must be done manually
through the addReaderLocator, addReaderProxy, addWriterProxy RTPS layer meth-
ods.

6.18. Discovery 253

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::SIMPLE;

XML

<participant profile_name="participant_discovery_protocol">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>SIMPLE</discoveryProtocol>
</discovery_config>

</builtin>
</rtps>

</participant>

Ignore Participant flags

Defines a filter to ignore some discovery traffic when received. This is useful to add an extra level of DomainParticipant
isolation. The possible values are:

Possible values Description
NO_FILTER All Discovery traffic is processed.
FILTER_DIFFERENT_HOST Discovery traffic from another host is discarded.
FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host is

discarded.
FILTER_SAME_PROCESS Discovery traffic from DomainParticipant’s own process is

discarded.
FILTER_DIFFERENT_PROCESS |
FILTER_SAME_PROCESS

Discovery traffic from DomainParticipant’s own host is dis-
carded.

254 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.ignoreParticipantFlags =
static_cast<eprosima::fastrtps::rtps::ParticipantFilteringFlags_t>(

ParticipantFilteringFlags_t::FILTER_DIFFERENT_PROCESS |
ParticipantFilteringFlags_t::FILTER_SAME_PROCESS);

XML

<participant profile_name="participant_discovery_ignore_flags">
<rtps>

<builtin>
<discovery_config>

<ignoreParticipantFlags>FILTER_DIFFERENT_PROCESS | FILTER_SAME_PROCESS
→˓</ignoreParticipantFlags>

</discovery_config>
</builtin>

</rtps>
</participant>

Lease Duration

Indicates for how much time should a remote DomainParticipant consider the local DomainParticipant to be alive. If
the liveliness of the local DomainParticipant has not being asserted within this time, the remote DomainParticipant
considers the local DomainParticipant dead and destroys all the information regarding the local DomainParticipant and
all its endpoints.

The local DomainParticipant’s liveliness is asserted on the remote DomainParticipant any time the remote DomainPar-
ticipant receives any kind of traffic from the local DomainParticipant.

The lease duration is specified as a time expressed in seconds and nanosecond using a Duration_t.

6.18. Discovery 255

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.leaseDuration = Duration_t(10, 20);

XML

<participant profile_name="participant_discovery_lease_duration">
<rtps>

<builtin>
<discovery_config>

<leaseDuration>
<sec>10</sec>
<nanosec>20</nanosec>

</leaseDuration>
</discovery_config>

</builtin>
</rtps>

</participant>

Announcement Period

It specifies the periodicity of the DomainParticipant’s PDP announcements. For liveliness’ sake it is recommend that
the announcement period is shorter than the lease duration, so that the DomainParticipant’s liveliness is asserted even
when there is no data traffic. It is important to note that there is a trade-off involved in the setting of the announcement
period, i.e. too frequent announcements will bloat the network with meta traffic, but too scarce ones will delay the
discovery of late joiners.

DomainParticipant’s announcement period is specified as a time expressed in seconds and nanosecond using a
Duration_t.

256 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.leaseDuration_announcementperiod =␣
→˓Duration_t(1, 2);

XML

<participant profile_name="participant_discovery_lease_announcement">
<rtps>

<builtin>
<discovery_config>

<leaseAnnouncement>
<sec>1</sec>
<nanosec>2</nanosec>

</leaseAnnouncement>
</discovery_config>

</builtin>
</rtps>

</participant>

SIMPLE Discovery Settings

The SIMPLE discovery protocol resolves the establishment of the end-to-end connection between various DDS Entities.
eProsima Fast DDS implements the SIMPLE discovery protocol to provide compatibility with the RTPS standard. The
specification splits up the SIMPLE discovery protocol into two independent protocols:

• Simple Participant Discovery Protocol (SPDP): specifies how DomainParticipants discover each other in the
network; it announces and detects the presence of DomainParticipants within the same domain.

• Simple Endpoint Discovery Protocol (SEDP): defines the protocol adopted by the discovered DomainPartic-
ipants for the exchange of information in order to discover the DDS Entities contained in each of them, i.e. the
DataWriter and DataReader.

Name Description
Initial Announcements It defines the behavior of the DomainParticipants initial announcements.
Simple EDP Attributes It defines the use of the SIMPLE protocol as a discovery protocol.
Initial peers A list of DomainParticipant’s IP/port pairs to which the SPDP announcements are sent.

Initial Announcements

RTPS standard simple discovery mechanism requires the DomainParticipants to send announcements of their presence
in the domain. These announcements are not delivered in a reliable fashion, and can be disposed of by the network. In
order to avoid the discovery delay induced by message disposal, the initial announcement can be set up to make several
shots, in order to increase proper reception chances. See InitialAnnouncementConfig.

Initial announcements only take place upon participant creation. Once this phase is over, the only announcements
enforced are the standard ones based on the leaseDuration_announcementperiod period (not the period).

6.18. Discovery 257

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

Name Description Type Default
count It defines the number of announcements to send at start-up. uint32_t 5
period It defines the specific period for initial announcements. Duration_t 100ms

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.initial_announcements.count = 5;
pqos.wire_protocol().builtin.discovery_config.initial_announcements.period = Duration_
→˓t(0, 100000000u);

XML

<participant profile_name="participant_profile_simple_discovery">
<rtps>

<builtin>
<discovery_config>

<initialAnnouncements>
<count>5</count>
<period>

<sec>0</sec>
<nanosec>100000000</nanosec>

</period>
</initialAnnouncements>

</discovery_config>
</builtin>

</rtps>
</participant>

Simple EDP Attributes

Name Description Type De-
fault

SIMPLE EDP It defines the use of the SIMPLE protocol as a discovery protocol for EDP phase.
A DomainParticipant may create DataWriters, DataReaders, both or neither.

bool true

Publication
writer and Sub-
scription reader

It is intended for DomainParticipants that implement only one or more DataWrit-
ers, i.e. do not implement DataReaders. It allows the creation of only DataReader
discovery related EDP endpoints.

bool true

Publication
reader and
Subscription
writer

It is intended for DomainParticipants that implement only one or more DataRead-
ers, i.e. do not implement DataWriters. It allows the creation of only DataWriter
discovery related EDP endpoints.

bool true

258 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol =␣
→˓true;
pqos.wire_protocol().builtin.discovery_config.m_simpleEDP.use_
→˓PublicationWriterANDSubscriptionReader = true;
pqos.wire_protocol().builtin.discovery_config.m_simpleEDP.use_
→˓PublicationReaderANDSubscriptionWriter = false;

XML

<participant profile_name="participant_profile_qos_discovery_edp">
<rtps>

<builtin>
<discovery_config>

<EDP>SIMPLE</EDP>
<simpleEDP>

<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>false</PUBREADER_SUBWRITER>

</simpleEDP>
</discovery_config>

</builtin>
</rtps>

</participant>

Initial peers

According to the RTPS standard (Section 9.6.1.1), each RTPSParticipant must listen for incoming Participant Dis-
covery Protocol (PDP) discovery metatraffic in two different ports, one linked with a multicast address, and another one
linked to a unicast address. Fast DDS allows for the configuration of an initial peers list which contains one or more
such IP-port address pairs corresponding to remote DomainParticipants PDP discovery listening resources, so that the
local DomainParticipant will not only send its PDP traffic to the default multicast address-port specified by its domain,
but also to all the IP-port address pairs specified in the initial peers list.

A DomainParticipant’s initial peers list contains the list of IP-port address pairs of all other DomainParticipants with
which it will communicate. It is a list of addresses that a DomainParticipant will use in the unicast discovery mechanism,
together or as an alternative to multicast discovery. Therefore, this approach also applies to those scenarios in which
multicast functionality is not available.

According to the RTPS standard (Section 9.6.1.1), the RTPSParticipants’ discovery traffic unicast listening ports are
calculated using the following equation: 7400 + 250 * domainID + 10 + 2 * participantID. Thus, if for example a
RTPSParticipant operates in Domain 0 (default domain) and its ID is 1, its discovery traffic unicast listening port
would be: 7400 + 250 * 0 + 10 + 2 * 1 = 7412. By default eProsima Fast DDS uses as initial peers the Metatraffic
Multicast Locators.

The following constitutes an example configuring an Initial Peers list with one peer on host 192.168.10.13 with Do-
mainParticipant ID 1 in domain 0.

Note: There is also the possibility of not defining the initial peer port. In this case, the discovery information would

6.18. Discovery 259

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

be sent to every port ranging from participantID zero to the maxInitialPeersRange value set in the TransportDe-
scriptorInterface. Consequently, setting this value to at least the maximum expected number of DomainParticipants
will ensure discovery and communication.

C++

DomainParticipantQos qos;

// configure an initial peer on host 192.168.10.13.
// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID `1` and domain `0`.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, "192.168.10.13");
initial_peer.port = 7412;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

XML

<!--
<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
-->

<participant profile_name="initial_peers_example_profile" is_default_profile="true
→˓">

<rtps>
<builtin>

<initialPeersList>
<locator>

<udpv4>
<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

STATIC Discovery Settings

Fast DDS allows for the substitution of the SEDP protocol for the EDP phase with a static version that completely
eliminates EDP meta traffic. This can become useful when dealing with limited network bandwidth and a well-known
schema of DataWriters and DataReaders. If all DataWriters and DataReaders, and their Topics and data types, are
known beforehand, the EDP phase can be replaced with a static configuration of peers. It is important to note that by
doing this, no EDP discovery meta traffic will be generated, and only those peers defined in the configuration will be
able to communicate. The STATIC discovery related settings are:

260 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Name Description
STATIC EDP It activates the STATIC discovery protocol.
STATIC EDP XML Configuration
Specification

Specifies an XML content with a description of the remote DataWriters
and DataReaders.

Initial Announcements It defines the behavior of the DomainParticipant initial announcements
(PDP phase).

STATIC EDP

To activate the STATIC EDP, the SEDP must be disabled on the WireProtocolConfigQos. This can be done either
by code or using an XML configuration file:

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.use_SIMPLE_EndpointDiscoveryProtocol =␣
→˓false;
pqos.wire_protocol().builtin.discovery_config.use_STATIC_EndpointDiscoveryProtocol =␣
→˓true;

XML

<participant profile_name="participant_profile_static_edp">
<rtps>

<builtin>
<discovery_config>

<EDP>STATIC</EDP>
</discovery_config>

</builtin>
</rtps>

</participant>

Currently two different formats of exchanging information in the Participant Discovery Phase (PDP) are supported: the
default one and another that reduces the network bandwidth used. Static Discovery’s Exchange Format explains how
to change this.

STATIC EDP XML Configuration Specification

Since activating STATIC EDP suppresses all EDP meta traffic, the information about the remote entities (DataWriters
and DataReaders) must be statically specified, which is done using dedicated XML files. A DomainParticipant may
load several of such configuration files so that the information about different entities can be contained in one file, or
split into different files to keep it more organized. Fast DDS provides a Static Discovery example that implements this
EDP discovery protocol.

The following table describes all the possible elements of a STATIC EDP XML configuration file. A full example of
such file can be found in STATIC EDP XML Example.

6.18. Discovery 261

https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/StaticHelloWorldExample

Fast DDS Documentation, Release 2.8.2

Name Description Values Default
<userId> Mandatory. Uniquely identifies the

DataReader/DataWriter.
uint16_t 0

<entityID>EntityId of the DataReader/DataWriter. uint16_t 0
<expectsInlineQos>It indicates if QOS is expected inline

(DataReader only).
bool false

<topicName>Mandatory. The topic of the remote
DataReader/DataWriter. Should match
with one of the topics of the local DataRead-
ers/DataWriters.

string_255

<topicDataType>Mandatory. The data type of the topic. string_255
<topicKind>The kind of topic. NO_KEY WITH_KEY NO_KEY
<partitionQos>The name of a partition of the remote peer. Re-

peat to configure several partitions.
string

<unicastLocator>Unicast locator of the DomainParticipant. See
Locators definition.

<multicastLocator>Multicast locator of the DomainParticipant. See
Locators definition.

<reliabilityQos>See the ReliabilityQosPolicy section. BEST_EFFORT_RELIABILITY_QOS
RELIABLE_RELIABILITY_QOS

BEST_EFFORT_RELIABILITY_QOS

<durabilityQos>See the DurabilityQosPolicy section. VOLATILE_DURABILITY_QOS
TRANSIENT_LOCAL_DURABILITY_QOS
TRANSIENT_DURABILITY_QOS

VOLATILE_DURABILITY_QOS

<ownershipQos>See Ownership QoS.
<livelinessQos>Defines the liveliness of the remote peer. See

Liveliness QoS.
<disablePositiveAcks>See DisablePositiveACKsQosPolicy. See DisablePositiveAcks

Locators definition

Locators for remote peers are configured using <unicastLocator> and <multicastLocator> tags. These
take no value, and the locators are defined using tag elements. Locators defined with <unicastLocator> and
<multicastLocator> are accumulative, so they can be repeated to assign several remote endpoints locators to the
same peer.

• address: a mandatory string representing the locator address.

• port: an optional uint16_t representing a port on that address.

Ownership QoS

The ownership of the topic can be configured using <ownershipQos> tag. It takes no value, and the configuration is
done using tag elements:

• kind: can be one of SHARED_OWNERSHIP_QOS or EXCLUSIVE_OWNERSHIP_QOS. This element is mandatory
withing the tag.

• strength: an optional uint32_t specifying how strongly the remote DomainParticipant owns the Topic. This
QoS can be set on DataWriters only. If not specified, default value is zero.

262 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Liveliness QoS

The LivelinessQosPolicy of the remote peer is configured using <livelinessQos> tag. It takes no value, and the
configuration is done using tag elements:

• kind: can be any of AUTOMATIC_LIVELINESS_QOS, MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or
MANUAL_BY_TOPIC_LIVELINESS_QOS. This element is mandatory withing the tag.

• leaseDuration_ms: an optional uint32 specifying the lease duration for the remote peer. The special value
INF can be used to indicate infinite lease duration. If not specified, default value is INF

Checking STATIC EDP XML Files

Before loading a static EDP XML file, it would be useful to check its validity and make sure the
file will be successfully loaded. This verification can be performed on DomainParticipantFactory using
DomainParticipantFactory::check_xml_static_discovery(), using either XML files or the configuration
directly, as in the examples below.

File

// The (file://) flag is optional.
std::string file = "file://static_Discovery.xml";
DomainParticipantFactory* factory = DomainParticipantFactory::get_instance();
if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(file))
{

std::cout << "Error parsing xml file " << file << std::endl;
}

Data

// The (data://) flag is required to load the configuration directly.
std::string fileData = "data://<?xml version=\"1.0\" encoding=\"utf-8\"?>" \

"<staticdiscovery>" \
"<participant>" \
"<name>HelloWorldPublisher</name>" \
"<writer>" \
"<userId>1</userId>" \
"<entityID>2</entityID>" \
"<topicName>HelloWorldTopic</topicName>" \
"<topicDataType>HelloWorld</topicDataType>" \
"</writer>" \
"</participant>" \
"</staticdiscovery>";

if (ReturnCode_t::RETCODE_OK != factory->check_xml_static_discovery(fileData))
{

std::cout << "Error parsing xml file data:" << std::endl << fileData << std::endl;
}

6.18. Discovery 263

Fast DDS Documentation, Release 2.8.2

STATIC EDP XML Example

The following is a complete example of a configuration XML file for two remote DomainParticipant, a DataWriter and
a DataReader. This configuration must agree with the configuration used to create the remote DataReader/DataWriter.
Otherwise, communication between DataReaders and DataWriters may be affected. If any non-mandatory element
is missing, it will take the default value. As a rule of thumb, all the elements that were specified on the remote
DataReader/DataWriter creation should be configured.

264 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

<staticdiscovery>
<participant>

<name>HelloWorldSubscriber</name>
<reader>

<userId>3</userId>
<entityID>4</entityID>
<expectsInlineQos>true</expectsInlineQos>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<unicastLocator address="192.168.0.128" port="5000"/>
<unicastLocator address="10.47.8.30" port="6000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
<disablePositiveAcks>

<enabled>true</enabled>
</disablePositiveAcks>

</reader>
</participant>
<participant>

<name>HelloWorldPublisher</name>
<writer>

<unicastLocator address="192.168.0.120" port="9000"/>
<unicastLocator address="10.47.8.31" port="8000"/>
<multicastLocator address="239.255.1.1" port="7000"/>
<userId>5</userId>
<entityID>6</entityID>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>
<topicKind>WITH_KEY</topicKind>
<partitionQos>HelloPartition</partitionQos>
<partitionQos>WorldPartition</partitionQos>
<reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>
<durabilityQos>VOLATILE_DURABILITY_QOS</durabilityQos>
<ownershipQos kind="SHARED_OWNERSHIP_QOS" strength="50"/>
<livelinessQos kind="AUTOMATIC_LIVELINESS_QOS" leaseDuration_ms="1000"/>
<disablePositiveAcks>

<enabled>true</enabled>
<duration>

<sec>300</sec>
</duration>

</disablePositiveAcks>
</writer>

</participant>
</staticdiscovery>

6.18. Discovery 265

Fast DDS Documentation, Release 2.8.2

Loading STATIC EDP XML Files

Statically discovered remote DataReaders/DataWriters must define a unique userID on their profile, whose value must
agree with the one specified in the discovery configuration XML. This is done by setting the user ID on the DataRead-
erQos/DataWriterQos:

C++

// Configure the DataWriter
DataWriterQos wqos;
wqos.endpoint().user_defined_id = 1;

// Configure the DataReader
DataReaderQos rqos;
rqos.endpoint().user_defined_id = 3;

XML

<data_writer profile_name="writer_xml_conf_static_discovery">
<userDefinedID>3</userDefinedID>

</data_writer>

<data_reader profile_name="reader_xml_conf_static_discovery">
<userDefinedID>5</userDefinedID>

</data_reader>

On the local DomainParticipant, you can load STATIC EDP configuration content specifying the file containing it.

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config("file://
→˓RemotePublisher.xml");
pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config("file://
→˓RemoteSubscriber.xml");

XML

<participant profile_name="participant_profile_static_load_xml">
<rtps>

<builtin>
<discovery_config>

<static_edp_xml_config>file://RemotePublisher.xml</static_edp_xml_
→˓config>

<static_edp_xml_config>file://RemoteSubscriber.xml</static_edp_xml_
→˓config>

</discovery_config>
</builtin>

</rtps>
</participant>

266 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Or you can specify the STATIC EDP configuration content directly.

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.static_edp_xml_config(
"data://<?xml version=\"1.0\" encoding=\"utf-8\"?>" \
"<staticdiscovery><participant><name>RTPSParticipant</name></participant></

→˓staticdiscovery>");

Discovery Server Settings

This mechanism is based on a client-server discovery paradigm, i.e. the metatraffic (message exchange among Domain-
Participants to identify each other) is managed by one or several server DomainParticipants (left figure), as opposed
to simple discovery (right figure), where metatraffic is exchanged using a message broadcast mechanism like an IP
multicast protocol. A Discovery-Server tool is available to ease Discovery Server setup and testing.

• Key concepts

• Choosing between Client and Server

• The GuidPrefix as the server unique identifier

• The server locator list

• Fine tuning discovery server handshake

• Modifying remote servers list at run time

• Configure Discovery Server locators using names

• Full example

Fig. 9: Comparison of Discovery Server and Simple discovery mechanisms

Key concepts

In this architecture there are several key concepts to understand:

• The Discovery Server mechanism reuses the RTPS discovery messages structure, as well as the standard DDS
DataWriters and DataReaders.

• Discovery Server DomainParticipants may be clients or servers. The only difference between them is on how
they handle discovery traffic. The user traffic, that is, the traffic among the DataWriters and DataReaders they
create, is role-independent.

• All server and client discovery information will be shared with linked clients. Note that a server may act as a
client for other servers.

• A SERVER is a participant to which the clients (and maybe other servers) send their discovery information. The
role of the server is to re-distribute the clients (and servers) discovery information to their known clients and
servers. A server may connect to other servers to receive information about their clients. Known servers will

6.18. Discovery 267

https://eprosima-discovery-server.readthedocs.io/en/latest/index.html

Fast DDS Documentation, Release 2.8.2

receive all the information known by the server. Known clients will only receive the information they need to
establish communication, i.e. the information about the DomainParticipants, DataWriters, and DataReaders to
which they match. This means that the server runs a “matching” algorithm to sort out which information is
required by which client.

• A BACKUP server is a server that persists its discovery database into a file. This type of server can load the
network graph from a file on start-up without the need of receiving any client’s information. It can be used to
persist the server knowledge about the network between runs, thus securing the server’s information in case of
unexpected shutdowns. It is important to note that the discovery times will be negatively affected when using
this type of server, since periodically writing to a file is an expensive operation.

• A CLIENT is a participant that connects to one or more servers from which it receives only the discovery infor-
mation they require to establish communication with matching endpoints.

• Clients require a beforehand knowledge of the servers to which they want to link. Basically it is reduced to the
servers identity (henceforth called GuidPrefix_t) and a list of locators where the servers are listening. These
locators also define the transport protocol (UDP or TCP) the client will use to contact the server.

– The GuidPrefix_t is the RTPS standard RTPSParticipant unique identifier, a 12-byte chain. This iden-
tifier allows clients to assess whether they are receiving messages from the right server, as each standard
RTPS message contains this piece of information.

The GuidPrefix_t is used because the server’s IP address may not be a reliable enough server identifier,
since several servers can be hosted in the same machine, thus having the same IP, and also because multicast
addresses are acceptable addresses.

• A SUPER_CLIENT is a client that receives all the discovery information known by the server, in opposition to
clients, which only receive the information they need.

• Servers do not require any beforehand knowledge of their clients, but their GuidPrefix_t and locator list (where
they are listening) must match the one provided to the clients. Clients send discovery messages to the servers at
regular intervals (ping period) until they receive message reception acknowledgement. From then on, the server
knows about the client and will inform it of the relevant discovery information. The same principle applies to a
server connecting to another server.

Choosing between Client and Server

It is set by the Discovery Protocol general setting. A participant can only play one role (despite the fact that a server
may connect to other servers). It is mandatory to fill this value because it defaults to SIMPLE. The examples below
shows how to set this parameter both programmatically and using XML.

268 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::CLIENT;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::SUPER_CLIENT;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::SERVER;

pqos.wire_protocol().builtin.discovery_config.discoveryProtocol =
DiscoveryProtocol_t::BACKUP;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_discovery_protocol_alt" >
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>CLIENT</discoveryProtocol>
<!-- alternatives
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryProtocol>SUPER_CLIENT</discoveryProtocol>
<discoveryProtocol>BACKUP</discoveryProtocol>
-->
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

The GuidPrefix as the server unique identifier

The GuidPrefix_t attribute belongs to the RTPS specification and univocally identifies each RTPSParticipant. It
consists on 12 bytes, and in Fast DDS is a key for the DomainParticipant used in the DDS domain. Fast DDS defines the
DomainParticipant GuidPrefix_t as a public data member of the WireProtocolConfigQos class. In the Discovery
Server, it has the purpose to link a server to its clients. It must be specified in server and client setups.

6.18. Discovery 269

Fast DDS Documentation, Release 2.8.2

Server side setup

The examples below show how to manage the corresponding enum data member and XML tag.

C++ - Option 1: Manual setting of the unsigned char in ASCII format.

eprosima::fastrtps::rtps::GuidPrefix_t serverGuidPrefix;
serverGuidPrefix.value[0] = eprosima::fastrtps::rtps::octet(0x44);
serverGuidPrefix.value[1] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[2] = eprosima::fastrtps::rtps::octet(0x00);
serverGuidPrefix.value[3] = eprosima::fastrtps::rtps::octet(0x5f);
serverGuidPrefix.value[4] = eprosima::fastrtps::rtps::octet(0x45);
serverGuidPrefix.value[5] = eprosima::fastrtps::rtps::octet(0x50);
serverGuidPrefix.value[6] = eprosima::fastrtps::rtps::octet(0x52);
serverGuidPrefix.value[7] = eprosima::fastrtps::rtps::octet(0x4f);
serverGuidPrefix.value[8] = eprosima::fastrtps::rtps::octet(0x53);
serverGuidPrefix.value[9] = eprosima::fastrtps::rtps::octet(0x49);
serverGuidPrefix.value[10] = eprosima::fastrtps::rtps::octet(0x4d);
serverGuidPrefix.value[11] = eprosima::fastrtps::rtps::octet(0x41);

DomainParticipantQos serverQos;
serverQos.wire_protocol().prefix = serverGuidPrefix;

C++ - Option 2: Using the >> operator and the std::istringstream type.

DomainParticipantQos serverQos;
std::istringstream("44.53.00.5f.45.50.52.4f.53.49.4d.41") >> serverQos.wire_protocol().
→˓prefix;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_server_guidprefix" >
<rtps>

<prefix>
44.53.00.5f.45.50.52.4f.53.49.4d.41

</prefix>
</rtps>

</participant>
</profiles>

Note that a server can connect to other servers. Thus, the following section may also apply.

Important: When selecting a GUID prefix for the server, it is important to take into account that Fast DDS also uses
this parameter to identify participants in the same process and enable intra-process communications. Setting two Do-
mainParticipant GUID prefixes as intra-process compatible will result in no communication if the DomainParticipants
run in separate processes. For more information, please refer to GUID Prefix considerations for intra-process delivery.

270 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Warning: Launching more than one server using the same GUID prefix is undefined behavior.

Client side setup

Each client must keep a list of the servers to which it wants to link. Each single element represents an individual server,
and a GuidPrefix_t must be provided. The server list must be populated with RemoteServerAttributes objects
with a valid GuidPrefix_t data member. In XML the server list and its elements are simultaneously specified. Note
that prefix is an element of the RemoteServer tag.

C++

RemoteServerAttributes server;
server.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.41");

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(server);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_discovery_client_prefix">
<rtps>

<builtin>
<discovery_config>

<discoveryServersList>
<RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">

<metatrafficUnicastLocatorList>
<locator/>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

The server locator list

Each server must specify valid locators where it can be reached. Any client must be given proper locators to reach
each of its servers. As in the above section, here there is a server and a client side setup.

6.18. Discovery 271

Fast DDS Documentation, Release 2.8.2

Server side setup

The examples below show how to setup the server locator list and XML tag.

C++

Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;

DomainParticipantQos serverQos;
serverQos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_discovery_server_server_metatraffic
→˓">

<rtps>
<builtin>

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<!-- placeholder server UDP address -->
<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

Note that a server can connect to other servers, thus, the following section may also apply.

Client side setup

Each client must keep a list of locators associated to the servers to which it wants to link. Each
server specifies its own locator list which must be populated with RemoteServerAttributes objects
with a valid metatrafficUnicastLocatorList or metatrafficMulticastLocatorList. In XML the
server list and its elements are simultaneously specified. Note the metatrafficUnicastLocatorList or
metatrafficMulticastLocatorList are elements of the RemoteServer tag.

272 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 1, 133);
locator.port = 64863;
RemoteServerAttributes server;
server.metatrafficUnicastLocatorList.push_back(locator);

DomainParticipantQos clientQos;
clientQos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(server);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_discovery_server_client_metatraffic
→˓">

<rtps>
<builtin>

<discovery_config>
<discoveryServersList>

<RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<!-- placeholder server UDP address -->
<address>192.168.1.113</address>
<port>64863</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

Fine tuning discovery server handshake

As explained above the clients send discovery messages to the servers at regular intervals (ping period) until they
receive message reception acknowledgement. Mind that this period also applies for those servers which connect to
other servers.

6.18. Discovery 273

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos participant_qos;
participant_qos.wire_protocol().builtin.discovery_config.discoveryServer_client_
→˓syncperiod =

Duration_t(0, 250000000);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_ping" >
<rtps>

<builtin>
<discovery_config>

<clientAnnouncementPeriod>
<!-- change default to 250 ms -->
<nanosec>250000000</nanosec>

</clientAnnouncementPeriod>
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

Modifying remote servers list at run time

Once a server or client is running, it is possible to programmatically modify the participant’s list of remote servers to
which the running server or client should connect. This is done by calling DomainParticipant::set_qos() with
a DomainParticipantQos which has a modified WireProtocolConfigQos (see WireProtocolConfigQos). This
feature allows to include a new remote server into the Discovery Server network or modify the remote server locator in
case that the remote server is relaunched with a different listening locator.

Important: The list of remote servers can only be modified to either add more servers, or modify the re-
mote server locator, but not to remove any of the existing ones. This means that the new list passed to
DomainParticipant::set_qos() must be a superset of the existing one.

Note: The remote server list can also be modified using the ROS_DISCOVERY_SERVER environment variable. Please
refer to FASTDDS_ENVIRONMENT_FILE for more information.

Warning: It is strongly advised to use either the API or the environment file. Using both at the same time may
cause undefined behavior.

274 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

// Get existing QoS for the server or client
DomainParticipantQos client_or_server_qos;
client_or_server->get_qos(client_or_server_qos);

/* Create a new server entry to which the client or server should connect */
RemoteServerAttributes remote_server_att;

// Set server's GUID prefix
remote_server_att.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.42");

// Set server's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11812;
remote_server_att.metatrafficUnicastLocatorList.push_back(locator);

/* Update list of remote servers for this client or server */
client_or_server_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(remote_server_att);
if (ReturnCode_t::RETCODE_OK != client_or_server->set_qos(client_or_server_qos))
{

// Error
return;

}

Configure Discovery Server locators using names

All the examples provided in Discovery Server Settings use IPv4 addresses to specify the servers’ listening locators.
However, Fast DDS also allows to specify locator addresses using names.

Full example

The following constitutes a full example on how to configure server and client both programmatically and using XML.

6.18. Discovery 275

Fast DDS Documentation, Release 2.8.2

276 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Server side setup

C++

// Get default participant QoS
DomainParticipantQos server_qos = PARTICIPANT_QOS_DEFAULT;

// Set participant as SERVER
server_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =

DiscoveryProtocol_t::SERVER;

// Set SERVER's GUID prefix
std::istringstream("44.53.00.5f.45.50.52.4f.53.49.4d.41") >> server_qos.wire_
→˓protocol().prefix;

// Set SERVER's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11811;
server_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

/* Add a remote serve to which this server will connect */
// Set remote SERVER's GUID prefix
RemoteServerAttributes remote_server_att;
remote_server_att.ReadguidPrefix("44.53.01.5f.45.50.52.4f.53.49.4d.41");

// Set remote SERVER's listening locator for PDP
Locator_t remote_locator;
IPLocator::setIPv4(remote_locator, 127, 0, 0, 1);
remote_locator.port = 11812;
remote_server_att.metatrafficUnicastLocatorList.push_back(remote_locator);

// Add remote SERVER to SERVER's list of SERVERs
server_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(remote_server_att);

// Create SERVER
DomainParticipant* server =

DomainParticipantFactory::get_instance()->create_participant(0, server_qos);
if (nullptr == server)
{

// Error
return;

}

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_server_full_example">
<rtps>

<!-- Set SERVER's GUID prefix -->
<prefix>44.53.00.5f.45.50.52.4f.53.49.4d.41</prefix>
<builtin>

<!-- Set participant as SERVER -->
<discovery_config>

<discoveryProtocol>SERVER</discoveryProtocol>
<!--

Set a list of remote servers to which this server connects.
This list may contain one or more <RemoteServer> tags

-->
<discoveryServersList>

<!--
Set remote server configuration:

- Prefix
- PDP listening locator

-->
<RemoteServer prefix="44.53.01.5f.45.50.52.4f.53.49.4d.41">

<metatrafficUnicastLocatorList>
<!-- Set SERVER's listening locator for PDP -->
<locator>

<udpv4>
<address>127.0.0.1</address>
<port>11812</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>
<!-- Set SERVER's listening locator for PDP -->
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>127.0.0.1</address>
<port>11811</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

6.18. Discovery 277

Fast DDS Documentation, Release 2.8.2

278 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Client side setup

C++

// Get default participant QoS
DomainParticipantQos client_qos = PARTICIPANT_QOS_DEFAULT;

// Set participant as CLIENT
client_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =

DiscoveryProtocol_t::CLIENT;

// Set SERVER's GUID prefix
RemoteServerAttributes remote_server_att;
remote_server_att.ReadguidPrefix("44.53.00.5f.45.50.52.4f.53.49.4d.41");

// Set SERVER's listening locator for PDP
Locator_t locator;
IPLocator::setIPv4(locator, 127, 0, 0, 1);
locator.port = 11811;
remote_server_att.metatrafficUnicastLocatorList.push_back(locator);

// Add remote SERVER to CLIENT's list of SERVERs
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(remote_server_att);

// Set ping period to 250 ms
client_qos.wire_protocol().builtin.discovery_config.discoveryServer_client_syncperiod =

Duration_t(0, 250000000);

// Create CLIENT
DomainParticipant* client =

DomainParticipantFactory::get_instance()->create_participant(0, client_qos);
if (nullptr == client)
{

// Error
return;

}

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_client_full_example">
<rtps>

<builtin>
<discovery_config>

<!-- Set participant as CLIENT -->
<discoveryProtocol>CLIENT</discoveryProtocol>
<!--

Set list of remote servers. This list may contain one or
more <RemoteServer> tags

-->
<discoveryServersList>

<!--
Set remote server configuration:

- Prefix
- PDP listening locator

-->
<RemoteServer prefix="44.53.00.5f.45.50.52.4f.53.49.4d.41">

<metatrafficUnicastLocatorList>
<!-- Set SERVER's listening locator for PDP -->
<locator>

<udpv4>
<address>127.0.0.1</address>
<port>11811</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
<!-- Set ping period to 250 ms -->
<clientAnnouncementPeriod>

<nanosec>250000000</nanosec>
</clientAnnouncementPeriod>

</discovery_config>
</builtin>

</rtps>
</participant>

</profiles>

6.18. Discovery 279

Fast DDS Documentation, Release 2.8.2

DomainParticipantListener Discovery Callbacks

As stated in DomainParticipantListener, the DomainParticipantListener is an abstract class defining the call-
backs that will be triggered in response to state changes on the DomainParticipant. Fast DDS defines four callbacks at-
tached to events that may occur during discovery: on_participant_discovery(), on_subscriber_discovery(),
on_publisher_discovery(), on_type_discovery(). Further information about the DomainParticipantListener
is provided in the DomainParticipantListener section. The following is an example of the implementation of Domain-
ParticipantListener discovery callbacks.

class DiscoveryDomainParticipantListener : public DomainParticipantListener
{

/* Custom Callback on_participant_discovery */
virtual void on_participant_discovery(

DomainParticipant* participant,
eprosima::fastrtps::rtps::ParticipantDiscoveryInfo&& info)

{
(void)participant;
switch (info.status){

case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERED_
→˓PARTICIPANT:

/* Process the case when a new DomainParticipant was found in the domain␣
→˓*/

std::cout << "New DomainParticipant '" << info.info.m_participantName <<
"' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '" <<
info.info.m_guid.guidPrefix << "' discovered." << std::endl;

break;
case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::CHANGED_QOS_

→˓PARTICIPANT:
/* Process the case when a DomainParticipant changed its QOS */
break;

case eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::REMOVED_PARTICIPANT:
/* Process the case when a DomainParticipant was removed from the domain␣

→˓*/
std::cout << "New DomainParticipant '" << info.info.m_participantName <<

"' with ID '" << info.info.m_guid.entityId << "' and GuidPrefix '" <<
info.info.m_guid.guidPrefix << "' left the domain." << std::endl;

break;
}

}

/* Custom Callback on_subscriber_discovery */
virtual void on_subscriber_discovery(

DomainParticipant* participant,
eprosima::fastrtps::rtps::ReaderDiscoveryInfo&& info)

{
(void)participant;
switch (info.status){

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERED_READER:
/* Process the case when a new subscriber was found in the domain */
std::cout << "New DataReader subscribed to topic '" << info.info.

→˓topicName() <<
"' of type '" << info.info.typeName() << "' discovered";

break;
(continues on next page)

280 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::CHANGED_QOS_READER:
/* Process the case when a subscriber changed its QOS */
break;

case eprosima::fastrtps::rtps::ReaderDiscoveryInfo::REMOVED_READER:
/* Process the case when a subscriber was removed from the domain */
std::cout << "New DataReader subscribed to topic '" << info.info.

→˓topicName() <<
"' of type '" << info.info.typeName() << "' left the domain.";

break;
}

}

/* Custom Callback on_publisher_discovery */
virtual void on_publisher_discovery(

DomainParticipant* participant,
eprosima::fastrtps::rtps::WriterDiscoveryInfo&& info)

{
(void)participant;
switch (info.status){

case eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERED_WRITER:
/* Process the case when a new publisher was found in the domain */
std::cout << "New DataWriter publishing under topic '" << info.info.

→˓topicName() <<
"' of type '" << info.info.typeName() << "' discovered";

break;
case eprosima::fastrtps::rtps::WriterDiscoveryInfo::CHANGED_QOS_WRITER:

/* Process the case when a publisher changed its QOS */
break;

case eprosima::fastrtps::rtps::WriterDiscoveryInfo::REMOVED_WRITER:
/* Process the case when a publisher was removed from the domain */
std::cout << "New DataWriter publishing under topic '" << info.info.

→˓topicName() <<
"' of type '" << info.info.typeName() << "' left the domain.";

break;
}

}

/* Custom Callback on_type_discovery */
virtual void on_type_discovery(

DomainParticipant* participant,
const eprosima::fastrtps::rtps::SampleIdentity& request_sample_id,
const eprosima::fastrtps::string_255& topic,
const eprosima::fastrtps::types::TypeIdentifier* identifier,
const eprosima::fastrtps::types::TypeObject* object,
eprosima::fastrtps::types::DynamicType_ptr dyn_type)

{
(void)participant, (void)request_sample_id, (void)topic, (void)identifier,␣

→˓(void)object, (void)dyn_type;
std::cout << "New data type of topic '" << topic << "' discovered." << std::endl;

}

};

6.18. Discovery 281

Fast DDS Documentation, Release 2.8.2

To use the previously implemented discovery callbacks in DiscoveryDomainParticipantListener class, which
inherits from the DomainParticipantListener, an object of this class is created and registered as a listener of the Do-
mainParticipant.

// Create the participant QoS and configure values
DomainParticipantQos pqos;

// Create a custom user DomainParticipantListener
DiscoveryDomainParticipantListener* plistener = new DiscoveryDomainParticipantListener();
// Pass the listener on DomainParticipant creation.
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(
0, pqos, plistener);

Important: Read more about callbacks and its hierarchy here

6.19 Transport Layer

The transport layer provides communication services between DDS entities, being responsible of actually sending and
receiving messages over a physical transport. The DDS layer uses this service for both user data and discovery traffic
communication. However, the DDS layer itself is transport independent, it defines a transport API and can run over
any transport plugin that implements this API. This way, it is not restricted to a specific transport, and applications can
choose the one that best suits their requirements, or create their own.

eProsima Fast DDS comes with five transports already implemented:

• UDPv4: UDP Datagram communication over IPv4. This transport is created by default on a new DomainPar-
ticipant if no specific transport configuration is given (see UDP Transport).

• UDPv6: UDP Datagram communication over IPv6 (see UDP Transport).

• TCPv4: TCP communication over IPv4 (see TCP Transport).

• TCPv6: TCP communication over IPv6 (see TCP Transport).

• SHM: Shared memory communication among entities running on the same host. This transport is created by
default on a new DomainParticipant if no specific transport configuration is given (see Shared Memory Trans-
port).

Although it is not part of the transport module, intraprocess data delivery and data sharing delivery are also available to
send messages between entities on some settings. The figure below shows a comparison between the different transports
available in Fast DDS.

282 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.19.1 Transport API

The following diagram presents the classes defined on the transport API of eProsima Fast DDS. It shows the abstract
API interfaces, and the classes required to implement a transport.

Fig. 10: Transport API diagram

• TransportDescriptorInterface

• TransportInterface

• Locator

• Chaining of transports

TransportDescriptorInterface

Any class that implements the TransportDescriptorInterface is known as a TransportDescriptor. It acts as
a builder for a given transport, meaning that is allows to configure the transport, and then a new Transport can be built
according to this configuration using its create_transport factory member function.

Data members

The TransportDescriptorInterface defines the following data members:

Member Data type Description
maxMessageSize uint32_t Maximum size of a single message in the transport.
maxInitialPeersRange uint32_t Number of channels opened with each initial remote peer.

Any implementation of TransportDescriptorInterface should add as many data members as required to full configure
the transport it describes.

6.19. Transport Layer 283

Fast DDS Documentation, Release 2.8.2

TransportInterface

A Transport is any class that implements the TransportInterface. It is the object that actually performs the
message distribution over a physical transport.

Each Transport class defines its own kind , a unique identifier that is used to check the compatibility of a Locator
with a Transport, i.e., determine whether a Locator refers to a Transport or not.

Applications do not create the Transport instance themselves. Instead, applications use a TransportDescriptor
instance to configure the desired transport, and add this configured instance to the list of user-defined transports of the
DomainParticipant. The DomainParticipant will use the factory function on the TransportDescriptor to create the
Transport when required.

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(udp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

Data members

The TransportInterface defines the following data members:

Member Data type Description
transport_kind_ int32_t Unique identifier of the transport type.

Note: transport_kind_ is a protected data member for internal use. It cannot be accessed nor modified from the
public API. However, users that are implementing a custom Transport need to fill it with a unique constant value in the
new implementation.

Currently the following identifiers are used in Fast DDS:

Identifier Value Transport type
LOCATOR_KIND_RESERVED 0 None. Reserved value for internal use.
LOCATOR_KIND_UDPv4 1 UDP Transport over IPv4.
LOCATOR_KIND_UDPv6 2 UDP Transport over IPv6.
LOCATOR_KIND_TCPv4 4 TCP Transport over IPv4.
LOCATOR_KIND_TCPv6 8 TCP Transport over IPv6.
LOCATOR_KIND_SHM 16 Shared Memory Transport.

284 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Locator

A Locator_t uniquely identifies a communication channel with a remote peer for a particular transport. For example,
on UDP transports, the Locator will contain the information of the IP address and port of the remote peer.

The Locator class is not abstract, and no specializations are implemented for each transport type. Instead, transports
should map the data members of the Locator class to their own channel identification concepts. For example, on Shared
Memory Transport the address contains a unique ID for the local host, and the port represents the shared ring buffer
used to communicate buffer descriptors.

Please refer to Listening Locators for more information about how to configure DomainParticipant to listen to incoming
traffic.

Data members

The Locator defines the following data members:

Member Data type Description
kind int32_t Unique identifier of the transport type.
port uint32_t The channel port.
address octet[16] The channel address.

In TCP, the port of the locator is divided into a physical and a logical port.

• The physical port is the port used by the network device, the real port that the operating system understands. It
is stored in the two least significant bytes of the member port.

• The logical port is the RTPS port. It is stored in the two most significant bytes of the member port.

In UDP there is only the physical port, which is also the RTPS port, and is stored in the two least significant bytes of
the member port.

Configuring IP locators with IPLocator

IPLocator is an auxiliary static class that offers methods to manipulate IP based locators. It is convenient when setting
up a new UDP Transport or TCP Transport, as it simplifies setting IPv4 and IPv6 addresses, or manipulating ports.

For example, normally users configure the physical port and do not need to worry about logical ports. However,
IPLocator allows to manage them if needed.

// We will configure a TCP locator with IPLocator
Locator_t locator;

// Get & set the physical port
uint16_t physical_port = IPLocator::getPhysicalPort(locator);
IPLocator::setPhysicalPort(locator, 5555);

// On TCP locators, we can get & set the logical port
uint16_t logical_port = IPLocator::getLogicalPort(locator);
IPLocator::setLogicalPort(locator, 7400);

// Set WAN address
IPLocator::setWan(locator, "80.88.75.55");

6.19. Transport Layer 285

Fast DDS Documentation, Release 2.8.2

Fast DDS also allows to specify locator addresses using names. When an address is specified by a name, Fast DDS
will query the known hosts and available DNS servers to try to resolve the IP address. This address will in turn be used
to create the listening locator in the case of server, or as the address of the remote server in the case of clients (and
servers that connect to other servers).

C++

Locator_t locator;
auto response = eprosima::fastrtps::rtps::IPLocator::resolveNameDNS("localhost");
// Get the first returned IPv4
if (response.first.size() > 0)
{

IPLocator::setIPv4(locator, response.first.begin()->data());
locator.port = 11811;

}
// Use the locator to create server or client

XML

<locator>
<udpv4>

<port>11811</port>
<address>localhost</address>

</udpv4>
</locator>

Warning: Currently, XML only supports loading IP addresses by name for UDP transport.

Chaining of transports

There are use cases where the user needs to pre-process out-coming information before being sent to network and
also the incoming information after being received. Transport API offers two interfaces for implementing this kind of
functionality: ChainingTransportDescriptor and ChainingTransport.

These extensions allow to implement a new Transport which depends on another one (called here as
low_level_transport_). The user can override the send() function, pre-processing the out-coming
buffer before calling the associated low_level_transport_. Also, when a incoming buffer arrives to the
low_level_transport_, this one calls the overridden receive() function to allow to pre-process the buffer.

ChainingTransportDescriptor

Implementing ChainingTransportDescriptor allows to configure the new Transport and set the
low_level_transport_ on which it depends. The associated low_level_transport_ can be any transport
which inherits from TransportInterface (including another ChainingTransport).

The ChainingTransportDescriptor defines the following data members:

Member Data type Description
low_level_descriptorstd::shared_ptr<TransportDescriptorInterface>Transport descriptor of the

low_level_transport_.

User has to specify the low_level_transport_ in the definition of its new custom transport.

286 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DomainParticipantQos qos;

auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();

// Create a descriptor for the new transport.
// The low level transport will be a UDPv4Transport.
auto custom_transport = std::make_shared<CustomChainingTransportDescriptor>(udp_

→˓transport);

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(custom_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

ChainingTransport

This interface forces the user to implement send() and receive() functions. The idea is to pre-process the buffer
and after, call to the next level.

class CustomChainingTransport : public eprosima::fastdds::rtps::ChainingTransport
{

public:

CustomChainingTransport(
const CustomChainingTransportDescriptor& descriptor)

: ChainingTransport(descriptor)
, descriptor_(descriptor)

(continues on next page)

6.19. Transport Layer 287

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

{
}

eprosima::fastdds::rtps::TransportDescriptorInterface* get_configuration()
{

return &descriptor_;
}

bool send(
eprosima::fastrtps::rtps::SenderResource* low_sender_resource,
const eprosima::fastrtps::rtps::octet* send_buffer,
uint32_t send_buffer_size,
eprosima::fastrtps::rtps::LocatorsIterator* destination_locators_begin,
eprosima::fastrtps::rtps::LocatorsIterator* destination_locators_end,
const std::chrono::steady_clock::time_point& timeout) override

{
//
// Preprocess outcoming buffer.
//

// Call low level transport
return low_sender_resource->send(send_buffer, send_buffer_size, destination_

→˓locators_begin,
destination_locators_end, timeout);

}

void receive(
eprosima::fastdds::rtps::TransportReceiverInterface* next_receiver,
const eprosima::fastrtps::rtps::octet* receive_buffer,
uint32_t receive_buffer_size,
const eprosima::fastrtps::rtps::Locator_t& local_locator,
const eprosima::fastrtps::rtps::Locator_t& remote_locator) override

{
//
// Preprocess incoming buffer.
//

// Call upper level
next_receiver->OnDataReceived(receive_buffer, receive_buffer_size, local_locator,

→˓ remote_locator);
}

private:

CustomChainingTransportDescriptor descriptor_;
};

288 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.19.2 UDP Transport

UDP is a connectionless transport, where the receiving DomainParticipant must open a UDP port listening for incoming
messages, and the sending DomainParticipant sends messages to this port.

Warning: This documentation assumes the reader has basic knowledge of UDP/IP concepts, since terms like Time
To Live (TTL), socket buffers, and port numbering are not explained in detail. However, it is possible to configure
a basic UDP transport on Fast DDS without this knowledge.

UDPTransportDescriptor

eProsima Fast DDS implements UDP transport for both UDPv4 and UDPv6. Each of these transports
is independent from the other, and has its own TransportDescriptorInterface. However, all their
TransportDescriptorInterface data members are common.

The following table describes the common data members for both UDPv4 and UDPv6.

Member Data type Default Description
sendBufferSize uint32_t 0 Size of the sending buffer of the socket (octets).
receiveBufferSize uint32_t 0 Size of the receiving buffer of the socket (octets).
interfaceWhiteList vector<string> Empty

vector
List of allowed interfaces. See Interface Whitelist.

TTL uint8_t 1 Time to live, in number of hops.
m_output_udp_socket uint16_t 0 Port number for the outgoing messages.
non_blocking_send bool false Do not block on send operations (*).

Note: When non_blocking_send is set to true, send operations will return immediately if the buffer is full, but no
error will be returned to the upper layer. This means that the application will behave as if the datagram is sent and lost.
This value is specially useful on high-frequency best-effort writers.

When set to false, send operations will block until the network buffer has space for the datagram. This may hinder
performance on high-frequency writers.

UDPv4TransportDescriptor

UDPv4TransportDescriptor has no additional data members from the common ones described in UDPTransport-
Descriptor.

Note: The kind value for a UDPv4TransportDescriptor is given by the value LOCATOR_KIND_UDPv4.

6.19. Transport Layer 289

Fast DDS Documentation, Release 2.8.2

UDPv6TransportDescriptor

UDPv6TransportDescriptor has no additional data members from the common ones described in UDPTransport-
Descriptor.

Note: The kind value for a UDPv6TransportDescriptor is given by the value LOCATOR_KIND_UDPv6.

Enabling UDP Transport

Fast DDS enables a UDPv4 transport by default. Nevertheless, the application can enable other UDP transports if
needed. To enable a new UDP transport in a DomainParticipant, first create an instance of UDPv4TransportDescriptor
(for UDPv4) or UDPv6TransportDescriptor (for UDPv6), and add it to the user transport list of the DomainParticipant.

The examples below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto udp_transport = std::make_shared<UDPv4TransportDescriptor>();
udp_transport->sendBufferSize = 9216;
udp_transport->receiveBufferSize = 9216;
udp_transport->non_blocking_send = true;

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(udp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>udp_transport</transport_id>
<type>UDPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<non_blocking_send>true</non_blocking_send>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="UDPParticipant">
<rtps>

<userTransports>
<transport_id>udp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
(continues on next page)

290 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</participant>
</profiles>

6.19.3 TCP Transport

TCP is a connection oriented transport, so the DomainParticipant must establish a TCP connection to the remote peer
before sending data messages. Therefore, one of the communicating DomainParticipants (the one acting as server)
must open a TCP port listening for incoming connections, and the other one (the one acting as client) must connect to
this port.

Note: The server and client concepts are independent from the DDS concepts of Publisher, Subscriber, DataWriter,
and DataReader. Also, these concepts are independent from the eProsima Discovery Server servers and clients (Dis-
covery Server Settings). Any of them can act as a TCP Server or TCP Client when establishing the connection, and the
DDS communication will work over this connection.

Warning: This documentation assumes the reader has basic knowledge of TCP/IP concepts, since terms like
Time To Live (TTL), Cyclic Redundancy Check (CRC), Transport Layer Security (TLS), socket buffers, and port
numbering are not explained in detail. However, it is possible to configure a basic TCP transport on Fast DDS
without this knowledge.

TCPTransportDescriptor

eProsima Fast DDS implements TCP transport for both TCPv4 and TCPv6. Each of these transports is independent
from the other, and has its own TransportDescriptorInterface. However, they share many of their features, and
most of the TransportDescriptorInterface data members are common.

The following table describes the common data members for both TCPv4 and TCPv6.

6.19. Transport Layer 291

Fast DDS Documentation, Release 2.8.2

Member Data type Default Description
sendBufferSize uint32_t 0 Size of the sending buffer of the socket (octets).
receiveBufferSize uint32_t 0 Size of the receiving buffer of the socket (octets).
interfaceWhiteListvector<string>Empty

vector
List of allowed interfaces See Interface Whitelist.

TTL uint8_t 1 Time to live, in number of hops.
listening_ports vector<uint16_t>Empty

vector
List of ports to listen as server.

keep_alive_frequency_msuint32_t 5000 Frequency of RTCP keep alive requests (in ms).
keep_alive_timeout_msuint32_t 15000 Time since sending the last keep alive request to consider a

connection as broken (in ms).
max_logical_port uint16_t 100 Maximum number of logical ports to try during RTCP nego-

tiation.
logical_port_rangeuint16_t 20 Maximum number of logical ports per request to try during

RTCP negotiation.
logical_port_incrementuint16_t 2 Increment between logical ports to try during RTCP negotia-

tion.
enable_tcp_nodelaybool false Enables the TCP_NODELAY socket option.
calculate_crc bool true True to calculate and send CRC on message headers.
check_crc bool true True to check the CRC of incoming message headers.
apply_security bool false True to use TLS. See TLS over TCP.
tls_config TLSConfig Configuration for TLS. See TLS over TCP.

Note: If listening_ports is left empty, the participant will not be able to receive incoming connections but will be
able to connect to other participants that have configured their listening ports.

TCPv4TransportDescriptor

The following table describes the data members that are exclusive for TCPv4TransportDescriptor.

Member Data type Default Description
wan_addr octet[4] [0, 0, 0, 0] Configuration for WAN. See WAN or Internet Communication over TCPv4.

Note: The kind value for a TCPv4TransportDescriptor is given by the value LOCATOR_KIND_TCPv4.

TCPv6TransportDescriptor

TCPv6TransportDescriptor has no additional data members from the common ones described in TCPTransport-
Descriptor.

Note: The kind value for a TCPv6TransportDescriptor is given by the value LOCATOR_KIND_TCPv6.

292 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Enabling TCP Transport

To enable TCP transport in a DomainParticipant, you need to create an instance of TCPv4TransportDescriptor (for
TCPv4) or TCPv6TransportDescriptor (for TCPv6), and add it to the user transport list of the DomainParticipant.

If you provide listening_ports on the descriptor, the DomainParticipant will act as TCP server, listening for in-
coming remote connections on the given ports. The examples below show this procedure in both C++ code and XML
file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

</profiles>

If you provide initialPeersList to the DomainParticipant, it will act as TCP client, trying to connect to the remote
servers at the given addresses and ports. The examples below show this procedure in both C++ code and XML file.

6.19. Transport Layer 293

Fast DDS Documentation, Release 2.8.2

See Initial peers for more information about their configuration.

C++

DomainParticipantQos qos;

// Disable the built-in Transport Layer.
qos.transport().use_builtin_transports = false;

// Create a descriptor for the new transport.
// Do not configure any listener port
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
qos.transport().user_transports.push_back(tcp_transport);

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

(continues on next page)

294 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</profiles>

HelloWorldExampleTCP shows how to use and configure a TCP transport.

WAN or Internet Communication over TCPv4

Fast DDS is able to connect through the Internet or other WAN networks when configured properly. To achieve this kind
of scenarios, the involved network devices such as routers and firewalls must add the rules to allow the communication.

For example, imagine we have the scenario represented on the following figure:

• A DomainParticipant acts as a TCP server listening on port 5100 and is connected to the WAN through a router
with public IP 80.80.99.45.

• Another DomainParticipant acts as a TCP client and has configured the server’s IP address and port in its Initial
peers list.

On the server side, the router must be configured to forward to the TCP server all traffic incoming to port 5100.
Typically, a NAT routing of port 5100 to our machine is enough. Any existing firewall should be configured as well.

In addition, to allow incoming connections through a WAN, the TCPv4TransportDescriptor must indicate its public
IP address in the wan_addr data member. The following examples show how to configure the DomainParticipant both
in C++ and XML.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
tcp_transport->sendBufferSize = 9216;
tcp_transport->receiveBufferSize = 9216;
tcp_transport->add_listener_port(5100);
tcp_transport->set_WAN_address("80.80.99.45");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

6.19. Transport Layer 295

Fast DDS Documentation, Release 2.8.2

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp_transport</transport_id>
<type>TCPv4</type>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCPParticipant">
<rtps>

<userTransports>
<transport_id>tcp_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>

</rtps>
</participant>

</profiles>

On the client side, the DomainParticipant must be configured with the public IP address and listening_ports of
the TCP server as Initial peers.

C++

DomainParticipantQos qos;

// Disable the built-in Transport Layer.
qos.transport().use_builtin_transports = false;

// Create a descriptor for the new transport.
// Do not configure any listener port
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();
qos.transport().user_transports.push_back(tcp_transport);

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;

qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Avoid using the default transport
qos.transport().use_builtin_transports = false;

XML

296 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tcp2_transport</transport_id>
<type>TCPv4</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TCP2Participant">
<rtps>

<userTransports>
<transport_id>tcp2_transport</transport_id>

</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

</profiles>

HelloWorldExampleTCP

A TCP version of helloworld example can be found in the HelloWorldExampleTCP folder. It shows a publisher and a
subscriber that communicate through TCP. The publisher is configured as TCP server while the Subscriber is acting
as TCP client.

6.19.4 Shared Memory Transport

The shared memory (SHM) transport enables fast communications between entities running in the same processing
unit/machine, relying on the shared memory mechanisms provided by the host operating system.

SHM transport provides better performance than other network transports like UDP / TCP, even when these transports
use loopback interface. This is mainly due to the following reasons:

• Large message support: Network protocols need to fragment data in order to comply with the specific protocol
and network stacks requirements, increasing communication overhead. SHM transport allows the copy of full
messages where the only size limit is the machine’s memory capacity.

• Reduce the number of memory copies: When sending the same message to different endpoints, SHM transport
can directly share the same memory buffer with all the destination endpoints. Other protocols require to perform
one copy of the message per endpoint.

• Less operating system overhead: Once initial setup is completed, shared memory transfers require much less
system calls than the other protocols. Therefore, there is a performance/time consume gain by using SHM.

6.19. Transport Layer 297

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/HelloWorldExampleTCP

Fast DDS Documentation, Release 2.8.2

Definition of Concepts

This section describes basic concepts that will help understanding how the Shared Memory Transport works in order
to deliver the data messages to the appropriate DomainParticipant. The purpose is not to be a exhaustive reference of
the implementation, but to be a comprehensive explanation of each concept, so that users can configure the transport
to their needs.

Many of the descriptions in this section will be made following the example use case depicted in the following figure,
where Participant 1 sends a data message to Participant 2. Please, refer to the figure when following the definitions.

Fig. 11: Sequence diagram for Shared Memory Transport

Segment

A Segment is a block of shared memory that can be accessed from different processes. Every DomainParticipant that
has been configured with Shared Memory Transport creates a segment of shared memory. The DomainParticipant
writes to this segment any data it needs to deliver to other DomainParticipants, and the remote DomainParticipants are
able to read it directly using the shared memory mechanisms.

Every segment has a segmentId, a 16 character UUID that uniquely identifies each shared memory segment. These
segmentIds are used to identify and access the segment of each DomainParticipant.

Segment Buffer

A buffer allocated in the shared memory Segment. It works as a container for a DDS message that is placed in the
Segment. In other words, each message that the DomainParticipant writes on the Segment will be placed in a different
buffer.

Buffer Descriptor

It acts as a pointer to a specific Segment Buffer in a specific Segment. It contains the segmentId and the offset of the
Segment Buffer from the base of the Segment. When communicating a message to other DomainParticipants, Shared
Memory Transport only distributes the Buffer Descriptor, avoiding the copy of the message from a DomainParticipant
to another. With this descriptor, the receiving DomainParticipant can access the message written in the buffer, as is
uniquely identifies the Segment (through the segmentId) and the Segment Buffer (through its offset).

Port

Represents a channel to communicate Buffer Descriptors. It is implemented as a ring-buffer in shared memory, so
that any DomainParticipant can potentially read or write information on it. Each port has a unique identifier, a 32 bit
number that can be used to refer to the port. Every DomainParticipant that has been configured with Shared Memory
Transport creates a port to receive Buffer Descriptors. The identifier of this port is shared during the Discovery, so that
remote peers know which port to use when they want to communicate with each DomainParticipant.

DomainParticipants create a listener to their receiving port, so that they can be notified when a new Buffer Descriptor
is pushed to the port.

298 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Port Health Check

Every time a DomainParticipant opens a Port (for reading or writing), a health check is performed to assess its correct-
ness. The reason is that if one of the processes involved crashes while using a Port, that port can be left inoperative. If
the attached listeners do not respond in a given timeout, the Port is considered damaged, and it is destroyed and created
again.

SharedMemTransportDescriptor

In addition to the data members defined in the TransportDescriptorInterface, the TransportDescriptor for Shared Mem-
ory defines the following ones:

Member Data
type

De-
fault

Accessor / Mutator Description

segment_size_ uint32_t512*1024segment_size() Size of the shared memory segment (in
octets).

port_queue_capacity_uint32_t512 port_queue_capacity()The size of the listening port (in mes-
sages).

healthy_check_timeout_ms_uint32_t1000 healthy_check_timeout_ms()Timeout for the health check of ports (in
milliseconds).

rtps_dump_file_ string "" rtps_dump_file() Full path of the protocol dump file.

If rtps_dump_file_ is not empty, all the shared memory traffic on the DomainParticipant (sent and received) is traced
to a file. The output file format is tcpdump hexadecimal text, and can be processed with protocol analyzer applications
such as Wireshark. Specifically, to open the file using Wireshark, use the “Import from Hex Dump” option using the
“Raw IPv4” encapsulation type.

Note: The kind value for a SharedMemTransportDescriptor is given by the value LOCATOR_KIND_SHM .

Warning: Setting a segment_size() close to or smaller than the data size poses a high risk of data loss, since
the write operation will overwrite the buffer during a single send operation.

Enabling Shared Memory Transport

Fast DDS enables a SHM transport by default. Nevertheless, the application can enable other SHM transports if needed.
To enable a new SHM transport in a DomainParticipant, first create an instance of SharedMemTransportDescriptor,
and add it to the user transport list of the DomainParticipant.

The examples below show this procedure in both C++ code and XML file.

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
std::shared_ptr<SharedMemTransportDescriptor> shm_transport = std::make_shared
→˓<SharedMemTransportDescriptor>();

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(shm_transport);

6.19. Transport Layer 299

Fast DDS Documentation, Release 2.8.2

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<!-- Create a descriptor for the new transport -->
<transport_descriptor>

<transport_id>shm_transport</transport_id>
<type>SHM</type>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="SHMParticipant">
<rtps>

<!-- Link the Transport Layer to the Participant -->
<userTransports>

<transport_id>shm_transport</transport_id>
</userTransports>

</rtps>
</participant>

</profiles>

Note: In case that several transports are enabled, the discovery traffic is always performed using the UDP/TCP trans-
port, even if the SHM transport is enabled in both participants running in the same machine. This may cause discovery
issues if one or several of the participants only has SHM enabled and other participants use some other transport at the
same time. Also, when two participants on the same machine have SHM transport enabled, the user data communica-
tion between them is automatically performed by SHM transport only. The rest of the enabled transports are not used
between those two participants.

HelloWorldExampleSharedMem

A Shared Memory version of helloworld example can be found in the HelloWorldExampleSharedMem folder. It shows
a publisher and a subscriber that communicate through Shared Memory.

6.19.5 Data-sharing delivery

Fast DDS allows to speed up communications between entities within the same machine by sharing the history of the
DataWriter with the DataReader through shared memory. This prevents any of the overhead involved in the transport
layer, effectively avoiding any data copy between DataWriter and DataReader.

Use of Data-sharing delivery does not prevent data copies between the application and the DataReader and DataWriter.
These can be avoided in some cases using Zero-Copy communication.

Note: Although Data-sharing delivery uses shared memory, it differs from Shared Memory Transport in that Shared
Memory is a full-compliant transport. That means that with Shared Memory Transport the data being transmitted must
be copied from the DataWriter history to the transport and from the transport to the DataReader. With Data-sharing
these copies can be avoided.

300 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/HelloWorldExampleSharedMem

Fast DDS Documentation, Release 2.8.2

• Overview

• Constraints

• Data-sharing delivery configuration

• DataReader and DataWriter history coupling

Overview

When the DataWriter is created, Fast DDS will pre-allocate a pool of max_samples + extra_samples samples that
reside in a shared memory mapped file. When publishing new data, the DataWriter will take a sample from this pool
and add it to its history, and notify the DataReader which sample from the pool has the new data.

The DataReader will have access to the same shared memory mapped file, and will be able to access the data published
by the DataWriter.

Constraints

This feature is available only if the following requirements are met:

• The DataWriter and DataReader have access to the same shared memory.

• The Topic has a bounded TopicDataType, i.e., its is_bounded() member function returns true.

• The Topic is not keyed.

• The DataWriter is configured with PREALLOCATED_MEMORY_MODE or PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

There is also a limitation with the DataReader’s HistoryQos. Using Data-sharing mechanism, the DataWriter’s history
is shared with the DataReaders. This means that the effective HistoryQos depth on the DataReader is, at most, the
Datawriter’s HistoryQos depth. To avoid confusions, set the DataReaders’ history depth to a value equal or less than
the DataWriter’s.

Data-sharing delivery configuration

Data-sharing delivery can be configured in the DataWriter and the DataReader using DataSharingQosPolicy. Four
attributes can be configured:

• The data-sharing delivery kind

• The shared memory directory

• The data-sharing domain identifiers.

• The maximum number of data-sharing domain identifiers.

6.19. Transport Layer 301

Fast DDS Documentation, Release 2.8.2

Data-Sharing delivery kind

Can be set to one of three modes:

• AUTO: If both a DataWriter and DataReader meet the requirements, data-sharing delivery will be used between
them. This is the default value.

• ON: Like AUTO, but the creation of the entity will fail if the requirements are not met.

• OFF: No data-sharing delivery will be used on this entity.

The following matrix shows when two entities are data-sharing compatible according to their configuration (given that
the entity creation does not fail and that both entities have access to a shared memory):

Reader
ON OFF AUTO

Writer ON Only if they have common do-
main IDs

No Only if they have common domain IDs

OFF No No No
AUTO Only if they have common do-

main IDs
No Only if the TopicDataType is bounded and they have com-

mon domain IDs

Data-sharing domain identifiers

Each entity defines a set of identifiers that represent a domain to which the entity belongs. Two entities will be able to
use data-sharing delivery between them only if both have at least a common domain.

Users can define the domains of a DataWriter or DataReader with the DataSharingQosPolicy. If no domain identifier
is provided by the user, the system will create one automatically. This automatic data-sharing domain will be unique
for the machine where the entity is running. That is, all entities running on the same machine, and for which the user
has configured no user-specific domains, will be able to use data-sharing delivery (given that the rest of requirements
are met).

During the discovery phase, entities will exchange their domain identifiers and check if they can use Data-sharing to
communicate.

Note: Even though a data-sharing domain identifier is a 64 bit integer, user-defined identifiers are restricted to 16 bit
integers.

Maximum number of Data-sharing domain identifiers

The maximum number of domain identifiers that are expected to be received from a remote entity during discovery. If
the remote entity defines (and sends) more than this number of domain identifiers, the discovery will fail.

By default there is no limit to the number of identifiers. The default value can be changed with the max_domains()
function. Defining a finite number allows to preallocate the required memory to receive the list of identifiers during
the entity creation, avoiding dynamic memory allocations afterwards. Note that a value of 0 means no limit.

302 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Shared memory directory

If a user-defined directory is given for the shared memory files, this directory will be used for the memory-mapped files
used for data-sharing delivery. If none is given, the default directory configured for the current system is used.

Configuring a user-defined directory may be useful in some scenarios:

• To select a file system with Huge TLB enabled for the memory-mapped files.

• To allow data-sharing delivery between containers that mount the same container.

DataReader and DataWriter history coupling

With traditional Transport Layer delivery, the DataReader and DataWriter keep separate and independent histories, each
one with their own copy of the sample. Once the sample is sent through the transport and received by the DataReader,
the DataWriter is free to remove the sample from its history without affecting the DataReader.

With data-sharing delivery, the DataReader directly accesses the data instance created by the DataWriter. This means
that the samples in both the history of the DataReader and the DataWriter refer to the same object in the shared memory.
Therefore, there is a strong coupling in the behavior of the DataReader and DataWriter histories. If the DataWriter
reuses the same sample to publish new data, the DataReader loses access to the old data sample.

Note: The DataWriter can remove the sample from its history, and it will still be available on the DataReader, unless
the same sample from the pool is reused to publish a new one.

Data acknowledgement

With data-sharing delivery, sample acknowledgment from the DataReader occurs the first time a sample is retrieved by
the application (using DataReader::read_next_sample(), DataReader::take_next_sample(), or any of their
variations). Once the data has been accessed by the application, the DataWriter is free to reuse that sample to publish
new data. The DataReader detects when a sample has been reused and automatically removes it from its history.

This means that subsequent attempts to access the same sample from the DataReader may return no sample at all.

Blocking reuse of samples until acknowledged

With KEEP_LAST_HISTORY_QOS or BEST_EFFORT_RELIABILITY_QOS configurations, the DataWriter can remove
samples from its history to add new ones, even if they were not acknowledged by the DataReader. In situations where
the publishing rate is consistently faster than the rate at which the DataReader can process the samples, this can lead
to every sample being reused before the application has a chance to process it, thus blocking the communication at
application level.

In order to avoid this situation, the samples in the preallocated pool are never reused unless they have been acknowl-
edged, i.e., they have been processed by the application at least once. If there is no reusable sample in the pool, the
writing operation in the DataWriter will be blocked until one is available or until max_blocking_time is reached.

Note that the DataWriter history is not affected by this behavior, samples will be removed from the history by standard
rules. Only the reuse of pool samples is affected. This means that the DataWriter history can be empty and the write
operation be still blocked because all samples in the pool are unacknowledged.

The chance of the DataWriter blocking on a write operation can be reduced using extra_samples. This will make
the pool to allocate more samples than the history size, so that the DataWriter has more chances to get a free sample,
while the DataReader can still access samples that have been removed from the DataWriter history.

6.19. Transport Layer 303

Fast DDS Documentation, Release 2.8.2

6.19.6 Intra-process delivery

eProsima Fast DDS allows to speed up communications between entities within the same process by avoiding any of the
overhead involved in the transport layer. Instead, the Publisher directly calls the reception functions of the Subscriber.
This not only avoids the copy or send operations of the transport, but also ensures the message is received by the
Subscriber, avoiding the acknowledgement mechanism.

This feature is enabled by default, and can be configured using XML profiles. Currently the following options are
available:

• INTRAPROCESS_OFF: The feature is disabled.

• INTRAPROCESS_USER_DATA_ONLY: Discovery metadata keeps using ordinary transport.

• INTRAPROCESS_FULL: Default value. Both user data and discovery metadata using Intra-process delivery.

XML

<library_settings>
<intraprocess_delivery>FULL</intraprocess_delivery> <!-- OFF | USER_DATA_ONLY |␣

→˓FULL -->
</library_settings>

GUID Prefix considerations for intra-process delivery

Fast DDS utilizes the DomainParticipant’s GuidPrefix_t to identify peers running in the same process. Two partici-
pants with identical 8 first bytes on the GuidPrefix_t are considered to be running in the same process, and therefore
intra-process delivery is used. This mechanism works out-of-the-box when letting Fast DDS set the GUID prefixes for
the created DomainParticipants. However, special consideration is required when setting the GuidPrefix_tmanually,
either programmatically or when using XML

304 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++ - Option 1: Manual setting of the unsigned char in ASCII format.

eprosima::fastrtps::rtps::GuidPrefix_t guid_prefix;
guid_prefix.value[0] = eprosima::fastrtps::rtps::octet(0x77);
guid_prefix.value[1] = eprosima::fastrtps::rtps::octet(0x73);
guid_prefix.value[2] = eprosima::fastrtps::rtps::octet(0x71);
guid_prefix.value[3] = eprosima::fastrtps::rtps::octet(0x85);
guid_prefix.value[4] = eprosima::fastrtps::rtps::octet(0x69);
guid_prefix.value[5] = eprosima::fastrtps::rtps::octet(0x76);
guid_prefix.value[6] = eprosima::fastrtps::rtps::octet(0x95);
guid_prefix.value[7] = eprosima::fastrtps::rtps::octet(0x66);
guid_prefix.value[8] = eprosima::fastrtps::rtps::octet(0x65);
guid_prefix.value[9] = eprosima::fastrtps::rtps::octet(0x82);
guid_prefix.value[10] = eprosima::fastrtps::rtps::octet(0x82);
guid_prefix.value[11] = eprosima::fastrtps::rtps::octet(0x79);

DomainParticipantQos participant_qos;
participant_qos.wire_protocol().prefix = guid_prefix;

C++ - Option 2: Using the >> operator and the std::istringstream type.

DomainParticipantQos participant_qos;
std::istringstream("77.73.71.85.69.76.95.66.65.82.82.79") >> participant_qos.wire_
→˓protocol().prefix;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_guidprefix" >
<rtps>

<prefix>
77.73.71.85.69.76.95.66.65.82.82.79

</prefix>
</rtps>

</participant>
</profiles>

6.19.7 TLS over TCP

Warning: This documentation assumes the reader has basic knowledge of TLS concepts since terms like Cer-
tificate Authority (CA), Private Key, Rivest–Shamir–Adleman (RSA) cryptosystem, and Diffie-Hellman encryption
protocol are not explained in detail.

Fast DDS allows configuring TCP Transports to use TLS (Transport Layer Security). In order to set up TLS, the
TCPTransportDescriptor must have its apply_security data member set to true, and its tls_config data member
filled with the desired configuration on the TCPTransportDescriptor. The following is an example of configuration
of TLS on the TCP server.

C++

6.19. Transport Layer 305

Fast DDS Documentation, Release 2.8.2

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();
tls_transport->sendBufferSize = 9216;
tls_transport->receiveBufferSize = 9216;
tls_transport->add_listener_port(5100);
tls_transport->set_WAN_address("80.80.99.45");

// Create the TLS configuration
using TLSOptions =␣
→˓eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions;
tls_transport->apply_security = true;
tls_transport->tls_config.password = "test";
tls_transport->tls_config.cert_chain_file = "server.pem";
tls_transport->tls_config.private_key_file = "serverkey.pem";
tls_transport->tls_config.tmp_dh_file = "dh2048.pem";
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_server</transport_id>
<type>TCPv4</type>
<tls>

<password>test</password>
<private_key_file>serverkey.pem</private_key_file>
<cert_chain_file>server.pem</cert_chain_file>
<tmp_dh_file>dh2048.pem</tmp_dh_file>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
</tls>
<sendBufferSize>9216</sendBufferSize>
<receiveBufferSize>9216</receiveBufferSize>
<listening_ports>

<port>5100</port>
</listening_ports>
<wan_addr>80.80.99.45</wan_addr>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="TLSServerParticipant">
(continues on next page)

306 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<rtps>
<userTransports>

<transport_id>tls_transport_server</transport_id>
</userTransports>

</rtps>
</participant>

</profiles>

The corresponding configuration on the TCP client is shown in the following example.

C++

DomainParticipantQos qos;

// Set initial peers.
Locator_t initial_peer_locator;
initial_peer_locator.kind = LOCATOR_KIND_TCPv4;
IPLocator::setIPv4(initial_peer_locator, "80.80.99.45");
initial_peer_locator.port = 5100;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer_locator);

// Create a descriptor for the new transport.
auto tls_transport = std::make_shared<TCPv4TransportDescriptor>();

// Create the TLS configuration
using TLSOptions =␣
→˓eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions;
using TLSVerifyMode =␣
→˓eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode;
tls_transport->apply_security = true;
tls_transport->tls_config.verify_file = "ca.pem";
tls_transport->tls_config.add_verify_mode(TLSVerifyMode::VERIFY_PEER);
tls_transport->tls_config.add_verify_mode(TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERT);
tls_transport->tls_config.add_option(TLSOptions::DEFAULT_WORKAROUNDS);
tls_transport->tls_config.add_option(TLSOptions::SINGLE_DH_USE);
tls_transport->tls_config.add_option(TLSOptions::NO_SSLV2);
tls_transport->tls_config.server_name = "my_server.com";

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tls_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>tls_transport_client</transport_id>
<type>TCPv4</type>
<tls>

<verify_file>ca.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
(continues on next page)

6.19. Transport Layer 307

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<verify>VERIFY_FAIL_IF_NO_PEER_CERT</verify>
</verify_mode>
<options>

<option>DEFAULT_WORKAROUNDS</option>
<option>SINGLE_DH_USE</option>
<option>NO_SSLV2</option>

</options>
<server_name>my_server.com</server_name>

</tls>
</transport_descriptor>

</transport_descriptors>

<participant profile_name="TLSClientParticipant">
<rtps>

<userTransports>
<transport_id>tls_transport_client</transport_id>

</userTransports>
<builtin>

<initialPeersList>
<locator>

<tcpv4>
<address>80.80.99.45</address>
<physical_port>5100</physical_port>

</tcpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

</profiles>

The following table describes the data members that are configurable on TLSConfig.

308 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Member Data type Default Description
password string "" Password of the private_key_file or

rsa_private_key_file.
private_key_filestring "" Path to the private key certificate file.
rsa_private_key_filestring "" Path to the private key RSA certificate file.
cert_chain_file string "" Path to the public certificate chain file.
tmp_dh_file string "" Path to the Diffie-Hellman parameters file.
verify_file string "" Path to the CA (Certification- Authority) file.
verify_mode TLSVerifyModeTLSVerifyMode::UNUSEDEstablishes the verification mode mask. See TLS Ver-

ification Mode.
options TLSOptions TLSOptions::NONE Establishes the SSL Context options mask. See TLS

Options.
verify_paths vector<string>Empty vector Paths where the system will look for verification files.
verify_depth int32_t -1 Maximum allowed depth for verifying intermediate

certificates.
default_verify_pathbool false Look for verification files on the default paths.
handshake_role TLSHandShakeRoleTLSHandShakeRole::DEFAULTRole that the transport will take on handshaking. See

TLS Handshake Role.
server_name string "" Server name or host name required in case Server

Name Indication (SNI) is used.

Note: Fast DDS uses the Boost.Asio library to handle TLS secure connections. These data members are used to build
the asio library context, and most of them are mapped directly into this context without further manipulation. You can
find more information about the implications of each member on the Boost.Asio context documentation.

TLS Verification Mode

The verification mode defines how the peer node will be verified. The following table describes the available ver-
ification options. Several verification options can be combined in the same TCPTransportDescriptor using the
add_verify_mode() member function.

Value Description
TLSVerifyMode::VERIFY_NONE Perform no verification.
TLSVerifyMode::VERIFY_PEER Perform verification of the peer.
TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERTFail verification if the peer has no certificate. Ignored unless

TLSVerifyMode::VERIFY_PEER is also set.
TLSVerifyMode::VERIFY_CLIENT_ONCEDo not request client certificate on renegotiation. Ignored unless

TLSVerifyMode::VERIFY_PEER is also set.

Note: For a complete description of the different verification modes, please refer to the OpenSSL documentation.

6.19. Transport Layer 309

https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html
https://www.openssl.org/docs/man1.0.2/man3/SSL_CTX_set_verify.html

Fast DDS Documentation, Release 2.8.2

TLS Options

These options define which TLS features are to be supported. The following table describes the available options.
Several options can be combined in the same TransportDescriptor using the add_option() member function.

Value Description
TLSOptions::DEFAULT_WORKAROUNDS Implement various bug workarounds. See Boost.Asio context.
TLSOptions::NO_COMPRESSION Disable compression.
TLSOptions::NO_SSLV2 Disable SSL v2.
TLSOptions::NO_SSLV3 Disable SSL v3.
TLSOptions::NO_TLSV1 Disable TLS v1.
TLSOptions::NO_TLSV1_1 Disable TLS v1.1.
TLSOptions::NO_TLSV1_2 Disable TLS v1.2.
TLSOptions::NO_TLSV1_3 Disable TLS v1.3.
TLSOptions::SINGLE_DH_USE Always create a new key when using Diffie-Hellman parameters.

TLS Handshake Role

The role can take the following values:

Value Description
TLSHandShakeRole::DEFAULT Configured as client if connector, and as server if acceptor
TLSHandShakeRole::CLIENT Configured as client.
TLSHandShakeRole::SERVER Configured as server.

6.19.8 Listening Locators

Listening Locators are used to receive incoming traffic on the DomainParticipant. These Locators can be classified
according to the communication type and to the nature of the data.

According to the communication type we have:

• Multicast locators: Listen to multicast communications.

• Unicast locators: Listen to unicast communications.

According to the nature of the data we have:

• Metatraffic locators: Used to receive metatraffic information, usually used by built-in endpoints to perform
discovery.

• User locators: Used by the endpoints created by the user to receive user Topic data changes.

Applications can provide their own Listening Locators, or use the Default Listening Locators provided by eProsima
Fast DDS.

310 Chapter 6. Structure of the documentation

https://www.boost.org/doc/libs/1_73_0/doc/html/boost_asio/reference/ssl__context.html

Fast DDS Documentation, Release 2.8.2

Adding Listening Locators

Users can add custom Listening Locators to the DomainParticipant using the DomainParticipantQos. Depending on
the field where the Locator is added, it will be treated as a multicast, unicast, user or metatraffic Locator.

Note: Both UDP and TCP unicast Locators support to have a null address. In that case, Fast DDS automatically gets
and uses local network addresses.

Note: Both UDP and TCP Locators support to have a zero port. In that case, Fast DDS automatically calculates and
uses well-known ports for that type of traffic. See Well Known Ports for details about the well-known ports.

Warning: TCP does not support multicast scenarios, so the network architecture must be carefully planned.

Metatraffic Multicast Locators

Users can set their own metatraffic multicast locators within the WireProtocolConfigQos: builtin.
metatrafficMulticastLocatorList.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22222 over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0, 1);
locator.port = 22222;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().builtin.metatrafficMulticastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="CustomMetatrafficMulticastParticipant">
<rtps>

<builtin>
<metatrafficMulticastLocatorList>

<!-- LOCATOR_LIST -->
<locator>

<udpv4>
<address>239.255.0.1</address>
<port>22222</port>

</udpv4>
</locator>

</metatrafficMulticastLocatorList>
</builtin>

</rtps>
(continues on next page)

6.19. Transport Layer 311

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</participant>
</profiles>

Metatraffic Unicast Locators

Users can set their own metatraffic unicast locators within the WireProtocolConfigQos: builtin.
metatrafficUnicastLocatorList.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22223 over address 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0, 1);
locator.port = 22223;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="CustomMetatrafficUnicastParticipant">
<rtps>

<builtin>
<metatrafficUnicastLocatorList>

<!-- LOCATOR_LIST -->
<locator>

<udpv4>
<address>192.168.0.1</address>
<port>22223</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

312 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

User-traffic Multicast Locators

Users can set their own user-traffic multicast locators within the WireProtocolConfigQos:
default_multicast_locator_list.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22224 over multicast address 239.255.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 239, 255, 0, 1);
locator.port = 22224;

// Add the locator to the DomainParticipantQos
qos.wire_protocol().default_multicast_locator_list.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="CustomUsertrafficMulticastParticipant">
<rtps>

<defaultMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4>
<address>239.255.0.1</address>
<port>22224</port>

</udpv4>
</locator>

</defaultMulticastLocatorList>
</rtps>

</participant>
</profiles>

User-traffic Unicast Locators

Users can set their own user-traffic unicast locators within the WireProtocolConfigQos:
default_unicast_locator_list.

C++

DomainParticipantQos qos;

// This locator will open a socket to listen network messages
// on UDPv4 port 22225 over address 192.168.0.1
eprosima::fastrtps::rtps::Locator_t locator;
IPLocator::setIPv4(locator, 192, 168, 0, 1);
locator.port = 22225;

(continues on next page)

6.19. Transport Layer 313

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Add the locator to the DomainParticipantQos
qos.wire_protocol().default_unicast_locator_list.push_back(locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="CustomUsertrafficUnicastParticipant">
<rtps>

<defaultUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4>
<address>192.168.0.1</address>
<port>22225</port>

</udpv4>
</locator>

</defaultUnicastLocatorList>
</rtps>

</participant>
</profiles>

Default Listening Locators

If the application does not define any Listening Locators, eProsima Fast DDS automatically enables a set of listening
UDPv4 locators by default. This allows out-of-the-box communication in most cases, without the need of further
configuring the Transport Layer.

• If the application does not define any metatraffic Locator (neither unicast nor multicast), Fast DDS enables one
multicast Locator that will be used during Discovery, and one unicast Locator that will be used for peer-to-peer
communication with already discovered DomainParticipants.

• If the application does not define any user-traffic Locator (neither unicast nor multicast), Fast DDS enables one
unicast Locator that will be used for peer-to-peer communication of Topic data.

For example, it is possible to prevent multicast traffic adding a single user-traffic unicast Locator as described in
Disabling all Multicast Traffic.

Default Listening Locators always use Well Known Ports.

Well Known Ports

The DDSI-RTPS V2.2 standard (Section 9.6.1.1) defines a set of rules to calculate well-known ports for default Lo-
cators, so that DomainParticipants can communicate with these default Locators. Well-known ports are also selected
automatically by Fast DDS when a Locator is configured with port number 0.

Well-known ports are calculated using the following predefined rules:

314 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

Table 10: Rules to calculate ports on default listening locators
Traffic type Well-known port expression
Metatraffic multicast PB + DG * domainId + offsetd0
Metatraffic unicast PB + DG * domainId + offsetd1 + PG * participantId
User multicast PB + DG * domainId + offsetd2
User unicast PB + DG * domainId + offsetd3 + PG * participantId

The values used in these rules are explained on the following table. The default values can be modified using the port
member of the WireProtocolConfigQos on the DomainParticipantQos.

Table 11: Values used in the rules to calculate well-known ports
Symbol Meaning Default value QoS field
DG DomainID gain 250 wire_protocol().port.domainIDGain
PG ParticipantId gain 2 wire_protocol().port.participantIDGain
PB Port Base number 7400 wire_protocol().port.portBase
offsetd0 Additional offset 0 wire_protocol().port.offsetd0
offsetd1 Additional offset 10 wire_protocol().port.offsetd1
offsetd2 Additional offset 1 wire_protocol().port.offsetd2
offsetd3 Additional offset 11 wire_protocol().port.offsetd3

6.19.9 Announced Locators

In order for communication to take place, DDS entities need to exchange the list of addresses and ports where they can
be reached. Apart from the default announced locators, which correspond to addresses of the interfaces in the host
where the application is running, the user can configure additional locators with addresses and ports on other networks,
when routing rules have been correspondingly set up.

Default Announced Locators

The default list of announced locators will be constructed from the listening locators, as follows:

• If the address field of the locator is a null address (i.e. 0.0.0.0 for UDPv4), a locator of the same kind and port
will be announced for each of the addresses of the network interfaces of the host.

• If the address field of the locator is not a null address, a single locator with that address will be announced.

External Locators

The user can configure a set of external locators for each of the lists of unicast locators:

• builtin.metatraffic_external_unicast_locators on WireProtocolConfigQos

• default_external_unicast_locators on WireProtocolConfigQos

• external_unicast_locators on RTPSEndpointQos

An external locator is made up of the standard locator fields (kind, address, and port), plus the following attributes:

• An externality that indicates the number of hops from the host where the application is running to the LAN
represented by the external locator.

• A cost indicating the communication cost relative to other locators on the same externality level.

• A mask with the number of significant bits on the LAN represented by the external locator.

6.19. Transport Layer 315

Fast DDS Documentation, Release 2.8.2

Externality levels

The main purpose of the external locators is to enable communication across different levels of interconnected LANs.
Communication will be performed using the locators of the innermost LAN available.

As an example, consider a network topology where the application is running on a host connected to a LAN of an
office, which in turn connects to a LAN for all the offices in the same floor, which in turn connects to a LAN for the
building.

With the default configuration, communication will only occur between hosts on the LAN for the office. This is con-
sidered the externality level 0, which is reserved for the LANs directly connected to the network interfaces of the host
where the application is running. This is the externality level that will be used on the matching algorithm for the de-
fault announced locators. The floor LAN will be configured as externality level 1, whereas the building LAN will be
configured as externality level 2.

Note that in order for the communication to be successful, routing rules should most probably need to be added to the
different network routers.

Important: Externality level 0 is automatically populated by Fast DDS and cannot be configured by the application.

Matching algorithm

When a remote entity is discovered, its list of announced locators is processed to select the ones on the innermost
externality level where the communication can be established. The highest externality level is checked first.

If the discovered addresses for one level are equal to the ones announced by the local entity, it means they are on the
same host at that level, and the algorithm proceeds to an inner level. If the discovered addresses are not equal to the
ones announced by the local entity, processing stops at the current level.

When the externality level on which the communication will be established has been decided, the algorithm will:

• Remove locators that match with addresses on any other externality level.

• Keep locators that match with the selected externality level.

• For the locators with an address that does not match with any of the locators announced by the local entity:

– Keep them when ignore_non_matching_locators is false (default behavior)

– Remove them when ignore_non_matching_locators is true

Additional considerations

Since using external locators increases the number of locators announced, the allocation limits for locators discovery
would need to be adjusted for your application.

Participants running on the same host, but using different addresses on their builtin.
metatraffic_external_unicast_locators will discard shared memory transport locators. Data sharing
communication is not affected by this limitation.

316 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.19.10 Interface Whitelist

Using Fast DDS, it is possible to limit the network interfaces used by TCP Transport and UDP Transport. This
is achieved by adding the interfaces’ IP addresses to the interfaceWhiteList field in the TCPTransportDe-
scriptor or UDPTransportDescriptor. Thus, the communication interfaces used by the DomainParticipants whose
TransportDescriptorInterface defines an interfaceWhiteList is limited to the interfaces’ IP addresses de-
fined in that list, therefore avoiding the use of the rest of the network interfaces available in the system. The values on
this list should match the IPs of your machine in that networks. For example:

C++

DomainParticipantQos qos;

// Create a descriptor for the new transport.
auto tcp_transport = std::make_shared<TCPv4TransportDescriptor>();

// Add loopback to the whitelist
tcp_transport->interfaceWhiteList.emplace_back("127.0.0.1");

// Link the Transport Layer to the Participant.
qos.transport().user_transports.push_back(tcp_transport);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<transport_descriptors>
<transport_descriptor>

<transport_id>CustomTcpTransport</transport_id>
<type>TCPv4</type>
<interfaceWhiteList>

<address>127.0.0.1</address>
</interfaceWhiteList>

</transport_descriptor>
</transport_descriptors>

<participant profile_name="CustomTcpTransportParticipant">
<rtps>

<userTransports>
<transport_id>CustomTcpTransport</transport_id>

</userTransports>
</rtps>

</participant>
</profiles>

Warning: The interface whitelist feature applies to network interfaces. Therefore, it is only available on TCP
Transport and UDP Transport.

6.19. Transport Layer 317

Fast DDS Documentation, Release 2.8.2

6.19.11 Disabling all Multicast Traffic

If all the peers are known beforehand and have been configured on the Initial Peers List, all multicast traffic can be
completely disabled.

By defining a custom Metatraffic Unicast Locators, the local DomainParticipant creates a unicast meta traffic receiving
resource for each address-port pair specified in the list, avoiding the creation of the default metatraffic multicast and
unicast locators. This prevents the DomainParticipant from listening to any discovery data from multicast sources.

Consideration should be given to the assignment of the ports in the metatrafficUnicastLocatorList, avoiding
the assignment of ports that are not available or do not match the address-port listed in the publisher participant Initial
Peers List.

The following is an example of how to disable all multicast traffic configuring one metatraffic unicast locator.

C++

DomainParticipantQos qos;

// Metatraffic Multicast Locator List will be empty.
// Metatraffic Unicast Locator List will contain one locator, with null address and null␣
→˓port.
// Then Fast DDS will use all network interfaces to receive network messages using a␣
→˓well-known port.
Locator_t default_unicast_locator;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(default_unicast_
→˓locator);

// Initial peer will be UDPv4 address 192.168.0.1. The port will be a well-known port.
// Initial discovery network messages will be sent to this UDPv4 address.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, 192, 168, 0, 1);
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="disable_multicast" is_default_profile="true">
<rtps>

<builtin>
<metatrafficUnicastLocatorList>

<locator/>
</metatrafficUnicastLocatorList>
<initialPeersList>

<locator>
<udpv4>

<address>192.168.0.1</address>
</udpv4>

</locator>
</initialPeersList>

</builtin>
</rtps>

</participant>
</profiles>

318 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.20 Persistence Service

Using default QoS, the DataWriter history is only available for DataReader throughout the DataWriter’s life. This
means that the history does not persist between DataWriter initializations and therefore it is on an empty state on
DataWriter creation. Similarly, the DataReader history does not persist the DataReader’s life, thus also being empty on
DataReader creation. However, eProsima Fast DDS offers the possibility to configure the DataWriter’s history to be
stored in a persistent database, so that the DataWriter can load its history from it on creation. Furthermore, DataReaders
can be configured to store the last notified change in the database, so that they can recover their state on creation.

This mechanism allows recovering a previous state on starting the Data Distribution Service, thus adding robustness to
applications in the case of, for example, unexpected shutdowns. Configuring the persistence service, DataWriters and
DataReaders can resume their operation from the state in which they were when the shutdown occurred.

Note: Mind that DataReaders do not store their history into the database, but rather the last notified change from the
DataWriter. This means that they will resume operation where they left, but they will not have the previous information,
since that was already notified to the application.

6.20.1 Configuration

The configuration of the persistence service is accomplished by setting of the appropriate DataWriter and DataReader
DurabilityQosPolicy, and by specifying the suitable properties for each entity’s (DomainParticipant, DataWriter, or
DataReader) PropertyPolicyQos.

• For the Persistence Service to have any effect, the DurabilityQosPolicyKind needs to be set to
TRANSIENT_DURABILITY_QOS.

• A persistence identifier (Guid_t) must be set for the entity using the property dds.persistence.guid. This
identifier is used to load the appropriate data from the database, and also to synchronize DataWriter and
DataReader between restarts. The GUID consists of 16 bytes separated into two groups:

– The first 12 bytes correspond to the GuidPrefix_t.

– The last 4 bytes correspond to the EntityId_t.

The persistence identifier is specified using a string of 12 dot-separated bytes, expressed in hexadecimal base,
followed by a vertical bar separator (|) and another 4 dot-separated bytes, also expressed in hexadecimal base
(see Example). For selecting an appropriate GUID for the DataReader and DataWriter, please refer to RTPS
standard (section 9.3.1 The Globally Unique Identifier (GUID)).

• A persistence plugin must be configured for managing the database using property dds.persistence.plugin
(see PERSISTENCE:SQLITE3 built-in plugin):

6.20.2 PERSISTENCE:SQLITE3 built-in plugin

This plugin provides persistence through a local database file using SQLite3 API. To activate the plugin, dds.
persistence.plugin property must be added to the PropertyPolicyQos of the DomainParticipant, DataWriter, or
DataReader with value builtin.SQLITE3. Furthermore, dds.persistence.sqlite3.filename property must be
added to the entities PropertyPolicyQos, specifying the database file name. These properties are summarized in the
following table:

6.20. Persistence Service 319

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

Table 12: Persistence::SQLITE3 configuration properties
Property name Property value
dds.persistence.plugin builtin.SQLITE3
dds.persistence.sqlite3.
filename

Name of the file used for persistent storage. Default value:
persistence.db

Note: To avoid undesired delays caused by concurrent access to the SQLite3 database, it is advisable to specify a
different database file for each DataWriter and DataReader.

Important: The plugin set in the PropertyPolicyQos of DomainParticipant only applies if that of the
DataWriter/DataReader does no exist or is invalid.

6.20.3 Example

This example shows how to configure the persistence service using PERSISTENCE:SQLITE3 built-in plugin plugin
both from C++ and using eProsima Fast DDS XML profile files (see XML profiles).

C++

/*
* In order for this example to be self-contained, all the entities are created␣
→˓programatically, including the data
* type and type support. This has been done using Fast DDS Dynamic Types API, but it␣
→˓could be substituted with a
* Fast DDS-Gen generated type support if an IDL file is available. The Dynamic Type␣
→˓created here is the equivalent
* of the following IDL:
*
* struct persistence_topic_type
* {
* unsigned long index;
* string message;
* };
*/

// Configure persistence service plugin for DomainParticipant
DomainParticipantQos pqos;
pqos.properties().properties().emplace_back("dds.persistence.plugin", "builtin.SQLITE3");
pqos.properties().properties().emplace_back("dds.persistence.sqlite3.filename",
→˓"persistence.db");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_
→˓participant(0, pqos);

/
→˓**
* CREATE TYPE AND TYPE SUPPORT

* This part could be replaced if IDL file and Fast DDS-Gen are available.

(continues on next page)

320 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

* The type is created with name "persistence_topic_type"
* Additionally, create a data object and populate it, just to show how to do it
**/
→˓

// Create a struct builder for a type with name "persistence_topic_type"
const std::string topic_type_name = "persistence_topic_type";
eprosima::fastrtps::types::DynamicTypeBuilder_ptr struct_type_builder(

eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_struct_
→˓builder());
struct_type_builder->set_name(topic_type_name);

// The type consists of two members, and index and a message. Add members to the struct.
struct_type_builder->add_member(0, "index",

eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_type());
struct_type_builder->add_member(1, "message",

eprosima::fastrtps::types::DynamicTypeBuilderFactory::get_instance()->create_
→˓string_type());

// Build the type
eprosima::fastrtps::types::DynamicType_ptr dyn_type_ptr = struct_type_builder->build();

// Create type support and register the type
TypeSupport type_support(new eprosima::fastrtps::types::DynamicPubSubType(dyn_type_ptr));
type_support.register_type(participant);

// Create data sample a populate data. This is to be used when calling `writer->write()`
eprosima::fastrtps::types::DynamicData* dyn_helloworld;
dyn_helloworld = eprosima::fastrtps::types::DynamicDataFactory::get_instance()->create_
→˓data(dyn_type_ptr);
dyn_helloworld->set_uint32_value(0, 0);
dyn_helloworld->set_string_value("HelloWorld", 1);
/
→˓**
* END CREATE TYPE AND TYPE SUPPORT
**/
→˓

// Create a topic
Topic* topic = participant->create_topic("persistence_topic_name", topic_type_name,␣
→˓TOPIC_QOS_DEFAULT);

// Create a publisher and a subscriber with default QoS
Publisher* publisher = participant->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);
Subscriber* subscriber = participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

// Configure DataWriter's durability and persistence GUID so it can use the persistence␣
→˓service
DataWriterQos dwqos = DATAWRITER_QOS_DEFAULT;
dwqos.durability().kind = TRANSIENT_DURABILITY_QOS;
dwqos.properties().properties().emplace_back("dds.persistence.guid",

"77.72.69.74.65.72.5f.70.65.72.73.5f|67.75.69.64");

(continues on next page)

6.20. Persistence Service 321

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DataWriter* writer = publisher->create_datawriter(topic, dwqos);

// Configure DataReaders's durability and persistence GUID so it can use the persistence␣
→˓service
DataReaderQos drqos = DATAREADER_QOS_DEFAULT;
drqos.durability().kind = TRANSIENT_DURABILITY_QOS;
drqos.properties().properties().emplace_back("dds.persistence.guid",

"72.65.61.64.65.72.5f.70.65.72.73.5f|67.75.69.64");
DataReader* reader = subscriber->create_datareader(topic, drqos);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<!-- DomainParticipant configuration -->
<participant profile_name="persistence_service_participant">

<rtps>
<propertiesPolicy>

<properties>
<!-- Select persistence plugin -->
<property>

<name>dds.persistence.plugin</name>
<value>builtin.SQLITE3</value>

</property>
<!-- Database file name -->
<property>

<name>dds.persistence.sqlite3.filename</name>
<value>persistence_service.db</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

<!-- DataWriter configuration -->
<data_writer profile_name="persistence_service_data_writer">

<qos>
<!-- Set durability to TRANSIENT_DURABILITY_QOS -->
<durability>

<kind>TRANSIENT</kind>
</durability>

</qos>
<propertiesPolicy>

<properties>
<!-- Persistence GUID -->
<property>

<name>dds.persistence.guid</name>
<value>77.72.69.74.65.72.5f.70.65.72.73.5f|67.75.69.64</value>

</property>
</properties>

</propertiesPolicy>
(continues on next page)

322 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</data_writer>

<data_reader profile_name="persistence_service_data_reader">
<qos>

<!-- Set durability to TRANSIENT_DURABILITY_QOS -->
<durability>

<kind>TRANSIENT</kind>
</durability>

</qos>
<propertiesPolicy>

<properties>
<!-- Persistence GUID -->
<property>

<name>dds.persistence.guid</name>
<value>72.65.61.64.65.72.5f.70.65.72.73.5f|67.75.69.64</value>

</property>
</properties>

</propertiesPolicy>
</data_reader>

</profiles>
</dds>

Note: For instructions on how to create DomainParticipants, DataReaders, and DataWriters, please refer to Pro-
file based creation of a DomainParticipant, Profile based creation of a DataWriter, and Profile based creation of a
DataReader respectively.

6.21 Security

The DDS Security specification includes five security builtin plugins.

1. Authentication plugin: DDS:Auth:PKI-DH. This plugin provides authentication for each DomainParticipant
joining a DDS Domain using a trusted Certificate Authority (CA). Support mutual authentication between Do-
mainParticipants and establish a shared secret.

2. Access Control plugin: DDS:Access:Permissions. This plugin provides access control to DomainParticipants
which perform protected operations.

3. Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC. This plugin provides authenticated encryption using
Advanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM).

4. Logging plugin: DDS:Logging:DDS_LogTopic. This plugin logs security events.

5. Data Tagging: DDS:Tagging:DDS_Discovery. This plugin enables the addition of security labels to the data.
Thus it is possible to specify classification levels of the data. In the DDS context it can be used as a complement
to access control, creating an access control based on data tagging; for message prioritization; and to prevent its
use by the middleware to be used instead by the application or service.

Note: Currently the DDS:Tagging:DDS_Discovery plugin is not implemented in Fast DDS. Its implementation is
expected for future release of Fast DDS.

6.21. Security 323

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.8.2

In compliance with the DDS Security specification, Fast DDS provides secure communication by implement-
ing pluggable security at three levels: a) DomainParticipants authentication (DDS:Auth:PKI-DH), b) access con-
trol of Entities (DDS:Access:Permissions), and c) data encryption (DDS:Crypto:AES-GCM-GMAC). Furthermore,
for the monitoring of the security plugins and logging relevant events, Fast DDS implements the logging plugin
(DDS:Logging:DDS_LogTopic).

By default, Fast DDS does not compile any security support, but it can be activated adding -DSECURITY=ON at CMake
configuration step. For more information about Fast DDS compilation, see Linux installation from sources and Windows
installation from sources.

Security plugins can be activated through the DomainParticipantQos properties. A Property is defined by its name
(std::string) and its value (std::string).

Warning: For the full understanding of this documentation it is required the user to have basic knowledge of
network security since terms like Certificate Authority (CA), Public Key Infrastructure (PKI), and Diffie-Hellman
encryption protocol are not explained in detail. However, it is possible to configure basic system security settings,
i.e. authentication, access control and encryption, to Fast DDS without this knowledge.

The following sections describe how to configure each of these properties to set up the Fast DDS security plugins.

6.21.1 Authentication plugin: DDS:Auth:PKI-DH

This is the starting point for all the security mechanisms. The authentication plugin provides the mechanisms and
operations required for DomainParticipants authentication at discovery. If the security module was activated at Fast
DDS compilation, when a DomainParticipant is either locally created or discovered, it needs to be authenticated in
order to be able to communicate in a DDS Domain. Therefore, when a DomainParticipant detects a remote Domain-
Participant, both try to authenticate themselves using the activated authentication plugin. If the authentication process
finishes successfully both DomainParticipant match and the discovery mechanism continues. On failure, the remote
DomainParticipant is rejected.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Auth:PKI-DH”, in compliance with the
DDS Security specification. The DDS:Auth:PKI-DH plugin uses a trusted Certificate Authority (CA) and the ECDSA
Digital Signature Algorithms to perform the mutual authentication. It also establishes a shared secret using Elliptic
Curve Diffie-Hellman (ECDH) Key Agreement Methods. This shared secret can be used by other security plugins as
Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC.

The DDS:Auth:PKI-DH authentication plugin, can be activated setting the DomainParticipantQos properties()
dds.sec.auth.plugin with the value builtin.PKI-DH. The following table outlines the properties used for the
DDS:Auth:PKI-DH plugin configuration.

324 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.8.2

Prop-
erty
name

Property value

iden-
tity_ca

URI to the X.509 v3 certificate of the Identity CA in PEM format. Supported URI schemes: file.

iden-
tity_certificate

URI to an X.509 v3 certificate signed by the Identity CA in PEM format containing the signed public
key for the Participant. Supported URI schemes: file.

iden-
tity_crl
(op-
tional)

URI to a X.509 Certificate Revocation List (CRL). Supported URI schemes: file.

pri-
vate_key

URI to access the private Private Key for the Participant. Supported URI schemes: file, PKCS#11.

pass-
word
(op-
tional)

A password used to decrypt the private_key. If the password property is not present, then the value
supplied in the private_key property must contain the decrypted private key. The password property is
ignored if the private_key is given in PKCS#11 scheme.

Note: All listed properties have “dds.sec.auth.builtin.PKI-DH.” prefix. For example: dds.sec.auth.builtin.
PKI-DH.identity_ca.

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Auth:PKI-DH plugin
configuration.

6.21. Security 325

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

// Activate DDS:Auth:PKI-DH plugin
pqos.properties().properties().emplace_back("dds.sec.auth.plugin",

"builtin.PKI-DH");

// Configure DDS:Auth:PKI-DH plugin
pqos.properties().properties().emplace_back(

"dds.sec.auth.builtin.PKI-DH.identity_ca",
"file://maincacert.pem");

pqos.properties().properties().emplace_back(
"dds.sec.auth.builtin.PKI-DH.identity_certificate",
"file://partcert.pem");

pqos.properties().properties().emplace_back(
"dds.sec.auth.builtin.PKI-DH.identity_crl",
"file://crl.pem");

pqos.properties().properties().emplace_back(
"dds.sec.auth.builtin.PKI-DH.private_key",
"file://partkey.pem");

pqos.properties().properties().emplace_back(
"dds.sec.auth.builtin.PKI-DH.password",
"domainParticipantPassword");

XML

<participant profile_name="secure_domainparticipant_conf_auth_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate DDS:Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.plugin</name>
<value>builtin.PKI-DH</value>

</property>
<!-- Configure DDS:Auth:PKI-DH plugin -->
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_ca</name>
<value>file://maincacert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_certificate</name>
<value>file://partcert.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.identity_crl</name>
<value>file://crl.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.private_key</name>
<value>file://partkey.pem</value>

</property>
<property>

<name>dds.sec.auth.builtin.PKI-DH.password</name>
<value>domainParticipantPassword</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

326 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Generation of X.509 certificates

An X.509 digital certificate is a document that has been encrypted and/or digitally signed according to RFC 5280. The
X.509 certificate refers to the Public Key Infrastructure (PKI) certificate of the IETF , and specifies the standard formats
for public-key certificates and a certification route validation algorithm. A simple way to generate these certificates for a
proprietary PKI structure is through the OpenSSL toolkit. This section explains how to build a certificate infrastructure
from the trusted CA certificate to the end-entity certificate, i.e. the DomainParticipant.

Generating the CA certificate for self-signing

First, since multiple certificates will need to be issued, one for each of the DomainParticipants, a dedicated CA is set up,
and the CA’s certificate is installed as the root key of all DomainParticipants. Thus, the DomainParticipants will accept
all certificates issued by our own CA. To create a proprietary CA certificate, a configuration file must first be written
with the CA information. An example of the CA configuration file is shown below. The OpenSSL commands shown
in this example are compatible with both Linux and Windows Operating Systems (OS). However, all other commands
are only compatible with Linux OS.

File: maincaconf.cnf
OpenSSL example Certificate Authority configuration file

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = . # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
unique_subject = no # Set to 'no' to allow creation of

several ctificates with same subject.
new_certs_dir = $dir

certificate = $dir/maincacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/maincakey.pem # The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days= 1825 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = sha256 # which md to use.
preserve = no # keep passed DN ordering

policy = policy_match
(continues on next page)

6.21. Security 327

https://tools.ietf.org/html/rfc5280
https://ietf.org/
https://www.openssl.org/

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
prompt = no
#default_bits = 1024
#default_keyfile = privkey.pem
distinguished_name= req_distinguished_name
#attributes = req_attributes
#x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = utf8only

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
0.organizationName = eProsima
commonName = eProsima Main Test CA
emailAddress = mainca@eprosima.com

After writing the configuration file, next commands generate the certificate using the Elliptic Curve Digital Signature
Algorithm (ECDSA).

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -x509 \
-days 3650 \
-newkey ec:ecdsaparam \
-keyout maincakey.pem \
-out maincacert.pem \
-config maincaconf.cnf

328 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Generating the DomainParticipant certificate

As was done for the CA, a DomainParticipant certificate configuration file needs to be created first.

File: partconf.cnf

prompt = no
string_mask = utf8only
distinguished_name = req_distinguished_name

[req_distinguished_name]
countryName = ES
stateOrProvinceName = MA
localityName = Tres Cantos
organizationName = eProsima
emailAddress = example@eprosima.com
commonName = DomainParticipantName

After writing the DomainParticipant certificate configuration file, next commands generate the X.509 certificate, using
ECDSA, for a DomainParticipant.

openssl ecparam -name prime256v1 > ecdsaparam

openssl req -nodes -new \
-newkey ec:ecdsaparam \
-config partconf.cnf \
-keyout partkey.pem \
-out partreq.pem

openssl ca -batch -create_serial \
-config maincaconf.cnf \
-days 3650 \
-in partreq.pem \
-out partcert.pem

Generating the Certificate Revocation List (CRL)

Finally, the CRL is created. This is a list of the X.509 certificates revoked by the certificate issuing CA before they
reach their expiration date. Any certificate that is on this list will no longer be trusted. To create a CRL using OpenSSL
just run the following commands.

echo -ne '00' > crlnumber

openssl ca -gencrl \
-config maincaconf.cnf \
-cert maincacert.pem \
-keyfile maincakey.pem \
-out crl.pem

As an example, below is shown how to add the X.509 certificate of a DomainParticipant to the CRL.

6.21. Security 329

Fast DDS Documentation, Release 2.8.2

openssl ca \
-config maincaconf.cnf \
-cert maincacert.pem \
-keyfile maincakey.pem \
-revoke partcert.pem

openssl ca -gencrl \
-config maincaconf.cnf \
-cert maincacert.pem \
-keyfile maincakey.pem \
-out crl.pem

6.21.2 Access control plugin: DDS:Access:Permissions

The access control plugin provides the mechanisms and operations required for validating the DomainParticipant per-
missions. If the security module was activated at Fast DDS compilation, after a remote DomainParticipant is authen-
ticated, its permissions need to be validated and enforced.

Access rights that each DomainParticipant has over a resource are defined using the access control plugin. For the
proper functioning of a DomainParticipant in a DDS Domain, the DomainParticipant must be authorized to operate
in that specific domain. The DomainParticipant is responsible for creating the DataWriters and DataReaders that
communicate over a certain Topic. Hence, a DomainParticipant must have the permissions needed to create a Topic,
to publish through its DataWriters under defined Topics, and to subscribe via its DataReaders to other Topics. Access
control plugin can configure the Cryptographic plugin as its usage is based on the DomainParticipant’s permissions.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Access:Permissions”, in compliance with
the DDS Security specification. This plugin is explained in detail below.

This builtin plugin provides access control using a permissions document signed by a trusted CA. The
DDS:Access:Permissions plugin requires three documents for its configuration which contents are explained in de-
tail below.

1. The Permissions CA certificate.

2. The Domain governance signed by the Permissions CA.

3. The DomainParticipant permissions signed by the Permissions CA.

The DDS:Access:Permissions authentication plugin, can be activated setting the DomainParticipantQos
properties() dds.sec.auth.plugin with the value builtin.Access-Permissions. The following table
outlines the properties used for the DDS:Access:Permissions plugin configuration.

Property
name

Property value

permis-
sions_ca

URI to the X509 certificate of the Permissions CA. Supported URI schemes: file. The file schema
shall refer to an X.509 v3 certificate in PEM format.

gover-
nance

URI to shared Governance Document signed by the Permissions CA in S/MIME format. Supported
URI schemes: file.

permis-
sions

URI to the Participant permissions document signed by the Permissions CA in S/MIME format. Sup-
ported URI schemes: file.

Note: All listed properties have “dds.sec.access.builtin.Access-Permissions.” prefix. For example: dds.sec.
access.builtin.Access-Permissions.permissions_ca.

330 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.8.2

The following is an example of how to set the properties of DomainParticipantQos for the DDS:Access:Permissions
configuration.

C++

DomainParticipantQos pqos;

// Activate DDS:Access:Permissions plugin
pqos.properties().properties().emplace_back("dds.sec.access.plugin",

"builtin.Access-Permissions");

// Configure DDS:Access:Permissions plugin
pqos.properties().properties().emplace_back(

"dds.sec.access.builtin.Access-Permissions.permissions_ca",
"file://certs/maincacert.pem");

pqos.properties().properties().emplace_back(
"dds.sec.access.builtin.Access-Permissions.governance",
"file://certs/governance.smime");

pqos.properties().properties().emplace_back(
"dds.sec.access.builtin.Access-Permissions.permissions",
"file://certs/permissions.smime");

XML

<participant profile_name="secure_domainparticipant_conf_access_control_plugin_xml_
→˓profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate DDS:Access:Permissions plugin -->
<property>

<name>dds.sec.access.plugin</name>
<value>builtin.Access-Permissions</value>

</property>
<!-- Configure DDS:Access:Permissions plugin -->
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions_ca</
→˓name>

<value>file://maincacet.pem</value>
</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.governance</name>
<value>file://governance.smime</value>

</property>
<property>

<name>dds.sec.access.builtin.Access-Permissions.permissions</name>
<value>file://permissions.smime</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

6.21. Security 331

Fast DDS Documentation, Release 2.8.2

Permissions CA Certificate

This is an X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain Governance
Document and the DomainParticipant Permissions Document.

Domain Governance Document

Domain Governance document is an XML document that specifies the mechanisms to secure the DDS Domain. It
shall be signed by the Permissions CA in S/MIME format. The XML scheme of this document is defined in Domain
Governance XSD. The following is an example of the Domain Governance XML file contents.

1 <dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xsi:noNamespaceSchemaLocation="omg_shared_ca_domain_governance.xsd">
3 <domain_access_rules>
4 <domain_rule>
5 <domains>
6 <id_range>
7 <min>0</min>
8 <max>230</max>
9 </id_range>

10 </domains>
11 <allow_unauthenticated_participants>false</allow_unauthenticated_

→˓participants>
12 <enable_join_access_control>true</enable_join_access_control>
13 <discovery_protection_kind>ENCRYPT</discovery_protection_kind>
14 <liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
15 <rtps_protection_kind>ENCRYPT</rtps_protection_kind>
16 <topic_access_rules>
17 <topic_rule>
18 <topic_expression>HelloWorldTopic</topic_expression>
19 <enable_discovery_protection>true</enable_discovery_protection>
20 <enable_liveliness_protection>false</enable_liveliness_protection>
21 <enable_read_access_control>true</enable_read_access_control>
22 <enable_write_access_control>true</enable_write_access_control>
23 <metadata_protection_kind>ENCRYPT</metadata_protection_kind>
24 <data_protection_kind>ENCRYPT</data_protection_kind>
25 </topic_rule>
26 </topic_access_rules>
27 </domain_rule>
28 </domain_access_rules>
29 </dds>

The Governance XSD file and the Governance XML example can also be downloaded from the eProsima Fast DDS
Github repository.

332 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.8.2

Domain Rules

It allows the application of rules to the DDS Domain. The domain rules define aspects of the DDS Domain such as:

• Whether the discovery data should be protected and the type of protection: MAC only or encryption followed by
MAC.

• Whether the whole RTPS message should be encrypted.

• Whether the liveliness of the messages should be protected.

• Whether a non-authenticated DomainParticipant can access or not to the unprotected discovery metatraffic and
unprotected Topics.

• Whether an authenticated DomainParticipant can access the domain without evaluating the access control poli-
cies.

• Whether discovery information on a certain Topic should be sent with secure DataWriters.

• Whether or not the access to Topics should be restricted to DomainParticipants with the appropriate permission
to read them.

• Whether the metadata sent on a certain Topic should be protected and the type of protection.

• Whether payload data on a certain Topic should be protected and the type of protection.

The domain rules are evaluated in the same order as they appear in the document. A rule only applies to a particular
DomainParticipant if the domain section matches the DDS Domain_Id to which the DomainParticipant belongs. If
multiple rules match, the first rule that matches is the only one that applies. Each domain rule is delimited by the
<domain_rule> XML element tag.

Some domain rules may have an additional configuration if enabled. This configuration defines the level of protection
that the rule applies to the domain:

• NONE: no cryptographic transformation is applied.

• SIGN: cryptographic transformation based on Message Authentication Code (MAC) is applied, without addi-
tional encryption.

• ENCRYPT: the data is encrypted and followed by a MAC computed on the ciphertext, also known as Encrypt-
then-MAC.

The following table summarizes the elements and sections that each domain rule may contain.

6.21. Security 333

Fast DDS Documentation, Release 2.8.2

Type Name XML element tag Values
Ele-
ment

Domains <domains> false
true

Allow Unauthenticated Partici-
pants

<allow_unauthenticated_participants> false
true

Enable Join Access Control <enable_join_access_control> SIGN
ENCRYPT
NONE

Discovery Protection Kind <discovery_protection_kind> SIGN
ENCRYPT
NONE

Liveliness Protection Kind <liveliness_protection_kind> SIGN
ENCRYPT
NONE

RTPS Protection Kind <rtps_protection_kind> SIGN
ENCRYPT
NONE

Section Topic Access Rules <topic_access_rules> <topic_rule>

The following describes the possible configurations of each of the elements and sections listed above that are contained
in the domain rules.

Domains

This element is delimited by the <domains> XML element tag. The value in this element identifies the collection of
DDS Domains to which the rule applies. The <domains> element can contain:

• A single domain identifier:

<domains>
<id>1</id>

</domains>

• A range of domain identifiers:

<domains>
<id_range>

<min>1</min>
<max>10</max>

</id_range>
</domains>

Or a combination of both, a list of domain identifiers and ranges of domain identifiers.

334 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Allow Unauthenticated Participants

This element is delimited by the <allow_unauthenticated_participants>XML element tag. It indicates whether
the matching of a DomainParticipant with a remote DomainParticipant requires authentication. The possible values
for this element are:

• false: the DomainParticipant shall enforce the authentication of remote DomainParticipants and disallow
matching those that cannot be successfully authenticated.

• true: the DomainParticipant shall allow matching other DomainParticipants (event if the remote DomainPartici-
pant cannot authenticate) as long as there is not an already valid authentication with the same DomainParticipant’s
GUID.

Enable Join Access Control

This element is delimited by the <enable_join_access_control> XML element tag. Indicates whether the match-
ing of the participant with a remote DomqainParticipant requires authorization by the DDS:Access:Permissions plugin.
Its possible values are:

• false: the DomainParticipant shall not check the permissions of the authenticated remote DomainParticipant.

• true: the DomainParticipant shall check the permissions of the authenticated remote DomainParticipant.

Discovery Protection Kind

This element is delimited by the <discovery_protection_kind> XML element tag. Indicates whether the secure
channel of the endpoint discovery phase needs to be encrypted. The possible values are:

• NONE: the secure channel shall not be protected.

• SIGN: the secure channel shall be protected by MAC.

• ENCRYPT: the secure channel shall be encrypted.

Liveliness Protection Kind

This element is delimited by the <liveliness_protection_kind> XML element tag. Indicates whether the secure
channel of the liveliness mechanism needs to be encrypted. The possible values are:

• NONE: the secure channel shall not be protected.

• SIGN: the secure channel shall be protected by MAC.

• ENCRYPT: the secure channel shall be encrypted.

RTPS Protection Kind

This element is delimited by the <rtps_protection_kind> XML element tag. Indicates whether the whole RTPS
Message needs to be encrypted. The possible values are:

• NONE: whole RTPS Messages shall not be protected.

• SIGN: whole RTPS Messages shall be protected by MAC.

• ENCRYPT: whole RTPS Messages shall be encrypted.

6.21. Security 335

Fast DDS Documentation, Release 2.8.2

Topic Rule

This element is delimited by the <topic_rule> XML element tag and appears within the Topic Access Rules Section
whose XML element tag is <topic_access_rules>. The following table summarizes the elements and sections that
each domain rule may contain.

Elements XML element tag Values
Topic expression <topic_expression> Topic name
Enable Discovery Protection <enable_discovery_protection> false

true
Enable Liveliness Protection <enable_liveliness_protection> false

true
Enable Read Access Control <enable_read_access_control> false

true
Enable Write Access Control <enable_write_access_control> false

true
Metadata protection Kind <metadata_protection_kind> true

false
Data protection Kind <data_protection_kind> true

false

The topic expression within the rules selects a set of Topic names. The rule applies to any DataReader or DataWriter
associated with a Topic whose name matches the Topic expression name. The topic access rules are evaluated in the
same order as they appear within the <topic_access_rules> section. If multiple rules match, the first rule that
matches is the only one that applies.

Topic expression

This element is delimited by the <topic_expression> XML element tag. The value in this element identifies the set
of Topic names to which the rule applies. The rule applies to any DataReader or DataWriter associated with a Topic
whose name matches the value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as
specified in IEEE 1003.1-2017.

Enable Discovery Protection

This element is delimited by the <enable_discovery_protection> XML element tag. Indicates whether the entity
related discovery information shall go through the secure channel of endpoint discovery phase.

• false: the entity discovery information shall be sent by an unsecured channel of discovery.

• true: the information shall be sent by the secure channel.

336 Chapter 6. Structure of the documentation

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

Fast DDS Documentation, Release 2.8.2

Enable Liveliness Protection

This element is delimited by the <enable_liveliness_protection>XML element tag. Indicates whether the entity
related liveliness information shall go through the secure channel of liveliness mechanism.

• false: the entity liveliness information shall be sent by an unsecured channel of liveliness.

• true: the information shall be sent by the secure channel.

Enable Read Access Control

This element is delimited by the <enable_read_access_control>XML element tag. Indicates whether read access
to the Topic is protected.

• false: then local Subscriber creation and remote Subscriber matching can proceed without further access-
control mechanisms imposed.

• true: they shall be checked using Access control plugin.

Enable Write Access Control

This element is delimited by the <enable_write_access_control> XML element tag. Indicates whether write
access to the Topic is protected.

• false: then local Publisher creation and remote Publisher matching can proceed without further access-control
mechanisms imposed.

• true: they shall be checked using Access control plugin.

Metadata Protection Kind

This element is delimited by the <metadata_protection_kind> XML element tag. Indicates whether the entity’s
RTPS submessages shall be encrypted by the Cryptographic plugin.

• false: the RTPS submessages shall not be encrypted.

• true: the RTPS submessages shall be encrypted.

Data Protection Kind

This element is delimited by the <data_protection_kind> XML element tag. Indicates whether the data payload
shall be encrypted by the Cryptographic plugin.

• false: the data payload shall not be encrypted.

• true: the data payload shall be encrypted.

6.21. Security 337

Fast DDS Documentation, Release 2.8.2

Domain Governance XSD

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault="qualified" attributeFormDefault="unqualified">
4 <xs:element name="dds" type="DomainAccessRulesNode" />
5 <xs:complexType name="DomainAccessRulesNode">
6 <xs:sequence minOccurs="1" maxOccurs="1">
7 <xs:element name="domain_access_rules"
8 type="DomainAccessRules" />
9 </xs:sequence>

10 </xs:complexType>
11 <xs:complexType name="DomainAccessRules">
12 <xs:sequence minOccurs="1" maxOccurs="unbounded">
13 <xs:element name="domain_rule" type="DomainRule" />
14 </xs:sequence>
15 </xs:complexType>
16 <xs:complexType name="DomainRule">
17 <xs:sequence minOccurs="1" maxOccurs="1">
18 <xs:element name="domains" type="DomainIdSet" />
19 <xs:element name="allow_unauthenticated_participants"
20 type="xs:boolean" />
21 <xs:element name="enable_join_access_control"
22 type="xs:boolean" />
23 <xs:element name="discovery_protection_kind"
24 type="ProtectionKind" />
25 <xs:element name="liveliness_protection_kind"
26 type="ProtectionKind" />
27 <xs:element name="rtps_protection_kind"
28 type="ProtectionKind" />
29 <xs:element name="topic_access_rules"
30 type="TopicAccessRules" />
31 </xs:sequence>
32 </xs:complexType>
33 <xs:complexType name="DomainIdSet">
34 <xs:choice minOccurs="1" maxOccurs="unbounded">
35 <xs:element name="id" type="DomainId" />
36 <xs:element name="id_range" type="DomainIdRange" />
37 </xs:choice>
38 </xs:complexType>
39 <xs:simpleType name="DomainId">
40 <xs:restriction base="xs:nonNegativeInteger" />
41 </xs:simpleType>
42 <xs:complexType name="DomainIdRange">
43 <xs:choice>
44 <xs:sequence>
45 <xs:element name="min" type="DomainId" />
46 <xs:element name="max" type="DomainId" minOccurs="0" />
47 </xs:sequence>
48 <xs:element name="max" type="DomainId" />
49 </xs:choice>
50 </xs:complexType>

(continues on next page)

338 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

51 <xs:simpleType name="ProtectionKind">
52 <xs:restriction base="xs:string">
53 <xs:enumeration value="ENCRYPT_WITH_ORIGIN_AUTHENTICATION" />
54 <xs:enumeration value="SIGN_WITH_ORIGIN_AUTHENTICATION" />
55 <xs:enumeration value="ENCRYPT" />
56 <xs:enumeration value="SIGN" />
57 <xs:enumeration value="NONE" />
58 </xs:restriction>
59 </xs:simpleType>
60 <xs:simpleType name="BasicProtectionKind">
61 <xs:restriction base="ProtectionKind">
62 <xs:enumeration value="ENCRYPT" />
63 <xs:enumeration value="SIGN" />
64 <xs:enumeration value="NONE" />
65 </xs:restriction>
66 </xs:simpleType>
67 <xs:complexType name="TopicAccessRules">
68 <xs:sequence minOccurs="1" maxOccurs="unbounded">
69 <xs:element name="topic_rule" type="TopicRule" />
70 </xs:sequence>
71 </xs:complexType>
72 <xs:complexType name="TopicRule">
73 <xs:sequence minOccurs="1" maxOccurs="1">
74 <xs:element name="topic_expression" type="TopicExpression" />
75 <xs:element name="enable_discovery_protection"
76 type="xs:boolean" />
77 <xs:element name="enable_liveliness_protection"
78 type="xs:boolean" />
79 <xs:element name="enable_read_access_control"
80 type="xs:boolean" />
81 <xs:element name="enable_write_access_control"
82 type="xs:boolean" />
83 <xs:element name="metadata_protection_kind"
84 type="ProtectionKind" />
85 <xs:element name="data_protection_kind"
86 type="BasicProtectionKind" />
87 </xs:sequence>
88 </xs:complexType>
89 <xs:simpleType name="TopicExpression">
90 <xs:restriction base="xs:string" />
91 </xs:simpleType>
92 </xs:schema>

Back to the Domain Governance Document.

6.21. Security 339

Fast DDS Documentation, Release 2.8.2

DomainParticipant Permissions Document

The permissions document is an XML file which contains the permissions of a DomainParticipant and binds them to the
DomainParticipant distinguished name defined in the DDS:Auth:PKI-DH plugin. The permissions document shall be
signed by the Permissions CA in S/MIME format. The XML scheme of this document is defined in DomainParticipant
Permissions XSD. The following is an example of the DomainParticipant Permissions XML file contents.

1 <dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-Security/20170801/omg_

→˓shared_ca_permissions.xsd">
3 <permissions>
4 <grant name="PublisherPermissions">
5 <subject_name>emailAddress=mainpub@eprosima.com, CN=Main Publisher,␣

→˓OU=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
6 <validity>
7 <not_before>2013-06-01T13:00:00</not_before>
8 <not_after>2038-06-01T13:00:00</not_after>
9 </validity>

10 <allow_rule>
11 <domains>
12 <id_range>
13 <min>0</min>
14 <max>230</max>
15 </id_range>
16 </domains>
17 <publish>
18 <topics>
19 <topic>HelloWorldTopic</topic>
20 </topics>
21 </publish>
22 </allow_rule>
23 <default>DENY</default>
24 </grant>
25 <grant name="SubscriberPermissions">
26 <subject_name> emailAddress=mainsub@eprosima.com, CN=Main Subscriber,␣

→˓OU=eProsima, O=eProsima, ST=MA, C=ES</subject_name>
27 <validity>
28 <not_before>2013-06-01T13:00:00</not_before>
29 <not_after>2038-06-01T13:00:00</not_after>
30 </validity>
31 <allow_rule>
32 <domains>
33 <id_range>
34 <min>0</min>
35 <max>230</max>
36 </id_range>
37 </domains>
38 <subscribe>
39 <topics>
40 <topic>HelloWorldTopic</topic>
41 </topics>
42 </subscribe>
43 </allow_rule>

(continues on next page)

340 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

44 <default>DENY</default>
45 </grant>
46 </permissions>
47 </dds>

The Permissions XSD file and the Permissions XML example can also be downloaded from the eProsima Fast DDS
Github repository.

Grant Section

This section is delimited by the <grant> XML element tag. Each grant section contains three sections:

• Subject name

• Validity

• Rules

Subject name

This section is delimited by XML element <subject_name>. The subject name identifies the DomainParticipant to
which the permissions apply. Each subject name can only appear in a single <permissions> section within the XML
Permissions document. The contents of the subject name element shall be the X.509 subject name of the DomainPar-
ticipant that was given in the authorization X.509 Certificate.

Validity

This section is delimited by the XML element <validity>. It reflects the valid dates for the permissions.

Rules

This section contains the permissions assigned to the DomainParticipant. The rules are applied in the same order that
appears in the document. If the criteria for the rule matched the Domain join, publish or subscribe operation that is
being attempted, then the allow or deny decision is applied. If the criteria for a rule does not match the operation being
attempted, the evaluation shall proceed to the next rule. If all rules have been examined without a match, then the
decision specified by the <default> rule is applied. The default rule, if present, must appear after all allow and deny
rules. If the default rule is not present, the implied default decision is DENY.

For the grant to match there shall be a match of the topics and partitions criteria.

Allow rules are delimited by the XML element <allow_rule>. Deny rules are delimited by the XML ele-
ment``<deny_rule>``. Both contain the same element children.

6.21. Security 341

https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/governance.xsd
https://github.com/eProsima/Fast-DDS/blob/master/examples/cpp/dds/SecureHelloWorldExample/certs/governance.xml
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.8.2

Domains Section

This section is delimited by the XML element <domains>. The value in this element identifies the collection of DDS
Domains to which the rule applies. The syntax is the same as for the Domains of the Domain Governance Document.

Format of the Allowed/Denied Actions sections

The sections for each of the three actions have a similar format. The only difference is the name of the XML element
used to delimit the action:

Action XML element tag
Allow/Deny Publish <publish>
Allow/Deny Subscribe <subscribe>
Allow/Deny Relay <relay>

Each action contains two conditions.

• Allowed/Denied Topics Condition

• Allowed/Denied Partitions Condition

Topics Condition

This section is delimited by the <topics> XML element. It defines the Topic names that must be matched for the
allow/deny rule to apply. Topic names may be given explicitly or by means of Topic name expressions. Each explicit
topic name or Topic name expressions appears separately in a <topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch() function as
specified in

<topics>
<topic>Plane</topic>
<topic>Hel*</topic>

</topics>

Partitions Condition

This section is delimited by the <partitions> XML element. It limits the set Partitions names that may be associated
with the (publish, subscribe, relay) action for the rule to apply. Partition names expression syntax and matching shall use
the syntax and rules of the POSIX fnmatch() function as specified in IEEE 1003.1-2017. If there is no <partitions>
section within a rule, then the default “empty string” partition is assumed.

<partitions>
<partition>A</partition>
<partition>B*</partition>

</partitions>

342 Chapter 6. Structure of the documentation

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

Fast DDS Documentation, Release 2.8.2

DomainParticipant Permissions XSD

1 <?xml version="1.0" encoding="utf-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault="qualified" attributeFormDefault="unqualified">
4 <xs:element name="dds" type="PermissionsNode" />
5 <xs:complexType name="PermissionsNode">
6 <xs:sequence minOccurs="1" maxOccurs="1">
7 <xs:element name="permissions" type="Permissions" />
8 </xs:sequence>
9 </xs:complexType>

10 <xs:complexType name="Permissions">
11 <xs:sequence minOccurs="1" maxOccurs="unbounded">
12 <xs:element name="grant" type="Grant" />
13 </xs:sequence>
14 </xs:complexType>
15 <xs:complexType name="Grant">
16 <xs:sequence minOccurs="1" maxOccurs="1">
17 <xs:element name="subject_name" type="xs:string" />
18 <xs:element name="validity" type="Validity" />
19 <xs:sequence minOccurs="1" maxOccurs="unbounded">
20 <xs:choice minOccurs="1" maxOccurs="1">
21 <xs:element name="allow_rule" minOccurs="0" type="Rule" />
22 <xs:element name="deny_rule" minOccurs="0" type="Rule" />
23 </xs:choice>
24 </xs:sequence>
25 <xs:element name="default" type="DefaultAction" />
26 </xs:sequence>
27 <xs:attribute name="name" type="xs:string" use="required" />
28 </xs:complexType>
29 <xs:complexType name="Validity">
30 <xs:sequence minOccurs="1" maxOccurs="1">
31 <xs:element name="not_before" type="xs:dateTime" />
32 <xs:element name="not_after" type="xs:dateTime" />
33 </xs:sequence>
34 </xs:complexType>
35 <xs:complexType name="Rule">
36 <xs:sequence minOccurs="1" maxOccurs="1">
37 <xs:element name="domains" type="DomainIdSet" />
38 <xs:sequence minOccurs="0" maxOccurs="unbounded">
39 <xs:element name="publish" type="Criteria" />
40 </xs:sequence>
41 <xs:sequence minOccurs="0" maxOccurs="unbounded">
42 <xs:element name="subscribe" type="Criteria" />
43 </xs:sequence>
44 <xs:sequence minOccurs="0" maxOccurs="unbounded">
45 <xs:element name="relay" type="Criteria" />
46 </xs:sequence>
47 </xs:sequence>
48 </xs:complexType>
49 <xs:complexType name="DomainIdSet">
50 <xs:choice minOccurs="1" maxOccurs="unbounded">

(continues on next page)

6.21. Security 343

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

51 <xs:element name="id" type="DomainId" />
52 <xs:element name="id_range" type="DomainIdRange" />
53 </xs:choice>
54 </xs:complexType>
55 <xs:simpleType name="DomainId">
56 <xs:restriction base="xs:nonNegativeInteger" />
57 </xs:simpleType>
58 <xs:complexType name="DomainIdRange">
59 <xs:choice>
60 <xs:sequence>
61 <xs:element name="min" type="DomainId" />
62 <xs:element name="max" type="DomainId" minOccurs="0" />
63 </xs:sequence>
64 <xs:element name="max" type="DomainId" />
65 </xs:choice>
66 </xs:complexType>
67 <xs:complexType name="Criteria">
68 <xs:all minOccurs="1">
69 <xs:element name="topics" minOccurs="1"
70 type="TopicExpressionList" />
71 <xs:element name="partitions" minOccurs="0"
72 type="PartitionExpressionList" />
73 <xs:element name="data_tags" minOccurs="0" type="DataTags" />
74 </xs:all>
75 </xs:complexType>
76 <xs:complexType name="TopicExpressionList">
77 <xs:sequence minOccurs="1" maxOccurs="unbounded">
78 <xs:element name="topic" type="TopicExpression" />
79 </xs:sequence>
80 </xs:complexType>
81 <xs:complexType name="PartitionExpressionList">
82 <xs:sequence minOccurs="1" maxOccurs="unbounded">
83 <xs:element name="partition" type="PartitionExpression" />
84 </xs:sequence>
85 </xs:complexType>
86 <xs:simpleType name="TopicExpression">
87 <xs:restriction base="xs:string" />
88 </xs:simpleType>
89 <xs:simpleType name="PartitionExpression">
90 <xs:restriction base="xs:string" />
91 </xs:simpleType>
92 <xs:complexType name="DataTags">
93 <xs:sequence minOccurs="1" maxOccurs="unbounded">
94 <xs:element name="tag" type="TagNameValuePair" />
95 </xs:sequence>
96 </xs:complexType>
97 <xs:complexType name="TagNameValuePair">
98 <xs:sequence minOccurs="1" maxOccurs="unbounded">
99 <xs:element name="name" type="xs:string" />

100 <xs:element name="value" type="xs:string" />
101 </xs:sequence>
102 </xs:complexType>

(continues on next page)

344 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

103 <xs:simpleType name="DefaultAction">
104 <xs:restriction base="xs:string">
105 <xs:enumeration value="ALLOW" />
106 <xs:enumeration value="DENY" />
107 </xs:restriction>
108 </xs:simpleType>
109 </xs:schema>

Back to the DomainParticipant Permissions Document.

Signing documents using x509 certificate

Domain Governance Document and DomainParticipant Permissions Document have to be signed using an X.509
certificate. Generation of an X.509 certificate is explained in Generation of X.509 certificates. Next commands sign
the necessary documents for its use by the DDS:Access:Permissions plugin.

Governance document: governance.xml
openssl smime -sign -in governance.xml -text -out governance.smime -signer maincacert.
→˓pem -inkey maincakey.pem

Permissions document: permissions.xml
openssl smime -sign -in permissions.xml -text -out permissions.smime -signer maincacert.
→˓pem -inkey maincakey.pem

6.21.3 Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC

The cryptographic plugin provides the tools and operations required to support encryption and decryption, digests com-
putation, message authentication codes computation and verification, key generation, and key exchange for Domain-
Participants, DataWriters and DataReaders. Encryption can be applied over three different levels of DDS protocol:

• The whole RTPS messages.

• The RTPS submessages of a specific DDS Entity (DataWriter or DataReader).

• The payload (user data) of a particular DataWriter.

The authentication plugin implemented in Fast DDS is referred to as “DDS:Crypto:AES-GCM-GMAC”, in compliance
with the DDS Security specification. This plugin is explained in detail below.

The DDS:Crypto:AES-GCM-GMAC plugin provides authentication encryption using Advanced Encryption Standard
(AES) in Galois Counter Mode (AES-GCM). It supports 128 bits and 256 bits AES key sizes. It may also provide
additional DataReader-specific Message Authentication Codes (MACs) using Galois MAC (AES-GMAC).

The DDS:Crypto:AES-GCM-GMAC authentication plugin, can be activated setting the DomainParticipantQos
properties() dds.sec.crypto.plugin with the value builtin.AES-GCM-GMAC. Moreover, this plugin needs the
activation of the Authentication plugin: DDS:Auth:PKI-DH. The DDS:Crypto:AES-GCM-GMAC plugin is config-
ured using the Access control plugin: DDS:Access:Permissions, i.e the cryptography plugin is configured through the
properties and configuration files of the access control plugin. If the Access control plugin: DDS:Access:Permissions
plugin will not be used, you can configure the DDS:Crypto:AES-GCM-GMAC plugin manually with the properties
outlined in the following table.

6.21. Security 345

https://www.omg.org/spec/DDS-SECURITY/1.1/
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final

Fast DDS Documentation, Release 2.8.2

Property name Description Property Value
rtps.participant.rtps_protection_kind Encrypt whole RTPS messages ENCRYPT
rtps.endpoint.submessage_protection_kind Encrypt RTPS submessages of a particular entity ENCRYPT
rtps.endpoint.payload_protection_kind Encrypt payload of a particular Writer ENCRYPT

The following is an example of how to set the properties of DomainParticipantQoS for the DDS:Crypto:AES-GCM-
GMAC configuration.

C++

DomainParticipantQos pqos;

// Activate DDS:Crypto:AES-GCM-GMAC plugin
pqos.properties().properties().emplace_back("dds.sec.crypto.plugin",

"builtin.AES-GCM-GMAC");

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
pqos.properties().properties().emplace_back(

"rtps.participant.rtps_protection_kind",
"ENCRYPT");

XML

<participant profile_name="secure_domainparticipant_conf_crypto_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate DDS:Crypto:AES-GCM-GMAC plugin -->
<property>

<name>dds.sec.crypto.plugin</name>
<value>builtin.AES-GCM-GMAC</value>

</property>
<!-- Only if DDS:Access:Permissions plugin is not enabled -->
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
<property>

<name>rtps.participant.rtps_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

Next example shows how to configure DataWriters to encrypt their RTPS submessages and the RTPS message payload,
i.e. the user data. This is done by setting the DDS:Crypto:AES-GCM-GMAC properties (properties()) correspond-
ing to the DataWriters in the DataWriterQos.

346 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DataWriterQos wqos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
wqos.properties().properties().emplace_back(

"rtps.endpoint.submessage_protection_kind",
"ENCRYPT");

wqos.properties().properties().emplace_back(
"rtps.endpoint.payload_protection_kind",
"ENCRYPT");

XML

<data_writer profile_name="secure_datawriter_conf_crypto_plugin_xml_profile">
<propertiesPolicy>

<properties>
<!-- Only if DDS:Access:Permissions plugin is not enabled -->
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>
<property>

<name>rtps.endpoint.payload_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</data_writer>

The last example shows how to configure DataReader to encrypt their RTPS submessages. This is done by setting
the DDS:Crypto:AES-GCM-GMAC properties (properties()) corresponding to the DataReaders in the DataRead-
erQos.

6.21. Security 347

Fast DDS Documentation, Release 2.8.2

C++

DataWriterQos rqos;

// Only if DDS:Access:Permissions plugin is not enabled
// Configure DDS:Crypto:AES-GCM-GMAC plugin
rqos.properties().properties().emplace_back(

"rtps.endpoint.submessage_protection_kind",
"ENCRYPT");

XML

<data_reader profile_name="secure_datareader_conf_crypto_plugin_xml_profile">
<propertiesPolicy>

<properties>
<!-- Only if DDS:Access:Permissions plugin is not enabled -->
<!-- Configure DDS:Crypto:AES-GCM-GMAC plugin -->
<property>

<name>rtps.endpoint.submessage_protection_kind</name>
<value>ENCRYPT</value>

</property>
</properties>

</propertiesPolicy>
</data_reader>

6.21.4 Logging plugin: DDS:Logging:DDS_LogTopic

The logging plugin provides the necessary operations to log the security events triggered by the other security plugins
supported by Fast DDS (Authentication plugin: DDS:Auth:PKI-DH, Access control plugin: DDS:Access:Permissions,
and Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC). Therefore, the aforementioned security plugins will use
the logging plugin to log their events. These events can be reporting of expected behavior, as well as security breaches
and errors.

The logging plugin implemented in Fast DDS collects all security event data of a DomainParticipant and saves them in
a local file. The log messages generated by the logging plugin include an ID that uniquely identifies the DomainPartic-
ipant that triggered the event, the DDS Domain identifier to which the DomainParticipant belongs, and a time-stamp.

The logging plugin implemented in Fast DDS is referred to as “DDS:Logging:DDS_LogTopic”, in compliance with the
DDS Security specification. This plugin is explained in detail below. This plugin can be configured to filter according
to up to eight levels of severity of the messages.

The DDS:Logging:DDS_LogTopic authentication plugin, can be activated setting the DomainParticipantQos
properties() dds.sec.log.plugin with the value builtin.DDS_LogTopic. The following table outlines the
properties used for the DDS:Logging:DDS_LogTopic plugin configuration.

348 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDS-SECURITY/1.1/

Fast DDS Documentation, Release 2.8.2

Property name Property value
Value Definition

logging_level EMERGENCY_LEVEL System is unusable. Should not continue use.
ALERT_LEVEL Should be corrected immediately.
CRITICAL_LEVEL A failure in primary application.
ERROR_LEVEL General error conditions. Default value.
WARNING_LEVEL May indicate future error if action not taken.
NOTICE_LEVEL Unusual, but nor erroneous event or condition.
INFORMATIONAL_LEVEL Normal operational. Requires no action.
DEBUG_LEVEL Normal operational.

log_file Path of the file in which the log messages are to be saved.

Note: All listed properties have “dds.sec.log.builtin.DDS_LogTopic.” prefix. For example: dds.sec.log.builtin.
DDS_LogTopic.logging_level.

The following is an example of how to set the properties of DomainParticipantQoS for the
DDS:Logging:DDS_LogTopic plugin configuration.

6.21. Security 349

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

// Activate DDS:Logging:DDS_LogTopic plugin
pqos.properties().properties().emplace_back("dds.sec.log.plugin",

"builtin.DDS_LogTopic");

// Configure DDS:Logging:DDS_LogTopic plugin
pqos.properties().properties().emplace_back(

"dds.sec.log.builtin.DDS_LogTopic.logging_level",
"EMERGENCY_LEVEL");

pqos.properties().properties().emplace_back(
"dds.sec.log.builtin.DDS_LogTopic.log_file",
"myLogFile.log");

XML

<participant profile_name="secure_domainparticipant_conf_logging_plugin_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate DDS:Auth:PKI-DH plugin -->
<property>

<name>dds.sec.log.plugin</name>
<value>builtin.DDS_LogTopic</value>

</property>
<!-- Configure DDS:Auth:PKI-DH plugin -->
<property>

<name>dds.sec.log.builtin.DDS_LogTopic.logging_level</name>
<value>EMERGENCY_LEVEL</value>

</property>
<property>

<name>dds.sec.log.builtin.DDS_LogTopic.log_file</name>
<value>myLogFile.log</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

6.21.5 PKCS#11 support

The private key property used for the DDS:Auth:PKI-DH plugin configuration can be specified using a PKCS#11
compliant URI that represents a key stored in a HSM (Hardware Security Module). When a PKCS#11 URI is given,
the private key is never taken out of the HSM, providing a more secure setup.

Support for PKCS#11 URIs is provided by the libp11 library. This library provides a PKCS#11 engine for OpenSSL
that acts as a proxy between OpenSSL and the HSM driver provided by the manufacturer. To make OpenSSL aware of
the new engine, the OpenSSL configuration file might need to be updated. For details on how to set up the PKCS#11
engine in different platforms follow the dedicated documentation:

350 Chapter 6. Structure of the documentation

https://github.com/OpenSC/libp11

Fast DDS Documentation, Release 2.8.2

• Libp11 and SoftHSM libraries on Windows.

• Libp11 and SoftHSM libraries on Linux distributions

6.22 Logging

eProsima Fast DDS provides an extensible built-in logging module that exposes the following main functionalities:

• Three different logging levels: Log::Kind::Info, Log::Kind::Warning, and Log::Kind::Error (see Log-
ging Messages).

• Message filtering according to different criteria: category, content, or source file (see Filters).

• Output to STDOUT, STDERR and/or log files (see Consumers).

This section is devoted to explain the use, configuration, and extensibility of Fast DDS’ logging module.

6.22.1 Module Structure

The logging module provides the following classes:

• Log is the core class of the logging module. This singleton is not only in charge of the logging operations
(see Logging Messages), but it also provides configuration APIs to set different logging configuration aspects
(see Module Configuration), as well as logging filtering at various levels (see Filters). It contains zero or more
LogConsumer objects. The singleton’s consuming thread feeds the log entries added to the logging queue using
the macros defined in Logging Messages to the log consumers sequentially (see Logging Thread).

Warning: Log API exposes member function Log::QueueLog(). However, this function is not intended
to be used directly. To add messages to the log queue, use the methods described in Logging Messages.

• LogConsumer is the base class for all the log consumers (see Consumers). It includes the member functions that
derived classes should overload to consume log entries.

– OStreamConsumer derives from LogConsumer. It defines how to consume log entries for outputting to
an std::ostream object. It includes a member function that derived classes must overload to define the
desired std::ostream object.

1. StdoutConsumer derives from OStreamConsumer. It defines STDOUT as the output
std::ostream object (see StdoutConsumer).

2. StdoutErrConsumer derives from OStreamConsumer. It defines a Log::Kind threshold so
that if the Log::Kind is equal to or more severe than the selected threshold, the output defined
will be STDERR. Otherwise, it defines STDOUT as the output (see StdoutErrConsumer).

3. FileConsumer derives from OStreamConsumer. It defines an user specified file as the output
std::ostream object (see FileConsumer).

Fig. 12: Logging module class diagram

The module can be further extended by creating new consumer classes deriving from LogConsumer and/or
OStreamConsumer. To enable a custom consumer just follow the instructions on Register Consumers.

6.22. Logging 351

Fast DDS Documentation, Release 2.8.2

6.22.2 Log Entry Specification

Log entries created by StdoutConsumer, StdoutErrConsumer and FileConsumer (eProsima Fast DDS built-in Con-
sumers) adhere to the following structure:

<Timestamp> [<Category> <Verbosity Level>] <Message> (<File Name>:<Line Number>) ->␣
→˓Function <Function Name>

An example of such log entry is given by:

2020-05-27 11:45:47.447 [DOCUMENTATION_CATEGORY Error] This is an error message (example.
→˓cpp:50) -> Function main

Note: File Name and Line Number, as well as Function Name are only present when enabled. See Module Configu-
ration for details.

6.22.3 Logging Thread

Calls to the macros presented in Logging Messages merely add the log entry to a ready-to-consume queue. Upon
creation, the logging module spawns a thread that awakes every time an entry is added to the queue. When awaken,
this thread feeds all the entries in the queue to all the registered Consumers. Once the work is done, the thread falls
back into idle state. This strategy prevents the module from blocking the application thread when a logging operation
is performed. However, sometimes applications may want to wait until the logging routine is done to continue their
operation. The logging module provides this capability via the member function Log::Flush(). Furthermore, it is
possible to completely eliminate the thread and its resources using member function Log::KillThread().

// Block current thread until the log queue is empty.
Log::Flush();

// Stop the loggin thread and free its resources.
Log::KillThread();

Warning: A call to any of the macros present in Logging Messages will spawn the logging thread even if it has
been previously killed with Log::KillThread().

6.22.4 Logging Messages

The logging of messages is handled by three dedicated macros, one for each available verbosity level (see Verbosity
Level):

• logInfo: Logs messages with Log::Kind::Info verbosity.

• logWarning: Logs messages with Log::Kind::Warning verbosity.

• logError: Logs messages with Log::Kind::Error verbosity.

Said macros take exactly two arguments, a category and a message, and produce a log entry showing the message itself
plus some meta information depending on the module’s configuration (see Log Entry Specification and Log Entry).

352 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

logInfo(DOCUMENTATION_CATEGORY, "This is an info message");
logWarning(DOCUMENTATION_CATEGORY, "This is an warning message");
logError(DOCUMENTATION_CATEGORY, "This is an error message");

Warning: Note that each message level is deactivated when CMake options LOG_NO_INFO, LOG_NO_WARNING or
LOG_NO_ERROR are set to ON respectively. For more information about how to enable and disable each individual
logging macro, please refer to Disable Logging Module.

6.22.5 Module Configuration

The logging module offers a variety of configuration options. The different components of a log entry (see Log Entry
Specification) can be configured as explained in Log Entry. Furthermore, the logging module allows for registering
several log consumer, allowing applications to direct the logging output to different destinations (see Register Con-
sumers). In addition, some of the logging features can be configured using eProsima Fast DDS XML configuration
files (see XML Configuration).

• Log Entry

• Register Consumers

• Reset Configuration

• XML Configuration

Log Entry

All the different components of a log entry are summarized in the following table (please refer to each component’s
section for further explanation):

Component Optional Default
Timestamp NO ENABLED
Category NO ENABLED
Verbosity Level NO ENABLED
Message NO ENABLED
File Context YES DISABLED
Function Name YES ENABLED

Timestamp

The log timestamp follows the ISO 8601 standard for local timestamps, i.e. YYYY-MM-DD hh:mm:ss.sss. This com-
ponent cannot be further configured or disabled.

6.22. Logging 353

https://www.iso.org/iso-8601-date-and-time-format.html

Fast DDS Documentation, Release 2.8.2

Category

Log entries have a category assigned when producing the log via the macros presented in Logging Messages. The
category component can be used to filter log entries so that only those categories specified in the filter are consumed
(see Filters). This component cannot be further configured or disabled.

Verbosity Level

eProsima Fast DDS logging module provides three verbosity levels defined by the Log::Kind enumeration, those are:

• Log::Kind::Error: Used to log error messages.

• Log::Kind::Warning: Used to log error and warning messages.

• Log::Kind::Info: Used to log error, warning, and info messages.

The logging module’s verbosity level defaults to Log::Kind::Error, which means that only messages logged
with logError would be consumed. The verbosity level can be set and retrieved using member functions
Log::SetVerbosity() and Log::GetVerbosity() respectively.

// Set log verbosity level to Log::Kind::Info
Log::SetVerbosity(Log::Kind::Info);

// Get log verbosity level
Log::Kind verbosity_level = Log::GetVerbosity();

Warning: Setting any of the CMake options LOG_NO_INFO, LOG_NO_WARNING or LOG_NO_ERROR to ON will
completely disable the corresponding verbosity level. LOG_NO_INFO is set to ON for Single-Config generators as
default value if not in Debug mode.

Message

This component constitutes the body of the log entry. It is specified when producing the log via the macros presented in
Logging Messages. The message component can be used to filter log entries so that only those entries whose message
pattern-matches the filter are consumed (see Filters). This component cannot be further configured or disabled.

File Context

This component specifies the origin of the log entry in terms of file name and line number (see Logging Messages for
a log entry example featuring this component). This is useful when tracing code flow for debugging purposes. The file
context component can be enabled/disabled using the member function Log::ReportFilenames().

// Enable file name and line number reporting
Log::ReportFilenames(true);

// Disable file name and line number reporting
Log::ReportFilenames(false);

354 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Function Name

This component specifies the origin of the log entry in terms of the function name (see Logging Messages for a log
entry example featuring this component). This is useful when tracing code flow for debugging purposes. The function
name component can be enabled/disabled using the member function Log::ReportFunctions().

// Enable function name reporting
Log::ReportFunctions(true);

// Disable function name reporting
Log::ReportFunctions(false);

Register Consumers

eProsima Fast DDS logging module supports zero or more consumers logging the entries registered in the logging
queue with the methods described in Logging Messages. To register a consumer, the Log class exposes member function
Log::RegisterConsumer()

// Create a FileConsumer consumer that logs entries in "archive.log"
std::unique_ptr<FileConsumer> file_consumer(new FileConsumer("archive.log"));
// Register the consumer. Log entries will be logged to STDOUT and "archive.log"
Log::RegisterConsumer(std::move(file_consumer));

The consumers list can be emptied with member function Log::ClearConsumers().

// Clear all the consumers. Log entries are discarded upon consumption.
Log::ClearConsumers();

Note: Registering and configuring consumers can also be done using Fast DDS XML configuration files. Please refer
to XML Configuration for details.

Warning: Log::ClearConsumers() empties the consumers lists. All log entries are discarded until a new
consumer is register via Log::RegisterConsumer(), or until Log::Reset() is called.

Reset Configuration

The logging module’s configuration can be reset to default settings with member function Log::Reset().

Warning: Resetting the module’s configuration entails:

• Setting Verbosity Level to Log::Kind::Error.

• Disabling File Context component.

• Enabling Function Name component.

• Clear all Filters.

• Clear all consumers and reset the default consumer according to CMake option LOG_CONSUMER_DEFAULT.

6.22. Logging 355

Fast DDS Documentation, Release 2.8.2

XML Configuration

eProsima Fast DDS allows for registering and configuring log consumers using XML configuration files. Please refer
to Log profiles for details.

6.22.6 Filters

eProsima Fast DDS logging module allows for log entry filtering when consuming the logs, so that an application
execution output can be limited to specific areas of interest. Beside the Verbosity Level, Fast DDS provides three
different filtering possibilities.

• Category Filtering

• File Name Filtering

• Content Filtering

• Reset Logging Filters

It is worth mentioning that filters are applied in the specific order presented above, meaning that file name filtering is
only applied to the entries that pattern-match the category filter, and content filtering is only applied to the entries that
pattern-match both category and file name filters.

Category Filtering

Log entries can be filtered upon consumption according to their Category component using regular expressions. Each
time an entry is ready to be consumed, the category filter is applied using std::regex_search(). To set a category
filter, member function Log::SetCategoryFilter() is used:

// Set filter using regular expression
Log::SetCategoryFilter(std::regex("(CATEGORY_1)|(CATEGORY_2)"));

// Would be consumed
logError(CATEGORY_1, "First log entry");
// Would be consumed
logError(CATEGORY_2, "Second log entry");
// Would NOT be consumed
logError(CATEGORY_3, "Third log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY_FILTER_1 Error] First log entry -> Function main
2020-05-27 15:07:05.771 [CATEGORY_FILTER_2 Error] Second log entry -> Function main

356 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

File Name Filtering

Log entries can be filtered upon consumption according to their File Context component using regular expressions.
Each time an entry is ready to be consumed, the file name filter is applied using std::regex_search(). To set a file
name filter, member function Log::SetFilenameFilter() is used:

// Filename: example.cpp

// Enable file name and line number reporting
Log::ReportFilenames(true);

// Set filter using regular expression so filename must match "example"
Log::SetFilenameFilter(std::regex("example"));
// Would be consumed
logError(CATEGORY, "First log entry");

// Set filter using regular expression so filename must match "other"
Log::SetFilenameFilter(std::regex("other"));
// Would NOT be consumed
logError(CATEGORY, "Second log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY Error] First log entry (example.cpp:50) -> Function␣
→˓main

Note: File name filters are applied even when the File Context entry component is disabled.

Content Filtering

Log entries can be filtered upon consumption according to their Message component using regular expressions. Each
time an entry is ready to be consumed, the content filter is applied using std::regex_search(). To set a content
filter, member function Log::SetErrorStringFilter() is used:

// Set filter using regular expression so message component must match "First"
Log::SetErrorStringFilter(std::regex("First"));
// Would be consumed
logError(CATEGORY, "First log entry");
// Would NOT be consumed
logError(CATEGORY, "Second log entry");

The previous example would produce the following output:

2020-05-27 15:07:05.771 [CATEGORY Error] First log entry -> Function main

6.22. Logging 357

Fast DDS Documentation, Release 2.8.2

Reset Logging Filters

The logging module’s filters can be reset with member function Log::Reset().

Warning: Resetting the module’s filters entails:

• Setting Verbosity Level to Log::Kind::Error.

• Disabling File Context component.

• Enabling Function Name component.

• Clear all Filters.

• Clear all consumers and reset the default consumer according to CMake option LOG_CONSUMER_DEFAULT.

6.22.7 Consumers

Consumers are classes that take a Log::Entry and produce a log output accordingly. eProsima Fast DDS provides
three different log consumers that output log entries to different streams:

• StdoutConsumer: Outputs log entries to STDOUT

• StdoutErrConsumer: Outputs log entries to STDOUT or STDERR depending on the given threshold.

• FileConsumer: Outputs log entries to a user specified file.

StdoutConsumer

StdoutConsumer outputs log entries to STDOUT stream following the convection specified in Log Entry Specification.
It is the default and only log consumer of the logging module if the CMake option LOG_CONSUMER_DEFAULT is set to
AUTO, STDOUT, or not set at all. It can be registered and unregistered using the methods explained in Register Consumers
and Reset Configuration.

// Create a StdoutConsumer consumer that logs entries to stdout stream.
std::unique_ptr<StdoutConsumer> stdout_consumer(new StdoutConsumer());

// Register the consumer.
Log::RegisterConsumer(std::move(stdout_consumer));

StdoutErrConsumer

StdoutErrConsumer uses a Log::Kind threshold to filter the output of the log entries. Those log entries whose
Log::Kind is equal to or more severe than the given threshold output to STDERR. Other log entries output to STDOUT.
By default, the threshold is set to Log::Kind::Warning. StdoutErrConsumer::stderr_threshold() allows the
user to modify the default threshold.

Additionally, if CMake option LOG_CONSUMER_DEFAULT is set to STDOUTERR, the logging module will use this con-
sumer as the default log consumer.

// Create a StdoutErrConsumer consumer that logs entries to stderr only when the␣
→˓Log::Kind is equal to ERROR
std::unique_ptr<StdoutErrConsumer> stdouterr_consumer(new StdoutErrConsumer());
stdouterr_consumer->stderr_threshold(Log::Kind::Error);

(continues on next page)

358 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Register the consumer
Log::RegisterConsumer(std::move(stdouterr_consumer));

FileConsumer

FileConsumer provides the logging module with log-to-file logging capabilities. Applications willing to hold a
persistent execution log record can specify a logging file using this consumer. Furthermore, the application can
choose whether the file stream should be in “write” or “append” mode, according to the behaviour defined by
std::fstream::open().

// Create a FileConsumer consumer that logs entries in "archive_1.log", opening the file␣
→˓in "write" mode.
std::unique_ptr<FileConsumer> write_file_consumer(new FileConsumer("archive_1.log",␣
→˓false));

// Create a FileConsumer consumer that logs entries in "archive_2.log", opening the file␣
→˓in "append" mode.
std::unique_ptr<FileConsumer> append_file_consumer(new FileConsumer("archive_2.log",␣
→˓true));

// Register the consumers.
Log::RegisterConsumer(std::move(write_file_consumer));
Log::RegisterConsumer(std::move(append_file_consumer));

6.22.8 Disable Logging Module

Setting the Verbosity Level, translates into entries not being added to the log queue if the entry’s level has lower impor-
tance than the set one. This check is performed when calling the macros defined in Logging Messages. However, it is
possible to fully disable each macro (and therefore each verbosity level individually) at build time.

• logInfo is fully disabled by either:

– Setting CMake option LOG_NO_INFO to ON (default for Single-Config generators if CMAKE_BUILD_TYPE is
other than Debug).

– Defining macro HAVE_LOG_NO_INFO to 1.

• logWarning is fully disabled by either:

– Setting CMake option LOG_NO_WARNING to ON.

– Defining macro HAVE_LOG_NO_WARNING to 1.

• logError is fully disabled by either:

– Setting CMake option LOG_NO_ERROR to ON.

– Defining macro HAVE_LOG_NO_ERROR to 1.

Applying either of the previously described methods will set the macro to be empty at configuration time, thus allowing
the compiler to optimize the call out. This is done so that all the debugging messages present on the library are optimized
out at build time if not building for debugging purposes, thus preventing them to impact performance.

INTERNAL_DEBUG CMake option activates log macros compilation, so the arguments of the macros are compiled.
However:

6.22. Logging 359

Fast DDS Documentation, Release 2.8.2

• It does not activate the log Warning and Error messages, i.e. the messages are not written in the log queue.

• logInfo has a special behaviour to simplify working with Multi-Config capability IDEs. If CMake option
LOG_NO_INFO is OFF, or the C++ definition HAVE_LOG_NO_INFO is 0, then logging is enabled only for Debug
configuration. In this scenario, setting FASTDDS_ENFORCE_LOG_INFO to ON will enable logInfo even on non
Debug configurations. This is specially useful when using the Fast DDS’ logging module in an external applica-
tion which links with Fast DDS compiled in Release. In that case, applications wanting to use all three levels
of logging can simply add the following code prior to including any Fast DDS header:

#define HAVE_LOG_NO_INFO 0
#define FASTDDS_ENFORCE_LOG_INFO 1

Warning: INTERNAL_DEBUG can be automatically set to ON if CMake option EPROSIMA_BUILD is set to ON.

6.23 Statistics Module

The Fast DDS Statistics module is an extension of Fast DDS that enables the recollection of data concerning the DDS
communication. The collected data is published using DDS over dedicated topics using builtin DataWriters within the
Statistics module. Consequently, by default, Fast DDS does not compile this module because it may entail affecting the
application’s performance. Nonetheless, the Statistics module can be activated using the -DFASTDDS_STATISTICS=ON
at CMake configuration step. For more information about Fast DDS compilation, see Linux installation from sources
and Windows installation from sources.

Besides enabling the Statistics Module compilation, the user must enable those DataWriters that are publishing data on
the topics of interest for the user’s application. Therefore, the standard DDS Layer has been extended. The following
section explains this DDS extended API.

Note: Please refer to Statistics QoS Troubleshooting for any problems related to the statistics module.

6.23.1 Statistics Module DDS Layer

This section explains the extended DDS API provided for the Statistics Module. First, the Statistics Topic List is pre-
sented together with the corresponding collected data. Next, the methods to enable/disable the corresponding DataWrit-
ers are explained. Then, the recommended QoS for enabling the DataWriters and creating the user’s DataReaders that
subscribe to the Statistics topics are described. Finally, a guide on how to overcome common problems when using the
module are presented.

Statistics Topic names

Data collected by the Fast DDS Statistics module is published in one of the topics listed below. In order to simplify
its use, the API provides aliases for the different statistics topics (see Topic names). The following table shows the
correlation between the topic name and the corresponding alias.

360 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Topic name Alias
_fastdds_statistics_history2history_latency HISTORY_LATENCY_TOPIC
_fastdds_statistics_network_latency NETWORK_LATENCY_TOPIC
_fastdds_statistics_publication_throughput PUBLICATION_THROUGHPUT_TOPIC
_fastdds_statistics_subscription_throughput SUBSCRIPTION_THROUGHPUT_TOPIC
_fastdds_statistics_rtps_sent RTPS_SENT_TOPIC
_fastdds_statistics_rtps_lost RTPS_LOST_TOPIC
_fastdds_statistics_heartbeat_count HEARTBEAT_COUNT_TOPIC
_fastdds_statistics_acknack_count ACKNACK_COUNT_TOPIC
_fastdds_statistics_nackfrag_count NACKFRAG_COUNT_TOPIC
_fastdds_statistics_gap_count GAP_COUNT_TOPIC
_fastdds_statistics_data_count DATA_COUNT_TOPIC
_fastdds_statistics_resent_datas RESENT_DATAS_TOPIC
_fastdds_statistics_sample_datas SAMPLE_DATAS_TOPIC
_fastdds_statistics_pdp_packets PDP_PACKETS_TOPIC
_fastdds_statistics_edp_packets EDP_PACKETS_TOPIC
_fastdds_statistics_discovered_entity DISCOVERY_TOPIC
_fastdds_statistics_physical_data PHYSICAL_DATA_TOPIC

HISTORY_LATENCY_TOPIC

The _fastdds_statistics_history2history_latency statistics topic collects data related with the latency be-
tween any two matched endpoints. This measurement provides information about the DDS overall latency independent
of the user’s application overhead. Specifically, the measured latency corresponds to the time spent between the instant
when the sample is written to the DataWriter’s history and the time when the sample is added to the DataReader’s
history and the notification is issued to the corresponding user’s callback.

NETWORK_LATENCY_TOPIC

The _fastdds_statistics_network_latency statistics topic collects data related with the network latency (ex-
pressed in ns) between any two communicating locators. This measurement provides information about the trans-
port layer latency. The measured latency corresponds to the time spent between the message being written in the
RTPSMessageGroup until the message being received in the MessageReceiver.

Important: In the case of TCP Transport, the reported latency also includes the time spent on the datagram’s CRC
related operations. Mind that is possible to disable CRC operations when defining the TCPTransportDescriptor.

PUBLICATION_THROUGHPUT_TOPIC

The _fastdds_statistics_publication_throughput statistics topic collects the amount of data (expressed in
B/s) that is being sent by each DataWriter. This measurement provides information about the publication’s throughput.

6.23. Statistics Module 361

Fast DDS Documentation, Release 2.8.2

SUBSCRIPTION_THROUGHPUT_TOPIC

The _fastdds_statistics_subscription_throughput statistics topic collects the amount of data (expressed
in B/s) that is being received by each DataReader. This measurement provides information about the subscription’s
throughput.

RTPS_SENT_TOPIC

The _fastdds_statistics_rtps_sent statistics topic collects the number of RTPS packets and bytes that are being
sent from each DDS entity to each locator.

RTPS_LOST_TOPIC

The _fastdds_statistics_rtps_lost statistics topic collects the number of RTPS packets and bytes that are being
lost in the transport layer (dropped somewhere in between) in the communication between each DDS entity and locator.

HEARTBEAT_COUNT_TOPIC

The _fastdds_statistics_heartbeat_count statistics topic collects the number of heartbeat messages sent by
each user’s DataWriter. This topic does not apply to builtin (related to Discovery) and statistics DataWriters. Heartbeat
messages are only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS. These messages report the
DataWriter’s status.

ACKNACK_COUNT_TOPIC

The _fastdds_statistics_acknack_count statistics topic collects the number of acknack messages sent by each
user’s DataReader. This topic does not apply to builtin DataReaders (related to Discovery). Acknack messages are
only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS. These messages report the DataReader’s
status.

NACKFRAG_COUNT_TOPIC

The _fastdds_statistics_nackfrag_count statistics topic collects the number of nackfrag messages sent by each
user’s DataReader. This topic does not apply to builtin DataReaders (related to Discovery). Nackfrag messages are only
sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS. These messages report the data fragments that
have not been received yet by the DataReader.

GAP_COUNT_TOPIC

The _fastdds_statistics_gap_count statistics topic collects the number of gap messages sent by each user’s
DataWriter. This topic does not apply to builtin (related to Discovery) and statistics DataWriters. Gap messages are
only sent if the ReliabilityQosPolicy is set to RELIABLE_RELIABILITY_QOS. These messages report that some specific
samples are not relevant to a specific DataReader.

362 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DATA_COUNT_TOPIC

The _fastdds_statistics_data_count statistics topic collects the total number of user’s data messages and data
fragments (in case that the message size is large enough to require RTPS fragmentation) that have been sent by each
user’s DataWriter. This topic does not apply to builtin (related to Discovery) and statistics DataWriters.

RESENT_DATAS_TOPIC

The _fastdds_statistics_resent_data statistics topic collects the total number of user’s data messages and data
fragments (in case that the message size is large enough to require RTPS fragmentation) that have been necessary to
resend by each user’s DataWriter. This topic does not apply to builtin (related to Discovery) and statistics DataWriters.

SAMPLE_DATAS_TOPIC

The _fastdds_statistics_sample_datas statistics topic collects the number of user’s data messages (or data
fragments in case that the message size is large enough to require RTPS fragmentation) that have been sent by the
user’s DataWriter to completely deliver a single sample. This topic does not apply to builtin (related to Discovery) and
statistics DataWriters.

PDP_PACKETS_TOPIC

The _fastdds_statistics_pdp_packets statistics topic collects the number of PDP discovery traffic RTPS pack-
ets transmitted by each DDS DomainParticipant. PDP packets are the data messages exchanged during the PDP
discovery phase (see Discovery phases for more information).

EDP_PACKETS_TOPIC

The _fastdds_statistics_edp_packets statistics topic collects the number of EDP discovery traffic RTPS pack-
ets transmitted by each DDS DomainParticipant. EDP packets are the data messages exchanged during the EDP
discovery phase (see Discovery phases for more information).

DISCOVERY_TOPIC

The _fastdds_statistics_discovered_entity statistics topic reports the time when each local
DomainParticipant discovers any remote DDS entity (with the exception of those DDS entities related with
the Fast DDS Statistics module). This topic also carries the PHYSICAL_DATA_TOPIC information for the case of
discovered DomainParticipant; if the discovered entity is either a DataReader or DataWriter, then the physical
information is empty (see Physical Data in Discovery Information for more information about how to configure the
physical data conveyed on the discovery messages).

6.23. Statistics Module 363

Fast DDS Documentation, Release 2.8.2

PHYSICAL_DATA_TOPIC

The _fastdds_statistics_physical_data statistics topic reports the host, user and process where the Fast DDS
Statistics module is running.

Statistics Domain Participant

In order to start collecting data in one of the statistics topics (Statistics Topic names), the corresponding statistics
DataWriter should be enabled. In fact, Fast DDS Statistics module can be enabled and disabled at runtime. For this
purpose, Fast DDS Statistics module exposes an extended DDS DomainParticipant API:

• Enable statistics DataWriters

• Disable statistics DataWriters

• Obtain pointer to the extended DomainParticipant class

• Example

• Automatically enabling statistics DataWriters

Enable statistics DataWriters

Statistics DataWriters can be enabled in different ways. It can be done automatically (see Automatically enabling
statistics DataWriters). Alternatively, Statistics DataWriters can be enabled at run time using one of two methods:
enable_statistics_datawriter() or enable_statistics_datawriter_with_profile().

enable_statistics_datawriter() method requires as parameters:

• Name of the statistics topic to be enabled (see Statistics Topic names for the statistics topic list).

• DataWriter QoS profile (see Statistics DataWriter recommended QoS for the recommended profile).

It is possible to define specific desired QoS through DataWriter profile on the FASTRTPS_DEFAULT_PROFILES_FILE
(see XML profiles). enable_statistics_datawriter_with_profile() method enables a DataWriter by search-
ing a specific DataWriter XML profile. On those profiles, specific QoS can be set.

enable_statistics_datawriter_with_profile() method requires as parameters:

• Name of the XML profile to use to fill the QoS structure of the DataWriter.

• Name of the statistics topic name to be enabled. (see Statistics Topic names for the statistics topic list).

Disable statistics DataWriters

Statistics DataWriters are disabled using the method disable_statistics_datawriter(). This method requires
as parameter:

• Name of the statistics topic to be disabled (see Statistics Topic names for the statistics topic list).

364 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Obtain pointer to the extended DomainParticipant class

The DomainParticipant is created using the create_participant() provided by the
DomainParticipantFactory. This method returns a pointer to the DDS standard DomainParticipant cre-
ated. In order to obtain the pointer to the child DomainParticipant which extends the DDS API, the static method
narrow() is provided.

Example

The following example shows how to use the Statistics module extended DDS API:

// Create a DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Obtain pointer to child class
eprosima::fastdds::statistics::dds::DomainParticipant* statistics_participant =

eprosima::fastdds::statistics::dds::DomainParticipant::narrow(participant);

// Enable statistics DataWriter
if (statistics_participant->enable_statistics_
→˓datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC,

eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS) != ReturnCode_
→˓t::RETCODE_OK)
{

// Error
return;

}

// Use the DomainParticipant to communicate
// (...)

// Disable statistics DataWriter
if (statistics_participant->disable_statistics_
→˓datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC) !=

ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Delete DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) !=␣
→˓ReturnCode_t::RETCODE_OK)
{

// Error
(continues on next page)

6.23. Statistics Module 365

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

return;
}

Automatically enabling statistics DataWriters

The statistics DataWriters can be directly enabled using the DomainParticipantQos properties() fastdds.
statistics. The value of this property is a semicolon separated list containing the statistics topic name aliases
of those DataWriters that the user wants to enable. The property can be set either programmatically or loading an
XML file. If the property is set in both ways, the priority would depend on the API and the QoS profile provided:

• XML settings have priority if create_participant_with_profile() is called with a valid participant pro-
file.

• XML settings also have priority if create_participant() is called using PARTICIPANT_QOS_DEFAULT and a
participant profile exists in the XML file with the is_default_profile option set to true (DomainParticipant
XML attributes).

• The property set programmatically is used only when create_participant() is called with the specific QoS.

Another way of enabling statistics DataWriters, compatible with the previous one, is setting the FASTDDS_STATISTICS
environment variable. The statistics DataWriters that will be enabled when the DomainParticipant is enabled would
be the union between those specified in the properties() fastdds.statistics and those included with the envi-
ronment variable.

The following examples show how to use all the previous methods:

366 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos pqos;

// Activate Fast DDS Statistics module
pqos.properties().properties().emplace_back("fastdds.statistics",

"HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC
→˓");

XML

<participant profile_name="statistics_domainparticipant_conf_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Fast DDS Statistics Module -->
<property>

<name>fastdds.statistics</name>
<value>HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;

→˓PHYSICAL_DATA_TOPIC</value>
</property>

</properties>
</propertiesPolicy>

</rtps>
</participant>

Environment Variable Linux

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;
→˓PHYSICAL_DATA_TOPIC"

Environment Variable Windows

set FASTDDS_STATISTICS=HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;
→˓PHYSICAL_DATA_TOPIC

Note: These are all the statistics topics:

HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_THROUGHPUT_TOPIC;SUBSCRIPTION_
→˓THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_
→˓TOPIC;NACKFRAG_COUNT_TOPIC;GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_
→˓DATAS_TOPIC;PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC

Note: Be aware that automatically enabling the statistics DataWriters using all these methods implies using the rec-
ommended QoS profile STATISTICS_DATAWRITER_QOS. For more information, please refer to Statistics DataWriter
recommended QoS. However, if an XML profile is defined, the QoS applied are those defined in the profile, and for
those QoS that are not specified in that profile, the default library QoS are applied (see DataWriterQos for the standard
eProsima’s DataWriter QoS), and not the recommended QoS for the Statistics DataWriters.

6.23. Statistics Module 367

Fast DDS Documentation, Release 2.8.2

For the creation of an automatically enabled Datawriter, the priority for setting its QoS is the following:

• First, if a specific profile exists for the statistics topic, that one is applied.

• If that is not the case but a generic profile for statistics DataWriters exists, that one is applied.

• If no profile is defined in XML file, the recommended statistics QoS are applied.

Note: The generic DataWriter profile defined in the FASTRTPS_DEFAULT_PROFILES_FILE XML needs to be
named as GENERIC_STATISTICS_PROFILE.

The specific DataWriter profile defined in the FASTRTPS_DEFAULT_PROFILES_FILE XML needs to be named using
the same statistic topic alias or name (see Statistics Topic names for the alias corresponding to each statistic topic) that
has been used in the DomainParticipantQos properties() fastdds.statistics (see Statistics Module Settings)
or the FASTDDS_STATISTICS environment variable, where the enabling of the corresponding statistics topic has been
set.

Statistics recommended QoS

Although the statistics DataWriters can be enabled using any valid QoS profile, the recommended profile is presented
below. Also, the DataReaders created by the user to receive the data being published by the statistics DataWriters can
use any compatible QoS profile. However, a recommended DataReader QoS profile is also provided.

Statistics DataWriter recommended QoS

The following table shows the recommended DataWriterQos profile for enabling the statistics DataWriters. This
profile enables the pull mode operating mode on the statistics DataWriters. This entails that the DataWriters will
only send information upon the reception of acknack submessages sent by the monitoring DataReader. This QoS
profile is always used when the statistics DataWriters are auto-enabled. The recommended profile can be accessed
through the constant STATISTICS_DATAWRITER_QOS.

Qos Policy Value
ReliabilityQosPolicyKind RELIABLE_RELIABILITY_QOS
DurabilityQosPolicyKind TRANSIENT_LOCAL_DURABILITY_QOS
PublishModeQosPolicyKind ASYNCHRONOUS_PUBLISH_MODE
flow_controller_name FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT
HistoryQosPolicyKind KEEP_LAST_HISTORY_QOS
history_depth 1
PropertyPolicyQos name = value "fastdds.push_mode" = "false"

Statistics DataReader recommended QoS

The following table shows the recommended DataReaderQos profile for creating the monitoring DataReaders. The
recommended profile can be accessed through constant STATISTICS_DATAREADER_QOS.

Qos Policy Value
ReliabilityQosPolicyKind RELIABLE_RELIABILITY_QOS
DurabilityQosPolicyKind TRANSIENT_LOCAL_DURABILITY_QOS
HistoryQosPolicyKind KEEP_LAST_HISTORY_QOS
history_depth 100
MemoryManagementPolicy PREALLOCATED_WITH_REALLOC_MEMORY_MODE

368 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Troubleshooting

This section aims to give quick solutions to overcome the most common problems arising from the use of the statistics
module.

Monitoring application is not receiving any statistic data

Sometimes, especially in the case of monitoring large applications with many DataWriters and DataReaders, it may
happen that the application monitoring Fast DDS statistics does not receive any data. This is generally caused by the
default configuration of the statistics DataWriters, which includes the push_mode set to false (i.e. pull_mode), the
History Kind set to KEEP_LAST, and the History Depth set to 1. With this configuration, the following may happen:

1. Fast DDS adds a new sample to one of the statistics DataWriters.

2. The DataWriter notifies the DataReader of the availability of said sample.

3. The DataReader sends a request to the DataWriter to “pull” that sample.

4. Before the request arrives to the DataWriter, a new statistics sample is added to that same DataWriter, which
causes the previous sample to be overwritten.

5. Once the DataReader request arrives to the DataWriter, since the requested sample has been overwritten, it is
not available any more, so the DataWriter send a notification to the DataReader informing of the presence of the
newer sample instead.

6. The loop starts again.

The easiest fix to overcome this situation is to simply increase the History Depth of the DataWriter to create Some
buffer to answer to requests:

Generic profile

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<profiles>
<participant profile_name="statistics_domainparticipant_conf_xml_general_profile

→˓">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate various Fast DDS Statistics Module DataWriters -->
<property>

<name>fastdds.statistics</name>
<value>HISTORY_LATENCY_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_

→˓TOPIC</value>
</property>

</properties>
</propertiesPolicy>

</rtps>
</participant>

<!-- Generic profile for all the statistics DataWriter -->
<data_writer profile_name="GENERIC_STATISTICS_PROFILE">

<!-- Configure History QoS as KEEP_LAST 10 -->
<topic>

<historyQos>
(continues on next page)

6.23. Statistics Module 369

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<kind>KEEP_LAST</kind>
<depth>10</depth>

</historyQos>
</topic>
<!-- Enable pull mode -->
<propertiesPolicy>

<properties>
<property>

<name>fastdds.push_mode</name>
<value>false</value>

</property>
</properties>

</propertiesPolicy>
<!-- Set durability, reliability, and publication mode -->
<qos>

<durability>
<kind>TRANSIENT_LOCAL</kind>

</durability>

<reliability>
<kind>RELIABLE</kind>

</reliability>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>
</qos>

</data_writer>
</profiles>

</dds>

Specific profile

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<profiles>
<participant profile_name="statistics_domainparticipant_conf_xml_specific_profile

→˓">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate various Fast DDS Statistics Module DataWriters -->
<property>

<name>fastdds.statistics</name>
<value>HISTORY_LATENCY_TOPIC</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

<!-- Generic profile for a specific statistics DataWriters -->
(continues on next page)

370 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<data_writer profile_name="HISTORY_LATENCY_TOPIC">
<!-- Configure History QoS as KEEP_LAST 10 -->
<topic>

<historyQos>
<kind>KEEP_LAST</kind>
<depth>10</depth>

</historyQos>
</topic>
<!-- Enable pull mode -->
<propertiesPolicy>

<properties>
<property>

<name>fastdds.push_mode</name>
<value>false</value>

</property>
</properties>

</propertiesPolicy>
<!-- Set durability, reliability, and publication mode -->
<qos>

<durability>
<kind>TRANSIENT_LOCAL</kind>

</durability>

<reliability>
<kind>RELIABLE</kind>

</reliability>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>
</qos>

</data_writer>
</profiles>

</dds>

Note: Increasing the History Depth of the statistics DataWriters has an impact on memory usage, as sufficient space
is pre-allocated for each of the DataWriter’s histories to hold that number of samples per topic instance.

6.24 XML profiles

eProsima Fast DDS allows for loading XML configuration files, each one containing one or more XML profiles. In
addition to the API functions for loading user XML files, Fast DDS tries to locate and load several XML files upon
initialization. Fast DDS offers the following options:

• Load an XML file named DEFAULT_FASTRTPS_PROFILES.xml located in the current execution path.

• Load an XML file which location is defined using the environment variable
FASTRTPS_DEFAULT_PROFILES_FILE (see FASTRTPS_DEFAULT_PROFILES_FILE).

• Load the configuration parameters directly from the classes’ definitions without looking for the DE-
FAULT_FASTRTPS_PROFILES.xml in the working directory (see SKIP_DEFAULT_XML).

6.24. XML profiles 371

Fast DDS Documentation, Release 2.8.2

• Load directly the XML as a string data buffer.

An XML profile is defined by a unique name that is used to reference the XML profile during the creation of an Entity,
the Trasport configuration, or the DynamicTypes definition.

Both options can be complemented, i.e. it is possible to load multiple XML files but these must not have XML profiles
with the same name. This section explains how to configure DDS entities using XML profiles. This includes the
description of all the configuration values available for each of the XML profiles, as well as how to create complete
XML files.

6.24.1 Creating an XML profiles file

An XML file can contain several XML profiles. These XML profiles are defined within the <dds> element, and in
turn, within the <profiles> XML elements. The possible topologies for the definition of XML profiles are specified
in Rooted vs Standalone profiles definition. The available profile types are:

• DomainParticipant profiles,

• DataWriter profiles,

• DataReader profiles,

• Transport descriptors,

• Log profiles, and

• Dynamic Types profiles.

The following sections will show implementation examples for each of these profiles.

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
<participant profile_name="participant_profile">

<!-- ... -->
</participant>

<data_writer profile_name="datawriter_profile">
<!-- ... -->

</data_writer>

<data_reader profile_name="datareader_profile">
<!-- ... -->

</data_reader>

<transport_descriptors>
<!-- ... -->

</transport_descriptors>

<log>
<!-- ... -->

</log>

<types>
<!-- ... -->

</types>
(continues on next page)

372 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</profiles>
</dds>

Note: The Example section shows an XML file with all the possible configurations and profile types. This example is
useful as a quick reference to look for a particular property and how to use it. The Fast DDS XSD scheme can be used
as a quick reference too.

Loading and applying profiles

In case the user defines the Entity profiles via XML files, it is required to load these XML files using the
load_XML_profiles_file() public member function before creating any entity. It is also possible to load
directly the XML information as a string data buffer using the load_XML_profiles_string() public mem-
ber function. Moreover, create_participant_with_profile(), create_publisher_with_profile(),
create_subscriber_with_profile(), create_datawriter_with_profile(), and
create_datareader_with_profile() member functions expect a profile name as an argument. Fast DDS
searches the given profile name over all the loaded XML profiles, applying the profile to the entity if founded.

if (ReturnCode_t::RETCODE_OK ==
DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml

→˓"))
{

DomainParticipant* participant =
DomainParticipantFactory::get_instance()->create_participant_with_profile(

0, "participant_xml_profile");

Topic* topic =
participant->create_topic("TopicName", "DataTypeName", TOPIC_QOS_DEFAULT);

Publisher* publisher = participant->create_publisher_with_profile("publisher_xml_
→˓profile");

DataWriter* datawriter = publisher->create_datawriter_with_profile(topic,
→˓"datawriter_xml_profile");

Subscriber* subscriber = participant->create_subscriber_with_profile("subscriber_xml_
→˓profile");

DataReader* datareader = subscriber->create_datareader_with_profile(topic,
→˓"datareader_xml_profile");
}

// Load XML as string data buffer
std::string xml_profile =

"\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\
<dds>\

<profiles xmlns=\"http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles\" >\
<publisher profile_name=\"test_publisher_profile\" is_default_profile=\

→˓"true\">\
<qos>\

<durability>\
<kind>TRANSIENT_LOCAL</kind>\

(continues on next page)

6.24. XML profiles 373

https://github.com/eProsima/Fast-DDS/blob/master/resources/xsd/fastRTPS_profiles.xsd

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</durability>\
</qos>\

</publisher>\
</profiles>\

</dds>\
";

if (ReturnCode_t::RETCODE_OK ==
DomainParticipantFactory::get_instance()->load_XML_profiles_string(xml_profile.c_

→˓str(),
xml_profile.length()))

{
// Create DDS entities with profiles

}

Warning: It is worth mentioning that if the same XML profile file is loaded multiple times, the second loading of
the file will result in an error together with the consequent error log.

Note: To load dynamic types from XML files see the Loading dynamic types in a Fast DDS application subsection
of Dynamic Types profiles.

Rooted vs Standalone profiles definition

Fast DDS offers various options for the definition of XML profiles. These options are:

• Stand-alone: The element defining the XML profile is the root element of the XML file. Elements <dds>,
<profiles>, <types>, and <log> can be defined in a stand-alone manner.

• Rooted: The element defining the XML profile is the child element of another element. For example, the
<participant>, <data_reader>, <data_writer>, and <transport_descriptors> elements must be de-
fined as child elements of the <profiles> element.

The following is an example of the definition of the <types> XML profile using the two previously discussed ap-
proaches.

374 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Stand-alone

<?xml version="1.0" encoding="UTF-8" ?>
<types>

<type>
<!-- Type definition -->

</type>

<type>
<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

Rooted

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<types>
<type>

<!-- Type definition -->
</type>

<type>
<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

</dds>

Modifying predefined XML profiles

Some scenarios may require to modify some of the QoS after loading the XML profiles. For such cases the Types of
Entities which act as factories provide methods to get the QoS from the XML profile. This allows the user to read and
modify predefined XML profiles before applying them to a new entity.

if (ReturnCode_t::RETCODE_OK ==
DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml

→˓"))
{

DomainParticipantQos participant_qos;
DomainParticipantFactory::get_instance()->get_participant_qos_from_profile(

"participant_xml_profile",
participant_qos);

// Name obtained in another section of the code
participant_qos.name() = custom_name;

// Modify number of preallocations (this overrides the one set in the XML profile)
participant_qos.allocation().send_buffers.preallocated_number = 10;

(continues on next page)

6.24. XML profiles 375

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Create participant using the modified XML Qos
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(
0, participant_qos);

}

6.24.2 DomainParticipant profiles

The DomainParticipant profiles allow the definition of the configuration of DomainParticipants through XML files.
These profiles are defined within the <participant> XML tags.

DomainParticipant XML attributes

The <participant> element has two attributes defined: profile_name and is_default_profile.

Name Description Use
profile_nameSets the name under which the <participant> profile is registered in the DDS Domain, so

that it can be loaded later by the DomainParticipantFactory, as shown in Loading and
applying profiles.

Manda-
tory

is_default_profileSets the <participant> profile as the default profile. Thus, if a default profile exists, it
will be used when no other DomainParticipant profile is specified at the DomainParticipant’s
creation.

Op-
tional

DomainParticipant configuration

The <participant> element has two child elements: <domain_id> and <rtps>. All the DomainParticipant config-
uration options belong to the <rtps> element, except for the DDS DomainId which is defined by the <domain_id>
element. Below a list with the configuration XML elements is presented:

Name Description Values De-
fault

<domainId> DomainId to be used by the DomainParticipant. uint32_t 0
<rtps> Fast DDS DomainParticipant configurations. See RTPS element

type.
RTPS element
type

RTPS element type

The following is a list with all the possible child XML elements of the <rtps> element. These elements allow the user
to define the DomainParticipant configuration.

376 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Name Description Values De-
fault

<name> The DomainParticipant’s name. string_255
<defaultUnicastLocatorList>List of default reception unicast locators for user data traffic (see

<metatrafficUnicastLocatorList> defined in Builtin parame-
ters). It expects a LocatorListType.

<locator>

<defaultMulticastLocatorList>List of default reception multicast locators for user data traffic (see
<metatrafficMulticastLocatorList> defined in Builtin param-
eters). It expects a LocatorListType.

<locator>

<default_external_unicast_locators>List of External Locators to announce for the default user traffic of
this participant.

ExternalLo-
catorListType

<ignore_non_matching_locators>Whether to ignore locators received on announcements from other
participants when they don’t match with any of the locators announced
by this participant.

bool false

<sendSocketBufferSize>Size in bytes of the send socket buffer. If the value is zero then Fast
DDS will use the system default socket size.

uint32_t 0

<listenSocketBufferSize>Size in bytes of the reception socket buffer. If the value is zero then
Fast DDS will use the system default socket size.

uint32_t 0

<builtin> builtin public data member of the WireProtocolConfigQos
class. See the Builtin parameters section.

Builtin pa-
rameters

<port> Allows defining the port and gains related to the RTPS protocol. See
the Port section.

Port

<participantID> DomainParticipant’s identifier. Typically it will be automatically gen-
erated by the DomainParticipantFactory.

int32_t 0

<throughputController>Limits middleware’s bandwidth usage. See the Throughput Configu-
ration section.

Throughput
Configura-
tion

<userTransports> Transport descriptors to be used by the DomainParticipant. See Trans-
port descriptors.

List
<string>

<useBuiltinTransports>Boolean field to indicate the system whether the DomainPartic-
ipant will use the default builtin transports in addition to its
<userTransports>.

bool true

<propertiesPolicy>Additional configuration properties. It expects a PropertiesPolicy-
Type.

Proper-
tiesPolicy-
Type

<allocation> Configuration regarding allocation behavior. It expects a DomainPar-
ticipantAllocationType.

DomainPar-
ticipantAllo-
cationType

Example

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="domainparticipant_profile_name">
<domainId>80</domainId>

<rtps>
<name>DomainParticipant Name</name>

<defaultUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

(continues on next page)

6.24. XML profiles 377

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<udpv4>
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
</locator>

</defaultUnicastLocatorList>

<defaultMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4>
<port>7400</port>
<address>192.168.2.41</address>

</udpv4>
</locator>

</defaultMulticastLocatorList>

<default_external_unicast_locators>
<!-- EXTERNAL_LOCATOR_LIST -->
<udpv4 externaliy="1" cost="0" mask="24">

<address>100.100.100.10</address>
<port>23456</port>

</udpv4>
</default_external_unicast_locators>

<ignore_non_matching_locators>true</ignore_non_matching_locators>

<sendSocketBufferSize>8192</sendSocketBufferSize>

<listenSocketBufferSize>8192</listenSocketBufferSize>

<builtin>
<!-- BUILTIN -->

</builtin>

<port>
<portBase>7400</portBase>
<domainIDGain>200</domainIDGain>
<participantIDGain>10</participantIDGain>
<offsetd0>0</offsetd0>
<offsetd1>1</offsetd1>
<offsetd2>2</offsetd2>
<offsetd3>3</offsetd3>

</port>

<participantID>99</participantID>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

(continues on next page)

378 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<userTransports>
<transport_id>TransportId1</transport_id>
<transport_id>TransportId2</transport_id>

</userTransports>

<useBuiltinTransports>false</useBuiltinTransports>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
</properties>

</propertiesPolicy>

<allocation>
<!-- ALLOCATION -->

</allocation>

<userData>
<value>13.40.37.00.CE</value>

</userData>
</rtps>

</participant>
</profiles>

Note:

• LOCATOR_LIST means a LocatorListType is expected.

• EXTERNAL_LOCATOR_LIST means a ExternalLocatorListType is expected.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• For BUILTIN details, please refer to Builtin parameters.

• For ALLOCATION details, please refer to ParticipantAllocationType.

Port Configuration

According to the RTPS standard (Section 9.6.1.1), the RTPSParticipants’ discovery traffic unicast listening ports are
calculated using the following equation: 7400+250*𝐷𝑜𝑚𝑎𝑖𝑛𝐼𝑑+10+2*𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝐼𝑑. Therefore the following
parameters can be specified:

6.24. XML profiles 379

https://www.omg.org/spec/DDSI-RTPS/2.2/PDF

Fast DDS Documentation, Release 2.8.2

Name Description Values Default
<portBase> Base port. uint16_t 7400
<domainIDGain> Gain in DomainId. uint16_t 250
<participantIDGain> Gain in participant_id . uint16_t 2
<offsetd0> Multicast metadata offset. uint16_t 0
<offsetd1> Unicast metadata offset. uint16_t 10
<offsetd2> Multicast user data offset. uint16_t 1
<offsetd3> Unicast user data offset. uint16_t 11

Warning: Changing these default parameters may break compatibility with other RTPS compliant implementa-
tions, as well as with other Fast DDS applications with default port settings.

ParticipantAllocationType

The ParticipantAllocationType defines the <allocation> element, which allows setting of the parameters re-
lated with the allocation behavior on the DomainParticipant. Please refer to ParticipantResourceLimitsQos for a de-
tailed documentation on DomainParticipants allocation configuration.

Name Description Values De-
fault

<remote_locators>Defines the limits for the remote locators’ collections. See RemoteLocator-
sAllocationAttributes.

<max_unicast_locators>
<max_multicast_locators>

<max_unicast_locators>Child element of <remote_locators>. Maximum number of unicast lo-
cators expected on a remote entity. It is recommended to use the maximum
number of network interfaces available on the machine on which DomainPar-
ticipant is running. See RemoteLocatorsAllocationAttributes.

uint32_t 4

<max_multicast_locators>Child element of <remote_locators>. Maximum number of multicast lo-
cators expected on a remote entity. May be set to zero to disable multicast
traffic. See RemoteLocatorsAllocationAttributes.

uint32_t 1

<total_participants>DomainParticipant Allocation Configuration to specify the total number of
DomainParticipants in the domain (local and remote). See ResourceLimited-
ContainerConfig.

Allocation Con-
figuration

<total_readers>DomainParticipant Allocation Configuration to specify the total number of
DataReader on each DomainParticipant (local and remote). See Resource-
LimitedContainerConfig.

Allocation Con-
figuration

<total_writers>DomainParticipant Allocation Configuration related to the total number of
DataWriters on each DomainParticipant (local and remote). See Resource-
LimitedContainerConfig.

Allocation Con-
figuration

<max_partitions>Maximum size of the partitions submessage. Set to zero for no limit. See
SendBuffersAllocationAttributes.

uint32_t

<max_user_data>Maximum size of the user data submessage. Set to zero for no limit. See
SendBuffersAllocationAttributes.

uint32_t

<max_properties>Maximum size of the properties submessage. Set to zero for no limit. See
SendBuffersAllocationAttributes.

uint32_t

Example

380 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

<allocation>
<remote_locators>

<max_unicast_locators>4</max_unicast_locators>
<max_multicast_locators>1</max_multicast_locators>

</remote_locators>

<total_participants>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_participants>

<total_readers>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_readers>

<total_writers>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</total_writers>

<max_partitions>256</max_partitions>

<max_user_data>256</max_user_data>

<max_properties>512</max_properties>

<!-- content_filter cannot be configured using XML (yet) -->
</allocation>

Builtin parameters

By calling the wire_protocol() member function of the DomainParticipantQos, it is possible to access the
builtin public data member of the WireProtocolConfigQos class. This section specifies the available XML mem-
bers for the configuration of this builtin parameters.

6.24. XML profiles 381

Fast DDS Documentation, Release 2.8.2

Name Description Values De-
fault

<discovery_config>This is the main element within which discovery-related
settings can be configured. See Discovery.

discovery_config

<avoid_builtin_multicast>Restricts multicast metatraffic to PDP only. bool true
<use_WriterLivelinessProtocol>Indicates whether to use the DataWriterLiveliness protocol. bool true
<metatrafficUnicastLocatorList>Metatraffic Unicast Locator List. A set of <locator>

members. See Lo-
catorListType

<metatrafficMulticastLocatorList>Metatraffic Multicast Locator List. A set of <locator>
members. See Lo-
catorListType

<initialPeersList>The list of IP-port address pairs of all other DomainPartic-
ipants with which a DomainParticipant will communicate.
See Initial peers

A set of <locator>
members. See Lo-
catorListType

<metatraffic_external_unicast_locators>List of External Locators to announce for the metatraffic of
this participant.

ExternalLoca-
torListType

<readerHistoryMemoryPolicy>Memory policy for DataReaders. See HistoryQosPoli-
cyKind.

HistoryMemoryPol-
icy

PREALLOCATED

<writerHistoryMemoryPolicy>Memory policy for DataWriters. See HistoryQosPoli-
cyKind.

HistoryMemoryPol-
icy

PREALLOCATED

<readerPayloadSize>Maximum DataReader’s History payload size. Allows to
reserve all the required memory at DataReader initializa-
tion. See MemoryManagementPolicy.

uint32_t 512

<writerPayloadSize>Maximum DataWriter’s History payload size. Allows to re-
serve all the required memory at DataWriter initialization.
See MemoryManagementPolicy.

uint32_t 512

<mutation_tries> Number of different ports to try if DataReader’s physical
port is already in use.

uint32_t 100

Example

<builtin>
<discovery_config>

<discoveryProtocol>NONE</discoveryProtocol>

<ignoreParticipantFlags>FILTER_DIFFERENT_HOST</ignoreParticipantFlags>

<EDP>SIMPLE</EDP>

<leaseDuration>
<!-- DURATION -->
<sec>20</sec>
<nanosec>0</nanosec>

</leaseDuration>

<leaseAnnouncement>
<!-- DURATION -->
<sec>3</sec>
<nanosec>0</nanosec>

</leaseAnnouncement>

(continues on next page)

382 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<initialAnnouncements>
<!-- INITIAL_ANNOUNCEMENTS -->

</initialAnnouncements>

<simpleEDP>
<PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
<PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>

</simpleEDP>

<static_edp_xml_config>file://filename.xml</static_edp_xml_config>
</discovery_config>

<avoid_builtin_multicast>true</avoid_builtin_multicast>

<use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>

<metatrafficUnicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficUnicastLocatorList>

<metatrafficMulticastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</metatrafficMulticastLocatorList>

<initialPeersList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</initialPeersList>

<metatraffic_external_unicast_locators>
<!-- EXTERNAL_LOCATOR_LIST -->
<udpv4 externaliy="1" cost="0" mask="24">

<address>100.100.100.10</address>
<port>34567</port>

</udpv4>
</metatraffic_external_unicast_locators>

<readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</readerHistoryMemoryPolicy>

<readerPayloadSize>512</readerPayloadSize>

<writerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</writerHistoryMemoryPolicy>

<writerPayloadSize>512</writerPayloadSize>
(continues on next page)

6.24. XML profiles 383

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<mutation_tries>55</mutation_tries>
</builtin>

discovery_config

Through the <discovery_config> element, Fast DDS allows the configuration of the discovery mechanism via an
XML file. Please refer to the Discovery section for more detail on the various types of discovery mechanisms and
configurable settings.

Name Description Values De-
fault

<discoveryProtocol>Indicates which discovery protocol the DomainParticipant will use. See Dis-
covery mechanisms.

SIMPLE SIMPLE
CLIENT
SERVER
BACKUP
NONE

<ignoreParticipantFlags>Restricts metatraffic using several filtering criteria. See Ignore Participant
flags.

ig-
norePar-
ticipant-
Flags

NO_FILTER

<EDP> If set to SIMPLE, <simpleEDP> element would be used. If set to STATIC,
EDPStatic will be performed, configured with the contents of the XML file
set in <staticEndpointXMLFilename>. See Discovery.

SIMPLE SIMPLE

STATIC
<simpleEDP> Attributes of the Simple Discovery Protocol. See Simple EDP Attributes. sim-

pleEDP
<leaseDuration>Indicates how long the DomainParticipant should consider remote DomainPar-

ticipants alive. See Lease Duration.
Dura-
tionType

20s

<leaseAnnouncement>The period for the DomainParticipant to send its discovery message to all other
discovered DomainParticipants as well as to all Multicast ports. See Announce-
ment Period.

Dura-
tionType

3s

<initialAnnouncements>Allows the user to configure the number and period of the DomainParticipant’s
initial discovery messages. See Initial Announcements.

Initial
An-
nounce-
ments

<staticEndpointXMLFilename>The XML filename with the static EDP configuration. Only necessary if the
<EDP> member is set to STATIC. See STATIC Discovery Settings.

string

ignoreParticipantFlags

Possible values Description
NO_FILTER All Discovery traffic is processed.
FILTER_DIFFERENT_HOST Discovery traffic from another host is discarded.
FILTER_DIFFERENT_PROCESS Discovery traffic from another process on the same host is

discarded.
FILTER_SAME_PROCESS Discovery traffic from DomainParticipant’s own process is

discarded.
FILTER_DIFFERENT_PROCESS |
FILTER_SAME_PROCESS

Discovery traffic from DomainParticipant’s own host is dis-
carded.

384 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

simpleEDP

Name Description Val-
ues

De-
fault

<PUBWRITER_SUBREADER>Indicates if the participant must use Publication DataWriter and Sub-
scription DataReader.

bool true

<PUBREADER_SUBWRITER>Indicates if the participant must use Publication DataReader and Sub-
scription DataWriter.

bool true

Initial Announcements

Name Description Val-
ues

De-
fault

<count>Number of initial discovery messages to send at the period specified by <period>. After
these announcements, the DomainParticipant will continue sending its discovery messages
at the <leaseAnnouncement> rate.

uint32_t5

<period>The period for the DomainParticipant to send its discovery messages. Du-
ra-
tionType

100
ms

6.24.3 DataWriter profiles

The DataWriter profiles allow for configuring DataWriters from an XML file. These profiles are defined within the
<data_writer> or <publisher> XML tags. Thus, the following XML code snippets are equivalent.

DataWriter profile - Definition method 1 DataWriter profile - Definition method 2

<data_writer profile_name="my_datawriter_
→˓profile">
<topic>

<!-- TOPIC_TYPE -->
</topic>
<qos>

<!-- QOS -->
</qos>
<!-- Other elements -->

</data_writer>

<publisher profile_name="my_publisher_
→˓profile">
<topic>

<!-- TOPIC_TYPE -->
</topic>
<qos>

<!-- QOS -->
</qos>
<!-- Other elements -->

</publisher>

Important: The <data_writer> and <publisher> XML tags are equivalent. Therefore, XML profiles in which
the DataWriters are defined with the <publisher> tag are fully compatible with Fast DDS.

6.24. XML profiles 385

Fast DDS Documentation, Release 2.8.2

DataWriter XML attributes

The <data_writer> element has two attributes defined: profile_name and is_default_profile.

Name Description Use
profile_nameSets the name under which the <data_writer> profile is registered in the DDS Domain,

so that it can be loaded later by the DomainParticipant, as shown in Loading and applying
profiles.

Manda-
tory

is_default_profileSets the <data_writer> profile as the default profile. Thus, if a default profile exists, it will
be used when no other DataWriter profile is specified at the DataWriter’s creation.

Op-
tional

DataWriter configuration

The DataWriter configuration is performed through the XML elements listed in the following table.

Name Description Values De-
fault

<topic> TopicType configuration of the DataWriter. TopicType
<qos> DataWriter QoS configuration. QoS
<times> It configures some time related parameters of the DataWriter. Times
<unicastLocatorList>List of input unicast locators. It expects a LocatorListType. <locator>
<multicastLocatorList>List of input multicast locators. It expects a LocatorListType. <locator>
<external_unicast_locators>List of External Locators to announce for the communication with

this DataWriter.
Exter-
nalLoca-
torListType

<ignore_non_matching_locators>Whether to ignore locators received on announcements from other
entities when they don’t match with any of the locators announced by
this DataWriter.

bool false

<throughputController>Limits the output bandwidth of the DataWriter. Throughput
Configura-
tion

<historyMemoryPolicy>Memory allocation kind for DataWriter’s history. See Histo-
ryQosPolicyKind.

Histo-
ryMemory-
Policy

PREALLOCATED

<propertiesPolicy>Additional configuration properties. Proper-
tiesPolicy-
Type

<userDefinedID> Used for EDPStatic. int16_t -1
<entityID> Sets the entity_id of the RTPSEndpointQos class. int16_t -1
<matchedSubscribersAllocation>Sets the limits of the collection of matched DataReaders. See Partic-

ipantResourceLimitsQos.
Allocation
Configura-
tion

Example

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
<data_writer profile_name="datawriter_profile_name">

<topic>
<!-- TOPIC_TYPE -->

(continues on next page)

386 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- writerTimesType -->
<initialHeartbeatDelay>

<sec>0</sec>
<nanosec>12</nanosec>

</initialHeartbeatDelay>

<heartbeatPeriod>
<sec>3</sec>
<nanosec>0</nanosec>

</heartbeatPeriod>

<nackResponseDelay>
<sec>0</sec>
<nanosec>5</nanosec>

</nackResponseDelay>

<nackSupressionDuration>
<sec>0</sec>
<nanosec>0</nanosec>

</nackSupressionDuration>
</times>

<unicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

<external_unicast_locators>
<!-- EXTERNAL_LOCATOR_LIST -->
<udpv4 externaliy="1" cost="0" mask="24">

<address>100.100.100.10</address>
<port>12345</port>

</udpv4>
</external_unicast_locators>

<ignore_non_matching_locators>true</ignore_non_matching_locators>

(continues on next page)

6.24. XML profiles 387

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID>

<entityID>66</entityID>

<matchedSubscribersAllocation>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

</profiles>
<dds>

Note:

• LOCATOR_LIST means a LocatorListType is expected.

• EXTERNAL_LOCATOR_LIST means a ExternalLocatorListType is expected.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• For QOS details, please refer to QoS.

• TOPIC_TYPE is detailed in section TopicType.

Times

Name Description Values De-
fault

<initialHeartbeatDelay>Initial heartbeat delay. Dura-
tionType

12
ms

<heartbeatPeriod>Periodic heartbeat period. Dura-
tionType

3 s

<nackResponseDelay>Delay to apply to the response of an ACKNACK message. Dura-
tionType

5 ms

<nackSupressionDuration>This time allows the DataWriter to ignore NACK messages for a given
period of time right after the data has been sent.

Dura-
tionType

0 ms

388 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.24.4 DataReader profiles

The DataReader profiles allow declaring DataReaders from an XML file. These profiles are defined within the
<data_reader> or <subscriber> XML tags. Thus, the following XML codes are equivalent.

DataReader profile - Definition method 1 DataReader profile - Definition method 2

<data_reader profile_name="my_datareader_
→˓profile">
<topic>

<!-- TOPIC_TYPE -->
</topic>
<qos>

<!-- QOS -->
</qos>
<!-- Other elements -->

</data_reader>

<subscriber profile_name="my_subscriber_
→˓profile">
<topic>

<!-- TOPIC_TYPE -->
</topic>
<qos>

<!-- QOS -->
</qos>
<!-- Other elements -->

</subscriber>

Important: The <data_reader> and <subscriber> XML tags are equivalent. Therefore, XML profiles in which
the DataReaders are defined with the <subscriber> tag are fully compatible with Fast DDS.

DataReader XML attributes

The <data_reader> element has two attributes defined: profile_name and is_default_profile.

Name Description Use
profile_nameSets the name under which the <data_reader> profile is registered in the DDS Domain,

so that it can be loaded later by the DomainParticipant, as shown in Loading and applying
profiles.

Manda-
tory

is_default_profileSets the <data_reader> profile as the default profile. Thus, if a default profile exists, it will
be used when no other DataReader profile is specified at the DataReader’s creation.

Op-
tional

6.24. XML profiles 389

Fast DDS Documentation, Release 2.8.2

DataReader configuration

The DataReader configuration is performed through the XML elements listed in the following table.

Name Description Values De-
fault

<topic> TopicType configuration of the DataReader. TopicType
<qos> Subscriber QoS configuration. QoS
<times> It allows configuring some time related parameters of the DataReader. Times
<unicastLocatorList>List of input unicast locators. It expects a LocatorListType. List of Lo-

catorList-
Type

<multicastLocatorList>List of input multicast locators. It expects a LocatorListType. List of Lo-
catorList-
Type

<external_unicast_locators>List of External Locators to announce for the communication with
this DataReader.

Exter-
nalLoca-
torList-
Type

<ignore_non_matching_locators>Whether to ignore locators received on announcements from other en-
tities when they don’t match with any of the locators announced by this
DataReader.

bool false

<expectsInlineQos>It indicates if QoS is expected inline. bool false
<historyMemoryPolicy>Memory allocation kind for DataReaders’s history. Histo-

ryMemo-
ryPolicy

PREALLOCATED

<propertiesPolicy>Additional configuration properties. Proper-
tiesPolicy-
Type

<userDefinedID> Used for StaticEndpointDiscovery. int16_t -1
<entityID> Set the entity_id of the RTPSEndpointQos class. int16_t -1
<matchedPublishersAllocation>Sets the limits of the collection of matched DataWriters. See Partici-

pantResourceLimitsQos.
Allocation
Configura-
tion

Example

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
<data_reader profile_name="sub_profile_name">

<topic>
<!-- TOPIC_TYPE -->

</topic>

<qos>
<!-- QOS -->

</qos>

<times> <!-- readerTimesType -->
<initialAcknackDelay>

<sec>0</sec>
(continues on next page)

390 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<nanosec>70</nanosec>
</initialAcknackDelay>

<heartbeatResponseDelay>
<sec>0</sec>
<nanosec>5</nanosec>

</heartbeatResponseDelay>
</times>

<unicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</unicastLocatorList>

<multicastLocatorList>
<!-- LOCATOR_LIST -->
<locator>

<udpv4/>
</locator>

</multicastLocatorList>

<external_unicast_locators>
<!-- EXTERNAL_LOCATOR_LIST -->
<udpv4 externaliy="1" cost="0" mask="24">

<address>100.100.100.10</address>
<port>12345</port>

</udpv4>
</external_unicast_locators>

<ignore_non_matching_locators>true</ignore_non_matching_locators>

<expectsInlineQos>true</expectsInlineQos>

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

<propertiesPolicy>
<!-- PROPERTIES_POLICY -->

</propertiesPolicy>

<userDefinedID>55</userDefinedID>

<entityID>66</entityID>

<matchedPublishersAllocation>
<initial>0</initial>
<maximum>0</maximum>
<increment>1</increment>

</matchedPublishersAllocation>
</data_reader>

</profiles>
(continues on next page)

6.24. XML profiles 391

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<dds>

Note:

• LOCATOR_LIST means it expects a LocatorListType.

• EXTERNAL_LOCATOR_LIST means a ExternalLocatorListType is expected.

• PROPERTIES_POLICY means that the label is a PropertiesPolicyType block.

• For QOS details, please refer to QoS.

• TOPIC_TYPE is detailed in section TopicType.

Times

Name Description Values Default
<initialAcknackDelay> Initial ACKNACK delay. DurationType 70 ms
<heartbeatResponseDelay> Response time delay when receiving a Heartbeat. DurationType 5 ms

6.24.5 Transport descriptors

This section defines the XML elements available for configuring the transport layer parameters in Fast DDS. These
elements are defined within the XML tag <transports_descriptors>. The <transport_descriptors> can
contain one or more <transport_descriptor> XML elements. Each <transport_descriptor> element de-
fines a configuration for a specific type of transport protocol. Each of these <transport_descriptor> ele-
ments are uniquely identified by a transport ID with the <transport_id> XML tag. Once the user defines
a valid <transports_descriptor>, i.e. defines the transport layer parameters, these can be loaded into the
XML profile of the DomainParticipant using the <transport_id> XML tag. An example of how to load the
<transport_descriptor> into the XML profile of the DomainParticipant is found in DomainParticipant profiles.

The following table lists all the available XML elements that can be defined within the <transport_descriptor>
element for the configuration of the transport layer. A more detailed explanation of each of these elements can be found
in Transport Layer.

392 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Name Description Values De-
fault

<transport_id>Unique name to identify each transport descriptor. string
<type> Type of the transport descriptor. UDPv4 UDPv4

UDPv6
TCPv4
TCPv6
SHM

<sendBufferSize>Size in bytes of the send socket buffer. If the value is zero then Fast
DDS will use the system default socket size.

uint32_t 0

<receiveBufferSize>Size in bytes of the reception socket buffer. If the value is zero then
Fast DDS will use the system default socket size.

uint32_t 0

<maxMessageSize>The maximum size in bytes of the transport’s message buffer. uint32_t 65500
<maxInitialPeersRange>Number of channels opened with each initial remote peer. uint32_t 4
<interfaceWhiteList>Allows defining an interfaces Whitelist. Whitelist
<TTL> Time To Live (UDP only). See UDP Transport. uint8_t 1
<non_blocking_send>Whether to set the non-blocking send mode on the socket (UDP only).

See UDPTransportDescriptor.
bool false

<output_port>Port used for output bound. If this field isn’t defined, the output port
will be random (UDP only).

uint16_t 0

<wan_addr> Public WAN address when using TCPv4 transports. This field is
optional if the transport doesn’t need to define a WAN address (TCPv4
only).

IPv4 formatted
string: XXX.
XXX.XXX.XXX

<keep_alive_frequency_ms>Frequency in milliseconds for sending RTCP keep-alive requests
(TCP only).

uint32_t 50000

<keep_alive_timeout_ms>Time in milliseconds since the last keep-alive request was sent to con-
sider a connection as broken (TCP only).

uint32_t 10000

<max_logical_port>The maximum number of logical ports to try during RTCP negotia-
tions (TCP only).

uint16_t 100

<logical_port_range>The maximum number of logical ports per request to try during RTCP
negotiations (TCP only).

uint16_t 20

<logical_port_increment>Increment between logical ports to try during RTCP negotiation (TCP
only).

uint16_t 2

<listening_ports>Local port to work as TCP acceptor for input connections. If not set,
the transport will work as TCP client only (TCP only).

List
<uint16_t>

<tls> Allows to define TLS related parameters and options (TCP only). TLS Configura-
tion

<calculate_crc>Calculates the Cyclic Redundancy Code (CRC) for error control (TCP
only).

bool true

<check_crc> Check the CRC for error control (TCP only). bool true
<enable_tcp_nodelay>Socket option for disabling the Nagle algorithm. (TCP only). bool false
<segment_size>Size (in bytes) of the shared-memory segment. (Optional, SHM only). uint32_t 262144
<port_queue_capacity>Capacity (in number of messages) available to every Listener (Op-

tional, SHM only).
uint32_t 512

<healthy_check_timeout_ms>Maximum time-out (in milliseconds) used when checking whether a
Listener is alive (Optional, SHM only).

uint32_t 1000

<rtps_dump_file>Complete path (including file) where RTPS messages will be stored
for debugging purposes. An empty string indicates no trace will be
performed (Optional, SHM only).

string Empty

The following XML code shows an example of transport protocol configuration using all configurable parameters.
More examples of transports descriptors can be found in the Transport Layer section.

6.24. XML profiles 393

Fast DDS Documentation, Release 2.8.2

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
<transport_descriptors>

<transport_descriptor>
<transport_id>TransportId1</transport_id>
<type>UDPv4</type>
<sendBufferSize>8192</sendBufferSize>
<receiveBufferSize>8192</receiveBufferSize>
<TTL>250</TTL>
<non_blocking_send>false</non_blocking_send>
<maxMessageSize>16384</maxMessageSize>
<maxInitialPeersRange>100</maxInitialPeersRange>
<interfaceWhiteList>

<address>192.168.1.41</address>
<address>127.0.0.1</address>

</interfaceWhiteList>
<wan_addr>80.80.55.44</wan_addr>
<output_port>5101</output_port>
<keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
<keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
<max_logical_port>9000</max_logical_port>
<logical_port_range>100</logical_port_range>
<logical_port_increment>2</logical_port_increment>
<listening_ports>

<port>5100</port>
<port>5200</port>

</listening_ports>
<calculate_crc>false</calculate_crc>
<check_crc>false</check_crc>
<enable_tcp_nodelay>false</enable_tcp_nodelay>
<tls><!-- TLS Section --></tls>
<segment_size>262144</segment_size>
<port_queue_capacity>512</port_queue_capacity>
<healthy_check_timeout_ms>1000</healthy_check_timeout_ms>
<rtps_dump_file>rtsp_messages.log</rtps_dump_file>

</transport_descriptor>
</transport_descriptors>

</profiles>
</dds>

Note: The Real-time Transport Control Protocol (RTCP) is the control protocol for communications with RTPS over
TCP/IP connections.

394 Chapter 6. Structure of the documentation

https://tools.ietf.org/html/rfc3550

Fast DDS Documentation, Release 2.8.2

TLS Configuration

Fast DDS provides mechanisms to configure the Transport Layer Security (TLS) protocol parameters through the <tls>
XML element of its <transport_descriptor>. Please, refer to TLS over TCP for a detailed explanation of the entire
TLS configuration in Fast DDS. More information on how to set up secure communication in Fast DDS can be found
in the Security section.

Warning: For the full understanding of this section, a basic knowledge of network security in terms of SSL/TLS,
Certificate Authority (CA), Public Key Infrastructure (PKI), and Diffie-Hellman is required; encryption protocols
are not explained in detail.

The full list of available XML elements that can be defined within the <tls> element to configure the TLS protocol
are listed in the following table:

Name Description Values De-
fault

<password> Password of the <private_key_file> or
<rsa_private_key_file> if provided.

string

<private_key_file>Path to the private key certificate file. string
<rsa_private_key_file>Path to the private key RSA certificate file. string
<cert_chain_file>Path to the public certificate chain file. string
<tmp_dh_file> Path to the Diffie-Hellman parameters file string
<verify_file> Path to the Certification Authority (CA) file. string
<verify_mode> Establishes the verification mode mask. Several verification options

can be combined in the same <transport_descriptor>.
VERIFY_NONE
VERIFY_PEER
VERIFY_FAIL_IF_NO_PEER_CERT
VERIFY_CLIENT_ONCE

<options> Establishes the SSL Context options mask. Several options can be
combined in the same <transport_descriptor>.

DEFAULT_WORKAROUNDS
NO_COMPRESSION
NO_SSLV2
NO_SSLV3
NO_TLSV1
NO_TLSV1_1
NO_TLSV1_2
NO_TLSV1_3
SINGLE_DH_USE

<verify_paths>Paths where the system will look for verification files. string
<verify_depth>Maximum allowed depth to verify intermediate certificates. uint32_t
<default_verify_path>Specifies whether the system will look on the default paths for the

verification files.
bool false

<handshake_role>Role that the transport will take on handshaking. On default, the
acceptors act as SERVER and the connectors as CLIENT.

DEFAULT DEFAULT
SERVER
CLIENT

<server_name> server name or host name required in case Server Name Indication
(SNI) is used.

string

An example of TLS protocol parameter configuration is shown below.

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
(continues on next page)

6.24. XML profiles 395

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<transport_descriptors>
<transport_descriptor>

<transport_id>Test</transport_id>
<type>TCPv4</type>
<tls>

<password>Password</password>
<private_key_file>Key_file.pem</private_key_file>
<rsa_private_key_file>RSA_file.pem</rsa_private_key_file>
<cert_chain_file>Chain.pem</cert_chain_file>
<tmp_dh_file>DH.pem</tmp_dh_file>
<verify_file>verify.pem</verify_file>
<verify_mode>

<verify>VERIFY_PEER</verify>
</verify_mode>
<options>

<option>NO_TLSV1</option>
<option>NO_TLSV1_1</option>

</options>
<verify_paths>

<verify_path>Path1</verify_path>
<verify_path>Path2</verify_path>
<verify_path>Path3</verify_path>

</verify_paths>
<verify_depth>55</verify_depth>
<default_verify_path>true</default_verify_path>
<handshake_role>SERVER</handshake_role>
<server_name>my_server.com</server_name>

</tls>
</transport_descriptor>

<!-->
</profiles>

6.24.6 Log profiles

eProsima Fast DDS allows for registering and configuring Log consumers using XML configuration files. Please refer
to Logging for more information on Fast DDS extensible Logging built-in module. The logging profiles are defined
within the <log> XML tags. The <log> element has two child elements: <use_default> and <consumer>. These
are described in the following table.

Name Description Values De-
fault

<use_default>If set to FALSE, a call to Log::ClearConsumers() is performed. See Register
Consumers.

bool true

<consumer>Defines the class and configuration of the consumer to be registered. Multiple
consumers can be registered this way. See Consumers.

Consumer-
DataType

The following constitutes an example of an XML configuration file that sets the Log to use one StdoutConsumer, one
StdoutErrConsumer, and one FileConsumer:

396 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

<?xml version="1.0" encoding="UTF-8" ?>
<dds>

<log>
<!--
Clear consumers
-->
<use_default>FALSE</use_default>

<!--
StdoutConsumer does not have any properties
-->
<consumer>

<class>StdoutConsumer</class>
</consumer>

<!--
StdoutErrConsumer with threshold set to Log::Kind::Error
-->
<consumer>

<class>StdoutErrConsumer</class>
<property>

<name>stderr_threshold</name>
<value>Log::Kind::Error</value>

</property>
</consumer>

<!--
FileConsumer openning "execution.log" in append mode
-->
<consumer>

<class>FileConsumer</class>
<property>

<name>filename</name>
<value>execution.log</value>

</property>
<property>

<name>append</name>
<value>TRUE</value>

</property>
</consumer>

</log>
</dds>

6.24. XML profiles 397

Fast DDS Documentation, Release 2.8.2

ConsumerDataType

Name Description Values
<class> The class of the consumer. StdoutConsumer

StdoutErrConsumer
FileConsumer

<property>This element is used to configure the log consumer and only applies if <class> is set
to StdoutErrConsumer or FileConsumer.

PropertyType

PropertyType

Name Description Values Default
<name> Name of the property to be

configured.
filename
append
stderr_threshold

<value> The value of the property.

• If <name> is set to
filename, then this
element contains
the name of the log
file. This property
only applies if
<class> is set to
FileConsumer

string output.log

• If <name> is set
to append, then
this element de-
fines whether the
consumer should,
upon creation, open
the file for append-
ing or overriding.
This property
only applies if
<class> is set to
FileConsumer

Boolean false

• If <name> is set to
stderr_threshold,
then this element
defines the thresh-
old used by the
Log consumers.
This property
only applies if
<class> is set to
StdoutErrConsumer

Log::Kind Log::Kind::Warning

398 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.24.7 Dynamic Types profiles

Fast DDS supports the implementation of DynamicType by defining them through XML files. Thus the Dynamic Types
can be modified without the need to modify the source code of the DDS application.

XML Structure

The definition of type profiles in the XML file is done with the <types> tag. Each <types> element can contain one
or more Type definitions. Defining several types within a <types> element or a single type for each <types> element
has the same result. Below, an example of a stand-alone types definition via XML is shown.

<types>
<type>

<!-- Type definition -->
</type>
<type>

<!-- Type definition -->
<!-- Type definition -->

</type>
</types>

Note: For more information on the difference between stand-alone and rooted definitions please refer to section Rooted
vs Standalone profiles definition.

Type definition

Below, the types supported by Fast DDS are presented . For further information about the supported DynamicType,
please, refer to Supported Types. For each of the types detailed below, an example of how to build the type’s XML
profile is provided.

• Enum

• Typedef

• Struct

• Union

• Bitset

• Bitmask

• Member types

– Primitive types

– Arrays

– Sequences

– Maps

• Complex types

6.24. XML profiles 399

Fast DDS Documentation, Release 2.8.2

Enum

The <enum> type is defined by its attribute name and a set of <enumerator> child elements. Each <enumerator> is
defined by two attributes: a name and an optional value. Please, refer to Enumeration for more information on the
<enum> type.

<enum name="MyEnum">
<enumerator name="A" value="0"/>
<enumerator name="B" value="1"/>
<enumerator name="C" value="2"/>

</enum>

Typedef

The <typedef> XML element is defined by a name and a type mandatory attributes, and various optional attributes
for complex types definition. These optional attributes are: key_type, arrayDimensions, nonBasicTypeName,
sequenceMaxLength, and mapMaxLength. See Complex types attributes for more information on these attributes.
The <typedef> element corresponds to Alias in Supported Types section.

<typedef name="MyAliasEnum" type="nonBasic" nonBasicTypeName="MyEnum"/>
<typedef name="MyAliasArray" type="int32" arrayDimension="2,2"/>

Struct

The <struct> element is defined by its name attribute and its <member> child elements. Please, refer to Structure for
more information on the <struct> type.

<struct name="MyStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>

Structs can inherit from another structs. This is implemented by defining the value of the baseType attribute, on the
child <struct> element to be the value of the name attribute of the parent <struct> element. This is exemplified by
the code snippet below.

<struct name="ParentStruct">
<member name="first" type="int32"/>
<member name="second" type="int64"/>

</struct>
<struct name="ChildStruct" baseType="ParentStruct">

<member name="third" type="int32"/>
<member name="fourth" type="int64"/>

</struct>

400 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Union

The <union> type is defined by a name attribute, a <discriminator> child element and a set of <case> child
elements. Each <case> element has one or more <caseDiscriminator> and a <member> child elements. Please,
refer to Union for more information on the <union> type.

<union name="MyUnion">
<discriminator type="byte"/>
<case>

<caseDiscriminator value="0"/>
<caseDiscriminator value="1"/>
<member name="first" type="int32"/>

</case>
<case>

<caseDiscriminator value="2"/>
<member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/>

</case>
<case>

<caseDiscriminator value="default"/>
<member name="third" type="nonBasic" nonBasicTypeName="int64"/>

</case>
</union>

Bitset

The <bitset> element defines the Bitset type. It is comprised by a name attribute and a set of <bitfield> child
elements. In turn, the <bitfield> element has the mandatory bit_bound attribute, which can not be higher than 64,
and two optional attributes: name and type. A <bitfield> with a blank name attribute is an inaccessible set of bits.
Its management type can ease the <bitfield> modification and access. Please, refer to Bitset for more information
about the <bitset> type.

<bitset name="MyBitSet">
<bitfield name="a" bit_bound="3"/>
<bitfield name="b" bit_bound="1"/>
<bitfield bit_bound="4"/>
<bitfield name="c" bit_bound="10"/>
<bitfield name="d" bit_bound="12" type="int16"/>

</bitset>

Moreover, bitsets can inherit from another bitsets:

<bitset name="ParentBitSet">
<bitfield name="a" bit_bound="10"/>
<bitfield name="b" bit_bound="15"/>

</bitset>

<bitset name="ChildBitSet" baseType="ParentBitSet">
<bitfield bit_bound="1"/>
<bitfield bit_bound="5" type="uint16"/>

</bitset>

6.24. XML profiles 401

Fast DDS Documentation, Release 2.8.2

Bitmask

The <bitmask> element, which corresponds to the Bitmask type, is defined by a mandatory name attribute, an optional
bit_bound attribute, and several <bit_value> child elements. The bit_bound attribute specifies the number of bits
that the type will manage. The maximum value allowed for the bit_bound is 64. The <bit_value> element can
define its position in the bitmask setting the positition attribute. Please, refer to Bitmask for more information on
the <bitmask> type.

<bitmask name="MyBitMask" bit_bound="8">
<bit_value name="flag0" position="0"/>
<bit_value name="flag1"/>
<bit_value name="flag2" position="2"/>
<bit_value name="flag5" position="5"/>

</bitmask>

Member types

Member types are defined as any type that can belong to a <struct> or a <union>, or be aliased by a <typedef>.
These can be defined by the <member> XML tag.

Primitive types

The identifiers of the available basic types are listed in the table below. Please, refer to Primitive Types for more
information on the primitive types.

bool int32_t float32
byte int64_t float64
char uint16_t float128
wchar uint32_t string
int16_t uint64_t wstring

All of them are defined as follows:

<struct name="primitive_types_example">
<!-- Primitive type definitions inside a struct -->
<member name="my_long" type="int64"/>
<member name="my_bool" type="boolean"/>
<member name="my_string" type="string"/>

</struct>

Arrays

Arrays are defined in the same way as any other member type but they add the attribute arrayDimensions. The format
of the arrayDimensions attribute value is the size of each dimension separated by commas. Please, refer to Array
explanation for more information on array type.

<struct name="arrays_example">
<member name="long_array" type="int32" arrayDimensions="2,3,4"/>

</struct>

402 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Sequences

The sequence type is implemented by setting three attributes: name, the type, and the sequenceMaxLength. The type
of its content should be defined by the type attribute. The following example shows the implementation of a sequence
of maximum length equal to 3. In turn, this is a sequence of sequences of maximum length of 2 and contents of type
int32. Please, refer to Sequence section for more information on sequence type.

<typedef name="my_sequence_inner" type="int32" sequenceMaxLength="2"/>
<struct name="SeqSeqStruct">

<member name="my_sequence_sequence" type="nonBasic" nonBasicTypeName="my_sequence_
→˓inner" sequenceMaxLength="3"/>
</struct>

Maps

Maps are similar to sequences, but they need to define two content types. The key_type defines the type of the map
key, while the type defines the map value type. Again, both types can be defined as attributes of a <typedef> element,
or as a <member> child element of a <struct> or <union> elements. See section Map for more information on map
type.

<typedef name="my_map_inner" type="int32" key_type="int32" mapMaxLength="2"/>
<struct name="MapMapStruct">

<member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_inner" key_type=
→˓"int32" mapMaxLength="2"/>
</struct>

Complex types

The complex types are a combination of the aforementioned types. Complex types can be defined using the <member>
element in the same way a basic or an array type would be. Please, refer to Complex Types section for more information
on complex types.

<struct name="OtherStruct">
<member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
<member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct" arrayDimensions=

→˓"5"/>
</struct>

Complex types attributes

The attributes of a complex type element can be highly varied depending on the type being defined. Since the attributes
that can be defined for each of the types have already been listed, these attributes are then defined in the following table.

6.24. XML profiles 403

Fast DDS Documentation, Release 2.8.2

Name Description
type Data type. This can be a Primitive types or a nonBasic type. The latter is used to denote that

a complex type is defined.
nonBasicTypeNameName of the complex type. Only applies if the type attribute is set to nonBasic.
arrayDimensions Dimensions of an array.
sequenceMaxLengthMaximum length of a Sequences.
mapMaxLength Maximum length of a Maps.
key_type Data type of a map key.

Loading dynamic types in a Fast DDS application

In the Fast DDS application that will make use of the XML Types, the XML files that define the types must be loaded
before trying to instantiate DynamicPubSubType objects of these types.

// Create a DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Load the XML File
if (ReturnCode_t::RETCODE_OK ==

DomainParticipantFactory::get_instance()->load_XML_profiles_file("my_profiles.xml
→˓"))
{

// Retrieve the an instance of MyStruct type
eprosima::fastrtps::types::DynamicType_ptr my_struct_type =

eprosima::fastrtps::xmlparser::XMLProfileManager::getDynamicTypeByName(
→˓"MyStruct")->build();
// Register MyStruct type
TypeSupport my_struct_type_support(new␣

→˓eprosima::fastrtps::types::DynamicPubSubType(my_struct_type));
my_struct_type_support.register_type(participant, nullptr);

}
else
{

std::cout << "Cannot open XML file \"types.xml\". "
<< "Please, set the correct path to the XML file"
<< std::endl;

}

404 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.24.8 Common

The preceding XML profiles define some XML elements that are common to several profiles. This section aims to
explain these common elements.

• LocatorListType

• ExternalLocatorListType

• PropertiesPolicyType

• DurationType

• TopicType

– HistoryQoS

– ResourceLimitsQos

• QoS

– Durability

– Liveliness

– ReliabilityQosPolicy

– Partition

– Deadline

– Lifespan

– Ownership

– Ownership Strength

– DisablePositiveAcks

– LatencyBudget

– DisableHeartbeatPiggyback

– PublishMode

– Data-Sharing

• Throughput Configuration

• HistoryMemoryPolicy

• Allocation Configuration

LocatorListType

It represents a list of Locator_t. LocatorListType is used inside other configuration parameter labels that expect a
list of locators, for example, in <defaultUnicastLocatorList>. Therefore, LocatorListType is defined as a set of
<locator> elements. The <locator> element has a single child element that defines the transport protocol for which
the locator is defined. These are: <udpv4>, <tcpv4>, <udpv6>, and <tcpv6>. The table presented below outlines
each possible Locator’s field.

Note: SHM transport locators cannot be configured as they are automatically handled by SHM.

6.24. XML profiles 405

Fast DDS Documentation, Release 2.8.2

Name Description Values De-
fault

<port> RTPS port number of the locator. Physical port in UDP, logi-
cal port in TCP.

uint32_t 0

<physical_port>TCP’s physical port. uint32_t 0
<address> IP address of the locator. string (IPv4/IPv6

format)
“”

<unique_lan_id>The LAN ID uniquely identifies the LAN the locator belongs
to (TCPv4 only).

string (16 bytes)

<wan_address> WAN IPv4 address (TCPv4 only). string (IPv4 for-
mat)

0.0.
0.0

Example

The following example shows the implementation of one locator of each transport protocol in
<defaultUnicastLocatorList>.

<defaultUnicastLocatorList>
<locator>

<udpv4>
<!-- Access as physical, typical UDP usage -->
<port>7400</port>
<address>192.168.1.41</address>

</udpv4>
<udpv4>

<!-- Access as physical, typical UDP usage -->
<port>7600</port>
<address>localhost</address>

</udpv4>
</locator>
<locator>

<tcpv4>
<!-- Both physical and logical (port), useful in TCP transports -->
<physical_port>5100</physical_port>
<port>7400</port>
<unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
<wan_address>80.80.99.45</wan_address>
<address>192.168.1.55</address>

</tcpv4>
</locator>
<locator>

<udpv6>
<port>8844</port>
<address>::1</address>

</udpv6>
<udpv6>

<port>8888</port>
<address>localhost</address>

</udpv6>
</locator>
<locator>

<tcpv6>
<!-- Both physical and logical (port), useful in TCP transports -->

(continues on next page)

406 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<physical_port>5100</physical_port>
<port>7400</port>
<address>fe80::55e3:290:165:5af8</address>

</tcpv6>
</locator>

</defaultUnicastLocatorList>

ExternalLocatorListType

It represents a list of external locator entries. Each entry can be a <udpv4> or a <udpv6> tag. These tags can be
configured with the following attributes:

Name Description Val-
ues

De-
fault

externalityNumber of hops from the participant’s host to the LAN represented by the external
locator. Valid values: from 1 to 255.

uint8_t1

cost Communication cost relative to other locators on the same externality level. Valid
values: from 0 to 255.

uint8_t0

mask Number of significant bits on the LAN represented by the external locator. Valid
values: from 1 to 31 (UDPv4) or 127 (UDPv6)

uint8_t24

They should contain the following tags:

Name Description Values
<port> UDP port number of the locator. Should have a valid UDP port number. uint32_t
<address> IP address of the locator. string (IPv4/IPv6 for-

mat)

PropertiesPolicyType

PropertiesPolicyType defines the <propertiesPolicy> element. It allows the user to define a set of generic properties
inside a <properties> element. It is useful at defining extended or custom configuration parameters.

Name Description Values Default
<name> Name to identify the property. string
<value> Property’s value. string
<propagate> Indicates if it is going to be serialized along with the object it belongs to. bool false

Example

<propertiesPolicy>
<properties>

<property>
<name>Property1Name</name>
<value>Property1Value</value>
<propagate>false</propagate>

</property>
<property>

(continues on next page)

6.24. XML profiles 407

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<name>Property2Name</name>
<value>Property2Value</value>
<propagate>true</propagate>

</property>
</properties>

</propertiesPolicy>

DurationType

DurationType expresses a period of time and it is commonly used inside other XML elements, such as in
<leaseAnnouncement> or <leaseDuration>. A DurationType is defined by two mandatory elements <sec> plus
<nanosec>. An infinite value can be specified by using the values DURATION_INFINITY, DURATION_INFINITE_SEC
and DURATION_INFINITE_NSEC.

Name Description Values Default
<sec> Number of seconds. int32_t 0
<nanosec> Number of nanoseconds. uint32_t 0

Example

<discovery_config>
<leaseDuration>

<sec>DURATION_INFINITY</sec>
</leaseDuration>

<leaseDuration>
<sec>500</sec>
<nanosec>0</nanosec>

</leaseDuration>

<leaseAnnouncement>
<sec>1</sec>
<nanosec>856000</nanosec>

</leaseAnnouncement>
</discovery_config>

TopicType

The Topic name and data type are used to determine whether Datawriters and DataReaders can exchange messages.
Please refer to Topic section for a a deeper explanation on the Topic class.

Name Description Values De-
fault

<kind> It defines the Topic’s key kind. See Definition of data types.
<name> It defines the Topic’s name. It must be unique. string_255
<dataType> It references the Topic’s data type. string_255
<historyQos> It controls the behavior of Fast DDS when the value of an instance changes

before it is finally communicated to some of its existing DataReaders.
Histo-
ryQoS

<resourceLimitsQos>It controls the resources that Fast DDS can use in order to meet the require-
ments imposed by the application and other QoS settings.

Resource-
LimitsQos

408 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Warning: The <kind> child element is only used if the Topic is defined using the Fast DDS RTPS-layer API, and
will be ignored if the Topic is defined via the Fast DDS DDS-layer API.

Example

<topic>
<kind>NO_KEY</kind>
<name>TopicName</name>
<dataType>TopicDataTypeName</dataType>
<historyQos>

<kind>KEEP_LAST</kind>
<depth>20</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>5</max_samples>
<max_instances>2</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>20</allocated_samples>

</resourceLimitsQos>
</topic>

HistoryQoS

It controls the behavior of Fast DDS when the value of an instance changes before it is finally communicated to some
of its existing DataReaders. Please refer to HistoryQosPolicyKind for further information on HistoryQoS.

Name Description Val-
ues

De-
fault

<kind>Fast DDS will only attempt to keep the latest values of the instance and discard the older
ones.

KEEP_LASTKEEP_LAST

Fast DDS will attempt to maintain and deliver all the values of the instance to existing
DataReaders.

KEEP_ALL

<depth>It must be consistent with the ResourceLimitsQos <max_samples_per_instance> el-
ement value. It must be verified that: <depth> <= <max_samples_per_instance>.

uint32_t1

ResourceLimitsQos

It controls the resources that Fast DDS can use in order to meet the requirements imposed by the application and other
QoS settings. Please refer to ResourceLimitsQosPolicy for further information on ResourceLimitsQos.

Name Description Values De-
fault

<max_samples> It must verify that: <max_samples> >=
<max_samples_per_instance>.

uint32_t 5000

<max_instances> It defines the maximum number of instances. uint32_t 10
<max_samples_per_instance>It must verify that: HistoryQos <depth> <=

<max_samples_per_instance>.
uint32_t 400

<allocated_samples> It controls the maximum number of samples to be stored. uint32_t 100
<extra_samples> The number of extra samples to allocate on the pool. uint32_t 1

6.24. XML profiles 409

Fast DDS Documentation, Release 2.8.2

QoS

The Quality of Service (QoS) is used to specify the behavior of the Service, allowing the user to define how each Entity
will behave. Please refer to the Policy section for more information on QoS.

Name Description Values
<durability> See DurabilityQosPolicy. Durability
<liveliness> See LivelinessQosPolicy. Liveliness
<reliability> See ReliabilityQosPolicy. ReliabilityQosPolicy
<partition> See PartitionQosPolicy. Partition
<deadline> See DeadlineQosPolicy. Deadline
<lifespan> See LifespanQosPolicy. Lifespan
<ownership> See OwnershipQosPolicy. Ownership
<ownershipStrength> See OwnershipStrengthQosPolicy. Ownership Strength
<disablePositiveAcks> See DisablePositiveACKsQosPolicy. DisablePositiveAcks
<latencyBudget> See LatencyBudgetQosPolicy. LatencyBudget
<disable_heartbeat_piggyback> See DisableHeartbeatPiggyback. DisableHeartbeatPiggyback
<publishMode> See PublishModeQosPolicy. PublishMode
data_sharing See DataSharingQosPolicy Data-Sharing

Example

<qos> <!-- writerQosPoliciesType -->
<durability>

<kind>VOLATILE</kind>
</durability>

<liveliness>
<kind>AUTOMATIC</kind>

<lease_duration>
<sec>1</sec>

</lease_duration>

<announcement_period>
<sec>1</sec>

</announcement_period>
</liveliness>

<reliability>
<kind>BEST_EFFORT</kind>

</reliability>

<partition>
<names>

<name>part1</name>
<name>part2</name>

</names>
</partition>

<deadline>
<period>

(continues on next page)

410 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

<sec>1</sec>
</period>

</deadline>

<lifespan>
<duration>

<sec>1</sec>
</duration>

</lifespan>

<ownership>
<kind>EXCLUSIVE</kind>

</ownership>

<ownershipStrength>
<value>50</value>

</ownershipStrength>

<disablePositiveAcks>
<enabled>true</enabled>

</disablePositiveAcks>

<latencyBudget>
<duration>

<sec>1</sec>
</duration>

</latencyBudget>

<disable_heartbeat_piggyback>true</disable_heartbeat_piggyback>

<publishMode>
<kind>ASYNCHRONOUS</kind>

</publishMode>

<data_sharing>
<kind>AUTOMATIC</kind>
<shared_dir>/home</shared_dir>
<max_domains>10</max_domains>
<domain_ids>

<domainId>0</domainId>
<domainId>11</domainId>

</domain_ids>
</data_sharing>

</qos>

6.24. XML profiles 411

Fast DDS Documentation, Release 2.8.2

Durability

Name Description Values Default
<kind> See DurabilityQosPolicyKind. VOLATILE VOLATILE

TRANSIENT_LOCAL
TRANSIENT
PERSISTENT

Liveliness

Name Description Values Default
<kind> See LivelinessQosPolicyKind. AUTOMATIC AUTOMATIC

MANUAL_BY_PARTICIPANT
MANUAL_BY_TOPIC

<lease_duration> See LivelinessQosPolicy. DurationType c_TimeInfinite
<announcement_period> See LivelinessQosPolicy. c_TimeInfinite

ReliabilityQosPolicy

Name Description Values Default
<kind> See ReliabilityQosPolicyKind. BEST_EFFORT DataReaders: BEST_EFFORT

DataWriters: RELIABLERELIABLE
<max_blocking_time> See ReliabilityQosPolicy. DurationType 100 ms

Partition

Name Description Val-
ues

<names> It comprises a set of <name> elements containing the name of each partition. See Partition-
QosPolicy.

<name>

Deadline

Name Description Values Default
<period> See DeadlineQosPolicy. DurationType c_TimeInfinite

412 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Lifespan

Name Description Values Default
<duration> See LifespanQosPolicy. DurationType c_TimeInfinite

Ownership

Name Description Values Default
<kind> See OwnershipQosPolicyKind. SHARED_OWNERSHIP_QOS SHARED_OWNERSHIP_QOS

EXCLUSIVE_OWNERSHIP_QOS

Ownership Strength

Name Description Values Default
<value> See OwnershipStrengthQosPolicy. uint32_t 0

DisablePositiveAcks

Name Description Values Default
<enabled> See DisablePositiveACKsQosPolicy. bool false
<duration> See DisablePositiveACKsQosPolicy. DurationType c_TimeInfinite

LatencyBudget

Name Description Values Default
<duration> See LatencyBudgetQosPolicy. DurationType 0

DisableHeartbeatPiggyback

Name Description Values Default
<disable_heartbeat_piggyback> See DisableHeartbeatPiggyback. bool false

PublishMode

Name Description Values Default
<publishMode> See PublishModeQosPolicy. ASYNCHRONOUS ASYNCHRONOUS

SYNCHRONOUS

6.24. XML profiles 413

Fast DDS Documentation, Release 2.8.2

Data-Sharing

Name Description Values Default
<kind> See DataSharingKind AUTOMATIC ON

OFF
AUTOMATIC

<shared_dir> Directory used for the memory-mapped files. string Empty
<max_domains>Maximum number of Data-Sharing domain IDs in the local or

remote endpoints.
uint32_t 0 (unlim-

ited)
<domain_ids> List of Data-Sharing domain IDs configured for the current end-

point.
<domainId> Empty list

Name Description Values
domainId Domain ID to be used by the endpoint for Data-Sharing. uint32_t

Throughput Configuration

The <throughputController> element allows to limit the output bandwidth. It contains two child elements which
are explained in the following table.

Name Description Values Default
<bytesPerPeriod>Packet size in bytes that the throughput controller will allow to send

in a given period.
uint32_t 4294967295

bytes
<periodMillisecs>Window of time in which no more than <bytesPerPeriod> bytes

are allowed.
uint32_t 0

Warning: This tag has been deprecated but does not have an equivalent tag yet. It will create a FIFO flow controller
with the bandwidth limitation specified on this tag. See FlowControllersQos for more information.

Example

<participant profile_name="participant_thoughput">
<rtps>

<throughputController>
<bytesPerPeriod>8192</bytesPerPeriod>
<periodMillisecs>1000</periodMillisecs>

</throughputController>
</rtps>

</participant>

414 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

HistoryMemoryPolicy

Indicates the way the memory is managed in terms of dealing with the CacheChanges of the RTPSEndpointQos.

Name Description Values Default
<historyMemoryPolicy>Four different options as described in

MemoryManagementPolicy.
PREALLOCATED
PREALLOCATED_WITH_REALLOC DYNAMIC
DYNAMIC_REUSABLE

PREALLOCATED

Example

<data_writer profile_name="data_writer_historyMemoryPolicy">
<!-- ... -->
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

</data_writer>

<data_reader profile_name="data_reader_historyMemoryPolicy">
<!-- ... -->
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

</data_reader>

Allocation Configuration

The <allocation> element allows to control the allocation behavior of internal collections for which the number of
elements depends on the number of entities in the system. For instance, there are collections inside a DataWriter which
depend on the number of DataReaders matching with it. Please refer to ParticipantResourceLimitsQos for a detailed
documentation on DomainParticipant allocation, and to Tuning allocations for detailed information on how to tune
allocation related parameters.

Name Description Values Default
<initial> Number of elements for which space is initially allocated. uint32_t 0
<maximum> Maximum number of elements for which space will be allocated. uint32_t 0 (Means no

limit)
<increment> Number of new elements that will be allocated when more space is

necessary.
uint32_t 1

6.24.9 Example

In this section, there is a full XML example with all possible configuration.

Warning: This example can be used as a quick reference, but it may not be correct due to incompatibility or
exclusive properties. Do not take it as a working example.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <dds>
3 <profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles" >
4 <transport_descriptors>
5 <transport_descriptor>

(continues on next page)

6.24. XML profiles 415

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

6 <transport_id>ExampleTransportId1</transport_id>
7 <type>TCPv4</type>
8 <sendBufferSize>8192</sendBufferSize>
9 <receiveBufferSize>8192</receiveBufferSize>

10 <TTL>250</TTL>
11 <maxMessageSize>16384</maxMessageSize>
12 <maxInitialPeersRange>100</maxInitialPeersRange>
13 <interfaceWhiteList>
14 <address>192.168.1.41</address>
15 <address>127.0.0.1</address>
16 </interfaceWhiteList>
17 <wan_addr>80.80.55.44</wan_addr>
18 <keep_alive_frequency_ms>5000</keep_alive_frequency_ms>
19 <keep_alive_timeout_ms>25000</keep_alive_timeout_ms>
20 <max_logical_port>200</max_logical_port>
21 <logical_port_range>20</logical_port_range>
22 <logical_port_increment>2</logical_port_increment>
23 <listening_ports>
24 <port>5100</port>
25 <port>5200</port>
26 </listening_ports>
27 </transport_descriptor>
28 <transport_descriptor>
29 <transport_id>ExampleTransportId2</transport_id>
30 <type>UDPv6</type>
31 </transport_descriptor>
32 <!-- SHM sample transport descriptor -->
33 <transport_descriptor>
34 <transport_id>SHM_SAMPLE_DESCRIPTOR</transport_id>
35 <type>SHM</type> <!-- REQUIRED -->
36 <maxMessageSize>524288</maxMessageSize> <!-- OPTIONAL uint32 valid␣

→˓of all transports-->
37 <segment_size>1048576</segment_size> <!-- OPTIONAL uint32 SHM only-->
38 <port_queue_capacity>1024</port_queue_capacity> <!-- OPTIONAL uint32␣

→˓SHM only-->
39 <healthy_check_timeout_ms>250</healthy_check_timeout_ms> <!--␣

→˓OPTIONAL uint32 SHM only-->
40 <rtps_dump_file>test_file.dump</rtps_dump_file> <!-- OPTIONAL string␣

→˓SHM only-->
41 </transport_descriptor>
42 </transport_descriptors>
43

44 <participant profile_name="participant_profile_example">
45 <domainId>4</domainId>
46 <rtps>
47 <name>Participant Name</name> <!-- String -->
48

49 <defaultUnicastLocatorList>
50 <locator>
51 <udpv4>
52 <!-- Access as physical, like UDP -->
53 <port>7400</port>

(continues on next page)

416 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

54 <address>192.168.1.41</address>
55 </udpv4>
56 </locator>
57 <locator>
58 <tcpv4>
59 <!-- Both physical and logical (port), like TCP -->
60 <physical_port>5100</physical_port>
61 <port>7400</port>
62 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
63 <wan_address>80.80.99.45</wan_address>
64 <address>192.168.1.55</address>
65 </tcpv4>
66 </locator>
67 <locator>
68 <udpv6>
69 <port>8844</port>
70 <address>::1</address>
71 </udpv6>
72 </locator>
73 </defaultUnicastLocatorList>
74

75 <defaultMulticastLocatorList>
76 <locator>
77 <udpv4>
78 <!-- Access as physical, like UDP -->
79 <port>7400</port>
80 <address>192.168.1.41</address>
81 </udpv4>
82 </locator>
83 <locator>
84 <tcpv4>
85 <!-- Both physical and logical (port), like TCP -->
86 <physical_port>5100</physical_port>
87 <port>7400</port>
88 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
89 <wan_address>80.80.99.45</wan_address>
90 <address>192.168.1.55</address>
91 </tcpv4>
92 </locator>
93 <locator>
94 <udpv6>
95 <port>8844</port>
96 <address>::1</address>
97 </udpv6>
98 </locator>
99 </defaultMulticastLocatorList>

100

101 <sendSocketBufferSize>8192</sendSocketBufferSize>
102

103 <listenSocketBufferSize>8192</listenSocketBufferSize>
104

105 <builtin>
(continues on next page)

6.24. XML profiles 417

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

106 <discovery_config>
107

108 <discoveryProtocol>NONE</discoveryProtocol>
109

110 <EDP>SIMPLE</EDP>
111

112 <leaseDuration>
113 <sec>DURATION_INFINITY</sec>
114 </leaseDuration>
115

116 <leaseAnnouncement>
117 <sec>1</sec>
118 <nanosec>856000</nanosec>
119 </leaseAnnouncement>
120

121 <simpleEDP>
122 <PUBWRITER_SUBREADER>true</PUBWRITER_SUBREADER>
123 <PUBREADER_SUBWRITER>true</PUBREADER_SUBWRITER>
124 </simpleEDP>
125

126 <staticEndpointXMLFilename>filename.xml</
→˓staticEndpointXMLFilename>

127

128 </discovery_config>
129

130 <use_WriterLivelinessProtocol>false</use_WriterLivelinessProtocol>
131

132 <metatrafficUnicastLocatorList>
133 <locator>
134 <udpv4>
135 <!-- Access as physical, like UDP -->
136 <port>7400</port>
137 <address>192.168.1.41</address>
138 </udpv4>
139 </locator>
140 <locator>
141 <tcpv4>
142 <!-- Both physical and logical (port), like TCP -->
143 <physical_port>5100</physical_port>
144 <port>7400</port>
145 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
146 <wan_address>80.80.99.45</wan_address>
147 <address>192.168.1.55</address>
148 </tcpv4>
149 </locator>
150 <locator>
151 <udpv6>
152 <port>8844</port>
153 <address>::1</address>
154 </udpv6>
155 </locator>
156 </metatrafficUnicastLocatorList>

(continues on next page)

418 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

157

158 <metatrafficMulticastLocatorList>
159 <locator>
160 <udpv4>
161 <!-- Access as physical, like UDP -->
162 <port>7400</port>
163 <address>192.168.1.41</address>
164 </udpv4>
165 </locator>
166 <locator>
167 <tcpv4>
168 <!-- Both physical and logical (port), like TCP -->
169 <physical_port>5100</physical_port>
170 <port>7400</port>
171 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
172 <wan_address>80.80.99.45</wan_address>
173 <address>192.168.1.55</address>
174 </tcpv4>
175 </locator>
176 <locator>
177 <udpv6>
178 <port>8844</port>
179 <address>::1</address>
180 </udpv6>
181 </locator>
182 </metatrafficMulticastLocatorList>
183

184 <initialPeersList>
185 <locator>
186 <udpv4>
187 <!-- Access as physical, like UDP -->
188 <port>7400</port>
189 <address>192.168.1.41</address>
190 </udpv4>
191 </locator>
192 <locator>
193 <tcpv4>
194 <!-- Both physical and logical (port), like TCP -->
195 <physical_port>5100</physical_port>
196 <port>7400</port>
197 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
198 <wan_address>80.80.99.45</wan_address>
199 <address>192.168.1.55</address>
200 </tcpv4>
201 </locator>
202 <locator>
203 <udpv6>
204 <port>8844</port>
205 <address>::1</address>
206 </udpv6>
207 </locator>
208 </initialPeersList>

(continues on next page)

6.24. XML profiles 419

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

209

210 <readerHistoryMemoryPolicy>PREALLOCATED_WITH_REALLOC</
→˓readerHistoryMemoryPolicy>

211

212 <writerHistoryMemoryPolicy>PREALLOCATED</writerHistoryMemoryPolicy>
213 </builtin>
214

215 <allocation>
216 <remote_locators>
217 <max_unicast_locators>4</max_unicast_locators> <!-- uint32 -->
218 <max_multicast_locators>1</max_multicast_locators> <!-- uint32 --

→˓>
219 </remote_locators>
220 <total_participants>
221 <initial>0</initial>
222 <maximum>0</maximum>
223 <increment>1</increment>
224 </total_participants>
225 <total_readers>
226 <initial>0</initial>
227 <maximum>0</maximum>
228 <increment>1</increment>
229 </total_readers>
230 <total_writers>
231 <initial>0</initial>
232 <maximum>0</maximum>
233 <increment>1</increment>
234 </total_writers>
235 <max_partitions>256</max_partitions>
236 <max_user_data>256</max_user_data>
237 <max_properties>512</max_properties>
238 </allocation>
239

240 <port>
241 <portBase>7400</portBase>
242 <domainIDGain>200</domainIDGain>
243 <participantIDGain>10</participantIDGain>
244 <offsetd0>0</offsetd0>
245 <offsetd1>1</offsetd1>
246 <offsetd2>2</offsetd2>
247 <offsetd3>3</offsetd3>
248 </port>
249

250 <participantID>99</participantID>
251

252 <throughputController>
253 <bytesPerPeriod>8192</bytesPerPeriod>
254 <periodMillisecs>1000</periodMillisecs>
255 </throughputController>
256

257 <userTransports>
258 <transport_id>ExampleTransportId1</transport_id>

(continues on next page)

420 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

259 <transport_id>ExampleTransportId1</transport_id>
260 </userTransports>
261

262 <useBuiltinTransports>false</useBuiltinTransports>
263

264 <propertiesPolicy>
265 <properties>
266 <property>
267 <name>Property1Name</name>
268 <value>Property1Value</value>
269 <propagate>false</propagate>
270 </property>
271 <property>
272 <name>Property2Name</name>
273 <value>Property2Value</value>
274 <propagate>false</propagate>
275 </property>
276 </properties>
277 </propertiesPolicy>
278 </rtps>
279 </participant>
280

281 <data_writer profile_name="datawriter_profile_example">
282 <topic>
283 <kind>WITH_KEY</kind>
284 <name>TopicName</name>
285 <dataType>TopicDataTypeName</dataType>
286 <historyQos>
287 <kind>KEEP_LAST</kind>
288 <depth>20</depth>
289 </historyQos>
290 <resourceLimitsQos>
291 <max_samples>5</max_samples>
292 <max_instances>2</max_instances>
293 <max_samples_per_instance>1</max_samples_per_instance>
294 <allocated_samples>20</allocated_samples>
295 </resourceLimitsQos>
296 </topic>
297

298 <qos> <!-- dataWriterQosPoliciesType -->
299 <durability>
300 <kind>VOLATILE</kind>
301 </durability>
302 <liveliness>
303 <kind>AUTOMATIC</kind>
304 <lease_duration>
305 <sec>1</sec>
306 <nanosec>856000</nanosec>
307 </lease_duration>
308 <announcement_period>
309 <sec>1</sec>
310 <nanosec>856000</nanosec>

(continues on next page)

6.24. XML profiles 421

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

311 </announcement_period>
312 </liveliness>
313 <reliability>
314 <kind>BEST_EFFORT</kind>
315 <max_blocking_time>
316 <sec>1</sec>
317 <nanosec>856000</nanosec>
318 </max_blocking_time>
319 </reliability>
320 <lifespan>
321 <duration>
322 <sec>5</sec>
323 <nanosec>0</nanosec>
324 </duration>
325 </lifespan>
326 <partition>
327 <names>
328 <name>part1</name>
329 <name>part2</name>
330 </names>
331 </partition>
332 <publishMode>
333 <kind>ASYNCHRONOUS</kind>
334 </publishMode>
335 <disablePositiveAcks>
336 <enabled>true</enabled>
337 <duration>
338 <sec>1</sec>
339 </duration>
340 </disablePositiveAcks>
341 </qos>
342

343 <times>
344 <initialHeartbeatDelay>
345 <sec>1</sec>
346 <nanosec>856000</nanosec>
347 </initialHeartbeatDelay>
348 <heartbeatPeriod>
349 <sec>1</sec>
350 <nanosec>856000</nanosec>
351 </heartbeatPeriod>
352 <nackResponseDelay>
353 <sec>1</sec>
354 <nanosec>856000</nanosec>
355 </nackResponseDelay>
356 <nackSupressionDuration>
357 <sec>1</sec>
358 <nanosec>856000</nanosec>
359 </nackSupressionDuration>
360 </times>
361

362 <unicastLocatorList>
(continues on next page)

422 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

363 <locator>
364 <udpv4>
365 <!-- Access as physical, like UDP -->
366 <port>7400</port>
367 <address>192.168.1.41</address>
368 </udpv4>
369 </locator>
370 <locator>
371 <tcpv4>
372 <!-- Both physical and logical (port), like TCP -->
373 <physical_port>5100</physical_port>
374 <port>7400</port>
375 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
376 <wan_address>80.80.99.45</wan_address>
377 <address>192.168.1.55</address>
378 </tcpv4>
379 </locator>
380 <locator>
381 <udpv6>
382 <port>8844</port>
383 <address>::1</address>
384 </udpv6>
385 </locator>
386 </unicastLocatorList>
387

388 <multicastLocatorList>
389 <locator>
390 <udpv4>
391 <!-- Access as physical, like UDP -->
392 <port>7400</port>
393 <address>192.168.1.41</address>
394 </udpv4>
395 </locator>
396 <locator>
397 <tcpv4>
398 <!-- Both physical and logical (port), like TCP -->
399 <physical_port>5100</physical_port>
400 <port>7400</port>
401 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
402 <wan_address>80.80.99.45</wan_address>
403 <address>192.168.1.55</address>
404 </tcpv4>
405 </locator>
406 <locator>
407 <udpv6>
408 <port>8844</port>
409 <address>::1</address>
410 </udpv6>
411 </locator>
412 </multicastLocatorList>
413

414 <throughputController>
(continues on next page)

6.24. XML profiles 423

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

415 <bytesPerPeriod>8192</bytesPerPeriod>
416 <periodMillisecs>1000</periodMillisecs>
417 </throughputController>
418

419 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
420

421 <matchedSubscribersAllocation>
422 <initial>3</initial>
423 <maximum>3</maximum>
424 <increment>0</increment>
425 </matchedSubscribersAllocation>
426

427 <propertiesPolicy>
428 <properties>
429 <property>
430 <name>Property1Name</name>
431 <value>Property1Value</value>
432 <propagate>false</propagate>
433 </property>
434 <property>
435 <name>Property2Name</name>
436 <value>Property2Value</value>
437 <propagate>false</propagate>
438 </property>
439 </properties>
440 </propertiesPolicy>
441

442 <userDefinedID>45</userDefinedID>
443

444 <entityID>76</entityID>
445 </data_writer>
446

447 <data_reader profile_name="datareader_profile_example">
448 <topic>
449 <kind>WITH_KEY</kind>
450 <name>TopicName</name>
451 <dataType>TopicDataTypeName</dataType>
452 <historyQos>
453 <kind>KEEP_LAST</kind>
454 <depth>20</depth>
455 </historyQos>
456 <resourceLimitsQos>
457 <max_samples>5</max_samples>
458 <max_instances>2</max_instances>
459 <max_samples_per_instance>1</max_samples_per_instance>
460 <allocated_samples>20</allocated_samples>
461 </resourceLimitsQos>
462 </topic>
463

464 <qos> <!-- dataReaderQosPoliciesType -->
465 <durability>
466 <kind>PERSISTENT</kind>

(continues on next page)

424 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

467 </durability>
468 <liveliness>
469 <kind>MANUAL_BY_PARTICIPANT</kind>
470 <lease_duration>
471 <sec>1</sec>
472 <nanosec>856000</nanosec>
473 </lease_duration>
474 <announcement_period>
475 <sec>1</sec>
476 <nanosec>856000</nanosec>
477 </announcement_period>
478 </liveliness>
479 <reliability>
480 <kind>BEST_EFFORT</kind>
481 <max_blocking_time>
482 <sec>1</sec>
483 <nanosec>856000</nanosec>
484 </max_blocking_time>
485 </reliability>
486 <lifespan>
487 <duration>
488 <sec>5</sec>
489 <nanosec>0</nanosec>
490 </duration>
491 </lifespan>
492 <partition>
493 <names>
494 <name>part1</name>
495 <name>part2</name>
496 </names>
497 </partition>
498 </qos>
499

500 <times>
501 <initialAcknackDelay>
502 <sec>1</sec>
503 <nanosec>856000</nanosec>
504 </initialAcknackDelay>
505 <heartbeatResponseDelay>
506 <sec>1</sec>
507 <nanosec>856000</nanosec>
508 </heartbeatResponseDelay>
509 </times>
510

511 <unicastLocatorList>
512 <locator>
513 <udpv4>
514 <!-- Access as physical, like UDP -->
515 <port>7400</port>
516 <address>192.168.1.41</address>
517 </udpv4>
518 </locator>

(continues on next page)

6.24. XML profiles 425

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

519 <locator>
520 <tcpv4>
521 <!-- Both physical and logical (port), like TCP -->
522 <physical_port>5100</physical_port>
523 <port>7400</port>
524 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
525 <wan_address>80.80.99.45</wan_address>
526 <address>192.168.1.55</address>
527 </tcpv4>
528 </locator>
529 <locator>
530 <udpv6>
531 <port>8844</port>
532 <address>::1</address>
533 </udpv6>
534 </locator>
535 </unicastLocatorList>
536

537 <multicastLocatorList>
538 <locator>
539 <udpv4>
540 <!-- Access as physical, like UDP -->
541 <port>7400</port>
542 <address>192.168.1.41</address>
543 </udpv4>
544 </locator>
545 <locator>
546 <tcpv4>
547 <!-- Both physical and logical (port), like TCP -->
548 <physical_port>5100</physical_port>
549 <port>7400</port>
550 <unique_lan_id>192.168.1.1.1.1.2.55</unique_lan_id>
551 <wan_address>80.80.99.45</wan_address>
552 <address>192.168.1.55</address>
553 </tcpv4>
554 </locator>
555 <locator>
556 <udpv6>
557 <port>8844</port>
558 <address>::1</address>
559 </udpv6>
560 </locator>
561 </multicastLocatorList>
562

563 <expectsInlineQos>true</expectsInlineQos>
564

565 <historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
566

567 <matchedPublishersAllocation>
568 <initial>1</initial>
569 <maximum>1</maximum>
570 <increment>0</increment>

(continues on next page)

426 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

571 </matchedPublishersAllocation>
572

573 <propertiesPolicy>
574 <properties>
575 <property>
576 <name>Property1Name</name>
577 <value>Property1Value</value>
578 <propagate>false</propagate>
579 </property>
580 <property>
581 <name>Property2Name</name>
582 <value>Property2Value</value>
583 <propagate>false</propagate>
584 </property>
585 </properties>
586 </propertiesPolicy>
587

588 <userDefinedID>55</userDefinedID>
589

590 <entityID>66</entityID>
591 </data_reader>
592 </profiles>
593

594 <log>
595 <use_default>FALSE</use_default>
596

597 <consumer>
598 <class>StdoutConsumer</class>
599 </consumer>
600

601 <consumer>
602 <class>FileConsumer</class>
603 <property>
604 <name>filename</name>
605 <value>execution.log</value>
606 </property>
607 <property>
608 <name>append</name>
609 <value>TRUE</value>
610 </property>
611 </consumer>
612 </log>
613

614 <types>
615 <type> <!-- Types can be defined in its own type of tag or sharing the same tag -

→˓->
616 <enum name="MyAloneEnumType">
617 <enumerator name="A" value="0"/>
618 <enumerator name="B" value="1"/>
619 <enumerator name="C" value="2"/>
620 </enum>
621 </type>

(continues on next page)

6.24. XML profiles 427

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

622 <type>
623 <enum name="MyEnum">
624 <enumerator name="A" value="0"/>
625 <enumerator name="B" value="1"/>
626 <enumerator name="C" value="2"/>
627 </enum>
628

629 <typedef name="MyAlias1" type="nonBasic" nonBasicTypeName="MyEnum"/>
630

631 <typedef name="MyAlias2" type="int32" arrayDimensions="2,2"/>
632

633 <typedef name="my_map_inner" type="int32" key_type="int32" mapMaxLength="2"/>
634

635 <bitset name="MyBitSet">
636 <bitfield name="a" bit_bound="3"/>
637 <bitfield name="b" bit_bound="10"/>
638 <bitfield name="c" bit_bound="12" type="int16"/>
639 </bitset>
640

641 <bitmask name="MyBitMask" bit_bound="8">
642 <bit_value name="flag0" position="0"/>
643 <bit_value name="flag1"/>
644 </bitmask>
645

646 <struct name="MyStruct">
647 <member name="first" type="int32"/>
648 <member name="second" type="int64"/>
649 </struct>
650

651 <struct name="OtherStruct">
652 <member name="my_enum" type="nonBasic" nonBasicTypeName="MyEnum"/>
653 <member name="my_struct" type="nonBasic" nonBasicTypeName="MyStruct"␣

→˓arrayDimensions="5"/>
654 </struct>
655

656 <union name="MyUnion1">
657 <discriminator type="byte"/>
658 <case>
659 <caseDiscriminator value="0"/>
660 <caseDiscriminator value="1"/>
661 <member name="first" type="int32"/>
662 </case>
663 <case>
664 <caseDiscriminator value="2"/>
665 <member name="second" type="nonBasic" nonBasicTypeName="MyStruct"/>
666 </case>
667 <case>
668 <caseDiscriminator value="default"/>
669 <member name="third" type="int64"/>
670 </case>
671 </union>
672

(continues on next page)

428 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

673 <!-- All possible members struct type -->
674 <struct name="MyFullStruct">
675 <!-- Primitives & basic -->
676 <member name="my_bool" type="boolean"/>
677 <member name="my_byte" type="byte"/>
678 <member name="my_char" type="char8"/>
679 <member name="my_wchar" type="char16"/>
680 <member name="my_short" type="int16"/>
681 <member name="my_long" type="int32"/>
682 <member name="my_longlong" type="int64"/>
683 <member name="my_unsignedshort" type="uint16"/>
684 <member name="my_unsignedlong" type="uint32"/>
685 <member name="my_unsignedlonglong" type="uint64"/>
686 <member name="my_float" type="float32"/>
687 <member name="my_double" type="float64"/>
688 <member name="my_longdouble" type="float128"/>
689 <member name="my_string" type="string"/>
690 <member name="my_wstring" type="wstring"/>
691 <member name="my_boundedString" type="string" stringMaxLength="41925"/>
692 <member name="my_boundedWString" type="wstring" stringMaxLength="41925"/>
693

694 <!-- long long_array[2][3][4]; -->
695 <member name="long_array" arrayDimensions="2,3,4" type="int32"/>
696

697 <!-- map<long,map<long,long,2>,2> my_map_map; -->
698 <member name="my_map_map" type="nonBasic" nonBasicTypeName="my_map_inner

→˓" key_type="int32" mapMaxLength="2"/>
699

700 <!-- Complex types -->
701 <member name="my_other_struct" type="nonBasic" nonBasicTypeName=

→˓"OtherStruct"/>
702 </struct>
703 </type>
704 </types>
705 </dds>

6.25 Environment variables

This is the list of environment variables that affect the behavior of Fast DDS:

6.25.1 FASTRTPS_DEFAULT_PROFILES_FILE

Defines the location of the default profile configuration XML file. If this variable is set and its value corresponds with
an existing file, Fast DDS will load its profiles. For more information about XML profiles, please refer to XML profiles.

6.25. Environment variables 429

Fast DDS Documentation, Release 2.8.2

Linux

export FASTRTPS_DEFAULT_PROFILES_FILE=/home/user/profiles.xml

Windows

set FASTRTPS_DEFAULT_PROFILES_FILE=C:\profiles.xml

6.25.2 SKIP_DEFAULT_XML

Skips looking for a default profile configuration XML file. If this variable is set to 1, Fast DDS will load the configura-
tion parameters directly from the classes’ definitions without looking for the DEFAULT_FASTRTPS_PROFILES.xml
in the working directory. For more information about XML profiles, please refer to XML profiles.

Linux

export SKIP_DEFAULT_XML=1

Windows

set SKIP_DEFAULT_XML=1

6.25.3 ROS_DISCOVERY_SERVER

Warning: The environment variable is only used in the case where discovery protocol is set to SIMPLE, SERVER ,
or BACKUP. In any other case, the environment variable has no effect.

Setting this variable configures the DomainParticipant to connect to one or more servers using the Discovery Server
discovery mechanism.

• If ROS_DISCOVERY_SERVER is defined, and the DomainParticipant’s discovery protocol, is set to SIMPLE,
then Fast DDS will instead configure it as CLIENT of the given server.

• If ROS_DISCOVERY_SERVER is defined, and the DomainParticipant’s discovery protocol is SERVER or
BACKUP, then the variable is used to add remote servers to the given server, leaving the discovery protocol
as SERVER or BACKUP respectively.

• The value of the variable must list the locator of the server in the form of:

– An IPv4 address like 192.168.2.23. The UDP port can be appended using : as in 192.168.2.23:35665.

– An IPv6 address that follows RFC3513 address convention like 1080::8:800:200C:417A. Again a UDP
port can be appended like in [1080::8:800:200C:417A]:35665. Note the use of square brackets to
avoid ambiguities.

– A DNS name can be specified. This name will be used to query known hosts and available DNS servers to
try to resolve valid IP addresses. Several formats are acceptable:

∗ Plain domain name: eprosima.com. This will include all available IP addresses.

430 Chapter 6. Structure of the documentation

https://www.rfc-editor.org/rfc/rfc3513

Fast DDS Documentation, Release 2.8.2

∗ Domain name + port: eprosima.com:35665. As above but using a specific port.

∗ UDPv4 specifier + domain name: UDPv4:[eprosima.com]. Only the first IPv4 address resolved will
be used.

∗ UDPv4 specifier + domain name + port: UDPv4:[eprosima.com]:35665. As above but using a
specific port.

∗ UDPv6 specifier + domain name: UDPv6:[eprosima.com]. Only the first IPv6 address resolved will
be used.

∗ UDPv6 specifier + domain name + port: UDPv6:[eprosima.com]:35665. As above but using a
specific port.

• If no port is specified, the default port 11811 is used.

• To set more than one server’s address, they must be separated by semicolons.

• The server’s ID is determined by their position in the list. Two semicolons together means the corresponding ID
is free.

The following example shows how to set the address of two remote discovery servers with addresses
‘84.22.259.329:8888’ and ‘localhost:1234’ and IDs 0 and 2 respectively.

Linux

export ROS_DISCOVERY_SERVER="84.22.259.329:8888;;localhost:1234"

Windows

set ROS_DISCOVERY_SERVER=84.22.259.329:8888;;localhost:1234

Important: IP addresses specified in ROS_DISCOVERY_SERVER must be either valid IPv4/IPv6 addresses or domain
names. If a name can be resolved into several addresses it is possible to either use them all or restrict the selection to
the first IPv4 or IPv6 address using the UDPv4: and UDPv6: prefixes respectively.

Important: This environment variable is meant to be used in combination with Fast DDS discovery CLI . The server’s
ID is used by Fast DDS to derived the GuidPrefix_t of the server. If the server is not instantiated using the CLI,
the server’s GUID prefix should adhere to the same schema as the one generated from the CLI. Else, the clients
configured with this environment variable will not be able to establish a connection with the server, thus not being able
to connect to other clients either. The server’s GUID prefixes generated by the CLI comply with the following schema:
44.53.<server-id-in-hex>.5f.45.50.52.4f.53.49.4d.41. This prefix schema has been chosen for its ASCII
translation: DS<id_in_hex>_EPROSIMA.

Important: This environment variable can be changed at runtime adding new remote servers to a SERVER , BACKUP or
CLIENT (that has been initialized with this environment variable previously) if loaded from an environment file using
FASTDDS_ENVIRONMENT_FILE.

6.25. Environment variables 431

Fast DDS Documentation, Release 2.8.2

6.25.4 FASTDDS_STATISTICS

Warning: The environment variable is only used in the case where the CMake option FASTDDS_STATISTICS
has been enabled. In any other case, the environment variable has no effect. Please, refer to CMake options for
more information.

Setting this variable configures the DomainParticipant to enable the statistics DataWriters which topics are contained
in the list set in this environment variable. The elements of the list should be separated by semicolons and match the
statistics topic name aliases.

For example, to enable the statistics DataWriters that report the latency measurements, the environment variable should
be set as follows:

Linux

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC"

Windows

set FASTDDS_STATISTICS=HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC

Important: This environment variable can be used together with the XML profiles (for more information please refer
to Automatically enabling statistics DataWriters). The statistics DataWriters that will be enabled is the union between
the ones specified in the XML file (if loaded) and the ones stated in the environment variable (if set).

6.25.5 FASTDDS_ENVIRONMENT_FILE

Setting this environment variable to an existing json file allows to load the environment variables from the file instead
of from the environment. This allows to change the value of some environment variables at run time with just modifying
and saving the changes to the file. The environment value can be either an absolute or relative path. The file format is
as follows:

{
"environment_variable_name_1": "environment_variable_value_1",
"environment_variable_name_2": "environment_variable_value_2"

}

Important: The environment variables set in the environment file have precedence over the environment.

Warning: Currently only ROS_DISCOVERY_SERVER environment variable allows for changes at run time. (see
Modifying remote servers list at run time)

432 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.26 PropertyPolicyQos Options

This section contains the list of PropertyPolicyQos that can be set with Fast DDS:

6.26.1 Non consolidated QoS

The PropertyPolicyQos Options are used to develop new eProsima Extensions QoS. Before consolidating a new QoS
Policy, it is usually set using this generic QoS Policy. Consequently, this section is prone to frequent updates so the
user is advised to check latest changes after upgrading to a different release version.

DataWriter operating mode QoS Policy

By default, Fast DDS DataWriters are enabled using push mode. This implies that they will add new samples into
their queue, and then immediately deliver them to matched readers. For writers that produce non periodic bursts of
data, this may imply saturating the network with a lot of packets, increasing the possibility of losing them on unreliable
(i.e. UDP) transports. Depending on their QoS, DataReaders may also have to ignore some received samples, so they
will have to be resent.

Configuring the DataWriters on pull mode offers an alternative by letting each reader pace its own data stream. It
works by the writer notifying the reader what it is available, and waiting for it to request only as much as it can handle.
At the cost of greater latency, this model can deliver reliability while using far fewer packets than push mode.

DataWriters periodically announce the state of their queue by means of a heartbeat. Upon reception of the heartbeat,
DataReaders will request the DataWriter to send the samples they want to process. Consequently, the publishing rate
can be tuned setting the heartbeat period accordingly. See Tuning Heartbeat Period for more details.

PropertyPolicyQos name PropertyPolicyQos value Default value
"fastdds.push_mode" "true"/"false" "true"

6.26. PropertyPolicyQos Options 433

Fast DDS Documentation, Release 2.8.2

C++

DataWriterQos wqos;

// Enable pull mode
wqos.properties().properties().emplace_back(

"fastdds.push_mode",
"false");

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">
<data_writer profile_name="pull_mode_datawriter_xml_profile">

<propertiesPolicy>
<properties>

<!-- Enable pull mode -->
<property>

<name>fastdds.push_mode</name>
<value>false</value>

</property>
</properties>

</propertiesPolicy>
</data_writer>
</profiles>

Note:

• Communication to readers running on the same process (Intra-process delivery) will always use push mode.

• Communication to BEST_EFFORT_RELIABILITY_QOS readers will always use push mode.

Warning:

• It is inconsistent to enable the pull mode and also set the ReliabilityQosPolicyKind to
BEST_EFFORT_RELIABILITY_QOS.

• It is inconsistent to enable the pull mode and also set the heartbeatPeriod to c_TimeInfinite.

Unique network flows QoS Policy

Warning: This section is still under work.

Statistics Module Settings

Fast DDS Statistics Module uses the PropertyPolicyQos to indicate the statistics DataWriters that are enabled automat-
ically (see Automatically enabling statistics DataWriters). In this case, the property value is a semicolon separated list
containing the statistics topic name aliases of those DataWriters that the user wants to enable.

434 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

PropertyPolicyQos name PropertyPolicyQos value Default value
"fastdds.statistics" Semicolon separated list of statistics topic name aliases ""

C++

DomainParticipantQos pqos;

// Activate Fast DDS Statistics module
pqos.properties().properties().emplace_back("fastdds.statistics",

"HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC
→˓");

XML

<participant profile_name="statistics_domainparticipant_conf_xml_profile">
<rtps>

<propertiesPolicy>
<properties>

<!-- Activate Fast DDS Statistics Module -->
<property>

<name>fastdds.statistics</name>
<value>HISTORY_LATENCY_TOPIC;ACKNACK_COUNT_TOPIC;DISCOVERY_TOPIC;

→˓PHYSICAL_DATA_TOPIC</value>
</property>

</properties>
</propertiesPolicy>

</rtps>
</participant>

Physical Data in Discovery Information

It is possible to include the information conveyed in the PHYSICAL_DATA_TOPIC into the participant discovery mes-
sage, a.k.a DATA[p] (see Discovery phases). This is done by setting the following properties within the PropertyPoli-
cyQos:

PropertyPolicyQos
name

PropertyPolicyQos value Default value without
FASTDDS_STATISTICS

Default value with
FASTDDS_STATISTICS

"fastdds.
physical_data.
host"

Name of the host computer in
which the application runs

Not set ""

"fastdds.
physical_data.
user"

Name of the user running the
application

Not set ""

"fastdds.
physical_data.
process"

Name of the process running the
application

Not set ""

Whenever any of these properties is defined within the DomainParticipantQos, the DomainParticipant DATA[p]
will contained the set value. Furthermore, if any of these properties is set to a value of "", which is the default when

6.26. PropertyPolicyQos Options 435

Fast DDS Documentation, Release 2.8.2

FASTDDS_STATISTICS is defined (see CMake options), Fast DDS will automatically populate the value using the
following convention:

• "fastdds.physical_data.host": Host name as returned by asio::ip::host_name(), followed by ":<default
data sharing domain id>"

• "fastdds.physical_data.user": Name of the user running the application, or "unknown" if it could not be
retrieved.

• "fastdds.physical_data.process": The process ID of the process in which the application is running.

All the previous entails that adding physical information to the DATA[p] can be done regardless of whether
FASTDDS_STATISTICS is defined, and that it is possible to let Fast DDS set some default values into the reported
host, user, and process:

1. If FASTDDS_STATISTICS is defined, and the user does not specify otherwise, Fast DDS will set default values
to the physical properties of the DATA[p].

2. If FASTDDS_STATISTICS is defined, and the user sets values to the properties, the user settings are honored.

3. If FASTDDS_STATISTICS is defined, and the user removes the physical properties from the
DomainParticipantQos, then no physical information is transmitted in the DATA[p].

4. If FASTDDS_STATISTICS is not defined, it is still possible to transmit physical information in the DATA[p] by
setting the aforementioned properties:

a) If set to "", then Fast DDS will populate their value according to the described rules.

b) If set to something other than "", then the set value will be transmitted in the DATA[p] as-is.

In case FASTDDS_STATISTICS is defined, and the reporting of statistics over the DISCOVERY_TOPIC is enabled
(see Statistics Module Settings), then the physical information included in the DATA[p] is also transmitted over the
DISCOVERY_TOPIC (see PHYSICAL_DATA_TOPIC) whenever one DomainParticipant discovers another one.

C++

/* Create participant which announces default physical properties */
DomainParticipantQos pqos_default_physical;
// NOTE: If FASTDDS_STATISTICS is defined, then setting the properties to "" is not␣
→˓necessary
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.host
→˓", "");
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.user
→˓", "");
pqos_default_physical.properties().properties().emplace_back("fastdds.physical_data.
→˓process", "");
DomainParticipant* participant_with_physical = DomainParticipantFactory::get_instance()->
→˓create_participant(0,

pqos_default_physical);

/* Create participant which announces custom physical properties */
DomainParticipantQos pqos_custom_physical;
// NOTE: If FASTDDS_STATISTICS is defined, then clear the properties before setting them
// pqos_custom_physical.properties().properties().clear()
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.host",
→˓ "custom_hostname");
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.user",
→˓ "custom_username");
pqos_custom_physical.properties().properties().emplace_back("fastdds.physical_data.
→˓process", "custom_process");

(continues on next page)

436 Chapter 6. Structure of the documentation

https://think-async.com/Asio/asio-1.22.0/doc/asio/reference/ip__host_name.html

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DomainParticipant* participant_custom_physical = DomainParticipantFactory::get_
→˓instance()->create_participant(0,

pqos_custom_physical);

/* Create participant which does not announce physical properties */
DomainParticipantQos pqos_no_physical;
pqos_no_physical.properties().properties().clear();
DomainParticipant* participant_without_physical = DomainParticipantFactory::get_
→˓instance()->create_participant(

0, pqos_no_physical);

/* Load physical properties from default XML file */
DomainParticipantFactory::get_instance()->load_profiles();
DomainParticipantQos pqos_default_xml_physical =

DomainParticipantFactory::get_instance()->get_default_participant_qos();
DomainParticipant* participant_default_xml_physical =

DomainParticipantFactory::get_instance()->create_participant(0, pqos_default_xml_
→˓physical);

/* Load physical properties from specific XML file */
DomainParticipantFactory::get_instance()->load_XML_profiles_file("somefile.xml");
DomainParticipantFactory::get_instance()->load_profiles();
DomainParticipantQos pqos_custom_xml_physical =

DomainParticipantFactory::get_instance()->get_default_participant_qos();
DomainParticipant* participant_custom_xml_physical =

DomainParticipantFactory::get_instance()->create_participant(0, pqos_custom_xml_
→˓physical);

XML

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<profiles>
<participant profile_name="statistics_participant" is_default_profile="true">

<rtps>
<propertiesPolicy>

<properties>
<property>

<name>fastdds.physical_data.host</name>
<value>custom_hostname</value>

</property>
<property>

<name>fastdds.physical_data.user</name>
<value>custom_username</value>

</property>
<property>

<name>fastdds.physical_data.process</name>
<value>custom_process</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

(continues on next page)

6.26. PropertyPolicyQos Options 437

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

</participant>
</profiles>

</dds>

Important: The properties set using XML override those in the default QoS, which means that it is possible to set the
physical properties using XML regardless of whether FASTDDS_STATISTICS is defined. However, it is not possible to
remove the properties using XML, meaning that an application using Fast DDS with FASTDDS_STATISTICS enabled
which does not want for the physical information to be transmitted in the DomainParticipant DATA[p] must remove
the properties using the aforementioned C++ API.

Endpoint Partitions

Fast DDS uses this PropertyPolicyQos to define which partitions does an endpoint belong to. This property follows
the same logic regarding matching as the PartitionQosPolicy that can be defined for Publishers and Subscribers.

This property’s value is a semicolon separated list containing the partition names the user wants this endpoint to belong
to.

Important: If both a Publisher and one of its DataWriters have conflicting partition configuration, this is, a DataWriter
has this property defined while the Publisher has the PartitionQosPolicy defined, the DataWriter configuration takes
precedence and the Publisher PartitionQosPolicy is ignored for this endpoint. This applies to Subscribers and their
DataReaders as well.

This property will be automatically set when creating DataReaders and DataWriters using the create_with_profile
functions. It cannot be changed after the entity has been created.

PropertyPolicyQos name PropertyPolicyQos value Default value
"partitions" Semicolon separated list of partition names ""

438 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DataWriterQos wqos;

// Add partitions
wqos.properties().properties().emplace_back(

"partitions",
"part1;part2");

DataReaderQos rqos;

// Add partitions
rqos.properties().properties().emplace_back(

"partitions",
"part1;part2");

XML

<data_writer profile_name="pub_partition_example">
<qos>

<partition>
<names>

<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>
</data_writer>

<data_reader profile_name="sub_partition_example">
<qos>

<partition>
<names>

<name>part1</name>
<name>part2</name>

</names>
</partition>

</qos>
</data_reader>

Static Discovery’s Exchange Format

Static Discovery exchanges data in the Participant Discovery Phase (PDP). Currently there are two different exchange
formats which can be selected using the property dds.discovery.static_edp.exchange_format.

PropertyPoli-
cyQos value

Description De-
fault

"v1" Standard exchange format for Static Discovery.
"v1_Reduced" Format which reduces the necessary network bandwidth to transmit Static Discovery’s

information in the Participant Discovery Phase (PDP).

6.26. PropertyPolicyQos Options 439

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos participant_qos;
participant_qos.properties().properties().emplace_back(

"dds.discovery.static_edp.exchange_format",
"v1_Reduced"
);

XML

<participant profile_name="participant_xml_conf_static_discovery_format_profile">
<rtps>

<propertiesPolicy>
<properties>

<property>
<name>dds.discovery.static_edp.exchange_format</name>
<value>v1_Reduced</value>

</property>
</properties>

</propertiesPolicy>
</rtps>

</participant>

6.26.2 Flow Controller Settings

When using Flow Controllers, the DataWriter may need specific parameters to be set. Properties related with this
feature lie on the fastdds.sfc namespace.

• Property fastdds.sfc.priority is used to set the priority of the DataWriter for HIGH_PRIORITY and
PRIORITY_WITH_RESERVATION flow controllers. Allowed values are from -10 (highest priority) to 10 (low-
est priority). If the property is not present, it will be set to the lowest priority.

• Property fastdds.sfc.bandwidth_reservation is used to set the percentage of the bandwidth that the
DataWriter is requesting for PRIORITY_WITH_RESERVATION flow controllers. Allowed values are from 0 to
100, and express a percentage of the total flow controller limit. If the property is not present, it will be set to 0
(no bandwidth is reserved for the DataWriter).

6.26.3 Persistence Service Settings

Warning: This section is still under work.

6.26.4 Security Plugins Settings

Warning: This section is still under work.

440 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.26.5 Logging Module Settings

Warning: This section is still under work.

6.27 Dynamic Topic Types

eProsima Fast DDS provides a dynamic way to define and use topic types and topic data. Our implementation follows
the OMG Extensible and Dynamic Topic Types for DDS interface. For more information, you can read the specification
for DDS-XTypes V1.2.

The dynamic topic types offer the possibility to work over RTPS without the restrictions related to the IDLs. Using them,
the users can declare the different types that they need and manage the information directly, avoiding the additional
step of updating the IDL file and the generation of C++ classes.

6.27.1 Overview of Dynamic Types

This section describes the classes related to dynamic types that are used through the rest of the documentation. At the
bottom of the section you can also find a short example using the functionality.

Involved classes

The following class diagram describes the relationship among the classes related to dynamic types. Please, refer to the
description of each class to find its purpose and the nature of the relationship with the rest of the classes.

Fig. 13: Dynamic types class diagram

• DynamicType

• DynamicTypeBuilderFactory

• DynamicTypeBuilder

• TypeDescriptor

• DynamicTypeMember

• MemberDescriptor

• DynamicData

• DynamicDataFactory

• DynamicPubSubType

6.27. Dynamic Topic Types 441

http://www.omg.org/spec/DDS-XTypes/1.2

Fast DDS Documentation, Release 2.8.2

DynamicType

Base class of all types declared dynamically. It represents a dynamic data type that can be used to create DynamicData
values. By design, the structure of a dynamic type (its member fields) cannot be modified once the type is created.

DynamicTypeBuilderFactory

Singleton class that is in charge of the creation and the management of every DynamicType and DynamicTypeBuilder.
It declares functions to create builders for each kind of supported types. Given a builder for a specific type, it can also
create the corresponding DynamicType. Some simpler types can be created directly, avoiding the step of creating a
DynamicTypeBuilder. Please, refer to the Supported Types documentation for details about which ones support this
option.

Every object created by the factory must be deleted to avoid memory leaking. Refer to the Memory management section
for details.

DynamicTypeBuilder

Intermediate class used to configure a DynamicType before it is created. By design, the structure of a DynamicType
(its member fields) cannot be modified once the object is created. Therefore, all its structure must be defined prior to
its creation. The builder is the object used to set up this structure.

Once defined, the DynamicTypeBuilderFactory is used to create the DynamicType from the information contained in the
builder. As a shortcut, the builder exposes a function build() that internally uses the DynamicTypeBuilderFactory to
return a fully constructed DynamicType. The types created with build() are still subject to the Memory management
restrictions, and must be deleted by the DynamicTypeBuilderFactory.

Builders can be reused after the creation of a DynamicType, as the changes applied to the builder do not affect to types
created previously.

TypeDescriptor

Stores the information about one type with its relationships and restrictions. This is the class that describes the inner
structure of a DynamicType. The DynamicTypeBuilder has an internal instance of TypeDescriptor that modifies during
the type building process. When the DynamicType is created, the DynamicTypeBuilderFactory uses the information
of the TypeDescriptor in the builder to create the DynamicType. During the creation, the TypeDescriptor is copied to
the DynamicType, so that it becomes independent from the DynamicTypeBuilder, and the builder can be reused for
another type.

DynamicTypeMember

Represents a data member of a DynamicType that is also a DynamicType. Compound types (dynamic types that are
composed of other dynamic types) have a DynamicTypeMember for every child DynamicType added to it.

442 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

MemberDescriptor

Just as a TypeDescriptor describes the inner structure of a DynamicType, a MemberDescriptor stores all the information
needed to manage a DynamicTypeMember, like their name, their unique ID, or the default value after the creation. This
information is copied to the DynamicData on its creation.

DynamicData

While a DynamicType describes a type, DynamicData represents a data instance of a DynamicType. It provides func-
tions to access and modify the data values in the instance.

There are two ways to work with DynamicData:

• Activating the macro DYNAMIC_TYPES_CHECKING, which creates a variable for each primitive kind to help the
debug process.

• Without this macro, the size of the DynamicData is reduced, using only the minimum needed internal values,
but it makes the code harder to debug.

DynamicDataFactory

Singleton class that is in charge of the creation and the management of every DynamicData. It can take a DynamicType
and create an instance of a corresponding DynamicData. Every data object created by the factory must be deleted to
avoid memory leaking. Refer to the Memory management section for details.

It also allows to create a TypeIdentifier and a (Minimal and Complete) TypeObject from a TypeDescriptor.

DynamicPubSubType

This class is an adapter that allows using DynamicData on Fast DDS. It inherits from TopicDataType and implements
the functions needed to communicate the DynamicData between Publishers and Subscribers.

Minimum example

This is a short example to illustrate the use of the dynamic types and how the classes describe above interact with each
other. While the code snippet can be used as a quick reference for code building, the sequence diagram below provides
a visual interpretation of the actions.

// Create a builder for a specific type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_enum_
→˓builder();

// Use the builder to configure the type
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");

// Create the data type using the builder
// The builder will internally use the DynamicTypeBuilderFactory to create the type
DynamicType_ptr type = builder->build();

(continues on next page)

6.27. Dynamic Topic Types 443

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Create a new data instance of the create data type
DynamicData_ptr data (DynamicDataFactory::get_instance()->create_data(type));

// Now we can set or read data values
data->set_int32_value(1);

// No need of deleting the objects, since we used the
// automanaged smart pointers

Fig. 14: Sequence diagram of the code above

6.27.2 Supported Types

In order to provide maximum flexibility and capability to the defined dynamic types, eProsima Fast DDS supports
several member types, ranging from simple primitives to nested structures.

This section describes the basic (not nested) supported types. For more complex structures and examples, please, refer
to Complex Types.

• Primitive Types

• String and WString

• Alias

• Enumeration

• Bitmask

• Structure

• Bitset

• Union

• Sequence

• Array

• Map

Primitive Types

This section includes every simple kind:

BOOLEAN INT64
BYTE UINT16
CHAR8 UINT32
CHAR16 UINT64
INT16 FLOAT32
INT32 FLOAT64
FLOAT128

444 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

By definition, primitive types are self-described and can be created without configuration parameters. Therefore, Dy-
namicTypeBuilderFactory exposes several functions to allow users create the dynamic type avoiding the DynamicType-
Builder step. The DynamicTypeBuilder can still be used to create dynamic data of primitive types, as shown on the
example below. The DynamicData class has a specific get() and set() functions for each primitive type of the list.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_builder();
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_int32_value(1);

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_int32_value(1);

String and WString

Strings are pretty similar to primitive types, the main difference being that they need to set the size of the buffer that
they can manage. By default this size is set to 255 characters.

DynamicTypeBuilderFactory exposes the functions create_string_type() and create_wstring_type() to al-
low users create the DynamicTypes avoiding the DynamicTypeBuilder step. The DynamicTypeBuilder can still be used
to create String type dynamic data, as shown on the example below.

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicData* data = DynamicDataFactory::get_instance()->create_data(created_type);
data->set_string_value("Dynamic String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
data2->set_string_value("Dynamic String");

Alias

Alias types provide an alternative name to an already existing type. Once the DynamicData is created, users can access
its information as if they were working with the base type.

DynamicTypeBuilderFactory exposes the function create_alias_type() to allow users create the Alias types avoid-
ing the DynamicTypeBuilder step. The DynamicTypeBuilder can still be used to create Alias, as shown on the example
below.

// Create the base type
DynamicTypeBuilder_ptr base_builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓string_builder(100);

(continues on next page)

6.27. Dynamic Topic Types 445

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_type(base_
→˓builder.get());

// Create alias using Builders
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓builder(base_type,

"alias");
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());
data->set_string_value("Dynamic Alias String");

// Create alias type directly
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(base_type, "alias");
DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pAliasType);
data2->set_string_value("Dynamic Alias String");

Enumeration

An enumeration contains a set of supported values and a selected value among those supported. The supported values
must be configured using the DynamicTypeBuilder, using the add_member() function for each supported value. The
input to this function is the index and the name of the value we want to add.

The DynamicData class has functions get_enum_value() and set_enum_value() to work with value index or value
name name strings.

// Add enumeration values using the DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_enum_
→˓builder();
builder->add_empty_member(0, "DEFAULT");
builder->add_empty_member(1, "FIRST");
builder->add_empty_member(2, "SECOND");

// Create the data instance
DynamicData* data = DynamicDataFactory::get_instance()->create_data(builder.get());

// Access value using the name
std::string sValue = "SECOND";
data->set_enum_value(sValue);
std::string sStoredValue;
data->get_enum_value(sStoredValue, MEMBER_ID_INVALID);

// Access value using the index
uint32_t uValue = 2;
data->set_enum_value(uValue);
uint32_t uStoredValue;
data->get_enum_value(uStoredValue, MEMBER_ID_INVALID);

446 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Bitmask

Bitmasks are similar to enumeration types, but their members work as bit flags that can be individually turned on
and off. Bit operations can be applied when testing or setting a bitmask value. DynamicData has the special func-
tions get_bitmask_value() and set_bitmask_value() which allow to retrieve or modify the full value instead of
accessing each bit.

Bitmasks can be bound to any number of bits up to 64.

uint32_t limit = 5; // Stores as "octet"

// Add bitmask flags using the DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitmask_builder(limit);
builder->add_empty_member(0, "FIRST");
builder->add_empty_member(1, "SECOND");

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(builder.get()));

// Access the mask values using the name
data->set_bool_value(true, "FIRST"); // Set the "FIRST" bit
bool bSecondValue = data->get_bool_value("SECOND"); // Get the "SECOND" bit

// Access the mask values using the index
data->set_bool_value(true, 1); // Set the "SECOND" bit
bool bFirstValue = data->get_bool_value(0); // Get the "FIRST" bit

// Get the complete bitmask as integer
uint64_t fullValue;
data->get_bitmask_value(fullValue);

Structure

Structures are the common complex types, they allow to add any kind of members inside them. They do not have any
value, they are only used to contain other types.

To manage the types inside the structure, users can call the get() and set() functions according to the kind of the
type inside the structure using their ids. If the structure contains a complex value, it should be used with loan_value
to access to it and return_loaned_value to release that pointer. DynamicData manages the counter of loaned values
and users can not loan a value that has been loaned previously without calling return_loaned_value before.

The ids must be consecutive starting by zero, and the DynamicType will change that Id if it doesn’t match with the
next value. If two members have the same Id, after adding the second one, the previous will change its Id to the next
value. To get the Id of a member by name, DynamicData exposes the function get_member_id_by_name().

// Build a structure with two fields ("first" as int32, "other" as uint64) using␣
→˓DynamicTypeBuilder
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_
→˓type());

(continues on next page)

6.27. Dynamic Topic Types 447

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DynamicType_ptr struct_type(builder->build());

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

// Access struct members
data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);

Structures allow inheritance, exactly with the same OOP meaning. To inherit from another structure, we must create
the structure calling the create_child_struct_builder() of the factory. This function is shared with bitsets and
will deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

Bitset

Bitset types are similar to structure types, but their members are merely bitfields, which are stored optimally. In the static
version of bitsets, each bit uses just one bit in memory (with platform limitations) without alignment considerations.
A bitfield can be anonymous (cannot be addressed) to skip unused bits within a bitset.

Each bitfield in a bitset can be modified through their minimal needed primitive representation.

Number of bits Primitive
1 BOOLEAN
2-8 UINT8
9-16 UINT16
17-32 UINT32
33-64 UINT64

Each bitfield (or member) works like its primitive type with the only difference that the internal storage only modifies
the involved bits instead of the full primitive value.

Bit_bound and position of the bitfield can be set using annotations (useful when converting between static and dynamic
bitsets).

// Create bitfields with the appropriate type for their size
DynamicTypeBuilder_ptr base_type_byte_builder =

DynamicTypeBuilderFactory::get_instance()->create_byte_builder();
auto base_type_byte = base_type_byte_builder->build();

DynamicTypeBuilder_ptr base_type_uint32_builder =
DynamicTypeBuilderFactory::get_instance()->create_uint32_builder();

auto base_type_uint32 = base_type_uint32_builder->build();

// Create the bitset with two bitfields
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓bitset_builder();
builder->add_member(0, "byte", base_type_byte);

(continues on next page)

448 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

builder->add_member(1, "uint32", base_type_uint32);

// Apply members' annotations
builder->apply_annotation_to_member(0, ANNOTATION_POSITION_ID, "value", "0"); // "byte
→˓" starts at position 0
builder->apply_annotation_to_member(0, ANNOTATION_BIT_BOUND_ID, "value", "2"); // "byte
→˓" is 2 bit length
builder->apply_annotation_to_member(1, ANNOTATION_POSITION_ID, "value", "10"); //
→˓"uint32" starts at position 10 (8 bits empty)
builder->apply_annotation_to_member(1, ANNOTATION_BIT_BOUND_ID, "value", "20"); //
→˓"uint32" is 20 bits length

// Create the data instance
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(builder.get()));

// Access values
data->set_byte_value(234, 0);
data->set_uint32_value(2340, 1);
octet bValue;
uint32_t uValue;
data->get_byte_value(bValue, 0);
data->get_uint32_value(uValue, 1);

Bitsets allows inheritance, exactly with the same OOP meaning. To inherit from another bitset, we must create the
bitset calling the create_child_struct_builder of the factory. This function is shared with structures and will
deduce our type depending on the parent’s type.

DynamicTypeBuilder_ptr child_builder =
DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.

→˓get());

Union

Unions are a special kind of structures where only one of the members is active at the same time. To control these
members, users must set the discriminator type that is going to be used to select the current member calling the
create_union_builder function. The discriminator itself is a DynamicType of any primitive type, string type
or union type.

Every member that is going to be added needs at least one union_case_index to set how it is going to be selected
and, optionally, if it is the default value of the union.

// Create the union DynamicTypeBuilder with an int32 discriminator
DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_union_
→˓builder(discriminator);

// Add the union members. "firts" will be the default value
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type(), "", { 0 },

true);
builder->add_member(0, "second", DynamicTypeBuilderFactory::get_instance()->create_int64_
→˓type(), "", { 1 }, (continues on next page)

6.27. Dynamic Topic Types 449

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

false);

// Create the data instance
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

// Access the values using the member index
data->set_int32_value(9, 0);
data->set_int64_value(13, 1);

// Get the label of the currently selected member
uint64_t unionLabel;
data->get_union_label(unionLabel);

Sequence

A complex type that manages its members as a list of items allowing users to insert, remove or access to a member of
the list. To create this type users need to specify the type that it is going to store and optionally the size limit of the list.

To ease the memory management of this type, DynamicData has these functions:

• insert_sequence_data(): Creates a new element at the end of the list and returns the id of the new element.

• remove_sequence_data(): Removes the element of the given index and refreshes the ids to keep the consis-
tency of the list.

• clear_data(): Removes all the elements of the list.

// Create a DynamicTypeBuilder for a sequence of two elements of type inte32
uint32_t length = 2;
DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder =

DynamicTypeBuilderFactory::get_instance()->create_sequence_builder(base_type,␣
→˓length);

// Create the data instance
DynamicType_ptr sequence_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(sequence_type));

// Insert and remove elements
MemberId newId, newId2;
data->insert_int32_value(10, newId);
data->insert_int32_value(12, newId2);
data->remove_sequence_data(newId);

450 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Array

Arrays are pretty similar to sequences with two main differences: they can have multiple dimensions and they do not
need their elements to be stored consecutively.

An array needs to know the number of dimensions it is managing. For that, users must provide a vector with as many
elements as dimensions in the array. Each element in the vector represents the size of the given dimension. If the value
of an element is set to zero, the default value applies (100).

Id values on the set() and get() functions of DynamicData correspond to the array index. To ease the management
of array elements, every set() function in DynamicData class creates the item if the given index is empty.

To ease the memory management of this type, DynamicData has these functions:

• insert_array_data(): Creates a new element at the end of the array and returns the id of the new element.

• remove_array_data(): Clears the element of the given index.

• clear_data(): Removes all the elements of the array.

• get_array_index(): Returns the position id giving a vector of indexes on every dimension that the arrays
support, which is useful in multidimensional arrays.

// Create an array DynamicTypeBuilder for a 2x2 elements of type int32
std::vector<uint32_t> lengths = { 2, 2 };
DynamicType_ptr base_type = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder =

DynamicTypeBuilderFactory::get_instance()->create_array_builder(base_type,␣
→˓lengths);

// Create the data instance
DynamicType_ptr array_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(array_type));

// Access elements in the multidimensional array
MemberId pos = data->get_array_index({1, 0});
data->set_int32_value(11, pos);
data->set_int32_value(27, pos + 1);
data->clear_array_data(pos);

Map

Maps contain a list of ‘key-value’ pair types, allowing users to insert, remove or modify the element types of the map.
The main difference with sequences is that the map works with pairs of elements and creates copies of the key element
to block the access to these elements.

To create a map, users must set the types of the key and the value elements, and, optionally, the size limit of the map.

To ease the memory management of this type, DynamicData has these functions:

• insert_map_data(): Inserts a new key value pair and returns the ids of the newly created key and value
elements.

• remove_map_data(): Uses the given id to find the key element and removes the key and the value elements
from the map.

• clear_data(): Removes all the elements from the map.

6.27. Dynamic Topic Types 451

Fast DDS Documentation, Release 2.8.2

// Create DynamicTypeBuilder for a map of two pairs of {key:int32, value:int32}
uint32_t length = 2;
DynamicType_ptr base = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicTypeBuilder_ptr builder =

DynamicTypeBuilderFactory::get_instance()->create_map_builder(base, base,␣
→˓length);

// Create the data instance
DynamicType_ptr map_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(map_type));

// Add a new element to the map with key 1
DynamicData_ptr key(DynamicDataFactory::get_instance()->create_data(base));
MemberId keyId;
MemberId valueId;
key->set_int32_value(1);
data->insert_map_data(key.get(), keyId, valueId);

// Add a new element to the map with key 2
// insert_map_data creates a copy of the key, so the same instance can be reused
MemberId keyId2;
MemberId valueId2;
key->set_int32_value(2);
data->insert_map_data(key.get(), keyId2, valueId2);

// Set the value to the element with key 2, using the returned value Id
data->set_int32_value(53, valueId2);

// Remove elements from the map
data->remove_map_data(keyId);
data->remove_map_data(keyId2);

6.27.3 Complex Types

If the application’s data model is complex, it is possible to combine the basic types to create complex types, including
nested composed types (structures within structures within unions). Types can also be extended using inheritance,
improving the flexibility of the definition of the data types to fit the model.

The following subsections describe these complex types and their use.

• Nested structures

• Structure inheritance

• Alias of an alias

• Unions with complex types

452 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Nested structures

Structures can contain other structures as members. The access to these compound members is restricted and managed
by the DynamicData instance. Users must request access calling loan_value before using them, and release them
with return_loaned_value once they finished. The loan operation will fail if the member is already loaned and has
not been released yet.

// Create a struct type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_
→˓type());
DynamicType_ptr struct_type = builder->build();

// Create a struct type with the previous struct as member
DynamicTypeBuilder_ptr parent_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
parent_builder->add_member(0, "child_struct", struct_type);
parent_builder->add_member(1, "second", DynamicTypeBuilderFactory::get_instance()->
→˓create_int32_type());
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(parent_builder.
→˓get()));

// Access the child struct with the loan operations
DynamicData* child_data = data->loan_value(0);
child_data->set_int32_value(5, 0);
child_data->set_uint64_value(13, 1);
data->return_loaned_value(child_data);

Structure inheritance

To inherit a structure from another one, use the create_child_struct_type function from DynamicTypeBuilder-
Factory. The resultant type contains all members from the base class and the new ones added to the child.

Structures support several levels of inheritance, so the base class can be another derived type itself.

// Create a base struct type
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type());
builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_uint64_
→˓type());

// Create a struct type derived from the previous struct
DynamicTypeBuilder_ptr child_builder =

DynamicTypeBuilderFactory::get_instance()->create_child_struct_builder(builder.
→˓get());

// Add new members to the derived type
builder->add_member(2, "third", DynamicTypeBuilderFactory::get_instance()->create_uint64_
→˓type()); (continues on next page)

6.27. Dynamic Topic Types 453

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Create the data instance
DynamicType_ptr struct_type = child_builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(struct_type));

// The derived type includes the members defined on the base type
data->set_int32_value(5, 0);
data->set_uint64_value(13, 1);
data->set_uint64_value(47, 2);

Alias of an alias

Alias types support recursion, simply use an alias name as base type for create_alias_type().

// Using Builders
DynamicTypeBuilder_ptr created_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_string_builder(100);
DynamicType_ptr created_type = DynamicTypeBuilderFactory::get_instance()->create_
→˓type(created_builder.get());
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓builder(

created_builder.get(), "alias");
DynamicTypeBuilder_ptr builder2 = DynamicTypeBuilderFactory::get_instance()->create_
→˓alias_builder(

builder.get(), "alias2");
DynamicData* data(DynamicDataFactory::get_instance()->create_data(builder2->build()));
data->set_string_value("Dynamic Alias 2 String");

// Creating directly the Dynamic Type
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_string_
→˓type(100);
DynamicType_ptr pAliasType = DynamicTypeBuilderFactory::get_instance()->create_alias_
→˓type(pType, "alias");
DynamicType_ptr pAliasType2 =

DynamicTypeBuilderFactory::get_instance()->create_alias_type(pAliasType, "alias2
→˓");
DynamicData* data2(DynamicDataFactory::get_instance()->create_data(pAliasType));
data2->set_string_value("Dynamic Alias 2 String");

Unions with complex types

Unions support complex type fields. The access to these complex type fields is restricted and managed by the Dy-
namicData instance. Users must request access calling loan_value before using them, and release them with
return_loaned_value once they finished. The loan operation will fail if the fields is already loaned and has not
been released yet.

// Create a union DynamicTypeBuilder
DynamicType_ptr discriminator = DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type();
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_union_
→˓builder(discriminator); (continues on next page)

454 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// Add a int32 to the union
builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_int32_
→˓type(), "", { 0 },

true);

// Create a struct type and add it to the union
DynamicTypeBuilder_ptr struct_builder = DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder();
struct_builder->add_member(0, "first", DynamicTypeBuilderFactory::get_instance()->create_
→˓int32_type());
struct_builder->add_member(1, "other", DynamicTypeBuilderFactory::get_instance()->create_
→˓uint64_type());
builder->add_member(1, "first", struct_builder.get(), "", { 1 }, false);

// Create the union data instance
DynamicType_ptr union_type = builder->build();
DynamicData_ptr data(DynamicDataFactory::get_instance()->create_data(union_type));

// Access the struct member using the loan operations
DynamicData* child_data = data->loan_value(1);
child_data->set_int32_value(9, 0);
child_data->set_int64_value(13, 1);
data->return_loaned_value(child_data);

6.27.4 Annotations

DynamicTypeBuilder allows applying an annotation to both current type and inner members with the functions:

• apply_annotation()

• apply_annotation_to_member()

Both functions take the name, the key and the value of the annotation. apply_annotation_to_member() additionally
receives the MemberId of the inner member.

For example, if we define an annotation like:

@annotation MyAnnotation
{

long value;
string name;

};

And then we apply it through IDL to a struct:

@MyAnnotation(5, "length")
struct MyStruct
{
...

The equivalent code using DynamicType will be:

6.27. Dynamic Topic Types 455

Fast DDS Documentation, Release 2.8.2

// Apply the annotation
DynamicTypeBuilder_ptr builder = DynamicTypeBuilderFactory::get_instance()->create_
→˓struct_builder();
//...
builder->apply_annotation("MyAnnotation", "value", "5");
builder->apply_annotation("MyAnnotation", "name", "length");

Builtin annotations

The following annotations modifies the behavior of DynamicTypes:

• @position: When applied to Bitmask, sets the position of the flag,
as expected in the IDL annotation.
If applied to Bitset, sets the base position of the bitfield,
useful to identify unassigned bits.

• @bit_bound: Applies to Bitset. Sets the size in bits of the bitfield.

• @key: Alias for @Key. See Data types with a key section for more details.

• @default: Sets a default value for the member.

• @non_serialized: Excludes a member from being serialized.

6.27.5 Dynamic Types Discovery and Endpoint Matching

When using DynamicType support, Fast DDS checks the optional TypeObject and TypeIdentifier values during endpoint
matching. Currently, the matching only verifies that both endpoints are using the same topic data type, but will not
negotiate about it.

The process of checking the types is as follows:

• It checks CompleteTypeObject on TypeObject first.

• If one or both endpoints do not define the CompleteTypeObject, it tries with MinimalTypeObject.

• If one or both endpoints do not define MinimalTypeObject either, it compares the TypeIdentifier.

• If none is defined, then just the type name is checked.

If one of the endpoints transmits a CompleteTypeObject, Discovery-Time Data Typing can be performed.

TypeObject

TypeObject fully describes a data type, the same way as the IDL representation does. There are two kinds of Type-
Objects: CompleteTypeObject and MinimalTypeObject .

• CompleteTypeObject fully describes the type, the same way as the IDL representation does.

• MinimalTypeObject is a compact representation of the data type, that contains only the information relevant
for the remote Endpoint to be able to interpret the data.

TypeObject is an IDL union with both Minimal and Complete representation. Both are described in the annexes of
DDS-XTypes V1.2 document, please refer to this document for details.

456 Chapter 6. Structure of the documentation

http://www.omg.org/spec/DDS-XTypes/1.2

Fast DDS Documentation, Release 2.8.2

TypeInformation

TypeInformation is an extension of XTypes 1.2 that allow Endpoints to share information about data types without
sending the TypeObject. Endpoints instead share a TypeInformation containing the TypeIdentifier of the data type.
Then each Endpoint can request the complete TypeObject for the data types it is interested in. This avoids sending the
complete data type to Endpoints that may not be interested.

TypeInformation is described in the annexes of DDS-XTypes V1.2 document, please refer to this document for
details.

TypeIdentifier

TypeIdentifier provides a unique way to identify each type. For basic types, the information contained in the
TypeIdentifier completely describes the type, while for complex ones, it serves as a search key to retrieve the complete
TypeObject.

TypeIdentifier is described in the annexes of DDS-XTypes V1.2 document, please refer to this document for details.

TypeObjectFactory

Singleton class that manages the creation and access for every registered TypeObject and TypeIdentifier. It can generate
a full DynamicType from a basic TypeIdentifier (i.e., one whose discriminator is not EK_MINIMAL or EK_COMPLETE).

Fast DDS-Gen

Fast DDS-Gen supports the generation of XXXTypeObject.h and XXXTypeObject.cxx files, taking XXX as our IDL type.
These files provide a small Type Factory for the type XXX. Generally, these files are not used directly, as now the type
XXX will register itself through its factory to TypeObjectFactory in its constructor, making it very easy to use static
types with dynamic types.

Discovery-Time Data Typing

Using the Fast DDS API, when a participant discovers a remote endpoint that sends a complete TypeObject or
a simple TypeIdentifier describing a type that the participant does not know, the participant listener’s function
on_type_discovery is called with the received TypeObject or TypeIdentifier, and, when possible, a pointer to a
DynamicType ready to be used.

Discovery-Time Data Typing allows the discovering of simple DynamicTypes. A TypeObject that depends on other
TypeObjects, cannot be built locally using Discovery-Time Data Typing and should use TypeLookup Service instead.

To ease the sharing of the TypeObject and TypeIdentifier used by Discovery-Time Data Typing, TopicDataType contains
a function member named auto_fill_type_object. If set to true, the local participant will send the TypeObject
and TypeIdentifier to the remote endpoint during discovery.

6.27. Dynamic Topic Types 457

http://www.omg.org/spec/DDS-XTypes/1.2
http://www.omg.org/spec/DDS-XTypes/1.2

Fast DDS Documentation, Release 2.8.2

TypeLookup Service

Using the Fast DDS API, when a participant discovers an endpoint that sends a type information describing a type that
the participant doesn’t know, the participant listener’s function on_type_information_received() is called with
the received TypeInformation. The user can then try to retrieve the full TypeObject hierarchy to build the remote type
locally, using the TypeLookup Service.

To enable this builtin TypeLookup Service, the user must enable it in the QoS of the DomainParticipant:

DomainParticipantQos qos;
qos.wire_protocol().builtin.typelookup_config.use_client = true;
qos.wire_protocol().builtin.typelookup_config.use_server = true;

A participant can be enabled to act as a TypeLookup server, client, or both.

The process of retrieving the remote type from its TypeInformation, and then registering it, can be simplified using
the register_remote_type function on the DomainParticipant. This function takes the name of the type, the type
information, and a callback function. Internally it uses the TypeLookup Service to retrieve the full TypeObject, and, if
successful, it will call the callback.

This callback has the following signature:

void(std::string& type_name, const DynamicType_ptr type)

• type_name: Is the name given to the type when calling register_remote_type, to allow the same callback
to be used across different calls.

• type: If the register_remote_type was able to build and register a DynamicType, this parameter contains
a pointer to the type. Otherwise it contains nullptr. In the latter case, the user can still try to build the type
manually using the factories, but it is very likely that the build process will fail.

TopicDataType contains a data member named auto_fill_type_information. If set to true, the local participant
will send the type information to the remote endpoint during discovery.

6.27.6 Serialization

Dynamic Types have their own pubsub type like any class generated with an IDL, and their management is pretty
similar to them.

DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicPubSubType pubsubType(pType);

// SERIALIZATION EXAMPLE
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);
uint32_t payloadSize = static_cast<uint32_t>(pubsubType.
→˓getSerializedSizeProvider(pData)());
SerializedPayload_t payload(payloadSize);
pubsubType.serialize(pData, &payload);

// DESERIALIZATION EXAMPLE
types::DynamicData* data2 = DynamicDataFactory::get_instance()->create_data(pType);
pubsubType.deserialize(&payload, data2);

A member can be marked to be ignored by serialization with the annotation @non_serialized.

458 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.27.7 XML profiles

Dynamic Types profiles allows eProsima Fast DDS to create DynamicTypes directly defining them through XML. This
allows any application to change TopicDataTypes without the need to change its source code.

Please, refer to Dynamic Types profiles for further information about how to use this feature.

6.27.8 Memory management

Memory management is critical for dynamic types since every dynamic type and dynamic data is managed with point-
ers. Every object stored inside of a dynamic object is managed by its owner, and users must delete every object they
create using the factories.

DynamicTypeBuilder* pBuilder = DynamicTypeBuilderFactory::get_instance()->create_uint32_
→˓builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData* pData = DynamicDataFactory::get_instance()->create_data(pType);

DynamicTypeBuilderFactory::get_instance()->delete_builder(pBuilder);
DynamicDataFactory::get_instance()->delete_data(pData);

To ease this management, the library defines smart pointers (DynamicTypeBuilder_ptr, DynamicType and
DynamicData_ptr) that will delete the objects automatically when they are not needed anymore. DynamicType will
always be returned as DynamicType_ptr because there is no internal management of its memory.

DynamicTypeBuilder_ptr pBuilder = DynamicTypeBuilderFactory::get_instance()->create_
→˓uint32_builder();
DynamicType_ptr pType = DynamicTypeBuilderFactory::get_instance()->create_int32_type();
DynamicData_ptr pData(DynamicDataFactory::get_instance()->create_data(pType));

The only case where these smart pointers cannot be used is with functions loan_value and return_loaned_value.
Raw pointers should be used with these functions, because the returned value should not be deleted, and using a smart
pointer with them will cause a crash.

6.27.9 Dynamic HelloWorld Examples

These are complete working examples that make use of dynamic types. You can explore them to find how this feature
connects to the rest of Fast DDS, and learn how to integrate it in your own application.

DynamicHelloWorldExample

This example is in folder examples/cpp/dds/DynamicHelloWorldExample of the Fast DDS GitHub repository. It shows
the use of DynamicType generation to provide the TopicDataType. This example is compatible with the classic Hel-
loWorldExample.

As a quick reference, the following piece of code shows how the HelloWorld type is created using DynamicTypes:

// In HelloWorldPublisher.h
// Dynamic Types
eprosima::fastrtps::types::DynamicData* m_DynHello;
eprosima::fastrtps::types::DynamicPubSubType m_DynType;

(continues on next page)

6.27. Dynamic Topic Types 459

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/DynamicHelloWorldExample
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// In HelloWorldPublisher.cpp
// Create basic builders
DynamicTypeBuilder_ptr struct_type_builder(DynamicTypeBuilderFactory::get_instance()->
→˓create_struct_builder());

// Add members to the struct.
struct_type_builder->add_member(0, "index", DynamicTypeBuilderFactory::get_instance()->
→˓create_uint32_type());
struct_type_builder->add_member(1, "message", DynamicTypeBuilderFactory::get_instance()->
→˓create_string_type());
struct_type_builder->set_name("HelloWorld");

DynamicType_ptr dynType = struct_type_builder->build();
m_DynType.SetDynamicType(dynType);
m_DynHello = DynamicDataFactory::get_instance()->create_data(dynType);
m_DynHello->set_uint32_value(0, 0);
m_DynHello->set_string_value("HelloWorld", 1);

DDSDynamicHelloWorldExample

This example uses the DDS API, and can be retrieve from folder examples/cpp/dds/DynamicHelloWorldExample of
the Fast DDS GitHub repository. It shows a publisher that loads a type from an XML file, and shares it during dis-
covery. The subscriber discovers the type using Discovery-Time Data Typing, and registers the discovered type on the
on_type_discovery() listener function.

TypeLookupService

This example uses the DDS API, and it is located in folder examples/cpp/dds/TypeLookupService of the Fast
DDS GitHub repository. It is very similar to DDSDynamicHelloWorldExample, but the shared type is complex
enough to require the TypeLookup Service due to the dependency of inner struct types. Specifically, it uses the
register_remote_type approach with a callback.

6.28 Typical Use-Cases

Fast DDS is highly configurable, which allows for its use in a large number of scenarios. This section provides config-
uration examples for the following typical use cases when dealing with distributed systems:

• Fast DDS over WIFI . Presents a case where Discovery through multicast communication is a challenge. This
example shows how to:

– Configure an initial list of peers with the address-port pairs of the remote participants (see Configuring
Initial Peers).

– Disable the multicast discovery mechanism (see Disabling multicast discovery).

– Configure a SERVER discovery mechanism (see Discovery Server).

• Well Known Network Deployments. Describes a situation where the entire entity network topology (Participants,
Publishers, Subscribers, and their addresses and ports) are known beforehand. In these kind of environments,
Fast DDS allows to completely avoid the discovery phase configuring a STATIC discovery mechanism.

460 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/DynamicHelloWorldExample
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/TypeLookupService
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS

Fast DDS Documentation, Release 2.8.2

• Topics with many subscribers. In cases where there are many DataReaders subscribed to the same Topic, using
multicast delivery can help reducing the overhead in the network and CPU.

• Large Data Rates. Presents configuration options that can improve the performance in scenarios where the
amount of data exchanged between a Publisher and a Subscriber is large, either because of the data size or
because the message rate. The examples describe how to:

– Configure the socket buffer size (see increase the buffers size).

– Limit the publication rate (see Flow Controllers).

– Tune the size of the socket buffers (see Increasing socket buffers size).

– Tune the Heartbeat period (see Tuning Heartbeat Period).

– Configure a non-strict reliable mode (see Using Non-strict Reliability).

• Real-time behavior. Describes the configuration options that allows using Fast DDS on a real-time scenario.
The examples describe how to:

– Configure memory management to avoid dynamic memory allocation (see Tuning allocations).

– Limit the blocking time of API functions to have a predictable response time (see Non-blocking calls).

• Reduce memory usage. For use cases with memory consumption constraints, Fast DDS can be configured to
reduce memory footprint to a minimum by adjusting different QoS policies.

• Zero-Copy communication. Under certain constraints, Fast DDS can provide application level communication
between publishing and subscribing nodes avoiding any data copy during the process.

• Unique network flows. This use case illustrates the APIs that allow for the request of unique network flows, and
for the identification of those in use.

• Dynamic network interfaces. If the network interfaces are expected to change while the application is running,
Fast DDS provides an easy way of re-scanning the available interfaces and including them.

• Statistics module. This use case explains how to enable the Statistics module within the monitored application,
and how to create a statistics monitoring application.

• ROS 2 using Fast DDS middleware. Since Fast DDS is the default middleware implementation in every OSRF
Robot Operation System 2 (ROS 2) long term (LTS) releases and most of the non-LTS releases, this documenta-
tion includes a whole independent section to show the use of the library in ROS 2, and how to take full advantage
of Fast DDS wide set of capabilities in a ROS 2 project.

• How to use eProsima DDS Record and Replay (rosbag2 and DDS). Instructions on how to tune your application
to be able to record and replay your DDS messages using ROS 2 rosbag2 package.

6.28.1 Fast DDS over WIFI

The RTPS v2.2 standard defines the SIMPLE Discovery as the default mechanism for discovering participants in the
network. One of the main features of this mechanism is the use of multicast communication in the Participant Discovery
Phase (PDP). This can be a problem in cases where WiFi communication is used, since multicast is not as reliable over
WiFi as it is over ethernet.

The recommended solution to this challenge is to configure an initial list of remote peers on the DomainParticipant,
so that it can set unicast communication with them. This way, the use of multicast is not needed to discover these
initial peers. Furthermore, if all the peers are known and configured beforehand, all multicast communication can be
removed.

Alternatively, Discovery Server can be used to avoid multicast discovery. A DomainParticipant with a well-know
address acts as a discovery server, providing the rest of the participants the information required to connect among them.
If all the peers are known and configured beforehand, STATIC discovery can be used instead, completely avoiding the

6.28. Typical Use-Cases 461

https://www.openrobotics.org/
https://index.ros.org/doc/ros2/
https://www.omg.org/spec/DDSI-RTPS/2.2/

Fast DDS Documentation, Release 2.8.2

discovery phase. Use-case Well Known Network Deployments provides a detailed explanation on how to configure Fast
DDS for STATIC discovery.

Configuring Initial Peers

A complete description of the initial peers list and its configuration can be found in Initial peers. For convenience, this
example shows how to configure an initial peers list with one peer on host 192.168.10.13 with participant ID 1 in
domain 0.

Note: Note that the port number used here is not arbitrary, as discovery ports are defined by the RTPS v2.2 standard.
Refer to Well Known Ports to learn about these standard port numbers.

If the participant ID is not known, setting TransportDescriptorInterface maxInitialPeersRange to at least the max-
imum expected number of DomainParticipants will ensure discovery and communication.

C++

DomainParticipantQos qos;

// configure an initial peer on host 192.168.10.13.
// The port number corresponds to the well-known port for metatraffic unicast
// on participant ID `1` and domain `0`.
Locator_t initial_peer;
IPLocator::setIPv4(initial_peer, "192.168.10.13");
initial_peer.port = 7412;
qos.wire_protocol().builtin.initialPeersList.push_back(initial_peer);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="initial_peers_example_profile" is_default_profile="true
→˓">

<rtps>
<builtin>

<initialPeersList>
<locator>

<udpv4>
<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</initialPeersList>
</builtin>

</rtps>
</participant>

</profiles>

462 Chapter 6. Structure of the documentation

https://www.omg.org/spec/DDSI-RTPS/2.2/

Fast DDS Documentation, Release 2.8.2

Disabling multicast discovery

If all the peers are known and configured on the initial peer list beforehand, it is possible to disable the multicast meta
traffic completely, as all DomainParticipants can communicate among them through unicast.

The complete description of the procedure to disable multicast discovery can be found at Disabling all Multicast Traffic.
For convenience, however, this example shows how to disable all multicast traffic configuring one metatraffic unicast
locator. Consideration should be given to the assignment of the ports in the metatrafficUnicastLocatorList,
avoiding the assignment of ports that are not available or do not match the address-port listed in the intial peers list of
the peer participant.

C++

DomainParticipantQos qos;

// configure one metatraffic unicast locator on interface 192.168.10.13.
// on participant ID `1` and domain `0`.
Locator_t meta_unicast_locator;
IPLocator::setIPv4(meta_unicast_locator, "192.168.10.13");
meta_unicast_locator.port = 7412;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(meta_unicast_
→˓locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="initial_peers_multicast_avoidance" is_default_profile=
→˓"true" >

<rtps>
<builtin>

<!-- Choosing a specific unicast address -->
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.13</address>
<port>7412</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

6.28. Typical Use-Cases 463

Fast DDS Documentation, Release 2.8.2

Discovery Server

During Discovery, the Participant Discovery Phase (PDP) relies on meta traffic announcements sent to multicast ad-
dresses so that all the DomainParticipants in the network can acknowledge each other. This phase is followed by
a Endpoint Discovery Phase (EDP) where all the DomainParticipants use discovered unicast addresses to exchange
information about their Publisher and Subscriber entities with the rest of the DomainParticipants, so that matching
between entities of the same topic can occur.

Fast DDS provides a client-server discovery mechanism, in which a server DomainParticipant operates as the central
point of communication. It collects and processes the metatraffic sent by the client DomainParticipants, and then
distributes the appropriate information among the rest of the clients.

A complete description of the feature can be found at Discovery Server Settings. The following subsections present
configurations for different discovery server use cases.

• UDPv4 basic example setup

• UDPv4 redundancy example

• UDPv4 persistency example

• UDPv4 partitioning using servers

UDPv4 basic example setup

To configure the Discovery Server scenario, two types of participants are created: the server participant and the client
participant. Two parameters to be configured in this type of implementation are outlined:

• Server GUID Prefix: This is the unique identifier of the server.

• Server Address-port pair: Specifies the IP address and port of the machine that implements the server. Any
free random port can be used. However, using RTPS standard ports is discouraged.

464 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

SERVER
C++

DomainParticipantQos qos;

// Configure the current participant as SERVER
qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_
→˓t::SERVER;

// Define the listening locator to be on interface 192.168.10.57 and port 56542
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.57");
server_locator.port = 56542;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Set the GUID prefix to identify this server
std::istringstream("72.61.73.70.66.61.72.6d.74.65.73.74") >> qos.wire_protocol().
→˓prefix;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP SERVER" is_default_profile="true">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>SERVER</discoveryProtocol>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>
<prefix>72.61.73.70.66.61.72.6d.74.65.73.74</prefix>

</rtps>
</participant>

</profiles>

6.28. Typical Use-Cases 465

Fast DDS Documentation, Release 2.8.2

CLIENT
C++

DomainParticipantQos qos;

// Configure the current participant as CLIENT
qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_
→˓t::CLIENT;

// Define a locator for the SERVER Participant on address 192.168.10.57 and port 56542
Locator_t remote_server_locator;
IPLocator::setIPv4(remote_server_locator, "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_attr;
remote_server_attr.metatrafficUnicastLocatorList.push_back(remote_server_locator);

// Set the GUID prefix to identify the remote server
remote_server_attr.ReadguidPrefix("72.61.73.70.66.61.72.6d.74.65.73.74");

// Connect to the SERVER at the previous locator
qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP CLIENT" is_default_profile="true">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>CLIENT</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="72.61.73.70.66.61.72.6d.74.65.73.74">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

466 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

UDPv4 redundancy example

The basic setup example presents a single point of failure. That is, if the server fails the clients are not able to perform
the discovery. To prevent this, several servers could be linked to each client. Then, a discovery failure only takes place
if all servers fail, which is a more unlikely event.

In the example below, the values have been chosen to ensure each server has a unique GUID Prefix and unicast address-
port pair. Note that several servers can share the same IP address but their port numbers should be different. Likewise,
several servers can share the same port if their IP addresses are different.

Prefix UDPv4 address-port
75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.57:56542
75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.60:56543

6.28. Typical Use-Cases 467

Fast DDS Documentation, Release 2.8.2

SERVER
C++

// Configure first server's locator on interface 192.168.10.57 and port 56542
Locator_t server_locator_1;
IPLocator::setIPv4(server_locator_1, "192.168.10.57");
server_locator_1.port = 56542;

// Configure participant_1 as SERVER listening on the previous locator
DomainParticipantQos server_1_qos;
server_1_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =␣
→˓DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.31") >> server_1_qos.wire_
→˓protocol().prefix;
server_1_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_
→˓locator_1);

// Configure second server's locator on interface 192.168.10.60 and port 56543
Locator_t server_locator_2;
IPLocator::setIPv4(server_locator_2, "192.168.10.60");
server_locator_2.port = 56543;

// Configure participant_2 as SERVER listening on the previous locator
DomainParticipantQos server_2_qos;
server_2_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =␣
→˓DiscoveryProtocol_t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.32") >> server_2_qos.wire_
→˓protocol().prefix;
server_2_qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_
→˓locator_2);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP SERVER 1">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.31</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

<participant profile_name="UDP SERVER 2">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.32</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

468 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

CLIENT
C++

// Define a locator for the first SERVER Participant
Locator_t remote_server_locator_1;
IPLocator::setIPv4(remote_server_locator_1, "192.168.10.57");
remote_server_locator_1.port = 56542;

RemoteServerAttributes remote_server_attr_1;
remote_server_attr_1.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_1.metatrafficUnicastLocatorList.push_back(remote_server_locator_1);

// Define a locator for the second SERVER Participant
Locator_t remote_server_locator_2;
IPLocator::setIPv4(remote_server_locator_2, "192.168.10.60");
remote_server_locator_2.port = 56543;

RemoteServerAttributes remote_server_attr_2;
remote_server_attr_2.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_2.metatrafficUnicastLocatorList.push_back(remote_server_locator_2);

// Configure the current participant as CLIENT connecting to the SERVERS at the␣
→˓previous locators
DomainParticipantQos client_qos;
client_qos.wire_protocol().builtin.discovery_config.discoveryProtocol =␣
→˓DiscoveryProtocol_t::CLIENT;
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(remote_server_attr_1);
client_qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_
→˓back(remote_server_attr_2);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP CLIENT REDUNDANCY">
<rtps>

<builtin>
<discovery_config>

<discoveryProtocol>CLIENT</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.31">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>
<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>

</builtin>
</rtps>

</participant>
</profiles>

6.28. Typical Use-Cases 469

Fast DDS Documentation, Release 2.8.2

UDPv4 persistency example

On Discovery Server, servers gather and maintain the information of all connected endpoints, and distribute it to the
clients. In case of a server failure, all this information is lost and the server needs to recover it on restart. In the basic
setup this is done starting over the Discovery process. Given that servers usually have lots of clients associated, this is
very time consuming.

Alternatively, Fast DDS allows to synchronize the server’s discovery record to a file, so that the information can be
loaded back into memory during the restart. This feature is enabled specifying the Discovery Protocol as BACKUP.

The record file is located on the server’s process working directory, and named following the pattern server-
<GUIDPREFIX>.db (for example: server-73-65-72-76-65-72-63-6C-69-65-6E-74.db). Once the server is created,
it automatically looks for this file. If it already exists, its contents are loaded, avoiding the need of re-discovering the
clients. To make a fresh restart, any such backup file must be removed or renamed before launching the server.

UDPv4 partitioning using servers

Server association can be seen as another isolation mechanism besides Domains and Partitions. Clients that do not
share a server cannot see each other and belong to isolated server networks. For example, in the following figure, client
1 and client 2 cannot communicate even if they are on the same physical network and Domain.

Fig. 15: Clients cannot see each other due to server isolation

However, it is possible to connect server isolated networks very much as physical networks can be connected through
routers:

• Option 1: Connecting the clients to several servers, so that the clients belong several networks.

• Option 2: Connecting one server to another, so that the networks are linked together.

• Option 3: Create a new server linked to the servers to which the clients are connected.

Options 1 and 2 can only be implemented by modifying QoS values or XML configuration files beforehand. In this
regard they match the domain and partition strategy. Option 3, however, can be implemented at runtime, when the
isolated networks are already up and running.

Option 1

Connect each client to both servers. This case matches the redundancy use case already introduced.

Option 2

Connect one server to the other. This means configuring one of the servers to act as client of the other.

Consider two servers, each one managing an isolated network:

Net-
work

Prefix UDPv4 address

A 75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.60:56543
B 75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.57:56542

470 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

In order to communicate both networks we can set server A to act as client of server B:

6.28. Typical Use-Cases 471

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos qos;

// Configure current Participant as SERVER on address 192.168.10.60
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.60");
server_locator.port = 56543;

qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_
→˓t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.31") >> qos.wire_protocol().
→˓prefix;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Add the connection attributes to the remote server.
Locator_t remote_server_locator;
IPLocator::setIPv4(remote_server_locator, "192.168.10.57");
remote_server_locator.port = 56542;

RemoteServerAttributes remote_server_attr;
remote_server_attr.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr.metatrafficUnicastLocatorList.push_back(remote_server_locator);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP SERVER A">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.31</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

472 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Option 3

Create a new server linked to the servers to which the clients are connected.

Consider two servers (A and B), each one managing an isolated network, and a third server (C) that will be used to
connect the first two:

ServerPrefix UDPv4 address
A 75.63.2D.73.76.72.63.6C.6E.74.2D.31192.168.10.60:56543
B 75.63.2D.73.76.72.63.6C.6E.74.2D.32192.168.10.57:56542
C 75.63.2D.73.76.72.63.6C.6E.74.2D.33192.168.10.54:56541

In order to communicate both networks we can setup server C to act as client of servers A and B as follows:

6.28. Typical Use-Cases 473

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos qos;

// Configure current Participant as SERVER on address 192.168.10.60
Locator_t server_locator;
IPLocator::setIPv4(server_locator, "192.168.10.54");
server_locator.port = 56541;

qos.wire_protocol().builtin.discovery_config.discoveryProtocol = DiscoveryProtocol_
→˓t::SERVER;
std::istringstream("75.63.2D.73.76.72.63.6C.6E.74.2D.33") >> qos.wire_protocol().
→˓prefix;
qos.wire_protocol().builtin.metatrafficUnicastLocatorList.push_back(server_locator);

// Add the connection attributes to the remote server A.
Locator_t remote_server_locator_A;
IPLocator::setIPv4(remote_server_locator_A, "192.168.10.60");
remote_server_locator_A.port = 56543;

RemoteServerAttributes remote_server_attr_A;
remote_server_attr_A.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.31");
remote_server_attr_A.metatrafficUnicastLocatorList.push_back(remote_server_locator_A);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr_A);

// Add the connection attributes to the remote server B.
Locator_t remote_server_locator_B;
IPLocator::setIPv4(remote_server_locator_B, "192.168.10.57");
remote_server_locator_B.port = 56542;

RemoteServerAttributes remote_server_attr_B;
remote_server_attr_B.ReadguidPrefix("75.63.2D.73.76.72.63.6C.6E.74.2D.32");
remote_server_attr_B.metatrafficUnicastLocatorList.push_back(remote_server_locator_B);

qos.wire_protocol().builtin.discovery_config.m_DiscoveryServers.push_back(remote_
→˓server_attr_B);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="UDP SERVER C">
<rtps>

<prefix>75.63.2D.73.76.72.63.6C.6E.74.2D.33</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>
<discoveryServersList>

<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.32">
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.57</address>
<port>56542</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>
<RemoteServer prefix="75.63.2D.73.76.72.63.6C.6E.74.2D.31">

<metatrafficUnicastLocatorList>
<locator>

<udpv4>
<address>192.168.10.60</address>
<port>56543</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</RemoteServer>

</discoveryServersList>
</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.10.54</address>
<port>56541</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

</profiles>

474 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.28.2 Well Known Network Deployments

It is often the case in industrial deployments, such as productions lines, that the entire network topology (hosts, IP ad-
dresses, etc.) is known beforehand. Such scenarios are perfect candidates for Fast DDS STATIC Discovery mechanism,
which drastically reduces the middleware setup time (time until all the entities are ready for information exchange),
while at the same time limits the connections to those strictly necessary.

Knowing the complete network topology allows to:

• Minimize the PDP meta-traffic and avoid multicast communication with Peer-to-Peer Participant Discovery
Phase.

• Completely avoid the EDP with STATIC Endpoint Discovery Phase.

Peer-to-Peer Participant Discovery Phase

The SIMPLE PDP discovery phase entails the DomainParticipants sending periodic PDP announcements over multi-
cast, and answering to the announcements received from remote DomainParticipants. As a result, the number of PDP
connections grows quadratically with the number of DomainParticipants, resulting in a large amount of meta traffic on
the network.

However, if all DomainParticipants are known beforehand, they can be configured to send their announcements only to
the unicast addresses of their peers. This is done by specifying a list of peer addresses, and by disabling the participant
multicast announcements. As an additional advantage, with this method only the peers configured on the list are known
to the DomainParticipant, allowing to arrange which participant will communicate with which. This reduces the amount
of meta traffic if not all the DomainParticipants need to be aware of all the rest of the remote participants present in the
network.

Use-case Fast DDS over WIFI provides a detailed explanation on how to configure Fast DDS for such case.

STATIC Endpoint Discovery Phase

Users can manually configure which Publisher and Subscriber match with each other, so they can start sharing user
data right away, avoiding the EDP phase.

A complete description of the feature can be found at STATIC Discovery Settings. There is also a fully functional
helloworld example implementing STATIC EDP in the examples/cpp/dds/StaticHelloWorldExample folder.

The following subsections present an example configuration where a Publisher in Topic HelloWorldTopic
from DomainParticipant HelloWorldPublisher is matched with a Subscriber from DomainParticipant
HelloWorldSubscriber.

6.28. Typical Use-Cases 475

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/StaticHelloWorldExample

Fast DDS Documentation, Release 2.8.2

Create STATIC discovery XML files

HelloWorldPublisher.xml

<staticdiscovery>
<participant>

<name>HelloWorldPublisher</name>
<writer>

<userId>1</userId>
<entityID>2</entityID>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>

</writer>
</participant>

</staticdiscovery>

HelloWorldSubscriber.xml

<staticdiscovery>
<participant>

<name>HelloWorldSubscriber</name>
<reader>

<userId>3</userId>
<entityID>4</entityID>
<topicName>HelloWorldTopic</topicName>
<topicDataType>HelloWorld</topicDataType>

</reader>
</participant>

</staticdiscovery>

Create entities and load STATIC discovery XML files

When creating the entities, the local writer/reader attributes must match those defined in the STATIC discovery XML
file loaded by the remote entity.

476 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

PUBLISHER
C++

// Participant configuration
DomainParticipantQos participant_qos;
participant_qos.name("HelloWorldPublisher");
participant_qos.wire_protocol().builtin.discovery_config.use_SIMPLE_
→˓EndpointDiscoveryProtocol = false;
participant_qos.wire_protocol().builtin.discovery_config.use_STATIC_
→˓EndpointDiscoveryProtocol = true;
participant_qos.wire_protocol().builtin.discovery_config.static_edp_xml_config(
→˓"HelloWorldSubscriber.xml");

// DataWriter configuration
DataWriterQos writer_qos;
writer_qos.endpoint().user_defined_id = 1;
writer_qos.endpoint().entity_id = 2;

// Create the DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, participant_
→˓qos);
if (nullptr == participant)
{

// Error
return;

}

// Create the Publisher
Publisher* publisher =

participant->create_publisher(PUBLISHER_QOS_DEFAULT);
if (nullptr == publisher)
{

// Error
return;

}

// Create the Topic with the appropriate name and data type
std::string topic_name = "HelloWorldTopic";
std::string data_type = "HelloWorld";
Topic* topic =

participant->create_topic(topic_name, data_type, TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Create the DataWriter
DataWriter* writer =

publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == writer)
{

// Error
return;

}

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_static_pub">
<rtps>

<name>HelloWorldPublisher</name>
<builtin>

<discovery_config>
<EDP>STATIC</EDP>
<static_edp_xml_config>file://HelloWorldSubscriber.xml</static_edp_

→˓xml_config>
</discovery_config>

</builtin>
</rtps>

</participant>

<data_writer profile_name="uc_publisher_xml_conf_static_discovery">
<topic>

<name>HelloWorldTopic</name>
<dataType>HelloWorld</dataType>

</topic>
<userDefinedID>1</userDefinedID>
<entityID>2</entityID>

</data_writer>
</profiles>

6.28. Typical Use-Cases 477

Fast DDS Documentation, Release 2.8.2

SUBSCRIBER
C++

// Participant configuration
DomainParticipantQos participant_qos;
participant_qos.name("HelloWorldSubscriber");
participant_qos.wire_protocol().builtin.discovery_config.use_SIMPLE_
→˓EndpointDiscoveryProtocol = false;
participant_qos.wire_protocol().builtin.discovery_config.use_STATIC_
→˓EndpointDiscoveryProtocol = true;
participant_qos.wire_protocol().builtin.discovery_config.static_edp_xml_config(
→˓"HelloWorldPublisher.xml");

// DataWriter configuration
DataWriterQos writer_qos;
writer_qos.endpoint().user_defined_id = 3;
writer_qos.endpoint().entity_id = 4;

// Create the DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, participant_
→˓qos);
if (nullptr == participant)
{

// Error
return;

}

// Create the Subscriber
Subscriber* subscriber =

participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT);
if (nullptr == subscriber)
{

// Error
return;

}

// Create the Topic with the appropriate name and data type
std::string topic_name = "HelloWorldTopic";
std::string data_type = "HelloWorld";
Topic* topic =

participant->create_topic(topic_name, data_type, TOPIC_QOS_DEFAULT);
if (nullptr == topic)
{

// Error
return;

}

// Create the DataReader
DataReader* reader =

subscriber->create_datareader(topic, DATAREADER_QOS_DEFAULT);
if (nullptr == reader)
{

// Error
return;

}

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_static_sub">
<rtps>

<name>HelloWorldSubscriber</name>
<builtin>

<discovery_config>
<static_edp_xml_config>file://HelloWorldPublisher.xml</static_edp_

→˓xml_config>
</discovery_config>

</builtin>
</rtps>

</participant>

<data_reader profile_name="uc_subscriber_xml_conf_static_discovery">
<topic>

<name>HelloWorldTopic</name>
<dataType>HelloWorld</dataType>

</topic>
<userDefinedID>3</userDefinedID>
<entityID>4</entityID>

</data_reader>
</profiles>

478 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.28.3 Large Data Rates

When the amount of data exchanged between a Publisher and a Subscriber is large, some tuning may be required to
compensate for side effects on the network and CPU load. This large amount of data can be a result of the data types
being large, a high message rate, or a combination of both.

In this scenario, several limitations have to be taken into account:

• Network packages could be dropped because the transmitted amount of data fills the socket buffer before it can
be processed. The solution is to increase the buffers size.

• It is also possible to limit the rate at which the Publisher sends data using Flow Controllers, in order to limit the
effect of message bursts, and avoid to flood the Subscribers faster than they can process the messages.

• On RELIABLE_RELIABILITY_QOS mode, the overall message rate can be affected due to the retransmission of
lost packets. Selecting the Heartbeat period allows to tune between increased meta traffic or faster response to
lost packets. See Tuning Heartbeat Period.

• Also on RELIABLE_RELIABILITY_QOS mode, with high message rates, the history of the DataWriter can be
filled up, blocking the publication of new messages. A non-strict reliable mode can be configured to avoid this
blocking, at the cost of potentially losing some messages on some of the Subscribers.

Warning: eProsima Fast DDS defines a conservative default message size of 64kB, which roughly corresponds to
TCP and UDP payload sizes. If the topic data is bigger, it will automatically be be fragmented into several transport
packets.

Warning: The loss of a fragment means the loss of the entire message. This has most impact on
BEST_EFFORT_RELIABILITY_QOS mode, where the message loss probability increases with the number of frag-
ments

Increasing socket buffers size

In high rate scenarios or large data scenarios, network packages can be dropped because the transmitted amount of data
fills the socket buffer before it can be processed. Using RELIABLE_RELIABILITY_QOS mode, Fast DDS will try to
recover lost samples, but with the penalty of retransmission. With BEST_EFFORT_RELIABILITY_QOS mode, samples
will be definitely lost.

By default eProsima Fast DDS creates socket buffers with the system default size. However, these sizes can be modified
using the DomainParticipantQos, as shown in the example below.

6.28. Typical Use-Cases 479

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos participant_qos;

// Increase the sending buffer size
participant_qos.transport().send_socket_buffer_size = 1048576;

// Increase the receiving buffer size
participant_qos.transport().listen_socket_buffer_size = 4194304;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_xml_profile_qos_socketbuffers">
<rtps>

<sendSocketBufferSize>1048576</sendSocketBufferSize>
<listenSocketBufferSize>4194304</listenSocketBufferSize>

</rtps>
</participant>

</profiles>

Finding out system maximum values

Operating systems set a maximum value for socket buffer sizes. If the buffer sizes are tuned with DomainParticipantQos,
the values set cannot exceed the maximum value of the system.

Linux

The maximum buffer size values can be retrieved with the command sysctl. For socket buffers used to send data, use
the following command:

$> sudo sysctl -a | grep net.core.wmem_max
net.core.wmem_max = 1048576

For socket buffers used to receive data the command is:

$> sudo sysctl -a | grep net.core.rmem_max
net.core.rmem_max = 4194304

However, these maximum values are also configurable and can be increased if needed. The following command in-
creases the maximum buffer size of sending sockets:

$> sudo sysctl -w net.core.wmem_max=12582912

For receiving sockets, the command is:

$> sudo sysctl -w net.core.rmem_max=12582912

480 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Windows

The following command changes the maximum buffer size of sending sockets:

C:\> reg add HKLM\SYSTEM\CurrentControlSet\services\AFD\Parameters /v DefaultSendWindow /
→˓t REG_DWORD /d 12582912

For receiving sockets, the command is:

C:\> reg add HKLM\SYSTEM\CurrentControlSet\services\AFD\Parameters /v␣
→˓DefaultReceiveWindow /t REG_DWORD /d 12582912

Increasing the Transmit Queue Length of an interface (Linux only)

The Transmit Queue Length (txqueuelen) is a TCP/UDP/IP stack network interface value. This value sets the number
of packets allowed per kernel transmit queue of a network interface device. By default, the txqueuelen value for
Ethernet interfaces is set to 1000 in Linux. This value is adequate for most Gigabit network devices. However, in some
specific cases, the txqueuelen setting should be increased to avoid overflows that drop packets. Similarly, choosing a
value that is too large can cause added overhead resulting in higher network latencies.

Note that this information only applies to the sending side, and not the receiving side. Also increasing the txqueuelen
should go together with increasing the buffer sizes of the UDP and/or TCP buffers. (this must be applied for both the
sending and receiving sides).

The settings for a specific network adapter can be viewed using the one of the following commands:

ip

ip link show ${interface}

ifconfig

ifconfig ${interface}

This will display the configuration of the adapter, and among the parameters the txqueuelen. This parameter can be
a value between a 1000 and 20000.

Important: If the ip command is used, the Transmit Queue Length parameter is called qlen.

The txqueuelen can be modified for the current session using either the ifconfig or ip commands. However, take
into account that after rebooting the default values will be configured again.

ip

ip link set txqueuelen ${value} dev ${interface}

ifconfig

ifconfig ${interface} txqueuelen ${size}

6.28. Typical Use-Cases 481

Fast DDS Documentation, Release 2.8.2

Flow Controllers

eProsima Fast DDS provides a mechanism to limit the rate at which the data is sent by a DataWriter. These controllers
should be registered on the creation of the DomainParticipant using FlowControllersQos, and then referenced on the
creation of the DataWriter using PublishModeQosPolicy.

A new thread is spawned the first time a flow controller is referenced by an asynchronous DataWriter. This thread will
be responsible for arbitrating the network output of the samples being transmitted by all the DataWriters referencing
the same flow controller.

Flow controllers should be given a name so they can later on be referenced by the DataWriters. A default, unlimited,
FIFO flow controller is always available with name FASTDDS_FLOW_CONTROLLER_DEFAULT.

Scheduling policy

There are different kinds of flow controllers, depending on the scheduling policy used. All of them will limit the number
of bytes sent to the network to no more than max_bytes_per_period bytes during period_ms milliseconds. They
only differ in the way they decide the order in which the samples are sent.

• FIFO will output samples on a first come, first served order.

• ROUND_ROBIN will output one sample from each DataWriter in circular order.

• HIGH_PRIORITY will output samples from DataWriters with the highest priority first. The priority of a
DataWriter is configured using property fastdds.sfc.priority. Allowed values are from -10 (highest pri-
ority) to 10 (lowest priority). If the property is not present, it will be set to the lowest priority. Samples for
DataWriters with the same priority are handled with FIFO order.

• PRIORITY_WITH_RESERVATION works as the previous one, but allows the DataWriters to reserve part of the
output bandwidth. This is done with the property fastdds.sfc.bandwidth_reservation. Allowed values
are from 0 to 100, and express a percentage of the total flow controller limit. If the property is not present, it will
be set to 0 (no bandwidth is reserved for the DataWriter). After the reserved bandwidth has been consumed, the
rest of the samples will be handled with the rules of HIGH_PRIORITY .

482 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Example configuration

C++

// Limit to 300kb per second.
static const char* flow_controller_name = "example_flow_controller";
auto flow_control_300k_per_sec = std::make_shared
→˓<eprosima::fastdds::rtps::FlowControllerDescriptor>();
flow_control_300k_per_sec->name = flow_controller_name;
flow_control_300k_per_sec->scheduler =␣
→˓eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::FIFO;
flow_control_300k_per_sec->max_bytes_per_period = 300 * 1000;
flow_control_300k_per_sec->period_ms = 1000;

// Register flow controller on participant
DomainParticipantQos participant_qos;
participant_qos.flow_controllers().push_back(flow_control_300k_per_sec);

// create participant and publisher

// Link writer to the registered flow controller.
// Note that ASYNCHRONOUS_PUBLISH_MODE must be used
DataWriterQos qos;
qos.publish_mode().kind = ASYNCHRONOUS_PUBLISH_MODE;
qos.publish_mode().flow_controller_name = flow_controller_name;

XML
There is currently no way of configuring flow controllers with XML. This will be added in future releases of the
product

Warning: Specifying a flow controller with a size smaller than the transport buffer size can cause the messages
to never be sent.

Tuning Heartbeat Period

On RELIABLE_RELIABILITY_QOS (ReliabilityQosPolicy), RTPS protocol can detect which messages have been lost
and retransmit them. This mechanism is based on meta-traffic information exchanged between DataWriters and
DataReaders, namely, Heartbeat and Ack/Nack messages.

A smaller Heartbeat period increases the CPU and network overhead, but speeds up the system response when a piece
of data is lost. Therefore, users can customize the Heartbeat period to match their needs. This can be done with the
DataWriterQos.

DataWriterQos qos;
qos.reliable_writer_qos().times.heartbeatPeriod.seconds = 0;
qos.reliable_writer_qos().times.heartbeatPeriod.nanosec = 500000000; //500 ms

6.28. Typical Use-Cases 483

Fast DDS Documentation, Release 2.8.2

Using Non-strict Reliability

When HistoryQosPolicyKind is set as KEEP_ALL_HISTORY_QOS, all samples have to be received (and acknowledged)
by all subscribers before they can be overridden by the DataWriter. If the message rate is high and the network is not
reliable (i.e., lots of packets get lost), the history of the DataWriter can be filled up, blocking the publication of new
messages until any of the old messages is acknowledged by all subscribers.

If this strictness is not needed, HistoryQosPolicyKind can be set as KEEP_ALL_HISTORY_QOS. In this case, when the
history of the DataWriter is full, the oldest message that has not been fully acknowledged yet is overridden with the
new one. If any subscriber did not receive the discarded message, the publisher will send a GAP message to inform the
subscriber that the message is lost forever.

Practical Examples

Example: Sending a large file

Consider the following scenario:

• A Publisher needs to send a file with a size of 9.9 MB.

• The Publisher and Subscriber are connected through a network with a bandwidth of 100 MB/s

With a fragment size of 64 kB, the Publisher has to send about 1100 fragments to send the whole file. A possible
configuration for this scenario could be:

• Using RELIABLE_RELIABILITY_QOS, since a losing a single fragment would mean the loss of the complete file.

• Decreasing the heartbeat period, in order to increase the reactivity of the Publisher.

• Limiting the data rate using a Flow Controller, to avoid this transmission cannibalizing the whole bandwidth. A
reasonable rate for this application could be 5 MB/s, which represents only 5% of the total bandwidth.

Note: Using Shared Memory Transport the only limit to the fragment size is the available memory. Therefore, all
fragmentation can be avoided in SHM by increasing the size of the shared buffers.

Example: Video streaming

In this scenario, the application transmits a video stream between a Publisher and a Subscriber, at 50 fps. In real-time
audio or video transmissions, it is usually preferred to have a high stable datarate feed, even at the cost of losing some
samples. Losing one or two samples per second at 50 fps is more acceptable than freezing the video waiting for the
retransmission of lost samples. Therefore, in this case BEST_EFFORT_RELIABILITY_QOS can be appropriate.

6.28.4 Topics with many subscribers

By default, every time a DataWriter publishes a data change on a Topic, it sends a unicast message for every DataReader
that is subscribed to the Topic. If there are several DataReaders subscribed, it is recommendable to use multicast instead
of unicast. By doing so, only one network package will be sent for each sample. This will improve both CPU and
network usage.

This solution can be implemented with UDP Transport or Shared Memory Transport (SHM). SHM transport is multi-
cast by default, but is only available between DataWriters and DataReaders on the same machine. UDP transport needs
some extra configuration. The example below shows how to set a DataReaderQos to configure a DataReader to use a
multicast transport on UDP. More information about configuring local and remote locators on endpoints can be found
in RTPSEndpointQos.

484 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Note: Multicast over UDP can be problematic on some scenarios, mainly WiFi and complex networks with multiple
network links.

C++

DataReaderQos qos;

// Add new multicast locator with IP 239.255.0.4 and port 7900
eprosima::fastrtps::rtps::Locator_t new_multicast_locator;
eprosima::fastrtps::rtps::IPLocator::setIPv4(new_multicast_locator, "239.255.0.4");
new_multicast_locator.port = 7900;
qos.endpoint().multicast_locator_list.push_back(new_multicast_locator);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_reader profile_name="reader_xml_conf_multicast_locators_profile">
<multicastLocatorList>

<locator>
<udpv4>

<address>239.255.0.4</address>
<port>7900</port>

</udpv4>
</locator>

</multicastLocatorList>
</data_reader>

</profiles>

6.28.5 Real-time behavior

Real-time applications have very tight constraints on data processing times. In order to comply with these constraints,
Fast DDS can be configured to guarantee responses within a specified time. This is achieved with the following re-
straints:

• Allocating all the required memory during entity initialization, so that all the data processing tasks are heap
allocation free (see Tuning allocations).

• Returning from blocking functions if the provided timeout is reached (see Non-blocking calls).

This section explains how to configure Fast DDS to achieve this behavior.

6.28. Typical Use-Cases 485

Fast DDS Documentation, Release 2.8.2

Tuning allocations

Allocating and deallocating memory implies some non-deterministic time consuming operations. Therefore, most
real-time systems need to operate in a way that all dynamic memory is allocated during the application initialization,
avoiding memory management operations in the main loop.

If users provide maximum sizes for the data and collections that Fast DDS keeps internally, memory for these data
and collections can be preallocated during entity initialization. In order to choose the correct size values, users must
be aware of the topology of the whole domain. Specifically, the number of DomainParticipants, DataWriters, and
DataReaders must be known when setting their configuration.

The following sections describe how to configure allocations to be done during the initialization of the entities. Al-
though some examples are provided on each section as reference, there is also a complete example use case.

Parameters on the participant

Every DomainParticipant holds an internal collection with information about every local and remote peer DomainPar-
ticipants that has been discovered. This information includes, among other things:

• A nested collection with information of every DataWriter announced on the peer DomainParticipant.

• A nested collection with information of every DataReader announced on the peer DomainParticipant.

• Custom data configured by the user on the peer DomainParticipant, namely, UserDataQosPolicy, Partition-
QosPolicy, and PropertyPolicyQos.

By default, these collections are fully dynamic, meaning that new memory is allocated when a new DomainParticipant,
DataWriter, or DataReader is discovered. Likewise, the mentioned custom configuration data parameters have an
arbitrary size. By default, the memory for these parameters is allocated when the peer DomainParticipant announces
their value.

However, DomainParticipantQos has a member function allocation(), of type ParticipantResourceLimitsQos, that
allows configuring maximum sizes for these collections and parameters, so that all the required memory can be preal-
located during the initialization of the DomainParticipant.

Limiting the number of discovered entities

ParticipantResourceLimitsQos provides three data members to configure the allocation behavior of discovered entities:

• participants configures the allocation of the collection of discovered DomainParticipants.

• readers configures the allocation of the collection of DataWriters within each discovered DomainParticipant.

• writers configures the allocation of the collection of DataReaders within each discovered DomainParticipant.

By default, a full dynamic behavior is used. Using these members, however, it is easy to configure the collections to
be preallocated during initialization, setting them to a static maximum expected value, as shown in the example below.
Please, refer to ResourceLimitedContainerConfig for a complete description of additional configuration alternatives
given by these data members.

486 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos qos;

// Fix the size of discovered participants to 3
// This will effectively preallocate the memory during initialization
qos.allocation().participants =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(3u);

// Fix the size of discovered DataWriters to 1 per DomainParticipant
// Fix the size of discovered DataReaders to 3 per DomainParticipant
// This will effectively preallocate the memory during initialization
qos.allocation().writers =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(1u);
qos.allocation().readers =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(3u);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_qos_entity_resource_limit">
<rtps>

<allocation>
<!-- Limit to 3 participants -->
<total_participants>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_participants>

<!-- Limit to 3 readers per participant -->
<total_readers>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_readers>

<!-- Limit to 1 writer per participant -->
<total_writers>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</total_writers>
</allocation>

</rtps>
</participant>

</profiles>

6.28. Typical Use-Cases 487

Fast DDS Documentation, Release 2.8.2

Warning: Configuring a collection as fixed in size effectively limits the number of peer entities that can be
discovered. Once the configured limit is reached, any new entity will be ignored. In the given example, if a fourth
peer DomainParticipant appears, it will not be discovered, as the collection of discovered DomainParticipants is
already full.

Limiting the size of custom parameters

data_limits inside ParticipantResourceLimitsQos provides three data members to configure the allocation behavior
of custom parameters:

• max_user_data limits the size of UserDataQosPolicy to the given number of octets.

• max_properties limits the size of PartitionQosPolicy to the given number of octets.

• max_partitions limits the size of PropertyPolicyQos to the given number of octets.

If these sizes are configured to something different than zero, enough memory will be allocated for them for each
participant and endpoint. A value of zero implies no size limitation, and memory will be dynamically allocated as
needed. By default, a full dynamic behavior is used.

content_filter inside ParticipantResourceLimitsQos provides members to configure the allocation behavior of con-
tent filter discovery information:

• expression_initial_size sets the preallocated size of the filter expression.

• expression_parameters controls the allocation behavior for the list of expression parameters. Refer to Re-
sourceLimitedContainerConfig for a complete description of the alternatives. Receiving information about a
content filter with more parameters than the maximum configured here, will make the filtering happen on the
reader side.

488 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

DomainParticipantQos qos;

// Fix the size of the complete user data field to 256 octets
qos.allocation().data_limits.max_user_data = 256u;
// Fix the size of the complete partitions field to 256 octets
qos.allocation().data_limits.max_partitions = 256u;
// Fix the size of the complete properties field to 512 octets
qos.allocation().data_limits.max_properties = 512u;
// Set the preallocated filter expression size to 512 characters
qos.allocation().content_filter.expression_initial_size = 512u;
// Set the maximum number of expression parameters to 4 and its allocation␣
→˓configuration to fixed size
qos.allocation().content_filter.expression_parameters =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(4u);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_qos_parameter_resource_limit">
<rtps>

<allocation>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

<!-- content_filter cannot be configured using XML (yet) -->
</allocation>

</rtps>
</participant>

</profiles>

Warning: If the data fields announced by the remote peer do not fit on the preallocated memory, an error will be
triggered during the processing of the announcement message. This usually means that the discovery messages of a
remote peer with too large data fields will be discarded, i.e., peers with too large data fields will not be discovered.

Parameters on the DataWriter

Every DataWriter holds internal collections with information about every DataReader to which it matches. By de-
fault, these collections are fully dynamic, meaning that new memory is allocated when a new DataReader is matched.
However, DataWriterQos has a data member writer_resource_limits(), of type WriterResourceLimitsQos, that
allows configuring the memory allocation behavior on the DataWriter.

WriterResourceLimitsQos provides data members matched_subscriber_allocation and
reader_filters_allocation of type ResourceLimitedContainerConfig that allow configuring the maximum
expected size of the collection of matched DataReader, and the collection of writer side content filters, so they
can be preallocated during the initialization of the DataWriter, as shown in the example below. Please, refer to

6.28. Typical Use-Cases 489

Fast DDS Documentation, Release 2.8.2

ResourceLimitedContainerConfig for a complete description of additional configuration alternatives given by these
data members.

C++

DataWriterQos qos;

// Fix the size of matched DataReaders to 3
// This will effectively preallocate the memory during initialization
qos.writer_resource_limits().matched_subscriber_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(3u);
// Fix the size of writer side content filters to 1
// This will effectively preallocate the memory during initialization
qos.writer_resource_limits().reader_filters_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(1u);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_writer profile_name="writer_profile_qos_resource_limit">
<!-- Limit to 3 matching readers -->
<matchedSubscribersAllocation>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

</profiles>

Warning: Configuring the collection of matched DataReaders as fixed in size effectively limits the number of
DataReaders to be matched. Once the configured limit is reached, any new DataReader will be ignored. In the
given example, if a fourth (potentially matching) DataReader appears, it will not be matched, as the collection is
already full.

Parameters on the DataReader

Every DataReader holds an internal collection with information about every ReaderResourceLimitsQos to which it
matches. By default, this collection is fully dynamic, meaning that new memory is allocated when a new DataWriter is
matched. However, DataReaderQos has a data member reader_resource_limits(), of type ReaderResourceLim-
itsQos, that allows configuring the memory allocation behavior on the DataReader.

ReaderResourceLimitsQos provides a data member matched_publisher_allocation of type ResourceLimitedCon-
tainerConfig that allows configuring the maximum expected size of the collection of matched DataWriters, so that it
can be preallocated during the initialization of the DataReader, as shown in the example below. Please, refer to Re-
sourceLimitedContainerConfig for a complete description of additional configuration alternatives given by this data

490 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

member.

C++

DataReaderQos qos;

// Fix the size of matched DataWriters to 1
// This will effectively preallocate the memory during initialization
qos.reader_resource_limits().matched_publisher_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(1u);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_reader profile_name="reader_profile_qos_resource_limit">
<!-- Limit to 1 matching writer -->
<matchedPublishersAllocation>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</matchedPublishersAllocation>
</data_reader>

</profiles>

Warning: Configuring the collection of matched DataWriters as fixed in size effectively limits the number of
DataWriters to be matched. Once the configured limit is reached, any new DataWriter will be ignored. In the given
example, if a fourth (potentially matching) DataWriter appears, it will not be matched, as the collection is already
full.

Full example

Given a system with the following topology:

Table 13: Allocation tuning example topology
Participant P1 Participant P2 Participant P3
Topic 1 publisher Topic 1 subscriber Topic 2 subscriber
Topic 1 subscriber Topic 2 publisher
Topic 1 subscriber Topic 2 subscriber

• The total number of DomainParticipants is 3.

• The maximum number of DataWriters per DomainParticipant is 1

• The maximum number of DataReaders per DomainParticipant is 2.

• The DataWriter for topic 1 matches with 3 DataReaders.

• The DataWriter for topic 2 matches with 2 DataReaders.

• All the DataReaders match exactly with 1 DataWriter.

6.28. Typical Use-Cases 491

Fast DDS Documentation, Release 2.8.2

We will assume that content filtering is not being used, and will also limit the size of the parameters:

• Maximum PartitionQosPolicy size: 256

• Maximum UserDataQosPolicy size: 256

• Maximum PropertyPolicyQos size: 512

The following piece of code shows the set of parameters needed for the use case depicted in this example.

492 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

C++

// DomainParticipant configuration
//////////////////////////////////
DomainParticipantQos participant_qos;

// We know we have 3 participants on the domain
participant_qos.allocation().participants =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(3u);
// We know we have at most 2 readers on each participant
participant_qos.allocation().readers =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(2u);
// We know we have at most 1 writer on each participant
participant_qos.allocation().writers =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(1u);

// We know the maximum size of partition data
participant_qos.allocation().data_limits.max_partitions = 256u;
// We know the maximum size of user data
participant_qos.allocation().data_limits.max_user_data = 256u;
// We know the maximum size of properties data
participant_qos.allocation().data_limits.max_properties = 512u;

// Content filtering is not being used
participant_qos.allocation().content_filter.expression_initial_size = 0u;
participant_qos.allocation().content_filter.expression_parameters =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(0u);

// DataWriter configuration for Topic 1
///////////////////////////////////////
DataWriterQos writer1_qos;

// We know we will only have three matching subscribers, and no content filters
writer1_qos.writer_resource_limits().matched_subscriber_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(3u);
writer1_qos.writer_resource_limits().reader_filters_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(0u);

// DataWriter configuration for Topic 2
///////////////////////////////////////
DataWriterQos writer2_qos;

// We know we will only have two matching subscribers
writer2_qos.writer_resource_limits().matched_subscriber_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(2u);
writer2_qos.writer_resource_limits().reader_filters_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(0u);

// DataReader configuration for both Topics
///
DataReaderQos reader_qos;

// We know we will only have one matching publisher
reader_qos.reader_resource_limits().matched_publisher_allocation =

eprosima::fastrtps::ResourceLimitedContainerConfig::fixed_size_
→˓configuration(1u);

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_alloc_qos_example">
<rtps>

<allocation>
<!-- We know we have 3 participants on the domain -->
<total_participants>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</total_participants>
<!-- We know we have at most 2 readers on each participant -->
<total_readers>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</total_readers>
<!-- We know we have at most 1 writer on each participant -->
<total_writers>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</total_writers>
<max_partitions>256</max_partitions>
<max_user_data>256</max_user_data>
<max_properties>512</max_properties>

<!-- content_filter cannot be configured using XML (yet) -->
</allocation>

</rtps>
</participant>

<data_writer profile_name="alloc_qos_example_pub_for_topic_1">
<!-- we know we will have three matching subscribers and no content filter -->
<matchedSubscribersAllocation>

<initial>3</initial>
<maximum>3</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

<data_writer profile_name="alloc_qos_example_pub_for_topic_2">
<!-- we know we will have two matching subscribers and no content filter -->
<matchedSubscribersAllocation>

<initial>2</initial>
<maximum>2</maximum>
<increment>0</increment>

</matchedSubscribersAllocation>

<!-- reader_filters_allocation cannot be configured using XML (yet) -->
</data_writer>

<data_reader profile_name="alloc_qos_example_sub">
<!-- we know we will only have one matching publisher -->
<matchedPublishersAllocation>

<initial>1</initial>
<maximum>1</maximum>
<increment>0</increment>

</matchedPublishersAllocation>
</data_reader>

</profiles>

6.28. Typical Use-Cases 493

Fast DDS Documentation, Release 2.8.2

Non-blocking calls

Note: As OSX does not support necessary POSIX Real-time features, this feature is not fully supported on OSX. In
that case, the feature is limited by the implementation of std::timed_mutex and std::condition_variable_any.

Several functions on the Fast DDS API can be blocked for an undefined period of time when operations compete for
the control of a resource. The blocked function cannot continue until the operation that gained the control finishes, thus
blocking the calling thread.

Real-time applications need a predictable behavior, including a predictable maximum time since a function is called
until it returns control. In order to comply with this restriction, Fast DDS can be configured to limit the maximum
blocking time of these functions. If the blocking time limit is exceeded, the requested operation is aborted and function
terminated, returning the control to the caller.

This configuration needs two steps:

• Set the CMake option -DSTRICT_REALTIME=ON during the compilation of the application.

• Configure the maximum blocking times for the functions.

Table 14: Fast RTPS non-blocking API
Method Configuration attribute Default

value
DataWriter::write() reliability().max_blocking_time on

DataWriterQos.
100 millisec-
onds.

DataReader::take_next_sample() reliability().max_blocking_time on
DataReaderQos.

100 millisec-
onds.

DataReader::read_next_sample() reliability().max_blocking_time on
DataReaderQos.

100 millisec-
onds.

DataReader::wait_for_unread_message()The method accepts an argument with the maximum
blocking time.

6.28.6 Reduce memory usage

A great number of modern systems have tight constraints on available memory, making the reduction of memory
usage to a minimum critical. Reducing memory consumption of a Fast DDS application can be achieved through
various approaches, mainly through architectural restructuring of the application, but also by limiting the resources the
middleware utilizes, and by avoiding static allocations.

Limiting Resources

The ResourceLimitsQosPolicy controls the resources that the service can use in order to meet the requirements imposed.
It limits the amount of allocated memory per DataWriter or DataReader, as per the following parameters:

• max_samples: Configures the maximum number of samples that the DataWriter or DataReader can manage
across all the instances associated with it, i.e. it represents the maximum samples that the middleware can store
for a DataReader or DataWriter.

• max_instances: Configures the maximum number of instances that the DataWriter or DataReader can manage.

• max_samples_per_instance: Controls the maximum number of samples within an instance that the
DataWriter or DataReader can manage.

• allocated_samples: States the number of samples that will be allocated on initialization.

494 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

All these parameters may be lowered as much as needed to reduce memory consumption, limit the resources to the
application’s needs. Below is an example of a configuration for the minimum resource limits possible.

Warning:

• The value of max_samples must be higher or equal to the value of max_samples_per_instance.

• The value established for the HistoryQosPolicy depth must be lower or equal to the value stated for
max_samples_per_instance.

6.28. Typical Use-Cases 495

Fast DDS Documentation, Release 2.8.2

C++

ResourceLimitsQosPolicy resource_limits;

// The ResourceLimitsQosPolicy is default constructed with max_samples = 5000
// Change max_samples to the minimum
resource_limits.max_samples = 1;

// The ResourceLimitsQosPolicy is default constructed with max_instances = 10
// Change max_instances to the minimum
resource_limits.max_instances = 1;

// The ResourceLimitsQosPolicy is default constructed with max_samples_per_instance =␣
→˓400
// Change max_samples_per_instance to the minimum
resource_limits.max_samples_per_instance = 1;

// The ResourceLimitsQosPolicy is default constructed with allocated_samples = 100
// No allocated samples
resource_limits.allocated_samples = 0;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_writer profile_name="data_writer_min_samples">
<topic>

<historyQos>
<kind>KEEP_LAST</kind>
<depth>1</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>1</max_samples>
<max_instances>1</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>0</allocated_samples>

</resourceLimitsQos>
</topic>

</data_writer>

<data_reader profile_name="data_writer_min_samples">
<topic>

<historyQos>
<kind>KEEP_LAST</kind>
<depth>1</depth>

</historyQos>
<resourceLimitsQos>

<max_samples>1</max_samples>
<max_instances>1</max_instances>
<max_samples_per_instance>1</max_samples_per_instance>
<allocated_samples>0</allocated_samples>

</resourceLimitsQos>
</topic>

</data_reader>
</profiles>

496 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Set Dynamic Allocation

By default MemoryManagementPolicy is set to PREALLOCATED_MEMORY_MODE, meaning that the amount of memory
required by the configured ResourceLimitsQosPolicy will be allocated at initialization.

Using the dynamic settings of the RTPSEndpointQos will prevent unnecessary allocations. Lowest footprint is
achieved with DYNAMIC_RESERVE_MEMORY_MODE at the cost of higher allocation counts, in this mode memory is
allocated when needed and freed as soon as it stops being used. For higher determinism at a small memory cost the
DYNAMIC_REUSABLE_MEMORY_MODE option is available, this option is similar but once more memory is allocated it is
not freed and is reused for future messages.

C++

RTPSEndpointQos endpoint;
endpoint.history_memory_policy = eprosima::fastrtps::rtps::DYNAMIC_REUSABLE_MEMORY_
→˓MODE;

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<data_writer profile_name="data_writer_low_memory">
<!-- ... -->
<historyMemoryPolicy>DYNAMIC_REUSABLE</historyMemoryPolicy>

</data_writer>

<data_reader profile_name="data_reader_low_memory">
<!-- ... -->
<historyMemoryPolicy>DYNAMIC_REUSABLE</historyMemoryPolicy>

</data_reader>
</profiles>

6.28.7 Zero-Copy communication

This section explains how to configure a Zero-Copy communication in Fast DDS. The Zero-Copy communication
allows the transmission of data between applications without copying data in memory, saving time and resources. In
order to achieve this, it uses Data-sharing delivery between the DataWriter and the DataReader, and data buffer loans
between the application and Fast DDS.

• Overview

• Getting started

• Writing and reading in Zero-Copy transfers

• Caveats

• Constraints

• Next steps

6.28. Typical Use-Cases 497

Fast DDS Documentation, Release 2.8.2

Overview

Data-sharing delivery provides a communication channel between a DataWriter and a DataReader using shared mem-
ory. Therefore, it does not require copying the sample data to transmit it.

DataWriter sample loaning is a Fast DDS extension that allows the application to borrow a buffer for a sample in the
publishing DataWriter. The sample can be constructed directly on this buffer, eliminating the need to copy it to the
DataWriter afterwards. This prevents the copying of the data between the publishing application and the DataWriter.
If Data-sharing delivery is used, the loaned data buffer will be in the shared memory itself.

Reading the data on the subscriber side can also be done with loans from the DataReader. The application gets the
received samples as a reference to the receive queue itself. This prevents the copying of the data from the DataReader
to the receiving application. Again, if Data-sharing delivery is used, the loaned data will be in the shared memory, and
will indeed be the same memory buffer used in the DataWriter history.

Combining these three features, we can achieve Zero-Copy communication between the publishing application and the
subscribing application.

Getting started

To enable Zero-Copy perform the following steps:

1. Define a plain and bounded type in an IDL file and generate the corresponding source code for further processing
with the Fast DDS-Gen tool.

struct LoanableHelloWorld
{

unsigned long index;
char message[256];

};

2. On the DataWriter side:

a) Create a DataWriter for the previous type. Make sure that the DataWriter does not have DataSharing
disabled.

b) Get a loan on a sample using loan_sample().

c) Write the sample using write().

3. On the DataReader side:

a) Create a DataReader for the previous type. Make sure that the DataReader does not have DataSharing
disabled.

b) Take/read samples using the available functions in the DataReader. Please refer to section Loaning and
Returning Data and SampleInfo Sequences for further detail on how to access to loans of the received data.

c) Return the loaned samples using DataReader::return_loan().

498 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Writing and reading in Zero-Copy transfers

The following is an example of how to publish and receive samples with DataWriters and DataReaders respectively
that implement Zero-Copy.

DataWriter

When the DataWriter is created, Fast DDS will pre-allocate a pool of max_samples + extra_samples samples that
reside in a shared memory mapped file. This pool will be used to loan samples when the loan_sample() function is
called.

An application example of a DataWriter that supports Zero-Copy using the Fast DDS library is presented below. There
are several points to note in the following code:

• Not disabling the DataSharingQosPolicy. AUTO kind automatically enables Zero-Copy when possible.

• The use of the loan_sample() function to access and modify data samples.

• The writing of data samples.

// CREATE THE PARTICIPANT
DomainParticipantQos pqos;
pqos.name("Participant_pub");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_
→˓participant(0, pqos);

// REGISTER THE TYPE
TypeSupport type(new LoanableHelloWorldPubSubType());
type.register_type(participant);

// CREATE THE PUBLISHER
Publisher* publisher = participant->create_publisher(PUBLISHER_QOS_DEFAULT, nullptr);

// CREATE THE TOPIC
Topic* topic = participant->create_topic(

"LoanableHelloWorldTopic",
type.get_type_name(),
TOPIC_QOS_DEFAULT);

// CREATE THE WRITER
DataWriterQos wqos = publisher->get_default_datawriter_qos();
wqos.history().depth = 10;
wqos.durability().kind = TRANSIENT_LOCAL_DURABILITY_QOS;
// DataSharingQosPolicy has to be set to AUTO (the default) or ON to enable Zero-Copy
wqos.data_sharing().on("shared_directory");

DataWriter* writer = publisher->create_datawriter(topic, wqos);

std::cout << "LoanableHelloWorld DataWriter created." << std::endl;

int msgsent = 0;
void* sample = nullptr;
// Always call loan_sample() before writing a new sample.
// This function will provide the user with a pointer to an internal buffer where the␣
→˓data type can be

(continues on next page)

6.28. Typical Use-Cases 499

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

// prepared for sending.
if (ReturnCode_t::RETCODE_OK == writer->loan_sample(sample))
{

// Modify the sample data
LoanableHelloWorld* data = static_cast<LoanableHelloWorld*>(sample);
data->index() = msgsent + 1;
memcpy(data->message().data(), "LoanableHelloWorld ", 20);

std::cout << "Sending sample (count=" << msgsent
<< ") at address " << &data << std::endl
<< " index=" << data->index() << std::endl
<< " message=" << data->message().data() << std::endl;

// Write the sample.
// After this function returns, the middleware owns the sample.
writer->write(sample);

}

DataReader

The following is an application example of a DataReader that supports Zero-Copy using the Fast DDS library. As
shown in this code snippet, the configuration in the DataReader is similar to the DataWriter. Be sure not to disable the
DataSharingQosPolicy. AUTO kind automatically enables Zero-Copy when possible.

// CREATE THE PARTICIPANT
DomainParticipantQos pqos;
pqos.name("Participant_sub");
DomainParticipant* participant = DomainParticipantFactory::get_instance()->create_
→˓participant(0, pqos);

// REGISTER THE TYPE
TypeSupport type(new LoanableHelloWorldPubSubType());
type.register_type(participant);

// CREATE THE SUBSCRIBER
Subscriber* subscriber = participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT, nullptr);

// CREATE THE TOPIC
Topic* topic = participant->create_topic(

"LoanableHelloWorldTopic",
type.get_type_name(),
TOPIC_QOS_DEFAULT);

// CREATE THE READER
DataReaderQos rqos = subscriber->get_default_datareader_qos();
rqos.history().depth = 10;
rqos.reliability().kind = RELIABLE_RELIABILITY_QOS;
rqos.durability().kind = TRANSIENT_LOCAL_DURABILITY_QOS;
// DataSharingQosPolicy has to be set to AUTO (the default) or ON to enable Zero-Copy
rqos.data_sharing().automatic();

(continues on next page)

500 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

DataReader* reader = subscriber->create_datareader(topic, rqos, &datareader_listener);

Finally, the code snippet below implements the on_data_available()DataReaderListener callback. The key points
to be noted in this function are:

• The declaration and handling of LoanableSequence.

• The use of the DataReader::return_loan() function to indicate to the DataReader that the application has
finished accessing the sequence.

void on_data_available(
eprosima::fastdds::dds::DataReader* reader)

{
// Declare a LoanableSequence for a data type
FASTDDS_SEQUENCE(DataSeq, LoanableHelloWorld);

DataSeq data;
SampleInfoSeq infos;
// Access to the collection of data-samples and its corresponding collection of␣

→˓SampleInfo structures
while (ReturnCode_t::RETCODE_OK == reader->take(data, infos))
{

// Iterate over each LoanableCollection in the SampleInfo sequence
for (LoanableCollection::size_type i = 0; i < infos.length(); ++i)
{

// Check whether the DataSample contains data or is only used to communicate␣
→˓of a

// change in the instance
if (infos[i].valid_data)
{

// Print the data.
const LoanableHelloWorld& sample = data[i];

++samples;
std::cout << "Sample received (count=" << samples

<< ") at address " << &sample << std::endl
<< " index=" << sample.index() << std::endl
<< " message=" << sample.message().data() << std::endl;

}
}
// Indicate to the DataReader that the application is done accessing the␣

→˓collection of
// data values and SampleInfo, obtained by some earlier invocation of read or␣

→˓take on the
// DataReader.
reader->return_loan(data, infos);

}
}

6.28. Typical Use-Cases 501

Fast DDS Documentation, Release 2.8.2

Caveats

• After calling write(), Fast DDS takes ownership of the sample and therefore it is no longer safe to make changes
to that sample.

• If function loan_sample() is called first and the sample is never written, it is necessary to use func-
tion discard_loan() to return the sample to the DataWriter. If this is not done, the subsequent calls to
loan_sample() may fail if DataWriter has no more extra_samples to loan.

• The current maximum supported sample size is the maximum value of an uint32_t.

Constraints

Although Zero-Copy can be used for one or several Fast DDS application processes running on the same machine, it
has some constraints:

• Only plain types are supported.

• Constraints for datasharing delivery also apply.

Note: Zero-Copy transfer support for non-plain types may be implemented in future releases of Fast DDS.

Next steps

The eProsima Fast DDS Github repository contains the complete example discussed in this section, as well as multiple
other examples for different use cases. The example implementing Zero-Copy transfers can be found here.

6.28.8 Unique network flows

This section explains which APIs should be used on Fast DDS in order to have unique network flows on specific topics.

• Background

• Identifying a flow

• Requesting unique flows

• Example

Background

IP networking is the pre-dominant inter-networking technology used nowadays. Ethernet, WiFi, 4G/5G telecommuni-
cation, all of them rely on IP networking.

Streams of IP packets from a given source to destination are called packet flows or simply flows. The network QoS
of a flow can be configured when using certain networking equipment (routers, switches). Such pieces of equipment
typically support 3GPP/5QI protocols to assign certain Network QoS parameters to specific flows. Requesting a specific
Network QoS is usually done on the endpoint sending the data, as it is the one that usually haves complete information
about the network flow.

Applications may need to use specific Network QoS parameters on different topics.

This means an application should be able to:

502 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/ZeroCopyExample

Fast DDS Documentation, Release 2.8.2

a) Identify the flows being used in the communications, so they can correctly configure the networking equipment.

b) Use specific flows on selected topics.

Identifying a flow

The 5-tuple is a traditional unique identifier for flows on 3GPP enabled equipment. The 5-tuple consists of five pa-
rameters: source IP address, source port, destination IP address, destination port, and the transport protocol (example,
TCP/UDP).

Definitions

Network flow: A tuple of networking resources selected by the middleware for transmission of messages from a
DataWriter to a DataReader, namely:

• Transport protocol: UDP or TCP

• Transport port

• Internet protocol: IPv4 or IPv6

• IP address

Network Flow Endpoint (NFE): The portion of a network flow specific to the DataWriter or the DataReader. In other
words, each network flow has two NFEs; one for the DataWriter, and the other for the DataReader.

APIs

Fast DDS provides the APIs needed to get the list of NFEs used by a given DataWriter or a DataReader.

• On the DataWriter, get_sending_locators() allows the application to obtain the list of locators from which
the writer may send data.

• On the DataReader, get_listening_locators() allows the application to obtain the list of locators on which
the reader is listening.

Requesting unique flows

A unique flow can be created by ensuring that at least one of the two NFEs are unique. On Fast DDS, there are two
ways to select unique listening locators on the DataReader:

• The application can specify on which locators the DataReader should be listening. This is done using RTPSEnd-
pointQos on the DataReaderQos. In this case it is the responsibility of the application to ensure the uniqueness
of the locators used.

• The application can request the reader to be created with unique listening locators. This is done using a Prop-
ertyPolicyQos including the property "fastdds.unique_network_flows". In this case, the reader will listen
on a unique port outside the range of ports typically used by RTPS.

6.28. Typical Use-Cases 503

Fast DDS Documentation, Release 2.8.2

Example

The following snippet demonstrates all the APIs described on this page:

// Create the DataWriter
DataWriter* writer = publisher->create_datawriter(topic, DATAWRITER_QOS_DEFAULT);
if (nullptr == writer)
{

// Error
return;

}

// Create DataReader with unique flows
DataReaderQos drqos = DATAREADER_QOS_DEFAULT;
drqos.properties().properties().emplace_back("fastdds.unique_network_flows", "");
DataReader* reader = subscriber->create_datareader(topic, drqos);

// Print locators information
eprosima::fastdds::rtps::LocatorList locators;
writer->get_sending_locators(locators);
std::cout << "Writer is sending from the following locators:" << std::endl;
for (const auto& locator : locators)
{

std::cout << " " << locator << std::endl;
}

reader->get_listening_locators(locators);
std::cout << "Reader is listening on the following locators:" << std::endl;
for (const Locator_t& locator : locators)
{

std::cout << " " << locator << std::endl;
}

6.28.9 Statistics module

eProsima Fast DDS Statistics Module allows the user to monitor the data being exchanged by its application. In order
to use this module, the user must enable it in the monitored application, and create another application that receives the
data being published by the statistics DataWriters. The user can also use for the latter the eProsima Fast DDS Statistics
Backend which already implements the collection and aggregation of the data coming from the statistics topics.

• Enable Statistics module

• Create monitoring application

504 Chapter 6. Structure of the documentation

https://fast-dds-statistics-backend.readthedocs.io/en/latest/
https://fast-dds-statistics-backend.readthedocs.io/en/latest/

Fast DDS Documentation, Release 2.8.2

Enable Statistics module

The Statistics module has to be enabled both at build and runtime. On the one hand, CMake option
FASTDDS_STATISTICSmust be enabled when building the library. On the other hand, the desired statistics DataWriters
should be enabled using the Statistics Module DDS Layer.

The statistics DataWriters can be enabled automatically using the PropertyPolicyQos fastdds.statistics and the
FASTDDS_STATISTICS environment variable. They can also be enabled manually following the next example:

// Create a DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// Obtain pointer to child class
eprosima::fastdds::statistics::dds::DomainParticipant* statistics_participant =

eprosima::fastdds::statistics::dds::DomainParticipant::narrow(participant);

// Enable statistics DataWriter
if (statistics_participant->enable_statistics_
→˓datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC,

eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS) != ReturnCode_
→˓t::RETCODE_OK)
{

// Error
return;

}

// Use the DomainParticipant to communicate
// (...)

// Disable statistics DataWriter
if (statistics_participant->disable_statistics_
→˓datawriter(eprosima::fastdds::statistics::GAP_COUNT_TOPIC) !=

ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

// Delete DomainParticipant
if (DomainParticipantFactory::get_instance()->delete_participant(participant) !=␣
→˓ReturnCode_t::RETCODE_OK)
{

// Error
return;

}

6.28. Typical Use-Cases 505

Fast DDS Documentation, Release 2.8.2

Create monitoring application

Once the monitored application is publishing the collected data within the statistics topics enabled by the user, another
application should be configured to subscribe to those topics. This application is a DDS standard application where
the statistics DataReaders should be created. In order to create these statistics DataReaders, the user should follow the
next steps:

• Using the statistics IDL provided in the public API, generate the TopicDataTypes with Fast DDS-Gen.

• Create the DomainParticipant and register the TopicDataTypes and the corresponding statistics Topics.

• Create the statistics DataReaders using the corresponding statistics topic.

6.28.10 Dynamic network interfaces

DDS Simple Discovery relies on well-known multicast addresses and ports to relay the Participant announcement
messages (see Discovery phases). Such Participant announcement includes information about the unicast address-port
pairs (a.k.a locators) where the Participant is expecting to receive incoming metatraffic data. The list with these unicast
locators is automatically initialized taking into account the network interfaces that are available when the Fast DDS
DomainParticipant is enabled. Consequently, any network interface that is added after enabling the DomainParticipant
should be notified to Fast DDS in order to initialize an unicast locator in said network, so communication can be
established over that new interface.

Dynamic network interface addition at run-time

In case that the user wants to include new network interfaces at run-time, some prerequisites have to be fulfilled. Then,
once the interfaces are available, the user may notify Fast DDS so these interfaces are also used in the communication.

Prerequisites

This feature is intended to be used when Fast DDS automatically sets the listening unicast locators. Consequently,
both metatrafficUnicastLocatorList and metatrafficMulticastLocatorList lists must be empty. These
attributes are set within the builtin member of wire_protocol() contained in the DomainParticipantQos (please
refer to DomainParticipantQos).

Note: Be aware of the remote locators’ collections limits set within the DomainParticipantQos (please refer to Re-
moteLocatorsAllocationAttributes). It is recommended to use the highest number of local addresses found on all the
systems belonging to the same domain.

Notify Fast DDS

Once a new network interface has been enabled, Fast DDS has to be manually notified. This is done calling
DomainParticipant::set_qos(). The DomainParticipantQoS that is passed to the method can either change
one of the mutable DomainParticipant QoS or it can simply be the current DomainParticipant QoS (obtained with
get_qos()).

Using DomainParticipant::set_qos() is the reason for the previous prerequisites: once the DomainParticipant is
enabled, there are several QoS policies that are immutable and cannot be changed at run-time. WireProtocolConfigQos
where the aforementioned lists are defined is among these immutable policies.

Find below a brief snippet of how to use this feature:

506 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/blob/master/include/fastdds/statistics/types.idl

Fast DDS Documentation, Release 2.8.2

// Create the DomainParticipant
DomainParticipant* participant =

DomainParticipantFactory::get_instance()->create_participant(0, PARTICIPANT_QOS_
→˓DEFAULT);
if (nullptr == participant)
{

// Error
return;

}

// User application

// Notify Fast DDS a new network interface is available
participant->set_qos(PARTICIPANT_QOS_DEFAULT);

Important: This feature is still under development and only officially supported for UDPv4 Transport without
whitelisting.

6.28.11 How to use eProsima DDS Record and Replay (rosbag2 and DDS)

eProsima DDS Record and Replay allows the user to continuously monitor the ROS 2 traffic in real time, and to play
it back at any given time. This highly contributes to facilitating simulation of real life conditions, application testing,
optimizing data analysis and general troubleshooting. rosbag2 is a ROS 2 application that can be used to capture DDS
messages and store them on an SQLite database which allows inspecting and replaying said messages at a later time.

rosbag2 interactions with a native Fast DDS application

Using rosbag2 to capture traffic between ROS 2 talkers and listeners is straightforward. However, recording and re-
playing messages sent by Fast DDS participants outside ROS 2 ecosystem requires some modifications.

Prerequisites

A Fast DDS installation, either binary or from sources is required. Fast DDS-Gen is also required for generating the
examples and Fast DDS TypeSupport from the IDL file. A ROS 2 installation with the rosbag2 package is needed as
well.

DDS IDL interoperability with ROS 2 messages

DDS uses IDLs to define the data model being exchanged by the applications. While ROS 2 can use IDL files to define
the messages, there are some rules that these IDL files must follow so compatibility between ROS 2 and Fast DDS native
applications can be achieved. Specifically, the type definition must be nested inside the type module name and then the
generator to be used. For ROS 2 messages, the generator would be msg, whereas in this case, the idl generator must be
used. Assuming that the type module name selected is fastdds_record_typesupport the following HelloWorld.
idl file could be defined. This IDL file will be the one used in the following steps.

module fastdds_record_typesupport
{

(continues on next page)

6.28. Typical Use-Cases 507

https://github.com/ros2/rosbag2

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

module idl
{

struct HelloWorld
{

unsigned long index;
string message;

};
};

};

By default, rosbag2 can only recognize those Topics which types ROS 2 has already defined in its different TypeSupport
libraries. Therefore, a new ROS 2 TypeSupport module library generated with the previously defined types must be
created, so rosbag2 would be able to parse the message contents coming from the Fast DDS application. First, the
new ROS 2 TypeSupport package should be created. Follow the instructions below, after having sourced your ROS 2
installation:

ros2 pkg create --build-type ament_cmake fastdds_record_typesupport

This command will create a new ROS 2 package named fastdds_record_typesupport with the following folder
structure:

.
fastdds_record_typesupport

include
fastdds_record_typesupport

src
CMakeLists.txt
package.xml

ROS 2 TypeSupport code generators expect IDL files inside their own idl folder, so the final folder structure would be
like this:

.
fastdds_record_typesupport

idl
HelloWorld.idl

include
fastdds_record_typesupport

src
CMakeLists.txt
package.xml

In order to generate the TypeSupport interfaces required, the CMakeLists.txt file should be modified accordingly so
the ROS 2 TypeSupport generator is called. Please add the following lines to the CMakeLists.txt file before calling
ament_package():

find_package(rosidl_default_generators REQUIRED)

set(idl_files
"idl/HelloWorld.idl"

)

rosidl_generate_interfaces(${PROJECT_NAME}
(continues on next page)

508 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

${idl_files}
)

Similarly, the package.xml file should be modified adding the ROS 2 TypeSupport generator dependency. Add the
following lines to the package.xml file after the buildtool_depend tags:

<buildtool_depend>rosidl_default_generators</buildtool_depend>
<exec_depend>rosidl_default_runtime</exec_depend>
<member_of_group>rosidl_interface_packages</member_of_group>

The last step would be to build the package. Run the following command within the fastdds_record_typesupport
folder:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp colcon build

The build process will create inside the install folder a new ROS 2 overlay with all the required libraries and scripts for
the ROS 2 applications to use te type defined in the IDL file.

Fast DDS Application tuning

ROS 2 adds special tokens to the topic names depending on the ROS 2 subsystem the topic belongs to. More information
on this topic can be found on ROS 2 design documentation .

Using the same IDL file defined earlier, Fast DDS-Gen can generate the required code to handle the new type in Fast
DDS. The changes required in the Fast DDS application so rosbag2 can communicate with it are going to be illustrated
via the Publisher/Subscriber example generated automatically from an IDL using Fast DDS-Gen. An in-depth guide
to Fast DDS-Gen can be found here.

In the case of plain topics, the namespace “rt/” is added by ROS 2 to the DDS topic name. DataType names for ROS 2
generated types are structured concatenating the modules names. For the IDL being used in this example the data type
name would be “fastdds_record_typesupport::idl::HelloWorld”.

Create a new workspace different from the ROS 2 one used previously. Copy inside the same IDL file and run Fast
DDS-Gen to generate the TypeSupport and the example source files:

mkdir HelloWorldExample
cd HelloWorldExample
cp <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/idl/HelloWorld.idl .
fastddsgen -example CMake -typeros2 HelloWorld.idl

This command will populate the current folder with the required header and source files to build the TypeSupport, and
the Publisher and Subscriber applications.

HelloWorldExample
CMakeLists.txt
HelloWorld.cxx
HelloWorld.h
HelloWorld.idl
HelloWorldPublisher.cxx
HelloWorldPublisher.h
HelloWorldPubSubMain.cxx
HelloWorldPubSubTypes.cxx
HelloWorldPubSubTypes.h

(continues on next page)

6.28. Typical Use-Cases 509

https://design.ros2.org/articles/topic_and_service_names.html#examples-of-ros-names-to-dds-concepts
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/fastddsgen/fastddsgen.html

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

HelloWorldSubscriber.cxx
HelloWorldSubscriber.h

The Fast DDS-Gen example should be modified taking into account the topic and type name mangling applied by ROS 2
so communication can be established with rosbag2. Having used the -typeros2 Fast DDS-Gen option when generating
the TypeSupport, the generated type name would already include the ROS 2 naming rule mangling. However, the topic
name must be modified manually both in the Publisher and Subscriber applications. Look for the create_topic
command in both the HelloWorldPublisher.cxx and the HelloWorldSubscriber.cxx files and modify the topic
name:

topic_ = participant_->create_topic(
"rt/HelloWorldTopic",
type_.get_type_name(),
TOPIC_QOS_DEFAULT);

if (topic_ == nullptr)
{

return false;
}

To build this example run the following commands:

mkdir build && cd build
cmake ..
make

This will create a HelloWorld binary file inside the build directory that can be used to launch both the Publisher and
the Subscriber applications. Run each application in a terminal and confirm that the communication is established.

./HelloWorld publisher|subscriber

eProsima DDS Record and Replay

In order to use the generated ROS 2 TypeSupport package, the ROS 2 workspace should be sourced besides the ROS
2 installation. This allows rosbag2 to record the data types used in this example. To start recording the traffic being
exchanged between the Publisher/Subscriber applications the corresponding ROS 2 Topic name has to be passed to ros-
bag2 (not to be mistaken with the DDS Topic name). Remember also to ensure that Fast DDS is the ROS 2 middleware
being used by setting the environment variable RMW_IMPLEMENTATION.

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
source <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/install/setup.bash
ros2 bag record /HelloWorldTopic

Having the Publisher application running already, the following rosbag2 log discovery info would be shown:

[INFO] [1644320308.422161532] [rosbag2_recorder]: Subscribed to topic '/HelloWorldTopic'
[INFO] [1644320308.422292205] [rosbag2_recorder]: All requested topics are subscribed.␣
→˓Stopping discovery...

rosbag2 will proceed to create a folder named rosbag2_<DATE> with an SQLite database inside (db3 extension)
where the received messages will be recorded. Within the folder a YAML file provides metadata information about the
record: type and topic name, number of messages recorded, record duration, etc. The path to this database file can
be used to replay the recorded messages. Having the Subscriber application running, the previously recorded traffic

510 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

will be replayed. After stopping the rosbag2 application, rerun it in replay mode running the following command. The
recorded messages will be published by rosbag2 at their original publishing rate and the Subscriber application will
receive them:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
source <PATH_TO_ROS2_WORKSPACE>/fastdds_record_typesupport/install/setup.bash
ros2 bag play <path-to-db-file>

6.29 ROS 2 using Fast DDS middleware

Fast DDS is the default middleware implementation in the Open Source Robotic Fundation (OSRF) Robot Operating
System ROS 2 in every long term (LTS) releases and most of the non-LTS releases.

ROS 2 is a state-of-the-art software for robot engineering which consists of a set of free software libraries and tools for
building robot applications. This section presents some use cases and shows how to take full advantage of Fast DDS
wide set of capabilities in a ROS 2 project.

The interface between the ROS 2 stack and Fast DDS is provided by a ROS 2 package rmw_fastrtps. This pack-
age is available in all ROS 2 distributions, both from binaries and from sources. rmw_fastrtps actually pro-
vides not one but two different ROS 2 middleware implementations, both of them using Fast DDS as middle-
ware layer: rmw_fastrtps_cpp and rmw_fastrtps_dynamic_cpp. The main difference between the two is that
rmw_fastrtps_dynamic_cpp uses introspection type support at run time to decide on the serialization/deserialization
mechanism, while rmw_fastrtps_cpp uses its own type support, which generates the mapping for each message type
at build time. The default ROS 2 RMW implementation until Foxy is rmw_fastrtps_cpp. For Galactic the envi-
ronment variable RMW_IMPLEMENTATION has to be set to select rmw_fastrtps_cpp in order to use Fast DDS as the
middleware layer. This environment variable can also be used to select the rmw_fastrtps_dynamic_cpp implemen-
tation:

1. Exporting RMW_IMPLEMENTATION environment variable:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp

or

export RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp

2. When launching your ROS 2 application:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp ros2 run <package> <application>

or

RMW_IMPLEMENTATION=rmw_fastrtps_dynamic_cpp ros2 run <package> <application>

Note: Since Galactic you may have to install the rmw_fastrtps_cpp package:

sudo apt install ros-galactic-rmw-fastrtps-cpp

6.29. ROS 2 using Fast DDS middleware 511

https://www.openrobotics.org/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://github.com/ros2
https://github.com/ros2/rmw_fastrtps

Fast DDS Documentation, Release 2.8.2

6.29.1 Configuring Fast DDS in ROS 2

ROS 2 only allows for the configuration of certain middleware QoS (see ROS 2 QoS policies). However, rmw_fastrtps
offers extended configuration capabilities to take full advantage of the features in Fast DDS. This section describes how
to specify this extended configuration.

• Changing publication mode

• XML configuration

– XML configuration file location

– Applying different profiles to different entities

• Example

Changing publication mode

rmw_fastrtps in ROS 2 uses asynchronous publication by default. This can be easily changed setting the environment
variable RMW_FASTRTPS_PUBLICATION_MODE to one of the following allowed values:

• ASYNCHRONOUS: asynchronous publication mode. Setting this mode implies that when the publisher invokes
the write operation, the data is copied into a queue, a background thread (asynchronous thread) is notified about
the addition to the queue, and control of the thread is returned to the user before the data is actually sent. The
background thread is in charge of consuming the queue and sending the data to every matched reader.

• SYNCHRONOUS: synchronous publication mode. Setting this mode implies that the data is sent directly within
the context of the user thread. This entails that any blocking call occurring during the write operation would
block the user thread, thus preventing the application from continuing its operation. It is important to note that
this mode typically yields higher throughput rates at lower latencies, since there is no notification nor context
switching between threads.

• AUTO: let Fast DDS select the publication mode. This implies using the publication mode set in the XML file,
or otherwise, the default value set in Fast DDS (see PublishModeQosPolicy).

rmw_fastrtps defines two configurable parameters in addition to ROS 2 QoS policies. Said parameters, and their default
values under ROS 2, are:

Parameter Description Default ROS 2
value

Memory-
Manage-
mentPolicy

Fast DDS preallocates memory for the publisher and subscriber histories.
When those histories fill up, a reallocation occurs to reserve more memory.

PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Publish-
Mode-
QosPolicy

User calls to publication method add the messages in a queue that is man-
aged in a different thread, meaning that the user thread is available right
after the call to send data.

ASYNCHRONOUS_PUBLISH_MODE

512 Chapter 6. Structure of the documentation

https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/#qos-policies
https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/#qos-policies

Fast DDS Documentation, Release 2.8.2

XML configuration

To use specific Fast-DDS features within a ROS 2 application, XML configuration files can be used to configure a wide
set of QoS. Please refer to XML profiles to see the whole list of configuration options available in Fast DDS.

When configuring rmw_fastrtps using XML files, there are certain points that have to be taken into account:

• ROS 2 QoS contained in rmw_qos_profile_t are always honored, unless set to *_SYSTEM_DEFAULT. In that case,
XML values, or Fast DDS default values in the absences of XML ones, are applied. This means that if any QoS in
rmw_qos_profile_t is set to something other than *_SYSTEM_DEFAULT, the corresponding value in the XML
is ignored.

• By default, rmw_fastrtps overrides the values for MemoryManagementPolicy and PublishModeQosPolicy.
This means that the values configured in the XML for these two parameters will be ignored. Instead,
PREALLOCATED_WITH_REALLOC_MEMORY_MODE and ASYNCHRONOUS_PUBLISH_MODE are used respectively.

• The override of MemoryManagementPolicy and PublishModeQosPolicy can be avoided by setting the environ-
ment variable RMW_FASTRTPS_USE_QOS_FROM_XML to 1 (its default value is 0). This will make rmw_fastrtps
use the values defined in the XML for MemoryManagementPolicy and PublishModeQosPolicy. Bear in mind
that setting this environment variable but not setting these policies in the XML results in using the default values
in Fast DDS. These are different from the aforementioned rmw_fastrtps default values (see MemoryManage-
mentPolicy and PublishModeQosPolicy).

• Setting RMW_FASTRTPS_USE_QOS_FROM_XML effectively overrides whatever configuration was set with
RMW_FASTRTPS_PUBLICATION_MODE, setting the publication mode to the value specified in the XML, or to
the Fast DDS default publication mode if none is set in the XML.

The following table summarizes which values are used or ignored according to the configured variables:

RMW_FASTRTPS_USE_QOS_FROM_XMLrmw_qos_profile_tFast DDS XML QoS Fast DDS XML history memory pol-
icy and publication mode

0 (default) Default
values

Overridden by
rmw_qos_profile_t

Overridden by rmw_fastrtps default
value

0 (default) Non system
default

overridden by
rmw_qos_profile_t

Overridden by rmw_fastrtps default
value

0 (default) System
default

Used Overridden by rmw_fastrtps default
value

1 Default
values

Overridden by
rmw_qos_profile_t

Used

1 Non system
default

Overridden by
rmw_qos_profile_t

Used

1 System
default

Used Used

XML configuration file location

There are two possibilities for providing Fast DDS with XML configuration files:

• Recommended: Setting the location with environment variable FASTRTPS_DEFAULT_PROFILES_FILE to con-
tain the path to the XML configuration file (see Environment variables).

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>

• Alternative: Placing the XML file in the running application directory under the name DE-
FAULT_FASTRTPS_PROFILES.xml.

6.29. ROS 2 using Fast DDS middleware 513

http://docs.ros2.org/latest/api/rmw/structrmw__qos__profile__t.html

Fast DDS Documentation, Release 2.8.2

For example:

export FASTRTPS_DEFAULT_PROFILES_FILE=<path_to_xml_file>
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run <package> <application>

Applying different profiles to different entities

rmw_fastrtps allows for the configuration of different entities with different QoS using the same XML file. For doing
so, rmw_fastrtps locates profiles in the XML based on topic names.

Creating publishers/subscribers with different profiles

• To configure a publisher, define a <data_writer> profile with attribute profile_name=topic_name, where
topic_name is the name of the topic prepended by the node namespace (which defaults to “” if not specified),
i.e. the node’s namespace followed by topic name used to create the publisher. Mind that topic names always
start with / (it is added when creating the topic if not present), and that namespace and topic name are always
separated by one /. If such profile is not defined, rmw_fastrtps attempts to load the <data_writer> profile with
attribute is_default_profile="true".

• To configure a subscriber, define a <data_reader> profile with attribute profile_name=topic_name, where
topic_name is the name of the topic prepended by the node namespace (which defaults to “” if not specified),
i.e. the node’s namespace followed by topic name used to create the subscriber. Mind that topic names always
start with / (it is added when creating the topic if not present), and that namespace and topic name are always
separated by one /. If such profile is not defined, rmw_fastrtps attempts to load the <data_reader> profile with
attribute is_default_profile="true".

The following table presents different combinations of node namespaces and user specified topic names, as well as the
resulting topic names and the suitable profile names:

User specified topic name Node namespace Final topic name Profile name
chatter DEFAULT (“”) /chatter /chatter
chatter test_namespace /test_namespace/chatter /test_namespace/chatter
chatter /test_namespace /test_namespace/chatter /test_namespace/chatter
/chatter test_namespace /chatter /chatter
/chatter /test_namespace /chatter /chatter

Important: Node namespaces are NOT prepended to user specified topic names starting with /, a.k.a Fully Qualified
Names (FQN). For a complete description of topic name remapping please refer to Remapping Names.

514 Chapter 6. Structure of the documentation

http://design.ros2.org/articles/static_remapping.html

Fast DDS Documentation, Release 2.8.2

Creating services with different profiles

ROS 2 services contain a subscriber for receiving requests, and a publisher to reply to them. rmw_fastrtps allows for
configuring each of these endpoints separately in the following manner:

• To configure the request subscriber, define a <data_reader> profile with attribute
profile_name=topic_name, where topic_name is the name of the service after mangling. For more
information on name mangling, please refer to Topic and Service name mapping to DDS. If such profile is not
defined, rmw_fastrtps attempts to load a <data_reader> profile with attribute profile_name="service".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_reader> profile with attribute
is_default_profile="true".

• To configure the reply publisher, define a <data_writer> profile with attribute profile_name=topic_name,
where topic_name is the name of the service after mangling. If such profile is not defined, rmw_fastrtps
attempts to load a <data_writer> profile with attribute profile_name="service". If neither
of the previous profiles exist, rmw_fastrtps attempts to load the <data_writer> profile with attribute
is_default_profile="true".

Creating clients with different profiles

ROS 2 clients contain a publisher to send requests, and a subscription to receive the service’s replies. rmw_fastrtps
allows for configuring each of these endpoints separately in the following manner:

• To configure the requests publisher, define a <data_writer> profile with attribute
profile_name=topic_name, where topic_name is the name of the service after mangling. If such profile is
not defined, rmw_fastrtps attempts to load a <data_writer> profile with attribute profile_name="client".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_writer> profile with attribute
is_default_profile="true".

• To configure the reply subscription, define a <data_reader> profile with attribute
profile_name=topic_name, where topic_name is the name of the service after mangling. If such profile is
not defined, rmw_fastrtps attempts to load a <data_reader> profile with attribute profile_name="client".
If neither of the previous profiles exist, rmw_fastrtps attempts to load the <data_reader> profile with attribute
is_default_profile="true".

Creating ROS contexts and nodes

ROS context and node entities are mapped to Fast DDS Participant entity, according to the following table:

ROS entity Fast DDS entity since Foxy Fast DDS entity in Eloquent & below
Context Participant Not DDS direct mapping
Node Not DDS direct mapping Participant

This means that on Foxy and later releases, contexts can be configured using a <Participant> profile with attribute
is_default_profile="true". The same profile will be used in Eloquent and below to configure nodes.

For example, a profile for a ROS 2 context on Foxy and later releases would be specified as:

6.29. ROS 2 using Fast DDS middleware 515

https://design.ros2.org/articles/topic_and_service_names.html

Fast DDS Documentation, Release 2.8.2

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_ros2" is_default_profile="true">
<rtps>

<name>profile_for_ros2_context</name>
</rtps>

</participant>
</profiles>

Example

The following example uses the ROS 2 talker/listener demo, configuring Fast DDS to publish synchronously, and to
have dynamically allocated publisher and subscriber histories.

1. Create a XML file ros_example.xml and save it in path/to/xml/

516 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

XML

<?xml version="1.0" encoding="UTF-8" ?>
<profiles xmlns="http://www.eprosima.com/XMLSchemas/fastRTPS_Profiles">

<participant profile_name="participant_profile_ros2" is_default_profile="true
→˓">

<rtps>
<name>profile_for_ros2_context</name>

</rtps>
</participant>

<!-- Default publisher profile -->
<data_writer profile_name="default publisher profile" is_default_profile="true

→˓">
<qos>

<publishMode>
<kind>SYNCHRONOUS</kind>

</publishMode>
</qos>
<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>

</data_writer>

<!-- Publisher profile for topic helloworld -->
<data_writer profile_name="helloworld">

<qos>
<publishMode>

<kind>SYNCHRONOUS</kind>
</publishMode>

</qos>
</data_writer>

<!-- Request subscriber profile for services -->
<data_reader profile_name="service">

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_reader>

<!-- Request publisher profile for clients -->
<data_writer profile_name="client">

<qos>
<publishMode>

<kind>ASYNCHRONOUS</kind>
</publishMode>

</qos>
</data_writer>

<!-- Request subscriber profile for server of service "add_two_ints" -->
<data_reader profile_name="rq/add_two_intsRequest">

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_reader>

<!-- Reply subscriber profile for client of service "add_two_ints" -->
<data_reader profile_name="rr/add_two_intsReply">

<historyMemoryPolicy>DYNAMIC</historyMemoryPolicy>
</data_reader>

</profiles>
6.29. ROS 2 using Fast DDS middleware 517

Fast DDS Documentation, Release 2.8.2

2. Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp talker

3. Open one terminal and run:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp
export FASTRTPS_DEFAULT_PROFILES_FILE=path/to/xml/ros_example.xml
export RMW_FASTRTPS_USE_QOS_FROM_XML=1
ros2 run demo_nodes_cpp listener

6.29.2 Use ROS 2 with Fast-DDS Discovery Server

This section explains how to run some ROS 2 examples using the Discovery Servers as discovery communication. In
order to get more information about the specific use of this configuration, please check the Discovery Server Documen-
tation or read the common use cases for this configuration.

The following tutorial gathers the steps to check this functionality and learn how to use it with ROS 2.

• Discovery Server v2

• Prerequisites

• Run the demo

– Setup Discovery Server

– Launch node listener

– Launch node talker

– Demonstrate Discovery Server execution

• Advance user cases

– Server Redundancy

– Backup Server

– Discovery partitions

• ROS 2 Introspection

– Daemon’s related commands

– No Daemon commands

• Compare Discovery Server with Simple Discovery

The Simple Discovery Protocol is the standard protocol defined in the DDS standard. However, it has certain known
disadvantages in some scenarios, mainly:

• It does not Scale efficiently, as the number of exchanged packets highly increases as new nodes are added.

• It requires Multicasting capabilities that may not work reliably in some scenarios, e.g. WiFi.

The Discovery Server provides a Client-Server Architecture that allows the nodes to connect with each other using
an intermediate server. Each node will work as a Client, sharing its info with the Discovery Server and receiving the

518 Chapter 6. Structure of the documentation

https://www.omg.org/omg-dds-portal/

Fast DDS Documentation, Release 2.8.2

discovery information from it. This means that the network traffic is highly reduced in big systems, and it does not
require Multicasting.

These Discovery Servers can be independent, duplicated or connected with each other in order to create redundancy
over the network and avoid having a Single-Point-Of-Failure.

Discovery Server v2

The new version v2 of Discovery Server, available from Fast DDS v2.0.2, implements a new filter feature that allows
to further reduce the number of discovery messages sent. This version uses the topic of the different nodes to decide
if two nodes must be connected, or they could be left unmatched. The following schema represents the decrease of the
discovery packages:

This architecture reduces the number of packages sent between the server and the different clients dramatically. In the
following graph, the reduction in traffic network over the discovery phase for a RMF Clinic demo use case, is shown:

In order to use this functionality, Fast-DDS Discovery Server can be set using the XML configuration for Participants.
Furthermore, Fast DDS provides an easier way to set a Discovery Server communication using the fastdds CLI tool
and an environment variable, which are going to be used along this tutorial. For a more detailed explanation about the
configuration of the Discovery Server, visit Discovery Server Settings.

Prerequisites

This tutorial assumes you have at least a working Foxy ROS 2 installation. In case your installation is using a Fast DDS
version lower than v2.0.2 you could not use the fastdds tool. You could update your repository to use a different Fast
DDS version, or set the discovery server by Fast-DDS XML QoS configuration.

Note: This tutorial can also be run in Galactic exporting the environment variable that selects Fast DDS as the
middleware layer:

export RMW_IMPLEMENTATION=rmw_fastrtps_cpp

Run the demo

The talker-listenerROS 2 demo allows to create a talker node that publishes a Hello World message every second,
and a listener node that listens to these messages.

By Sourcing ROS 2 you will get access to the CLI of Fast DDS: fastdds. This CLI gives access to the discovery tool,
which allows to launch a server. This server will manage the discovery process for the nodes that connect to it.

Important: Do not forget to source ROS 2 in every new terminal opened.

6.29. ROS 2 using Fast DDS middleware 519

https://index.ros.org/doc/ros2/Installation/
https://index.ros.org/doc/ros2/Tutorials/Configuring-ROS2-Environment/
https://index.ros.org/doc/ros2/Tutorials/Configuring-ROS2-Environment/

Fast DDS Documentation, Release 2.8.2

Setup Discovery Server

Start by launching a server with id 0, with port 11811 and listening on all available interfaces.

Open a new terminal and run:

fastdds discovery -i 0

Launch node listener

Execute the listener demo, that will listen in /chatter topic.

In a new terminal, set the environment variable ROS_DISCOVERY_SERVER to use Discovery Server. (Do not forget to
source ROS 2 in every new terminal)

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"

Afterwards, launch the listener node. Use the argument --remap __node:=listener_discovery_server to
change the node’s name for future purpose.

ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_discovery_server

This process will create a ROS 2 node, that will automatically create a client for the Discovery Server and use the server
created previously to run the discovery protocol.

Launch node talker

Open a new terminal and set the environment variable as before, so the node raises a client for the discovery protocol.

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_discovery_server

Now, we should see the talker publishing Hello World messages, and the listener receiving these messages.

Demonstrate Discovery Server execution

So far, there is not proof that this example and the standard talker-listener example run differently. For this purpose,
run another node that is not connected to our Discovery Server. Just run a new listener (listening in /chatter topic
by default) in a new terminal and check that it is not connected to the talker already running.

ros2 run demo_nodes_cpp listener --ros-args --remap __node:=simple_listener

In this case, we should not see the listener receiving the messages.

To finally verify that everything is running correctly, a new talker can be created using the simple discovery protocol.

ros2 run demo_nodes_cpp talker --ros-args --remap __node:=simple_talker

Now we should see the listener simple_listener receiving the messages from simple_talker but not the other messages
from talker_discovery_server.

520 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Advance user cases

The following paragraphs are going to show different features of the Discovery Server that allows to hold a robust
structure over the node’s network.

Server Redundancy

By using the Fast DDS tool, several servers can be created, and the nodes can be connected to as many servers as desired.
This allows to have a safe redundancy network that will work even if some servers or nodes shut down unexpectedly.
Next schema shows a simple architecture that will work with server redundancy:

In different terminals, run the next code to establish a communication over redundant servers.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

fastdds discovery -i 1 -l 127.0.0.1 -p 11888

-i N means server with id N. When referencing the servers with ROS_DISCOVERY_SERVER, server 0 must be in first
place and server 1 in second place.

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

Now, if one of these servers fails, there would still be discovery communication between nodes.

Backup Server

Fast DDS Discovery Server allows to easily build a server with a backup functionality. This allows the server to retake
the last state it saved in case of a shutdown.

In different terminals, run the next code to establish a communication over a backup server.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811 -b

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

Several backup files are created in the path the server has run. Two SQLite files and two json files that contains the
information required to raise a new server in case of failure, avoiding the whole discovery process to happen again and
without losing information.

6.29. ROS 2 using Fast DDS middleware 521

Fast DDS Documentation, Release 2.8.2

Discovery partitions

The Discovery Server communication could be used with different servers to split in virtual partitions the discovery
info. This means that two endpoints only would know each other if there is a server or a server network between them.
We are going to execute an example with two different independent servers. The following image shows a schema of
the architecture desired:

With this schema Listener 1 will be connected to Talker 1 and Talker 2, as they share Server 1. Listener 2 will connect
with Talker 1 as they share Server 2. But Listener 2 will not hear the messages from Talker 2 because they do not share
any server or servers’ network that connect them.

Run the first server listening in localhost in default port 11811.

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

In another terminal run the second server listening in localhost in port another port, in this case 11888.

fastdds discovery -i 1 -l 127.0.0.1 -p 11888

Now, run each node in a different terminal. Use the environment variable ROS_DISCOVERY_SERVER to decide which
server they are connected to. Be aware that the ids must match (Environment variables).

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_1

export ROS_DISCOVERY_SERVER="127.0.0.1:11811;127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_1

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker_2

export ROS_DISCOVERY_SERVER=";127.0.0.1:11888"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener_2

We should see how Listener 1 is receiving double messages, while Listener 2 is in a different partition from Talker 2
and so it does not listen to it.

Note: Once two endpoints know each other, they do not need the server network between them to listen to each other
messages.

ROS 2 Introspection

ROS 2 Command Line Interface (CLI) implements several introspection features to analyze the behaviour of a ROS 2
execution. These features (i.e. rosbag, topic list, etc.) are very helpful to understand a ROS 2 working network.

Most of these features use the DDS capability to share any topic information with every exiting participant. However,
the new Discovery Server v2 implements a traffic network reduction that limits the discovery data between nodes that
do not share a topic. This means that not every node will receive every topic data unless it has a reader in that topic.
As most of ROS 2 CLI Introspection is executed by adding a node into the network (some of them use ROS 2 Daemon,
and some create their own nodes), using Discovery Server v2 we will find that most of these functionalities are limited
and do not have all the information.

522 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The Discovery Server v2 functionality allows every node running as a SUPER_CLIENT, a kind of Client that connects
to a SERVER , from which it receives all the available discovery information (instead of just what it needs). In this sense,
ROS 2 introspection tools can be configured as Super Client, thus being able to discover every entity that is using the
Discovery Server protocol within the network.

Daemon’s related commands

The ROS 2 Daemon is used in several ROS 2 CLI introspection commands. It adds a ROS 2 Node to the network in
order to receive all the data sent. In order for the ROS 2 CLI to work when using Discover Server discovery mechanism,
the ROS 2 Daemon needs to be configured as Super Client. Therefore, this section is devoted to explain how to use
ROS 2 CLI with ROS 2 Daemon running as a Super Client. This will allow the Daemon to discover the entire Node
graph, and to receive every topic and endpoint information. To do so, a Fast DDS XML configuration file is used to
configure the ROS 2 Daemon and CLI tools.

Warning: Although it is possible to run the ROS 2 Daemon as a Server, this is not recommended since the daemon
will stop after two hours of inactivity, taking the Server down with it.

Below you can find a XML configuration file which will configure every new participant as a Super Client.

• XML Super Client configuration file

First of all, instantiate a Discovery Server using Fast DDS CLI

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

Run a talker and a listener that will discover each other through the Server (notice that ROS_DISCOVERY_SERVER
configuration is the same as the one in super_client_configuration_file.xml).

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

Then, instantiate a ROS 2 Daemon using the Super Client configuration (remember to source ROS 2 installation in
every new terminal).

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
ros2 daemon stop
ros2 daemon start
ros2 topic list
ros2 node info /talker
ros2 topic info /chatter
ros2 topic echo /chatter

We can also see the Node’s Graph using the ROS 2 tool rqt_graph as follows (you may need to press the refresh button):

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
rqt_graph

6.29. ROS 2 using Fast DDS middleware 523

Fast DDS Documentation, Release 2.8.2

No Daemon commands

Some ROS 2 CLI tools can be executed without the ROS 2 Daemon. In order for these tools to connect with a Discovery
Server and receive all the topics information they need to be instantiated as a Super Client that connects to the Server.

Following the previous configuration, build a simple system with a talker and a listener. First, run a Server:

fastdds discovery -i 0 -l 127.0.0.1 -p 11811

Then, run the talker and listener is separate terminals:

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp listener --ros-args --remap __node:=listener

export ROS_DISCOVERY_SERVER="127.0.0.1:11811"
ros2 run demo_nodes_cpp talker --ros-args --remap __node:=talker

Continue using the ROS 2 CLI with --no-daemon option with the new configuration. New nodes will connect with
the existing Server and will know every topic. Exporting ROS_DISCOVERY_SERVER is not needed as the remote server
has been configured in the xml file.

export FASTRTPS_DEFAULT_PROFILES_FILE=super_client_configuration_file.xml
ros2 topic list --no-daemon
ros2 node info /talker --no-daemon --spin-time 2

Compare Discovery Server with Simple Discovery

In order to compare the ROS 2 execution using Simple Discovery or Discovery Server, two scripts that execute a talker
and many listeners and analyze the network traffic during this time are provided. For this experiment, tshark is
required to be installed on your system. The configuration file is mandatory in order to avoid using intra-process mode.

Note: These scripts require a Discovery Server closure feature that is only available from Fast DDS v2.1.0 and forward.
In order to use this functionality, compile ROS 2 with Fast DDS v2.1.0 or higher.

These scripts’ functionalities are references for advance purpose and their study is left to the user.

• bash network traffic generator

• python3 graph generator

• XML configuration

Run the bash script with the setup path to source ROS 2 as argument. This will generate the traffic trace for simple
discovery. Executing the same script with second argument SERVER, it will generates the trace for service discovery.

Note: Depending on your configuration of tcpdump, this script may require sudo privileges to read traffic across your
network device.

After both executions are done, run the python script to generates a graph similar to the one below:

$ export FASTRTPS_DEFAULT_PROFILES_FILE="no_intraprocess_configuration.xml"
$ sudo bash generate_discovery_packages.bash ~/ros2_foxy/install/local_setup.bash

(continues on next page)

524 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

$ sudo bash generate_discovery_packages.bash ~/ros2_foxy/install/local_setup.bash SERVER
$ python3 discovery_packets.py

This graph is the result of a is a specific example, the user can execute the scripts and watch their own results. It can
easily be seen how the network traffic is reduced when using Discovery Service.

The reduction in traffic is a result of avoiding every node announcing itself and waiting a response from every other
node in the net. This creates a huge amount of traffic in large architectures. This reduction from this method increases
with the number of Nodes, making this architecture more scalable than the simple one.

Since Fast DDS v2.0.2 the new Discovery Server v2 is available, substituting the old Discovery Server. In this new
version, those nodes that do not share topics will not know each other, saving the whole discovery data required to
connect them and their endpoints. Notice that this is not this example case, but even though the massive reduction
could be appreciate due to the hidden architecture topics of ROS 2 nodes.

6.30 C++ API Reference

Fast DDS, as a Data Distribution Service (DDS) standard implementation, exposes the DDS Data-Centric Publish-
Subscribe (DCPS) Platform Independent Model (PIM) API, as specified in the DDS specification. Furthermore, is
also gives the user the possibility to directly interact with the underlying Real-time Publish-Subscribe (RTPS) API that
DDS implements for wired communications, as specified in the RTPS standard.

This section presents the most commonly used APIs provided by Fast DDS. For more information about the API
reference, please refer to Fast DDS API reference.

6.30.1 DDS DCPS PIM

Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model (PIM) API

Core

Entity

class eprosima::fastdds::dds::Entity
The Entity class is the abstract base class for all the objects that support QoS policies, a listener and a status
condition.

Subclassed by eprosima::fastdds::dds::DomainEntity, eprosima::fastdds::dds::DomainParticipant

6.30. C++ API Reference 525

https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.eprosima.com/docs/fast-rtps/latest/API

Fast DDS Documentation, Release 2.8.2

Public Functions

inline Entity(const StatusMask &mask = StatusMask::all())
Constructor.

Parameters mask – StatusMask (default: all)

inline virtual fastrtps::types::ReturnCode_t enable()
This operation enables the Entity.

Returns RETCODE_OK

inline void close()
This operation disables the Entity before closing it.

inline const StatusMask &get_status_mask() const
Retrieves the set of relevant statuses for the Entity.

Returns Reference to the StatusMask with the relevant statuses set to 1

const StatusMask &get_status_changes() const
Retrieves the set of triggered statuses in the Entity.

Triggered statuses are the ones whose value has changed since the last time the application read the status.
When the entity is first created or if the entity is not enabled, all communication statuses are in the non-
triggered state, so the list returned by the get_status_changes operation will be empty. The list of statuses
returned by the get_status_changes operation refers to the status that are triggered on the Entity itself and
does not include statuses that apply to contained entities.

Returns const reference to the StatusMask with the triggered statuses set to 1

inline const InstanceHandle_t &get_instance_handle() const
Retrieves the instance handler that represents the Entity.

Returns Reference to the InstanceHandle

inline bool is_enabled() const
Checks if the Entity is enabled.

Returns true if enabled, false if not

inline StatusCondition &get_statuscondition()
Allows access to the StatusCondition associated with the Entity.

Returns Reference to StatusCondition object

DomainEntity

class eprosima::fastdds::dds::DomainEntity : public eprosima::fastdds::dds::Entity
The DomainEntity class is a subclass of Entity created in order to differentiate between DomainParticipants and
the rest of Entities.

Subclassed by eprosima::fastdds::dds::DataReader, eprosima::fastdds::dds::DataWriter,
eprosima::fastdds::dds::Publisher, eprosima::fastdds::dds::Subscriber, eprosima::fastdds::dds::Topic

526 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DomainEntity(const StatusMask &mask = StatusMask::all())
Constructor.

Parameters mask – StatusMask (default: all)

Policy

DataRepresentationId

enum eprosima::fastdds::dds::DataRepresentationId
Enum DataRepresentationId, different kinds of topic data representation

Values:

enumerator XCDR_DATA_REPRESENTATION
Extended CDR Encoding version 1.

enumerator XML_DATA_REPRESENTATION
XML Data Representation (Unsupported)

enumerator XCDR2_DATA_REPRESENTATION
Extended CDR Encoding version 2.

DataRepresentationQosPolicy

class eprosima::fastdds::dds::DataRepresentationQosPolicy : public
eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

With multiple standard data Representations available, and vendor-specific extensions possible, DataWriters and
DataReaders must be able to negotiate which data representation(s) to use. This negotiation shall occur based
on DataRepresentationQosPolicy.

Warning: If a writer’s offered representation is contained within a reader’s sequence, the offer satisfies the
request and the policies are compatible. Otherwise, they are incompatible.

Note: Immutable Qos Policy

6.30. C++ API Reference 527

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DataRepresentationQosPolicy()
Constructor.

virtual ~DataRepresentationQosPolicy() override = default
Destructor.

inline bool operator==(const DataRepresentationQosPolicy &b) const
Compares the given policy to check if it’s equal.

Parameters b – QoS Policy.

Returns True if the policy is equal.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

std::vector<DataRepresentationId_t> m_value

List of DataRepresentationId.

By default, empty list.

DataSharingQosPolicy

class eprosima::fastdds::dds::DataSharingQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Qos Policy to configure the data sharing

Note: Immutable Qos Policy

Public Functions

inline DataSharingQosPolicy()
Constructor.

virtual ~DataSharingQosPolicy() = default
Destructor.

inline DataSharingQosPolicy(const DataSharingQosPolicy &b)
Copy constructor.

Parameters b – Another DataSharingQosPolicy instance

inline virtual void clear() override
Clears the QosPolicy object.

inline const DataSharingKind &kind() const

Returns the current DataSharing configuration mode

528 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline const std::string &shm_directory() const

Returns the current DataSharing shared memory directory

inline const std::vector<uint64_t> &domain_ids() const
Gets the set of DataSharing domain IDs.

Each domain ID is 64 bit long. However, user-defined domain IDs are only 16 bit long, while the rest of
the 48 bits are used for the automatically generated domain ID (if any).

• Automatic domain IDs use the 48 MSB and leave the 16 LSB as zero.

• User defined domain IDs use the 16 LSB and leave the 48 MSB as zero.

Returns the current DataSharing domain IDs

inline void set_max_domains(uint32_t size)

Parameters size – the new maximum number of domain IDs

inline const uint32_t &max_domains() const

Returns the current configured maximum number of domain IDs

inline void automatic()
Configures the DataSharing in automatic mode.

The default shared memory directory of the OS is used. A default domain ID is automatically computed.

inline void automatic(const std::vector<uint16_t> &domain_ids)
Configures the DataSharing in automatic mode.

The default shared memory directory of the OS is used.

Parameters domain_ids – the user configured DataSharing domain IDs (16 bits).

inline void automatic(const std::string &directory)
Configures the DataSharing in automatic mode.

A default domain ID is automatically computed.

Parameters directory – The shared memory directory to use.

inline void automatic(const std::string &directory, const std::vector<uint16_t> &domain_ids)
Configures the DataSharing in automatic mode.

Parameters

• directory – The shared memory directory to use.

• domain_ids – the user configured DataSharing domain IDs (16 bits).

inline void on(const std::string &directory)
Configures the DataSharing in active mode.

A default domain ID is automatically computed.

Parameters directory – The shared memory directory to use. It is mandatory to provide a
non-empty name or the creation of endpoints will fail.

6.30. C++ API Reference 529

Fast DDS Documentation, Release 2.8.2

inline void on(const std::string &directory, const std::vector<uint16_t> &domain_ids)
Configures the DataSharing in active mode.

Parameters

• directory – The shared memory directory to use. It is mandatory to provide a non-empty
name or the creation of endpoints will fail.

• domain_ids – the user configured DataSharing domain IDs (16 bits).

inline void off()
Configures the DataSharing in disabled mode.

inline void add_domain_id(uint16_t id)
Adds a user-specific DataSharing domain ID.

Parameters id – 16 bit identifier

DataSharingKind

enum eprosima::fastdds::dds::DataSharingKind
Data sharing configuration kinds

Values:

enumerator AUTO
Automatic configuration. DataSharing will be used if requirements are met.

enumerator ON
Activate the use of DataSharing. Entity creation will fail if requirements for DataSharing are not met

enumerator OFF
Disable the use of DataSharing

DeadlineQosPolicy

class eprosima::fastdds::dds::DeadlineQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

DataReader expects a new sample updating the value of each instance at least once every deadline period.
DataWriter indicates that the application commits to write a new value (using the DataWriter) for each instance
managed by the DataWriter at least once every deadline period.

Note: Mutable Qos Policy

530 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DeadlineQosPolicy()
Constructor.

virtual ~DeadlineQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

fastrtps::Duration_t period
Maximum time expected between samples. It is inconsistent for a DataReader to have a DEADLINE period
less than its TimeBasedFilterQosPolicy minimum_separation.

By default, c_TimeInifinite.

DestinationOrderQosPolicy

class eprosima::fastdds::dds::DestinationOrderQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Controls the criteria used to determine the logical order among changes made by Publisher entities to the same
instance of data (i.e., matching Topic and key).

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Immutable Qos Policy

Public Functions

inline DestinationOrderQosPolicy()
Constructor.

virtual ~DestinationOrderQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

6.30. C++ API Reference 531

Fast DDS Documentation, Release 2.8.2

Public Members

DestinationOrderQosPolicyKind kind

DestinationOrderQosPolicyKind.

By default, BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

DestinationOrderQosPolicyKind

enum eprosima::fastdds::dds::DestinationOrderQosPolicyKind
Enum DestinationOrderQosPolicyKind, different kinds of destination order for DestinationOrderQosPolicy.

Values:

enumerator BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS
Indicates that data is ordered based on the reception time at each Subscriber. Since each subscriber may
receive the data at different times there is no guaranteed that the changes will be seen in the same order.
Consequently, it is possible for each subscriber to end up with a different final value for the data.

enumerator BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
Indicates that data is ordered based on a timestamp placed at the source (by the Service or by the applica-
tion). In any case this guarantees a consistent final value for the data in all subscribers.

DisablePositiveACKsQosPolicy

class eprosima::fastdds::dds::DisablePositiveACKsQosPolicy : public
eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

Class DisablePositiveACKsQosPolicy to disable sending of positive ACKs

Note: Immutable Qos Policy

Public Functions

inline DisablePositiveACKsQosPolicy()
Constructor.

virtual ~DisablePositiveACKsQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

532 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

bool enabled

True if this QoS is enabled.

By default, false.

fastrtps::Duration_t duration

The duration to keep samples for (not serialized as not needed by reader).

By default, c_TimeInfinite.

DurabilityQosPolicy

class eprosima::fastdds::dds::DurabilityQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

This policy expresses if the data should ‘outlive’ their writing time.

Note: Immutable Qos Policy

Public Functions

inline DurabilityQosPolicy()
Constructor.

virtual ~DurabilityQosPolicy() = default
Destructor.

inline fastrtps::rtps::DurabilityKind_t durabilityKind() const
Translates kind to rtps layer equivalent

Returns fastrtps::rtps::DurabilityKind_t

inline void durabilityKind(const fastrtps::rtps::DurabilityKind_t new_kind)
Set kind passing the rtps layer equivalent kind

Parameters new_kind – fastrtps::rtps::DurabilityKind_t

inline virtual void clear() override
Clears the QosPolicy object.

6.30. C++ API Reference 533

Fast DDS Documentation, Release 2.8.2

Public Members

DurabilityQosPolicyKind_t kind

DurabilityQosPolicyKind.

By default the value for DataReaders: VOLATILE_DURABILITY_QOS, for DataWriters TRAN-
SIENT_LOCAL_DURABILITY_QOS.

DurabilityQosPolicyKind

enum eprosima::fastdds::dds::DurabilityQosPolicyKind
Enum DurabilityQosPolicyKind_t, different kinds of durability for DurabilityQosPolicy.

Values:

enumerator VOLATILE_DURABILITY_QOS
The Service does not need to keep any samples of data-instances on behalf of any DataReader that is not
known by the DataWriter at the time the instance is written. In other words the Service will only attempt
to provide the data to existing subscribers

enumerator TRANSIENT_LOCAL_DURABILITY_QOS
For TRANSIENT_LOCAL, the service is only required to keep the data in the memory of the DataWriter
that wrote the data and the data is not required to survive the DataWriter.

enumerator TRANSIENT_DURABILITY_QOS
For TRANSIENT, the service is only required to keep the data in memory and not in permanent storage;
but the data is not tied to the lifecycle of the DataWriter and will, in general, survive it.

enumerator PERSISTENT_DURABILITY_QOS
Data is kept on permanent storage, so that they can outlive a system session.

Warning: Not Supported

DurabilityServiceQosPolicy

class eprosima::fastdds::dds::DurabilityServiceQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Specifies the configuration of the durability service. That is, the service that implements the DurabilityQosPolicy
kind of TRANSIENT and PERSISTENT.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Immutable Qos Policy

534 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DurabilityServiceQosPolicy()
Constructor.

virtual ~DurabilityServiceQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

fastrtps::Duration_t service_cleanup_delay

Control when the service is able to remove all information regarding a data-instance.

By default, c_TimeZero.

HistoryQosPolicyKind history_kind
Controls the HistoryQosPolicy of the fictitious DataReader that stores the data within the durability service.

By default, KEEP_LAST_HISTORY_QOS.

int32_t history_depth

Number of most recent values that should be maintained on the History. It only have effect if the his-
tory_kind is KEEP_LAST_HISTORY_QOS.

By default, 1.

int32_t max_samples
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all
the instances associated with it. Represents the maximum samples the middleware can store for any one
DataWriter (or DataReader). It is inconsistent for this value to be less than max_samples_per_instance.

By default, LENGTH_UNLIMITED.

int32_t max_instances
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, LENGTH_UNLIMITED.

int32_t max_samples_per_instance
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.
It is inconsistent for this value to be greater than max_samples.

By default, LENGTH_UNLIMITED.

6.30. C++ API Reference 535

Fast DDS Documentation, Release 2.8.2

EntityFactoryQosPolicy

class eprosima::fastdds::dds::EntityFactoryQosPolicy
Controls the behavior of the entity when acting as a factory for other entities. In other words, configures the
side-effects of the create_* and delete_* operations.

Note: Mutable Qos Policy

Public Functions

inline EntityFactoryQosPolicy()
Constructor without parameters.

inline EntityFactoryQosPolicy(bool autoenable)
Constructor.

Parameters autoenable – Value for the autoenable_created_entities boolean

inline virtual ~EntityFactoryQosPolicy()
Destructor.

Public Members

bool autoenable_created_entities
Specifies whether the entity acting as a factory automatically enables the instances it creates. If True the
factory will automatically enable each created Entity otherwise it will not.

By default, True.

GenericDataQosPolicy

class eprosima::fastdds::dds::GenericDataQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy, public fastrtps::ResourceLimitedVector<fastrtps::rtps::octet>

Class GenericDataQosPolicy, base class to transmit user data during the discovery phase.

Subclassed by eprosima::fastdds::dds::GroupDataQosPolicy, eprosima::fastdds::dds::TopicDataQosPolicy,
eprosima::fastdds::dds::UserDataQosPolicy

Public Functions

inline GenericDataQosPolicy(const GenericDataQosPolicy &data)
Construct from another GenericDataQosPolicy.

The resulting GenericDataQosPolicy will have the same size limits as the input attribute

Parameters data – data to copy in the newly created object

536 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline GenericDataQosPolicy(ParameterId_t pid, const collection_type &data)
Construct from underlying collection type.

Useful to easy integration on old APIs where a traditional container was used. The resulting Generic-
DataQosPolicy will always be unlimited in size

Parameters

• pid – Id of the parameter

• data – data to copy in the newly created object

inline GenericDataQosPolicy &operator=(const collection_type &b)
Copies data from underlying collection type.

Useful to easy integration on old APIs where a traditional container was used. The resulting Generic-
DataQosPolicy will keep the current size limit. If the input data is larger than the current limit size, the
elements exceeding that maximum will be silently discarded.

Parameters b – object to be copied

Returns reference to the current object.

inline GenericDataQosPolicy &operator=(const GenericDataQosPolicy &b)
Copies another GenericDataQosPolicy.

The resulting GenericDataQosPolicy will have the same size limit as the input parameter, so all data in the
input will be copied.

Parameters b – object to be copied

Returns reference to the current object.

inline void set_max_size(size_t size)
Set the maximum size of the user data and reserves memory for that much.

Parameters size – new maximum size of the user data. Zero for unlimited size

inline const collection_type &dataVec() const

Returns const reference to the internal raw data.

inline virtual void clear() override
Clears the QosPolicy object.

inline const collection_type &data_vec() const
Returns raw data vector.

Returns raw data as vector of octets.

inline collection_type &data_vec()
Returns raw data vector.

Returns raw data as vector of octets.

inline void data_vec(const collection_type &vec)
Sets raw data vector.

Parameters vec – raw data to set.

inline const collection_type &getValue() const
Returns raw data vector.

Returns raw data as vector of octets.

6.30. C++ API Reference 537

Fast DDS Documentation, Release 2.8.2

inline void setValue(const collection_type &vec)
Sets raw data vector.

Parameters vec – raw data to set.

GroupDataQosPolicy

class GroupDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy
Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Publisher or
Subscriber. The value of the GROUP_DATA is available to the application on the DataReader and DataWriter
entities and is propagated by means of the built-in topics.

This QoS can be used by an application combination with the DataReaderListener and DataWriterListener to
implement matching policies similar to those of the PARTITION QoS except the decision can be made based on
an application-defined policy.

HistoryQosPolicy

class eprosima::fastdds::dds::HistoryQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Specifies the behavior of the Service in the case where the value of a sample changes (one or more times) before
it can be successfully communicated to one or more existing subscribers. This QoS policy controls whether the
Service should deliver only the most recent value, attempt to deliver all intermediate values, or do something in
between. On the publishing side this policy controls the samples that should be maintained by the DataWriter
on behalf of existing DataReader entities. The behavior with regards to a DataReaderentities discovered after a
sample is written is controlled by the DURABILITY QoS policy. On the subscribing side it controls the samples
that should be maintained until the application “takes” them from the Service.

Note: Immutable Qos Policy

Public Functions

inline HistoryQosPolicy()
Constructor.

virtual ~HistoryQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

538 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

HistoryQosPolicyKind kind

HistoryQosPolicyKind.

By default, KEEP_LAST_HISTORY_QOS.

int32_t depth
History depth.

By default, 1. If a value other than 1 is specified, it should be consistent with the settings of the Resource-
LimitsQosPolicy.

Warning: Only takes effect if the kind is KEEP_LAST_HISTORY_QOS.

HistoryQosPolicyKind

enum eprosima::fastdds::dds::HistoryQosPolicyKind
Enum HistoryQosPolicyKind, different kinds of History Qos for HistoryQosPolicy.

Values:

enumerator KEEP_LAST_HISTORY_QOS
On the publishing side, the Service will only attempt to keep the most recent “depth” samples of each
instance of data (identified by its key) managed by the DataWriter. On the subscribing side, the DataReader
will only attempt to keep the most recent “depth” samples received for each instance (identified by its key)
until the application “takes” them via the DataReader’s take operation.

enumerator KEEP_ALL_HISTORY_QOS
On the publishing side, the Service will attempt to keep all samples (representing each value written) of
each instance of data (identified by its key) managed by the DataWriter until they can be delivered to all
subscribers. On the subscribing side, the Service will attempt to keep all samples of each instance of data
(identified by its key) managed by the DataReader. These samples are kept until the application “takes”
them from the Service via the take operation.

LatencyBudgetQosPolicy

class eprosima::fastdds::dds::LatencyBudgetQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Specifies the maximum acceptable delay from the time the data is written until the data is inserted in the receiver’s
application-cache and the receiving application is notified of the fact.This policy is a hint to the Service, not
something that must be monitored or enforced. The Service is not required to track or alert the user of any
violation.

6.30. C++ API Reference 539

Fast DDS Documentation, Release 2.8.2

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Mutable Qos Policy

Public Functions

inline LatencyBudgetQosPolicy()
Constructor.

virtual ~LatencyBudgetQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

fastrtps::Duration_t duration

Maximum acceptable delay from the time data is written until it is received.

By default, c_TimeZero.

LifespanQosPolicy

class eprosima::fastdds::dds::LifespanQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Specifies the maximum duration of validity of the data written by the DataWriter.

Note: Mutable Qos Policy

Public Functions

inline LifespanQosPolicy()
Constructor.

virtual ~LifespanQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

540 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

fastrtps::Duration_t duration

Period of validity.

By default, c_TimeInfinite.

LivelinessQosPolicy

class eprosima::fastdds::dds::LivelinessQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Determines the mechanism and parameters used by the application to determine whether an Entity is “active”
(alive). The “liveliness” status of an Entity is used to maintain instance ownership in combination with the setting
of the OwnershipQosPolicy. The application is also informed via listener when an Entity is no longer alive.

The DataReader requests that liveliness of the writers is maintained by the requested means and loss of liveliness
is detected with delay not to exceed the lease_duration.

The DataWriter commits to signaling its liveliness using the stated means at intervals not to exceed the
lease_duration. Listeners are used to notify the DataReaderof loss of liveliness and DataWriter of violations
to the liveliness contract.

Public Functions

inline LivelinessQosPolicy()
Constructor.

virtual ~LivelinessQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

LivelinessQosPolicyKind kind

Liveliness kind

By default, AUTOMATIC_LIVELINESS.

fastrtps::Duration_t lease_duration
Period within which liveliness should be asserted.

On a DataWriter it represents the period it commits to signal its liveliness. On a DataReader it represents
the period without assertion after which a DataWriter is considered inactive. By default, c_TimeInfinite.

fastrtps::Duration_t announcement_period
The period for automatic assertion of liveliness.

Only used for DataWriters with AUTOMATIC liveliness. By default, c_TimeInfinite.

6.30. C++ API Reference 541

Fast DDS Documentation, Release 2.8.2

Warning: When not infinite, must be < lease_duration, and it is advisable to be less than
0.7*lease_duration.

LivelinessQosPolicyKind

enum eprosima::fastdds::dds::LivelinessQosPolicyKind
Enum LivelinessQosPolicyKind, different kinds of liveliness for LivelinessQosPolicy

Values:

enumerator AUTOMATIC_LIVELINESS_QOS
The infrastructure will automatically signal liveliness for the DataWriters at least as often as required by
the lease_duration.

enumerator MANUAL_BY_PARTICIPANT_LIVELINESS_QOS
The Service will assume that as long as at least one Entity within the DomainParticipant has asserted its
liveliness the other Entities in that same DomainParticipant are also alive.

enumerator MANUAL_BY_TOPIC_LIVELINESS_QOS
The Service will only assume liveliness of the DataWriter if the application has asserted liveliness of that
DataWriter itself.

OwnershipQosPolicy

class eprosima::fastdds::dds::OwnershipQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Specifies whether it is allowed for multiple DataWriters to write the same instance of the data and if so, how
these modifications should be arbitrated

Note: Immutable Qos Policy

Public Functions

inline OwnershipQosPolicy()
Constructor.

virtual ~OwnershipQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

542 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

OwnershipQosPolicyKind kind
OwnershipQosPolicyKind.

OwnershipQosPolicyKind

enum eprosima::fastdds::dds::OwnershipQosPolicyKind
Enum OwnershipQosPolicyKind, different kinds of ownership for OwnershipQosPolicy.

Values:

enumerator SHARED_OWNERSHIP_QOS
Indicates shared ownership for each instance. Multiple writers are allowed to update the same instance and
all the updates are made available to the readers. In other words there is no concept of an “owner” for the
instances.

enumerator EXCLUSIVE_OWNERSHIP_QOS
Indicates each instance can only be owned by one DataWriter, but the owner of an instance can change
dynamically. The selection of the owner is controlled by the setting of the OwnershipStrengthQosPolicy.
The owner is always set to be the highest-strength DataWriter object among the ones currently “active” (as
determined by the LivelinessQosPolicy).

OwnershipStrengthQosPolicy

class eprosima::fastdds::dds::OwnershipStrengthQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Specifies the value of the “strength” used to arbitrate among multiple DataWriter objects that attempt to modify
the same instance of a data-object (identified by Topic + key).This policy only applies if the OWNERSHIP QoS
policy is of kind EXCLUSIVE.

Note: Mutable Qos Policy

Public Functions

inline OwnershipStrengthQosPolicy()
Constructor.

virtual ~OwnershipStrengthQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

6.30. C++ API Reference 543

Fast DDS Documentation, Release 2.8.2

Public Members

uint32_t value

Strength

By default, 0.

ParticipantResourceLimitsQos

using eprosima::fastdds::dds::ParticipantResourceLimitsQos =
fastrtps::rtps::RTPSParticipantAllocationAttributes

Holds allocation limits affecting collections managed by a participant.

Partition_t

class eprosima::fastdds::dds::Partition_t

Public Functions

inline explicit Partition_t(const void *ptr)
Constructor using a pointer.

Parameters ptr – Pointer to be set

inline uint32_t size() const
Getter for the size.

Returns uint32_t with the size

inline const char *name() const
Getter for the partition name.

Returns name

PartitionQosPolicy

class eprosima::fastdds::dds::PartitionQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Set of strings that introduces a logical partition among the topics visible by the Publisher and Subscriber. A
DataWriter within a Publisher only communicates with a DataReader in a Subscriber if (in addition to matching
the Topic and having compatible QoS) the Publisher and Subscriber have a common partition name string.

The empty string (“”) is considered a valid partition that is matched with other partition names using the same
rules of string matching and regular-expression matching used for any other partition name.

Note: Mutable Qos Policy

544 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline PartitionQosPolicy()
Constructor without parameters.

inline PartitionQosPolicy(uint16_t in_length)
Constructor using Parameter length.

Parameters in_length – Length of the parameter

inline PartitionQosPolicy(const PartitionQosPolicy &b)
Copy constructor.

Parameters b – Another PartitionQosPolicy instance

virtual ~PartitionQosPolicy() = default
Destructor.

inline const_iterator begin() const
Getter for the first position of the partition list.

Returns const_iterator

inline const_iterator end() const
Getter for the end of the partition list.

Returns const_iterator

inline uint32_t size() const
Getter for the number of partitions.

Returns uint32_t with the size

inline uint32_t empty() const
Check if the set is empty.

Returns true if it is empty, false otherwise

inline void set_max_size(uint32_t size)
Setter for the maximum size reserved for partitions (in bytes)

Parameters size – Size to be set

inline uint32_t max_size() const
Getter for the maximum size (in bytes)

Returns uint32_t with the maximum size

inline void push_back(const char *name)
Appends a name to the list of partition names.

Parameters name – Name to append.

inline virtual void clear() override
Clears list of partition names

inline const std::vector<std::string> getNames() const
Returns partition names.

Returns Vector of partition name strings.

inline void setNames(std::vector<std::string> &nam)
Overrides partition names

Parameters nam – Vector of partition name strings.

6.30. C++ API Reference 545

Fast DDS Documentation, Release 2.8.2

inline const std::vector<std::string> names() const
Returns partition names.

Returns Vector of partition name strings.

inline void names(std::vector<std::string> &nam)
Overrides partition names

Parameters nam – Vector of partition name strings.

class const_iterator

Public Functions

inline const_iterator(const fastrtps::rtps::octet *ptr)
Constructor using a pointer.

Parameters ptr – Pointer to be set

PresentationQosPolicy

class eprosima::fastdds::dds::PresentationQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Specifies how the samples representing changes to data instances are presented to the subscribing application.
This policy affects the application’s ability to specify and receive coherent changes and to see the relative order
of changes.access_scope determines the largest scope spanning the entities for which the order and coherency of
changes can be preserved. The two booleans control whether coherent access and ordered access are supported
within the scope access_scope.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Immutable Qos Policy

Public Functions

inline PresentationQosPolicy()
Constructor without parameters.

virtual ~PresentationQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

546 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

PresentationQosPolicyAccessScopeKind access_scope

Access Scope Kind

By default, INSTANCE_PRESENTATION_QOS.

bool coherent_access
Specifies support coherent access. That is, the ability to group a set of changes as a unit on the publishing
end such that they are received as a unit at the subscribing end. by default, false.

bool ordered_access
Specifies support for ordered access to the samples received at the subscription end. That is, the ability of
the subscriber to see changes in the same order as they occurred on the publishing end. By default, false.

PresentationQosPolicyAccessScopeKind

enum eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind
Enum PresentationQosPolicyAccessScopeKind, different kinds of Presentation Policy order for Presentation-
QosPolicy.

Values:

enumerator INSTANCE_PRESENTATION_QOS
Scope spans only a single instance. Indicates that changes to one instance need not be coherent nor ordered
with respect to changes to any other instance. In other words, order and coherent changes apply to each
instance separately.

enumerator TOPIC_PRESENTATION_QOS
Scope spans to all instances within the same DataWriter (or DataReader), but not across instances in
different DataWriter (or DataReader).

enumerator GROUP_PRESENTATION_QOS
Scope spans to all instances belonging to DataWriter (or DataReader) entities within the same Publisher
(or Subscriber).

PropertyPolicyQos

using eprosima::fastdds::dds::PropertyPolicyQos = fastrtps::rtps::PropertyPolicy
Property policies.

6.30. C++ API Reference 547

Fast DDS Documentation, Release 2.8.2

PublishModeQosPolicy

class eprosima::fastdds::dds::PublishModeQosPolicy : public eprosima::fastdds::dds::QosPolicy
Class PublishModeQosPolicy, defines the publication mode for a specific writer.

Public Functions

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

PublishModeQosPolicyKind kind = SYNCHRONOUS_PUBLISH_MODE

PublishModeQosPolicyKind

By default, SYNCHRONOUS_PUBLISH_MODE.

const char *flow_controller_name = fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT
Name of the flow controller used when publish mode kind is ASYNCHRONOUS_PUBLISH_MODE.

Since 2.4.0

PublishModeQosPolicyKind

enum eprosima::fastdds::dds::PublishModeQosPolicyKind
Enum PublishModeQosPolicyKind, different kinds of publication synchronism

Values:

enumerator SYNCHRONOUS_PUBLISH_MODE
Synchronous publication mode (default for writers).

enumerator ASYNCHRONOUS_PUBLISH_MODE
Asynchronous publication mode.

QosPolicy

class eprosima::fastdds::dds::QosPolicy
Class QosPolicy, base for all QoS policies defined for Writers and Readers.

Subclassed by eprosima::fastdds::dds::DataRepresentationQosPolicy, eprosima::fastdds::dds::DataSharingQosPolicy,
eprosima::fastdds::dds::DeadlineQosPolicy, eprosima::fastdds::dds::DestinationOrderQosPolicy,
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy, eprosima::fastdds::dds::DurabilityQosPolicy,
eprosima::fastdds::dds::DurabilityServiceQosPolicy, eprosima::fastdds::dds::GenericDataQosPolicy,
eprosima::fastdds::dds::HistoryQosPolicy, eprosima::fastdds::dds::LatencyBudgetQosPolicy,
eprosima::fastdds::dds::LifespanQosPolicy, eprosima::fastdds::dds::LivelinessQosPolicy,
eprosima::fastdds::dds::OwnershipQosPolicy, eprosima::fastdds::dds::OwnershipStrengthQosPolicy,

548 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::PartitionQosPolicy, eprosima::fastdds::dds::PresentationQosPolicy,
eprosima::fastdds::dds::PublishModeQosPolicy, eprosima::fastdds::dds::ReliabilityQosPolicy,
eprosima::fastdds::dds::ResourceLimitsQosPolicy, eprosima::fastdds::dds::TimeBasedFilterQosPolicy,
eprosima::fastdds::dds::TransportConfigQos, eprosima::fastdds::dds::TransportPriorityQosPolicy,
eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy, eprosima::fastdds::dds::TypeConsistencyQos,
eprosima::fastdds::dds::TypeIdV1, eprosima::fastdds::dds::TypeObjectV1, eprosima::fastdds::dds::WireProtocolConfigQos,
eprosima::fastdds::dds::xtypes::TypeInformation

Public Functions

inline QosPolicy()
Constructor without parameters.

inline explicit QosPolicy(bool send_always)
Constructor.

Parameters send_always – Boolean that set if the Qos need to be sent even if it is not changed

QosPolicy(const QosPolicy &b) = default
Copy Constructor.

Parameters b – Another instance of QosPolicy

virtual ~QosPolicy() = default
Destructor.

inline virtual bool send_always() const
Whether it should always be sent.

Returns True if it should always be sent.

inline virtual void clear() = 0
Clears the QosPolicy object.

Public Members

bool hasChanged
Boolean that indicates if the Qos has been changed with respect to the default Qos.

QosPolicyId_t

enum eprosima::fastdds::dds::QosPolicyId_t
The identifier for each QosPolicy.

Each QosPolicy class has a different ID that is then used to refer to the incompatible policies on OfferedIncom-
patibleQosStatus and RequestedIncompatibleQosStatus.

Values:

enumerator INVALID_QOS_POLICY_ID

enumerator USERDATA_QOS_POLICY_ID

enumerator DURABILITY_QOS_POLICY_ID

enumerator PRESENTATION_QOS_POLICY_ID

6.30. C++ API Reference 549

Fast DDS Documentation, Release 2.8.2

enumerator DEADLINE_QOS_POLICY_ID

enumerator LATENCYBUDGET_QOS_POLICY_ID

enumerator OWNERSHIP_QOS_POLICY_ID

enumerator OWNERSHIPSTRENGTH_QOS_POLICY_ID

enumerator LIVELINESS_QOS_POLICY_ID

enumerator TIMEBASEDFILTER_QOS_POLICY_ID

enumerator PARTITION_QOS_POLICY_ID

enumerator RELIABILITY_QOS_POLICY_ID

enumerator DESTINATIONORDER_QOS_POLICY_ID

enumerator HISTORY_QOS_POLICY_ID

enumerator RESOURCELIMITS_QOS_POLICY_ID

enumerator ENTITYFACTORY_QOS_POLICY_ID

enumerator WRITERDATALIFECYCLE_QOS_POLICY_ID

enumerator READERDATALIFECYCLE_QOS_POLICY_ID

enumerator TOPICDATA_QOS_POLICY_ID

enumerator GROUPDATA_QOS_POLICY_ID

enumerator TRANSPORTPRIORITY_QOS_POLICY_ID

enumerator LIFESPAN_QOS_POLICY_ID

enumerator DURABILITYSERVICE_QOS_POLICY_ID

enumerator DATAREPRESENTATION_QOS_POLICY_ID

enumerator TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID

enumerator DISABLEPOSITIVEACKS_QOS_POLICY_ID

enumerator PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID

enumerator PROPERTYPOLICY_QOS_POLICY_ID

enumerator PUBLISHMODE_QOS_POLICY_ID

enumerator READERRESOURCELIMITS_QOS_POLICY_ID

enumerator RTPSENDPOINT_QOS_POLICY_ID

enumerator RTPSRELIABLEREADER_QOS_POLICY_ID

enumerator RTPSRELIABLEWRITER_QOS_POLICY_ID

enumerator TRANSPORTCONFIG_QOS_POLICY_ID

enumerator TYPECONSISTENCY_QOS_POLICY_ID

enumerator WIREPROTOCOLCONFIG_QOS_POLICY_ID

enumerator WRITERRESOURCELIMITS_QOS_POLICY_ID

enumerator NEXT_QOS_POLICY_ID

550 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReaderDataLifecycleQosPolicy

class eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy
Specifies the behavior of the DataReader with regards to the lifecycle of the data-instances it manages.

Warning: This Qos Policy will be implemented in future releases.

Note: Mutable Qos Policy

Public Functions

inline ReaderDataLifecycleQosPolicy()
Constructor.

inline virtual ~ReaderDataLifecycleQosPolicy()
Destructor.

Public Members

Duration_t autopurge_no_writer_samples_delay
Indicates the duration the DataReader must retain information regarding instances that have the in-
stance_state NOT_ALIVE_NO_WRITERS.

By default, c_TimeInfinite.

Duration_t autopurge_disposed_samples_delay
Indicates the duration the DataReader must retain information regarding instances that have the in-
stance_state NOT_ALIVE_DISPOSED.

By default, c_TimeInfinite.

ReliabilityQosPolicy

class eprosima::fastdds::dds::ReliabilityQosPolicy : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Indicates the reliability of the endpoint.

Note: Immutable Qos Policy

6.30. C++ API Reference 551

Fast DDS Documentation, Release 2.8.2

Public Functions

inline ReliabilityQosPolicy()
Constructor.

virtual ~ReliabilityQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

ReliabilityQosPolicyKind kind
Defines the reliability kind of the endpoint.

By default, BEST_EFFORT_RELIABILITY_QOS for DataReaders and RELI-
ABLE_RELIABILITY_QOS for DataWriters.

fastrtps::Duration_t max_blocking_time
Defines the maximum period of time certain methods will be blocked.

Methods affected by this property are:

• DataWriter::write

• DataReader::takeNextData

•

DataReader::readNextData

By default, 100 ms.

ReliabilityQosPolicyKind

enum eprosima::fastdds::dds::ReliabilityQosPolicyKind
Enum ReliabilityQosPolicyKind, different kinds of reliability for ReliabilityQosPolicy.

Values:

enumerator BEST_EFFORT_RELIABILITY_QOS
Indicates that it is acceptable to not retry propagation of any samples. Presumably new values for the
samples are generated often enough that it is not necessary to re-send or acknowledge any samples

enumerator RELIABLE_RELIABILITY_QOS
Specifies the Service will attempt to deliver all samples in its history. Missed samples may be retried.
In steady-state (no modifications communicated via the DataWriter) the middleware guarantees that all
samples in the DataWriter history will eventually be delivered to all the DataReader objects. Outside
steady state the HistoryQosPolicy and ResourceLimitsQosPolicy will determine how samples become part
of the history and whether samples can be discarded from it.

552 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ResourceLimitsQosPolicy

class eprosima::fastdds::dds::ResourceLimitsQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Specifies the resources that the Service can consume in order to meet the requested QoS

Note: Immutable Qos Policy

Public Functions

inline ResourceLimitsQosPolicy()
Constructor.

virtual ~ResourceLimitsQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

int32_t max_samples
Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all
the instances associated with it. Represents the maximum samples the middleware can store for any one
DataWriter (or DataReader).

Value 0 means infinite resources. By default, 5000.

Warning: It is inconsistent if max_samples < (max_instances *
max_samples_per_instance).

int32_t max_instances
Represents the maximum number of instances DataWriter (or DataReader) can manage.

Value 0 means infinite resources. By default, 10.

Warning: It is inconsistent if (max_instances * max_samples_per_instance) >
max_samples.

int32_t max_samples_per_instance

Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.

Value 0 means infinite resources. By default, 400.

6.30. C++ API Reference 553

Fast DDS Documentation, Release 2.8.2

Warning: It is inconsistent if (max_instances * max_samples_per_instance) >
max_samples.

int32_t allocated_samples

Number of samples currently allocated.

By default, 100.

int32_t extra_samples
Represents the extra number of samples available once the max_samples have been reached in the history.
This makes it possible, for example, to loan samples even with a full history. By default, 1.

RTPSEndpointQos

class eprosima::fastdds::dds::RTPSEndpointQos
Qos Policy to configure the endpoint.

Public Members

rtps::LocatorList unicast_locator_list
Unicast locator list.

rtps::LocatorList multicast_locator_list
Multicast locator list.

rtps::LocatorList remote_locator_list
Remote locator list.

fastdds::rtps::ExternalLocators external_unicast_locators
The collection of external locators to use for communication.

bool ignore_non_matching_locators = false
Whether locators that don’t match with the announced locators should be kept.

int16_t user_defined_id = -1

User Defined ID, used for StaticEndpointDiscovery.

By default, -1.

int16_t entity_id = -1
Entity ID, if the user wants to specify the EntityID of the endpoint.

By default, -1.

fastrtps::rtps::MemoryManagementPolicy_t history_memory_policy =
fastrtps::rtps::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Underlying History memory policy.

554 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

By default, PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

TimeBasedFilterQosPolicy

class eprosima::fastdds::dds::TimeBasedFilterQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Filter that allows a DataReader to specify that it is interested only in (potentially) a subset of the values of the data.
The filter states that the DataReader does not want to receive more than one value each minimum_separation,
regardless of how fast the changes occur. It is inconsistent for a DataReader to have a minimum_separation
longer than its Deadline period.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Mutable Qos Policy

Public Functions

inline TimeBasedFilterQosPolicy()
Constructor.

virtual ~TimeBasedFilterQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

fastrtps::Duration_t minimum_separation
Minimum interval between samples. By default, c_TimeZero (the DataReader is interested in all values)

TopicDataQosPolicy

class TopicDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy
Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Topic such that
when a remote application discovers their existence it can examine the information and use it in an application-
defined way.

In combination with the listeners on the DataReader and DataWriter as well as by means of operations such as
ignore_topic,these QoS can assist an application to extend the provided QoS.

6.30. C++ API Reference 555

Fast DDS Documentation, Release 2.8.2

TransportConfigQos

class eprosima::fastdds::dds::TransportConfigQos : public eprosima::fastdds::dds::QosPolicy
Qos Policy to configure the transport layer.

Public Functions

inline TransportConfigQos()
Constructor.

virtual ~TransportConfigQos() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

std::vector<std::shared_ptr<fastdds::rtps::TransportDescriptorInterface>> user_transports
User defined transports to use alongside or in place of builtins.

bool use_builtin_transports

Set as false to disable the default UDPv4 implementation.

By default, true.

uint32_t send_socket_buffer_size
Send socket buffer size for the send resource.

Zero value indicates to use default system buffer size.

By default, 0.

uint32_t listen_socket_buffer_size
Listen socket buffer for all listen resources.

Zero value indicates to use default system buffer size.

By default, 0.

556 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

TransportPriorityQosPolicy

class eprosima::fastdds::dds::TransportPriorityQosPolicy : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

This policy is a hint to the infrastructure as to how to set the priority of the underlying transport used to send the
data.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented
in this version.

Note: Mutable Qos Policy

Public Functions

inline TransportPriorityQosPolicy()
Constructor.

virtual ~TransportPriorityQosPolicy() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

uint32_t value

Priority

By default, 0.

TypeConsistencyEnforcementQosPolicy

class eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy : public
eprosima::fastdds::dds::Parameter_t, public eprosima::fastdds::dds::QosPolicy

The TypeConsistencyEnforcementQosPolicy defines the rules for determining whether the type used to publish
a given data stream is consistent with that used to subscribe to it. It applies to DataReaders.

Note: Immutable Qos Policy

6.30. C++ API Reference 557

Fast DDS Documentation, Release 2.8.2

Public Functions

inline TypeConsistencyEnforcementQosPolicy()
Constructor.

virtual ~TypeConsistencyEnforcementQosPolicy() override = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

TypeConsistencyKind m_kind

TypeConsistencyKind.

By default, ALLOW_TYPE_COERCION.

bool m_ignore_sequence_bounds

This option controls whether sequence bounds are taken into consideration for type assignability. If the op-
tion is set to TRUE, sequence bounds (maximum lengths) are not considered as part of the type assignability.
This means that a T2 sequence type with maximum length L2 would be assignable to a T1 sequence type
with maximum length L1, even if L2 is greater than L1. If the option is set to false, then sequence bounds
are taken into consideration for type assignability and in order for T1 to be assignable from T2 it is required
that L1>= L2.

By default, true.

bool m_ignore_string_bounds

This option controls whether string bounds are taken into consideration for type assignability. If the option
is set to TRUE, string bounds (maximum lengths) are not considered as part of the type assignability.
This means that a T2 string type with maximum length L2 would be assignable to a T1 string type with
maximum length L1, even if L2 is greater than L1. If the option is set to false, then string bounds are taken
into consideration for type assignability and in order for T1 to be assignable from T2 it is required that
L1>= L2.

By default, true.

bool m_ignore_member_names

This option controls whether member names are taken into consideration for type assignability. If the option
is set to TRUE, member names are considered as part of assignability in addition to member IDs (so that
members with the same ID also have the same name). If the option is set to FALSE, then member names
are not ignored.

By default, false.

bool m_prevent_type_widening

This option controls whether type widening is allowed. If the option is set to FALSE, type widening is
permitted. If the option is set to TRUE,it shall cause a wider type to not be assignable to a narrower type.

By default, false.

558 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

bool m_force_type_validation
This option requires type information to be available in order to complete matching between a DataWriter
and DataReader when set to TRUE, otherwise matching can occur without complete type information when
set to FALSE.

By default, false.

TypeConsistencyKind

enum eprosima::fastdds::dds::TypeConsistencyKind
Values:

enumerator DISALLOW_TYPE_COERCION
The DataWriter and the DataReader must support the same data type in order for them to communicate.

enumerator ALLOW_TYPE_COERCION
The DataWriter and the DataReader need not support the same data type in order for them to communicate
as long as the reader’s type is assignable from the writer’s type.

UserDataQosPolicy

class UserDataQosPolicy : public eprosima::fastdds::dds::GenericDataQosPolicy
Class derived from GenericDataQosPolicy.

The purpose of this QoS is to allow the application to attach additional information to the created Entity objects
such that when a remote application discovers their existence it can access that information and use it for its own
purposes.

One possible use of this QoS is to attach security credentials or some other information that can be used by the
remote application to authenticate the source.

WireProtocolConfigQos

class eprosima::fastdds::dds::WireProtocolConfigQos : public eprosima::fastdds::dds::QosPolicy
Qos Policy that configures the wire protocol.

Public Functions

inline WireProtocolConfigQos()
Constructor.

virtual ~WireProtocolConfigQos() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

6.30. C++ API Reference 559

Fast DDS Documentation, Release 2.8.2

Public Members

fastrtps::rtps::GuidPrefix_t prefix
Optionally allows user to define the GuidPrefix_t.

int32_t participant_id

Participant ID

By default, -1.

fastrtps::rtps::BuiltinAttributes builtin
Builtin parameters.

fastrtps::rtps::PortParameters port
Port Parameters.

fastrtps::rtps::ThroughputControllerDescriptor throughput_controller
Throughput controller parameters. Leave default for uncontrolled flow.

Deprecated:
Use flow_controllers() on DomainParticipantQoS

rtps::LocatorList default_unicast_locator_list
Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case
that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

rtps::LocatorList default_multicast_locator_list
Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the
case that it was defined with NO MulticastLocators. This is usually left empty.

rtps::ExternalLocators default_external_unicast_locators
The collection of external locators to use for communication on user created topics.

bool ignore_non_matching_locators = false
Whether locators that don’t match with the announced locators should be kept.

WriterDataLifecycleQosPolicy

class eprosima::fastdds::dds::WriterDataLifecycleQosPolicy
Specifies the behavior of the DataWriter with regards to the lifecycle of the data-instances it manages.

Warning: This Qos Policy will be implemented in future releases.

Note: Mutable Qos Policy

560 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline WriterDataLifecycleQosPolicy()
Constructor.

inline virtual ~WriterDataLifecycleQosPolicy()
Destructor.

Public Members

bool autodispose_unregistered_instances
Controls whether a DataWriter will automatically dispose instances each time they are unregistered. The
setting autodispose_unregistered_instances = TRUE indicates that unregistered instances will also be con-
sidered disposed.

By default, true.

WriterResourceLimitsQos

class eprosima::fastdds::dds::WriterResourceLimitsQos
Qos Policy to configure the limit of the writer resources.

Public Functions

inline WriterResourceLimitsQos()
Constructor.

virtual ~WriterResourceLimitsQos() = default
Destructor.

Public Members

fastrtps::ResourceLimitedContainerConfig matched_subscriber_allocation
Matched subscribers allocation limits.

fastrtps::ResourceLimitedContainerConfig reader_filters_allocation
Reader filters allocation limits.

Status

BaseStatus

struct eprosima::fastdds::dds::BaseStatus
A struct storing the base status.

6.30. C++ API Reference 561

Fast DDS Documentation, Release 2.8.2

Public Members

int32_t total_count = 0
Total cumulative count.

int32_t total_count_change = 0
Increment since the last time the status was read.

DeadlineMissedStatus

struct eprosima::fastdds::dds::DeadlineMissedStatus
A struct storing the deadline status.

Public Functions

inline DeadlineMissedStatus()
Constructor.

inline ~DeadlineMissedStatus()
Destructor.

Public Members

uint32_t total_count
Total cumulative number of offered deadline periods elapsed during which a writer failed to provide data.

Missed deadlines accumulate, that is, each deadline period the total_count will be incremented by 1

uint32_t total_count_change
The change in total_count since the last time the listener was called or the status was read.

InstanceHandle_t last_instance_handle
Handle to the last instance missing the deadline.

IncompatibleQosStatus

struct eprosima::fastdds::dds::IncompatibleQosStatus
A struct storing the requested incompatible QoS status.

562 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

uint32_t total_count = 0
Total cumulative number of times the concerned writer discovered a reader for the same topic.

The requested QoS is incompatible with the one offered by the writer

uint32_t total_count_change = 0
The change in total_count since the last time the listener was called or the status was read.

QosPolicyId_t last_policy_id = INVALID_QOS_POLICY_ID
The id of the policy that was found to be incompatible the last time an incompatibility is detected.

QosPolicyCountSeq policies
A list of QosPolicyCount.

InconsistentTopicStatus

using eprosima::fastdds::dds::InconsistentTopicStatus = BaseStatus
Alias of BaseStatus.

LivelinessChangedStatus

struct eprosima::fastdds::dds::LivelinessChangedStatus
A struct storing the liveliness changed status.

Public Members

int32_t alive_count = 0
The total number of currently active publishers that write the topic read by the subscriber.

This count increases when a newly matched publisher asserts its liveliness for the first time or when a
publisher previously considered to be not alive reasserts its liveliness. The count decreases when a publisher
considered alive fails to assert its liveliness and becomes not alive, whether because it was deleted normally
or for some other reason

int32_t not_alive_count = 0
The total count of current publishers that write the topic read by the subscriber that are no longer asserting
their liveliness.

This count increases when a publisher considered alive fails to assert its liveliness and becomes not alive
for some reason other than the normal deletion of that publisher. It decreases when a previously not alive
publisher either reasserts its liveliness or is deleted normally

int32_t alive_count_change = 0
The change in the alive_count since the last time the listener was called or the status was read.

int32_t not_alive_count_change = 0
The change in the not_alive_count since the last time the listener was called or the status was read.

6.30. C++ API Reference 563

Fast DDS Documentation, Release 2.8.2

InstanceHandle_t last_publication_handle
Handle to the last publisher whose change in liveliness caused this status to change.

MatchedStatus

struct eprosima::fastdds::dds::MatchedStatus
A structure storing a matching status.

Subclassed by eprosima::fastdds::dds::PublicationMatchedStatus, eprosima::fastdds::dds::SubscriptionMatchedStatus

Public Functions

MatchedStatus() = default
Constructor.

~MatchedStatus() = default
Destructor.

Public Members

int32_t total_count = 0
Total cumulative count the concerned reader discovered a match with a writer.

It found a writer for the same topic with a requested QoS that is compatible with that offered by the reader

int32_t total_count_change = 0
The change in total_count since the last time the listener was called or the status was read.

int32_t current_count = 0
The number of writers currently matched to the concerned reader.

int32_t current_count_change = 0
The change in current_count since the last time the listener was called or the status was read.

OfferedDeadlineMissedStatus

typedef DeadlineMissedStatus eprosima::fastdds::dds::OfferedDeadlineMissedStatus
Typedef of DeadlineMissedStatus.

564 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

OfferedIncompatibleQosStatus

using eprosima::fastdds::dds::OfferedIncompatibleQosStatus = IncompatibleQosStatus
Alias of IncompatibleQosStatus.

PublicationMatchedStatus

struct eprosima::fastdds::dds::PublicationMatchedStatus : public eprosima::fastdds::dds::MatchedStatus
A structure storing the publication status.

Public Members

InstanceHandle_t last_subscription_handle
Handle to the last reader that matched the writer causing the status to change.

QosPolicyCount

struct eprosima::fastdds::dds::QosPolicyCount
A struct storing the id of the incompatible QoS Policy and the number of times it fails.

Public Functions

QosPolicyCount() = default
Constructor.

inline QosPolicyCount(QosPolicyId_t id, int32_t c)
Constructor.

Public Members

QosPolicyId_t policy_id = INVALID_QOS_POLICY_ID
The id of the policy.

uint32_t count = 0
Total number of times that the concerned writer discovered a reader for the same topic.

The requested QoS is incompatible with the one offered by the writer

6.30. C++ API Reference 565

Fast DDS Documentation, Release 2.8.2

QosPolicyCountSeq

using eprosima::fastdds::dds::QosPolicyCountSeq = std::vector<QosPolicyCount>
Alias of std::vector<QosPolicyCount>

RequestedDeadlineMissedStatus

typedef DeadlineMissedStatus eprosima::fastdds::dds::RequestedDeadlineMissedStatus
Typedef of DeadlineMissedStatus.

RequestedIncompatibleQosStatus

using eprosima::fastdds::dds::RequestedIncompatibleQosStatus = IncompatibleQosStatus
Alias of IncompatibleQosStatus.

LivelinessLostStatus

using eprosima::fastdds::dds::LivelinessLostStatus = BaseStatus
Alias of BaseStatus.

SampleLostStatus

using eprosima::fastdds::dds::SampleLostStatus = BaseStatus
Alias of BaseStatus.

SampleRejectedStatus

struct eprosima::fastdds::dds::SampleRejectedStatus
A struct storing the sample rejected status.

Public Members

uint32_t total_count = 0
Total cumulative count of samples rejected by the DataReader.

uint32_t total_count_change = 0
The incremental number of samples rejected since the last time the listener was called or the status was
read.

SampleRejectedStatusKind last_reason = NOT_REJECTED
Reason for rejecting the last sample rejected. If no samples have been rejected, the reason is the special
value NOT_REJECTED.

566 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

InstanceHandle_t last_instance_handle
Handle to the instance being updated by the last sample that was rejected.

SampleRejectedStatusKind

enum eprosima::fastdds::dds::SampleRejectedStatusKind
An enum with the possible values for the sample rejected reason.

Values:

enumerator NOT_REJECTED
Default value.

enumerator REJECTED_BY_INSTANCES_LIMIT
Exceeds the max_instance limit.

enumerator REJECTED_BY_SAMPLES_LIMIT
Exceeds the max_samples limit.

enumerator REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
Exceeds the max_samples_per_instance limit.

StatusMask

class eprosima::fastdds::dds::StatusMask : public std::bitset<FASTDDS_STATUS_COUNT>
StatusMask is a bitmap or bitset field.

This bitset is used to:

• determine which listener functions to call

• set conditions in dds::core::cond::StatusCondition

• indicate status changes when calling dds::core::Entity::status_changes

Public Types

typedef std::bitset<FASTDDS_STATUS_COUNT> MaskType
Convenience typedef for std::bitset<FASTDDS_STATUS_COUNT>.

Public Functions

inline StatusMask()
Construct an StatusMask with no flags set.

inline explicit StatusMask(uint32_t mask)
Construct an StatusMask with an uint32_t bit mask.

Parameters mask – the bit array to initialize the bitset with

6.30. C++ API Reference 567

Fast DDS Documentation, Release 2.8.2

inline StatusMask &operator<<(const StatusMask &mask)
Add given StatusMask bits into this StatusMask bitset.

Returns StatusMask this

inline StatusMask &operator>>(const StatusMask &mask)
Remove given StatusMask bits into this StatusMask bitset.

Returns StatusMask this

inline bool is_active(StatusMask status) const
Checks if the status passed as parameter is 1 in the actual StatusMask.

Parameters status – Status that need to be checked

Returns true if the status is active and false if not

Public Static Functions

static inline StatusMask all()
Get all StatusMasks

Returns StatusMask all

static inline StatusMask none()
Get no StatusMasks

Returns StatusMask none

static inline StatusMask inconsistent_topic()
Get the StatusMask associated with dds::core::status::InconsistentTopicStatus

Returns StatusMask inconsistent_topic

static inline StatusMask offered_deadline_missed()
Get the StatusMask associated with dds::core::status::OfferedDeadlineMissedStatus

Returns StatusMask offered_deadline_missed

static inline StatusMask requested_deadline_missed()
Get the StatusMask associated with dds::core::status::RequestedDeadlineMissedStatus

Returns StatusMask requested_deadline_missed

static inline StatusMask offered_incompatible_qos()
Get the StatusMask associated with dds::core::status::OfferedIncompatibleQosStatus

Returns StatusMask offered_incompatible_qos

static inline StatusMask requested_incompatible_qos()
Get the StatusMask associated with dds::core::status::RequestedIncompatibleQosStatus

Returns StatusMask requested_incompatible_qos

static inline StatusMask sample_lost()
Get the StatusMask associated with dds::core::status::SampleLostStatus

Returns StatusMask sample_lost

static inline StatusMask sample_rejected()
Get the StatusMask associated with dds::core::status::SampleRejectedStatus

Returns StatusMask sample_rejected

568 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

static inline StatusMask data_on_readers()
Get the StatusMask associated with dds::core::status::data_on_readers

Returns StatusMask data_on_readers

static inline StatusMask data_available()
get the statusmask associated with dds::core::status::data_available

Returns statusmask data_available

static inline StatusMask liveliness_lost()
Get the StatusMask associated with dds::core::status::LivelinessLostStatus

Returns StatusMask liveliness_lost

static inline StatusMask liveliness_changed()
Get the StatusMask associated with dds::core::status::LivelinessChangedStatus

Returns StatusMask liveliness_changed

static inline StatusMask publication_matched()
Get the statusmask associated with dds::core::status::PublicationMatchedStatus

Returns StatusMask publication_matched

static inline StatusMask subscription_matched()
Get the statusmask associated with dds::core::status::SubscriptionMatchedStatus

Returns StatusMask subscription_matched

FASTDDS_STATUS_COUNT size_t(16)
Alias of size_t(16)

SubscriptionMatchedStatus

struct eprosima::fastdds::dds::SubscriptionMatchedStatus : public
eprosima::fastdds::dds::MatchedStatus

A structure storing the subscription status.

Public Members

InstanceHandle_t last_publication_handle
Handle to the last writer that matched the reader causing the status change.

Condition

Condition

class eprosima::fastdds::dds::Condition
The Condition class is the root base class for all the conditions that may be attached to a WaitSet.

Subclassed by eprosima::fastdds::dds::GuardCondition, eprosima::fastdds::dds::ReadCondition,
eprosima::fastdds::dds::StatusCondition

6.30. C++ API Reference 569

Fast DDS Documentation, Release 2.8.2

Public Functions

inline virtual bool get_trigger_value() const
Retrieves the trigger_value of the Condition.

Returns true if trigger_value is set to ‘true’, ‘false’ otherwise

ConditionSeq

using eprosima::fastdds::dds::ConditionSeq = std::vector<Condition*>

GuardCondition

class eprosima::fastdds::dds::GuardCondition : public eprosima::fastdds::dds::Condition
The GuardCondition class is a specific Condition whose trigger_value is completely under the control of the
application.

The purpose of the GuardCondition is to provide the means for the application to manually wakeup a WaitSet.
This is accomplished by attaching the GuardCondition to the WaitSet and then setting the trigger_value by means
of the set_trigger_value operation.

Public Functions

virtual bool get_trigger_value() const override
Retrieves the trigger_value of the Condition.

Returns true if trigger_value is set to ‘true’, ‘false’ otherwise

ReturnCode_t set_trigger_value(bool value)
Set the trigger_value.

Parameters value – new value for trigger

Returns RETURN_OK

StatusCondition

class eprosima::fastdds::dds::StatusCondition : public eprosima::fastdds::dds::Condition
The StatusCondition class is a specific Condition that is associated with each Entity.

Public Functions

virtual bool get_trigger_value() const override
Retrieves the trigger_value of the Condition.

Returns true if trigger_value is set to ‘true’, ‘false’ otherwise

ReturnCode_t set_enabled_statuses(const StatusMask &mask)
Defines the list of communication statuses that are taken into account to determine the trigger_value.

Parameters mask – defines the mask for the status

570 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK with everything ok, error code otherwise

const StatusMask &get_enabled_statuses() const
Retrieves the list of communication statuses that are taken into account to determine the trigger_value.

Returns Status set or default status if it has not been set

Entity *get_entity() const
Returns the Entity associated.

Returns Entity

Wait-set

class eprosima::fastdds::dds::WaitSet
The WaitSet class allows an application to wait until one or more of the attached Condition objects has a trig-
ger_value of TRUE or until timeout expires.

Public Functions

ReturnCode_t attach_condition(const Condition &cond)
Attaches a Condition to the Wait Set.

Parameters cond – Condition

Returns RETCODE_OK if attached correctly, error code otherwise

ReturnCode_t detach_condition(const Condition &cond)
Detaches a Condition from the WaitSet.

Parameters cond – Condition

Returns RETCODE_OK if detached correctly, PRECONDITION_NOT_MET if condition was
not attached

ReturnCode_t wait(ConditionSeq &active_conditions, const fastrtps::Duration_t timeout) const
Allows an application thread to wait for the occurrence of certain conditions. If none of the conditions
attached to the WaitSet have a trigger_value of true, the wait operation will block suspending the calling
thread.

Parameters

• active_conditions – Reference to the collection of conditions which trigger_value are
true

• timeout – Maximum time of the wait

Returns RETCODE_OK if everything correct, PRECONDITION_NOT_MET if WaitSet al-
ready waiting, TIMEOUT if maximum time expired, error code otherwise

ReturnCode_t get_conditions(ConditionSeq &attached_conditions) const
Retrieves the list of attached conditions.

Parameters attached_conditions – Reference to the collection of attached conditions

Returns RETCODE_OK if everything correct, error code otherwise

6.30. C++ API Reference 571

Fast DDS Documentation, Release 2.8.2

LoanableArray

template<typename T, std::size_t num_items>

struct eprosima::fastdds::dds::LoanableArray : public std::array<T , num_items>
A type-safe, ordered collection of elements allocated on the stack, which can be loaned to a LoanableCollection.

Public Functions

inline void **buffer_for_loans() const
Get a buffer pointer that could be used on LoanableCollection::loan.

Returns buffer pointer for loans.

LoanableCollection

class eprosima::fastdds::dds::LoanableCollection
A collection of generic opaque pointers that can receive the buffer from outside (loan).

This is an abstract class. See LoanableSequence for details.

Subclassed by eprosima::fastdds::dds::LoanableTypedCollection< T, _NonConstEnabler >,
eprosima::fastdds::dds::UserAllocatedSequence, eprosima::fastdds::dds::LoanableTypedCollection< T >,
eprosima::fastdds::dds::LoanableTypedCollection< T, std::true_type >

Public Functions

inline const element_type *buffer() const
Get the pointer to the elements buffer.

The returned value may be nullptr if maximum() is 0. Otherwise it is guaranteed that up to maximum()
elements can be accessed.

Returns the pointer to the elements buffer.

inline bool has_ownership() const
Get the ownership flag.

Returns whether the collection has ownership of the buffer.

inline size_type maximum() const
Get the maximum number of elements currently allocated.

Returns the maximum number of elements currently allocated.

inline size_type length() const
Get the number of elements currently accessible.

Returns the number of elements currently accessible.

inline bool length(size_type new_length)
Set the number of elements currently accessible.

This method tells the collection that a certain number of elements should be accessible. If the new length
is greater than the current maximum() the collection should allocate space for the new elements. If this is
the case and the collection does not own the buffer (i.e. has_ownership() is false) then no allocation will
be performed, the length will remain unchanged, and false will be returned.

572 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters new_length – [in] New number of elements to be accessible.

Pre new_length >= 0

Returns true if the new length was correctly set.

Post length() == new_length

Post maximum() >= new_length

inline bool loan(element_type *buffer, size_type new_maximum, size_type new_length)
Loan a buffer to the collection.

Parameters

• buffer – [in] pointer to the buffer to be loaned.

• new_maximum – [in] number of allocated elements in buffer.

• new_length – [in] number of accessible elements in buffer.

Pre (has_ownership() == false) || (maximum() == 0)

Pre new_maximum > 0

Pre new_maximum >= new_length

Pre buffer != nullptr

Returns false if preconditions are not met.

Returns true if operation succeeds.

Post buffer() == buffer

Post has_ownership() == false

Post maximum() == new_maximum

Post length() == new_length

inline element_type *unloan(size_type &maximum, size_type &length)
Remove the loan from the collection.

Parameters

• maximum – [out] number of allocated elements on the returned buffer.

• length – [out] number of accessible elements on the returned buffer.

Pre has_ownership() == false

Returns nullptr if preconditions are not met.

Returns pointer to the previously loaned buffer of elements.

Post buffer() == nullptr

Post has_ownership() == true

Post length() == 0

Post maximum() == 0

inline element_type *unloan()
Remove the loan from the collection.

Pre has_ownership() == false

Returns nullptr if preconditions are not met.

6.30. C++ API Reference 573

Fast DDS Documentation, Release 2.8.2

Returns pointer to the previously loaned buffer of elements.

Post buffer() == nullptr

Post has_ownership() == true

Post length() == 0

Post maximum() == 0

LoanableSequence

template<typename T, typename _NonConstEnabler = std::true_type>

class eprosima::fastdds::dds::LoanableSequence : public
eprosima::fastdds::dds::LoanableTypedCollection<T , std::true_type>

A type-safe, ordered collection of elements that can receive the buffer from outside (loan).

For users who define data types in OMG IDL, this type corresponds to the IDL express sequence<T>.

For any user-data type Foo that an application defines for the purpose of data-distribution with Fast DDS, a ‘using
FooSeq = LoanableSequence<Foo>’ is generated. The sequence offers a subset of the methods defined by
the standard OMG IDL to C++ mapping for sequences. We refer to an IDL ‘sequence<Foo>’ as FooSeq.

The state of a sequence is described by the properties ‘maximum’, ‘length’ and ‘has_ownership’.

• The ‘maximum’ represents the size of the underlying buffer; this is the maximum number of elements it
can possibly hold. It is returned by the maximum() operation.

• The ‘length’ represents the actual number of elements it currently holds. It is returned by the length()
operation.

• The ‘has_ownership’ flag represents whether the sequence owns the underlying buffer. It is returned by
the has_ownership() operation. If the sequence does not own the underlying buffer, the underlying buffer
is loaned from somewhere else. This flag influences the lifecycle of the sequence and what operations
are allowed on it. The general guidelines are provided below and more details are described in detail as
pre-conditions and post-conditions of each of the sequence’s operations:

• If has_ownership == true, the sequence has ownership on the buffer. It is then responsible for destroying
the buffer when the sequence is destroyed.

• If has_ownership == false, the sequence does not have ownership on the buffer. This implies that the
sequence is loaning the buffer. The sequence should not be destroyed until the loan is returned.

• A sequence with a zero maximum always has has_ownership == true

Public Functions

LoanableSequence() = default
Default constructor.

Creates the sequence with no data.

Post buffer() == nullptr

Post has_ownership() == true

Post length() == 0

Post maximum() == 0

574 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline LoanableSequence(size_type max)
Pre-allocation constructor.

Creates the sequence with an initial number of allocated elements. When the input parameter is less than
or equal to 0, the behavior is equivalent to the default constructor. Otherwise, the post-conditions below
will apply.

Parameters max – [in] Number of elements to pre-allocate.

Post buffer() != nullptr

Post has_ownership() == true

Post length() == 0

Post maximum() == max

inline ~LoanableSequence()
Deallocate this sequence’s buffer.

Pre has_ownership() == true. If this precondition is not met, no memory will be released and a
warning will be logged.

Post maximum() == 0 and the underlying buffer is released.

inline LoanableSequence(const LoanableSequence &other)
Construct a sequence with the contents of another sequence.

This method performs a deep copy of the sequence received into this one. Allocations will happen when
other.length() > 0

Parameters other – [in] The sequence from where contents are to be copied.

Post has_ownership() == true

Post maximum() == other.length()

Post length() == other.length()

Post buffer() != nullptr when other.length() > 0

inline LoanableSequence &operator=(const LoanableSequence &other)
Copy the contents of another sequence into this one.

This method performs a deep copy of the sequence received into this one. If this sequence had a buffer
loaned, it will behave as if unloan has been called. Allocations will happen when (a) has_ownership() ==
false and other.length() > 0 (b) has_ownership() == true and other.length() > maximum()

Parameters other – [in] The sequence from where contents are to be copied.

Post has_ownership() == true

Post maximum() >= other.length()

Post length() == other.length()

Post buffer() != nullptr when other.length() > 0

FASTDDS_SEQUENCE(FooSeq, Foo) using FooSeq = eprosima::fastdds::dds::LoanableSequence<Foo>

6.30. C++ API Reference 575

Fast DDS Documentation, Release 2.8.2

StackAllocatedSequence

template<typename T, LoanableCollection::size_type num_items>

struct StackAllocatedSequence : public eprosima::fastdds::dds::LoanableTypedCollection<T>
A type-safe, ordered collection of elements allocated on the stack.

Domain

DomainParticipant

class eprosima::fastdds::dds::DomainParticipant : public eprosima::fastdds::dds::Entity
Class DomainParticipant used to group Publishers and Subscribers into a single working unit.

Subclassed by eprosima::fastdds::statistics::dds::DomainParticipant

Public Functions

virtual ~DomainParticipant()
Destructor.

ReturnCode_t get_qos(DomainParticipantQos &qos) const
This operation returns the value of the DomainParticipant QoS policies

Parameters qos – DomainParticipantQos reference where the qos is going to be returned

Returns RETCODE_OK

const DomainParticipantQos &get_qos() const
This operation returns the value of the DomainParticipant QoS policies.

Returns A reference to the DomainParticipantQos

ReturnCode_t set_qos(const DomainParticipantQos &qos) const
This operation sets the value of the DomainParticipant QoS policies.

Parameters qos – DomainParticipantQos to be set

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

const DomainParticipantListener *get_listener() const
Allows accessing the DomainParticipantListener.

Returns DomainParticipantListener pointer

ReturnCode_t set_listener(DomainParticipantListener *listener)
Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

Warning: Do not call this method from a DomainParticipantListener callback.

Parameters listener – New value for the DomainParticipantListener

Returns RETCODE_OK if successful, RETCODE_ERROR otherwise.

576 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t set_listener(DomainParticipantListener *listener, const std::chrono::seconds timeout)
Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

Warning: Do not call this method from a DomainParticipantListener callback.

Parameters

• listener – New value for the DomainParticipantListener

• timeout – Maximum time to wait for executing callbacks to finish.

Returns RETCODE_OK if successful, RETCODE_ERROR if failed (timeout expired).

ReturnCode_t set_listener(DomainParticipantListener *listener, const StatusMask &mask)
Modifies the DomainParticipantListener.

Warning: Do not call this method from a DomainParticipantListener callback.

Parameters

• listener – New value for the DomainParticipantListener

• mask – StatusMask that holds statuses the listener responds to

Returns RETCODE_OK if successful, RETCODE_ERROR otherwise.

ReturnCode_t set_listener(DomainParticipantListener *listener, const StatusMask &mask, const
std::chrono::seconds timeout)

Modifies the DomainParticipantListener.

Warning: Do not call this method from a DomainParticipantListener callback.

Parameters

• listener – New value for the DomainParticipantListener

• mask – StatusMask that holds statuses the listener responds to

• timeout – Maximum time to wait for executing callbacks to finish.

Returns RETCODE_OK if successful, RETCODE_ERROR if failed (timeout expired)

virtual ReturnCode_t enable() override
This operation enables the DomainParticipant.

Returns RETCODE_OK

Publisher *create_publisher(const PublisherQos &qos, PublisherListener *listener = nullptr, const
StatusMask &mask = StatusMask::all())

Create a Publisher in this Participant.

Parameters

• qos – QoS of the Publisher.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

6.30. C++ API Reference 577

Fast DDS Documentation, Release 2.8.2

Returns Pointer to the created Publisher.

Publisher *create_publisher_with_profile(const std::string &profile_name, PublisherListener *listener
= nullptr, const StatusMask &mask = StatusMask::all())

Create a Publisher in this Participant.

Parameters

• profile_name – Publisher profile name.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

Returns Pointer to the created Publisher.

ReturnCode_t delete_publisher(const Publisher *publisher)
Deletes an existing Publisher.

Parameters publisher – to be deleted.

Returns RETCODE_PRECONDITION_NOT_MET if the publisher does not belong to this par-
ticipant or if it has active DataWriters, RETCODE_OK if it is correctly deleted and RET-
CODE_ERROR otherwise.

Subscriber *create_subscriber(const SubscriberQos &qos, SubscriberListener *listener = nullptr, const
StatusMask &mask = StatusMask::all())

Create a Subscriber in this Participant.

Parameters

• qos – QoS of the Subscriber.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

Returns Pointer to the created Subscriber.

Subscriber *create_subscriber_with_profile(const std::string &profile_name, SubscriberListener
*listener = nullptr, const StatusMask &mask =
StatusMask::all())

Create a Subscriber in this Participant.

Parameters

• profile_name – Subscriber profile name.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

Returns Pointer to the created Subscriber.

ReturnCode_t delete_subscriber(const Subscriber *subscriber)
Deletes an existing Subscriber.

Parameters subscriber – to be deleted.

Returns RETCODE_PRECONDITION_NOT_MET if the subscriber does not belong to this
participant or if it has active DataReaders, RETCODE_OK if it is correctly deleted and RET-
CODE_ERROR otherwise.

Topic *create_topic(const std::string &topic_name, const std::string &type_name, const TopicQos &qos,
TopicListener *listener = nullptr, const StatusMask &mask = StatusMask::all())

Create a Topic in this Participant.

578 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• topic_name – Name of the Topic.

• type_name – Data type of the Topic.

• qos – QoS of the Topic.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

Returns Pointer to the created Topic.

Topic *create_topic_with_profile(const std::string &topic_name, const std::string &type_name, const
std::string &profile_name, TopicListener *listener = nullptr, const
StatusMask &mask = StatusMask::all())

Create a Topic in this Participant.

Parameters

• topic_name – Name of the Topic.

• type_name – Data type of the Topic.

• profile_name – Topic profile name.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all)

Returns Pointer to the created Topic.

ReturnCode_t delete_topic(const Topic *topic)
Deletes an existing Topic.

Parameters topic – to be deleted.

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant
or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

ContentFilteredTopic *create_contentfilteredtopic(const std::string &name, Topic *related_topic,
const std::string &filter_expression, const
std::vector<std::string> &expression_parameters)

Create a ContentFilteredTopic in this Participant.

Parameters

• name – Name of the ContentFilteredTopic

• related_topic – Related Topic to being subscribed

• filter_expression – Logic expression to create filter

• expression_parameters – Parameters to filter content

Returns Pointer to the created ContentFilteredTopic.

Returns nullptr if related_topic does not belong to this participant.

Returns nullptr if a topic with the specified name has already been created.

Returns nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

6.30. C++ API Reference 579

Fast DDS Documentation, Release 2.8.2

ContentFilteredTopic *create_contentfilteredtopic(const std::string &name, Topic *related_topic,
const std::string &filter_expression, const
std::vector<std::string> &expression_parameters,
const char *filter_class_name)

Create a ContentFilteredTopic in this Participant using a custom filter.

Parameters

• name – Name of the ContentFilteredTopic

• related_topic – Related Topic to being subscribed

• filter_expression – Logic expression to create filter

• expression_parameters – Parameters to filter content

• filter_class_name – Name of the filter class to use

Returns Pointer to the created ContentFilteredTopic.

Returns nullptr if related_topic does not belong to this participant.

Returns nullptr if a topic with the specified name has already been created.

Returns nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

Returns nullptr if the specified filter_class_name has not been registered.

ReturnCode_t delete_contentfilteredtopic(const ContentFilteredTopic *a_contentfilteredtopic)
Deletes an existing ContentFilteredTopic.

Parameters a_contentfilteredtopic – ContentFilteredTopic to be deleted

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant
or if it is referenced by any entity and RETCODE_OK if the ContentFilteredTopic was
deleted.

MultiTopic *create_multitopic(const std::string &name, const std::string &type_name, const std::string
&subscription_expression, const std::vector<std::string>
&expression_parameters)

Create a MultiTopic in this Participant.

Parameters

• name – Name of the MultiTopic

• type_name – Result type of the MultiTopic

• subscription_expression – Logic expression to combine filter

• expression_parameters – Parameters to subscription content

Returns Pointer to the created ContentFilteredTopic, nullptr in error case

ReturnCode_t delete_multitopic(const MultiTopic *a_multitopic)
Deletes an existing MultiTopic.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters a_multitopic – MultiTopic to be deleted

580 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant
or if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

Topic *find_topic(const std::string &topic_name, const fastrtps::Duration_t &timeout)
Gives access to an existing (or ready to exist) enabled Topic. It should be noted that the returned Topic is
a local object that acts as a proxy to designate the global concept of topic. Topics obtained by means of
find_topic, must also be deleted by means of delete_topic so that the local resources can be released. If a
Topic is obtained multiple times by means of find_topic or create_topic, it must also be deleted that same
number of times using delete_topic.

Parameters

• topic_name – Topic name

• timeout – Maximum time to wait for the Topic

Returns Pointer to the existing Topic, nullptr in case of error or timeout

TopicDescription *lookup_topicdescription(const std::string &topic_name) const
Looks up an existing, locally created TopicDescription, based on its name. May be called on a disabled
participant.

Remark UNSAFE. It is unsafe to lookup a topic description while another thread is creating a topic.

Parameters topic_name – Name of the TopicDescription to search for.

Returns Pointer to the topic description, if it has been created locally. Otherwise, nullptr is
returned.

const Subscriber *get_builtin_subscriber() const
Allows access to the builtin Subscriber.

Returns Pointer to the builtin Subscriber, nullptr in error case

ReturnCode_t ignore_participant(const InstanceHandle_t &handle)
Locally ignore a remote domain participant.

Note: This action is not reversible.

Parameters handle – Identifier of the remote participant to ignore

Returns RETURN_OK code if everything correct, RETCODE_BAD_PARAMENTER other-
wise

ReturnCode_t ignore_topic(const InstanceHandle_t &handle)
Locally ignore a topic.

Note: This action is not reversible.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters handle – Identifier of the topic to ignore

6.30. C++ API Reference 581

Fast DDS Documentation, Release 2.8.2

Returns RETURN_OK code if everything correct, error code otherwise

ReturnCode_t ignore_publication(const InstanceHandle_t &handle)
Locally ignore a remote datawriter.

Note: This action is not reversible.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters handle – Identifier of the datawriter to ignore

Returns RETURN_OK code if everything correct, error code otherwise

ReturnCode_t ignore_subscription(const InstanceHandle_t &handle)
Locally ignore a remote datareader.

Note: This action is not reversible.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters handle – Identifier of the datareader to ignore

Returns RETURN_OK code if everything correct, error code otherwise

DomainId_t get_domain_id() const
This operation retrieves the domain_id used to create the DomainParticipant. The domain_id identifies the
DDS domain to which the DomainParticipant belongs.

Returns The Participant’s domain_id

ReturnCode_t delete_contained_entities()
Deletes all the entities that were created by means of the “create” methods

Returns RETURN_OK code if everything correct, error code otherwise

ReturnCode_t assert_liveliness()
This operation manually asserts the liveliness of the DomainParticipant. This is used in combination with
the LIVELINESS QoS policy to indicate to the Service that the entity remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter entities with the LIVE-
LINESS set to MANUAL_BY_PARTICIPANT and it only affects the liveliness of those DataWriter enti-
ties. Otherwise, it has no effect.

Note: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and
its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not
writing data regularly.

Returns RETCODE_OK if the liveliness was asserted, RETCODE_ERROR otherwise.

582 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t set_default_publisher_qos(const PublisherQos &qos)
This operation sets a default value of the Publisher QoS policies which will be used for newly created
Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value PUBLISHER_QOS_DEFAULT may be passed to this operation to indicate that the de-
fault QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_publisher_qos operation had never been called.

Parameters qos – PublisherQos to be set

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

const PublisherQos &get_default_publisher_qos() const
This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher
operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

Returns Current default publisher qos.

ReturnCode_t get_default_publisher_qos(PublisherQos &qos) const
This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher
operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

Parameters qos – PublisherQos reference where the default_publisher_qos is returned

Returns RETCODE_OK

ReturnCode_t get_publisher_qos_from_profile(const std::string &profile_name, PublisherQos &qos)
const

Fills the PublisherQos with the values of the XML profile.

Parameters

• profile_name – Publisher profile name.

• qos – PublisherQos object where the qos is returned.

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

ReturnCode_t set_default_subscriber_qos(const SubscriberQos &qos)
This operation sets a default value of the Subscriber QoS policies that will be used for newly created
Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value SUBSCRIBER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_subscriber_qos operation had never been called.

Parameters qos – SubscriberQos to be set

6.30. C++ API Reference 583

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

const SubscriberQos &get_default_subscriber_qos() const
This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be
used for newly created Subscriber entities in the case where the QoS policies are defaulted in the cre-
ate_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

Returns Current default subscriber qos.

ReturnCode_t get_default_subscriber_qos(SubscriberQos &qos) const
This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be
used for newly created Subscriber entities in the case where the QoS policies are defaulted in the cre-
ate_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

Parameters qos – SubscriberQos reference where the default_subscriber_qos is returned

Returns RETCODE_OK

ReturnCode_t get_subscriber_qos_from_profile(const std::string &profile_name, SubscriberQos
&qos) const

Fills the SubscriberQos with the values of the XML profile.

Parameters

• profile_name – Subscriber profile name.

• qos – SubscriberQos object where the qos is returned.

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

ReturnCode_t set_default_topic_qos(const TopicQos &qos)
This operation sets a default value of the Topic QoS policies which will be used for newly created Topic
entities in the case where the QoS policies are defaulted in the create_topic operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

The special value TOPIC_QOS_DEFAULT may be passed to this operation to indicate that the default QoS
should be reset back to the initial values the factory would use, that is the values that would be used if the
set_default_topic_qos operation had never been called.

Parameters qos – TopicQos to be set

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

const TopicQos &get_default_topic_qos() const
This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for
newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call
to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

Returns Current default topic qos.

584 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t get_default_topic_qos(TopicQos &qos) const
This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for
newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call
to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

Parameters qos – TopicQos reference where the default_topic_qos is returned

Returns RETCODE_OK

ReturnCode_t get_topic_qos_from_profile(const std::string &profile_name, TopicQos &qos) const
Fills the TopicQos with the values of the XML profile.

Parameters

• profile_name – Topic profile name.

• qos – TopicQos object where the qos is returned.

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

ReturnCode_t get_discovered_participants(std::vector<InstanceHandle_t> &participant_handles)
const

Retrieves the list of DomainParticipants that have been discovered in the domain and are not “ignored”.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters participant_handles – [out] Reference to the vector where discovered partici-
pants will be returned

Returns RETCODE_OK if everything correct, error code otherwise

ReturnCode_t get_discovered_participant_data(builtin::ParticipantBuiltinTopicData
&participant_data, const InstanceHandle_t
&participant_handle) const

Retrieves the DomainParticipant data of a discovered not ignored participant.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• participant_data – [out] Reference to the ParticipantBuiltinTopicData object to return
the data

• participant_handle – InstanceHandle of DomainParticipant to retrieve the data from

Returns RETCODE_OK if everything correct, PRECONDITION_NOT_MET if participant
does not exist

ReturnCode_t get_discovered_topics(std::vector<InstanceHandle_t> &topic_handles) const
Retrieves the list of topics that have been discovered in the domain and are not “ignored”.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

6.30. C++ API Reference 585

Fast DDS Documentation, Release 2.8.2

Parameters topic_handles – [out] Reference to the vector where discovered topics will be
returned

Returns RETCODE_OK if everything correct, error code otherwise

ReturnCode_t get_discovered_topic_data(builtin::TopicBuiltinTopicData &topic_data, const
InstanceHandle_t &topic_handle) const

Retrieves the Topic data of a discovered not ignored topic.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• topic_data – [out] Reference to the TopicBuiltinTopicData object to return the data

• topic_handle – InstanceHandle of Topic to retrieve the data from

Returns RETCODE_OK if everything correct, PRECONDITION_NOT_MET if topic does not
exist

bool contains_entity(const InstanceHandle_t &a_handle, bool recursive = true) const
This operation checks whether or not the given handle represents an Entity that was created from the Do-
mainParticipant.

Parameters

• a_handle – InstanceHandle of the entity to look for.

• recursive – The containment applies recursively. That is, it applies both to entities (Top-
icDescription, Publisher, or Subscriber) created directly using the DomainParticipant as
well as entities created using a contained Publisher, or Subscriber as the factory, and so
forth. (default: true)

Returns True if entity is contained. False otherwise.

ReturnCode_t get_current_time(fastrtps::Time_t ¤t_time) const
This operation returns the current value of the time that the service uses to time-stamp data-writes and to
set the reception-timestamp for the data-updates it receives.

Parameters current_time – Time_t reference where the current time is returned

Returns RETCODE_OK

ReturnCode_t register_type(TypeSupport type, const std::string &type_name)
Register a type in this participant.

Parameters

• type – TypeSupport.

• type_name – The name that will be used to identify the Type.

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with the
same name and RETCODE_OK if it is correctly registered.

ReturnCode_t register_type(TypeSupport type)
Register a type in this participant.

Parameters type – TypeSupport.

586 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with the
same name and RETCODE_OK if it is correctly registered.

ReturnCode_t unregister_type(const std::string &typeName)
Unregister a type in this participant.

Parameters typeName – Name of the type

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there are entities using that TypeSupport
and RETCODE_OK if it is correctly unregistered.

TypeSupport find_type(const std::string &type_name) const
This method gives access to a registered type based on its name.

Parameters type_name – Name of the type

Returns TypeSupport corresponding to the type_name

const InstanceHandle_t &get_instance_handle() const
Returns the DomainParticipant’s handle.

Returns InstanceHandle of this DomainParticipant.

const fastrtps::rtps::GUID_t &guid() const
Getter for the Participant GUID.

Returns A reference to the GUID

std::vector<std::string> get_participant_names() const
Getter for the participant names.

Returns Vector with the names

bool new_remote_endpoint_discovered(const fastrtps::rtps::GUID_t &partguid, uint16_t userId,
fastrtps::rtps::EndpointKind_t kind)

This method can be used when using a StaticEndpointDiscovery mechanism different that the one included
in FastRTPS, for example when communicating with other implementations. It indicates the Participant
that an Endpoint from the XML has been discovered and should be activated.

Parameters

• partguid – Participant GUID_t.

• userId – User defined ID as shown in the XML file.

• kind – EndpointKind (WRITER or READER)

Returns True if correctly found and activated.

fastrtps::rtps::ResourceEvent &get_resource_event() const
Getter for the resource event.

Pre The DomainParticipant is enabled.

Returns A reference to the resource event

fastrtps::rtps::SampleIdentity get_type_dependencies(const fastrtps::types::TypeIdentifierSeq &in) const
When a DomainParticipant receives an incomplete list of TypeIdentifiers in a PublicationBuiltinTopicData
or SubscriptionBuiltinTopicData, it may request the additional type dependencies by invoking the getType-
Dependencies operation.

Parameters in – TypeIdentifier sequence

Returns SampleIdentity

6.30. C++ API Reference 587

Fast DDS Documentation, Release 2.8.2

fastrtps::rtps::SampleIdentity get_types(const fastrtps::types::TypeIdentifierSeq &in) const
A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects associated with a list
of TypeIdentifiers.

Parameters in – TypeIdentifier sequence

Returns SampleIdentity

ReturnCode_t register_remote_type(const fastrtps::types::TypeInformation &type_information, const
std::string &type_name, std::function<void(const std::string &name,
const fastrtps::types::DynamicType_ptr type)> &callback)

Helps the user to solve all dependencies calling internally to the typelookup service and registers the result-
ing dynamic type. The registration will be perform asynchronously and the user will be notified through
the given callback, which receives the type_name as unique argument. If the type is already registered, the
function will return true, but the callback will not be called. If the given type_information is enough to
build the type without using the typelookup service, it will return true and the callback will be never called.

Parameters

• type_information –

• type_name –

• callback –

Returns true if type is already available (callback will not be called). false if type isn’t available
yet (the callback will be called if negotiation is success, and ignored in other case).

ReturnCode_t register_content_filter_factory(const char *filter_class_name, IContentFilterFactory
*const filter_factory)

Register a custom content filter factory, which can be used to create a ContentFilteredTopic.

DDS specifies a SQL-like content filter to be used by content filtered topics. If this filter does not meet
your filtering requirements, you can register a custom filter factory.

To use a custom filter, a factory for it must be registered in the following places:

• In any application that uses the custom filter factory to create a ContentFilteredTopic and the corre-
sponding DataReader.

• In each application that writes the data to the applications mentioned above.

For example, suppose Application A on the subscription side creates a Topic named X and a ContentFil-
teredTopic named filteredX (and a corresponding DataReader), using a previously registered content filter
factory, myFilterFactory. With only that, you will have filtering at the subscription side. If you also want to
perform filtering in any application that publishes Topic X, then you also need to register the same definition
of the ContentFilterFactory myFilterFactory in that application.

Each filter_class_name can only be used to register a content filter factory once per DomainParticipant.

Parameters

• filter_class_name – Name of the filter class. Cannot be nullptr, must not exceed 255
characters, and must be unique within this DomainParticipant.

• filter_factory – Factory of content filters to be registered. Cannot be nullptr.

Returns RETCODE_BAD_PARAMETER if any parameter is nullptr, or the filter_class_name
exceeds 255 characters.

Returns RETCODE_PRECONDITION_NOT_MET if the filter_class_name has been already
registered.

588 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_PRECONDITION_NOT_MET if filter_class_name is FAST-
DDS_SQLFILTER_NAME.

Returns RETCODE_OK if the filter is correctly registered.

IContentFilterFactory *lookup_content_filter_factory(const char *filter_class_name)
Lookup a custom content filter factory previously registered with register_content_filter_factory.

Parameters filter_class_name – Name of the filter class. Cannot be nullptr.

Returns nullptr if the given filter_class_name has not been previously registered on this Do-
mainParticipant. Otherwise, the content filter factory previously registered with the given
filter_class_name.

ReturnCode_t unregister_content_filter_factory(const char *filter_class_name)
Unregister a custom content filter factory previously registered with register_content_filter_factory.

A filter_class_name can be unregistered only if it has been previously registered to the DomainParticipant
with register_content_filter_factory.

The unregistration of filter is not allowed if there are any existing ContentFilteredTopic objects that are
using the filter.

If there is any existing discovered DataReader with the same filter_class_name, filtering on the writer side
will be stopped, but this operation will not fail.

Parameters filter_class_name – Name of the filter class. Cannot be nullptr.

Returns RETCODE_BAD_PARAMETER if the filter_class_name is nullptr.

Returns RERCODE_PRECONDITION_NOT_MET if the filter_class_name has not been pre-
viously registered.

Returns RERCODE_PRECONDITION_NOT_MET if there is any ContentFilteredTopic refer-
encing the filter.

Returns RETCODE_OK if the filter is correctly unregistered.

bool has_active_entities()
Check if the Participant has any Publisher, Subscriber or Topic.

Returns true if any, false otherwise.

DomainParticipantFactory

class eprosima::fastdds::dds::DomainParticipantFactory
Class DomainParticipantFactory

Public Functions

DomainParticipant *create_participant(DomainId_t domain_id, const DomainParticipantQos &qos,
DomainParticipantListener *listener = nullptr, const StatusMask
&mask = StatusMask::all())

Create a Participant.

Parameters

• domain_id – Domain Id.

• qos – DomainParticipantQos Reference.

6.30. C++ API Reference 589

Fast DDS Documentation, Release 2.8.2

• listener – DomainParticipantListener Pointer (default: nullptr)

• mask – StatusMask Reference (default: all)

Returns DomainParticipant pointer. (nullptr if not created.)

DomainParticipant *create_participant_with_profile(DomainId_t domain_id, const std::string
&profile_name, DomainParticipantListener
*listener = nullptr, const StatusMask &mask =
StatusMask::all())

Create a Participant.

Parameters

• domain_id – Domain Id.

• profile_name – Participant profile name.

• listener – DomainParticipantListener Pointer (default: nullptr)

• mask – StatusMask Reference (default: all)

Returns DomainParticipant pointer. (nullptr if not created.)

DomainParticipant *create_participant_with_profile(const std::string &profile_name,
DomainParticipantListener *listener = nullptr,
const StatusMask &mask = StatusMask::all())

Create a Participant.

Parameters

• profile_name – Participant profile name.

• listener – DomainParticipantListener Pointer (default: nullptr)

• mask – StatusMask Reference (default: all)

Returns DomainParticipant pointer. (nullptr if not created.)

DomainParticipant *lookup_participant(DomainId_t domain_id) const
This operation retrieves a previously created DomainParticipant belonging to specified domain_id. If no
such DomainParticipant exists, the operation will return ‘nullptr’. If multiple DomainParticipant entities
belonging to that domain_id exist, then the operation will return one of them. It is not specified which one.

Parameters domain_id –

Returns previously created DomainParticipant within the specified domain

std::vector<DomainParticipant*> lookup_participants(DomainId_t domain_id) const
Returns all participants that belongs to the specified domain_id.

Parameters domain_id –

Returns previously created DomainParticipants within the specified domain

ReturnCode_t get_default_participant_qos(DomainParticipantQos &qos) const
This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which
will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted
in the create_participant operation. The values retrieved get_default_participant_qos will match the set
of values specified on the last successful call to set_default_participant_qos, or else, if the call was never
made, the default values.

Parameters qos – DomainParticipantQos where the qos is returned

Returns RETCODE_OK

590 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

const DomainParticipantQos &get_default_participant_qos() const
This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which
will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted
in the create_participant operation. The values retrieved get_default_participant_qos will match the set
of values specified on the last successful call to set_default_participant_qos, or else, if the call was never
made, the default values.

Returns A reference to the default DomainParticipantQos

ReturnCode_t set_default_participant_qos(const DomainParticipantQos &qos)
This operation sets a default value of the DomainParticipant QoS policies which will be used for newly
created DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant
operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

The special value PARTICIPANT_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_participant_qos operation had never been called.

Parameters qos – DomainParticipantQos to be set

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

ReturnCode_t get_participant_qos_from_profile(const std::string &profile_name,
DomainParticipantQos &qos) const

Fills the DomainParticipantQos with the values of the XML profile.

Parameters

• profile_name – DomainParticipant profile name.

• qos – DomainParticipantQos object where the qos is returned.

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

ReturnCode_t delete_participant(DomainParticipant *part)
Remove a Participant and all associated publishers and subscribers.

Parameters part – Pointer to the participant.

Returns RETCODE_PRECONDITION_NOT_MET if the participant has active entities, RET-
CODE_OK if the participant is correctly deleted and RETCODE_ERROR otherwise.

ReturnCode_t load_profiles()
Load profiles from default XML file.

Returns RETCODE_OK

ReturnCode_t load_XML_profiles_file(const std::string &xml_profile_file)
Load profiles from XML file.

Parameters xml_profile_file – XML profile file.

Returns RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

ReturnCode_t load_XML_profiles_string(const char *data, size_t length)
Load profiles from XML string.

Parameters

• data – buffer containing xml data.

6.30. C++ API Reference 591

Fast DDS Documentation, Release 2.8.2

• length – length of data

Returns RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

ReturnCode_t check_xml_static_discovery(std::string &xml_file)
Check the validity of the provided static discovery XML file

Parameters xml_file – xml file path

Returns RETCODE_OK if the validation is successful, RETCODE_ERROR otherwise.

ReturnCode_t get_qos(DomainParticipantFactoryQos &qos) const
This operation returns the value of the DomainParticipantFactory QoS policies.

Parameters qos – DomaParticipantFactoryQos reference where the qos is returned

Returns RETCODE_OK

ReturnCode_t set_qos(const DomainParticipantFactoryQos &qos)
This operation sets the value of the DomainParticipantFactory QoS policies. These policies control the
behavior of the object a factory for entities.

Note that despite having QoS, the DomainParticipantFactory is not an Entity.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

Parameters qos – DomainParticipantFactoryQos to be set.

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

Public Static Functions

static DomainParticipantFactory *get_instance()
Returns the DomainParticipantFactory singleton instance.

Returns A raw pointer to the DomainParticipantFactory singleton instance.

static std::shared_ptr<DomainParticipantFactory> get_shared_instance()
Returns the DomainParticipantFactory singleton instance.

Returns A shared pointer to the DomainParticipantFactory singleton instance.

DomainParticipantFactoryQos

class eprosima::fastdds::dds::DomainParticipantFactoryQos
Class DomainParticipantFactoryQos, contains all the possible Qos that can be set for a determined participant.
Please consult each of them to check for implementation details and default values.

592 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DomainParticipantFactoryQos()
Constructor.

inline virtual ~DomainParticipantFactoryQos()
Destructor.

inline const EntityFactoryQosPolicy &entity_factory() const
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline EntityFactoryQosPolicy &entity_factory()
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)
Setter for EntityFactoryQosPolicy

Parameters entity_factory – EntityFactoryQosPolicy

DomainParticipantListener

class eprosima::fastdds::dds::DomainParticipantListener : public
eprosima::fastdds::dds::PublisherListener, public eprosima::fastdds::dds::SubscriberListener, public
eprosima::fastdds::dds::TopicListener

Class DomainParticipantListener, overrides behaviour towards certain events.

Public Functions

inline DomainParticipantListener()
Constructor.

inline virtual ~DomainParticipantListener()
Destructor.

inline virtual void on_participant_discovery(DomainParticipant *participant,
fastrtps::rtps::ParticipantDiscoveryInfo &&info)

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote participant.

• info – [out] Remote participant information. User can take ownership of the object.

inline virtual void on_participant_discovery(DomainParticipant *participant,
fastrtps::rtps::ParticipantDiscoveryInfo &&info, bool
&should_be_ignored)

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote participant.

• info – [out] Remote participant information. User can take ownership of the object.

6.30. C++ API Reference 593

Fast DDS Documentation, Release 2.8.2

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the dis-
covered Participant.

inline virtual void onParticipantAuthentication(DomainParticipant *participant,
fastrtps::rtps::ParticipantAuthenticationInfo &&info)

This method is called when a new Participant is authenticated.

Parameters

• participant – [out] Pointer to the authenticated Participant.

• info – [out] Remote participant authentication information. User can take ownership of
the object.

inline virtual void on_subscriber_discovery(DomainParticipant *participant,
fastrtps::rtps::ReaderDiscoveryInfo &&info)

This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote subscriber.

• info – [out] Remote subscriber information. User can take ownership of the object.

inline virtual void on_subscriber_discovery(DomainParticipant *participant,
fastrtps::rtps::ReaderDiscoveryInfo &&info, bool
&should_be_ignored)

This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote subscriber.

• info – [out] Remote subscriber information. User can take ownership of the object.

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the dis-
covered Participant.

inline virtual void on_publisher_discovery(DomainParticipant *participant,
fastrtps::rtps::WriterDiscoveryInfo &&info)

This method is called when a new Publisher is discovered, or a previously discovered publisher changes its
QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote publisher.

• info – [out] Remote publisher information. User can take ownership of the object.

inline virtual void on_publisher_discovery(DomainParticipant *participant,
fastrtps::rtps::WriterDiscoveryInfo &&info, bool
&should_be_ignored)

This method is called when a new Publisher is discovered, or a previously discovered publisher changes its
QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote publisher.

• info – [out] Remote publisher information. User can take ownership of the object.

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the dis-
covered Participant.

594 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline virtual void on_type_discovery(DomainParticipant *participant, const fastrtps::rtps::SampleIdentity
&request_sample_id, const fastrtps::string_255 &topic, const
fastrtps::types::TypeIdentifier *identifier, const
fastrtps::types::TypeObject *object,
fastrtps::types::DynamicType_ptr dyn_type)

This method is called when a participant discovers a new Type The ownership of all object belongs to the
caller so if needs to be used after the method ends, a full copy should be perform (except for dyn_type due
to its shared_ptr nature.

For example: fastrtps::types::TypeIdentifier new_type_id = *identifier;

inline virtual void on_type_dependencies_reply(DomainParticipant *participant, const
fastrtps::rtps::SampleIdentity &request_sample_id, const
fastrtps::types::TypeIdentifierWithSizeSeq
&dependencies)

This method is called when the typelookup client received a reply to a getTypeDependencies request.

The user may want to retrieve these new types using the getTypes request and create a new DynamicType
using the retrieved TypeObject.

inline virtual void on_type_information_received(DomainParticipant *participant, const
fastrtps::string_255 topic_name, const
fastrtps::string_255 type_name, const
fastrtps::types::TypeInformation &type_information)

This method is called when a participant receives a TypeInformation while discovering another participant.

DomainParticipantQos

class eprosima::fastdds::dds::DomainParticipantQos
Class DomainParticipantQos, contains all the possible Qos that can be set for a determined participant. Please
consult each of them to check for implementation details and default values.

Public Types

using FlowControllerDescriptorList =
std::vector<std::shared_ptr<fastdds::rtps::FlowControllerDescriptor>>

User defined flow controllers to use alongside.

Since 2.4.0

Public Functions

inline DomainParticipantQos()
Constructor.

inline virtual ~DomainParticipantQos()
Destructor.

inline const UserDataQosPolicy &user_data() const
Getter for UserDataQosPolicy

Returns UserDataQosPolicy reference

6.30. C++ API Reference 595

Fast DDS Documentation, Release 2.8.2

inline UserDataQosPolicy &user_data()
Getter for UserDataQosPolicy

Returns UserDataQosPolicy reference

inline void user_data(const UserDataQosPolicy &value)
Setter for UserDataQosPolicy

Parameters value – UserDataQosPolicy

inline const EntityFactoryQosPolicy &entity_factory() const
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline EntityFactoryQosPolicy &entity_factory()
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline void entity_factory(const EntityFactoryQosPolicy &value)
Setter for EntityFactoryQosPolicy

Parameters value – EntityFactoryQosPolicy

inline const ParticipantResourceLimitsQos &allocation() const
Getter for ParticipantResourceLimitsQos

Returns ParticipantResourceLimitsQos reference

inline ParticipantResourceLimitsQos &allocation()
Getter for ParticipantResourceLimitsQos

Returns ParticipantResourceLimitsQos reference

inline void allocation(const ParticipantResourceLimitsQos &allocation)
Setter for ParticipantResourceLimitsQos

Parameters allocation – ParticipantResourceLimitsQos

inline const PropertyPolicyQos &properties() const
Getter for PropertyPolicyQos

Returns PropertyPolicyQos reference

inline PropertyPolicyQos &properties()
Getter for PropertyPolicyQos

Returns PropertyPolicyQos reference

inline void properties(const PropertyPolicyQos &properties)
Setter for PropertyPolicyQos

Parameters properties – PropertyPolicyQos

inline const WireProtocolConfigQos &wire_protocol() const
Getter for WireProtocolConfigQos

Returns WireProtocolConfigQos reference

inline WireProtocolConfigQos &wire_protocol()
Getter for WireProtocolConfigQos

Returns WireProtocolConfigQos reference

inline void wire_protocol(const WireProtocolConfigQos &wire_protocol)
Setter for WireProtocolConfigQos

596 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters wire_protocol – WireProtocolConfigQos

inline const TransportConfigQos &transport() const
Getter for TransportConfigQos

Returns TransportConfigQos reference

inline TransportConfigQos &transport()
Getter for TransportConfigQos

Returns TransportConfigQos reference

inline void transport(const TransportConfigQos &transport)
Setter for TransportConfigQos

Parameters transport – TransportConfigQos

inline const fastrtps::string_255 &name() const
Getter for the Participant name

Returns name

inline fastrtps::string_255 &name()
Getter for the Participant name

Returns name

inline void name(const fastrtps::string_255 &value)
Setter for the Participant name

Parameters value – New name to be set

inline FlowControllerDescriptorList &flow_controllers()
Getter for FlowControllerDescriptorList

Returns FlowControllerDescriptorList reference

inline const FlowControllerDescriptorList &flow_controllers() const
Getter for FlowControllerDescriptorList

Returns FlowControllerDescriptorList reference

const DomainParticipantQos eprosima::fastdds::dds::PARTICIPANT_QOS_DEFAULT

Publisher

DataWriter

class eprosima::fastdds::dds::DataWriter : public eprosima::fastdds::dds::DomainEntity
Class DataWriter, contains the actual implementation of the behaviour of the DataWriter.

6.30. C++ API Reference 597

Fast DDS Documentation, Release 2.8.2

Public Types

enum LoanInitializationKind
How to initialize samples loaned with loan_sample

Values:

enumerator NO_LOAN_INITIALIZATION
Do not perform initialization of sample.

This is the default initialization scheme of loaned samples. It is the fastest scheme, but implies the user
should take care of writing every field on the data type before calling write on the loaned sample.

enumerator ZERO_LOAN_INITIALIZATION
Initialize all memory with zero-valued bytes.

The contents of the loaned sample will be zero-initialized upon return of loan_sample.

enumerator CONSTRUCTED_LOAN_INITIALIZATION
Use in-place constructor initialization.

This will call the constructor of the data type over the memory space being returned by loan_sample.

Public Functions

virtual ReturnCode_t enable() override
This operation enables the DataWriter.

Returns RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET
if the Publisher creating this DataWriter is not enabled.

bool write(void *data)
Write data to the topic.

Parameters data – Pointer to the data

Returns True if correct, false otherwise

bool write(void *data, fastrtps::rtps::WriteParams ¶ms)
Write data with params to the topic.

Parameters

• data – Pointer to the data

• params – Extra write parameters.

Returns True if correct, false otherwise

ReturnCode_t write(void *data, const InstanceHandle_t &handle)
Write data with handle.

The special value HANDLE_NIL can be used for the parameter handle.This indicates that the identity of
the instance should be automatically deduced from the instance_data (by means of the key).

Parameters

• data – Pointer to the data

• handle – InstanceHandle_t.

598 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match
with the one associated to the data, RETCODE_OK if the data is correctly sent and RET-
CODE_ERROR otherwise.

ReturnCode_t write_w_timestamp(void *data, const InstanceHandle_t &handle, const fastrtps::Time_t
×tamp)

This operation performs the same function as write except that it also provides the value
for the source_timestamp that is made available to DataReader objects by means of the
eprosima::fastdds::dds::SampleInfo::source_timestamp attribute “source_timestamp” inside the
SampleInfo. The constraints on the values of the handle parameter and the corresponding error
behavior are the same specified for the write operation. This operation may block and return RET-
CODE_TIMEOUT under the same circumstances described for the write operation. This operation
may return RETCODE_OUT_OF_RESOURCES, RETCODE_PRECONDITION_NOT_MET or RET-
CODE_BAD_PARAMETER under the same circumstances described for the write operation.

Parameters

• data – Pointer to the data

• handle – InstanceHandle_t

• timestamp – Time_t used to set the source_timestamp.

Returns Any of the standard return codes.

InstanceHandle_t register_instance(void *instance)
Informs that the application will be modifying a particular instance.

It gives an opportunity to the middleware to pre-configure itself to improve performance.

Parameters instance – [in] Sample used to get the instance’s key.

Returns Handle containing the instance’s key. This handle could be used in successive write or
dispose operations. In case of error, HANDLE_NIL will be returned.

InstanceHandle_t register_instance_w_timestamp(void *instance, const fastrtps::Time_t ×tamp)
This operation performs the same function as register_instance and can be used instead of regis-
ter_instance in the cases where the application desires to specify the value for the source_timestamp. The
source_timestamp potentially affects the relative order in which readers observe events from multiple writ-
ers. See the QoS policy DESTINATION_ORDER.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for
the write operation.

This operation may return RETCODE_OUT_OF_RESOURCES under the same circumstances described
for the write operation.

Parameters

• instance – Sample used to get the instance’s key.

• timestamp – Time_t used to set the source_timestamp.

Returns Handle containing the instance’s key.

ReturnCode_t unregister_instance(void *instance, const InstanceHandle_t &handle)
This operation reverses the action of register_instance.

It should only be called on an instance that is currently registered. Informs the middleware that the
DataWriter is not intending to modify any more of that data instance. Also indicates that the middleware
can locally remove all information regarding that instance.

Parameters

6.30. C++ API Reference 599

Fast DDS Documentation, Release 2.8.2

• instance – [in] Sample used to deduce instance’s key in case of handle parameter is
HANDLE_NIL.

• handle – [in] Instance’s key to be unregistered.

Returns Returns the operation’s result. If the operation finishes successfully, Return-
Code_t::RETCODE_OK is returned.

ReturnCode_t unregister_instance_w_timestamp(void *instance, const InstanceHandle_t &handle,
const fastrtps::Time_t ×tamp)

This operation performs the same function as unregister_instance and can be used instead of unregis-
ter_instance in the cases where the application desires to specify the value for the source_timestamp. The
source_timestamp potentially affects the relative order in which readers observe events from multiple writ-
ers. See the QoS policy DESTINATION_ORDER.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the unregister_instance operation.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for
the write operation

Parameters

• instance – Sample used to deduce instance’s key in case of handle parameter is HAN-
DLE_NIL.

• handle – Instance’s key to be unregistered.

• timestamp – Time_t used to set the source_timestamp.

Returns Handle containing the instance’s key.

ReturnCode_t get_key_value(void *key_holder, const InstanceHandle_t &handle)
This operation can be used to retrieve the instance key that corresponds to an instance_handle. The opera-
tion will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t handle does not correspond to an
existing data-object known to the DataWriter. If the implementation is not able to check invalid handles
then the result in this situation is unspecified.

Parameters

• key_holder – [inout] Sample where the key fields will be returned.

• handle – [in] Handle to the instance to retrieve the key values from.

Returns Any of the standard return codes.

InstanceHandle_t lookup_instance(const void *instance) const
NOT YET IMPLEMENTED

Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the
fields that define the key.

Parameters instance – [in] Data pointer to the sample

Returns handle of the given instance

const fastrtps::rtps::GUID_t &guid() const
Returns the DataWriter’s GUID

Returns Reference to the DataWriter GUID

600 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

InstanceHandle_t get_instance_handle() const
Returns the DataWriter’s InstanceHandle

Returns Copy of the DataWriter InstanceHandle

TypeSupport get_type() const
Get data type associated to the DataWriter

Returns Copy of the TypeSupport

ReturnCode_t wait_for_acknowledgments(const fastrtps::Duration_t &max_wait)
Waits the current thread until all writers have received their acknowledgments.

Parameters max_wait – Maximum blocking time for this operation

Returns RETCODE_OK if the DataWriter receive the acknowledgments before the time expires
and RETCODE_ERROR otherwise

ReturnCode_t get_offered_deadline_missed_status(OfferedDeadlineMissedStatus &status)
Returns the offered deadline missed status.

Parameters status – [out] Deadline missed status struct

Returns RETCODE_OK

ReturnCode_t get_offered_incompatible_qos_status(OfferedIncompatibleQosStatus &status)
Returns the offered incompatible qos status.

Parameters status – [out] Offered incompatible qos status struct

Returns RETCODE_OK

ReturnCode_t get_publication_matched_status(PublicationMatchedStatus &status) const
Returns the publication matched status.

Parameters status – [out] publication matched status struct

Returns RETCODE_OK

ReturnCode_t set_qos(const DataWriterQos &qos)
Establishes the DataWriterQos for this DataWriter.

Parameters qos – DataWriterQos to be set

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

const DataWriterQos &get_qos() const
Retrieves the DataWriterQos for this DataWriter.

Returns Reference to the current DataWriterQos

ReturnCode_t get_qos(DataWriterQos &qos) const
Fills the DataWriterQos with the values of this DataWriter.

Parameters qos – DataWriterQos object where the qos is returned.

Returns RETCODE_OK

Topic *get_topic() const
Retrieves the topic for this DataWriter.

Returns Pointer to the associated Topic

const DataWriterListener *get_listener() const
Retrieves the listener for this DataWriter.

6.30. C++ API Reference 601

Fast DDS Documentation, Release 2.8.2

Returns Pointer to the DataWriterListener

ReturnCode_t set_listener(DataWriterListener *listener)
Modifies the DataWriterListener, sets the mask to StatusMask::all()

Parameters listener – new value for the DataWriterListener

Returns RETCODE_OK

ReturnCode_t set_listener(DataWriterListener *listener, const StatusMask &mask)
Modifies the DataWriterListener.

Parameters

• listener – new value for the DataWriterListener

• mask – StatusMask that holds statuses the listener responds to (default: all).

Returns RETCODE_OK

ReturnCode_t dispose(void *data, const InstanceHandle_t &handle)
This operation requests the middleware to delete the data (the actual deletion is postponed until there is no
more use for that data in the whole system). In general, applications are made aware of the deletion by means
of operations on the DataReader objects that already knew that instance. This operation does not modify
the value of the instance. The instance parameter is passed just for the purposes of identifying the instance.
When this operation is used, the Service will automatically supply the value of the source_timestamp that is
made available to DataReader objects by means of the source_timestamp attribute inside the SampleInfo.
The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the unregister_instance operation.

Parameters

• data – [in] Sample used to deduce instance’s key in case of handle parameter is HAN-
DLE_NIL.

• handle – [in] InstanceHandle of the data

Returns RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match
with the one associated to the data, RETCODE_OK if the data is correctly sent and RET-
CODE_ERROR otherwise.

ReturnCode_t dispose_w_timestamp(void *instance, const InstanceHandle_t &handle, const
fastrtps::Time_t ×tamp)

This operation performs the same functions as dispose except that the application provides the value for the
source_timestamp that is made available to DataReader objects by means of the source_timestamp attribute
inside the SampleInfo.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the dispose operation.

This operation may return RETCODE_PRECONDITION_NOT_MET and RET-
CODE_BAD_PARAMETER under the same circumstances described for the dispose operation.

This operation may return RETCODE_TIMEOUT and RETCODE_OUT_OF_RESOURCES under the
same circumstances described for the write operation.

Parameters

• instance – Sample used to deduce instance’s key in case of handle parameter is HAN-
DLE_NIL.

• handle – Instance’s key to be disposed.

• timestamp – Time_t used to set the source_timestamp.

602 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RTPS_DllAPI

ReturnCode_t get_liveliness_lost_status(LivelinessLostStatus &status)
Returns the liveliness lost status.

Parameters status – Liveliness lost status struct

Returns RETCODE_OK

const Publisher *get_publisher() const
Getter for the Publisher that creates this DataWriter.

Returns Pointer to the Publisher

ReturnCode_t assert_liveliness()
This operation manually asserts the liveliness of the DataWriter. This is used in combination with the
LivelinessQosPolicy to indicate to the Service that the entity remains active. This operation need only
be used if the LIVELINESS setting is either MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC.
Otherwise, it has no effect.

Note: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and
its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not
writing data regularly.

Returns RETCODE_OK if asserted, RETCODE_ERROR otherwise

ReturnCode_t get_matched_subscription_data(builtin::SubscriptionBuiltinTopicData
&subscription_data, const InstanceHandle_t
&subscription_handle) const

Retrieves in a subscription associated with the DataWriter.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• subscription_data – [out] subscription data struct

• subscription_handle – InstanceHandle_t of the subscription

Returns RETCODE_OK

ReturnCode_t get_matched_subscriptions(std::vector<InstanceHandle_t> &subscription_handles) const
Fills the given vector with the InstanceHandle_t of matched DataReaders.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters subscription_handles – [out] Vector where the InstanceHandle_t are returned

Returns RETCODE_OK

ReturnCode_t clear_history(size_t *removed)
Clears the DataWriter history.

Parameters removed – size_t pointer to return the size of the data removed

6.30. C++ API Reference 603

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK if the samples are removed and RETCODE_ERROR otherwise

ReturnCode_t loan_sample(void *&sample, LoanInitializationKind initialization =
LoanInitializationKind::NO_LOAN_INITIALIZATION)

Get a pointer to the internal pool where the user could directly write.

This method can only be used on a DataWriter for a plain data type. It will provide the user with a pointer
to an internal buffer where the data type can be prepared for sending.

When using NO_LOAN_INITIALIZATION on the initialization parameter, which is the default, no as-
sumptions should be made on the contents where the pointer points to, as it may be an old pointer being
reused. See LoanInitializationKind for more details.

Once the sample has been prepared, it can then be published by calling write. After a successful call to
write, the middleware takes ownership of the loaned pointer again, and the user should not access that
memory again.

If, for whatever reason, the sample is not published, the loan can be returned by calling discard_loan.

Parameters

• sample – [out] Pointer to the sample on the internal pool.

• initialization – [in] How to initialize the loaned sample.

Returns ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not sup-
port loans.

Returns ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

Returns ReturnCode_t::RETCODE_OUT_OF_RESOURCES if the pool has been exhausted.

Returns ReturnCode_t::RETCODE_OK if a pointer to a sample is successfully obtained.

ReturnCode_t discard_loan(void *&sample)
Discards a loaned sample pointer.

See the description on loan_sample for how and when to call this method.

Parameters sample – [inout] Pointer to the previously loaned sample.

Returns ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not sup-
port loans.

Returns ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

Returns ReturnCode_t::RETCODE_BAD_PARAMETER if the pointer does not correspond to
a loaned sample.

Returns ReturnCode_t::RETCODE_OK if the loan is successfully discarded.

ReturnCode_t get_sending_locators(rtps::LocatorList &locators) const
Get the list of locators from which this DataWriter may send data.

Parameters locators – [out] LocatorList where the list of locators will be stored.

Returns NOT_ENABLED if the reader has not been enabled.

Returns OK if a list of locators is returned.

ReturnCode_t wait_for_acknowledgments(void *instance, const InstanceHandle_t &handle, const
fastrtps::Duration_t &max_wait)

Block the current thread until the writer has received the acknowledgment corresponding to the given in-
stance. Operations performed on the same instance while the current thread is waiting will not be taken
into consideration, i.e. this method may return RETCODE_OK with those operations unacknowledged.

604 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• instance – Sample used to deduce instance’s key in case of handle parameter is HAN-
DLE_NIL.

• handle – Instance handle of the data.

• max_wait – Maximum blocking time for this operation.

Returns RETCODE_NOT_ENABLED if the writer has not been enabled.

Returns RETCODE_BAD_PARAMETER if instance is not a valid pointer.

Returns RETCODE_PRECONDITION_NOT_MET if the topic does not have a key, the key is
unknown to the writer, or the key is not consistent with handle.

Returns RETCODE_OK if the DataWriter received the acknowledgments before the time ex-
pired.

Returns RETCODE_TIMEOUT otherwise.

DataWriterListener

class eprosima::fastdds::dds::DataWriterListener
Class DataWriterListener, allows the end user to implement callbacks triggered by certain events.

Subclassed by eprosima::fastdds::dds::PublisherListener

Public Functions

inline DataWriterListener()
Constructor.

inline virtual ~DataWriterListener()
Destructor.

inline virtual void on_publication_matched(DataWriter *writer, const PublicationMatchedStatus &info)
This method is called when the DataWriter is matched (or unmatched) against an endpoint.

Parameters

• writer – Pointer to the associated DataWriter

• info – Information regarding the matched DataReader

inline virtual void on_offered_deadline_missed(DataWriter *writer, const OfferedDeadlineMissedStatus
&status)

A method called when a deadline is missed

Parameters

• writer – Pointer to the associated DataWriter

• status – The deadline missed status

inline virtual void on_offered_incompatible_qos(DataWriter *writer, const
OfferedIncompatibleQosStatus &status)

A method called when an incompatible QoS is offered

Parameters

• writer – Pointer to the associated DataWriter

6.30. C++ API Reference 605

Fast DDS Documentation, Release 2.8.2

• status – The deadline missed status

inline virtual void on_liveliness_lost(DataWriter *writer, const LivelinessLostStatus &status)
Method called when the liveliness of a DataWriter is lost.

Parameters

• writer – Pointer to the associated DataWriter

• status – The liveliness lost status

inline virtual void on_unacknowledged_sample_removed(DataWriter *writer, const InstanceHandle_t
&instance)

Method called when a sample has been removed unacknowledged.

Parameters

• writer – Pointer to the associated DataWriter

• instance – Handle to the instance the sample was removed from

DataWriterQos

class eprosima::fastdds::dds::DataWriterQos
Class DataWriterQos, containing all the possible Qos that can be set for a determined DataWriter. Although these
values can be and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

Subclassed by eprosima::fastdds::statistics::dds::DataWriterQos

Public Functions

DataWriterQos()
Constructor.

~DataWriterQos() = default
Destructor.

inline DurabilityQosPolicy &durability()
Getter for DurabilityQosPolicy

Returns DurabilityQosPolicy reference

inline const DurabilityQosPolicy &durability() const
Getter for DurabilityQosPolicy

Returns DurabilityQosPolicy reference

inline void durability(const DurabilityQosPolicy &durability)
Setter for DurabilityQosPolicy

Parameters durability – new value for the DurabilityQosPolicy

inline DurabilityServiceQosPolicy &durability_service()
Getter for DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy reference

inline const DurabilityServiceQosPolicy &durability_service() const
Getter for DurabilityServiceQosPolicy

606 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns DurabilityServiceQosPolicy reference

inline void durability_service(const DurabilityServiceQosPolicy &durability_service)
Setter for DurabilityServiceQosPolicy

Parameters durability_service – new value for the DurabilityServiceQosPolicy

inline DeadlineQosPolicy &deadline()
Getter for DeadlineQosPolicy

Returns DeadlineQosPolicy reference

inline const DeadlineQosPolicy &deadline() const
Getter for DeadlineQosPolicy

Returns DeadlineQosPolicy reference

inline void deadline(const DeadlineQosPolicy &deadline)
Setter for DeadlineQosPolicy

Parameters deadline – new value for the DeadlineQosPolicy

inline LatencyBudgetQosPolicy &latency_budget()
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

inline const LatencyBudgetQosPolicy &latency_budget() const
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

inline void latency_budget(const LatencyBudgetQosPolicy &latency_budget)
Setter for LatencyBudgetQosPolicy

Parameters latency_budget – new value for the LatencyBudgetQosPolicy

inline LivelinessQosPolicy &liveliness()
Getter for LivelinessQosPolicy

Returns LivelinessQosPolicy reference

inline const LivelinessQosPolicy &liveliness() const
Getter for LivelinessQosPolicy

Returns LivelinessQosPolicy reference

inline void liveliness(const LivelinessQosPolicy &liveliness)
Setter for LivelinessQosPolicy

Parameters liveliness – new value for the LivelinessQosPolicy

inline ReliabilityQosPolicy &reliability()
Getter for ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

inline const ReliabilityQosPolicy &reliability() const
Getter for ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

inline void reliability(const ReliabilityQosPolicy &reliability)
Setter for ReliabilityQosPolicy

Parameters reliability – new value for the ReliabilityQosPolicy

6.30. C++ API Reference 607

Fast DDS Documentation, Release 2.8.2

inline DestinationOrderQosPolicy &destination_order()
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

inline const DestinationOrderQosPolicy &destination_order() const
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

inline void destination_order(const DestinationOrderQosPolicy &destination_order)
Setter for DestinationOrderQosPolicy

Parameters destination_order – new value for the DestinationOrderQosPolicy

inline HistoryQosPolicy &history()
Getter for HistoryQosPolicy

Returns HistoryQosPolicy reference

inline const HistoryQosPolicy &history() const
Getter for HistoryQosPolicy

Returns HistoryQosPolicy reference

inline void history(const HistoryQosPolicy &history)
Setter for HistoryQosPolicy

Parameters history – new value for the HistoryQosPolicy

inline ResourceLimitsQosPolicy &resource_limits()
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

inline const ResourceLimitsQosPolicy &resource_limits() const
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

inline void resource_limits(const ResourceLimitsQosPolicy &resource_limits)
Setter for ResourceLimitsQosPolicy

Parameters resource_limits – new value for the ResourceLimitsQosPolicy

inline TransportPriorityQosPolicy &transport_priority()
Getter for TransportPriorityQosPolicy

Returns TransportPriorityQosPolicy reference

inline const TransportPriorityQosPolicy &transport_priority() const
Getter for TransportPriorityQosPolicy

Returns TransportPriorityQosPolicy reference

inline void transport_priority(const TransportPriorityQosPolicy &transport_priority)
Setter for TransportPriorityQosPolicy

Parameters transport_priority – new value for the TransportPriorityQosPolicy

inline LifespanQosPolicy &lifespan()
Getter for LifespanQosPolicy

Returns LifespanQosPolicy reference

inline const LifespanQosPolicy &lifespan() const
Getter for LifespanQosPolicy

608 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns LifespanQosPolicy reference

inline void lifespan(const LifespanQosPolicy &lifespan)
Setter for LifespanQosPolicy

Parameters lifespan – new value for the LifespanQosPolicy

inline UserDataQosPolicy &user_data()
Getter for UserDataQosPolicy

Returns UserDataQosPolicy reference

inline const UserDataQosPolicy &user_data() const
Getter for UserDataQosPolicy

Returns UserDataQosPolicy reference

inline void user_data(const UserDataQosPolicy &user_data)
Setter for UserDataQosPolicy

Parameters user_data – new value for the UserDataQosPolicy

inline OwnershipQosPolicy &ownership()
Getter for OwnershipQosPolicy

Returns OwnershipQosPolicy reference

inline const OwnershipQosPolicy &ownership() const
Getter for OwnershipQosPolicy

Returns OwnershipQosPolicy reference

inline void ownership(const OwnershipQosPolicy &ownership)
Setter for OwnershipQosPolicy

Parameters ownership – new value for the OwnershipQosPolicy

inline OwnershipStrengthQosPolicy &ownership_strength()
Getter for OwnershipStrengthQosPolicy

Returns OwnershipStrengthQosPolicy reference

inline const OwnershipStrengthQosPolicy &ownership_strength() const
Getter for OwnershipStrengthQosPolicy

Returns OwnershipStrengthQosPolicy reference

inline void ownership_strength(const OwnershipStrengthQosPolicy &ownership_strength)
Setter for OwnershipStrengthQosPolicy

Parameters ownership_strength – new value for the OwnershipStrengthQosPolicy

inline WriterDataLifecycleQosPolicy &writer_data_lifecycle()
Getter for WriterDataLifecycleQosPolicy

Returns WriterDataLifecycleQosPolicy reference

inline const WriterDataLifecycleQosPolicy &writer_data_lifecycle() const
Getter for WriterDataLifecycleQosPolicy

Returns WriterDataLifecycleQosPolicy reference

inline void writer_data_lifecycle(const WriterDataLifecycleQosPolicy &writer_data_lifecycle)
Setter for WriterDataLifecycleQosPolicy

Parameters writer_data_lifecycle – new value for the WriterDataLifecycleQosPolicy

6.30. C++ API Reference 609

Fast DDS Documentation, Release 2.8.2

inline PublishModeQosPolicy &publish_mode()
Getter for PublishModeQosPolicy

Returns PublishModeQosPolicy reference

inline const PublishModeQosPolicy &publish_mode() const
Getter for PublishModeQosPolicy

Returns PublishModeQosPolicy reference

inline void publish_mode(const PublishModeQosPolicy &publish_mode)
Setter for PublishModeQosPolicy

Parameters publish_mode – new value for the PublishModeQosPolicy

inline DataRepresentationQosPolicy &representation()
Getter for DataRepresentationQosPolicy

Returns DataRepresentationQosPolicy reference

inline const DataRepresentationQosPolicy &representation() const
Getter for DataRepresentationQosPolicy

Returns DataRepresentationQosPolicy reference

inline void representation(const DataRepresentationQosPolicy &representation)
Setter for DataRepresentationQosPolicy

Parameters representation – new value for the DataRepresentationQosPolicy

inline PropertyPolicyQos &properties()
Getter for PropertyPolicyQos

Returns PropertyPolicyQos reference

inline const PropertyPolicyQos &properties() const
Getter for PropertyPolicyQos

Returns PropertyPolicyQos reference

inline void properties(const PropertyPolicyQos &properties)
Setter for PropertyPolicyQos

Parameters properties – new value for the PropertyPolicyQos

inline RTPSReliableWriterQos &reliable_writer_qos()
Getter for RTPSReliableWriterQos

Returns RTPSReliableWriterQos reference

inline const RTPSReliableWriterQos &reliable_writer_qos() const
Getter for RTPSReliableWriterQos

Returns RTPSReliableWriterQos reference

inline void reliable_writer_qos(const RTPSReliableWriterQos &reliable_writer_qos)
Setter for RTPSReliableWriterQos

Parameters reliable_writer_qos – new value for the RTPSReliableWriterQos

inline RTPSEndpointQos &endpoint()
Getter for RTPSEndpointQos

Returns RTPSEndpointQos reference

inline const RTPSEndpointQos &endpoint() const
Getter for RTPSEndpointQos

610 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RTPSEndpointQos reference

inline void endpoint(const RTPSEndpointQos &endpoint)
Setter for RTPSEndpointQos

Parameters endpoint – new value for the RTPSEndpointQos

inline WriterResourceLimitsQos &writer_resource_limits()
Getter for WriterResourceLimitsQos

Returns WriterResourceLimitsQos reference

inline const WriterResourceLimitsQos &writer_resource_limits() const
Getter for WriterResourceLimitsQos

Returns WriterResourceLimitsQos reference

inline void writer_resource_limits(const WriterResourceLimitsQos &writer_resource_limits)
Setter for WriterResourceLimitsQos

Parameters writer_resource_limits – new value for the WriterResourceLimitsQos

inline fastrtps::rtps::ThroughputControllerDescriptor &throughput_controller()
Getter for ThroughputControllerDescriptor

Deprecated:
Use flow_controllers() on DomainParticipantQoS

Returns ThroughputControllerDescriptor reference

inline const fastrtps::rtps::ThroughputControllerDescriptor &throughput_controller() const
Getter for ThroughputControllerDescriptor

Deprecated:
Use flow_controllers() on DomainParticipantQoS

Returns ThroughputControllerDescriptor reference

inline void throughput_controller(const fastrtps::rtps::ThroughputControllerDescriptor
&throughput_controller)

Setter for ThroughputControllerDescriptor

Deprecated:
Use flow_controllers() on DomainParticipantQoS

Parameters throughput_controller – new value for the ThroughputControllerDescriptor

inline DataSharingQosPolicy &data_sharing()
Getter for DataSharingQosPolicy

Returns DataSharingQosPolicy reference

inline const DataSharingQosPolicy &data_sharing() const
Getter for DataSharingQosPolicy

Returns DataSharingQosPolicy reference

6.30. C++ API Reference 611

Fast DDS Documentation, Release 2.8.2

inline void data_sharing(const DataSharingQosPolicy &data_sharing)
Setter for DataSharingQosPolicy

Parameters data_sharing – new value for the DataSharingQosPolicy

const DataWriterQos eprosima::fastdds::dds::DATAWRITER_QOS_DEFAULT

Publisher

class eprosima::fastdds::dds::Publisher : public eprosima::fastdds::dds::DomainEntity
Class Publisher, used to send data to associated subscribers.

Public Functions

virtual ~Publisher()
Destructor.

virtual ReturnCode_t enable() override
This operation enables the Publisher.

Returns RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET
if the participant creating this Publisher is not enabled.

const PublisherQos &get_qos() const
Allows accessing the Publisher Qos.

Returns PublisherQos reference

ReturnCode_t get_qos(PublisherQos &qos) const
Retrieves the Publisher Qos.

Returns RETCODE_OK

ReturnCode_t set_qos(const PublisherQos &qos)
Allows modifying the Publisher Qos. The given Qos must be supported by the PublisherQos.

Parameters qos – PublisherQos to be set

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

const PublisherListener *get_listener() const
Retrieves the attached PublisherListener.

Returns PublisherListener pointer

ReturnCode_t set_listener(PublisherListener *listener)
Modifies the PublisherListener, sets the mask to StatusMask::all()

Parameters listener – new value for the PublisherListener

Returns RETCODE_OK

ReturnCode_t set_listener(PublisherListener *listener, const StatusMask &mask)
Modifies the PublisherListener.

Parameters

• listener – new value for the PublisherListener

612 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• mask – StatusMask that holds statuses the listener responds to

Returns RETCODE_OK

DataWriter *create_datawriter(Topic *topic, const DataWriterQos &qos, DataWriterListener *listener =
nullptr, const StatusMask &mask = StatusMask::all())

This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Pub-
lisher.

Parameters

• topic – Topic the DataWriter will be listening

• qos – QoS of the DataWriter.

• listener – Pointer to the listener (default: nullptr).

• mask – StatusMask that holds statuses the listener responds to (default: all).

Returns Pointer to the created DataWriter. nullptr if failed.

DataWriter *create_datawriter_with_profile(Topic *topic, const std::string &profile_name,
DataWriterListener *listener = nullptr, const StatusMask
&mask = StatusMask::all())

This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Pub-
lisher.

Parameters

• topic – Topic the DataWriter will be listening

• profile_name – DataWriter profile name.

• listener – Pointer to the listener (default: nullptr).

• mask – StatusMask that holds statuses the listener responds to (default: all).

Returns Pointer to the created DataWriter. nullptr if failed.

ReturnCode_t delete_datawriter(const DataWriter *writer)
This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to create the DataWriter.
If delete_datawriter is called on a different Publisher, the operation will have no effect and it will return
false.

The deletion of the DataWriter will automatically unregister all instances. Depending on the settings of the
WRITER_DATA_LIFECYCLE QosPolicy, the deletion of the DataWriter may also dispose all instances.

Parameters writer – DataWriter to delete

Returns RETCODE_PRECONDITION_NOT_MET if it does not belong to this Publisher,
RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

DataWriter *lookup_datawriter(const std::string &topic_name) const
This operation retrieves a previously created DataWriter belonging to the Publisher that is attached to a
Topic with a matching topic_name. If no such DataWriter exists, the operation will return nullptr.

If multiple DataWriter attached to the Publisher satisfy this condition, then the operation will return one
of them. It is not specified which one.

Parameters topic_name – Name of the Topic

Returns Pointer to a previously created DataWriter associated to a Topic with the requested
topic_name

6.30. C++ API Reference 613

Fast DDS Documentation, Release 2.8.2

ReturnCode_t suspend_publications()
Indicates to FastDDS that the contained DataWriters are about to be modified.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t resume_publications()
Indicates to FastDDS that the modifications to the DataWriters are complete.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t begin_coherent_changes()
Signals the beginning of a set of coherent cache changes using the Datawriters attached to the publisher.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t end_coherent_changes()
Signals the end of a set of coherent cache changes.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t wait_for_acknowledgments(const fastrtps::Duration_t &max_wait)
This operation blocks the calling thread until either all data written by the reliable DataWriter entities is
acknowledged by all matched reliable DataReader entities, or else the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of true indicates that all the samples written
have been acknowledged by all reliable matched data readers; a return value of false indicates that max_wait
elapsed before all the data was acknowledged.

Parameters max_wait – Maximum blocking time for this operation

Returns RETCODE_TIMEOUT if the function takes more than the maximum blocking time
established, RETCODE_OK if the Publisher receives the acknowledgments and RET-
CODE_ERROR otherwise.

const DomainParticipant *get_participant() const
This operation returns the DomainParticipant to which the Publisher belongs.

Returns Pointer to the DomainParticipant

ReturnCode_t delete_contained_entities()
Deletes all contained DataWriters.

Returns RETCODE_OK if successful, an error code otherwise

614 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t set_default_datawriter_qos(const DataWriterQos &qos)
This operation sets a default value of the DataWriter QoS policies which will be used for newly created
DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value DATAWRITER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_datawriter_qos operation had never been called.

Parameters qos – DataWriterQos to be set

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

const DataWriterQos &get_default_datawriter_qos() const
This operation returns the default value of the DataWriter QoS, that is, the QoS policies which will be
used for newly created DataWriter entities in the case where the QoS policies are defaulted in the cre-
ate_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last suc-
cessful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

Returns Current default WriterQos

ReturnCode_t get_default_datawriter_qos(DataWriterQos &qos) const
This operation retrieves the default value of the DataWriter QoS, that is, the QoS policies which will be
used for newly created DataWriter entities in the case where the QoS policies are defaulted in the cre-
ate_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last suc-
cessful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

Parameters qos – Reference to the current default WriterQos.

Returns RETCODE_OK

ReturnCode_t copy_from_topic_qos(fastdds::dds::DataWriterQos &writer_qos, const
fastdds::dds::TopicQos &topic_qos) const

Copies TopicQos into the corresponding DataWriterQos.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• writer_qos – [out]

• topic_qos – [in]

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t get_datawriter_qos_from_profile(const std::string &profile_name, DataWriterQos
&qos) const

Fills the DataWriterQos with the values of the XML profile.

Parameters

• profile_name – DataWriter profile name.

• qos – DataWriterQos object where the qos is returned.

6.30. C++ API Reference 615

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

const InstanceHandle_t &get_instance_handle() const
Returns the Publisher’s handle.

Returns InstanceHandle of this Publisher.

bool get_datawriters(std::vector<DataWriter*> &writers) const
Fills the given vector with all the datawriters of this publisher.

Parameters writers – Vector where the DataWriters are returned

Returns true

bool has_datawriters() const
This operation checks if the publisher has DataWriters

Returns true if the publisher has one or several DataWriters, false otherwise

PublisherListener

class eprosima::fastdds::dds::PublisherListener : public eprosima::fastdds::dds::DataWriterListener
Class PublisherListener, allows the end user to implement callbacks triggered by certain events. It inherits all
the DataWriterListener callbacks.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

inline PublisherListener()
Constructor.

inline virtual ~PublisherListener()
Destructor.

PublisherQos

class eprosima::fastdds::dds::PublisherQos
Class PublisherQos, containing all the possible Qos that can be set for a determined Publisher. Although these
values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

Public Functions

inline PublisherQos()
Constructor.

virtual ~PublisherQos() = default
Destructor.

inline const PresentationQosPolicy &presentation() const
Getter for PresentationQosPolicy

Returns PresentationQosPolicy reference

616 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline PresentationQosPolicy &presentation()
Getter for PresentationQosPolicy

Returns PresentationQosPolicy reference

inline void presentation(const PresentationQosPolicy &presentation)
Setter for PresentationQosPolicy

Parameters presentation – PresentationQosPolicy

inline const PartitionQosPolicy &partition() const
Getter for PartitionQosPolicy

Returns PartitionQosPolicy reference

inline PartitionQosPolicy &partition()
Getter for PartitionQosPolicy

Returns PartitionQosPolicy reference

inline void partition(const PartitionQosPolicy &partition)
Setter for PartitionQosPolicy

Parameters partition – PartitionQosPolicy

inline const GroupDataQosPolicy &group_data() const
Getter for GroupDataQosPolicy

Returns GroupDataQosPolicy reference

inline GroupDataQosPolicy &group_data()
Getter for GroupDataQosPolicy

Returns GroupDataQosPolicy reference

inline void group_data(const GroupDataQosPolicy &group_data)
Setter for GroupDataQosPolicy

Parameters group_data – GroupDataQosPolicy

inline const EntityFactoryQosPolicy &entity_factory() const
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline EntityFactoryQosPolicy &entity_factory()
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)
Setter for EntityFactoryQosPolicy

Parameters entity_factory – EntityFactoryQosPolicy

const PublisherQos eprosima::fastdds::dds::PUBLISHER_QOS_DEFAULT

6.30. C++ API Reference 617

Fast DDS Documentation, Release 2.8.2

RTPSReliableWriterQos

class eprosima::fastdds::dds::RTPSReliableWriterQos
Qos Policy to configure the DisablePositiveACKsQos and the writer timing attributes.

Public Functions

inline RTPSReliableWriterQos()
Constructor.

virtual ~RTPSReliableWriterQos() = default
Destructor.

Public Members

fastrtps::rtps::WriterTimes times
Writer Timing Attributes.

DisablePositiveACKsQosPolicy disable_positive_acks
Disable positive acks QoS, implemented in the library.

bool disable_heartbeat_piggyback = false
Disable heartbeat piggyback mechanism.

Subscriber

DataReader

class eprosima::fastdds::dds::DataReader : public eprosima::fastdds::dds::DomainEntity
Class DataReader, contains the actual implementation of the behaviour of the Subscriber.

Read or take data methods.

Methods to read or take data from the History.

ReturnCode_t read(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples
= LENGTH_UNLIMITED, SampleStateMask sample_states = ANY_SAMPLE_STATE,
ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states
= ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of Data values from the DataReader. The caller can limit the size of
the returned collection with the max_samples parameter.

The properties of the data_values collection and the setting of the PresentationQosPolicy may impose
further limits on the size of the returned ‘list.’

i. If PresentationQosPolicy::access_scope is INSTANCE_PRESENTATION_QOS, then the returned col-
lection is a ‘list’ where samples belonging to the same data-instance are consecutive.

618 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ii. If PresentationQosPolicy::access_scope is TOPIC_PRESENTATION_QOS and PresentationQosPol-
icy::ordered_access is set to false, then the returned collection is a ‘list’ where samples belonging to
the same data-instance are consecutive.

iii. If PresentationQosPolicy::access_scope is TOPIC_PRESENTATION_QOS and PresentationQosPol-
icy::ordered_access is set to true, then the returned collection is a ‘list’ where samples belonging to
the same instance may or may not be consecutive. This is because to preserve order it may be necessary
to mix samples from different instances.

iv. If PresentationQosPolicy::access_scope is GROUP_PRESENTATION_QOS and Presentation-
QosPolicy::ordered_access is set to false, then the returned collection is a ‘list’ where samples be-
longing to the same data instance are consecutive.

v. If PresentationQosPolicy::access_scope is GROUP_PRESENTATION_QOS and Presentation-
QosPolicy::ordered_access is set to true, then the returned collection contains at most one sample.
The difference in this case is due to the fact that it is required that the application is able to read samples
belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the Destina-
tionOrderQosPolicy:

• If DestinationOrderQosPolicy::kind is BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
samples belonging to the same instances will appear in the relative order in which there were received
(FIFO, earlier samples ahead of the later samples).

• If DestinationOrderQosPolicy::kind is BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS,
samples belonging to the same instances will appear in the relative order implied by the
source_timestamp (FIFO, smaller values of source_timestamp ahead of the larger values).

The actual number of samples returned depends on the information that has been received by the middleware
as well as the HistoryQosPolicy, ResourceLimitsQosPolicy, and ReaderResourceLimitsQos:

• In the case where the HistoryQosPolicy::kind is KEEP_LAST_HISTORY_QOS, the call will return
at most HistoryQosPolicy::depth samples per instance.

• The maximum number of samples returned is limited by ResourceLimitsQosPolicy::max_samples, and
by ReaderResourceLimitsQos::max_samples_per_read.

• For multiple instances, the number of samples returned is additionally limited by the product (Re-
sourceLimitsQosPolicy::max_samples_per_instance * ResourceLimitsQosPolicy::max_instances).

• If ReaderResourceLimitsQos::sample_infos_allocation has a maximum limit, the number of samples
returned may also be limited if insufficient SampleInfo resources are available.

If the operation succeeds and the number of samples returned has been limited (by means of a maximum
limit, as listed above, or insufficient SampleInfo resources), the call will complete successfully and provide
those samples the reader is able to return. The user may need to make additional calls, or return outstanding
loaned buffers in the case of insufficient resources, in order to access remaining samples.

In addition to the collection of samples, the read operation also uses a collection of SampleInfo structures
(sample_infos).

The initial (input) properties of the data_values and sample_infos collections will determine the pre-
cise behavior of this operation. For the purposes of this description the collections are modeled as having
three properties:

• the current length (len, see LoanableCollection::length())

6.30. C++ API Reference 619

Fast DDS Documentation, Release 2.8.2

• the maximum length (max_len, see LoanableCollection::maximum())

• whether the collection container owns the memory of the elements within (owns, see LoanableCollec-
tion::has_ownership())

The initial (input) values of the len, max_len, and owns properties for the data_values and
sample_infos collections govern the behavior of the read operation as specified by the following rules:

i. The values of len, max_len, and owns for the two collections must be identical. Otherwise read will
fail with RETCODE_PRECONDITION_NOT_MET.

ii. On successful output, the values of len, max_len, and owns will be the same for both collections.

iii. If the input max_len == 0 , then the data_values and sample_infos collections will be filled
with elements that are ‘loaned’ by the DataReader. On output, owns will be false, len will be set
to the number of values returned, and max_len will be set to a value verifying max_len >= len .
The use of this variant allows for zero-copy access to the data and the application will need to return
the loan to the DataReader using the return_loan operation.

iv. If the input max_len > 0 and the input owns == false , then the read operation will fail with
RETCODE_PRECONDITION_NOT_MET. This avoids the potential hard-to-detect memory leaks
caused by an application forgetting to return the loan.

v. If input max_len > 0 and the input owns == true , then the read operation will copy the Data
values and SampleInfo values into the elements already inside the collections. On output, owns will be
true, len will be set to the number of values copied, and max_len will remain unchanged. The use of
this variant forces a copy but the application can control where the copy is placed and the application
will not need to return the loan. The number of samples copied depends on the values of max_len
and max_samples:

• If max_samples == LENGTH_UNLIMITED , then at most max_len values will be copied. The
use of this variant lets the application limit the number of samples returned to what the sequence
can accommodate.

• If max_samples <= max_len , then at most max_samples values will be copied. The use
of this variant lets the application limit the number of samples returned to fewer that what the
sequence can accommodate.

• If max_samples > max_len , then the read operation will fail with RET-
CODE_PRECONDITION_NOT_MET. This avoids the potential confusion where the application
expects to be able to access up to max_samples, but that number can never be returned, even if
they are available in the DataReader, because the output sequence cannot accommodate them.

As described above, upon return the data_values and sample_infos collections may contain elements
‘loaned’ from the DataReader. If this is the case, the application will need to use the return_loan operation
to return the loan once it is no longer using the Data in the collection. Upon return from return_loan, the
collection will have max_len == 0 and owns == false .

The application can determine whether it is necessary to return the loan or not based on the state of the
collections when the read operation was called, or by accessing the owns property. However, in many
cases it may be simpler to always call return_loan, as this operation is harmless (i.e., leaves all elements
unchanged) if the collection does not have a loan.

On output, the collection of Data values and the collection of SampleInfo structures are of the same
length and are in a one-to-one correspondence. Each SampleInfo provides information, such as the
source_timestamp, the sample_state, view_state, and instance_state, etc., about the corre-
sponding sample.

620 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Some elements in the returned collection may not have valid data. If the
instance_state in the SampleInfo is NOT_ALIVE_DISPOSED_INSTANCE_STATE or
NOT_ALIVE_NO_WRITERS_INSTANCE_STATE, then the last sample for that instance in the col-
lection, that is, the one whose SampleInfo has sample_rank == 0 does not contain valid data.
Samples that contain no data do not count towards the limits imposed by the ResourceLimitsQosPolicy.

The act of reading a sample changes its sample_state to READ_SAMPLE_STATE. If the sample be-
longs to the most recent generation of the instance, it will also set the view_state of the instance to be
NOT_NEW_VIEW_STATE. It will not affect the instance_state of the instance.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Important: If the samples “returned” by this method are loaned from the middleware (see take for more
information on memory loaning), it is important that their contents not be changed. Because the memory
in which the data is stored belongs to the middleware, any modifications made to the data will be seen the
next time the same samples are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described above.

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

Returns Any of the standard return codes.

ReturnCode_t read_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos,
int32_t max_samples, ReadCondition *a_condition)

This operation accesses via ‘read’ the samples that match the criteria specified in the ReadCondition. This
operation is especially useful in combination with QueryCondition to filter data samples based on the con-
tent.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and
return RETCODE_PRECONDITION_NOT_MET.

In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized QueryCondition, the operation
is equivalent to calling read and passing as sample_states, view_states and instance_states the
value of the corresponding attributes in a_condition. Using this operation the application can avoid
repeating the same parameters specified when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation. If the DataReader has no samples
that meet the constraints, the return value will be RETCODE_NO_DATA.

Parameters

6.30. C++ API Reference 621

Fast DDS Documentation, Release 2.8.2

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned.

• a_condition – [in] A ReadCondition that returned data_values must pass

Returns Any of the standard return codes.

ReturnCode_t read_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t
max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &a_handle
= HANDLE_NIL, SampleStateMask sample_states =
ANY_SAMPLE_STATE, ViewStateMask view_states =
ANY_VIEW_STATE, InstanceStateMask instance_states =
ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader. The behavior is identical to read,
except that all samples returned belong to the single specified instance whose handle is a_handle.

Upon successful completion, the data collection will contain samples all belonging to the same instance.
The corresponding SampleInfo verifies SampleInfo::instance_handle == a_handle.

This operation is semantically equivalent to the read operation, except in building the collection. The
DataReader will check that the sample belongs to the specified instance and otherwise it will not place the
sample in the returned collection.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’
elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

• a_handle – [in] The specified instance to return samples for. The method will fail with
RETCODE_BAD_PARAMETER if the handle does not correspond to an existing data-
object known to the DataReader.

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

Returns Any of the standard return codes.

622 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t read_next_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos,
int32_t max_samples = LENGTH_UNLIMITED, const
InstanceHandle_t &previous_handle = HANDLE_NIL,
SampleStateMask sample_states = ANY_SAMPLE_STATE,
ViewStateMask view_states = ANY_VIEW_STATE,
InstanceStateMask instance_states = ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader where all the samples belong to
a single instance. The behavior is similar to read_instance, except that the actual instance is not directly
specified. Rather, the samples will all belong to the ‘next’ instance with instance_handle ‘greater’ than
the specified ‘previous_handle’ that has available samples.

This operation implies the existence of a total order ‘greater-than’ relationship between the instance handles.
The specifics of this relationship are not all important and are implementation specific. The important thing
is that, according to the middleware, all instances are ordered relative to each other. This ordering is between
the instance handles, and should not depend on the state of the instance (e.g. whether it has data or not)
and must be defined even for instance handles that do not correspond to instances currently managed by the
DataReader. For the purposes of the ordering, it should be ‘as if’ each instance handle was represented as
an integer.

The behavior of this operation is ‘as if’ the DataReader invoked read_instance, passing the smallest
instance_handle among all the ones that: (a) are greater than previous_handle, and (b) have available
samples (i.e. samples that meet the constraints imposed by the specified states).

The special value HANDLE_NIL is guaranteed to be ‘less than’ any valid instance_handle. So the
use of the parameter value previous_handle == HANDLE_NIL will return the samples for the instance
which has the smallest instance_handle among all the instances that contain available samples.

This operation is intended to be used in an application-driven iteration, where the application starts
by passing previous_handle == HANDLE_NIL, examines the samples returned, and then uses the
instance_handle returned in the SampleInfo as the value of the previous_handle argument to
the next call to read_next_instance. The iteration continues until read_next_instance fails with RET-
CODE_NO_DATA.

Note that it is possible to call the read_next_instance operation with a previous_handle that does not
correspond to an instance currently managed by the DataReader. This is because as stated earlier the
‘greater-than’ relationship is defined even for handles not managed by the DataReader. One practical
situation where this may occur is when an application is iterating through all the instances, takes all the
samples of a NOT_ALIVE_NO_WRITERS_INSTANCE_STATE instance, returns the loan (at which point
the instance information may be removed, and thus the handle becomes invalid), and tries to read the next
instance.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’
elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,

6.30. C++ API Reference 623

Fast DDS Documentation, Release 2.8.2

up to the limits described in the documentation for read().

• previous_handle – [in] The ‘next smallest’ instance with a value greater than this value
that has available samples will be returned.

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

Returns Any of the standard return codes.

ReturnCode_t read_next_instance_w_condition(LoanableCollection &data_values, SampleInfoSeq
&sample_infos, int32_t max_samples, const
InstanceHandle_t &previous_handle, ReadCondition
*a_condition)

This operation accesses a collection of Data values from the DataReader. The behavior is identical to
read_next_instance except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’
instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have
samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation read_next_instance it is possible to call read_next_instance_w_condition with a
previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the read_next_instance_w_condition operation follows the same rules than the read oper-
ation regarding the pre-conditions and post-conditions for the data_values and sample_infos collec-
tions. Similar to read, the read_next_instance_w_condition operation may ‘loan’ elements to the output
collections which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

• previous_handle – [in] The ‘next smallest’ instance with a value greater than this value
that has available samples will be returned.

• a_condition – [in] A ReadCondition that returned data_values must pass

Returns Any of the standard return codes.

ReturnCode_t read_next_sample(void *data, SampleInfo *info)
This operation copies the next, non-previously accessed Data value from the DataReader; the operation
also copies the corresponding SampleInfo. The implied order among the samples stored in the DataReader
is the same as for the read operation.

The read_next_sample operation is semantically equivalent to the read operation where the input
Data sequence has max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the
view_states = ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

624 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding the need for the
application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing
is copied

Parameters

• data – [out] Data pointer to store the sample

• info – [out] SampleInfo pointer to store the sample information

Returns Any of the standard return codes.

ReturnCode_t take(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t max_samples
= LENGTH_UNLIMITED, SampleStateMask sample_states = ANY_SAMPLE_STATE,
ViewStateMask view_states = ANY_VIEW_STATE, InstanceStateMask instance_states
= ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of data-samples from the DataReader and a corresponding collection
of SampleInfo structures, and ‘removes’ them from the DataReader. The operation will return either a ‘list’
of samples or else a single sample. This is controlled by the PresentationQosPolicy using the same logic
as for the read operation.

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or ‘taken’ again. If the
sample belongs to the most recent generation of the instance, it will also set the view_state of the instance
to NOT_NEW. It will not affect the instance_state of the instance.

The behavior of the take operation follows the same rules than the read operation regarding the pre-
conditions and post-conditions for the data_values and sample_infos collections. Similar to read,
the take operation may ‘loan’ elements to the output collections which must then be returned by means of
return_loan. The only difference with read is that, as stated, the samples returned by take will no longer
be accessible to successive calls to read or take.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

Returns Any of the standard return codes.

6.30. C++ API Reference 625

Fast DDS Documentation, Release 2.8.2

ReturnCode_t take_w_condition(LoanableCollection &data_values, SampleInfoSeq &sample_infos,
int32_t max_samples, ReadCondition *a_condition)

This operation is analogous to read_w_condition except it accesses samples via the ‘take’ operation.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and
return RETCODE_PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the take operation.

This operation is especially useful in combination with QueryCondition to filter data samples based on the
content.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are.

• a_condition – [in] A ReadCondition that returned data_values must pass

Returns Any of the standard return codes.

ReturnCode_t take_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos, int32_t
max_samples = LENGTH_UNLIMITED, const InstanceHandle_t &a_handle
= HANDLE_NIL, SampleStateMask sample_states =
ANY_SAMPLE_STATE, ViewStateMask view_states =
ANY_VIEW_STATE, InstanceStateMask instance_states =
ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the
DataReader.

This operation has the same behavior as read_instance, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’
elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

626 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• a_handle – [in] The specified instance to return samples for. The method will fail with
RETCODE_BAD_PARAMETER if the handle does not correspond to an existing data-
object known to the DataReader.

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

Returns Any of the standard return codes.

ReturnCode_t take_next_instance(LoanableCollection &data_values, SampleInfoSeq &sample_infos,
int32_t max_samples = LENGTH_UNLIMITED, const
InstanceHandle_t &previous_handle = HANDLE_NIL,
SampleStateMask sample_states = ANY_SAMPLE_STATE,
ViewStateMask view_states = ANY_VIEW_STATE,
InstanceStateMask instance_states = ANY_INSTANCE_STATE)

Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the
DataReader.

This operation has the same behavior as read_next_instance, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation read_next_instance, it is possible to call this operation with a previous_handle
that does not correspond to an instance currently managed by the DataReader.

The behavior of this operation follows the same rules as the read operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to read, this operation may ‘loan’
elements to the output collections, which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

• previous_handle – [in] The ‘next smallest’ instance with a value greater than this value
that has available samples will be returned.

• sample_states – [in] Only data samples with sample_state matching one of these will
be returned.

• view_states – [in] Only data samples with view_state matching one of these will be
returned.

• instance_states – [in] Only data samples with instance_statematching one of these
will be returned.

6.30. C++ API Reference 627

Fast DDS Documentation, Release 2.8.2

Returns Any of the standard return codes.

ReturnCode_t take_next_instance_w_condition(LoanableCollection &data_values, SampleInfoSeq
&sample_infos, int32_t max_samples, const
InstanceHandle_t &previous_handle, ReadCondition
*a_condition)

This operation accesses a collection of Data values from the DataReader. The behavior is identical to
read_next_instance except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’
instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b) have
samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation read_next_instance it is possible to call read_next_instance_w_condition with a
previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the read_next_instance_w_condition operation follows the same rules than the read oper-
ation regarding the pre-conditions and post-conditions for the data_values and sample_infos collec-
tions. Similar to read, the read_next_instance_w_condition operation may ‘loan’ elements to the output
collections which must then be returned by means of return_loan.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA

Parameters

• data_values – [inout] A LoanableCollection object where the received data samples will
be returned.

• sample_infos – [inout] A SampleInfoSeq object where the received sample info will be
returned.

• max_samples – [in] The maximum number of samples to be returned. If the special value
LENGTH_UNLIMITED is provided, as many samples will be returned as are available,
up to the limits described in the documentation for read().

• previous_handle – [in] The ‘next smallest’ instance with a value greater than this value
that has available samples will be returned.

• a_condition – [in] A ReadCondition that returned data_values must pass

Returns Any of the standard return codes.

ReturnCode_t take_next_sample(void *data, SampleInfo *info)
This operation copies the next, non-previously accessed Data value from the DataReader and ‘removes’ it
from the DataReader so it is no longer accessible. The operation also copies the corresponding SampleInfo.

This operation is analogous to read_next_sample except for the fact that the sample is ‘removed’ from the
DataReader.

This operation is semantically equivalent to the take operation where the input sequence has max_length
= 1 , the sample_states = NOT_READ_SAMPLE_STATE , the view_states = ANY_VIEW_STATE ,
and the instance_states = ANY_INSTANCE_STATE .

This operation provides a simplified API to ’take’ samples avoiding the need for the application to manage
sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing
is copied.

Parameters

• data – [out] Data pointer to store the sample

• info – [out] SampleInfo pointer to store the sample information

628 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns Any of the standard return codes.

Public Functions

virtual ~DataReader()
Destructor.

virtual ReturnCode_t enable() override
This operation enables the DataReader.

Returns RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET
if the Subscriber creating this DataReader is not enabled.

bool wait_for_unread_message(const fastrtps::Duration_t &timeout)
Method to block the current thread until an unread message is available.

Parameters timeout – [in] Max blocking time for this operation.

Returns true if there is new unread message, false if timeout

ReturnCode_t wait_for_historical_data(const fastrtps::Duration_t &max_wait) const
Method to block the current thread until an unread message is available.

NOT YET IMPLEMENTED

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters max_wait – [in] Max blocking time for this operation.

Returns RETCODE_OK if there is new unread message, Return-
Code_t::RETCODE_TIMEOUT if timeout

ReturnCode_t return_loan(LoanableCollection &data_values, SampleInfoSeq &sample_infos)
This operation indicates to the DataReader that the application is done accessing the collection of
data_values and sample_infos obtained by some earlier invocation of read or take on the DataReader.

The data_values and sample_infos must belong to a single related ‘pair’; that is, they should corre-
spond to a pair returned from a single call to read or take. The data_values and sample_infos must
also have been obtained from the same DataReader to which they are returned. If either of these conditions
is not met, the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

This operation allows implementations of the read and take operations to “loan” buffers from the
DataReader to the application and in this manner provide “zero-copy” access to the data. During the
loan, the DataReader will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or take calls. However,
as these buffers correspond to internal resources inside the DataReader, the application should not retain
them indefinitely.

The use of the return_loan operation is only necessary if the read or take calls “loaned” buffers to the
application. This only occurs if the data_values and sample_infos collections had max_len == 0
at the time read or take was called. The application may also examine the owns property of the collection to
determine if there is an outstanding loan. However, calling return_loan on a collection that does not have
a loan is safe and has no side effects.

If the collections had a loan, upon return from return_loan the collections will have max_len == 0 .

Parameters

6.30. C++ API Reference 629

Fast DDS Documentation, Release 2.8.2

• data_values – [inout] A LoanableCollection object where the received data samples
were obtained from an earlier invocation of read or take on this DataReader.

• sample_infos – [inout] A SampleInfoSeq object where the received sample infos were
obtained from an earlier invocation of read or take on this DataReader.

Returns Any of the standard return codes.

ReturnCode_t get_key_value(void *key_holder, const InstanceHandle_t &handle)
NOT YET IMPLEMENTED

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The
operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to
an existing data-object known to the DataReader. If the implementation is not able to check invalid handles
then the result in this situation is unspecified.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• key_holder – [inout]

• handle – [in]

Returns Any of the standard return codes.

InstanceHandle_t lookup_instance(const void *instance) const
Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the
fields that define the key.

Parameters instance – [in] Data pointer to the sample

Returns handle of the given instance.

Returns HANDLE_NIL if instance is nullptr.

Returns HANDLE_NIL if there is no instance on the DataReader’s history with the same key
as instance.

ReturnCode_t get_first_untaken_info(SampleInfo *info)
Returns information about the first untaken sample.

Parameters info – [out] Pointer to a SampleInfo_t structure to store first untaken sample infor-
mation.

Returns RETCODE_OK if sample info was returned. RETCODE_NO_DATA if there is no
sample to take.

uint64_t get_unread_count() const
Get the number of samples pending to be read. The number includes samples that may not yet be available
to be read or taken by the user, due to samples being received out of order.

Returns the number of samples on the reader history that have never been read.

uint64_t get_unread_count(bool mark_as_read) const
Get the number of samples pending to be read.

Parameters mark_as_read – Whether the unread samples should be marked as read or not.

630 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns the number of samples on the reader history that have never been read.

const fastrtps::rtps::GUID_t &guid()
Get associated GUID.

Returns Associated GUID

const fastrtps::rtps::GUID_t &guid() const
Get associated GUID.

Returns Associated GUID

InstanceHandle_t get_instance_handle() const
Getter for the associated InstanceHandle.

Returns Copy of the InstanceHandle

TypeSupport type()
Getter for the data type.

Returns TypeSupport associated to the DataReader.

const TopicDescription *get_topicdescription() const
Get TopicDescription.

Returns TopicDescription pointer.

ReturnCode_t get_requested_deadline_missed_status(RequestedDeadlineMissedStatus &status)
Get the requested deadline missed status.

Returns The deadline missed status.

ReturnCode_t get_requested_incompatible_qos_status(RequestedIncompatibleQosStatus &status)
Get the requested incompatible qos status.

Parameters status – [out] Requested incompatible qos status.

Returns RETCODE_OK

ReturnCode_t set_qos(const DataReaderQos &qos)
Setter for the DataReaderQos.

Parameters qos – [in] new value for the DataReaderQos.

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

const DataReaderQos &get_qos() const
Getter for the DataReaderQos.

Returns Pointer to the DataReaderQos.

ReturnCode_t get_qos(DataReaderQos &qos) const
Getter for the DataReaderQos.

Parameters qos – [in] DataReaderQos where the qos is returned.

Returns RETCODE_OK

ReturnCode_t set_listener(DataReaderListener *listener)
Modifies the DataReaderListener, sets the mask to StatusMask::all().

Parameters listener – [in] new value for the DataReaderListener.

Returns RETCODE_OK

6.30. C++ API Reference 631

Fast DDS Documentation, Release 2.8.2

ReturnCode_t set_listener(DataReaderListener *listener, const StatusMask &mask)
Modifies the DataReaderListener.

Parameters

• listener – [in] new value for the DataReaderListener.

• mask – [in] StatusMask that holds statuses the listener responds to (default: all).

Returns RETCODE_OK

const DataReaderListener *get_listener() const
Getter for the DataReaderListener.

Returns Pointer to the DataReaderListener

ReturnCode_t get_liveliness_changed_status(LivelinessChangedStatus &status) const
Get the liveliness changed status.

Parameters status – [out] LivelinessChangedStatus object where the status is returned.

Returns RETCODE_OK

ReturnCode_t get_sample_lost_status(SampleLostStatus &status) const
Get the SAMPLE_LOST communication status.

Parameters status – [out] SampleLostStatus object where the status is returned.

Returns RETCODE_OK

ReturnCode_t get_sample_rejected_status(SampleRejectedStatus &status) const
Get the SAMPLE_REJECTED communication status.

Parameters status – [out] SampleRejectedStatus object where the status is returned.

Returns RETCODE_OK

ReturnCode_t get_subscription_matched_status(SubscriptionMatchedStatus &status) const
Returns the subscription matched status.

Parameters status – [out] subscription matched status struct

Returns RETCODE_OK

ReturnCode_t get_matched_publication_data(builtin::PublicationBuiltinTopicData &publication_data,
const fastrtps::rtps::InstanceHandle_t
&publication_handle) const

Retrieves in a publication associated with the DataWriter.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• publication_data – [out] publication data struct

• publication_handle – InstanceHandle_t of the publication

Returns RETCODE_OK

ReturnCode_t get_matched_publications(std::vector<InstanceHandle_t> &publication_handles) const
Fills the given vector with the InstanceHandle_t of matched DataReaders.

632 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters publication_handles – [out] Vector where the InstanceHandle_t are returned

Returns RETCODE_OK

ReadCondition *create_readcondition(SampleStateMask sample_states, ViewStateMask view_states,
InstanceStateMask instance_states)

This operation creates a ReadCondition. The returned ReadCondition will be attached and belong to the
DataReader.

Parameters

• sample_states – [in] Only data samples with sample_state matching one of these will
trigger the created condition.

• view_states – [in] Only data samples with view_state matching one of these will trig-
ger the created condition.

• instance_states – [in] Only data samples with instance_statematching one of these
will trigger the created condition.

Returns pointer to the created ReadCondition, nullptr in case of error.

QueryCondition *create_querycondition(SampleStateMask sample_states, ViewStateMask view_states,
InstanceStateMask instance_states, const std::string
&query_expression, const std::vector<std::string>
&query_parameters)

This operation creates a QueryCondition. The returned QueryCondition will be attached and belong to the
DataReader.

Parameters

• sample_states – [in] Only data samples with sample_state matching one of these will
trigger the created condition.

• view_states – [in] Only data samples with view_state matching one of these will trig-
ger the created condition.

• instance_states – [in] Only data samples with instance_statematching one of these
will trigger the created condition.

• query_expression – [in] Only data samples matching this query will trigger the created
condition.

• query_parameters – [in] Value of the parameters on the query expression.

Returns pointer to the created QueryCondition, nullptr in case of error.

ReturnCode_t delete_readcondition(ReadCondition *a_condition)
This operation deletes a ReadCondition attached to the DataReader.

Parameters a_condition – pointer to a ReadCondition belonging to the DataReader

Returns RETCODE_OK

const Subscriber *get_subscriber() const
Getter for the Subscriber.

Returns Subscriber pointer

6.30. C++ API Reference 633

Fast DDS Documentation, Release 2.8.2

ReturnCode_t delete_contained_entities()
This operation deletes all the entities that were created by means of the “create” operations on the
DataReader. That is, it deletes all contained ReadCondition and QueryCondition objects.

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state
where it cannot be deleted.

Returns Any of the standard return codes.

bool is_sample_valid(const void *data, const SampleInfo *info) const
Checks whether a loaned sample is still valid or is corrupted. Calling this method on a sample which has
not been loaned, or one for which the loan has been returned yields undefined behavior.

Parameters

• data – Pointer to the sample data to check

• info – Pointer to the SampleInfo related to data

Returns true if the sample is valid

ReturnCode_t get_listening_locators(rtps::LocatorList &locators) const
Get the list of locators on which this DataReader is listening.

Parameters locators – [out] LocatorList where the list of locators will be stored.

Returns NOT_ENABLED if the reader has not been enabled.

Returns OK if a list of locators is returned.

DataReaderListener

class eprosima::fastdds::dds::DataReaderListener
Class DataReaderListener, it should be used by the end user to implement specific callbacks to certain actions.

Subclassed by eprosima::fastdds::dds::SubscriberListener

Public Functions

inline DataReaderListener()
Constructor.

inline virtual ~DataReaderListener()
Destructor.

inline virtual void on_data_available(DataReader *reader)
Virtual function to be implemented by the user containing the actions to be performed when new Data
Messages are received.

Parameters reader – DataReader

inline virtual void on_subscription_matched(DataReader *reader, const
fastdds::dds::SubscriptionMatchedStatus &info)

Virtual method to be called when the subscriber is matched with a new Writer (or unmatched); i.e., when
a writer publishing in the same topic is discovered.

Parameters

• reader – DataReader

• info – The subscription matched status

634 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline virtual void on_requested_deadline_missed(DataReader *reader, const
fastrtps::RequestedDeadlineMissedStatus &status)

Virtual method to be called when a topic misses the deadline period

Parameters

• reader – DataReader

• status – The requested deadline missed status

inline virtual void on_liveliness_changed(DataReader *reader, const fastrtps::LivelinessChangedStatus
&status)

Method called when the liveliness status associated to a subscriber changes.

Parameters

• reader – The DataReader

• status – The liveliness changed status

inline virtual void on_sample_rejected(DataReader *reader, const fastrtps::SampleRejectedStatus &status)
Method called when a sample was rejected.

Parameters

• reader – The DataReader

• status – The rejected status

inline virtual void on_requested_incompatible_qos(DataReader *reader, const
RequestedIncompatibleQosStatus &status)

Method called an incompatible QoS was requested.

Parameters

• reader – The DataReader

• status – The requested incompatible QoS status

inline virtual void on_sample_lost(DataReader *reader, const SampleLostStatus &status)
Method called when a sample was lost.

Parameters

• reader – The DataReader

• status – The sample lost status

DataReaderQos

class eprosima::fastdds::dds::DataReaderQos
Class DataReaderQos, containing all the possible Qos that can be set for a determined DataReader. Although
these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour asso-
ciated with them has been implemented in the library. Please consult each of them to check for implementation
details and default values.

Subclassed by eprosima::fastdds::statistics::dds::DataReaderQos

6.30. C++ API Reference 635

Fast DDS Documentation, Release 2.8.2

Public Functions

inline DataReaderQos()
Constructor.

inline DurabilityQosPolicy &durability()
Getter for DurabilityQosPolicy

Returns DurabilityQosPolicy reference

inline const DurabilityQosPolicy &durability() const
Getter for DurabilityQosPolicy

Returns DurabilityQosPolicy const reference

inline void durability(const DurabilityQosPolicy &new_value)
Setter for DurabilityQosPolicy

Parameters new_value – new value for the DurabilityQosPolicy

inline DeadlineQosPolicy &deadline()
Getter for DeadlineQosPolicy

Returns DeadlineQosPolicy reference

inline const DeadlineQosPolicy &deadline() const
Getter for DeadlineQosPolicy

Returns DeadlineQosPolicy const reference

inline void deadline(const DeadlineQosPolicy &new_value)
Setter for DeadlineQosPolicy

Parameters new_value – new value for the DeadlineQosPolicy

inline LatencyBudgetQosPolicy &latency_budget()
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

inline const LatencyBudgetQosPolicy &latency_budget() const
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy const reference

inline void latency_budget(const LatencyBudgetQosPolicy &new_value)
Setter for LatencyBudgetQosPolicy

Parameters new_value – new value for the LatencyBudgetQosPolicy

inline LivelinessQosPolicy &liveliness()
Getter for LivelinessQosPolicy

Returns LivelinessQosPolicy reference

inline const LivelinessQosPolicy &liveliness() const
Getter for LivelinessQosPolicy

Returns LivelinessQosPolicy const reference

inline void liveliness(const LivelinessQosPolicy &new_value)
Setter for LivelinessQosPolicy

Parameters new_value – new value for the LivelinessQosPolicy

636 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline ReliabilityQosPolicy &reliability()
Getter for ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

inline const ReliabilityQosPolicy &reliability() const
Getter for ReliabilityQosPolicy

Returns ReliabilityQosPolicy const reference

inline void reliability(const ReliabilityQosPolicy &new_value)
Setter for ReliabilityQosPolicy

Parameters new_value – new value for the ReliabilityQosPolicy

inline DestinationOrderQosPolicy &destination_order()
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

inline const DestinationOrderQosPolicy &destination_order() const
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy const reference

inline void destination_order(const DestinationOrderQosPolicy &new_value)
Setter for DestinationOrderQosPolicy

Parameters new_value – new value for the DestinationOrderQosPolicy

inline HistoryQosPolicy &history()
Getter for HistoryQosPolicy

Returns HistoryQosPolicy reference

inline const HistoryQosPolicy &history() const
Getter for HistoryQosPolicy

Returns HistoryQosPolicy const reference

inline void history(const HistoryQosPolicy &new_value)
Setter for HistoryQosPolicy

Parameters new_value – new value for the HistoryQosPolicy

inline ResourceLimitsQosPolicy &resource_limits()
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

inline const ResourceLimitsQosPolicy &resource_limits() const
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy const reference

inline void resource_limits(const ResourceLimitsQosPolicy &new_value)
Setter for ResourceLimitsQosPolicy

Parameters new_value – new value for the ResourceLimitsQosPolicy

inline UserDataQosPolicy &user_data()
Getter for UserDataQosPolicy

Returns UserDataQosPolicy reference

inline const UserDataQosPolicy &user_data() const
Getter for UserDataQosPolicy

6.30. C++ API Reference 637

Fast DDS Documentation, Release 2.8.2

Returns UserDataQosPolicy const reference

inline void user_data(const UserDataQosPolicy &new_value)
Setter for UserDataQosPolicy

Parameters new_value – new value for the UserDataQosPolicy

inline OwnershipQosPolicy &ownership()
Getter for OwnershipQosPolicy

Returns OwnershipQosPolicy reference

inline const OwnershipQosPolicy &ownership() const
Getter for OwnershipQosPolicy

Returns OwnershipQosPolicy const reference

inline void ownership(const OwnershipQosPolicy &new_value)
Setter for OwnershipQosPolicy

Parameters new_value – new value for the OwnershipQosPolicy

inline TimeBasedFilterQosPolicy &time_based_filter()
Getter for TimeBasedFilterQosPolicy

Returns TimeBasedFilterQosPolicy reference

inline const TimeBasedFilterQosPolicy &time_based_filter() const
Getter for TimeBasedFilterQosPolicy

Returns TimeBasedFilterQosPolicy const reference

inline void time_based_filter(const TimeBasedFilterQosPolicy &new_value)
Setter for TimeBasedFilterQosPolicy

Parameters new_value – new value for the TimeBasedFilterQosPolicy

inline ReaderDataLifecycleQosPolicy &reader_data_lifecycle()
Getter for ReaderDataLifecycleQosPolicy

Returns ReaderDataLifecycleQosPolicy reference

inline const ReaderDataLifecycleQosPolicy &reader_data_lifecycle() const
Getter for ReaderDataLifecycleQosPolicy

Returns ReaderDataLifecycleQosPolicy const reference

inline void reader_data_lifecycle(const ReaderDataLifecycleQosPolicy &new_value)
Setter for ReaderDataLifecycleQosPolicy

Parameters new_value – new value for the ReaderDataLifecycleQosPolicy

inline LifespanQosPolicy &lifespan()
Getter for LifespanQosPolicy

Returns LifespanQosPolicy reference

inline const LifespanQosPolicy &lifespan() const
Getter for LifespanQosPolicy

Returns LifespanQosPolicy const reference

inline void lifespan(const LifespanQosPolicy &new_value)
Setter for LifespanQosPolicy

Parameters new_value – new value for the LifespanQosPolicy

638 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline DurabilityServiceQosPolicy &durability_service()
Getter for DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy reference

inline const DurabilityServiceQosPolicy &durability_service() const
Getter for DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy const reference

inline void durability_service(const DurabilityServiceQosPolicy &new_value)
Setter for DurabilityServiceQosPolicy

Parameters new_value – new value for the DurabilityServiceQosPolicy

inline RTPSReliableReaderQos &reliable_reader_qos()
Getter for RTPSReliableReaderQos

Returns RTPSReliableReaderQos reference

inline const RTPSReliableReaderQos &reliable_reader_qos() const
Getter for RTPSReliableReaderQos

Returns RTPSReliableReaderQos const reference

inline void reliable_reader_qos(const RTPSReliableReaderQos &new_value)
Setter for RTPSReliableReaderQos

Parameters new_value – new value for the RTPSReliableReaderQos

inline TypeConsistencyQos &type_consistency()
Getter for TypeConsistencyQos

Returns TypeConsistencyQos reference

inline const TypeConsistencyQos &type_consistency() const
Getter for TypeConsistencyQos

Returns TypeConsistencyQos const reference

inline void type_consistency(const TypeConsistencyQos &new_value)
Setter for TypeConsistencyQos

Parameters new_value – new value for the TypeConsistencyQos

inline bool expects_inline_qos() const
Getter for expectsInlineQos

Returns expectsInlineQos

inline void expects_inline_qos(bool new_value)
Setter for expectsInlineQos

Parameters new_value – new value for the expectsInlineQos

inline PropertyPolicyQos &properties()
Getter for PropertyPolicyQos

Returns PropertyPolicyQos reference

inline const PropertyPolicyQos &properties() const
Getter for PropertyPolicyQos

Returns PropertyPolicyQos const reference

inline void properties(const PropertyPolicyQos &new_value)
Setter for PropertyPolicyQos

6.30. C++ API Reference 639

Fast DDS Documentation, Release 2.8.2

Parameters new_value – new value for the PropertyPolicyQos

inline RTPSEndpointQos &endpoint()
Getter for RTPSEndpointQos

Returns RTPSEndpointQos reference

inline const RTPSEndpointQos &endpoint() const
Getter for RTPSEndpointQos

Returns RTPSEndpointQos const reference

inline void endpoint(const RTPSEndpointQos &new_value)
Setter for RTPSEndpointQos

Parameters new_value – new value for the RTPSEndpointQos

inline ReaderResourceLimitsQos &reader_resource_limits()
Getter for ReaderResourceLimitsQos

Returns ReaderResourceLimitsQos reference

inline const ReaderResourceLimitsQos &reader_resource_limits() const
Getter for ReaderResourceLimitsQos

Returns ReaderResourceLimitsQos const reference

inline void reader_resource_limits(const ReaderResourceLimitsQos &new_value)
Setter for ReaderResourceLimitsQos

Parameters new_value – new value for the ReaderResourceLimitsQos

inline DataSharingQosPolicy &data_sharing()
Getter for DataSharingQosPolicy

Returns DataSharingQosPolicy reference

inline const DataSharingQosPolicy &data_sharing() const
Getter for DataSharingQosPolicy

Returns DataSharingQosPolicy reference

inline void data_sharing(const DataSharingQosPolicy &data_sharing)
Setter for DataSharingQosPolicy

Parameters data_sharing – new value for the DataSharingQosPolicy

const DataReaderQos eprosima::fastdds::dds::DATAREADER_QOS_DEFAULT

InstanceStateKind

enum eprosima::fastdds::dds::InstanceStateKind
Indicates if the samples are from an alive DataWriter or not.

For each instance, the middleware internally maintains an instance state. The instance state can be:

• ALIVE_INSTANCE_STATE indicates that (a) samples have been received for the instance, (b) there are
alive DataWriter entities writing the instance, and (c) the instance has not been explicitly disposed (or else
more samples have been received after it was disposed).

640 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• NOT_ALIVE_DISPOSED_INSTANCE_STATE indicates the instance was explicitly disposed by a
DataWriter by means of the dispose operation.

• NOT_ALIVE_NO_WRITERS_INSTANCE_STATE indicates the instance has been declared as not-alive by
the DataReader because it detected that there are no alive DataWriter entities writing that instance.

The precise behavior events that cause the instance state to change depends on the setting of the OWNERSHIP
QoS:

• If OWNERSHIP is set to EXCLUSIVE_OWNERSHIP_QOS, then the instance state becomes
NOT_ALIVE_DISPOSED_INSTANCE_STATE only if the DataWriter that “owns” the instance explicitly
disposes it. The instance state becomes ALIVE_INSTANCE_STATE again only if the DataWriter that owns
the instance writes it.

• If OWNERSHIP is set to SHARED_OWNERSHIP_QOS, then the instance state becomes
NOT_ALIVE_DISPOSED_INSTANCE_STATE if any DataWriter explicitly disposes the instance.
The instance state becomes ALIVE_INSTANCE_STATE as soon as any DataWriter writes the instance
again.

The instance state available in the SampleInfo is a snapshot of the instance state of the instance at the time the
collection was obtained (i.e. at the time read or take was called). The instance state is therefore the same for all
samples in the returned collection that refer to the same instance.

Values:

enumerator ALIVE_INSTANCE_STATE
Instance is currently in existence.

enumerator NOT_ALIVE_DISPOSED_INSTANCE_STATE
Not alive disposed instance. The instance has been disposed by a DataWriter.

enumerator NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
Not alive no writers for instance. None of the DataWriter objects that are currently alive (according to the
LIVELINESS QoS) are writing the instance.

ReadCondition

class eprosima::fastdds::dds::ReadCondition : public eprosima::fastdds::dds::Condition
A Condition specifically dedicated to read operations and attached to one DataReader.

ReadCondition objects allow an application to specify the data samples it is interested in (by specifying the
desired sample_states, view_states, and instance_states). The condition will only be triggered when suitable
information is available. They are to be used in conjunction with a WaitSet as normal conditions. More than one
ReadCondition may be attached to the same DataReader.

6.30. C++ API Reference 641

Fast DDS Documentation, Release 2.8.2

Public Functions

virtual bool get_trigger_value() const noexcept override
Retrieves the trigger_value of the Condition.

Returns true if trigger_value is set to ‘true’, ‘false’ otherwise

DataReader *get_datareader() const noexcept
Retrieves the DataReader associated with the ReadCondition.

Note that there is exactly one DataReader associated with each ReadCondition.

Returns pointer to the DataReader associated with this ReadCondition.

SampleStateMask get_sample_state_mask() const noexcept
Retrieves the set of sample_states taken into account to determine the trigger_value of this condition.

Returns the sample_states specified when the ReadCondition was created.

ViewStateMask get_view_state_mask() const noexcept
Retrieves the set of view_states taken into account to determine the trigger_value of this condition.

Returns the view_states specified when the ReadCondition was created.

InstanceStateMask get_instance_state_mask() const noexcept
Retrieves the set of instance_states taken into account to determine the trigger_value of this condition.

Returns the instance_states specified when the ReadCondition was created.

ReaderResourceLimitsQos

class eprosima::fastdds::dds::ReaderResourceLimitsQos
Qos Policy to configure the limit of the reader resources.

Public Functions

ReaderResourceLimitsQos() = default
Constructor.

virtual ~ReaderResourceLimitsQos() = default
Destructor.

Public Members

fastrtps::ResourceLimitedContainerConfig matched_publisher_allocation
Matched publishers allocation limits.

fastrtps::ResourceLimitedContainerConfig sample_infos_allocation = {32u}
SampleInfo allocation limits.

fastrtps::ResourceLimitedContainerConfig outstanding_reads_allocation = {2u}
Loaned collections allocation limits.

int32_t max_samples_per_read = 32
Maximum number of samples to return on a single call to read / take.

642 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

This attribute is a signed integer to be consistent with the max_samples argument of DataReader methods,
but should always have a strict positive value. Bear in mind that a big number here may cause the creation
of the DataReader to fail due to pre-allocation of internal resources.

Default value: 32.

RTPSReliableReaderQos

class eprosima::fastdds::dds::RTPSReliableReaderQos
Qos Policy to configure the DisablePositiveACKsQos and the reader attributes.

Public Functions

inline RTPSReliableReaderQos()
Constructor.

virtual ~RTPSReliableReaderQos() = default
Destructor.

Public Members

fastrtps::rtps::ReaderTimes times
Times associated with the Reliable Readers events.

DisablePositiveACKsQosPolicy disable_positive_ACKs
Control the sending of positive ACKs.

SampleInfo

struct eprosima::fastdds::dds::SampleInfo
SampleInfo is the information that accompanies each sample that is ‘read’ or ‘taken.

’

Public Members

SampleStateKind sample_state
indicates whether or not the corresponding data sample has already been read

ViewStateKind view_state
indicates whether the DataReader has already seen samples for the most-current generation of the related
instance.

InstanceStateKind instance_state
indicates whether the instance is currently in existence or, if it has been disposed, the reason why it was
disposed.

6.30. C++ API Reference 643

Fast DDS Documentation, Release 2.8.2

int32_t disposed_generation_count
number of times the instance had become alive after it was disposed

int32_t no_writers_generation_count
number of times the instance had become alive after it was disposed because no writers

int32_t sample_rank
number of samples related to the same instance that follow in the collection

int32_t generation_rank
the generation difference between the time the sample was received, and the time the most recent sample
in the collection was received.

int32_t absolute_generation_rank
the generation difference between the time the sample was received, and the time the most recent sample
was received. The most recent sample used for the calculation may or may not be in the returned collection

fastrtps::rtps::Time_t source_timestamp
time provided by the DataWriter when the sample was written

fastrtps::rtps::Time_t reception_timestamp
time provided by the DataReader when the sample was added to its history

InstanceHandle_t instance_handle
identifies locally the corresponding instance

InstanceHandle_t publication_handle
identifies locally the DataWriter that modified the instance

Is the same InstanceHandle_t that is returned by the operation get_matched_publications on the DataReader

bool valid_data
whether the DataSample contains data or is only used to communicate of a change in the instance

fastrtps::rtps::SampleIdentity sample_identity
Sample Identity (Extension for RPC)

fastrtps::rtps::SampleIdentity related_sample_identity
Related Sample Identity (Extension for RPC)

SampleStateKind

enum eprosima::fastdds::dds::SampleStateKind
Indicates whether or not a sample has ever been read.

For each sample received, the middleware internally maintains a sample state relative to each DataReader. This
sample state can have the following values:

• READ_SAMPLE_STATE indicates that the DataReader has already accessed that sample by means of a
read or take operation

644 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• NOT_READ_SAMPLE_STATE indicates that the DataReader has not accessed that sample before.

The sample state will, in general, be different for each sample in the collection returned by read or take.

Values:

enumerator READ_SAMPLE_STATE
Sample has been read.

enumerator NOT_READ_SAMPLE_STATE
Sample has not been read.

Subscriber

class eprosima::fastdds::dds::Subscriber : public eprosima::fastdds::dds::DomainEntity
Class Subscriber, contains the public API that allows the user to control the reception of messages. This class
should not be instantiated directly. DomainRTPSParticipant class should be used to correctly create this element.

Public Functions

inline virtual ~Subscriber()
Destructor.

virtual ReturnCode_t enable() override
This operation enables the Subscriber.

Returns RETCODE_OK is successfully enabled. RETCODE_PRECONDITION_NOT_MET
if the participant creating this Subscriber is not enabled.

const SubscriberQos &get_qos() const
Allows accessing the Subscriber Qos.

Returns SubscriberQos reference

ReturnCode_t get_qos(SubscriberQos &qos) const
Retrieves the Subscriber Qos.

Parameters qos – SubscriberQos where the qos is returned

Returns RETCODE_OK

ReturnCode_t set_qos(const SubscriberQos &qos)
Allows modifying the Subscriber Qos. The given Qos must be supported by the SubscriberQos.

Parameters qos – new value for SubscriberQos

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK if
the qos is changed correctly.

const SubscriberListener *get_listener() const
Retrieves the attached SubscriberListener.

Returns Pointer to the SubscriberListener

ReturnCode_t set_listener(SubscriberListener *listener)
Modifies the SubscriberListener, sets the mask to StatusMask::all()

Parameters listener – new value for SubscriberListener

6.30. C++ API Reference 645

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK

ReturnCode_t set_listener(SubscriberListener *listener, const StatusMask &mask)
Modifies the SubscriberListener.

Parameters

• listener – new value for the SubscriberListener

• mask – StatusMask that holds statuses the listener responds to.

Returns RETCODE_OK

DataReader *create_datareader(TopicDescription *topic, const DataReaderQos &reader_qos,
DataReaderListener *listener = nullptr, const StatusMask &mask =
StatusMask::all())

This operation creates a DataReader. The returned DataReader will be attached and belong to the Sub-
scriber.

Parameters

• topic – Topic the DataReader will be listening.

• reader_qos – QoS of the DataReader.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all).

Returns Pointer to the created DataReader. nullptr if failed.

DataReader *create_datareader_with_profile(TopicDescription *topic, const std::string
&profile_name, DataReaderListener *listener = nullptr,
const StatusMask &mask = StatusMask::all())

This operation creates a DataReader. The returned DataReader will be attached and belongs to the Sub-
scriber.

Parameters

• topic – Topic the DataReader will be listening.

• profile_name – DataReader profile name.

• listener – Pointer to the listener (default: nullptr)

• mask – StatusMask that holds statuses the listener responds to (default: all).

Returns Pointer to the created DataReader. nullptr if failed.

ReturnCode_t delete_datareader(const DataReader *reader)
This operation deletes a DataReader that belongs to the Subscriber.

The delete_datareader operation must be called on the same Subscriber object used to create the
DataReader. If delete_datareader is called on a different Subscriber, the operation will have no effect
and it will return an error.

Parameters reader – DataReader to delete

Returns RETCODE_PRECONDITION_NOT_MET if the datareader does not belong to this
subscriber, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

DataReader *lookup_datareader(const std::string &topic_name) const
This operation retrieves a previously-created DataReader belonging to the Subscriber that is attached to a
Topic with a matching topic_name. If no such DataReader exists, the operation will return nullptr.

646 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

If multiple DataReaders attached to the Subscriber satisfy this condition, then the operation will return one
of them. It is not specified which one.

Parameters topic_name – Name of the topic associated to the DataReader

Returns Pointer to a previously created DataReader created on a Topic with that topic_name

ReturnCode_t get_datareaders(std::vector<DataReader*> &readers) const
This operation allows the application to access the DataReader objects.

Parameters readers – Vector of DataReader where the list of existing readers is returned

Returns RETCODE_OK

ReturnCode_t get_datareaders(std::vector<DataReader*> &readers, const std::vector<SampleStateKind>
&sample_states, const std::vector<ViewStateKind> &view_states, const
std::vector<InstanceStateKind> &instance_states) const

This operation allows the application to access the DataReader objects that contain samples with the spec-
ified sample_states, view_states, and instance_states.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• readers – [out] Vector of DataReader where the list of existing readers is returned

• sample_states – Vector of SampleStateKind

• view_states – Vector of ViewStateKind

• instance_states – Vector of InstanceStateKind

Returns RETCODE_OK

bool has_datareaders() const
This operation checks if the subscriber has DataReaders

Returns true if the subscriber has one or several DataReaders, false in other case

ReturnCode_t begin_access()
Indicates that the application is about to access the data samples in any of the DataReader objects attached
to the Subscriber.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK

ReturnCode_t end_access()
Indicates that the application has finished accessing the data samples in DataReader objects managed by
the Subscriber.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Returns RETCODE_OK

6.30. C++ API Reference 647

Fast DDS Documentation, Release 2.8.2

ReturnCode_t notify_datareaders() const
This operation invokes the operation on_data_available on the DataReaderListener objects attached to con-
tained DataReader entities.

This operation is typically invoked from the on_data_on_readers operation in the SubscriberListener. That
way the SubscriberListener can delegate to the DataReaderListener objects the handling of the data.

Returns RETCODE_OK

ReturnCode_t delete_contained_entities()
Deletes all contained DataReaders. If the DataReaders have any QueryCondition or ReadCondition, they
are deleted before the DataReader itself.

Returns RETCODE_OK if successful, an error code otherwise

ReturnCode_t set_default_datareader_qos(const DataReaderQos &qos)
This operation sets a default value of the DataReader QoS policies which will be used for newly created
DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value DATAREADER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would be
used if the set_default_datareader_qos operation had never been called.

Parameters qos – new value for DataReaderQos to set as default

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

const DataReaderQos &get_default_datareader_qos() const
This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the cre-
ate_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Returns Current default DataReaderQos.

DataReaderQos &get_default_datareader_qos()
This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the cre-
ate_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Returns Current default DataReaderQos.

ReturnCode_t get_default_datareader_qos(DataReaderQos &qos) const
This operation retrieves the default value of the DataReader QoS, that is, the QoS policies which will
be used for newly created DataReader entities in the case where the QoS policies are defaulted in the
create_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Parameters qos – DataReaderQos where the default_qos is returned

Returns RETCODE_OK

648 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReturnCode_t get_datareader_qos_from_profile(const std::string &profile_name, DataReaderQos
&qos) const

Fills the DataReaderQos with the values of the XML profile.

Parameters

• profile_name – DataReader profile name.

• qos – DataReaderQos object where the qos is returned.

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

const DomainParticipant *get_participant() const
This operation returns the DomainParticipant to which the Subscriber belongs.

Returns DomainParticipant Pointer

const InstanceHandle_t &get_instance_handle() const
Returns the Subscriber’s handle.

Returns InstanceHandle of this Subscriber.

Public Static Functions

static ReturnCode_t copy_from_topic_qos(DataReaderQos &reader_qos, const TopicQos &topic_qos)
Copies TopicQos into the corresponding DataReaderQos.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters

• reader_qos – [inout]

• topic_qos – [in]

Returns RETCODE_OK if successful, an error code otherwise

SubscriberListener

class eprosima::fastdds::dds::SubscriberListener : public eprosima::fastdds::dds::DataReaderListener
Class SubscriberListener, it should be used by the end user to implement specific callbacks to certain actions. It
also inherits all DataReaderListener callbacks.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

inline SubscriberListener()
Constructor.

inline virtual ~SubscriberListener()
Destructor.

inline virtual void on_data_on_readers(Subscriber *sub)
Virtual function to be implemented by the user containing the actions to be performed when a new Data
Message is available on any reader.

6.30. C++ API Reference 649

Fast DDS Documentation, Release 2.8.2

Parameters sub – Subscriber

SubscriberQos

class eprosima::fastdds::dds::SubscriberQos
Class SubscriberQos, contains all the possible Qos that can be set for a determined Subscriber. Although these
values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

Public Functions

inline SubscriberQos()
Constructor.

inline virtual ~SubscriberQos()
Destructor.

inline const PresentationQosPolicy &presentation() const
Getter for PresentationQosPolicy

Returns PresentationQosPolicy reference

inline PresentationQosPolicy &presentation()
Getter for PresentationQosPolicy

Returns PresentationQosPolicy reference

inline void presentation(const PresentationQosPolicy &presentation)
Setter for PresentationQosPolicy

Parameters presentation – new value for the PresentationQosPolicy

inline const PartitionQosPolicy &partition() const
Getter for PartitionQosPolicy

Returns PartitionQosPolicy reference

inline PartitionQosPolicy &partition()
Getter for PartitionQosPolicy

Returns PartitionQosPolicy reference

inline void partition(const PartitionQosPolicy &partition)
Setter for PartitionQosPolicy

Parameters partition – new value for the PartitionQosPolicy

inline const GroupDataQosPolicy &group_data() const
Getter for GroupDataQosPolicy

Returns GroupDataQosPolicy reference

inline GroupDataQosPolicy &group_data()
Getter for GroupDataQosPolicy

Returns GroupDataQosPolicy reference

inline void group_data(const GroupDataQosPolicy &group_data)
Setter for GroupDataQosPolicy

650 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters group_data – new value for the GroupDataQosPolicy

inline const EntityFactoryQosPolicy &entity_factory() const
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline EntityFactoryQosPolicy &entity_factory()
Getter for EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

inline void entity_factory(const EntityFactoryQosPolicy &entity_factory)
Setter for EntityFactoryQosPolicy

Parameters entity_factory – new value for the EntityFactoryQosPolicy

const SubscriberQos eprosima::fastdds::dds::SUBSCRIBER_QOS_DEFAULT

TypeConsistencyQos

class eprosima::fastdds::dds::TypeConsistencyQos : public eprosima::fastdds::dds::QosPolicy
Qos Policy to configure the XTypes Qos associated to the DataReader.

Public Functions

inline TypeConsistencyQos()
Constructor.

virtual ~TypeConsistencyQos() = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

Public Members

TypeConsistencyEnforcementQosPolicy type_consistency
Type consistency enforcement Qos.

DataRepresentationQosPolicy representation
Data Representation Qos.

ViewStateKind

enum eprosima::fastdds::dds::ViewStateKind
Indicates whether or not an instance is new.

For each instance (identified by the key), the middleware internally maintains a view state relative to each
DataReader. This view state can have the following values:

6.30. C++ API Reference 651

Fast DDS Documentation, Release 2.8.2

• NEW_VIEW_STATE indicates that either this is the first time that the DataReader has ever accessed samples
of that instance, or else that the DataReader has accessed previous samples of the instance, but the instance
has since been reborn (i.e. become not-alive and then alive again). These two cases are distinguished by ex-
amining the SampleInfo::disposed_generation_count and the SampleInfo::no_writers_generation_count.

• NOT_NEW_VIEW_STATE indicates that the DataReader has already accessed samples of the same in-
stance and that the instance has not been reborn since.

The view_state available in the SampleInfo is a snapshot of the view state of the instance relative to the
DataReader used to access the samples at the time the collection was obtained (i.e. at the time read or take
was called). The view_state is therefore the same for all samples in the returned collection that refer to the same
instance.

Once an instance has been detected as not having any “live” writers and all the samples associated with the
instance are “taken” from the DDSDataReader, the middleware can reclaim all local resources regarding the
instance. Future samples will be treated as “never seen.”

Values:

enumerator NEW_VIEW_STATE
New instance.This latest generation of the instance has not previously been accessed.

enumerator NOT_NEW_VIEW_STATE
Not a new instance. This latest generation of the instance has previously been accessed.

Topic

TopicDataType

class eprosima::fastdds::dds::TopicDataType
Class TopicDataType used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and
get the key of a specific data type. The user should created a class that inherits from this one, where Serialize
and deserialize methods MUST be implemented. ,

Subclassed by eprosima::fastdds::dds::builtin::TypeLookup_ReplyPubSubType,
eprosima::fastdds::dds::builtin::TypeLookup_RequestPubSubType

Public Functions

inline TopicDataType()
Constructor.

inline virtual ~TopicDataType()
Destructor.

virtual bool serialize(void *data, fastrtps::rtps::SerializedPayload_t *payload) = 0
Serialize method, it should be implemented by the user, since it is abstract. It is VERY IMPORTANT that
the user sets the SerializedPayload length correctly.

Parameters

• data – [in] Pointer to the data

• payload – [out] Pointer to the payload

Returns True if correct.

652 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

virtual bool deserialize(fastrtps::rtps::SerializedPayload_t *payload, void *data) = 0
Deserialize method, it should be implemented by the user, since it is abstract.

Parameters

• payload – [in] Pointer to the payload

• data – [out] Pointer to the data

Returns True if correct.

virtual std::function<uint32_t()> getSerializedSizeProvider(void *data) = 0
Gets the SerializedSizeProvider function.

Parameters data – Pointer

Returns function

virtual void *createData() = 0
Create a Data Type.

Returns Void pointer to the created object.

virtual void deleteData(void *data) = 0
Remove a previously created object.

Parameters data – Pointer to the created Data.

virtual bool getKey(void *data, fastrtps::rtps::InstanceHandle_t *ihandle, bool force_md5 = false) = 0
Get the key associated with the data.

Parameters

• data – [in] Pointer to the data.

• ihandle – [out] Pointer to the Handle.

• force_md5 – [in] Force MD5 checking.

Returns True if correct.

inline void setName(const char *nam)
Set topic data type name

Parameters nam – Topic data type name

inline const char *getName() const
Get topic data type name

Returns Topic data type name

inline bool auto_fill_type_object() const
Get the type object auto-fill configuration

Returns true if the type object should be auto-filled

inline void auto_fill_type_object(bool auto_fill_type_object)
Set the type object auto-fill configuration

Parameters auto_fill_type_object – new value to set

inline bool auto_fill_type_information() const
Get the type information auto-fill configuration

Returns true if the type information should be auto-filled

inline void auto_fill_type_information(bool auto_fill_type_information)
Set type information auto-fill configuration

6.30. C++ API Reference 653

Fast DDS Documentation, Release 2.8.2

Parameters auto_fill_type_information – new value to set

inline const std::shared_ptr<TypeIdV1> type_identifier() const
Get the type identifier

Returns TypeIdV1

inline void type_identifier(const TypeIdV1 &id)
Set type identifier

Parameters id – new value for TypeIdV1

inline void type_identifier(const std::shared_ptr<TypeIdV1> id)
Set type identifier

Parameters id – shared pointer to TypeIdV1

inline const std::shared_ptr<TypeObjectV1> type_object() const
Get the type object

Returns TypeObjectV1

inline void type_object(const TypeObjectV1 &object)
Set type object

Parameters object – new value for TypeObjectV1

inline void type_object(std::shared_ptr<TypeObjectV1> object)
Set type object

Parameters object – shared pointer to TypeObjectV1

inline const std::shared_ptr<xtypes::TypeInformation> type_information() const
Get the type information

Returns TypeInformation

inline void type_information(const xtypes::TypeInformation &info)
Set type information

Parameters info – new value for TypeInformation

inline void type_information(std::shared_ptr<xtypes::TypeInformation> info)
Set type information

Parameters info – shared pointer to TypeInformation

inline virtual bool is_bounded() const
Checks if the type is bounded.

inline virtual bool is_plain() const
Checks if the type is plain.

inline virtual bool construct_sample(void *memory) const
Construct a sample on a memory location.

Parameters memory – Pointer to the memory location where the sample should be constructed.

Returns whether this type supports in-place construction or not.

654 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

uint32_t m_typeSize
Maximum serialized size of the type in bytes. If the type has unbounded fields, and therefore cannot have
a maximum size, use 0.

bool m_isGetKeyDefined
Indicates whether the method to obtain the key has been implemented.

TypeSupport

class eprosima::fastdds::dds::TypeSupport : public std::shared_ptr<fastdds::dds::TopicDataType>
Class TypeSupport used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and
get the key of a specific data type. The user should created a class that inherits from this one, where Serialize
and deserialize methods MUST be implemented.

Note: This class inherits from std::shared_ptr<TopicDataType>.

Subclassed by eprosima::fastdds::dds::builtin::TypeLookup_ReplyTypeSupport,
eprosima::fastdds::dds::builtin::TypeLookup_RequestTypeSupport

Public Functions

TypeSupport() noexcept = default
Constructor.

TypeSupport(const TypeSupport &type) noexcept = default
Copy Constructor.

Parameters type – Another instance of TypeSupport

TypeSupport(TypeSupport &&type) noexcept = default
Move Constructor.

Parameters type – Another instance of TypeSupport

TypeSupport &operator=(const TypeSupport &type) noexcept = default
Copy Assignment.

Parameters type – Another instance of TypeSupport

TypeSupport &operator=(TypeSupport &&type) noexcept = default
Move Assignment.

Parameters type – Another instance of TypeSupport

inline explicit TypeSupport(fastdds::dds::TopicDataType *ptr)
TypeSupport constructor that receives a TopicDataType pointer.

The passed pointer will be managed by the TypeSupport object, so creating two TypeSupport from the same
pointer or deleting the passed pointer will produce a runtime error.

Parameters ptr –

6.30. C++ API Reference 655

Fast DDS Documentation, Release 2.8.2

inline TypeSupport(fastrtps::types::DynamicPubSubType ptr)
TypeSupport constructor that receives a DynamicPubSubType.

It will copy the instance so the user will keep the ownership of his object.

Parameters ptr –

virtual ReturnCode_t register_type(DomainParticipant *participant) const
Registers the type on a participant.

Parameters participant – DomainParticipant where the type is going to be registered

Returns RETCODE_BAD_PARAMETER if the type name is empty, RET-
CODE_PRECONDITION_NOT_MET if there is another type with the same name
registered on the DomainParticipant and RETCODE_OK if it is registered correctly

virtual ReturnCode_t register_type(DomainParticipant *participant, std::string type_name) const
Registers the type on a participant.

Parameters

• participant – DomainParticipant where the type is going to be registered

• type_name – Name of the type to register

Returns RETCODE_BAD_PARAMETER if the type name is empty, RET-
CODE_PRECONDITION_NOT_MET if there is another type with the same name
registered on the DomainParticipant and RETCODE_OK if it is registered correctly

inline virtual const std::string &get_type_name() const
Getter for the type name.

Returns name of the data type

virtual bool serialize(void *data, fastrtps::rtps::SerializedPayload_t *payload)
Serializes the data.

Parameters

• data – Pointer to data

• payload – Pointer to payload

Returns true if it is serialized correctly, false if not

virtual bool deserialize(fastrtps::rtps::SerializedPayload_t *payload, void *data)
Deserializes the data.

Parameters

• payload – Pointer to payload

• data – Pointer to data

Returns true if it is deserialized correctly, false if not

inline virtual std::function<uint32_t()> get_serialized_size_provider(void *data)
Getter for the SerializedSizeProvider.

Parameters data – Pointer to data

Returns function

inline virtual void *create_data()
Creates new data.

Returns Pointer to the data

656 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline virtual void delete_data(void *data)
Deletes data.

Parameters data – Pointer to the data to delete

inline virtual bool get_key(void *data, InstanceHandle_t *i_handle, bool force_md5 = false)
Getter for the data key.

Parameters

• data – Pointer to data

• i_handle – InstanceHandle pointer to store the key

• force_md5 – boolean to force md5 (default: false)

Returns true if the key is returned, false if not

inline bool empty() const
Check if the TypeSupport is empty.

Returns true if empty, false if not

inline virtual bool is_bounded() const
Checks if the type is bounded.

inline virtual bool is_plain() const
Checks if the type is plain.

TopicDescription

class eprosima::fastdds::dds::TopicDescription
Class TopicDescription, represents the fact that both publications and subscriptions are tied to a single data-type

Subclassed by eprosima::fastdds::dds::ContentFilteredTopic, eprosima::fastdds::dds::Topic

Public Functions

virtual DomainParticipant *get_participant() const = 0
Get the DomainParticipant to which the TopicDescription belongs.

Returns The DomainParticipant to which the TopicDescription belongs.

inline const std::string &get_name() const
Get the name used to create this TopicDescription.

Returns the name used to create this TopicDescription.

inline const std::string &get_type_name() const
Get the associated type name.

Returns the type name.

6.30. C++ API Reference 657

Fast DDS Documentation, Release 2.8.2

Topic

class eprosima::fastdds::dds::Topic : public eprosima::fastdds::dds::DomainEntity, public
eprosima::fastdds::dds::TopicDescription

Class Topic, represents the fact that both publications and subscriptions are tied to a single data-type

Public Functions

virtual DomainParticipant *get_participant() const override
Getter for the DomainParticipant.

Returns DomainParticipant pointer

ReturnCode_t get_inconsistent_topic_status(InconsistentTopicStatus &status)
Allows the application to retrieve the INCONSISTENT_TOPIC_STATUS status of a Topic.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

Parameters status – [out] Status to be retrieved.

Returns RETCODE_OK

const TopicQos &get_qos() const
Allows accessing the Topic Qos.

Returns reference to TopicQos

ReturnCode_t get_qos(TopicQos &qos) const
Retrieves the Topic Qos.

Parameters qos – TopicQos where the qos is returned

Returns RETCODE_OK

ReturnCode_t set_qos(const TopicQos &qos)
Allows modifying the Topic Qos. The given Qos must be supported by the Topic.

Parameters qos – new TopicQos value to set for the Topic.

Returns

• RETCODE_IMMUTABLE_POLICY – if a change was not allowed.

• RETCODE_INCONSISTENT_POLICY – if new qos has inconsistent values.

• RETCODE_OK – if qos was updated.

const TopicListener *get_listener() const
Retrieves the attached TopicListener.

Returns pointer to TopicListener

ReturnCode_t set_listener(TopicListener *listener, const StatusMask &mask = StatusMask::all())
Modifies the TopicListener.

Parameters

• listener – new value for the TopicListener

• mask – StatusMask that holds statuses the listener responds to (default: all).

658 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK

ContentFilteredTopic

class eprosima::fastdds::dds::ContentFilteredTopic : public eprosima::fastdds::dds::TopicDescription
Specialization of TopicDescription that allows for content-based subscriptions.

Public Functions

Topic *get_related_topic() const
Getter for the related topic.

This operation returns the Topic associated with the ContentFilteredTopic. That is, the Topic specified when
the ContentFilteredTopic was created.

const std::string &get_filter_expression() const
Get the filter expression.

This operation returns filter expression associated with this ContentFilteredTopic. It will return the
filter_expression specified on the last successful call to set_expression or, if that method is never
called, the expression specified when the ContentFilteredTopic was created.

Returns the filter_expression.

ReturnCode_t get_expression_parameters(std::vector<std::string> &expression_parameters) const
Get the expression parameters.

This operation returns expression parameters associated with this ContentFilteredTopic. These
will be the expression_parameters specified on the last successful call to set_expression or
set_expression_parameters. If those methods have never been called, the expression parameters spec-
ified when the ContentFilteredTopic was created will be returned.

Parameters expression_parameters – [out] The expression parameters currently associated
with the ContentFilteredTopic.

Returns RETCODE_OK

ReturnCode_t set_expression_parameters(const std::vector<std::string> &expression_parameters)
Set the expression parameters.

This operation changes expression parameters associated with this ContentFilteredTopic.

Parameters expression_parameters – [in] The expression parameters to set.

Returns RETCODE_OK if the expression parameters where correctly updated.

Returns RETCODE_BAD_PARAMETER if the expression parameters do not match with the
current filter_expression.

ReturnCode_t set_filter_expression(const std::string &filter_expression, const std::vector<std::string>
&expression_parameters)

Set the filter expression and the expression parameters.

This operation changes the filter expression and the expression parameters associated with this ContentFil-
teredTopic.

Parameters

• filter_expression – [in] The filter expression to set.

• expression_parameters – [in] The expression parameters to set.

6.30. C++ API Reference 659

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK if the expression and parameters where correctly updated.

Returns RETCODE_BAD_PARAMETER if filter_expression is not valid for this Con-
tentFilteredTopic.

Returns RETCODE_BAD_PARAMETER if the expression parameters do not match with the
filter_expression.

virtual DomainParticipant *get_participant() const override
Getter for the DomainParticipant.

Returns DomainParticipant pointer

FASTDDS_SQLFILTER_NAME eprosima::fastdds::dds::sqlfilter_name

IContentFilter

struct eprosima::fastdds::dds::IContentFilter
The interface that content filter objects should implement.

Public Functions

virtual bool evaluate(const SerializedPayload &payload, const FilterSampleInfo &sample_info, const
GUID_t &reader_guid) const = 0

Evaluate if a serialized payload should be accepted by certain reader.

Parameters

• payload – [in] The serialized payload of the sample being evaluated.

• sample_info – [in] The accompanying sample information.

• reader_guid – [in] The GUID of the reader for which the filter is being evaluated.

Returns whether the sample should be accepted for the specified reader.

struct FilterSampleInfo
Selected information from the cache change that is passed to the content filter object on payload evaluation.

Public Members

SampleIdentity sample_identity
Identity of the sample being filtered.

SampleIdentity related_sample_identity
Identity of a sample related to the one being filtered.

660 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

IContentFilterFactory

struct eprosima::fastdds::dds::IContentFilterFactory
The interface that a factory of IContentFilter objects should implement.

Public Functions

virtual ReturnCode_t create_content_filter(const char *filter_class_name, const char *type_name, const
TopicDataType *data_type, const char *filter_expression,
const ParameterSeq &filter_parameters, IContentFilter
*&filter_instance) = 0

Create or update an IContentFilter instance.

Parameters

• filter_class_name – [in] Filter class name for which the factory is being called. Allows
using the same factory for different filter classes.

• type_name – [in] Type name of the topic being filtered.

• data_type – [in] Type support object of the topic being filtered.

• filter_expression – [in] Content filter expression. May be nullptr when updating the
parameters of a filter instance.

• filter_parameters – [in] Values to set for the filter parameters (n on the filter expres-
sion).

• filter_instance – [inout] When a filter is being created, it will be nullptr on input, and
will have the pointer to the created filter instance on output. The caller takes ownership of
the filter instance returned. When a filter is being updated, it will have a previously returned
pointer on input. The method takes ownership of the filter instance during its execution,
and can update the filter instance or even destroy it and create a new one. The caller takes
ownership of the filter instance returned. It should always have a valid pointer upon return.
The original state of the filter instance should be preserved when an error is returned.

Returns A return code indicating the result of the operation.

virtual ReturnCode_t delete_content_filter(const char *filter_class_name, IContentFilter
*filter_instance) = 0

Delete an IContentFilter instance.

Parameters

• filter_class_name – [in] Filter class name for which the factory is being called. Allows
using the same factory for different filter classes.

• filter_instance – [in] A pointer to a filter instance previously returned by cre-
ate_content_filter. The factory takes ownership of the filter instance, and can decide to
destroy it or keep it for future use. In case of deletion, note this pointer must be down-
casted to the derived class.

Returns A return code indicating the result of the operation.

6.30. C++ API Reference 661

Fast DDS Documentation, Release 2.8.2

TopicListener

class eprosima::fastdds::dds::TopicListener
Class TopicListener, it should be used by the end user to implement specific callbacks to certain actions.

Subclassed by eprosima::fastdds::dds::DomainParticipantListener

Public Functions

inline TopicListener()
Constructor.

inline virtual ~TopicListener()
Destructor.

inline virtual void on_inconsistent_topic(Topic *topic, InconsistentTopicStatus status)
Virtual function to be implemented by the user containing the actions to be performed when another topic
exists with the same name but different characteristics.

Parameters

• topic – Topic

• status – The inconsistent topic status

TopicQos

class eprosima::fastdds::dds::TopicQos
Class TopicQos, containing all the possible Qos that can be set for a determined Topic. Although these values
can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with
them has been implemented in the library. Please consult each of them to check for implementation details and
default values.

Public Functions

TopicQos()
Constructor.

inline const TopicDataQosPolicy &topic_data() const
Getter for TopicDataQosPolicy

Returns TopicDataQos reference

inline TopicDataQosPolicy &topic_data()
Getter for TopicDataQosPolicy

Returns TopicDataQos reference

inline void topic_data(const TopicDataQosPolicy &value)
Setter for TopicDataQosPolicy

Parameters value – new value for the TopicDataQosPolicy

inline const DurabilityQosPolicy &durability() const
Getter for DurabilityQosPolicy

Returns DurabilityQos reference

662 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline DurabilityQosPolicy &durability()
Getter for DurabilityQosPolicy

Returns DurabilityQos reference

inline void durability(const DurabilityQosPolicy &durability)
Setter for DurabilityQosPolicy

Parameters durability – new value for the DurabilityQosPolicy

inline const DurabilityServiceQosPolicy &durability_service() const
Getter for DurabilityServiceQosPolicy

Returns DurabilityServiceQos reference

inline DurabilityServiceQosPolicy &durability_service()
Getter for DurabilityServiceQosPolicy

Returns DurabilityServiceQos reference

inline void durability_service(const DurabilityServiceQosPolicy &durability_service)
Setter for DurabilityServiceQosPolicy

Parameters durability_service – new value for the DurabilityServiceQosPolicy

inline const DeadlineQosPolicy &deadline() const
Getter for DeadlineQosPolicy

Returns DeadlineQos reference

inline DeadlineQosPolicy &deadline()
Getter for DeadlineQosPolicy

Returns DeadlineQos reference

inline void deadline(const DeadlineQosPolicy &deadline)
Setter for DeadlineQosPolicy

Parameters deadline – new value for the DeadlineQosPolicy

inline const LatencyBudgetQosPolicy &latency_budget() const
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQos reference

inline LatencyBudgetQosPolicy &latency_budget()
Getter for LatencyBudgetQosPolicy

Returns LatencyBudgetQos reference

inline void latency_budget(const LatencyBudgetQosPolicy &latency_budget)
Setter for LatencyBudgetQosPolicy

Parameters latency_budget – new value for the LatencyBudgetQosPolicy

inline const LivelinessQosPolicy &liveliness() const
Getter for LivelinessQosPolicy

Returns LivelinessQos reference

inline LivelinessQosPolicy &liveliness()
Getter for LivelinessQosPolicy

Returns LivelinessQos reference

inline void liveliness(const LivelinessQosPolicy &liveliness)
Setter for LivelinessQosPolicy

6.30. C++ API Reference 663

Fast DDS Documentation, Release 2.8.2

Parameters liveliness – new value for the LivelinessQosPolicy

inline const ReliabilityQosPolicy &reliability() const
Getter for ReliabilityQosPolicy

Returns ReliabilityQos reference

inline ReliabilityQosPolicy &reliability()
Getter for ReliabilityQosPolicy

Returns ReliabilityQos reference

inline void reliability(const ReliabilityQosPolicy &reliability)
Setter for ReliabilityQosPolicy

Parameters reliability – new value for the ReliabilityQosPolicy

inline const DestinationOrderQosPolicy &destination_order() const
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQos reference

inline DestinationOrderQosPolicy &destination_order()
Getter for DestinationOrderQosPolicy

Returns DestinationOrderQos reference

inline void destination_order(const DestinationOrderQosPolicy &destination_order)
Setter for DestinationOrderQosPolicy

Parameters destination_order – new value for the DestinationOrderQosPolicy

inline const HistoryQosPolicy &history() const
Getter for HistoryQosPolicy

Returns HistoryQos reference

inline HistoryQosPolicy &history()
Getter for HistoryQosPolicy

Returns HistoryQos reference

inline void history(const HistoryQosPolicy &history)
Setter for HistoryQosPolicy

Parameters history – new value for the HistoryQosPolicy

inline const ResourceLimitsQosPolicy &resource_limits() const
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQos reference

inline ResourceLimitsQosPolicy &resource_limits()
Getter for ResourceLimitsQosPolicy

Returns ResourceLimitsQos reference

inline void resource_limits(const ResourceLimitsQosPolicy &resource_limits)
Setter for ResourceLimitsQosPolicy

Parameters resource_limits – new value for the ResourceLimitsQosPolicy

inline const TransportPriorityQosPolicy &transport_priority() const
Getter for TransportPriorityQosPolicy

Returns TransportPriorityQos reference

664 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline TransportPriorityQosPolicy &transport_priority()
Getter for TransportPriorityQosPolicy

Returns TransportPriorityQos reference

inline void transport_priority(const TransportPriorityQosPolicy &transport_priority)
Setter for TransportPriorityQosPolicy

Parameters transport_priority – new value for the TransportPriorityQosPolicy

inline const LifespanQosPolicy &lifespan() const
Getter for LifespanQosPolicy

Returns LifespanQos reference

inline LifespanQosPolicy &lifespan()
Getter for LifespanQosPolicy

Returns LifespanQos reference

inline void lifespan(const LifespanQosPolicy &lifespan)
Setter for LifespanQosPolicy

Parameters lifespan – new value for the LifespanQosPolicy

inline const OwnershipQosPolicy &ownership() const
Getter for OwnershipQosPolicy

Returns OwnershipQos reference

inline OwnershipQosPolicy &ownership()
Getter for OwnershipQosPolicy

Returns OwnershipQos reference

inline void ownership(const OwnershipQosPolicy &ownership)
Setter for OwnershipQosPolicy

Parameters ownership – new value for the OwnershipQosPolicy

inline const DataRepresentationQosPolicy &representation() const
Getter for DataRepresentationQosPolicy

Returns DataRepresentationQosPolicy reference

inline DataRepresentationQosPolicy &representation()
Getter for DataRepresentationQosPolicy

Returns DataRepresentationQosPolicy reference

inline void representation(const DataRepresentationQosPolicy &representation)
Setter for DataRepresentationQosPolicy

Parameters representation – new value for the DataRepresentationQosPolicy

const TopicQos eprosima::fastdds::dds::TOPIC_QOS_DEFAULT

6.30. C++ API Reference 665

Fast DDS Documentation, Release 2.8.2

TypeIdV1

class eprosima::fastdds::dds::TypeIdV1 : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Class TypeIdV1

Public Functions

inline TypeIdV1()
Constructor without parameters.

inline TypeIdV1(const TypeIdV1 &type)
Copy constructor.

Parameters type – Another instance of TypeIdV1

inline TypeIdV1(const fastrtps::types::TypeIdentifier &identifier)
Constructor using a TypeIndentifier.

Parameters identifier – TypeIdentifier to be set

inline TypeIdV1(TypeIdV1 &&type)
Move constructor.

Parameters type – Another instance of TypeIdV1

virtual ~TypeIdV1() override = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

inline const fastrtps::types::TypeIdentifier &get() const
Getter for the TypeIndentifier.

Returns TypeIdentifier reference

Public Members

fastrtps::types::TypeIdentifier m_type_identifier
Type Identifier.

TypeInformation

class eprosima::fastdds::dds::xtypes::TypeInformation : public eprosima::fastdds::dds::Parameter_t,
public eprosima::fastdds::dds::QosPolicy

Class xtypes::TypeInformation

666 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline TypeInformation()
Constructor.

inline TypeInformation(const TypeInformation &type)
Copy constructor.

Parameters type – Another instance of TypeInformation

inline TypeInformation(const fastrtps::types::TypeInformation &info)
Constructor using a fastrtps::types::TypeInformation.

Parameters info – fastrtps::types::TypeInformation to be set

inline TypeInformation(TypeInformation &&type)
Move Constructor.

Parameters type – Another instance of TypeInformation

virtual ~TypeInformation() override = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

inline bool assigned() const
Check if it is assigned.

Returns true if assigned, false if not

inline void assigned(bool value)
Setter for assigned boolean.

Parameters value – Boolean to be set

Public Members

fastrtps::types::TypeInformation type_information
Type Information.

TypeObjectV1

class eprosima::fastdds::dds::TypeObjectV1 : public eprosima::fastdds::dds::Parameter_t, public
eprosima::fastdds::dds::QosPolicy

Class TypeObjectV1

6.30. C++ API Reference 667

Fast DDS Documentation, Release 2.8.2

Public Functions

inline TypeObjectV1()
Constructor.

inline TypeObjectV1(const TypeObjectV1 &type)
Copy constructor.

Parameters type – Another instance of TypeObjectV1

inline TypeObjectV1(const fastrtps::types::TypeObject &type)
Constructor using a TypeObject.

Parameters type – TypeObject to be set

inline TypeObjectV1(TypeObjectV1 &&type)
Move constructor.

Parameters type – Another instance of TypeObjectV1

virtual ~TypeObjectV1() override = default
Destructor.

inline virtual void clear() override
Clears the QosPolicy object.

inline const fastrtps::types::TypeObject &get() const
Getter for the TypeObject.

Returns TypeObject reference

Public Members

fastrtps::types::TypeObject m_type_object
Type Object.

6.30.2 RTPS

eProsima Fast DDS Real-Time Publish-Subscribe (RTPS) layer API.

Attributes

BuiltinAttributes

class eprosima::fastrtps::rtps::BuiltinAttributes
Class BuiltinAttributes, to define the behavior of the RTPSParticipant builtin protocols.

668 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

DiscoverySettings discovery_config
Discovery protocol related attributes.

bool use_WriterLivelinessProtocol = true
Indicates to use the WriterLiveliness protocol.

TypeLookupSettings typelookup_config
TypeLookup Service settings.

LocatorList_t metatrafficUnicastLocatorList
Metatraffic Unicast Locator List.

LocatorList_t metatrafficMulticastLocatorList
Metatraffic Multicast Locator List.

fastdds::rtps::ExternalLocators metatraffic_external_unicast_locators
The collection of external locators to use for communication on metatraffic topics.

LocatorList_t initialPeersList
Initial peers.

MemoryManagementPolicy_t readerHistoryMemoryPolicy =
MemoryManagementPolicy_t::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Memory policy for builtin readers.

uint32_t readerPayloadSize = BUILTIN_DATA_MAX_SIZE
Maximum payload size for builtin readers.

MemoryManagementPolicy_t writerHistoryMemoryPolicy =
MemoryManagementPolicy_t::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

Memory policy for builtin writers.

uint32_t writerPayloadSize = BUILTIN_DATA_MAX_SIZE
Maximum payload size for builtin writers.

uint32_t mutation_tries = 100u
Mutation tries if the port is being used.

bool avoid_builtin_multicast = true
Set to true to avoid multicast traffic on builtin endpoints.

6.30. C++ API Reference 669

Fast DDS Documentation, Release 2.8.2

c_default_RTPSParticipantAllocationAttributes

const RTPSParticipantAllocationAttributes
eprosima::fastrtps::rtps::c_default_RTPSParticipantAllocationAttributes =
RTPSParticipantAllocationAttributes()

DiscoveryProtocol

enum eprosima::fastrtps::rtps::DiscoveryProtocol
PDP subclass choice.

Values:

enumerator NONE
NO discovery whatsoever would be used.

Publisher and Subscriber defined with the same topic name would NOT be linked. All matching must be
done manually through the addReaderLocator, addReaderProxy, addWriterProxy methods.

enumerator SIMPLE
Discovery works according to ‘The Real-time Publish-Subscribe Protocol(RTPS) DDS Interoperability
Wire Protocol Specification’.

enumerator EXTERNAL
A user defined PDP subclass object must be provided in the attributes that deals with the discovery.

Framework is not responsible of this object lifetime.

enumerator CLIENT
The participant will behave as a client concerning discovery operation.

Server locators should be specified as attributes.

enumerator SERVER
The participant will behave as a server concerning discovery operation.

Discovery operation is volatile (discovery handshake must take place if shutdown).

enumerator BACKUP
The participant will behave as a server concerning discovery operation.

Discovery operation persist on a file (discovery handshake wouldn’t repeat if shutdown).

enumerator SUPER_CLIENT
The participant will behave as a client concerning all internal behaviour.

Remote servers will treat it as a server and will share every discovery information.

670 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DiscoverySettings

class eprosima::fastrtps::rtps::DiscoverySettings
Class DiscoverySettings, to define the attributes of the several discovery protocols available

Public Functions

inline const char *getStaticEndpointXMLFilename() const
Get the static endpoint XML filename

Returns Static endpoint XML filename

inline void setStaticEndpointXMLFilename(const char *str)
Set the static endpoint XML filename

Deprecated:

Parameters str – Static endpoint XML filename

inline void static_edp_xml_config(const char *str)
Set the static endpoint XML configuration.

Parameters str – URI specifying the static endpoint XML configuration. The string could con-
tain a filename (file://) or the XML content directly (data://).

inline const char *static_edp_xml_config() const
Get the static endpoint XML configuration.

Returns URI specifying the static endpoint XML configuration. The string could contain a file-
name (file://) or the XML content directly (data://).

Public Members

DiscoveryProtocol_t discoveryProtocol = DiscoveryProtocol_t::SIMPLE
Chosen discovery protocol.

bool use_SIMPLE_EndpointDiscoveryProtocol = true
If set to true, SimpleEDP would be used.

bool use_STATIC_EndpointDiscoveryProtocol = false
If set to true, StaticEDP based on an XML file would be implemented. The XML filename must be provided.

Duration_t leaseDuration = {20, 0}
Lease Duration of the RTPSParticipant, indicating how much time remote RTPSParticipants should con-
sider this RTPSParticipant alive.

Duration_t leaseDuration_announcementperiod = {3, 0}
The period for the RTPSParticipant to send its Discovery Message to all other discovered RTPSParticipants
as well as to all Multicast ports.

InitialAnnouncementConfig initial_announcements
Initial announcements configuration.

6.30. C++ API Reference 671

file://
file://

Fast DDS Documentation, Release 2.8.2

SimpleEDPAttributes m_simpleEDP
Attributes of the SimpleEDP protocol.

PDPFactory m_PDPfactory = {}
function that returns a PDP object (only if EXTERNAL selected)

Duration_t discoveryServer_client_syncperiod = {0, 450 * 1000000}
The period for the RTPSParticipant to: send its Discovery Message to its servers check for EDP endpoints
matching

eprosima::fastdds::rtps::RemoteServerList_t m_DiscoveryServers
Discovery Server settings, only needed if use_CLIENT_DiscoveryProtocol=true.

ParticipantFilteringFlags_t ignoreParticipantFlags = ParticipantFilteringFlags::NO_FILTER
Filtering participants out depending on location.

EndpointAttributes

class eprosima::fastrtps::rtps::EndpointAttributes
Structure EndpointAttributes, describing the attributes associated with an RTPS Endpoint.

Public Functions

inline int16_t getUserDefinedID() const
Get the user defined ID

Returns User defined ID

inline int16_t getEntityID() const
Get the entity defined ID

Returns Entity ID

inline void setUserDefinedID(int16_t id)
Set the user defined ID

Parameters id – User defined ID to be set

inline void setEntityID(int16_t id)
Set the entity ID

Parameters id – Entity ID to be set

inline void set_data_sharing_configuration(DataSharingQosPolicy cfg)
Set the DataSharing configuration

Parameters cfg – Configuration to be set

inline const DataSharingQosPolicy &data_sharing_configuration() const
Get the DataSharing configuration

Returns Configuration of data sharing

672 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

EndpointKind_t endpointKind = EndpointKind_t::WRITER
Endpoint kind, default value WRITER.

TopicKind_t topicKind = TopicKind_t::NO_KEY
Topic kind, default value NO_KEY.

ReliabilityKind_t reliabilityKind = ReliabilityKind_t::BEST_EFFORT
Reliability kind, default value BEST_EFFORT.

DurabilityKind_t durabilityKind = DurabilityKind_t::VOLATILE
Durability kind, default value VOLATILE.

GUID_t persistence_guid
GUID used for persistence.

fastdds::rtps::ExternalLocators external_unicast_locators
The collection of external locators to use for communication.

bool ignore_non_matching_locators = false
Whether locators that don’t match with the announced locators should be kept.

LocatorList_t unicastLocatorList
Unicast locator list.

LocatorList_t multicastLocatorList
Multicast locator list.

LocatorList_t remoteLocatorList
Remote locator list.

PropertyPolicy properties
Properties.

OwnershipQosPolicyKind ownershipKind = SHARED_OWNERSHIP_QOS
Ownership.

ExternalLocators

using eprosima::fastdds::rtps::ExternalLocators = std::map<uint8_t, std::map<uint8_t,
std::vector<LocatorWithMask>>, std::greater<uint8_t>>

A collection of LocatorWithMask grouped by externality and cost.

6.30. C++ API Reference 673

Fast DDS Documentation, Release 2.8.2

HistoryAttributes

class eprosima::fastrtps::rtps::HistoryAttributes
Class HistoryAttributes, to specify the attributes of a WriterHistory or a ReaderHistory. This class is only in-
tended to be used with the RTPS API. The Publisher-Subscriber API has other fields to define this values (His-
toryQosPolicy and ResourceLimitsQosPolicy).

Public Functions

inline HistoryAttributes()
Default constructor.

inline HistoryAttributes(MemoryManagementPolicy_t memoryPolicy, uint32_t payload, int32_t initial,
int32_t maxRes)

Constructor

Parameters

• memoryPolicy – Set whether memory can be dynamically reallocated or not

• payload – Maximum payload size. It is used when memory man-
agement policy is PREALLOCATED_MEMORY_MODE or PREALLO-
CATED_WITH_REALLOC_MEMORY_MODE.

• initial – Initial reserved caches. It is used when memory manage-
ment policy is PREALLOCATED_MEMORY_MODE or PREALLO-
CATED_WITH_REALLOC_MEMORY_MODE.

• maxRes – Maximum reserved caches.

inline HistoryAttributes(MemoryManagementPolicy_t memoryPolicy, uint32_t payload, int32_t initial,
int32_t maxRes, int32_t extra)

Constructor

Parameters

• memoryPolicy – Set whether memory can be dynamically reallocated or not

• payload – Maximum payload size. It is used when memory man-
agement policy is PREALLOCATED_MEMORY_MODE or PREALLO-
CATED_WITH_REALLOC_MEMORY_MODE.

• initial – Initial reserved caches. It is used when memory manage-
ment policy is PREALLOCATED_MEMORY_MODE or PREALLO-
CATED_WITH_REALLOC_MEMORY_MODE.

• maxRes – Maximum reserved caches.

• extra – Extra reserved caches.

674 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

MemoryManagementPolicy_t memoryPolicy
Memory management policy.

uint32_t payloadMaxSize
Maximum payload size of the history, default value 500.

int32_t initialReservedCaches
Number of the initial Reserved Caches, default value 500.

int32_t maximumReservedCaches
Maximum number of reserved caches. Default value is 0 that indicates to keep reserving until something
breaks.

int32_t extraReservedCaches
Number of extra caches that can be reserved for other purposes than the history. For example, on a full
history, the writer could give as many as these to be used by the application but they will not be able to be
inserted in the history unless some cache from the history is released.

Default value is 1.

InitialAnnouncementConfig

struct eprosima::fastrtps::rtps::InitialAnnouncementConfig
Struct InitialAnnouncementConfig defines the behavior of the RTPSParticipant initial announcements.

Public Members

uint32_t count = 5u
Number of initial announcements with specific period (default 5)

Duration_t period = {0, 100000000u}
Specific period for initial announcements (default 100ms)

ParticipantFilteringFlags

enum eprosima::fastrtps::rtps::ParticipantFilteringFlags
Filtering flags when discovering participants.

Values:

enumerator NO_FILTER

enumerator FILTER_DIFFERENT_HOST

enumerator FILTER_DIFFERENT_PROCESS

enumerator FILTER_SAME_PROCESS

6.30. C++ API Reference 675

Fast DDS Documentation, Release 2.8.2

PropertyPolicy

class eprosima::fastrtps::rtps::PropertyPolicy

Public Functions

inline const PropertySeq &properties() const
Get properties.

inline PropertySeq &properties()
Set properties.

inline const BinaryPropertySeq &binary_properties() const
Get binary_properties.

inline BinaryPropertySeq &binary_properties()
Set binary_properties.

PropertyPolicyHelper

class eprosima::fastrtps::rtps::PropertyPolicyHelper

Public Static Functions

static PropertyPolicy get_properties_with_prefix(const PropertyPolicy &property_policy, const
std::string &prefix)

Returns only the properties whose name starts with the prefix.

Prefix is removed in returned properties.

Parameters

• property_policy – PropertyPolicy where properties will be searched.

• prefix – Prefix used to search properties.

Returns A copy of properties whose name starts with the prefix.

static size_t length(const PropertyPolicy &property_policy)
Get the length of the property_policy.

static std::string *find_property(PropertyPolicy &property_policy, const std::string &name)
Look for a property_policy by name.

static const std::string *find_property(const PropertyPolicy &property_policy, const std::string &name)
Retrieves a property_policy by name.

676 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReaderAttributes

class eprosima::fastrtps::rtps::ReaderAttributes
Class ReaderAttributes, to define the attributes of a RTPSReader.

Public Members

EndpointAttributes endpoint
Attributes of the associated endpoint.

ReaderTimes times
Times associated with this reader (only for stateful readers)

LivelinessQosPolicyKind liveliness_kind_
Liveliness kind.

Duration_t liveliness_lease_duration
Liveliness lease duration.

bool expectsInlineQos
Indicates if the reader expects Inline qos, default value 0.

bool disable_positive_acks
Disable positive ACKs.

ResourceLimitedContainerConfig matched_writers_allocation
Define the allocation behaviour for matched-writer-dependent collections.

ReaderTimes

class eprosima::fastrtps::rtps::ReaderTimes
Class ReaderTimes, defining the times associated with the Reliable Readers events.

Public Members

Duration_t initialAcknackDelay
Initial AckNack delay. Default value 70ms.

Duration_t heartbeatResponseDelay
Delay to be applied when a HEARTBEAT message is received, default value 5ms.

6.30. C++ API Reference 677

Fast DDS Documentation, Release 2.8.2

RemoteLocatorsAllocationAttributes

struct eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes
Holds limits for collections of remote locators.

Public Members

size_t max_unicast_locators = 4u
Maximum number of unicast locators per remote entity.

This attribute controls the maximum number of unicast locators to keep for each discovered remote entity
(be it a participant, reader of writer). It is recommended to use the highest number of local addresses found
on all the systems belonging to the same domain as this participant.

size_t max_multicast_locators = 1u
Maximum number of multicast locators per remote entity.

This attribute controls the maximum number of multicast locators to keep for each discovered remote entity
(be it a participant, reader of writer). The default value of 1 is usually enough, as it doesn’t make sense to
add more than one multicast locator per entity.

RemoteServerAttributes

class eprosima::fastdds::rtps::RemoteServerAttributes
Class RemoteServerAttributes, to define the attributes of the Discovery Server Protocol.

Public Members

LocatorList metatrafficUnicastLocatorList
Metatraffic Unicast Locator List.

LocatorList metatrafficMulticastLocatorList
Metatraffic Multicast Locator List.

fastrtps::rtps::GuidPrefix_t guidPrefix
Guid prefix.

RemoteServerList_t

typedef std::list<RemoteServerAttributes> eprosima::fastdds::rtps::RemoteServerList_t

678 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

RTPSParticipantAllocationAttributes

struct eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes
Holds allocation limits affecting collections managed by a participant.

Public Functions

inline ResourceLimitedContainerConfig total_readers() const

Returns the allocation config for the total of readers in the system (participants * readers)

inline ResourceLimitedContainerConfig total_writers() const

Returns the allocation config for the total of writers in the system (participants * writers)

Public Members

RemoteLocatorsAllocationAttributes locators
Holds limits for collections of remote locators.

ResourceLimitedContainerConfig participants
Defines the allocation behaviour for collections dependent on the total number of participants.

ResourceLimitedContainerConfig readers
Defines the allocation behaviour for collections dependent on the total number of readers per participant.

ResourceLimitedContainerConfig writers
Defines the allocation behaviour for collections dependent on the total number of writers per participant.

SendBuffersAllocationAttributes send_buffers
Defines the allocation behaviour for the send buffer manager.

VariableLengthDataLimits data_limits
Holds limits for variable-length data.

fastdds::rtps::ContentFilterProperty::AllocationConfiguration content_filter
Defines the allocation behavior of content filter discovery information.

RTPSParticipantAttributes

class eprosima::fastrtps::rtps::RTPSParticipantAttributes
Class RTPSParticipantAttributes used to define different aspects of a RTPSParticipant.

6.30. C++ API Reference 679

Fast DDS Documentation, Release 2.8.2

Public Functions

inline void setName(const char *nam)
Set the name of the participant.

inline const char *getName() const
Get the name of the participant.

Public Members

LocatorList_t defaultUnicastLocatorList
Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case
that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

LocatorList_t defaultMulticastLocatorList
Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the
case that it was defined with NO MulticastLocators. This is usually left empty.

fastdds::rtps::ExternalLocators default_external_unicast_locators
The collection of external locators to use for communication on user created topics.

bool ignore_non_matching_locators = false
Whether locators that don’t match with the announced locators should be kept.

uint32_t sendSocketBufferSize
Send socket buffer size for the send resource.

Zero value indicates to use default system buffer size. Default value: 0.

uint32_t listenSocketBufferSize
Listen socket buffer for all listen resources.

Zero value indicates to use default system buffer size. Default value: 0.

GuidPrefix_t prefix
Optionally allows user to define the GuidPrefix_t.

BuiltinAttributes builtin
Builtin parameters.

PortParameters port
Port Parameters.

std::vector<octet> userData
User Data of the participant.

int32_t participantID
Participant ID.

ThroughputControllerDescriptor throughputController
Throughput controller parameters. Leave default for uncontrolled flow.

680 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Deprecated:
Use flow_controllers on RTPSParticipantAttributes

std::vector<std::shared_ptr<fastdds::rtps::TransportDescriptorInterface>> userTransports
User defined transports to use alongside or in place of builtins.

bool useBuiltinTransports
Set as false to disable the default UDPv4 implementation.

RTPSParticipantAllocationAttributes allocation
Holds allocation limits affecting collections managed by a participant.

PropertyPolicy properties
Property policies.

FlowControllerDescriptorList flow_controllers
Flow controllers.

RTPSWriterPublishMode

enum eprosima::fastrtps::rtps::RTPSWriterPublishMode
Values:

enumerator SYNCHRONOUS_WRITER

enumerator ASYNCHRONOUS_WRITER

SendBuffersAllocationAttributes

struct eprosima::fastrtps::rtps::SendBuffersAllocationAttributes
Holds limits for send buffers allocations.

Public Members

size_t preallocated_number = 0u
Initial number of send buffers to allocate.

This attribute controls the initial number of send buffers to be allocated. The default value of 0 will perform
an initial guess of the number of buffers required, based on the number of threads from which a send
operation could be started.

bool dynamic = false
Whether the number of send buffers is allowed to grow.

This attribute controls how the buffer manager behaves when a send buffer is not available. When true, a
new buffer will be created. When false, it will wait for a buffer to be returned. This is a trade-off between
latency and dynamic allocations.

6.30. C++ API Reference 681

Fast DDS Documentation, Release 2.8.2

SimpleEDPAttributes

class eprosima::fastrtps::rtps::SimpleEDPAttributes
Class SimpleEDPAttributes, to define the attributes of the Simple Endpoint Discovery Protocol.

Public Members

bool use_PublicationWriterANDSubscriptionReader
Default value true.

bool use_PublicationReaderANDSubscriptionWriter
Default value true.

TypeLookupSettings

class eprosima::fastrtps::rtps::TypeLookupSettings
TypeLookupService settings.

Public Members

bool use_client = false
Indicates to use the TypeLookup Service client endpoints.

bool use_server = false
Indicates to use the TypeLookup Service server endpoints.

VariableLengthDataLimits

struct eprosima::fastrtps::rtps::VariableLengthDataLimits
Holds limits for variable-length data.

Public Members

size_t max_properties = 0
Defines the maximum size (in octets) of properties data in the local or remote participant.

size_t max_user_data = 0
Defines the maximum size (in octets) of user data in the local or remote participant.

size_t max_partitions = 0
Defines the maximum size (in octets) of partitions data.

size_t max_datasharing_domains = 0
Defines the maximum size (in elements) of the list of data sharing domain IDs.

682 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

WriterAttributes

class eprosima::fastrtps::rtps::WriterAttributes
Class WriterAttributes, defining the attributes of a RTPSWriter.

Public Members

EndpointAttributes endpoint
Attributes of the associated endpoint.

WriterTimes times
Writer Times (only used for RELIABLE).

fastrtps::LivelinessQosPolicyKind liveliness_kind
Liveliness kind.

Duration_t liveliness_lease_duration
Liveliness lease duration.

Duration_t liveliness_announcement_period
Liveliness announcement period.

RTPSWriterPublishMode mode
Indicates if the Writer is synchronous or asynchronous.

ThroughputControllerDescriptor throughputController
Throughput controller, always the last one to apply.

Deprecated:
Use flow_controllers on RTPSParticipantAttributes

bool disable_heartbeat_piggyback
Disable the sending of heartbeat piggybacks.

ResourceLimitedContainerConfig matched_readers_allocation
Define the allocation behaviour for matched-reader-dependent collections.

bool disable_positive_acks
Disable the sending of positive ACKs.

Duration_t keep_duration
Keep duration to keep a sample before considering it has been acked.

const char *flow_controller_name = fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT
Flow controller name. Default: fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT .

6.30. C++ API Reference 683

Fast DDS Documentation, Release 2.8.2

WriterTimes

struct eprosima::fastrtps::rtps::WriterTimes
Struct WriterTimes, defining the times associated with the Reliable Writers events.

Public Members

Duration_t initialHeartbeatDelay
Initial heartbeat delay. Default value ~11ms.

Duration_t heartbeatPeriod
Periodic HB period, default value 3s.

Duration_t nackResponseDelay
Delay to apply to the response of a ACKNACK message, default value ~5ms.

Duration_t nackSupressionDuration
This time allows the RTPSWriter to ignore nack messages too soon after the data as sent, default value 0s.

Builtin data

ContentFilterProperty

class eprosima::fastdds::rtps::ContentFilterProperty
Information about the content filter being applied by a reader.

Public Functions

inline explicit ContentFilterProperty(const AllocationConfiguration &config)
Construct a ContentFilterProperty.

Parameters config – Allocation configuration for the new object.

Public Members

fastrtps::string_255 content_filtered_topic_name
Name of the content filtered topic on which the reader was created.

fastrtps::string_255 related_topic_name
Name of the related topic being filtered.

fastrtps::string_255 filter_class_name
Class name of the filter being used. May be empty to indicate the ContentFilterProperty is not present.

std::string filter_expression
Filter expression indicating which content the reader wants to receive. May be empty to indicate the Con-
tentFilterProperty is not present.

684 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

fastrtps::ResourceLimitedVector<fastrtps::string_255, std::true_type> expression_parameters
List of values for the parameters present on the filter expression.

struct AllocationConfiguration
Allocation configuration for a ContentFilterProperty.

Public Members

size_t expression_initial_size = 0
Preallocated size of the filter expression.

fastrtps::ResourceLimitedContainerConfig expression_parameters = {0, 100, 1}
Allocation configuration for the list of expression parameters.

Common

BinaryProperty

BinaryProperty

class BinaryProperty

BinaryPropertyHelper

class BinaryPropertyHelper

BinaryPropertySeq

typedef std::vector<BinaryProperty> eprosima::fastrtps::rtps::BinaryPropertySeq

CacheChange

CacheChange_t

struct eprosima::fastrtps::rtps::CacheChange_t
Structure CacheChange_t, contains information on a specific CacheChange.

6.30. C++ API Reference 685

Fast DDS Documentation, Release 2.8.2

Public Functions

inline CacheChange_t()
Default constructor.

Creates an empty CacheChange_t.

inline CacheChange_t(uint32_t payload_size, bool is_untyped = false)
Constructor with payload size

Parameters

• payload_size – Serialized payload size

• is_untyped – Flag to mark the change as untyped.

inline bool copy(const CacheChange_t *ch_ptr)
Copy a different change into this one.

All the elements are copied, included the data, allocating new memory.

Parameters ch_ptr – [in] Pointer to the change.

Returns True if correct.

inline void copy_not_memcpy(const CacheChange_t *ch_ptr)
Copy information form a different change into this one.

All the elements are copied except data.

Parameters ch_ptr – [in] Pointer to the change.

inline uint32_t getFragmentCount() const
Get the number of fragments this change is split into.

Returns number of fragments.

inline uint16_t getFragmentSize() const
Get the size of each fragment this change is split into.

Returns size of fragment (0 means change is not fragmented).

inline bool is_fully_assembled()
Checks if all fragments have been received.

Returns true when change is fully assembled (i.e. no missing fragments).

inline bool contains_first_fragment()
Checks if the first fragment is present.

Returns true when it contains the first fragment. In other case, false.

inline void get_missing_fragments(FragmentNumberSet_t &frag_sns)
Fills a FragmentNumberSet_t with the list of missing fragments.

Parameters frag_sns – [out] FragmentNumberSet_t where result is stored.

inline void setFragmentSize(uint16_t fragment_size, bool create_fragment_list = false)
Set fragment size for this change.

Remark Parameter create_fragment_list should only be true when receiving the first fragment of a change.

Parameters

• fragment_size – Size of fragments.

686 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• create_fragment_list – Whether to create missing fragments list or not.

Public Members

ChangeKind_t kind = ALIVE
Kind of change, default value ALIVE.

GUID_t writerGUID = {}
GUID_t of the writer that generated this change.

InstanceHandle_t instanceHandle = {}
Handle of the data associated with this change.

SequenceNumber_t sequenceNumber = {}
SequenceNumber of the change.

SerializedPayload_t serializedPayload = {}
Serialized Payload associated with the change.

SerializedPayload_t inline_qos = {}
CDR serialization of inlined QoS for this change.

bool isRead = false
Indicates if the cache has been read (only used in READERS)

Time_t sourceTimestamp = {}
Source TimeStamp.

ChangeForReader_t

class eprosima::fastrtps::rtps::ChangeForReader_t
Struct ChangeForReader_t used to represent the state of a specific change with respect to a specific reader, as
well as its relevance.

Public Functions

inline CacheChange_t *getChange() const
Get the cache change

Returns Cache change

6.30. C++ API Reference 687

Fast DDS Documentation, Release 2.8.2

ChangeForReaderCmp

struct ChangeForReaderCmp

ChangeForReaderStatus_t

enum eprosima::fastrtps::rtps::ChangeForReaderStatus_t
Enum ChangeForReaderStatus_t, possible states for a CacheChange_t in a ReaderProxy.

Values:

enumerator UNSENT
UNSENT.

enumerator REQUESTED
REQUESTED.

enumerator UNACKNOWLEDGED
UNACKNOWLEDGED.

enumerator ACKNOWLEDGED
ACKNOWLEDGED.

enumerator UNDERWAY
UNDERWAY.

ChangeKind_t

enum eprosima::fastrtps::rtps::ChangeKind_t
, different types of CacheChange_t.

Values:

enumerator ALIVE
ALIVE.

enumerator NOT_ALIVE_DISPOSED
NOT_ALIVE_DISPOSED.

enumerator NOT_ALIVE_UNREGISTERED
NOT_ALIVE_UNREGISTERED.

enumerator NOT_ALIVE_DISPOSED_UNREGISTERED
NOT_ALIVE_DISPOSED_UNREGISTERED.

688 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

CDRMessage

CDRMessage_t

struct eprosima::fastrtps::rtps::CDRMessage_t
Structure CDRMessage_t, contains a serialized message.

Public Functions

inline explicit CDRMessage_t(uint32_t size)
Constructor with maximum size

Parameters size – Maximum size

inline explicit CDRMessage_t(const SerializedPayload_t &payload)
Constructor to wrap a serialized payload

Parameters payload – Payload to wrap

Public Members

octet *buffer
Pointer to the buffer where the data is stored.

uint32_t pos
Read or write position.

uint32_t max_size
Max size of the message.

uint32_t reserved_size
Size allocated on buffer. May be higher than max_size.

uint32_t length
Current length of the message.

Endianness_t msg_endian
Endianness of the message.

Macro definitions (#define)

RTPSMESSAGE_DEFAULT_SIZE 10500
Max size of RTPS message in bytes.

RTPSMESSAGE_COMMON_RTPS_PAYLOAD_SIZE 536

RTPSMESSAGE_COMMON_DATA_PAYLOAD_SIZE 10000

RTPSMESSAGE_HEADER_SIZE 20

RTPSMESSAGE_SUBMESSAGEHEADER_SIZE 4

6.30. C++ API Reference 689

Fast DDS Documentation, Release 2.8.2

RTPSMESSAGE_DATA_EXTRA_INLINEQOS_SIZE 4

RTPSMESSAGE_INFOTS_SIZE 12

RTPSMESSAGE_OCTETSTOINLINEQOS_DATASUBMSG 16

RTPSMESSAGE_OCTETSTOINLINEQOS_DATAFRAGSUBMSG 28

RTPSMESSAGE_DATA_MIN_LENGTH 24

EntityId

Const values

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_Unknown = ENTITYID_UNKNOWN
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SPDPReader =
ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SPDPWriter =
ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPPubWriter =
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPPubReader =
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPSubWriter =
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_SEDPSubReader =
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_RTPSParticipant = ENTITYID_RTPSParticipant
const EntityId_t eprosima::fastrtps::rtps::c_EntityId_WriterLiveliness =
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_ReaderLiveliness =
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER

const EntityId_t eprosima::fastrtps::rtps::participant_stateless_message_writer_entity_id =
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER

const EntityId_t eprosima::fastrtps::rtps::participant_stateless_message_reader_entity_id =
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_writer =
ENTITYID_TL_SVC_REQ_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_reader =
ENTITYID_TL_SVC_REQ_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_writer =
ENTITYID_TL_SVC_REPLY_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_reader =
ENTITYID_TL_SVC_REPLY_READER

const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_publications_secure_writer =
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER

690 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_publications_secure_reader =
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER

const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_writer =
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER

const EntityId_t eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_reader =
ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER

const EntityId_t
eprosima::fastrtps::rtps::participant_volatile_message_secure_writer_entity_id =
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER

const EntityId_t
eprosima::fastrtps::rtps::participant_volatile_message_secure_reader_entity_id =
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_WriterLivelinessSecure =
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER

const EntityId_t eprosima::fastrtps::rtps::c_EntityId_ReaderLivelinessSecure =
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER

Macro definitions (#define)

ENTITYID_UNKNOWN 0x00000000

ENTITYID_RTPSParticipant 0x000001c1

ENTITYID_SEDP_BUILTIN_TOPIC_WRITER 0x000002c2

ENTITYID_SEDP_BUILTIN_TOPIC_READER 0x000002c7

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER 0x000003c2

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER 0x000003c7

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER 0x000004c2

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER 0x000004c7

ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER 0x000100c2

ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER 0x000100c7

ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER 0x000200C2

ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER 0x000200C7

ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER 0x000201C3

ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER 0x000201C4

ENTITYID_TL_SVC_REQ_WRITER 0x000300C3

ENTITYID_TL_SVC_REQ_READER 0x000300C4

ENTITYID_TL_SVC_REPLY_WRITER 0x000301C3

ENTITYID_TL_SVC_REPLY_READER 0x000301C4

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER 0xff0003c2

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER 0xff0003c7

6.30. C++ API Reference 691

Fast DDS Documentation, Release 2.8.2

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER 0xff0004c2

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER 0xff0004c7

ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER 0xff0200c2

ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER 0xff0200c7

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER 0xff0202C3

ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER 0xff0202C4

ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_WRITER 0xff0101c2

ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_READER 0xff0101c7

EntityId_t

struct eprosima::fastrtps::rtps::EntityId_t
Structure EntityId_t, entity id part of GUID_t.

Public Functions

inline EntityId_t()
Default constructor. Unknown entity.

inline EntityId_t(uint32_t id)
Main constructor.

Parameters id – Entity id

inline EntityId_t(const EntityId_t &id)
Copy constructor.

inline EntityId_t(EntityId_t &&id)
Move constructor.

inline EntityId_t &operator=(uint32_t id)
Assignment operator.

Parameters id – Entity id to copy

inline uint32_t to_uint32() const
conversion to uint32_t

Returns uint32_t representation

inline bool operator<(const EntityId_t &other) const
Entity Id minor operator

Parameters other – Second entity id to compare

Returns True if other is higher than this

692 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Static Functions

static inline int cmp(const EntityId_t &entity1, const EntityId_t &entity2)
Entity Id compare static method.

Parameters

• entity1 – First entity id to compare

• entity2 – Second entity id to compare

Returns 0 if entity1 is equal to entity2 .

Returns < 0 if entity1 is lower than entity2 .

Returns > 0 if entity1 is higher than entity2 .

EntityId_t Operators

inline bool eprosima::fastrtps::rtps::operator==(EntityId_t &id1, const uint32_t id2)
Entity Id comparison operator

Parameters

• id1 – EntityId to compare

• id2 – ID prefix to compare

Returns True if equal

inline bool eprosima::fastrtps::rtps::operator==(const EntityId_t &id1, const EntityId_t &id2)
Entity Id comparison operator

Parameters

• id1 – First EntityId to compare

• id2 – Second EntityId to compare

Returns True if equal

inline bool eprosima::fastrtps::rtps::operator!=(const EntityId_t &id1, const EntityId_t &id2)
Guid prefix comparison operator

Parameters

• id1 – First EntityId to compare

• id2 – Second EntityId to compare

Returns True if not equal

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const EntityId_t &enI)

inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, EntityId_t &enP)

6.30. C++ API Reference 693

Fast DDS Documentation, Release 2.8.2

FragmentNumber

FragmentNumber_t

using eprosima::fastrtps::rtps::FragmentNumber_t = uint32_t

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const
FragmentNumberSet_t &fns)

FragmentNumberSet_t

using eprosima::fastrtps::rtps::FragmentNumberSet_t = BitmapRange<FragmentNumber_t>
Structure FragmentNumberSet_t, contains a group of fragmentnumbers.

Guid

c_Guid_Unknown

const GUID_t eprosima::fastrtps::rtps::c_Guid_Unknown

GUID_t

struct eprosima::fastrtps::rtps::GUID_t
Structure GUID_t, entity identifier, unique in DDS-RTPS Domain.

Public Functions

inline GUID_t() noexcept
Default constructor.

Contructs an unknown GUID.

inline GUID_t(const GuidPrefix_t &guid_prefix, uint32_t id) noexcept
Construct

Parameters

• guid_prefix – Guid prefix

• id – Entity id

inline GUID_t(const GuidPrefix_t &guid_prefix, const EntityId_t &entity_id) noexcept

Parameters

• guid_prefix – Guid prefix

• entity_id – Entity id

694 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline bool is_on_same_host_as(const GUID_t &other_guid) const
Checks whether this guid is for an entity on the same host as another guid.

Parameters other_guid – GUID_t to compare to.

Returns true when this guid is on the same host, false otherwise.

inline bool is_on_same_process_as(const GUID_t &other_guid) const
Checks whether this guid is for an entity on the same host and process as another guid.

Parameters other_guid – GUID_t to compare to.

Returns true when this guid is on the same host and process, false otherwise.

inline bool is_builtin() const
Checks whether this guid corresponds to a builtin entity.

Returns true when this guid corresponds to a builtin entity, false otherwise.

Public Members

GuidPrefix_t guidPrefix
Guid prefix.

EntityId_t entityId
Entity id.

GUID_t Operators

inline bool eprosima::fastrtps::rtps::operator==(const GUID_t &g1, const GUID_t &g2)
GUID comparison operator

Parameters

• g1 – First GUID to compare

• g2 – Second GUID to compare

Returns True if equal

inline bool eprosima::fastrtps::rtps::operator!=(const GUID_t &g1, const GUID_t &g2)
GUID comparison operator

Parameters

• g1 – First GUID to compare

• g2 – Second GUID to compare

Returns True if not equal

inline bool eprosima::fastrtps::rtps::operator<(const GUID_t &g1, const GUID_t &g2)

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const GUID_t &guid)
Stream operator, prints a GUID.

Parameters

• output – Output stream.

• guid – GUID_t to print.

6.30. C++ API Reference 695

Fast DDS Documentation, Release 2.8.2

Returns Stream operator.

inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, GUID_t &guid)
Stream operator, retrieves a GUID.

Parameters

• input – Input stream.

• guid – GUID_t to print.

Returns Stream operator.

GuidPrefix

c_GuidPrefix_Unknown

const GuidPrefix_t eprosima::fastrtps::rtps::c_GuidPrefix_Unknown

GuidPrefix_t

struct eprosima::fastrtps::rtps::GuidPrefix_t
Structure GuidPrefix_t, Guid Prefix of GUID_t.

Public Functions

inline GuidPrefix_t()
Default constructor. Set the Guid prefix to 0.

inline bool operator==(const GuidPrefix_t &prefix) const
Guid prefix comparison operator

Parameters prefix – guid prefix to compare

Returns True if the guid prefixes are equal

inline bool operator!=(const GuidPrefix_t &prefix) const
Guid prefix comparison operator

Parameters prefix – Second guid prefix to compare

Returns True if the guid prefixes are not equal

inline bool operator<(const GuidPrefix_t &prefix) const
Guid prefix minor operator

Parameters prefix – Second guid prefix to compare

Returns True if prefix is higher than this

696 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Static Functions

static inline int cmp(const GuidPrefix_t &prefix1, const GuidPrefix_t &prefix2)
Guid Prefix compare static method.

Parameters

• prefix1 – First guid prefix to compare

• prefix2 – Second guid prefix to compare

Returns 0 if prefix1 is equal to prefix2 .

Returns < 0 if prefix1 is lower than prefix2 .

Returns > 0 if prefix1 is higher than prefix2 .

GuidPrefix_t Operators

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const GuidPrefix_t
&guiP)

inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, GuidPrefix_t &guiP)

InstanceHandle

c_InstanceHandle_Unknown

const InstanceHandle_t eprosima::fastrtps::rtps::c_InstanceHandle_Unknown

InstanceHandle_t

struct eprosima::fastrtps::rtps::InstanceHandle_t
Struct InstanceHandle_t, used to contain the key for WITH_KEY topics.

Public Functions

InstanceHandle_t &operator=(const InstanceHandle_t &ihandle) noexcept = default
Assignment operator

Parameters ihandle – Instance handle to copy the data from

inline InstanceHandle_t &operator=(const GUID_t &guid) noexcept
Assignment operator

Parameters guid – GUID to copy the data from

inline bool isDefined() const noexcept
Know if the instance handle is defined

Returns True if the values are not zero.

6.30. C++ API Reference 697

Fast DDS Documentation, Release 2.8.2

Public Members

InstanceHandleValue_t value
Value.

InstanceHandle_t Operators

inline bool eprosima::fastrtps::rtps::operator==(const InstanceHandle_t &ihandle1, const
InstanceHandle_t &ihandle2) noexcept

Comparison operator

Parameters

• ihandle1 – First InstanceHandle_t to compare

• ihandle2 – Second InstanceHandle_t to compare

Returns True if equal

inline bool eprosima::fastrtps::rtps::operator!=(const InstanceHandle_t &ihandle1, const
InstanceHandle_t &ihandle2) noexcept

Comparison operator.

Parameters

• ihandle1 – First InstanceHandle_t to compare

• ihandle2 – Second InstanceHandle_t to compare

Returns True if not equal

inline bool eprosima::fastrtps::rtps::operator<(const InstanceHandle_t &h1, const InstanceHandle_t
&h2) noexcept

Comparison operator: checks if a InstanceHandle_t is less than another.

Parameters

• h1 – First InstanceHandle_t to compare.

• h2 – Second InstanceHandle_t to compare.

Returns True if the first InstanceHandle_t is less than the second.

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const InstanceHandle_t
&iHandle)

Stream operator: print an InstanceHandle_t.

Parameters

• output – Output stream.

• iHandle – InstanceHandle_t to print.

Returns Stream operator.

inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, InstanceHandle_t
&iHandle)

Stream operator: retrieve an InstanceHandle_t.

Parameters

• input – Input stream.

• iHandle – InstanceHandle_t that will receive the input as its new value.

698 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns Stream operator.

inline void eprosima::fastrtps::rtps::iHandle2GUID(GUID_t &guid, const InstanceHandle_t &ihandle)
noexcept

Convert InstanceHandle_t to GUID

Parameters

• guid – GUID to store the results

• ihandle – InstanceHandle_t to copy

inline GUID_t eprosima::fastrtps::rtps::iHandle2GUID(const InstanceHandle_t &ihandle) noexcept
Convert GUID to InstanceHandle_t

Parameters ihandle – InstanceHandle_t to store the results

Returns GUID_t

Locator

Macro definitions (#define)

}]
Initialize locator with invalid values.

LOCATOR_KIND_INVALID -1
Invalid locator kind.

LOCATOR_ADDRESS_INVALID(a) {std::memset(a, 0x00, 16 * sizeof(octet));}
Set locator IP address to 0.

LOCATOR_PORT_INVALID 0
Invalid locator port.

LOCATOR_KIND_RESERVED 0
Reserved locator kind.

LOCATOR_KIND_UDPv4 1
UDP over IPv4 locator kind.

LOCATOR_KIND_UDPv6 2
UDP over IPv6 locator kind.

LOCATOR_KIND_TCPv4 4
TCP over IPv4 kind.

LOCATOR_KIND_TCPv6 8
TCP over IPv6 locator kind.

LOCATOR_KIND_SHM 16
Shared memory locator kind.

6.30. C++ API Reference 699

Fast DDS Documentation, Release 2.8.2

IsAddressDefined

inline bool eprosima::fastrtps::rtps::IsAddressDefined(const Locator_t &loc)
Auxiliary method to check that IP address is not invalid (0).

Parameters loc – Locator which IP address is going to be checked.

Returns true if IP address is defined (not 0).

Returns false otherwise.

IsLocatorValid

inline bool eprosima::fastrtps::rtps::IsLocatorValid(const Locator_t &loc)
Auxiliary method to check that locator kind is not LOCATOR_KIND_INVALID (-1).

Parameters loc – Locator to be checked.

Returns true if the locator kind is not LOCATOR_KIND_INVALID.

Returns false otherwise.

Locator_t

class eprosima::fastrtps::rtps::Locator_t
Class Locator_t, uniquely identifies a communication channel for a particular transport. For example, an address
+ port combination in the case of UDP.

Subclassed by eprosima::fastdds::rtps::LocatorWithMask

Public Functions

inline Locator_t()
Default constructor.

inline Locator_t(Locator_t &&loc)
Move constructor.

inline Locator_t(const Locator_t &loc)
Copy constructor.

inline Locator_t(uint32_t portin)
Port constructor.

inline Locator_t(int32_t kindin, uint32_t portin)
Kind and port constructor.

inline Locator_t &operator=(const Locator_t &loc)
Copy assignment.

inline bool set_address(const Locator_t &other)
Set the locator IP address using another locator.

Parameters other – Locator which IP address is used to set this locator IP address.

Returns always true.

700 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline octet *get_address()
Getter for the locator IP address.

Returns IP address as octet pointer.

inline octet get_address(uint16_t field) const
Getter for a specific field of the locator IP address.

Parameters field – IP address element to be accessed.

Returns Octet value for the specific IP address element.

inline void set_Invalid_Address()
Automatic setter for setting locator IP address to invalid address (0).

Public Members

int32_t kind
Specifies the locator type. Valid values are:

LOCATOR_KIND_UDPv4

LOCATOR_KIND_UDPv6

LOCATOR_KIND_TCPv4

LOCATOR_KIND_TCPv6

LOCATOR_KIND_SHM

uint32_t port
Network port.

octet address[16]
IP address.

LocatorList

class eprosima::fastdds::rtps::LocatorList
Class LocatorList, a Locator vector that doesn’t allow duplicates.

Public Functions

inline LocatorList()
Constructor.

inline ~LocatorList()
Destructor.

inline LocatorList(const LocatorList &list)
Copy constructor.

inline LocatorList(LocatorList &&list)
Move constructor.

inline LocatorList &operator=(const LocatorList &list)
Copy assignment.

6.30. C++ API Reference 701

Fast DDS Documentation, Release 2.8.2

inline LocatorList &operator=(LocatorList &&list)
Move assignment.

inline bool operator==(const LocatorList &locator_list) const
Equal to operator.

inline LocatorListIterator begin()
Return an iterator to the beginning.

Returns LocatorListIterator iterator to the first locator.

inline LocatorListIterator end()
Return an iterator to the end.

Returns LocatorListIterator iterator to the element following the last element.

inline LocatorListConstIterator begin() const
Return a constant iterator to the beginning.

Returns LocatorListConstIterator iterator to the first locator.

inline LocatorListConstIterator end() const
Return a constant iterator to the end.

Returns LocatorListConstIterator iterator to the element following the last element.

inline size_t size() const
Return the number of locators.

Returns size_t The number of locators in the container.

inline LocatorList &assign(const LocatorList &list)
Replace the contents of the container.

Parameters list – New content to be saved into the container.

Returns LocatorList& reference to the container with the replaced content.

inline void clear()
Erase all locators from the container.

inline void reserve(size_t num)
Reserve storage increasing the capacity of the vector.

Parameters num – new capacity of the vector, in number of elements.

inline void resize(size_t num)
Resize the container to contain num locators. If the current size is greater than num, the container is re-
duced to its first num locators. If the current size is less than count, additional default-inserted locators are
appended.

Parameters num – new size of the container.

inline void push_back(const Locator &loc)
Add locator to the end if not found within the list.

Parameters loc – locator to be appended.

inline void push_back(const LocatorList &locList)
Add several locators to the end if not already present within the list.

Parameters locList – LocatorList with the locators to be appended.

inline bool empty() const
Check that the container has no locators.

702 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns true if the container is empty. False otherwise.

inline void erase(const Locator &loc)
Erase the specified locator from the container.

Parameters loc – Locator to be removed.

inline bool isValid() const
Check that every locator contained in the list is not LOCATOR_KIND_INVALID.

Returns true if all locators are valid. False otherwise.

inline void swap(LocatorList &locatorList)
exchange the content of the container.

Parameters locatorList – container to exchange the contents with.

LocatorListConstIterator

typedef std::vector<Locator>::const_iterator eprosima::fastdds::rtps::LocatorListConstIterator
Constant iterator to iterate over a vector of locators.

LocatorListIterator

typedef std::vector<Locator>::iterator eprosima::fastdds::rtps::LocatorListIterator
Iterator to iterate over a vector of locators.

LocatorsIterator

struct eprosima::fastdds::rtps::LocatorsIterator
Provides a Locator’s iterator interface that can be used by different Locator’s containers

Subclassed by eprosima::fastdds::rtps::Locators, eprosima::fastrtps::rtps::LocatorSelector::iterator

Public Functions

virtual LocatorsIterator &operator++() = 0
Increment operator.

Returns LocatorsIterator& reference to the next LocatorsIterator.

virtual bool operator==(const LocatorsIterator &other) const = 0
Equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if equal.

Returns false otherwise.

virtual bool operator!=(const LocatorsIterator &other) const = 0
Not equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if not equal.

6.30. C++ API Reference 703

Fast DDS Documentation, Release 2.8.2

Returns false otherwise.

virtual const Locator &operator*() const = 0
Dereference operator.

Returns const Locator& Reference to the locator pointed by the LocatorsIterator.

Locators

class eprosima::fastdds::rtps::Locators : public eprosima::fastdds::rtps::LocatorsIterator
Adapter class that provides a LocatorsIterator interface from a LocatorListConstIterator

Public Functions

inline Locators(const LocatorListConstIterator &it)
Constructor.

inline Locators(const Locators &other)
Copy constructor.

inline virtual LocatorsIterator &operator++()
Increment operator.

Returns LocatorsIterator& reference to the next LocatorsIterator.

inline virtual bool operator==(const LocatorsIterator &other) const
Equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if equal.

Returns false otherwise.

inline virtual bool operator!=(const LocatorsIterator &other) const
Not equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if not equal.

Returns false otherwise.

inline virtual const Locator &operator*() const
Dereference operator.

Returns const Locator& Reference to the locator pointed by the LocatorsIterator.

Locator Operators

inline bool eprosima::fastrtps::rtps::operator<(const Locator_t &loc1, const Locator_t &loc2)
Less than operator.

Parameters

• loc1 – Left hand side locator being compared.

• loc2 – Right hand side locator being compared.

Returns true if loc1 is less than loc2.

704 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns false otherwise.

inline bool eprosima::fastrtps::rtps::operator==(const Locator_t &loc1, const Locator_t &loc2)
Equal to operator.

Parameters

• loc1 – Left hand side locator being compared.

• loc2 – Right hand side locator being compared.

Returns true if loc1 is equal to loc2.

Returns false otherwise.

inline bool eprosima::fastrtps::rtps::operator!=(const Locator_t &loc1, const Locator_t &loc2)
Not equal to operator.

Parameters

• loc1 – Left hand side locator being compared.

• loc2 – Right hand side locator being compared.

Returns true if loc1 is not equal to loc2.

Returns false otherwise.

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const Locator_t &loc)
Insertion operator: serialize a locator The serialization format is kind:[address]:port kind must be one of the
following:

• UDPv4

• UDPv6

• TCPv4

• TCPv6

• SHM address IP address unless kind is SHM port number

Parameters

• output – Output stream where the serialized locator is appended.

• loc – Locator to be serialized/inserted.

Returns std::ostream& Reference to the output stream with the serialized locator appended.

inline std::istream &eprosima::fastrtps::rtps::operator>>(std::istream &input, Locator_t &loc)
Extraction operator: deserialize a locator The deserialization format is kind:[address]:port kind must be one of
the following:

• UDPv4

• UDPv6

• TCPv4

• TCPv6

• SHM address must be either a name which can be resolved by DNS or the IP address unless kind is SHM
port number

6.30. C++ API Reference 705

Fast DDS Documentation, Release 2.8.2

Parameters

• input – Input stream where the locator to be deserialized is located.

• loc – Locator where the deserialized locator is saved.

Returns std::istream& Reference to the input stream after extracting the locator.

inline std::ostream &eprosima::fastdds::rtps::operator<<(std::ostream &output, const LocatorList
&locList)

Insertion operator: serialize a locator list. The deserialization format is [locator1,locator2,. . . ,locatorN]. Each
individual locator within the list must follow the serialization format explained in the locator insertion operator.

Parameters

• output – Output stream where the serialized locator list is appended.

• locList – Locator list to be serialized/inserted.

Returns std::ostream& Reference to the output stream with the serialized locator list appended.

inline std::istream &eprosima::fastdds::rtps::operator>>(std::istream &input, LocatorList &locList)
Extraction operator: deserialize a list of locators. The serialization format is [locator1,locator2,. . . ,locatorN].
Each individual locator within the list must follow the deserialization format explained in the locator extraction
operator.

Parameters

• input – Input stream where the locator list to be deserialized is located.

• locList – Locator list where the deserialized locators are saved.

Returns std::istream& Reference to the input stream after extracting the locator list.

static inline bool eprosima::fastrtps::rtps::operator==(const ResourceLimitedVector<Locator_t> &lhs,
const ResourceLimitedVector<Locator_t> &rhs)

Equal to operator to compare two locator lists.

Parameters

• lhs – Locator list to be compared.

• rhs – Other locator list to be compared.

Returns true if the list are equal.

Returns false otherwise.

LocatorSelectorEntry

struct eprosima::fastrtps::rtps::LocatorSelectorEntry
An entry for the LocatorSelector.

This class holds the locators of a remote endpoint along with data required for the locator selection algorithm.
Can be easily integrated inside other classes, such as ReaderProxyData and WriterProxyData.

706 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline LocatorSelectorEntry(size_t max_unicast_locators, size_t max_multicast_locators)
Construct a LocatorSelectorEntry.

Parameters

• max_unicast_locators – Maximum number of unicast locators to hold.

• max_multicast_locators – Maximum number of multicast locators to hold.

inline void enable(bool should_enable)
Set the enabled value.

Parameters should_enable – Whether this entry should be enabled.

inline void reset()
Reset the selections.

Public Members

GUID_t remote_guid
GUID of the remote entity.

ResourceLimitedVector<Locator_t> unicast
List of unicast locators to send data to the remote entity.

ResourceLimitedVector<Locator_t> multicast
List of multicast locators to send data to the remote entity.

EntryState state
State of the entry.

bool enabled
Indicates whether this entry should be taken into consideration.

bool transport_should_process
A temporary value for each transport to help optimizing some use cases.

struct EntryState
Holds the selection state of the locators held by a LocatorSelectorEntry

Public Functions

inline EntryState(size_t max_unicast_locators, size_t max_multicast_locators)
Construct an EntryState object.

Parameters
• max_unicast_locators – Maximum number of unicast locators to held by parent Lo-

catorSelectorEntry.
• max_multicast_locators – Maximum number of multicast locators to held by parent

LocatorSelectorEntry.

6.30. C++ API Reference 707

Fast DDS Documentation, Release 2.8.2

Public Members

ResourceLimitedVector<size_t> unicast
Unicast locators selection state.

ResourceLimitedVector<size_t> multicast
Multicast locators selection state.

LocatorSelector

class eprosima::fastrtps::rtps::LocatorSelector
A class used for the efficient selection of locators when sending data to multiple entities.

Algorithm:

• Entries are added/removed with add_entry/remove_entry when matched/unmatched.

• When data is to be sent:

– A reference to this object is passed to the message group

– For each submessage:

∗ A call to reset is performed

∗ A call to enable is performed per desired destination

∗ If state_has_changed() returns true:

· the message group is flushed

· selection_start is called

· for each transport:

· transport_starts is called

· transport handles the selection state of each entry

· select may be called

∗ Submessage is added to the message group

Public Functions

inline LocatorSelector(const ResourceLimitedContainerConfig &entries_allocation)
Construct a LocatorSelector.

Parameters entries_allocation – Allocation configuration regarding the number of re-
mote entities.

inline void clear()
Clears all internal data.

inline bool add_entry(LocatorSelectorEntry *entry)
Add an entry to this selector.

Parameters entry – Pointer to the LocatorSelectorEntry to add.

inline bool remove_entry(const GUID_t &guid)
Remove an entry from this selector.

708 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters guid – Identifier of the entry to be removed.

inline void reset(bool enable_all)
Reset the enabling state of the selector.

Parameters enable_all – Indicates whether entries should be initially enabled.

inline void enable(const GUID_t &guid)
Enable an entry given its GUID.

Parameters guid – GUID of the entry to enable.

inline bool state_has_changed() const
Check if enabling state has changed.

Returns true if the enabling state has changed, false otherwise.

inline void selection_start()
Reset the selection state of the selector.

inline ResourceLimitedVector<LocatorSelectorEntry*> &transport_starts()
Called when the selection algorithm starts for a specific transport.

Will set the temporary transport_should_process flag for all enabled entries.

Returns a reference to the entries collection.

inline void select(size_t index)
Marks an entry as selected.

Parameters index – The index of the entry to mark as selected.

inline size_t selected_size() const
Count the number of selected locators.

Returns the number of selected locators.

inline bool is_selected(const Locator_t locator) const
Check if a locator is present in the selections of this object.

Parameters locator – The locator to be checked.

Returns True if the locator has been selected, false otherwise.

template<class UnaryPredicate>
inline void for_each(UnaryPredicate action) const

Performs an action on each selected locator.

Parameters action – Unary function that accepts a locator as argument. The function shall
not modify its argument. This can either be a function pointer or a function object.

class iterator : public eprosima::fastdds::rtps::LocatorsIterator

6.30. C++ API Reference 709

Fast DDS Documentation, Release 2.8.2

Public Functions

inline virtual iterator &operator++()
Increment operator.

Returns LocatorsIterator& reference to the next LocatorsIterator.

inline virtual bool operator==(const LocatorsIterator &other) const
Equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if equal.

Returns false otherwise.

inline virtual bool operator!=(const LocatorsIterator &other) const
Not equal to operator.

Parameters other – LocatorsIterator to compare.

Returns true if not equal.

Returns false otherwise.

inline virtual reference operator*() const
Dereference operator.

Returns const Locator& Reference to the locator pointed by the LocatorsIterator.

struct IteratorIndex

LocatorWithMask

class eprosima::fastdds::rtps::LocatorWithMask : public eprosima::fastrtps::rtps::Locator_t
A Locator with a mask that defines the number of significant bits of its address.

Public Functions

inline uint8_t mask() const
Get the number of significant bits on the address of this locator.

Returns number of significant bits on the address of this locator.

inline void mask(uint8_t mask)
Set the number of significant bits on the address of this locator.

Parameters mask – number of significant bits on the address of this locator.

710 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

MatchingInfo

MatchingInfo

class eprosima::fastrtps::rtps::MatchingInfo
Class MatchingInfo contains information about the matching between two endpoints.

Public Functions

inline MatchingInfo()
Default constructor.

inline MatchingInfo(MatchingStatus stat, const GUID_t &guid)

Parameters

• stat – Status

• guid – GUID

Public Members

MatchingStatus status
Status.

GUID_t remoteEndpointGuid
Remote endpoint GUID.

MatchingStatus

enum eprosima::fastrtps::rtps::MatchingStatus
, indicates whether the matched publication/subscription method of the PublisherListener or SubscriberListener
has been called for a matching or a removal of a remote endpoint.

Values:

enumerator MATCHED_MATCHING
MATCHED_MATCHING, new publisher/subscriber found.

enumerator REMOVED_MATCHING
REMOVED_MATCHING, publisher/subscriber removed.

6.30. C++ API Reference 711

Fast DDS Documentation, Release 2.8.2

PortParameters

class eprosima::fastrtps::rtps::PortParameters
Class PortParameters, to define the port parameters and gains related with the RTPS protocol.

Public Functions

inline uint32_t getMulticastPort(uint32_t domainId) const
Get a multicast port based on the domain ID.

Parameters domainId – Domain ID.

Returns Multicast port

inline uint32_t getUnicastPort(uint32_t domainId, uint32_t RTPSParticipantID) const
Get a unicast port based on the domain ID and the participant ID.

Parameters

• domainId – Domain ID.

• RTPSParticipantID – Participant ID.

Returns Unicast port

Public Members

uint16_t portBase
PortBase, default value 7400.

uint16_t domainIDGain
DomainID gain, default value 250.

uint16_t participantIDGain
ParticipantID gain, default value 2.

uint16_t offsetd0
Offset d0, default value 0.

uint16_t offsetd1
Offset d1, default value 10.

uint16_t offsetd2
Offset d2, default value 1.

uint16_t offsetd3
Offset d3, default value 11.

712 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Property

Property

class Property

PropertyHelper

class PropertyHelper

PropertySeq

typedef std::vector<Property> eprosima::fastrtps::rtps::PropertySeq

RemoteLocators

RemoteLocators Operators

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const RemoteLocatorList
&remote_locators)

RemoteLocatorList

struct eprosima::fastrtps::rtps::RemoteLocatorList
Holds information about the locators of a remote entity.

Public Functions

inline RemoteLocatorList()
Default constructor of RemoteLocatorList for deserialize.

inline RemoteLocatorList(size_t max_unicast_locators, size_t max_multicast_locators)
Construct a RemoteLocatorList.

Parameters

• max_unicast_locators – Maximum number of unicast locators to hold.

• max_multicast_locators – Maximum number of multicast locators to hold.

inline RemoteLocatorList(const RemoteLocatorList &other)
Copy-construct a RemoteLocatorList.

Parameters other – RemoteLocatorList to copy data from.

6.30. C++ API Reference 713

Fast DDS Documentation, Release 2.8.2

inline RemoteLocatorList &operator=(const RemoteLocatorList &other)
Assign locator values from other RemoteLocatorList.

Remark Using the assignment operator is different from copy-constructing as in the first case the con-
figuration with the maximum number of locators is not copied. This means that, for two lists with
different maximum number of locators, the expression (a = b) == b may not be true.

Parameters other – RemoteLocatorList to copy data from.

inline void add_unicast_locator(const Locator_t &locator)
Adds a locator to the unicast list.

If the locator already exists in the unicast list, or the maximum number of unicast locators has been reached,
the new locator is silently discarded.

Parameters locator – Unicast locator to be added.

inline void add_multicast_locator(const Locator_t &locator)
Adds a locator to the multicast list.

If the locator already exists in the multicast list, or the maximum number of multicast locators has been
reached, the new locator is silently discarded.

Parameters locator – Multicast locator to be added.

Public Members

ResourceLimitedVector<Locator_t> unicast
List of unicast locators.

ResourceLimitedVector<Locator_t> multicast
List of multicast locators.

SampleIdentity

class eprosima::fastrtps::rtps::SampleIdentity
This class is used to specify a sample.

Public Functions

inline SampleIdentity()
Default constructor.

Constructs an unknown SampleIdentity.

inline SampleIdentity(const SampleIdentity &sample_id)
Copy constructor.

inline SampleIdentity(SampleIdentity &&sample_id)
Move constructor.

inline SampleIdentity &operator=(const SampleIdentity &sample_id)
Assignment operator.

714 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline SampleIdentity &operator=(SampleIdentity &&sample_id)
Move constructor.

inline bool operator<(const SampleIdentity &sample) const
To allow using SampleIdentity as map key.

Parameters sample –

Returns

SequenceNumber

c_SequenceNumber_Unknown

const SequenceNumber_t eprosima::fastrtps::rtps::c_SequenceNumber_Unknown = {-1, 0}

SequenceNumber_t Operators

inline bool eprosima::fastrtps::rtps::operator==(const SequenceNumber_t &sn1, const
SequenceNumber_t &sn2) noexcept

Compares two SequenceNumber_t.

Parameters

• sn1 – First SequenceNumber_t to compare

• sn2 – Second SequenceNumber_t to compare

Returns True if equal

inline bool eprosima::fastrtps::rtps::operator!=(const SequenceNumber_t &sn1, const
SequenceNumber_t &sn2) noexcept

Compares two SequenceNumber_t.

Parameters

• sn1 – First SequenceNumber_t to compare

• sn2 – Second SequenceNumber_t to compare

Returns True if not equal

inline bool eprosima::fastrtps::rtps::operator>(const SequenceNumber_t &seq1, const
SequenceNumber_t &seq2) noexcept

Checks if a SequenceNumber_t is greater than other.

Parameters

• seq1 – First SequenceNumber_t to compare

• seq2 – Second SequenceNumber_t to compare

Returns True if the first SequenceNumber_t is greater than the second

inline bool eprosima::fastrtps::rtps::operator<(const SequenceNumber_t &seq1, const
SequenceNumber_t &seq2) noexcept

Checks if a SequenceNumber_t is less than other.

Parameters

• seq1 – First SequenceNumber_t to compare

6.30. C++ API Reference 715

Fast DDS Documentation, Release 2.8.2

• seq2 – Second SequenceNumber_t to compare

Returns True if the first SequenceNumber_t is less than the second

inline bool eprosima::fastrtps::rtps::operator>=(const SequenceNumber_t &seq1, const
SequenceNumber_t &seq2) noexcept

Checks if a SequenceNumber_t is greater or equal than other.

Parameters

• seq1 – First SequenceNumber_t to compare

• seq2 – Second SequenceNumber_t to compare

Returns True if the first SequenceNumber_t is greater or equal than the second

inline bool eprosima::fastrtps::rtps::operator<=(const SequenceNumber_t &seq1, const
SequenceNumber_t &seq2) noexcept

Checks if a SequenceNumber_t is less or equal than other.

Parameters

• seq1 – First SequenceNumber_t to compare

• seq2 – Second SequenceNumber_t to compare

Returns True if the first SequenceNumber_t is less or equal than the second

inline SequenceNumber_t eprosima::fastrtps::rtps::operator-(const SequenceNumber_t &seq, const
uint32_t inc) noexcept

Subtract one uint32_t from a SequenceNumber_t

Parameters

• seq – Base SequenceNumber_t

• inc – uint32_t to subtract

Returns Result of the subtraction

inline SequenceNumber_t eprosima::fastrtps::rtps::operator+(const SequenceNumber_t &seq, const
uint32_t inc) noexcept

Add one uint32_t to a SequenceNumber_t

Parameters

• seq – [in] Base sequence number

• inc – value to add to the base

Returns Result of the addition

inline SequenceNumber_t eprosima::fastrtps::rtps::operator-(const SequenceNumber_t &minuend, const
SequenceNumber_t &subtrahend) noexcept

Subtract one SequenceNumber_t to another

Parameters

• minuend – Minuend. Has to be greater than or equal to subtrahend.

• subtrahend – Subtrahend.

Returns Result of the subtraction

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const SequenceNumber_t
&seqNum)

716 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• output –

• seqNum –

Returns

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const
std::vector<SequenceNumber_t>
&seqNumSet)

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const
SequenceNumberSet_t &sns)

Prints a sequence Number set

Parameters

• output – Output Stream

• sns – SequenceNumber set

Returns OStream.

SequenceNumber_t

struct eprosima::fastrtps::rtps::SequenceNumber_t
Structure SequenceNumber_t, different for each change in the same writer.

Public Functions

inline SequenceNumber_t() noexcept
Default constructor.

inline SequenceNumber_t(int32_t hi, uint32_t lo) noexcept

Parameters

• hi –

• lo –

inline explicit SequenceNumber_t(uint64_t u) noexcept

Parameters u –

inline uint64_t to64long() const noexcept
Convert the number to 64 bit.

Returns 64 bit representation of the SequenceNumber

inline SequenceNumber_t &operator++() noexcept
Increase SequenceNumber in 1.

inline SequenceNumber_t &operator+=(int inc) noexcept
Increase SequenceNumber.

Parameters inc – Number to add to the SequenceNumber

6.30. C++ API Reference 717

Fast DDS Documentation, Release 2.8.2

SequenceNumberDiff

struct SequenceNumberDiff

SequenceNumberHash

struct SequenceNumberHash
Defines the STL hash function for type SequenceNumber_t.

SequenceNumberSet_t

using eprosima::fastrtps::rtps::SequenceNumberSet_t = BitmapRange<SequenceNumber_t,
SequenceNumberDiff , 256>

Structure SequenceNumberSet_t, contains a group of sequencenumbers.

sort_seqNum

inline bool eprosima::fastrtps::rtps::sort_seqNum(const SequenceNumber_t &s1, const
SequenceNumber_t &s2) noexcept

Sorts two instances of SequenceNumber_t

Parameters

• s1 – First SequenceNumber_t to compare

• s2 – First SequenceNumber_t to compare

Returns True if s1 is less than s2

SerializedPayload

Macro definitions (#define)

CDR_BE 0x0000

CDR_LE 0x0001

PL_CDR_BE 0x0002

PL_CDR_LE 0x0003

718 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

SerializedPayload_t

struct eprosima::fastrtps::rtps::SerializedPayload_t
Structure SerializedPayload_t.

Public Functions

inline SerializedPayload_t()
Default constructor.

inline explicit SerializedPayload_t(uint32_t len)

Parameters len – Maximum size of the payload

inline bool copy(const SerializedPayload_t *serData, bool with_limit = true)
Copy another structure (including allocating new space for the data.)

Parameters

• serData – [in] Pointer to the structure to copy

• with_limit – if true, the function will fail when providing a payload too big

Returns True if correct

inline bool reserve_fragmented(SerializedPayload_t *serData)
Allocate new space for fragmented data.

Parameters serData – [in] Pointer to the structure to copy

Returns True if correct

inline void empty()
Empty the payload.

Public Members

uint16_t encapsulation
Encapsulation of the data as suggested in the RTPS 2.1 specification chapter 10.

uint32_t length
Actual length of the data.

octet *data
Pointer to the data.

uint32_t max_size
Maximum size of the payload.

uint32_t pos
Position when reading.

6.30. C++ API Reference 719

Fast DDS Documentation, Release 2.8.2

Public Static Attributes

static constexpr size_t representation_header_size = 4u
Size in bytes of the representation header as specified in the RTPS 2.3 specification chapter 10.

Time_t

Const values

const Time_t eprosima::fastrtps::c_TimeInfinite = {Time_t::INFINITE_SECONDS,
Time_t::INFINITE_NANOSECONDS}

Time_t (Duration_t) representing an infinite time. DONT USE IT IN CONSTRUCTORS.

const Time_t eprosima::fastrtps::c_TimeZero = {0, 0}
Time_t (Duration_t) representing a zero time. DONT USE IT IN CONSTRUCTORS.

const Time_t eprosima::fastrtps::c_TimeInvalid = {-1, Time_t::INFINITE_NANOSECONDS}
Time_t (Duration_t) representing an invalid time. DONT USE IT IN CONSTRUCTORS.

Macro definitions (#define)

TIME_T_INFINITE_SECONDS (eprosima::fastrtps::Time_t::INFINITE_SECONDS)

TIME_T_INFINITE_NANOSECONDS (eprosima::fastrtps::Time_t::INFINITE_NANOSECONDS)

eprosima::fastrtps::Duration_t

using eprosima::fastrtps::Duration_t = Time_t

eprosima::fastrtps::Time_t

struct eprosima::fastrtps::Time_t
Structure Time_t, used to describe times.

Public Functions

Time_t()
Default constructor. Sets values to zero.

Time_t(int32_t sec, uint32_t nsec)

Parameters

• sec – Seconds

• nsec – Nanoseconds

720 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Time_t(long double sec)

Parameters sec – Seconds. The fractional part is converted to nanoseconds.

int64_t to_ns() const
Returns stored time as nanoseconds (including seconds)

Public Static Functions

static void now(Time_t &ret)
Fills a Time_t struct with a representation of the current time.

Parameters ret – Reference to the structure to be filled in.

Time_t Operators

static inline bool eprosima::fastrtps::rtps::operator==(const Time_t &t1, const Time_t &t2)
Comparison assignment

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if equal

static inline bool eprosima::fastrtps::rtps::operator!=(const Time_t &t1, const Time_t &t2)
Comparison assignment

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if not equal

static inline bool eprosima::fastrtps::rtps::operator<(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is less than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is less than the second

static inline bool eprosima::fastrtps::rtps::operator>(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is greater than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is greater than the second

static inline bool eprosima::fastrtps::rtps::operator<=(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is less or equal than other.

6.30. C++ API Reference 721

Fast DDS Documentation, Release 2.8.2

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is less or equal than the second

static inline bool eprosima::fastrtps::rtps::operator>=(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is greater or equal than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is greater or equal than the second

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const Time_t &t)

static inline Time_t eprosima::fastrtps::rtps::operator+(const Time_t &ta, const Time_t &tb)
Adds two Time_t.

Parameters

• ta – First Time_t to add

• tb – Second Time_t to add

Returns A new Time_t with the result.

static inline Time_t eprosima::fastrtps::rtps::operator-(const Time_t &ta, const Time_t &tb)
Subtracts two Time_t.

Parameters

• ta – First Time_t to subtract

• tb – Second Time_t to subtract

Returns A new Time_t with the result.

static inline bool eprosima::fastrtps::operator==(const Time_t &t1, const Time_t &t2)
Comparison assignment

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if equal

static inline bool eprosima::fastrtps::operator!=(const Time_t &t1, const Time_t &t2)
Comparison assignment

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if not equal

static inline bool eprosima::fastrtps::operator<(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is less than other.

722 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is less than the second

static inline bool eprosima::fastrtps::operator>(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is greater than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is greater than the second

static inline bool eprosima::fastrtps::operator<=(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is less or equal than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is less or equal than the second

static inline bool eprosima::fastrtps::operator>=(const Time_t &t1, const Time_t &t2)
Checks if a Time_t is greater or equal than other.

Parameters

• t1 – First Time_t to compare

• t2 – Second Time_t to compare

Returns True if the first Time_t is greater or equal than the second

inline std::ostream &eprosima::fastrtps::operator<<(std::ostream &output, const Time_t &t)

static inline Time_t eprosima::fastrtps::operator+(const Time_t &ta, const Time_t &tb)
Adds two Time_t.

Parameters

• ta – First Time_t to add

• tb – Second Time_t to add

Returns A new Time_t with the result.

static inline Time_t eprosima::fastrtps::operator-(const Time_t &ta, const Time_t &tb)
Subtracts two Time_t.

Parameters

• ta – First Time_t to subtract

• tb – Second Time_t to subtract

Returns A new Time_t with the result.

6.30. C++ API Reference 723

Fast DDS Documentation, Release 2.8.2

Time_t

class eprosima::fastrtps::rtps::Time_t
Structure Time_t, used to describe times at RTPS protocol.

Public Functions

Time_t() = default
Default constructor. Sets values to zero.

Time_t(int32_t sec, uint32_t frac)

Parameters

• sec – Seconds

• frac – Fraction of second

Time_t(long double sec)

Parameters sec – Seconds. The fractional part is converted to nanoseconds.

Time_t(const eprosima::fastrtps::Time_t &time)

Parameters time – fastrtps::Time_t, aka. Duration_t.

int64_t to_ns() const
Returns stored time as nanoseconds (including seconds)

void from_ns(int64_t nanosecs)

Parameters nanosecs – Stores given time as nanoseconds (including seconds)

int32_t seconds() const
Retrieve the seconds field.

int32_t &seconds()
Retrieve the seconds field by ref.

void seconds(int32_t sec)
Sets seconds field.

uint32_t nanosec() const
Retrieve the nanosec field.

void nanosec(uint32_t nanos)
Sets nanoseconds field and updates the fraction.

uint32_t fraction() const
Retrieve the fraction field.

uint32_t &fraction()
Retrieve the fraction field by ref.

void fraction(uint32_t frac)
Sets fraction field and updates the nanoseconds.

724 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Static Functions

static void now(Time_t &ret)
Fills a Time_t struct with a representation of the current time.

Parameters ret – Reference to the structure to be filled in.

Token

AuthenticatedPeerCredentialToken

typedef Token eprosima::fastrtps::rtps::AuthenticatedPeerCredentialToken

DataHolder

class DataHolder

DataHolderHelper

class DataHolderHelper

DataHolderSeq

typedef std::vector<DataHolder> eprosima::fastrtps::rtps::DataHolderSeq

IdentityStatusToken

typedef Token eprosima::fastrtps::rtps::IdentityStatusToken

IdentityToken

typedef Token eprosima::fastrtps::rtps::IdentityToken

PermissionsCredentialToken

typedef Token eprosima::fastrtps::rtps::PermissionsCredentialToken

6.30. C++ API Reference 725

Fast DDS Documentation, Release 2.8.2

PermissionsToken

typedef Token eprosima::fastrtps::rtps::PermissionsToken

Token

typedef DataHolder eprosima::fastrtps::rtps::Token

Types

BuiltinEndpointSet_t

using eprosima::fastrtps::rtps::BuiltinEndpointSet_t = uint32_t

Const values

const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_0 = {2, 0}

const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_1 = {2, 1}

const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_2 = {2, 2}

const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion_2_3 = {2, 3}

const ProtocolVersion_t eprosima::fastrtps::rtps::c_ProtocolVersion

const VendorId_t eprosima::fastdds::rtps::c_VendorId_Unknown = {0x00, 0x00}

const VendorId_t eprosima::fastdds::rtps::c_VendorId_eProsima = {0x01, 0x0F}

Count_t

using eprosima::fastrtps::rtps::Count_t = uint32_t

Macro definitions (#define)

BIT0 0x01u

BIT1 0x02u

BIT2 0x04u

BIT3 0x08u

BIT4 0x10u

BIT5 0x20u

BIT6 0x40u

726 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

BIT7 0x80u

BIT(i) (1U << static_cast<unsigned>(i))

DurabilityKind_t

typedef enum eprosima::fastrtps::rtps::DurabilityKind_t eprosima::fastrtps::rtps::DurabilityKind_t
Durability kind

Endianness_t

enum eprosima::fastrtps::rtps::Endianness_t
This enumeration represents endianness types.

Values:

enumerator BIGEND
Big endianness.

enumerator LITTLEEND
Little endianness.

EndpointKind_t

typedef enum eprosima::fastrtps::rtps::EndpointKind_t eprosima::fastrtps::rtps::EndpointKind_t
Endpoint kind

octet

using eprosima::fastrtps::rtps::octet = unsigned char

ProtocolVersion_t

struct ProtocolVersion_t
Structure ProtocolVersion_t, contains the protocol version.

inline std::ostream &eprosima::fastrtps::rtps::operator<<(std::ostream &output, const ProtocolVersion_t
&pv)

Prints a ProtocolVersion

Parameters

• output – Output Stream

• pv – ProtocolVersion

Returns OStream.

6.30. C++ API Reference 727

Fast DDS Documentation, Release 2.8.2

ReliabilityKind_t

typedef enum eprosima::fastrtps::rtps::ReliabilityKind_t eprosima::fastrtps::rtps::ReliabilityKind_t
Reliability enum used for internal purposes

SubmessageFlag

using eprosima::fastrtps::rtps::SubmessageFlag = unsigned char

TopicKind_t

typedef enum eprosima::fastrtps::rtps::TopicKind_t eprosima::fastrtps::rtps::TopicKind_t
Topic kind.

VendorId_t

using eprosima::fastdds::rtps::VendorId_t = std::array<uint8_t, 2>
Structure VendorId_t, specifying the vendor Id of the implementation.

WriteParams

class eprosima::fastrtps::rtps::WriteParams
This class contains additional information of a CacheChange.

Public Functions

inline WriteParams &sample_identity(const SampleIdentity &sample_id)
Set the value of the sample_identity member.

Parameters sample_id – New value for the sample_identity member.

Returns Reference to the modified object in order to allow daisy chaining.

inline WriteParams &sample_identity(SampleIdentity &&sample_id)
Set the value of the sample_identity member.

Parameters sample_id – New value for the sample_identity member.

Returns Reference to the modified object in order to allow daisy chaining.

inline const SampleIdentity &sample_identity() const
Get the value of the sample_identity member.

Returns Constant reference to the sample_identity member.

inline SampleIdentity &sample_identity()
Set the value of the sample_identity member.

Returns Reference to the sample_identity member.

728 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline WriteParams &related_sample_identity(const SampleIdentity &sample_id)
Set the value of the related_sample_identity member of this class.

Parameters sample_id – New value for the related_sample_identity member.

Returns Reference to the modified object in order to allow daisy chaining.

inline WriteParams &related_sample_identity(SampleIdentity &&sample_id)
Set the related_sample_identity member of this class.

Parameters sample_id – New value for the related_sample_identity member.

Returns Reference to the modified object in order to allow daisy chaining.

inline const SampleIdentity &related_sample_identity() const
Get the value of the related_sample_identity member.

Returns Constant reference to the related_sample_identity member.

inline SampleIdentity &related_sample_identity()
Set the value of the related_sample_identity member.

Returns Reference to the related_sample_identity member.

inline Time_t source_timestamp() const
Get the value of the source_timestamp member.

Returns Current value of the source_timestamp member.

inline Time_t &source_timestamp()
Set the value of the source_timestamp member.

Returns Reference to the source_timestamp member.

inline WriteParams &source_timestamp(const Time_t ×tamp)
Set the source_timestamp member of this class.

Parameters timestamp – New value for the source_timestamp member.

Returns Reference to the modified object in order to allow daisy chaining.

inline WriteParams &source_timestamp(Time_t &×tamp)
Set the source_timestamp member of this class.

Parameters timestamp – New value for the source_timestamp member.

Returns Reference to the modified object in order to allow daisy chaining.

Public Static Attributes

static WriteParams WRITE_PARAM_DEFAULT
Default value for methods receiving a WriteParams.

Will contain the following values on its members:

• sample_identity: Invalid SampleIdentity

• related_sample_identity: Invalid SampleIdentity

• source_timestamp: Invalid Time_t

6.30. C++ API Reference 729

Fast DDS Documentation, Release 2.8.2

Endpoint

class eprosima::fastrtps::rtps::Endpoint
Class Endpoint, all entities of the RTPS network derive from this class. Although the RTPSParticipant is also
defined as an endpoint in the RTPS specification, in this implementation the RTPSParticipant class does not
inherit from the endpoint class. Each Endpoint object owns a pointer to the RTPSParticipant it belongs to.

Subclassed by eprosima::fastrtps::rtps::RTPSReader, eprosima::fastrtps::rtps::RTPSWriter

Public Functions

inline const GUID_t &getGuid() const
Get associated GUID

Returns Associated GUID

inline RecursiveTimedMutex &getMutex()
Get mutex

Returns Associated Mutex

inline EndpointAttributes &getAttributes()
Get associated attributes

Returns Endpoint attributes

Exceptions

Exception

class eprosima::fastrtps::rtps::Exception : public exception
This abstract class is used to create exceptions.

Subclassed by eprosima::fastrtps::rtps::security::SecurityException

Public Functions

virtual ~Exception()
Default destructor.

const int32_t &minor() const
This function returns the number associated with the system exception.

Returns The number associated with the system exception.

void minor(const int32_t &minor)
This function sets the number that will be associated with the system exception.

Parameters minor – The number that will be associated with the system exception.

virtual void raise() const = 0
This function throws the object as exception.

virtual const char *what() const
This function returns the error message.

Returns The error message.

730 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Flow control

FlowControllerDescriptor

struct eprosima::fastdds::rtps::FlowControllerDescriptor
Configuration values for creating flow controllers.

This descriptor is used to define the configuration applied in the creation of a flow controller.

Since 2.4.0

Public Members

const char *name = nullptr
Name of the flow controller.

FlowControllerSchedulerPolicy scheduler = FlowControllerSchedulerPolicy::FIFO
Scheduler policy used by the flow controller.

Default value: FlowControllerScheduler::FIFO_SCHEDULER

int32_t max_bytes_per_period = 0
Maximum number of bytes to be sent to network per period.

Range of bytes: [1, 2147483647]; 0 value means no limit. Default value: 0

uint64_t period_ms = 100
Period time in milliseconds.

Period of time on which the flow controller is allowed to send max_bytes_per_period. Default value:
100ms.

const char *const eprosima::fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT
Name of the default flow controller.

const char *const eprosima::fastdds::rtps::FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT
Name of the default flow controller for statistics writers.

FlowControllerSchedulerPolicy

enum eprosima::fastdds::rtps::FlowControllerSchedulerPolicy
Supported scheduler policy by a flow controller.

A flow controller’s scheduler policy takes the decision of which samples are the next ones to be sent to the
network. Fast DDS flow controller supports several scheduler policies listed in this enumeration.

Values:

enumerator FIFO
FIFO scheduler policy: first written sample by user, first sample scheduled to be sent to network.

6.30. C++ API Reference 731

Fast DDS Documentation, Release 2.8.2

enumerator ROUND_ROBIN
Round Robin scheduler policy: schedules one sample of each DataWriter in circular order.

enumerator HIGH_PRIORITY
High priority scheduler policy: samples with highest priority are scheduled first to be sent to network.

enumerator PRIORITY_WITH_RESERVATION
Priority with reservation scheduler policy: guarantee each DataWriter’s minimum reservation of through-
put. Samples not fitting the reservation are scheduled by priority.

ThroughputControllerDescriptor

struct eprosima::fastrtps::rtps::ThroughputControllerDescriptor
Descriptor for a Throughput Controller, containing all constructor information for it.

Deprecated:
Use FlowControllerDescriptor

Public Members

uint32_t bytesPerPeriod
Packet size in bytes that this controller will allow in a given period.

uint32_t periodMillisecs
Window of time in which no more than ‘bytesPerPeriod’ bytes are allowed.

History

History

class eprosima::fastrtps::rtps::History
Class History, container of the different CacheChanges and the methods to access them.

Subclassed by eprosima::fastrtps::rtps::ReaderHistory, eprosima::fastrtps::rtps::WriterHistory

Public Functions

inline bool reserve_Cache(CacheChange_t **change, const std::function<uint32_t()> &calculateSizeFunc)
Reserve a CacheChange_t from the CacheChange pool.

Warning: This method has been deprecated and will be removed on v3.0.0

Parameters

• change – [out] Pointer to pointer to the CacheChange_t to reserve

• calculateSizeFunc – [in] Function to calculate the size of the payload.

732 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns True if reserved

inline bool reserve_Cache(CacheChange_t **change, uint32_t dataSize)
Reserve a CacheChange_t from the CacheChange pool.

Warning: This method has been deprecated and will be removed on v3.0.0

Parameters

• change – [out] Pointer to pointer to the CacheChange_t to reserve

• dataSize – [in] Required size for the payload.

Returns True if reserved

inline void release_Cache(CacheChange_t *ch)
release a previously reserved CacheChange_t.

Warning: This method has been deprecated and will be removed on v3.0.0

Parameters ch – Pointer to the CacheChange_t.

inline bool isFull()
Check if the history is full

Returns true if the History is full.

inline size_t getHistorySize()
Get the History size.

Returns Size of the history.

const_iterator find_change_nts(CacheChange_t *ch)
Find a specific change in the history using the matches_change method criteria. No Thread Safe

Parameters ch – Pointer to the CacheChange_t to search for.

Returns an iterator if a suitable change is found

virtual iterator remove_change_nts(const_iterator removal, bool release = true)
Remove a specific change from the history. No Thread Safe

Parameters

• removal – iterator to the CacheChange_t to remove.

• release – defaults to true and hints if the CacheChange_t should return to the pool

Returns iterator to the next CacheChange_t or end iterator.

bool remove_all_changes()
Remove all changes from the History

Returns True if everything was correctly removed.

bool remove_change(CacheChange_t *ch)
Remove a specific change from the history.

Parameters ch – Pointer to the CacheChange_t.

6.30. C++ API Reference 733

Fast DDS Documentation, Release 2.8.2

Returns True if removed.

inline const_iterator find_change(CacheChange_t *ch)
Find a specific change in the history using the matches_change method criteria.

Parameters ch – Pointer to the CacheChange_t to search for.

Returns an iterator if a suitable change is found

virtual bool matches_change(const CacheChange_t *ch_inner, CacheChange_t *ch_outer)
Verifies if an element of the changes collection matches a given change Derived classes have more info on
how to identify univocally a change and should override.

Parameters

• ch_inner – element of the collection to compare with the given change

• ch_outer – Pointer to the CacheChange_t to identify.

Returns true if the iterator identifies this change.

inline iterator remove_change(const_iterator removal, bool release = true)
Remove a specific change from the history.

Parameters

• removal – iterator to the CacheChange_t to remove.

• release – defaults to true and hints if the CacheChange_t should return to the pool

Returns iterator to the next CacheChange_t or end iterator.

inline iterator changesBegin()
Get the beginning of the changes history iterator.

Returns Iterator to the beginning of the vector.

inline iterator changesEnd()
Get the end of the changes history iterator.

Returns Iterator to the end of the vector.

bool get_min_change(CacheChange_t **min_change)
Get the minimum CacheChange_t.

Parameters min_change – Pointer to pointer to the minimum change.

Returns True if correct.

bool get_max_change(CacheChange_t **max_change)
Get the maximum CacheChange_t.

Parameters max_change – Pointer to pointer to the maximum change.

Returns True if correct.

inline uint32_t getTypeMaxSerialized()
Get the maximum serialized payload size

Returns Maximum serialized payload size

inline RecursiveTimedMutex *getMutex() const
Get the mutex.

Returns Mutex

bool get_earliest_change(CacheChange_t **change)
A method to get the change with the earliest timestamp.

734 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters change – Pointer to pointer to earliest change

Returns True on success

Public Members

HistoryAttributes m_att
Attributes of the History.

IChangePool

class eprosima::fastrtps::rtps::IChangePool
An interface for classes responsible of cache changes allocation management.

Public Functions

virtual bool reserve_cache(CacheChange_t *&cache_change) = 0
Get a new cache change from the pool.

Parameters cache_change – [out] Pointer to the new cache change.

Returns whether the operation succeeded or not

Pre cache_change is nullptr

Post

• cache_change is not nullptr

• *cache_change equals CacheChange_t() except for the contents of
serializedPayload

virtual bool release_cache(CacheChange_t *cache_change) = 0
Return a cache change to the pool.

Parameters cache_change – [in] Pointer to the cache change to release.

Returns whether the operation succeeded or not

Pre

• cache_change is not nullptr

• cache_change points to a cache change obtained from a call to
this->reserve_cache

IPayloadPool

class eprosima::fastrtps::rtps::IPayloadPool
An interface for classes responsible of serialized payload management.

6.30. C++ API Reference 735

Fast DDS Documentation, Release 2.8.2

Public Functions

virtual bool get_payload(uint32_t size, CacheChange_t &cache_change) = 0
Get a serialized payload for a new sample.

This method will usually be called in one of the following situations:

• When a writer creates a new cache change

• When a reader receives the first fragment of a cache change

In both cases, the received size will be for the whole serialized payload.

Parameters

• size – [in] Number of bytes required for the serialized payload. Should be greater
than 0.

• cache_change – [inout] Cache change to assign the payload to

Returns whether the operation succeeded or not

Pre Fields writerGUID and sequenceNumber of cache_change are either:

• Both equal to unknown (meaning a writer is creating a new change)

• Both different from unknown (meaning a reader has received the first fragment of a
cache change)

Post

• Field cache_change.payload_owner equals this

• Field serializedPayload.data points to a buffer of at least size bytes

• Field serializedPayload.max_size is greater than or equal to size

virtual bool get_payload(SerializedPayload_t &data, IPayloadPool *&data_owner, CacheChange_t
&cache_change) = 0

Assign a serialized payload to a new sample.

This method will usually be called when a reader receives a whole cache change.

Note: data and data_owner are received as references to accommodate the case where several readers
receive the same payload. If the payload has no owner, it means it is allocated on the stack of a reception
thread, and a copy should be performed. The pool may decide in that case to point data.data to the new
copy and take ownership of the payload. In that case, when the reception thread is done with the payload
(after all readers have been informed of the received data), method release_payload will be called to
indicate that the reception thread is not using the payload anymore.

Warning: data_owner can only be changed from nullptr to this. If a value different from
nullptr is received it should be left unchanged.

Warning: data fields can only be changed when data_owner is nullptr. If a value different from
nullptr is received all fields in data should be left unchanged.

Parameters

736 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• data – [inout] Serialized payload received

• data_owner – [inout] Payload pool owning incoming data

• cache_change – [inout] Cache change to assign the payload to

Returns whether the operation succeeded or not

Pre

• Field cache_change.writerGUID is not unknown

• Field cache_change.sequenceNumber is not unknown

Post

• Field cache_change.payload_owner equals this

• Field cache_change.serializedPayload.data points to a buffer of at least
data.length bytes

• Field cache_change.serializedPayload.length is equal to data.length

• Field cache_change.serializedPayload.max_size is greater than or equal to
data.length

• Content of cache_change.serializedPayload.data is the same as data.data

virtual bool release_payload(CacheChange_t &cache_change) = 0
Release a serialized payload from a sample.

This method will be called when a cache change is removed from a history.

Parameters cache_change – [inout] Cache change to assign the payload to

Returns whether the operation succeeded or not

Pre

• Field payload_owner of cache_change equals this

Post

• Field payload_owner of cache_change is nullptr

ReaderHistory

class eprosima::fastrtps::rtps::ReaderHistory : public eprosima::fastrtps::rtps::History
Class ReaderHistory, container of the different CacheChanges of a reader

Public Functions

ReaderHistory(const HistoryAttributes &att)
Constructor of the ReaderHistory. It needs a HistoryAttributes.

virtual bool can_change_be_added_nts(const GUID_t &writer_guid, uint32_t total_payload_size, size_t
unknown_missing_changes_up_to, bool
&will_never_be_accepted) const

Check if a new change can be added to this history.

Parameters

• writer_guid – [in] GUID of the writer where the change came from.

6.30. C++ API Reference 737

Fast DDS Documentation, Release 2.8.2

• total_payload_size – [in] Total payload size of the incoming change.

• unknown_missing_changes_up_to – [in] The number of changes from the same
writer with a lower sequence number that could potentially be received in the future.

• will_never_be_accepted – [out] When the method returns false, this parameter
will inform whether the change could be accepted in the future or not.

Pre change should not be present in the history

Returns Whether a call to received_change will succeed when called with the same arguments.

virtual bool received_change(CacheChange_t *change, size_t unknown_missing_changes_up_to)
Virtual method that is called when a new change is received. In this implementation this method just
calls add_change. The user can overload this method in case he needs to perform additional checks before
adding the change.

Parameters

• change – Pointer to the change

• unknown_missing_changes_up_to – The number of changes from the same writer
with a lower sequence number that could potentially be received in the future.

Returns True if added.

inline virtual bool received_change(CacheChange_t *change, size_t unknown_missing_changes_up_to,
fastdds::dds::SampleRejectedStatusKind &rejection_reason)

Virtual method that is called when a new change is received. In this implementation this method just
calls add_change. The user can overload this method in case he needs to perform additional checks before
adding the change.

Parameters

• change – [in] Pointer to the change

• unknown_missing_changes_up_to – [in] The number of changes from the same
writer with a lower sequence number that could potentially be received in the future.

• rejection_reason – [out] In case of been rejected the sample, it will contain the
reason of the rejection.

Returns True if added.

inline virtual bool completed_change(rtps::CacheChange_t *change)
Called when a fragmented change is received completely by the Subscriber. Will find its instance and store
it.

Parameters change – [in] The received change

Pre Change should be already present in the history.

Returns

inline virtual bool completed_change(CacheChange_t *change, size_t unknown_missing_changes_up_to,
fastdds::dds::SampleRejectedStatusKind &rejection_reason)

Called when a fragmented change is received completely by the Subscriber. Will find its instance and store
it.

Parameters

• change – [in] The received change

• unknown_missing_changes_up_to – [in] Number of missing changes before this
one

738 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• rejection_reason – [out] In case of been rejected the sample, it will contain the
reason of the rejection.

Pre Change should be already present in the history.

Returns

bool add_change(CacheChange_t *a_change)
Add a CacheChange_t to the ReaderHistory.

Parameters a_change – Pointer to the CacheChange to add.

Returns True if added.

virtual iterator remove_change_nts(const_iterator removal, bool release = true) override
Remove a specific change from the history. No Thread Safe

Parameters

• removal – iterator to the change for removal

• release – specifies if the change must be returned to the pool

Returns iterator to the next change if any

virtual bool matches_change(const CacheChange_t *inner, CacheChange_t *outer) override
Criteria to search a specific CacheChange_t on history

Parameters

• inner – change to compare

• outer – change for comparison

Returns true if inner matches outer criteria

bool remove_changes_with_guid(const GUID_t &a_guid)
Remove all changes from the History that have a certain guid.

Parameters a_guid – Pointer to the target guid to search for.

Returns True if successful, even if no changes have been removed.

bool remove_fragmented_changes_until(const SequenceNumber_t &seq_num, const GUID_t
&writer_guid)

Remove all fragmented changes from certain writer up to certain sequence number.

Parameters

• seq_num – First SequenceNumber_t not to be removed.

• writer_guid – GUID of the writer for which changes should be looked for.

Returns True if successful, even if no changes have been removed.

virtual void writer_unmatched(const GUID_t &writer_guid, const SequenceNumber_t &last_notified_seq)
Called when a writer is unmatched from the reader holding this history.

This method will remove all the changes on the history that came from the writer being unmatched and
which have not yet been notified to the user.

Parameters

• writer_guid – GUID of the writer being unmatched.

• last_notified_seq – Last sequence number from the specified writer that was no-
tified to the user.

6.30. C++ API Reference 739

Fast DDS Documentation, Release 2.8.2

inline virtual void writer_update_its_ownership_strength_nts(const GUID_t &writer_guid, const
uint32_t ownership_strength)

This function should be called by reader if a writer updates its ownership strength.

Parameters

• writer_guid – [in] Guid of the writer which changes its ownership strength.

• ownership_strength – [out] New value of the writer’s Ownership strength.

bool remove_change(CacheChange_t *ch)
Introduce base class method into scope.

inline iterator remove_change(const_iterator removal, bool release = true)
Introduce base class method into scope.

WriterHistory

class eprosima::fastrtps::rtps::WriterHistory : public eprosima::fastrtps::rtps::History
Class WriterHistory, container of the different CacheChanges of a writer

Public Functions

WriterHistory(const HistoryAttributes &att)
Constructor of the WriterHistory.

bool add_change(CacheChange_t *a_change)
Add a CacheChange_t to the WriterHistory.

Parameters a_change – Pointer to the CacheChange_t to be added.

Returns True if added.

bool add_change(CacheChange_t *a_change, WriteParams &wparams)
Add a CacheChange_t to the WriterHistory.

Parameters

• a_change – Pointer to the CacheChange_t to be added.

• wparams – Extra write parameters.

Returns True if added.

virtual iterator remove_change_nts(const_iterator removal, bool release = true) override
Remove a specific change from the history. No Thread Safe

Parameters

• removal – iterator to the change for removal

• release – specifies if the change should be return to the pool

Returns iterator to the next change if any

virtual bool matches_change(const CacheChange_t *inner, CacheChange_t *outer) override
Criteria to search a specific CacheChange_t on history

Parameters

• inner – change to compare

• outer – change for comparison

740 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns true if inner matches outer criteria

bool remove_min_change()
Remove the CacheChange_t with the minimum sequenceNumber.

Returns True if correctly removed.

bool remove_change(CacheChange_t *ch)
Introduce base class method into scope.

inline iterator remove_change(const_iterator removal, bool release = true)
Introduce base class method into scope.

RTPSParticipant

ParticipantDiscoveryInfo

ParticipantAuthenticationInfo

struct eprosima::fastrtps::rtps::ParticipantAuthenticationInfo

Public Members

AUTHENTICATION_STATUS status
Status.

GUID_t guid
Associated GUID.

inline bool eprosima::fastrtps::rtps::operator==(const ParticipantAuthenticationInfo &l, const
ParticipantAuthenticationInfo &r)

ParticipantDiscoveryInfo

struct eprosima::fastrtps::rtps::ParticipantDiscoveryInfo
Class ParticipantDiscoveryInfo with discovery information of the Participant.

Public Types

enum DISCOVERY_STATUS
Enum DISCOVERY_STATUS, four different status for discovered participants.

Values:

enumerator DISCOVERED_PARTICIPANT

enumerator CHANGED_QOS_PARTICIPANT

enumerator REMOVED_PARTICIPANT

enumerator DROPPED_PARTICIPANT

6.30. C++ API Reference 741

Fast DDS Documentation, Release 2.8.2

enumerator IGNORED_PARTICIPANT

Public Members

DISCOVERY_STATUS status
Status.

const ParticipantProxyData &info
Participant discovery info.

Todo:
This is a reference to an object that could be deleted, thus it should not be a reference (intraprocess
case -> BlackboxTests_DDS_PIM.DDSDiscovery.ParticipantProxyPhysicalData).

ParticipantProxyData

class eprosima::fastrtps::rtps::ParticipantProxyData
ParticipantProxyData class is used to store and convert the information Participants send to each other during
the PDP phase.

Public Functions

bool updateData(ParticipantProxyData &pdata)
Update the data.

Parameters pdata – Object to copy the data from

Returns True on success

uint32_t get_serialized_size(bool include_encapsulation) const
Get the size in bytes of the CDR serialization of this object.

Parameters include_encapsulation – Whether to include the size of the encapsulation
info.

Returns size in bytes of the CDR serialization.

bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation)
Write as a parameter list on a CDRMessage_t

Returns True on success

bool readFromCDRMessage(CDRMessage_t *msg, bool use_encapsulation, const NetworkFactory &network,
bool is_shm_transport_available)

Read the parameter list from a received CDRMessage_t

Returns True on success

void clear()
Clear the data (restore to default state).

void copy(const ParticipantProxyData &pdata)
Copy the data from another object.

742 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters pdata – Object to copy the data from

void set_persistence_guid(const GUID_t &guid)
Set participant persistent GUID_t

Parameters guid – valid GUID_t

GUID_t get_persistence_guid() const
Retrieve participant persistent GUID_t

Returns guid persistent GUID_t or c_Guid_Unknown

void set_sample_identity(const SampleIdentity &sid)
Set participant client server sample identity

Parameters sid – valid SampleIdentity

SampleIdentity get_sample_identity() const
Retrieve participant SampleIdentity

Returns SampleIdentity

void set_backup_stamp(const GUID_t &guid)
Identifies the participant as client of the given server

Parameters guid – valid backup server GUID

GUID_t get_backup_stamp() const
Retrieves BACKUP server stamp. On deserialization hints if lease duration must be enforced

Returns GUID

Public Members

ProtocolVersion_t m_protocolVersion
Protocol version.

GUID_t m_guid
GUID.

VendorId_t m_VendorId
Vendor ID.

bool m_expectsInlineQos
Expects Inline QOS.

BuiltinEndpointSet_t m_availableBuiltinEndpoints
Available builtin endpoints.

RemoteLocatorList metatraffic_locators
Metatraffic locators.

RemoteLocatorList default_locators
Default locators.

Count_t m_manualLivelinessCount
Manual liveliness count.

6.30. C++ API Reference 743

Fast DDS Documentation, Release 2.8.2

string_255 m_participantName
Participant name.

BUILTIN_PARTICIPANT_DATA_MAX_SIZE 100

TYPELOOKUP_DATA_MAX_SIZE 5000

DISC_BUILTIN_ENDPOINT_PARTICIPANT_ANNOUNCER (0x00000001 << 0)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_DETECTOR (0x00000001 << 1)

DISC_BUILTIN_ENDPOINT_PUBLICATION_ANNOUNCER (0x00000001 << 2)

DISC_BUILTIN_ENDPOINT_PUBLICATION_DETECTOR (0x00000001 << 3)

DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_ANNOUNCER (0x00000001 << 4)

DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_DETECTOR (0x00000001 << 5)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_ANNOUNCER (0x00000001 << 6)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_DETECTOR (0x00000001 << 7)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_ANNOUNCER (0x00000001 << 8)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_DETECTOR (0x00000001 << 9)

BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_WRITER (0x00000001 << 10)

BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_READER (0x00000001 << 11)

BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_WRITER (0x00000001 << 12)

BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_READER (0x00000001 << 13)

BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_WRITER (0x00000001 << 14)

BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_READER (0x00000001 << 15)

DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_ANNOUNCER (0x00000001 << 16)

DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_DETECTOR (0x00000001 << 17)

DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_ANNOUNCER (0x00000001 << 18)

DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_DETECTOR (0x00000001 << 19)

BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_WRITER (0x00000001 << 20)

BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_READER (0x00000001 << 21)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_ANNOUNCER (0x00000001 << 26)

DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_DETECTOR (0x00000001 << 27)

744 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ReaderDiscoveryInfo

struct eprosima::fastrtps::rtps::ReaderDiscoveryInfo
Class ReaderDiscoveryInfo with discovery information of the reader.

Public Types

enum DISCOVERY_STATUS
Enum DISCOVERY_STATUS, four different status for discovered readers.

Values:

enumerator DISCOVERED_READER

enumerator CHANGED_QOS_READER

enumerator REMOVED_READER

enumerator IGNORED_READER

Public Members

DISCOVERY_STATUS status
Status.

const ReaderProxyData &info
Participant discovery info.

ReaderProxyData

class eprosima::fastrtps::rtps::ReaderProxyData
Class ReaderProxyData, used to represent all the information on a Reader (both local and remote) with the
purpose of implementing the discovery.

•

Public Functions

inline void set_sample_identity(const SampleIdentity &sid)
Set participant client server sample identity

Parameters sid – valid SampleIdentity

inline SampleIdentity get_sample_identity() const
Retrieve participant SampleIdentity

Returns SampleIdentity

uint32_t get_serialized_size(bool include_encapsulation) const
Get the size in bytes of the CDR serialization of this object.

Parameters include_encapsulation – Whether to include the size of the encapsulation
info.

6.30. C++ API Reference 745

Fast DDS Documentation, Release 2.8.2

Returns size in bytes of the CDR serialization.

bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation) const
Write as a parameter list on a CDRMessage_t

Returns True on success

bool readFromCDRMessage(CDRMessage_t *msg, const NetworkFactory &network, bool
is_shm_transport_available)

Read the information from a CDRMessage_t. The position of the message must be in the beginning on the
parameter list.

Parameters

• msg – Pointer to the message.

• network – Reference to network factory for locator validation and transformation

• is_shm_transport_available – Indicates whether the Reader is reachable by
SHM.

Returns true on success

void clear()
Clear (put to default) the information.

bool is_update_allowed(const ReaderProxyData &rdata) const
Check if this object can be updated with the information on another object.

Parameters rdata – ReaderProxyData object to be checked.

Returns true if this object can be updated with the information on rdata.

void update(ReaderProxyData *rdata)
Update the information (only certain fields will be updated).

Parameters rdata – Pointer to the object from which we are going to update.

void copy(ReaderProxyData *rdata)
Copy ALL the information from another object.

Parameters rdata – Pointer to the object from where the information must be copied.

Public Members

ReaderQos m_qos
Reader Qos.

security::EndpointSecurityAttributesMask security_attributes_
EndpointSecurityInfo.endpoint_security_attributes.

security::PluginEndpointSecurityAttributesMask plugin_security_attributes_
EndpointSecurityInfo.plugin_endpoint_security_attributes.

746 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

WriterDiscoveryInfo

struct eprosima::fastrtps::rtps::WriterDiscoveryInfo
Class WriterDiscoveryInfo with discovery information of the writer.

Public Types

enum DISCOVERY_STATUS
Enum DISCOVERY_STATUS, four different status for discovered writers.

Values:

enumerator DISCOVERED_WRITER

enumerator CHANGED_QOS_WRITER

enumerator REMOVED_WRITER

enumerator IGNORED_WRITER

Public Members

DISCOVERY_STATUS status
Status.

const WriterProxyData &info
Participant discovery info.

WriterProxyData

class eprosima::fastrtps::rtps::WriterProxyData

Public Functions

inline void set_sample_identity(const SampleIdentity &sid)
Set participant client server sample identity

Parameters sid – valid SampleIdentity

inline SampleIdentity get_sample_identity() const
Retrieve participant SampleIdentity

Returns SampleIdentity

void clear()
Clear the information and return the object to the default state.

bool is_update_allowed(const WriterProxyData &wdata) const
Check if this object can be updated with the information on another object.

Parameters wdata – WriterProxyData object to be checked.

Returns true if this object can be updated with the information on wdata.

6.30. C++ API Reference 747

Fast DDS Documentation, Release 2.8.2

void update(WriterProxyData *wdata)
Update certain parameters from another object.

Parameters wdata – pointer to object with new information.

void copy(WriterProxyData *wdata)
Copy all information from another object.

uint32_t get_serialized_size(bool include_encapsulation) const
Get the size in bytes of the CDR serialization of this object.

Parameters include_encapsulation – Whether to include the size of the encapsulation
info.

Returns size in bytes of the CDR serialization.

bool writeToCDRMessage(CDRMessage_t *msg, bool write_encapsulation) const
Write as a parameter list on a CDRMessage_t.

bool readFromCDRMessage(CDRMessage_t *msg, const NetworkFactory &network, bool
is_shm_transport_possible)

Read a parameter list from a CDRMessage_t.

Public Members

WriterQos m_qos
WriterQOS.

security::EndpointSecurityAttributesMask security_attributes_
EndpointSecurityInfo.endpoint_security_attributes.

security::PluginEndpointSecurityAttributesMask plugin_security_attributes_
EndpointSecurityInfo.plugin_endpoint_security_attributes.

RTPSParticipant

class eprosima::fastrtps::rtps::RTPSParticipant
Class RTPSParticipant, contains the public API for a RTPSParticipant.

Public Functions

const GUID_t &getGuid() const
Get the GUID_t of the RTPSParticipant.

void announceRTPSParticipantState()
Force the announcement of the RTPSParticipant state.

void stopRTPSParticipantAnnouncement()
Stop the RTPSParticipant announcement period. //TODO remove this method because is only for testing.

void resetRTPSParticipantAnnouncement()
Reset the RTPSParticipant announcement period. //TODO remove this method because is only for testing.

bool newRemoteWriterDiscovered(const GUID_t &pguid, int16_t userDefinedId)
Indicate the Participant that you have discovered a new Remote Writer. This method can be used by the
user to implements its own Static Endpoint Discovery Protocol

748 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• pguid – GUID_t of the discovered Writer.

• userDefinedId – ID of the discovered Writer.

Returns True if correctly added.

bool newRemoteReaderDiscovered(const GUID_t &pguid, int16_t userDefinedId)
Indicate the Participant that you have discovered a new Remote Reader. This method can be used by the
user to implements its own Static Endpoint Discovery Protocol

Parameters

• pguid – GUID_t of the discovered Reader.

• userDefinedId – ID of the discovered Reader.

Returns True if correctly added.

uint32_t getRTPSParticipantID() const
Get the Participant ID.

Returns Participant ID.

bool registerWriter(RTPSWriter *Writer, const TopicAttributes &topicAtt, const WriterQos &wqos)
Register a RTPSWriter in the builtin Protocols.

Parameters

• Writer – Pointer to the RTPSWriter.

• topicAtt – Topic Attributes where you want to register it.

• wqos – WriterQos.

Returns True if correctly registered.

bool registerReader(RTPSReader *Reader, const TopicAttributes &topicAtt, const ReaderQos &rqos,
const fastdds::rtps::ContentFilterProperty *content_filter = nullptr)

Register a RTPSReader in the builtin Protocols.

Parameters

• Reader – Pointer to the RTPSReader.

• topicAtt – Topic Attributes where you want to register it.

• rqos – ReaderQos.

• content_filter – Optional content filtering information.

Returns True if correctly registered.

void update_attributes(const RTPSParticipantAttributes &patt)
Update participant attributes.

Parameters patt – New participant attributes.

bool updateWriter(RTPSWriter *Writer, const TopicAttributes &topicAtt, const WriterQos &wqos)
Update writer QOS

Parameters

• Writer – to update

• topicAtt – Topic Attributes where you want to register it.

• wqos – New writer QoS

6.30. C++ API Reference 749

Fast DDS Documentation, Release 2.8.2

Returns true on success

bool updateReader(RTPSReader *Reader, const TopicAttributes &topicAtt, const ReaderQos &rqos, const
fastdds::rtps::ContentFilterProperty *content_filter = nullptr)

Update reader QOS

Parameters

• Reader – Pointer to the RTPSReader to update

• topicAtt – Topic Attributes where you want to register it.

• rqos – New reader QoS

• content_filter – Optional content filtering information.

Returns true on success

std::vector<std::string> getParticipantNames() const
Returns a list with the participant names.

Returns list of participant names.

const RTPSParticipantAttributes &getRTPSParticipantAttributes() const
Get a copy of the actual state of the RTPSParticipantParameters

Returns RTPSParticipantAttributes copy of the params.

uint32_t getMaxMessageSize() const
Retrieves the maximum message size.

uint32_t getMaxDataSize() const
Retrieves the maximum data size.

WLP *wlp() const
A method to retrieve the built-in writer liveliness protocol.

Returns Writer liveliness protocol

bool get_new_entity_id(EntityId_t &entityId)
Fills a new entityId if set to unknown, or checks if a entity already exists with that entityId in other case.

Parameters entityId – to check of fill. If filled, EntityKind will be “vendor-specific” (0x01)

Returns True if filled or the entityId is available.

void set_check_type_function(std::function<bool(const std::string&)> &&check_type)
Allows setting a function to check if a type is already known by the top level API participant.

fastdds::dds::builtin::TypeLookupManager *typelookup_manager() const
Retrieves the built-in typelookup service manager.

Returns

void set_listener(RTPSParticipantListener *listener)
Modifies the participant listener.

Parameters listener –

uint32_t get_domain_id() const
Retrieves the DomainId.

void enable()
This operation enables the RTPSParticipantImpl.

bool ignore_participant(const GuidPrefix_t &participant_guid)
Ignore all messages coming from the RTPSParticipant.

750 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters participant_guid – [in] RTPSParticipant GUID to be ignored

Returns True if correctly included into the ignore collection. False otherwise.

bool ignore_writer(const GUID_t &writer_guid)
Ignore all messages coming from the RTPSWriter.

Parameters writer_guid – [in] RTPSWriter GUID to be ignored

Returns True if correctly included into the ignore collection. False otherwise.

bool ignore_reader(const GUID_t &reader_guid)
Ignore all messages coming from the RTPSReader.

Parameters reader_guid – [in] RTPSReader GUID to be ignored

Returns True if correctly included into the ignore collection. False otherwise.

bool is_security_enabled_for_writer(const WriterAttributes &writer_attributes)
Checks whether the writer has security attributes enabled.

Parameters writer_attributes – Attributes of the writer as given to the RTPSPartici-
pantImpl::create_writer

bool is_security_enabled_for_reader(const ReaderAttributes &reader_attributes)
Checks whether the reader has security attributes enabled.

Parameters reader_attributes – Attributes of the reader as given to the RTPSPartici-
pantImpl::create_reader

RTPSParticipantListener

class eprosima::fastrtps::rtps::RTPSParticipantListener
Class RTPSParticipantListener with virtual method that the user can overload to respond to certain events.

Public Functions

inline virtual void onParticipantDiscovery(RTPSParticipant *participant, ParticipantDiscoveryInfo
&&info)

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote partici-
pant.

• info – [out] Remote participant information. User can take ownership of the object.

inline virtual void onParticipantDiscovery(RTPSParticipant *participant, ParticipantDiscoveryInfo
&&info, bool &should_be_ignored)

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote partici-
pant.

• info – [out] Remote participant information. User can take ownership of the object.

6.30. C++ API Reference 751

Fast DDS Documentation, Release 2.8.2

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the
discovered Participant.

inline virtual void onReaderDiscovery(RTPSParticipant *participant, ReaderDiscoveryInfo &&info)
This method is called when a new Reader is discovered, or a previously discovered reader changes its QOS
or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote reader.

• info – [out] Remote reader information. User can take ownership of the object.

inline virtual void onReaderDiscovery(RTPSParticipant *participant, ReaderDiscoveryInfo &&info, bool
&should_be_ignored)

This method is called when a new Reader is discovered, or a previously discovered reader changes its QOS
or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote reader.

• info – [out] Remote reader information. User can take ownership of the object.

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the
discovered Reader.

inline virtual void onWriterDiscovery(RTPSParticipant *participant, WriterDiscoveryInfo &&info)
This method is called when a new Writer is discovered, or a previously discovered writer changes its QOS
or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote writer.

• info – [out] Remote writer information. User can take ownership of the object.

inline virtual void onWriterDiscovery(RTPSParticipant *participant, WriterDiscoveryInfo &&info, bool
&should_be_ignored)

This method is called when a new Writer is discovered, or a previously discovered writer changes its QOS
or is removed.

Parameters

• participant – [out] Pointer to the Participant which discovered the remote writer.

• info – [out] Remote writer information. User can take ownership of the object.

• should_be_ignored – [out] Flag to indicate the library to automatically ignore the
discovered Writer.

inline virtual void on_type_discovery(RTPSParticipant *participant, const SampleIdentity
&request_sample_id, const string_255 &topic, const
types::TypeIdentifier *identifier, const types::TypeObject *object,
types::DynamicType_ptr dyn_type)

This method is called when a participant discovers a new Type The ownership of all object belongs to the
caller so if needs to be used after the method ends, a full copy should be perform (except for dyn_type due
to its shared_ptr nature.

The field “topic” it is only available if the type was discovered using “Discovery-Time Data Typing”, in
which case the field request_sample_id will contain INVALID_SAMPLE_IDENTITY. If the type was dis-
covered using TypeLookup Service then “topic” will be empty, but will have the request_sample_id of the
petition that caused the discovery. For example: fastrtps::types::TypeIdentifier new_type_id = *identifier;

752 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

inline virtual void on_type_dependencies_reply(RTPSParticipant *participant, const SampleIdentity
&request_sample_id, const
types::TypeIdentifierWithSizeSeq &dependencies)

This method is called when the typelookup client received a reply to a getTypeDependencies request.

The user may want to retrieve these new types using the getTypes request and create a new DynamicType
using the retrieved TypeObject.

inline virtual void on_type_information_received(RTPSParticipant *participant, const string_255
&topic_name, const string_255 &type_name, const
types::TypeInformation &type_information)

This method is called when a participant receives a TypeInformation while discovering another participant.

RTPSReader

ReaderListener

class eprosima::fastrtps::rtps::ReaderListener
Class ReaderListener, to be used by the user to override some of is virtual method to program actions to certain
events.

Subclassed by eprosima::fastdds::dds::builtin::TypeLookupReplyListener, eprosima::fastdds::dds::builtin::TypeLookupRequestListener,
eprosima::fastrtps::rtps::PDPListener, eprosima::fastrtps::rtps::WLPListener

Public Functions

inline virtual void onReaderMatched(RTPSReader *reader, MatchingInfo &info)
This method is invoked when a new reader matches

Parameters

• reader – Matching reader

• info – Matching information of the reader

inline virtual void onReaderMatched(RTPSReader *reader, const fastdds::dds::SubscriptionMatchedStatus
&info)

This method is invoked when a new reader matches

Parameters

• reader – Matching reader

• info – Subscription matching information

inline virtual void onNewCacheChangeAdded(RTPSReader *reader, const CacheChange_t *const change)
This method is called when a new CacheChange_t is added to the ReaderHistory.

Parameters

• reader – Pointer to the reader.

• change – Pointer to the CacheChange_t. This is a const pointer to const data
to indicate that the user should not dispose of this data himself. To remove the
data call the remove_change method of the ReaderHistory. reader->getHistory()-
>remove_change((CacheChange_t*)change).

6.30. C++ API Reference 753

Fast DDS Documentation, Release 2.8.2

inline virtual void on_liveliness_changed(RTPSReader *reader, const
eprosima::fastdds::dds::LivelinessChangedStatus &status)

Method called when the liveliness of a reader changes.

Parameters

• reader – The reader

• status – The liveliness changed status

inline virtual void on_requested_incompatible_qos(RTPSReader *reader,
eprosima::fastdds::dds::PolicyMask qos)

This method is called when a new Writer is discovered, with a Topic that matches that of a local reader,
but with an offered QoS that is incompatible with the one requested by the local reader

Parameters

• reader – Pointer to the RTPSReader.

• qos – A mask with the bits of all incompatible Qos activated.

inline virtual void on_sample_lost(RTPSReader *reader, int32_t sample_lost_since_last_update)
This method is called when the reader detects that one or more samples have been lost.

Parameters

• reader – Pointer to the RTPSReader.

• sample_lost_since_last_update – The number of samples that were lost since
the last time this method was called for the same reader.

inline virtual void on_writer_discovery(RTPSReader *reader,
WriterDiscoveryInfo::DISCOVERY_STATUS reason, const
GUID_t &writer_guid, const WriterProxyData *writer_info)

Method called when the discovery information of a writer regarding a reader changes.

Parameters

• reader – The reader.

• reason – The reason motivating this method to be called.

• writer_guid – The GUID of the writer for which the discovery information changed.

• writer_info – Discovery information about the writer. Will be nullptr for reason
REMOVED_WRITER.

inline virtual void on_sample_rejected(RTPSReader *reader,
eprosima::fastdds::dds::SampleRejectedStatusKind reason, const
CacheChange_t *const change)

This method is called when the reader rejects a samples.

Parameters

• reader – Pointer to the RTPSReader.

• reason – Indicates reason for sample rejection.

• change – Pointer to the CacheChange_t. This is a const pointer to const data to indi-
cate that the user should not dispose of this data himself.

inline virtual void on_data_available(RTPSReader *reader, const GUID_t &writer_guid, const
SequenceNumber_t &first_sequence, const SequenceNumber_t
&last_sequence, bool &should_notify_individual_changes)

This method is called when new CacheChange_t objects are made available to the user.

754 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Note: This method is currently never called. Implementation will be added in future releases.

Parameters

• reader – [in] Pointer to the reader performing the notification.

• writer_guid – [in] GUID of the writer from which the changes were received.

• first_sequence – [in] Sequence number of the first change made available.

• last_sequence – [in] Sequence number of the last change made available. It will
always be greater or equal than first_sequence.

• should_notify_individual_changes – [out] Whether the individual changes
should be notified by means of onNewCacheChangeAdded.

inline virtual void on_incompatible_type(RTPSReader *reader)
This method is called when a new Writer is discovered, with a Topic that matches the name of a local
reader, but with an incompatible type

Parameters reader – Pointer to the RTPSReader.

RTPSReader

class eprosima::fastrtps::rtps::RTPSReader : public eprosima::fastrtps::rtps::Endpoint, public
eprosima::fastdds::statistics::StatisticsReaderImpl

Class RTPSReader, manages the reception of data from its matched writers.

Subclassed by eprosima::fastrtps::rtps::StatefulReader, eprosima::fastrtps::rtps::StatelessReader

Public Functions

virtual bool matched_writer_add(const WriterProxyData &wdata) = 0
Add a matched writer represented by its attributes.

Parameters wdata – Attributes of the writer to add.

Returns True if correctly added.

virtual bool matched_writer_remove(const GUID_t &writer_guid, bool removed_by_lease = false) = 0
Remove a writer represented by its attributes from the matched writers.

Parameters

• writer_guid – GUID of the writer to remove.

• removed_by_lease – Whether the writer is being unmatched due to a participant
drop.

Returns True if correctly removed.

virtual bool matched_writer_is_matched(const GUID_t &writer_guid) = 0
Tells us if a specific Writer is matched against this reader.

Parameters writer_guid – GUID of the writer to check.

Returns True if it is matched.

6.30. C++ API Reference 755

Fast DDS Documentation, Release 2.8.2

virtual bool processDataMsg(CacheChange_t *change) = 0
Processes a new DATA message. Previously the message must have been accepted by function acceptMs-
gDirectedTo.

Parameters change – Pointer to the CacheChange_t.

Returns true if the reader accepts messages from the.

virtual bool processDataFragMsg(CacheChange_t *change, uint32_t sampleSize, uint32_t
fragmentStartingNum, uint16_t fragmentsInSubmessage) = 0

Processes a new DATA FRAG message.

Parameters

• change – Pointer to the CacheChange_t.

• sampleSize – Size of the complete, assembled message.

• fragmentStartingNum – Starting number of this particular message.

• fragmentsInSubmessage – Number of fragments on this particular message.

Returns true if the reader accepts message.

virtual bool processHeartbeatMsg(const GUID_t &writerGUID, uint32_t hbCount, const
SequenceNumber_t &firstSN, const SequenceNumber_t &lastSN, bool
finalFlag, bool livelinessFlag) = 0

Processes a new HEARTBEAT message.

Parameters

• writerGUID –

• hbCount –

• firstSN –

• lastSN –

• finalFlag –

• livelinessFlag –

Returns true if the reader accepts messages from the.

virtual bool processGapMsg(const GUID_t &writerGUID, const SequenceNumber_t &gapStart, const
SequenceNumberSet_t &gapList) = 0

Processes a new GAP message.

Parameters

• writerGUID –

• gapStart –

• gapList –

Returns true if the reader accepts messages from the.

virtual bool change_removed_by_history(CacheChange_t *change, WriterProxy *prox = nullptr) = 0
Method to indicate the reader that some change has been removed due to HistoryQos requirements.

Parameters

• change – Pointer to the CacheChange_t.

• prox – Pointer to the WriterProxy.

756 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns True if correctly removed.

ReaderListener *getListener() const
Get the associated listener, secondary attached Listener in case it is of compound type

Returns Pointer to the associated reader listener.

bool setListener(ReaderListener *target)
Switch the ReaderListener kind for the Reader. If the RTPSReader does not belong to the built-in protocols
it switches out the old one. If it belongs to the built-in protocols, it sets the new ReaderListener callbacks
to be called after the built-in ReaderListener ones.

Parameters target – Pointed to ReaderLister to attach

Returns True is correctly set.

bool reserveCache(CacheChange_t **change, uint32_t dataCdrSerializedSize)
Reserve a CacheChange_t.

Parameters

• change – Pointer to pointer to the Cache.

• dataCdrSerializedSize – Size of the Cache.

Returns True if correctly reserved.

void releaseCache(CacheChange_t *change)
Release a cacheChange.

virtual bool nextUnreadCache(CacheChange_t **change, WriterProxy **wp) = 0
Read the next unread CacheChange_t from the history

Parameters

• change – Pointer to pointer of CacheChange_t

• wp – Pointer to pointer to the WriterProxy

Returns True if read.

virtual bool nextUntakenCache(CacheChange_t **change, WriterProxy **wp) = 0
Get the next CacheChange_t from the history to take.

Parameters

• change – Pointer to pointer of CacheChange_t.

• wp – Pointer to pointer to the WriterProxy.

Returns True if read.

inline bool expectsInlineQos()

Returns True if the reader expects Inline QOS.

inline ReaderHistory *getHistory()
Returns a pointer to the associated History.

inline eprosima::fastdds::rtps::IReaderDataFilter *get_content_filter() const

Returns The content filter associated to this reader.

inline void set_content_filter(eprosima::fastdds::rtps::IReaderDataFilter *filter)
Set the content filter associated to this reader.

6.30. C++ API Reference 757

Fast DDS Documentation, Release 2.8.2

Parameters filter – Pointer to the content filter to associate to this reader.

virtual bool isInCleanState() = 0
Returns there is a clean state with all Writers.

It occurs when the Reader received all samples sent by Writers. In other words, its WriterProxies are up
to date.

Returns There is a clean state with all Writers.

virtual void assert_writer_liveliness(const GUID_t &writer) = 0
Assert the liveliness of a matched writer.

Parameters writer – GUID of the writer to assert.

virtual bool begin_sample_access_nts(CacheChange_t *change, WriterProxy *&wp, bool
&is_future_change) = 0

Called just before a change is going to be deserialized.

Parameters

• change – [in] Pointer to the change being accessed.

• wp – [out] Writer proxy the change belongs to.

• is_future_change – [out] Whether the change is in the future (i.e. there are earlier
unreceived changes from the same writer).

Returns Whether the change is still valid or not.

virtual void end_sample_access_nts(CacheChange_t *change, WriterProxy *&wp, bool mark_as_read) =
0

Called after the change has been deserialized.

Parameters

• change – [in] Pointer to the change being accessed.

• wp – [in] Writer proxy the change belongs to.

• mark_as_read – [in] Whether the change should be marked as read or not.

virtual void change_read_by_user(CacheChange_t *change, WriterProxy *writer, bool mark_as_read =
true) = 0

Called when the user has retrieved a change from the history.

Parameters

• change – Pointer to the change to ACK

• writer – Writer proxy of the change.

• mark_as_read – Whether the change should be marked as read or not

bool is_sample_valid(const void *data, const GUID_t &writer, const SequenceNumber_t &sn) const
Checks whether the sample is still valid or is corrupted.

Parameters

• data – Pointer to the sample data to check. If it does not belong to the payload pool
passed to the reader on construction, it yields undefined behavior.

• writer – GUID of the writer that sent data.

• sn – Sequence number related to data.

Returns true if the sample is valid

758 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

LivelinessChangedStatus liveliness_changed_status_
The liveliness changed status struct as defined in the DDS.

Resources

MemoryManagementPolicy

enum eprosima::fastrtps::rtps::MemoryManagementPolicy
Enum MemoryuManagementPolicy_t, indicated the way memory is managed in terms of dealing with
CacheChanges

Values:

enumerator PREALLOCATED_MEMORY_MODE
Preallocated memory.

Size set to the data type maximum. Largest memory footprint but smallest allocation count.

enumerator PREALLOCATED_WITH_REALLOC_MEMORY_MODE
Default size preallocated, requires reallocation when a bigger message arrives.

Smaller memory footprint at the cost of an increased allocation count.

enumerator DYNAMIC_RESERVE_MEMORY_MODE

enumerator DYNAMIC_REUSABLE_MEMORY_MODE

RTPSDomain

class eprosima::fastrtps::rtps::RTPSDomain
Class RTPSDomain,it manages the creation and destruction of RTPSParticipant RTPSWriter and RTPSReader.
It stores a list of all created RTPSParticipant. It has only static methods.

Public Static Functions

static void stopAll()
Method to shut down all RTPSParticipants, readers, writers, etc. It must be called at the end of the process
to avoid memory leaks. It also shut downs the DomainRTPSParticipant.

Post After this call, all the pointers to RTPS entities are invalidated and their use may result in
undefined behaviour.

static RTPSParticipant *createParticipant(uint32_t domain_id, const RTPSParticipantAttributes &attrs,
RTPSParticipantListener *plisten = nullptr)

Create a RTPSParticipant.

Warning: The returned pointer is invalidated after a call to removeRTPSParticipant() or stopAll(), so
its use may result in undefined behaviour.

6.30. C++ API Reference 759

Fast DDS Documentation, Release 2.8.2

Parameters

• domain_id – DomainId to be used by the RTPSParticipant (80 by default).

• attrs – RTPSParticipant Attributes.

• plisten – Pointer to the ParticipantListener.

Returns Pointer to the RTPSParticipant.

static RTPSParticipant *createParticipant(uint32_t domain_id, bool enabled, const
RTPSParticipantAttributes &attrs, RTPSParticipantListener
*plisten = nullptr)

Create a RTPSParticipant.

Warning: The returned pointer is invalidated after a call to removeRTPSParticipant() or stopAll(), so
its use may result in undefined behaviour.

Parameters

• domain_id – DomainId to be used by the RTPSParticipant (80 by default).

• enabled – True if the RTPSParticipant should be enabled on creation. False if it will
be enabled later with RTPSParticipant::enable()

• attrs – RTPSParticipant Attributes.

• plisten – Pointer to the ParticipantListener.

Returns Pointer to the RTPSParticipant.

static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, WriterHistory *hist,
WriterListener *listen = nullptr)

Create a RTPSWriter in a participant.

Warning: The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• watt – Writer Attributes.

• hist – Pointer to the WriterHistory.

• listen – Pointer to the WriterListener.

Returns Pointer to the created RTPSWriter.

static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, const
std::shared_ptr<IPayloadPool> &payload_pool, WriterHistory *hist,
WriterListener *listen = nullptr)

Create a RTPSWriter in a participant using a custom payload pool.

Warning: The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its
use may result in undefined behaviour.

760 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters

• p – Pointer to the RTPSParticipant.

• watt – Writer Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• hist – Pointer to the WriterHistory.

• listen – Pointer to the WriterListener.

Returns Pointer to the created RTPSWriter.

static RTPSWriter *createRTPSWriter(RTPSParticipant *p, WriterAttributes &watt, const
std::shared_ptr<IPayloadPool> &payload_pool, const
std::shared_ptr<IChangePool> &change_pool, WriterHistory *hist,
WriterListener *listen = nullptr)

Create a RTPSWriter in a participant using a custom payload pool.

Warning: The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• watt – Writer Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• change_pool – Shared pointer to the IChangePool

• hist – Pointer to the WriterHistory.

• listen – Pointer to the WriterListener.

Returns Pointer to the created RTPSWriter.

static RTPSWriter *createRTPSWriter(RTPSParticipant *p, const EntityId_t &entity_id, WriterAttributes
&watt, const std::shared_ptr<IPayloadPool> &payload_pool, const
std::shared_ptr<IChangePool> &change_pool, WriterHistory *hist,
WriterListener *listen = nullptr)

Create a RTPSWriter in a participant using a custom payload pool.

Warning: The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• entity_id – Specific entity id to use for the created writer.

• watt – Writer Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• change_pool – Shared pointer to the IChangePool

6.30. C++ API Reference 761

Fast DDS Documentation, Release 2.8.2

• hist – Pointer to the WriterHistory.

• listen – Pointer to the WriterListener.

Returns Pointer to the created RTPSWriter.

static RTPSWriter *createRTPSWriter(RTPSParticipant *p, const EntityId_t &entity_id, WriterAttributes
&watt, const std::shared_ptr<IPayloadPool> &payload_pool,
WriterHistory *hist, WriterListener *listen = nullptr)

Create a RTPSWriter in a participant.

Warning: The returned pointer is invalidated after a call to removeRTPSWriter() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• entity_id – Specific entity id to use for the created writer.

• watt – Writer Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• hist – Pointer to the WriterHistory.

• listen – Pointer to the WriterListener.

Returns Pointer to the created RTPSWriter.

static bool removeRTPSWriter(RTPSWriter *writer)
Remove a RTPSWriter.

Parameters writer – Pointer to the writer you want to remove.

Returns True if correctly removed.

static RTPSReader *createRTPSReader(RTPSParticipant *p, ReaderAttributes &ratt, ReaderHistory *hist,
ReaderListener *listen = nullptr)

Create a RTPSReader in a participant.

Warning: The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• ratt – Reader Attributes.

• hist – Pointer to the ReaderHistory.

• listen – Pointer to the ReaderListener.

Returns Pointer to the created RTPSReader.

762 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

static RTPSReader *createRTPSReader(RTPSParticipant *p, ReaderAttributes &ratt, const
std::shared_ptr<IPayloadPool> &payload_pool, ReaderHistory
*hist, ReaderListener *listen = nullptr)

Create a RTPReader in a participant using a custom payload pool.

Warning: The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• ratt – Reader Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• hist – Pointer to the ReaderHistory.

• listen – Pointer to the ReaderListener.

Returns Pointer to the created RTPSReader.

static RTPSReader *createRTPSReader(RTPSParticipant *p, const EntityId_t &entity_id, ReaderAttributes
&ratt, const std::shared_ptr<IPayloadPool> &payload_pool,
ReaderHistory *hist, ReaderListener *listen = nullptr)

Create a RTPSReader in a participant using a custom payload pool.

Warning: The returned pointer is invalidated after a call to removeRTPSReader() or stopAll(), so its
use may result in undefined behaviour.

Parameters

• p – Pointer to the RTPSParticipant.

• entity_id – Specific entity id to use for the created reader.

• ratt – Reader Attributes.

• payload_pool – Shared pointer to the IPayloadPool

• hist – Pointer to the ReaderHistory.

• listen – Pointer to the ReaderListener.

Returns Pointer to the created RTPSReader.

static bool removeRTPSReader(RTPSReader *reader)
Remove a RTPSReader.

Parameters reader – Pointer to the reader you want to remove.

Returns True if correctly removed.

static bool removeRTPSParticipant(RTPSParticipant *p)
Remove a RTPSParticipant and delete all its associated Writers, Readers, resources, etc.

Parameters p – [in] Pointer to the RTPSParticipant;

Returns True if correct.

6.30. C++ API Reference 763

Fast DDS Documentation, Release 2.8.2

RTPSWriter

LivelinessData

struct eprosima::fastrtps::rtps::LivelinessData
A struct keeping relevant liveliness information of a writer.

Public Functions

inline LivelinessData(GUID_t guid_in, LivelinessQosPolicyKind kind_in, Duration_t lease_duration_in)
Constructor.

Parameters

• guid_in – GUID of the writer

• kind_in – Liveliness kind

• lease_duration_in – Liveliness lease duration

inline bool operator==(const LivelinessData &other) const
Equality operator.

Parameters other – Liveliness data to compare to

Returns True if equal

inline bool operator!=(const LivelinessData &other) const
Inequality operator.

Parameters other – Liveliness data to compare to

Returns True if different

Public Members

GUID_t guid
GUID of the writer.

LivelinessQosPolicyKind kind
Writer liveliness kind.

Duration_t lease_duration
The lease duration.

unsigned int count = 1
The number of times the writer is being counted.

WriterStatus status
The writer status.

std::chrono::steady_clock::time_point time
The time when the writer will lose liveliness.

764 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

RTPSWriter

class eprosima::fastrtps::rtps::RTPSWriter : public eprosima::fastrtps::rtps::Endpoint, public
eprosima::fastdds::statistics::StatisticsWriterImpl

Class RTPSWriter, manages the sending of data to the readers. Is always associated with a HistoryCache.

Subclassed by eprosima::fastrtps::rtps::StatefulWriter, eprosima::fastrtps::rtps::StatelessWriter

Public Functions

template<typename T>
inline CacheChange_t *new_change(T &data, ChangeKind_t changeKind, InstanceHandle_t handle =

c_InstanceHandle_Unknown)
Create a new change based with the provided changeKind.

Parameters

• data – Data of the change.

• changeKind – The type of change.

• handle – InstanceHandle to assign.

Returns Pointer to the CacheChange or nullptr if incorrect.

bool release_change(CacheChange_t *change)
Release a change when it is not being used anymore.

Parameters change – Pointer to the cache change to be released.

Returns whether the operation succeeded or not

Pre

• change is not nullptr

• change points to a cache change obtained from a call to this->new_change

Post memory pointed to by change is not accessed

virtual bool matched_reader_add(const ReaderProxyData &data) = 0
Add a matched reader.

Parameters data – Pointer to the ReaderProxyData object added.

Returns True if added.

virtual bool matched_reader_remove(const GUID_t &reader_guid) = 0
Remove a matched reader.

Parameters reader_guid – GUID of the reader to remove.

Returns True if removed.

virtual bool matched_reader_is_matched(const GUID_t &reader_guid) = 0
Tells us if a specific Reader is matched against this writer.

Parameters reader_guid – GUID of the reader to check.

Returns True if it was matched.

virtual void reader_data_filter(fastdds::rtps::IReaderDataFilter *filter) = 0
Set a content filter to perform content filtering on this writer.

6.30. C++ API Reference 765

Fast DDS Documentation, Release 2.8.2

This method sets a content filter that will be used to check whether a cache change is relevant for a reader
or not.

Parameters filter – The content filter to use on this writer. May be nullptr to remove the
content filter (i.e. treat all samples as relevant).

virtual const fastdds::rtps::IReaderDataFilter *reader_data_filter() const = 0
Get the content filter used to perform content filtering on this writer.

Returns The content filter used on this writer.

inline virtual bool has_been_fully_delivered(const SequenceNumber_t &seq_num) const
Check if a specific change has been delivered to the transport layer of every matched remote RTPSReader
at least once.

Parameters seq_num – Sequence number of the change to check.

Returns true if delivered. False otherwise.

inline virtual bool is_acked_by_all(const CacheChange_t*) const
Check if a specific change has been acknowledged by all Readers. Is only useful in reliable Writer. In BE
Writers returns false when pending to be sent.

Returns True if acknowledged by all.

inline virtual bool wait_for_all_acked(const Duration_t&)
Waits until all changes were acknowledged or max_wait.

Returns True if all were acknowledged.

virtual void updateAttributes(const WriterAttributes &att) = 0
Update the Attributes of the Writer.

Parameters att – New attributes

SequenceNumber_t get_seq_num_min()
Get Min Seq Num in History.

Returns Minimum sequence number in history

SequenceNumber_t get_seq_num_max()
Get Max Seq Num in History.

Returns Maximum sequence number in history

uint32_t getTypeMaxSerialized()
Get maximum size of the serialized type

Returns Maximum size of the serialized type

uint32_t getMaxDataSize()
Get maximum size of the data.

uint32_t calculateMaxDataSize(uint32_t length)
Calculates the maximum size of the data.

inline WriterListener *getListener()
Get listener

Returns Listener

inline bool isAsync() const
Get the publication mode

Returns publication mode

766 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

bool remove_older_changes(unsigned int max = 0)
Remove an specified max number of changes

Parameters max – Maximum number of changes to remove.

Returns at least one change has been removed

inline virtual bool get_disable_positive_acks() const
Returns if disable positive ACKs QoS is enabled.

Returns Best effort writers always return false. Reliable writers override this method.

virtual bool try_remove_change(const std::chrono::steady_clock::time_point &max_blocking_time_point,
std::unique_lock<RecursiveTimedMutex> &lock) = 0

Tries to remove a change waiting a maximum of the provided microseconds.

Parameters

• max_blocking_time_point – Maximum time to wait for.

• lock – Lock of the Change list.

Returns at least one change has been removed

virtual bool wait_for_acknowledgement(const SequenceNumber_t &seq, const
std::chrono::steady_clock::time_point
&max_blocking_time_point,
std::unique_lock<RecursiveTimedMutex> &lock) = 0

Waits till a change has been acknowledged.

Parameters

• seq – Sequence number to wait for acknowledgement.

• max_blocking_time_point – Maximum time to wait for.

• lock – Lock of the Change list.

Returns true when change was acknowledged, false when timeout is reached.

inline RTPSParticipantImpl *getRTPSParticipant() const
Get RTPS participant

Returns RTPS participant

inline void set_separate_sending(bool enable)
Enable or disable sending data to readers separately NOTE: This will only work for synchronous writers

Parameters enable – If separate sending should be enabled

inline bool get_separate_sending() const
Inform if data is sent to readers separately

Returns true if separate sending is enabled

inline virtual bool process_acknack(const GUID_t &writer_guid, const GUID_t &reader_guid, uint32_t
ack_count, const SequenceNumberSet_t &sn_set, bool final_flag, bool
&result)

Process an incoming ACKNACK submessage.

Parameters

• writer_guid – [in] GUID of the writer the submessage is directed to.

• reader_guid – [in] GUID of the reader originating the submessage.

• ack_count – [in] Count field of the submessage.

6.30. C++ API Reference 767

Fast DDS Documentation, Release 2.8.2

• sn_set – [in] Sequence number bitmap field of the submessage.

• final_flag – [in] Final flag field of the submessage.

• result – [out] true if the writer could process the submessage. Only valid when
returned value is true.

Returns true when the submessage was destinated to this writer, false otherwise.

inline virtual bool process_nack_frag(const GUID_t &writer_guid, const GUID_t &reader_guid, uint32_t
ack_count, const SequenceNumber_t &seq_num, const
FragmentNumberSet_t fragments_state, bool &result)

Process an incoming NACKFRAG submessage.

Parameters

• writer_guid – [in] GUID of the writer the submessage is directed to.

• reader_guid – [in] GUID of the reader originating the submessage.

• ack_count – [in] Count field of the submessage.

• seq_num – [in] Sequence number field of the submessage.

• fragments_state – [in] Fragment number bitmap field of the submessage.

• result – [out] true if the writer could process the submessage. Only valid when
returned value is true.

Returns true when the submessage was destinated to this writer, false otherwise.

const LivelinessQosPolicyKind &get_liveliness_kind() const
A method to retrieve the liveliness kind.

Returns Liveliness kind

const Duration_t &get_liveliness_lease_duration() const
A method to retrieve the liveliness lease duration.

Returns Lease duration

const Duration_t &get_liveliness_announcement_period() const
A method to return the liveliness announcement period.

Returns The announcement period

bool is_datasharing_compatible() const

Returns Whether the writer is data sharing compatible or not

virtual DeliveryRetCode deliver_sample_nts(CacheChange_t *cache_change, RTPSMessageGroup
&group, LocatorSelectorSender &locator_selector, const
std::chrono::time_point<std::chrono::steady_clock>
&max_blocking_time) = 0

Tells writer the sample can be sent to the network.

This function should be used by a fastdds::rtps::FlowController.

Note: Must be non-thread safe.

Parameters

768 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• cache_change – Pointer to the CacheChange_t that represents the sample which can
be sent.

• group – RTPSMessageGroup reference uses for generating the RTPS message.

• locator_selector – RTPSMessageSenderInterface reference uses for selecting lo-
cators. The reference has to be a member of this RTPSWriter object.

• max_blocking_time – Future timepoint where blocking send should end.

Returns Return code.

virtual bool send_nts(CDRMessage_t *message, const LocatorSelectorSender &locator_selector,
std::chrono::steady_clock::time_point &max_blocking_time_point) const

Send a message through this interface.

Parameters

• message – Pointer to the buffer with the message already serialized.

• locator_selector – RTPSMessageSenderInterface reference uses for selecting lo-
cators. The reference has to be a member of this RTPSWriter object.

• max_blocking_time_point – Future timepoint where blocking send should end.

Public Members

LivelinessLostStatus liveliness_lost_status_
Liveliness lost status of this writer.

WriterListener

class eprosima::fastrtps::rtps::WriterListener
Class WriterListener with virtual method so the user can implement callbacks to certain events.

Public Functions

inline virtual void onWriterMatched(RTPSWriter *writer, MatchingInfo &info)
This method is called when a new Reader is matched with this Writer by the builtin protocols

Parameters

• writer – Pointer to the RTPSWriter.

• info – Matching Information.

inline virtual void onWriterMatched(RTPSWriter *writer, const
eprosima::fastdds::dds::PublicationMatchedStatus &info)

This method is called when a new Reader is matched with this Writer by the builtin protocols

Parameters

• writer – Pointer to the RTPSWriter.

• info – Publication matching information.

6.30. C++ API Reference 769

Fast DDS Documentation, Release 2.8.2

inline virtual void on_offered_incompatible_qos(RTPSWriter *writer,
eprosima::fastdds::dds::PolicyMask qos)

This method is called when a new Reader is discovered, with a Topic that matches that of a local writer,
but with a requested QoS that is incompatible with the one offered by the local writer

Parameters

• writer – Pointer to the RTPSWriter.

• qos – A mask with the bits of all incompatible Qos activated.

inline virtual void onWriterChangeReceivedByAll(RTPSWriter *writer, CacheChange_t *change)
This method is called when all the readers matched with this Writer acknowledge that a cache change has
been received.

Parameters

• writer – Pointer to the RTPSWriter.

• change – Pointer to the affected CacheChange_t.

inline virtual void on_liveliness_lost(RTPSWriter *writer, const LivelinessLostStatus &status)
Method called when the liveliness of a writer is lost.

Parameters

• writer – The writer

• status – The liveliness lost status

inline virtual void on_reader_discovery(RTPSWriter *writer,
ReaderDiscoveryInfo::DISCOVERY_STATUS reason, const
GUID_t &reader_guid, const ReaderProxyData *reader_info)

Method called when the discovery information of a reader regarding a writer changes.

Parameters

• writer – The writer.

• reason – The reason motivating this method to be called.

• reader_guid – The GUID of the reader for which the discovery information changed.

• reader_info – Discovery information about the reader. Will be nullptr for reason
REMOVED_READER.

inline virtual void on_incompatible_type(RTPSWriter *writer)
This method is called when a new Reader is discovered, with a Topic that matches the name of a local
writer, but with an incompatible type

Parameters writer – Pointer to the RTPSWriter.

6.30.3 Transport

eProsima Fast DDS Transport Layer API.

770 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Transport Generic Interfaces

TransportDescriptorInterface

struct eprosima::fastdds::rtps::TransportDescriptorInterface
Virtual base class for the data type used to define transport configuration. It acts as a builder for a given trans-
port meaning that it allows to configure the transport, and then a new Transport can be built according to this
configuration using its create_transport() factory member function.

• maxMessageSize: maximum size of a single message in the transport.

• maxInitialPeersRange: number of channels opened with each initial remote peer.

Subclassed by eprosima::fastdds::rtps::ChainingTransportDescriptor, eprosima::fastdds::rtps::SharedMemTransportDescriptor,
eprosima::fastdds::rtps::SocketTransportDescriptor

Public Functions

inline TransportDescriptorInterface(uint32_t maximumMessageSize, uint32_t
maximumInitialPeersRange)

Constructor.

TransportDescriptorInterface(const TransportDescriptorInterface &t) = default
Copy constructor.

TransportDescriptorInterface &operator=(const TransportDescriptorInterface &t) = default
Copy assignment.

virtual ~TransportDescriptorInterface() = default
Destructor.

virtual TransportInterface *create_transport() const = 0
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

virtual uint32_t min_send_buffer_size() const = 0
Returns the minimum size required for a send operation.

inline virtual uint32_t max_message_size() const
Returns the maximum size expected for received messages.

inline virtual uint32_t max_initial_peers_range() const
Returns the maximum number of opened channels for each initial remote peer (maximum number of
guessed initial peers to try to connect)

inline bool operator==(const TransportDescriptorInterface &t) const
Comparison operator.

6.30. C++ API Reference 771

Fast DDS Documentation, Release 2.8.2

Public Members

uint32_t maxMessageSize
Maximum size of a single message in the transport.

uint32_t maxInitialPeersRange
Number of channels opened with each initial remote peer.

TransportInterface

class eprosima::fastdds::rtps::TransportInterface
Interface against which to implement a transport layer, decoupled from FastRTPS internals. TransportInterface
expects the user to implement a logical equivalence between Locators and protocol-specific “channels”. This
equivalence can be narrowing: For instance in UDP/IP, a port would take the role of channel, and several different
locators can map to the same port, and hence the same channel.

Subclassed by eprosima::fastdds::rtps::ChainingTransport

Public Functions

virtual ~TransportInterface() = default
Aside from the API defined here, an user-defined Transport must define a descriptor data type and a con-
structor that expects a constant reference to such descriptor. e.g:

class MyTransport: public: typedef struct { . . . } MyTransportDescriptor; MyTransport(const MyTrans-
portDescriptor&); . . .

TransportInterface(const TransportInterface &t) = delete
Copy constructor.

TransportInterface &operator=(const TransportInterface &t) = delete
Copy assignment.

TransportInterface(TransportInterface &&t) = delete
Move constructor.

TransportInterface &operator=(TransportInterface &&t) = delete
Move assignment.

virtual bool init(const fastrtps::rtps::PropertyPolicy *properties = nullptr) = 0
Initialize this transport. This method will prepare all the internals of the transport.

Parameters properties – Optional policy to specify additional parameters of the created
transport.

Returns True when the transport was correctly initialized.

virtual bool IsInputChannelOpen(const Locator&) const = 0
Must report whether the input channel associated to this locator is open. Channels must either be fully
closed or fully open, so that “open” and “close” operations are whole and definitive.

virtual bool IsLocatorSupported(const Locator&) const = 0
Must report whether the given locator is supported by this transport (typically inspecting its “kind” value).

virtual bool is_locator_allowed(const Locator&) const = 0
Must report whether the given locator is allowed by this transport.

772 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

virtual Locator RemoteToMainLocal(const Locator &remote) const = 0
Returns the locator describing the main (most general) channel that can write to the provided remote
locator.

inline virtual bool transform_remote_locator(const Locator &remote_locator, Locator &result_locator)
const

Transforms a remote locator into a locator optimized for local communications.

If the remote locator corresponds to one of the local interfaces, it is converted to the corresponding local
address.

Parameters

• remote_locator – [in] Locator to be converted.

• result_locator – [out] Converted locator.

Returns false if the input locator is not supported/allowed by this transport, true otherwise.

virtual bool OpenOutputChannel(SendResourceList &sender_resource_list, const Locator&) = 0
Must open the channel that maps to/from the given locator. This method must allocate, reserve and mark
any resources that are needed for said channel.

virtual bool OpenInputChannel(const Locator&, TransportReceiverInterface*, uint32_t) = 0
Opens an input channel to receive incoming connections. If there is an existing channel it registers the
receiver interface.

virtual bool CloseInputChannel(const Locator&) = 0
Must close the channel that maps to/from the given locator. IMPORTANT: It MUST be safe to call this
method even during a Receive operation on another thread. You must implement any necessary mutual
exclusion and timeout mechanisms to make sure the channel can be closed without damage.

virtual bool DoInputLocatorsMatch(const Locator&, const Locator&) const = 0
Must report whether two locators map to the same internal channel.

virtual LocatorList NormalizeLocator(const Locator &locator) = 0
Performs locator normalization (assign valid IP if not defined by user)

virtual void select_locators(fastrtps::rtps::LocatorSelector &selector) const = 0
Performs the locator selection algorithm for this transport.

It basically consists of the following steps

• selector.transport_starts is called

• transport handles the selection state of each locator

• if a locator from an entry is selected, selector.select is called for that entry

Parameters selector – [inout] Locator selector.

virtual bool is_local_locator(const Locator &locator) const = 0
Must report whether the given locator is from the local host.

virtual TransportDescriptorInterface *get_configuration() = 0
Return the transport configuration (Transport Descriptor)

virtual void AddDefaultOutputLocator(LocatorList &defaultList) = 0
Add default output locator to the locator list.

virtual bool getDefaultMetatrafficMulticastLocators(LocatorList &locators, uint32_t
metatraffic_multicast_port) const = 0

Add metatraffic multicast locator with the given port.

6.30. C++ API Reference 773

Fast DDS Documentation, Release 2.8.2

virtual bool getDefaultMetatrafficUnicastLocators(LocatorList &locators, uint32_t
metatraffic_unicast_port) const = 0

Add metatraffic unicast locator with the given port.

virtual bool getDefaultUnicastLocators(LocatorList &locators, uint32_t unicast_port) const = 0
Add unicast locator with the given port.

virtual bool fillMetatrafficMulticastLocator(Locator &locator, uint32_t metatraffic_multicast_port)
const = 0

Assign port to the given metatraffic multicast locator if not already defined.

virtual bool fillMetatrafficUnicastLocator(Locator &locator, uint32_t metatraffic_unicast_port) const
= 0

Assign port to the given metatraffic unicast locator if not already defined.

virtual bool configureInitialPeerLocator(Locator &locator, const fastrtps::rtps::PortParameters
&port_params, uint32_t domainId, LocatorList &list) const =
0

Configure the initial peer locators list.

virtual bool fillUnicastLocator(Locator &locator, uint32_t well_known_port) const = 0
Assign port to the given unicast locator if not already defined.

virtual uint32_t max_recv_buffer_size() const = 0

Returns The maximum datagram size for reception supported by the transport

inline virtual void shutdown()
Shutdown method to close the connections of the transports.

inline virtual void update_network_interfaces()
Update network interfaces.

inline int32_t kind() const
Return the transport kind.

constexpr uint32_t eprosima::fastdds::rtps::s_maximumMessageSize = 65500
Default maximum message size.

constexpr uint32_t eprosima::fastdds::rtps::s_maximumInitialPeersRange = 4
Default maximum initial peers range.

constexpr uint32_t eprosima::fastdds::rtps::s_minimumSocketBuffer = 65536
Default minimum socket buffer.

static const std::string eprosima::fastdds::rtps::s_IPv4AddressAny = "0.0.0.0"
Default IPv4 address.

static const std::string eprosima::fastdds::rtps::s_IPv6AddressAny = "::"
Default IPv6 address.

using eprosima::fastdds::rtps::SendResourceList =
std::vector<std::unique_ptr<fastrtps::rtps::SenderResource>>

774 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

TransportReceiverInterface

class eprosima::fastdds::rtps::TransportReceiverInterface
Interface against which to implement a data receiver, decoupled from transport internals.

Public Functions

virtual ~TransportReceiverInterface() = default
Destructor.

virtual void OnDataReceived(const fastrtps::rtps::octet *data, const uint32_t size, const Locator
&local_locator, const Locator &remote_locator) = 0

Method to be called by the transport when receiving data.

Parameters

• data – Pointer to the received data.

• size – Number of bytes received.

• local_locator – Locator identifying the local endpoint.

• remote_locator – Locator identifying the remote endpoint.

SocketTransportDescriptor

struct eprosima::fastdds::rtps::SocketTransportDescriptor : public
eprosima::fastdds::rtps::TransportDescriptorInterface

Virtual base class for the data type used to define configuration of transports using sockets.

• sendBufferSize: size of the sending buffer of the socket (in octets).

• receiveBufferSize: size of the receiving buffer of the socket (in octets).

• interfaceWhiteList: list of allowed interfaces.

• TTL: time to live, in number of hops.

Subclassed by eprosima::fastdds::rtps::TCPTransportDescriptor, eprosima::fastdds::rtps::test_UDPv4TransportDescriptor,
eprosima::fastdds::rtps::UDPTransportDescriptor

Public Functions

inline SocketTransportDescriptor(uint32_t maximumMessageSize, uint32_t
maximumInitialPeersRange)

Constructor.

SocketTransportDescriptor(const SocketTransportDescriptor &t) = default
Copy constructor.

SocketTransportDescriptor &operator=(const SocketTransportDescriptor &t) = default
Copy assignment.

virtual ~SocketTransportDescriptor() = default
Destructor.

6.30. C++ API Reference 775

Fast DDS Documentation, Release 2.8.2

inline virtual uint32_t min_send_buffer_size() const override
Returns the minimum size required for a send operation.

inline bool operator==(const SocketTransportDescriptor &t) const
Comparison operator.

Public Members

uint32_t sendBufferSize
Length of the send buffer.

uint32_t receiveBufferSize
Length of the receive buffer.

std::vector<std::string> interfaceWhiteList
Allowed interfaces in an IP string format.

uint8_t TTL
Specified time to live (8bit - 255 max TTL)

constexpr uint8_t eprosima::fastdds::rtps::s_defaultTTL = 1
Default time to live (TTL)

Chaining of transports

ChainingTransportDescriptor

struct eprosima::fastdds::rtps::ChainingTransportDescriptor : public
eprosima::fastdds::rtps::TransportDescriptorInterface

Base class for the descriptors of chaining transports. A chaining transport allows for the manipulation of data
before sending or after receiving from another transport.

Transport configuration:

• low_level_descriptor: Descriptor for lower level transport.

Public Functions

inline virtual uint32_t min_send_buffer_size() const override
Returns the minimum size required for a send operation.

inline virtual uint32_t max_message_size() const override
Returns the maximum size expected for received messages.

776 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Members

std::shared_ptr<TransportDescriptorInterface> low_level_descriptor
Descriptor for lower level transport.

ChainingTransport

class eprosima::fastdds::rtps::ChainingTransport : public eprosima::fastdds::rtps::TransportInterface
This is the base class for chaining adapter transports.

• Directly proxies all operations except Send and Receive

• Has a pointer to the low level transport

Public Functions

inline ChainingTransport(const ChainingTransportDescriptor &t)
Constructor.

virtual ~ChainingTransport() = default
Destructor.

inline virtual bool init(const fastrtps::rtps::PropertyPolicy *properties = nullptr) override
Initialize the low-level transport.

This method will prepare all the internals of the transport.

Parameters properties – Optional policy to specify additional parameters of the created
transport.

Returns True when the transport was correctly initialized.

inline virtual bool IsInputChannelOpen(const fastrtps::rtps::Locator_t &loc) const override
Call the low-level transport IsInputChannelOpen().

Must report whether the input channel associated to this locator is open. Channels must either be fully
closed or fully open, so that “open” and “close” operations are whole and definitive.

inline virtual bool IsLocatorSupported(const fastrtps::rtps::Locator_t &loc) const override
Call the low-level transport IsLocatorSupported().

Must report whether the given locator is supported by this transport (typically inspecting its “kind” value).

inline virtual fastrtps::rtps::Locator_t RemoteToMainLocal(const fastrtps::rtps::Locator_t &loc) const
override

Call the low-level transport RemoteToMainLocal().

Returns the locator describing the main (most general) channel that can write to the provided remote
locator.

virtual bool OpenInputChannel(const fastrtps::rtps::Locator_t &loc, TransportReceiverInterface
*receiver_interface, uint32_t max_message_size) override

Call the low-level transport OpenInputChannel().

Opens an input channel to receive incoming connections. If there is an existing channel it registers the
receiver interface.

6.30. C++ API Reference 777

Fast DDS Documentation, Release 2.8.2

virtual bool OpenOutputChannel(SendResourceList &sender_resource_list, const fastrtps::rtps::Locator_t
&loc) override

Call the low-level transport OpenOutputChannel().

Must open the channel that maps to/from the given locator. This method must allocate, reserve and mark
any resources that are needed for said channel.

inline virtual bool CloseInputChannel(const fastrtps::rtps::Locator_t &loc) override
Call the low-level transport CloseInputChannel().

Must close the channel that maps to/from the given locator. IMPORTANT: It MUST be safe to call this
method even during a Receive operation on another thread. You must implement any necessary mutual
exclusion and timeout mechanisms to make sure the channel can be closed without damage.

inline virtual fastrtps::rtps::LocatorList_t NormalizeLocator(const fastrtps::rtps::Locator_t &locator)
override

Call the low-level transport NormalizeLocator().

Performs locator normalization (assign valid IP if not defined by user)

inline virtual bool is_local_locator(const fastrtps::rtps::Locator_t &locator) const override
Call the low-level transport is_local_locator().

Must report whether the given locator is from the local host

inline virtual bool is_locator_allowed(const fastrtps::rtps::Locator_t &locator) const override
Call the low-level transport is_locator_allowed().

Must report whether the given locator is allowed by this transport.

inline virtual bool DoInputLocatorsMatch(const fastrtps::rtps::Locator_t &locator_1, const
fastrtps::rtps::Locator_t &locator_2) const override

Call the low-level transport DoInputLocatorsMatch().

Must report whether two locators map to the same internal channel.

inline virtual void select_locators(fastrtps::rtps::LocatorSelector &selector) const override
Call the low-level transport select_locators().

Performs the locator selection algorithm for this transport.

inline virtual void AddDefaultOutputLocator(fastrtps::rtps::LocatorList_t &defaultList) override
Call the low-level transport AddDefaultOutputLocator().

Add default output locator to the locator list

inline virtual bool getDefaultMetatrafficMulticastLocators(fastrtps::rtps::LocatorList_t &locators,
uint32_t metatraffic_multicast_port)
const override

Call the low-level transport getDefaultMetatrafficMulticastLocators().

Add metatraffic multicast locator with the given port

inline virtual bool getDefaultMetatrafficUnicastLocators(fastrtps::rtps::LocatorList_t &locators,
uint32_t metatraffic_unicast_port) const
override

Call the low-level transport getDefaultMetatrafficUnicastLocators().

Add metatraffic unicast locator with the given port

inline virtual bool getDefaultUnicastLocators(fastrtps::rtps::LocatorList_t &locators, uint32_t
unicast_port) const override

Call the low-level transport getDefaultUnicastLocators().

778 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Add unicast locator with the given port

inline virtual bool fillMetatrafficMulticastLocator(fastrtps::rtps::Locator_t &locator, uint32_t
metatraffic_multicast_port) const override

Call the low-level transport fillMetatrafficMulticastLocator().

Assign port to the given metatraffic multicast locator if not already defined

inline virtual bool fillMetatrafficUnicastLocator(fastrtps::rtps::Locator_t &locator, uint32_t
metatraffic_unicast_port) const override

Call the low-level transport fillMetatrafficUnicastLocator().

Assign port to the given metatraffic unicast locator if not already defined

inline virtual bool configureInitialPeerLocator(fastrtps::rtps::Locator_t &locator, const
fastrtps::rtps::PortParameters &port_params, uint32_t
domainId, fastrtps::rtps::LocatorList_t &list) const
override

Call the low-level transport configureInitialPeerLocator().

Configure the initial peer locators list

inline virtual bool fillUnicastLocator(fastrtps::rtps::Locator_t &locator, uint32_t well_known_port)
const override

Call the low-level transport fillUnicastLocator().

Assign port to the given unicast locator if not already defined

inline virtual bool transform_remote_locator(const fastrtps::rtps::Locator_t &remote_locator,
fastrtps::rtps::Locator_t &result_locator) const override

Call the low-level transport transform_remote_locator(). Transforms a remote locator into a locator
optimized for local communications.

inline virtual uint32_t max_recv_buffer_size() const override
Call the low-level transport max_recv_buffer_size().

Returns The maximum datagram size for reception supported by the transport

virtual bool send(fastrtps::rtps::SenderResource *low_sender_resource, const fastrtps::rtps::octet
*send_buffer, uint32_t send_buffer_size, fastrtps::rtps::LocatorsIterator
*destination_locators_begin, fastrtps::rtps::LocatorsIterator *destination_locators_end,
const std::chrono::steady_clock::time_point &timeout) = 0

Blocking Send through the specified channel. It may perform operations on the output buffer. At the end
the function must call to the low-level transport’s send() function.

// Example of calling the low-level transport `send()` function.
return low_sender_resource->send(send_buffer, send_buffer_size, destination_
→˓locators_begin,

destination_locators_end, timeout);

Parameters

• low_sender_resource – SenderResource generated by the lower transport.

• send_buffer – Slice into the raw data to send.

• send_buffer_size – Size of the raw data. It will be used as a bounds check for the
previous argument. It must not exceed the sendBufferSize fed to this class during
construction.

• destination_locators_begin – First iterator of the list of Locators describing the
remote destinations we’re sending to.

6.30. C++ API Reference 779

Fast DDS Documentation, Release 2.8.2

• destination_locators_end – End iterator of the list of Locators describing the
remote destinations we’re sending to.

• timeout – Maximum blocking time.

virtual void receive(TransportReceiverInterface *next_receiver, const fastrtps::rtps::octet *receive_buffer,
uint32_t receive_buffer_size, const fastrtps::rtps::Locator_t &local_locator, const
fastrtps::rtps::Locator_t &remote_locator) = 0

Blocking Receive from the specified channel.

It may perform operations on the input buffer. At the end the function must call to the next_receiver’s
OnDataReceived function.

// Example of calling the `next_receiver`'s `OnDataReceived` function.
next_receiver->OnDataReceived(receive_buffer, receive_buffer_size, local_
→˓locator, remote_locator);

Parameters

• next_receiver – Next resource receiver to be called.

• receive_buffer – vector with enough capacity (not size) to accommodate a full
receive buffer. That capacity must not be less than the receiveBufferSize supplied
to this class during construction.

• receive_buffer_size – Size of the raw data. It will be used as bounds check for
the previous argument. It must not exceed the receiveBufferSize fed to this class
during construction.

• local_locator – Locator mapping to the local channel we’re listening to.

• remote_locator – [out] Locator describing the remote destination we received a
packet from.

inline virtual void update_network_interfaces() override
Update network interfaces.

UDP Transport

UDPTransportDescriptor

struct eprosima::fastdds::rtps::UDPTransportDescriptor : public
eprosima::fastdds::rtps::SocketTransportDescriptor

UDP Transport configuration

• m_output_udp_socket: source port to use for outgoing datagrams.

• non_blocking_send: do not block on send operations. When it is set to true, send operations will
return immediately if the buffer is full, but no error will be returned to the upper layer. This means that
the application will behave as if the datagram is sent and lost.

Subclassed by eprosima::fastdds::rtps::UDPv4TransportDescriptor, eprosima::fastdds::rtps::UDPv6TransportDescriptor

780 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

virtual ~UDPTransportDescriptor() = default
Destructor.

UDPTransportDescriptor()
Constructor.

UDPTransportDescriptor(const UDPTransportDescriptor &t) = default
Copy constructor.

UDPTransportDescriptor &operator=(const UDPTransportDescriptor &t) = default
Copy assignment.

bool operator==(const UDPTransportDescriptor &t) const
Comparison operator.

Public Members

uint16_t m_output_udp_socket
Source port to use for outgoing datagrams.

bool non_blocking_send = false
Whether to use non-blocking calls to send_to().

When set to true, calls to send_to() will return immediately if the buffer is full, but no error will be returned
to the upper layer. This means that the application will behave as if the datagram is sent but lost (i.e.
throughput may be reduced). This value is specially useful on high-frequency best-effort writers.

When set to false, calls to send_to() will block until the network buffer has space for the datagram. This
may hinder performance on high-frequency writers.

UDPv4TransportDescriptor

struct eprosima::fastdds::rtps::UDPv4TransportDescriptor : public
eprosima::fastdds::rtps::UDPTransportDescriptor

UDPv4 Transport configuration The kind value for UDPv4TransportDescriptor is given by
eprosima::fastrtps::rtps::LOCATOR_KIND_UDPv4.

Public Functions

virtual ~UDPv4TransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

UDPv4TransportDescriptor()
Constructor.

UDPv4TransportDescriptor(const UDPv4TransportDescriptor &t) = default
Copy constructor.

6.30. C++ API Reference 781

Fast DDS Documentation, Release 2.8.2

UDPv4TransportDescriptor &operator=(const UDPv4TransportDescriptor &t) = default
Copy assignment.

UDPv6TransportDescriptor

struct eprosima::fastdds::rtps::UDPv6TransportDescriptor : public
eprosima::fastdds::rtps::UDPTransportDescriptor

UDPv6 Transport configuration The kind value for UDPv6TransportDescriptor is given by
eprosima::fastrtps::rtps::LOCATOR_KIND_UDPv6.

Public Functions

virtual ~UDPv6TransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

UDPv6TransportDescriptor()
Constructor.

UDPv6TransportDescriptor(const UDPv6TransportDescriptor &t) = default
Copy constructor.

UDPv6TransportDescriptor &operator=(const UDPv6TransportDescriptor &t) = default
Copy assignment.

test_UDPv4TransportDescriptor

struct eprosima::fastdds::rtps::test_UDPv4TransportDescriptor : public
eprosima::fastdds::rtps::SocketTransportDescriptor

UDP v4 Test Transport configuration

Public Types

typedef std::function<bool(fastrtps::rtps::CDRMessage_t &msg)> filter
Custom message filtering functions.

typedef std::function<bool(const Locator &destination)> DestinationLocatorFilter
Locator filtering function.

782 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

test_UDPv4TransportDescriptor()
Constructor.

virtual ~test_UDPv4TransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Create transport using the parameters defined within the Descriptor.

test_UDPv4TransportDescriptor(const test_UDPv4TransportDescriptor &t) = default
Copy constructor.

test_UDPv4TransportDescriptor &operator=(const test_UDPv4TransportDescriptor &t) = default
Copy assignment.

bool operator==(const test_UDPv4TransportDescriptor &t) const
Comparison operator.

Public Members

uint8_t dropDataMessagesPercentage
Test shim parameters Percentage of data messages being dropped

filter drop_data_messages_filter_
Filtering function for dropping data messages.

bool dropParticipantBuiltinTopicData
Flag to enable dropping of discovery Participant DATA(P) messages.

bool dropPublicationBuiltinTopicData
Flag to enable dropping of discovery Writer DATA(W) messages.

bool dropSubscriptionBuiltinTopicData
Flag to enable dropping of discovery Reader DATA(R) messages.

uint8_t dropDataFragMessagesPercentage
Percentage of data fragments being dropped.

filter drop_data_frag_messages_filter_
Filtering function for dropping data fragments messages.

uint8_t dropHeartbeatMessagesPercentage
Percentage of heartbeats being dropped.

filter drop_heartbeat_messages_filter_
Filtering function for dropping heartbeat messages.

uint8_t dropAckNackMessagesPercentage
Percentage of AckNacks being dropped.

filter drop_ack_nack_messages_filter_
Filtering function for dropping AckNacks.

6.30. C++ API Reference 783

Fast DDS Documentation, Release 2.8.2

uint8_t dropGapMessagesPercentage
Percentage of gap messages being dropped.

filter drop_gap_messages_filter_
Filtering function for dropping gap messages.

DestinationLocatorFilter locator_filter_
Filtering function for dropping messages to specific destinations.

std::vector<fastrtps::rtps::SequenceNumber_t> sequenceNumberDataMessagesToDrop
Vector containing the message’s sequence numbers being dropped.

uint32_t dropLogLength
Log dropped packets.

TCP Transport

TCPTransportDescriptor

struct eprosima::fastdds::rtps::TCPTransportDescriptor : public
eprosima::fastdds::rtps::SocketTransportDescriptor

TCP Transport configuration

• listening_ports: list of ports to listen as server.

• keep_alive_frequency_ms: frequency of RTCP keep alive requests (in ms).

• keep_alive_timeout_ms: time since sending the last keep alive request to consider a connection as
broken (in ms).

• max_logical_port: maximum number of logical ports to try during RTCP negotiation.

• logical_port_range: maximum number of logical ports per request to try during RTCP negotiation.

• logical_port_increment: increment between logical ports to try during RTCP negotiation.

• enable_tcp_nodelay: enables the TCP_NODELAY socket option.

• calculate_crc: true to calculate and send CRC on message headers.

• check_crc: true to check the CRC of incoming message headers.

• apply_security: true to use TLS (Transport Layer Security).

• tls_config: Configuration for TLS.

Subclassed by eprosima::fastdds::rtps::TCPv4TransportDescriptor, eprosima::fastdds::rtps::TCPv6TransportDescriptor

784 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

inline void add_listener_port(uint16_t port)
Add listener port to the listening_ports list.

TCPTransportDescriptor()
Constructor.

TCPTransportDescriptor(const TCPTransportDescriptor &t)
Copy constructor.

TCPTransportDescriptor &operator=(const TCPTransportDescriptor &t)
Copy assignment.

virtual ~TCPTransportDescriptor() = default
Destructor.

bool operator==(const TCPTransportDescriptor &t) const
Comparison operator.

Public Members

std::vector<uint16_t> listening_ports
List of ports to listen as server.

uint32_t keep_alive_frequency_ms
Frequency of RTCP keep alive requests (ms)

uint32_t keep_alive_timeout_ms
Time since sending the last keep alive request to consider a connection as broken (ms)

uint16_t max_logical_port
Maximum number of logical ports to try during RTCP negotiation.

uint16_t logical_port_range
Maximum number of logical ports per request to try during RTCP negotiation.

uint16_t logical_port_increment
Increment between logical ports to try during RTCP negotiation.

bool enable_tcp_nodelay
Enables the TCP_NODELAY socket option.

bool calculate_crc
Enables the calculation and sending of CRC on message headers.

bool check_crc
Enables checking the CRC of incoming message headers.

bool apply_security
Enables the use of TLS (Transport Layer Security)

TLSConfig tls_config
Configuration of the TLS (Transport Layer Security)

6.30. C++ API Reference 785

Fast DDS Documentation, Release 2.8.2

struct TLSConfig
TLS Configuration

• password: password of the private_key_file or rsa_private_key_file.

• private_key_file: path to the private key certificate file.

• rsa_private_key_file: path to the private key RSA certificate file.

• cert_chain_file: path to the public certificate chain file.

• tmp_dh_file: path to the Diffie-Hellman parameters file.

• verify_file: path to the CA (Certification-Authority) file.

• verify_mode: establishes the verification mode mask.

• options: establishes the SSL Context options mask.

• verify_paths: paths where the system will look for verification files.

• default_verify_path: look for verification files on the default paths.

• handshake_role: role that the transport will take on handshaking.

• server_name: server name or host name required in case Server Name Indication (SNI) is used.

Public Types

enum TLSOptions
Supported TLS features. Several options can be combined in the same TransportDescriptor using
the add_option() member function.

• DEFAULT_WORKAROUNDS: implement various bug workarounds.

• NO_COMPRESSION: disable compression.

• NO_SSLV2: disable SSL v2.

• NO_SSLV3: disable SSL v3.

• NO_TLSV1: disable TLS v1.

• NO_TLSV1_1: disable TLS v1.1.

• NO_TLSV1_2: disable TLS v1.2.

• NO_TLSV1_3: disable TLS v1.3.

• SINGLE_DH_USE: always create a new key using Diffie-Hellman parameters.

Values:

enumerator NONE

enumerator DEFAULT_WORKAROUNDS

enumerator NO_COMPRESSION

enumerator NO_SSLV2

enumerator NO_SSLV3

786 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

enumerator NO_TLSV1

enumerator NO_TLSV1_1

enumerator NO_TLSV1_2

enumerator NO_TLSV1_3

enumerator SINGLE_DH_USE

enum TLSVerifyMode
Peer node verification options. Several verification options can be combined in the same Transport-
Descriptor using the add_verify_mode() member function.

• VERIFY_NONE: perform no verification.

• VERIFY_PEER: perform verification of the peer.

• VERIFY_FAIL_IF_NO_PEER_CERT: fail verification if the peer has no certificate. Ignored
unless VERIFY_PEER is also set.

• VERIFY_CLIENT_ONCE: do not request client certificate on renegotiation. Ignored unless
VERIFY_PEER is also set.

Values:

enumerator UNUSED

enumerator VERIFY_NONE

enumerator VERIFY_PEER

enumerator VERIFY_FAIL_IF_NO_PEER_CERT

enumerator VERIFY_CLIENT_ONCE

enum TLSHandShakeRole
Role that the transport will take on handshaking.

• DEFAULT: configured as client if connector, and as server if acceptor.

• CLIENT: configured as client.

• SERVER: configured as server.

Values:

enumerator DEFAULT

enumerator CLIENT

enumerator SERVER

6.30. C++ API Reference 787

Fast DDS Documentation, Release 2.8.2

Public Functions

inline void add_verify_mode(const TLSVerifyMode verify)
Add verification modes to the verification mode mask.

inline bool get_verify_mode(const TLSVerifyMode verify) const
Get the verification mode mask.

inline void add_option(const TLSOptions option)
Add TLS features to the SSL Context options mask.

inline bool get_option(const TLSOptions option) const
Get the SSL Context options mask.

inline bool operator==(const TLSConfig &t) const
Comparison operator.

Public Members

std::string password
Password of the private_key_file or rsa_private_key_file.

uint32_t options = TLSOptions::NONE
SSL context options mask.

std::string cert_chain_file
Path to the public certificate chain file.

std::string private_key_file
Path to the private key certificate file.

std::string tmp_dh_file
Path to the Diffie-Hellman parameters file.

std::string verify_file
Path to the CA (Certification-Authority) file.

uint8_t verify_mode = TLSVerifyMode::UNUSED
Verification mode mask.

std::vector<std::string> verify_paths
Paths where the system will look for verification files.

bool default_verify_path = false
Look for verification files on the default paths.

int32_t verify_depth = -1
Maximum allowed depth for verifying intermediate certificates. Do not override.

std::string rsa_private_key_file
Path to the private key RSA certificate file.

788 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

TLSHandShakeRole handshake_role = TLSHandShakeRole::DEFAULT
Role that the transport will take on handshaking.

std::string server_name
Server name or host name required in case Server Name Indication (SNI) is used.

TCPv4TransportDescriptor

struct eprosima::fastdds::rtps::TCPv4TransportDescriptor : public
eprosima::fastdds::rtps::TCPTransportDescriptor

TCPv4 Transport configuration. The kind value for TCPv4TransportDescriptor is given by
eprosima::fastrtps::rtps::LOCATOR_KIND_TCPv4.

• wan_addr: Public IP address. Peers on a different LAN will use this IP for communications with this
host.

Public Functions

virtual ~TCPv4TransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

inline void set_WAN_address(fastrtps::rtps::octet o1, fastrtps::rtps::octet o2, fastrtps::rtps::octet o3,
fastrtps::rtps::octet o4)

Set the public IP address.

inline void set_WAN_address(const std::string &in_address)
Set the public IP address.

inline std::string get_WAN_address()
Get the public IP address.

TCPv4TransportDescriptor()
Constructor.

TCPv4TransportDescriptor(const TCPv4TransportDescriptor &t)
Copy constructor.

TCPv4TransportDescriptor &operator=(const TCPv4TransportDescriptor &t)
Copy assignment.

bool operator==(const TCPv4TransportDescriptor &t) const
Comparison operator.

6.30. C++ API Reference 789

Fast DDS Documentation, Release 2.8.2

Public Members

fastrtps::rtps::octet wan_addr[4]
Public IP address.

TCPv6TransportDescriptor

struct eprosima::fastdds::rtps::TCPv6TransportDescriptor : public
eprosima::fastdds::rtps::TCPTransportDescriptor

TCPv6 Transport configuration The kind value for TCPv6TransportDescriptor is given by
eprosima::fastrtps::rtps::LOCATOR_KIND_TCPv6.

Public Functions

virtual ~TCPv6TransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

TCPv6TransportDescriptor()
Constructor.

TCPv6TransportDescriptor(const TCPv6TransportDescriptor &t)
Copy constructor.

TCPv6TransportDescriptor &operator=(const TCPv6TransportDescriptor &t) = default
Copy assignment.

bool operator==(const TCPv6TransportDescriptor &t) const
Comparison operator.

Shared Memory Transport

SharedMemTransportDescriptor

struct eprosima::fastdds::rtps::SharedMemTransportDescriptor : public
eprosima::fastdds::rtps::TransportDescriptorInterface

Shared memory transport configuration. The kind value for SharedMemTransportDescriptor is given by
eprosima::fastrtps::rtps::LOCATOR_KIND_SHM.

• segment_size_: size of the shared memory segment (in octets).

• port_queue_capacity_: size of the listening port (in messages).

• healthy_check_timeout_ms_: timeout for the health check of ports (ms).

• rtps_dump_file_: full path of the protocol dump file.

790 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

virtual ~SharedMemTransportDescriptor() = default
Destructor.

virtual TransportInterface *create_transport() const override
Factory method pattern. It will create and return a TransportInterface corresponding to this descriptor.
This provides an interface to the NetworkFactory to create the transports without the need to know about
their type

inline virtual uint32_t min_send_buffer_size() const override
Minimum size of the send buffer.

SharedMemTransportDescriptor()
Constructor.

SharedMemTransportDescriptor(const SharedMemTransportDescriptor &t) = default
Copy constructor.

SharedMemTransportDescriptor &operator=(const SharedMemTransportDescriptor &t) = default
Copy assignment.

inline uint32_t segment_size() const
Return the size of the shared memory segment.

inline void segment_size(uint32_t segment_size)
Set the size of the shared memory segment.

inline virtual uint32_t max_message_size() const override
Return the maximum size of a single message in the transport (in octets)

inline void max_message_size(uint32_t max_message_size)
Set the maximum size of a single message in the transport (in octets)

inline uint32_t port_queue_capacity() const
Return the size of the listening port (in messages)

inline void port_queue_capacity(uint32_t port_queue_capacity)
Set the size of the listening port (in messages)

inline uint32_t healthy_check_timeout_ms() const
Return the timeout for the health check of ports (ms)

inline void healthy_check_timeout_ms(uint32_t healthy_check_timeout_ms)
Set the timeout for the health check of ports (ms)

inline std::string rtps_dump_file() const
Return the full path of the protocol dump file.

inline void rtps_dump_file(const std::string &rtps_dump_file)
Set the full path of the protocol dump file.

bool operator==(const SharedMemTransportDescriptor &t) const
Comparison operator.

6.30. C++ API Reference 791

Fast DDS Documentation, Release 2.8.2

6.30.4 LOG

eProsima Fast DDS Logging Module API

Colors

A collection of macros for ease the stream coloring.

Color Blue

C_BLUE "\033[34m"

Color Bright

C_BRIGHT "\033[1m"

Color Bright Blue

C_B_BLUE "\033[34;1m"

Color Bright Cyan

C_B_CYAN "\033[36;1m"

Color Bright Green

C_B_GREEN "\033[32;1m"

Color Bright Magenta

C_B_MAGENTA "\033[35;1m"

Color Bright Red

C_B_RED "\033[31;1m"

792 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Color Bright White

C_B_WHITE "\033[37;1m"

Color Bright Yellow

C_B_YELLOW "\033[33;1m"

Color Cyan

C_CYAN "\033[36m"

Color Def

C_DEF "\033[m"

Color Green

C_GREEN "\033[32m"

Color Magenta

C_MAGENTA "\033[35m"

Color Red

C_RED "\033[31m"

Color White

C_WHITE "\033[37m"

6.30. C++ API Reference 793

Fast DDS Documentation, Release 2.8.2

Color Yellow

C_YELLOW "\033[33m"

FileConsumer

class eprosima::fastdds::dds::FileConsumer : public eprosima::fastdds::dds::OStreamConsumer

Public Functions

FileConsumer()
Default constructor: filename = “output.log”, append = false.

FileConsumer(const std::string &filename, bool append = false)
Constructor with parameters.

Parameters

• filename – path of the output file where the log will be wrote.

• append – indicates if the consumer must append the content in the filename.

Log

class eprosima::fastdds::dds::Log
Logging utilities. Logging is accessed through the three macros above, and configuration on the log output can
be achieved through static methods on the class. Logging at various levels can be disabled dynamically (through
the Verbosity level) or statically (through the LOG_NO_[VERB] macros) for maximum performance.

Public Types

enum Kind
Types of log entry.

• Error: Maximum priority. Can only be disabled statically through LOG_NO_ERROR.

• Warning: Medium priority. Can be disabled statically and dynamically.

• Info: Low priority. Useful for debugging. Disabled by default on release branches.

Values:

enumerator Error

enumerator Warning

enumerator Info

794 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Static Functions

static void RegisterConsumer(std::unique_ptr<LogConsumer> &&consumer)
Registers an user defined consumer to route log output. There is a default stdout consumer active as default.

Parameters consumer – r-value to a consumer unique_ptr. It will be invalidated after the call.

static void ClearConsumers()
Removes all registered consumers, including the default stdout.

static void ReportFilenames(bool)
Enables the reporting of filenames in log entries. Disabled by default.

static void ReportFunctions(bool)
Enables the reporting of function names in log entries. Enabled by default when supported.

static void SetVerbosity(Log::Kind)
Sets the verbosity level, allowing for messages equal or under that priority to be logged.

static Log::Kind GetVerbosity()
Returns the current verbosity level.

static void SetCategoryFilter(const std::regex&)
Sets a filter that will pattern-match against log categories, dropping any unmatched categories.

static void SetFilenameFilter(const std::regex&)
Sets a filter that will pattern-match against filenames, dropping any unmatched categories.

static void SetErrorStringFilter(const std::regex&)
Sets a filter that will pattern-match against the provided error string, dropping any unmatched categories.

static void Reset()
Returns the logging engine to configuration defaults.

static void Flush()
Waits until all info logged up to the call time is consumed.

static void KillThread()
Stops the logging thread. It will re-launch on the next call to a successful log macro.

static void QueueLog(const std::string &message, const Log::Context&, Log::Kind)
Not recommended to call this method directly! Use the following macros:

• EPROSIMA_LOG_INFO(cat, msg);

• EPROSIMA_LOG_WARNING(cat, msg);

• EPROSIMA_LOG_ERROR(cat, msg);

Todo:
this method takes 2 mutexes (same mutex) internally. This is a very high sensible point of the code
and it should be refactored to be as efficient as possible.

struct Context

struct Entry

6.30. C++ API Reference 795

Fast DDS Documentation, Release 2.8.2

LogConsumer

class LogConsumer
Consumes a log entry to output it somewhere.

Subclassed by eprosima::fastdds::dds::OStreamConsumer

logError

Warning: doxygendefine: Cannot find define “logError” in doxygen xml output for project “FastDDS” from direc-
tory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-rtps/checkouts/v2.8.2/build/doxygen/xml

logInfo

Warning: doxygendefine: Cannot find define “logInfo” in doxygen xml output for project “FastDDS” from direc-
tory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-rtps/checkouts/v2.8.2/build/doxygen/xml

logWarning

Warning: doxygendefine: Cannot find define “logWarning” in doxygen xml output for
project “FastDDS” from directory: /home/docs/checkouts/readthedocs.org/user_builds/eprosima-fast-
rtps/checkouts/v2.8.2/build/doxygen/xml

OStreamConsumer

class OStreamConsumer : public eprosima::fastdds::dds::LogConsumer
Subclassed by eprosima::fastdds::dds::FileConsumer, eprosima::fastdds::dds::StdoutConsumer,
eprosima::fastdds::dds::StdoutErrConsumer

StdoutConsumer

class StdoutConsumer : public eprosima::fastdds::dds::OStreamConsumer

StdoutErrConsumer

class eprosima::fastdds::dds::StdoutErrConsumer : public eprosima::fastdds::dds::OStreamConsumer

796 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Public Functions

virtual void stderr_threshold(const Log::Kind &kind)
Set the stderr_threshold to a Log::Kind. This threshold decides which log messages are output on STD-
OUT, and which are output to STDERR. Log messages with a Log::Kind equal to or more severe than the
stderr_threshold are output to STDERR using std::cerr. Log messages with a Log::Kind less severe than
the stderr_threshold are output to STDOUT using std::cout.

Parameters kind – The Log::Kind to which stderr_threshold is set.

virtual Log::Kind stderr_threshold() const
Retrieve the stderr_threshold.

Returns The Log::Kind to which stderr_threshold is set.

Public Static Attributes

static constexpr Log::Kind STDERR_THRESHOLD_DEFAULT = Log::Kind::Warning
Default value of stderr_threshold.

6.30.5 Statistics

eProsima Fast DDS Statistics Module extension API.

DomainParticipant

class eprosima::fastdds::statistics::dds::DomainParticipant : public
eprosima::fastdds::dds::DomainParticipant

Class DomainParticipant: extends standard DDS DomainParticipant class to include specific methods for the
Statistics module

Public Functions

ReturnCode_t enable_statistics_datawriter(const std::string &topic_name, const
eprosima::fastdds::dds::DataWriterQos &dwqos)

This operation enables a Statistics DataWriter.

Parameters

• topic_name – [in] Name of the topic associated to the Statistics DataWriter

• dwqos – [in] DataWriterQos to be set

Returns RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has
not been set, RETCODE_BAD_PARAMETER if the topic name provided does not
correspond to any Statistics DataWriter, RETCODE_INCONSISTENT_POLICY if the
DataWriterQos provided are inconsistent, RETCODE_OK if the DataWriter has been cre-
ated or if it has been created previously, and RETCODE_ERROR otherwise

ReturnCode_t enable_statistics_datawriter_with_profile(const std::string &profile_name, const
std::string &topic_name)

This operation enables a Statistics DataWriter from a given profile.

Parameters

6.30. C++ API Reference 797

Fast DDS Documentation, Release 2.8.2

• profile_name – [in] DataWriter QoS profile name

• topic_name – [in] Name of the statistics topic to be enabled.

Returns RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has
not been set, RETCODE_BAD_PARAMETER if the topic name provided does not
correspond to any Statistics DataWriter, RETCODE_INCONSISTENT_POLICY if the
DataWriterQos provided in profile are inconsistent, RETCODE_OK if the DataWriter has
been created or if it has been created previously, and RETCODE_ERROR otherwise

ReturnCode_t disable_statistics_datawriter(const std::string &topic_name)
This operation disables a Statistics DataWriter.

Parameters topic_name – Name of the topic associated to the Statistics DataWriter

Returns RETCODE_UNSUPPORTED if the FASTDDS_STATISTICS CMake option has not
been set, RETCODE_BAD_PARAMETER if the topic name provided does not correspond
to any Statistics DataWriter, RETCODE_OK if the DataWriter has been correctly deleted
or does not exist, and RETCODE_ERROR otherwise

Public Static Functions

static DomainParticipant *narrow(eprosima::fastdds::dds::DomainParticipant *domain_participant)
This operation narrows the DDS DomainParticipant to the Statistics DomainParticipant.

Parameters domain_participant – Reference to the DDS DomainParticipant

Returns Reference to the Statistics DomainParticipant if successful. nullptr otherwise.

static const DomainParticipant *narrow(const eprosima::fastdds::dds::DomainParticipant
*domain_participant)

This operation narrows the DDS DomainParticipant to the Statistics DomainParticipant.

Parameters domain_participant – Constant reference to the DDS DomainParticipant

Returns Constant reference to the Statistics DomainParticipant if successful. nullptr other-
wise.

DataWriterQos

class eprosima::fastdds::statistics::dds::DataWriterQos : public
eprosima::fastdds::dds::DataWriterQos

Class DataWriterQos: extends standard DDS DataWriterQos class to include specific default constructor for the
recommended DataWriterQos profile.

Public Functions

DataWriterQos()
Constructor.

const eprosima::fastdds::statistics::dds::DataWriterQos
eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS

Constant to access default Statistics DataWriter Qos.

798 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DataReaderQos

class eprosima::fastdds::statistics::dds::DataReaderQos : public
eprosima::fastdds::dds::DataReaderQos

Class DataReaderQos: extends standard DDS DataReaderQos class to include specific default constructor for
the recommended DataReaderQos profile.

Public Functions

DataReaderQos()
Constructor.

const eprosima::fastdds::statistics::dds::DataReaderQos
eprosima::fastdds::statistics::dds::STATISTICS_DATAREADER_QOS

Constant to access default Statistics DataReader Qos.

Topic names

constexpr const char *eprosima::fastdds::statistics::HISTORY_LATENCY_TOPIC =
"_fastdds_statistics_history2history_latency"

Statistic topic that reports the write-to-notification latency between any two pairs of matched DataWriter-
DataReader histories

constexpr const char *eprosima::fastdds::statistics::NETWORK_LATENCY_TOPIC =
"_fastdds_statistics_network_latency"

Statistics topic that reports the network latency (message group to message receiver) between any two commu-
nicating locators

constexpr const char *eprosima::fastdds::statistics::PUBLICATION_THROUGHPUT_TOPIC =
"_fastdds_statistics_publication_throughput"

Statistic topic that reports the publication’s throughput (amount of data sent) for every DataWriter.

constexpr const char *eprosima::fastdds::statistics::SUBSCRIPTION_THROUGHPUT_TOPIC =
"_fastdds_statistics_subscription_throughput"

Statistics topic that reports the subscription’s throughput (amount of data received) for every DataReader.

constexpr const char *eprosima::fastdds::statistics::RTPS_SENT_TOPIC = "_fastdds_statistics_rtps_sent"
Statistics topic that reports the number of RTPS packets and bytes sent to each locator.

constexpr const char *eprosima::fastdds::statistics::RTPS_LOST_TOPIC = "_fastdds_statistics_rtps_lost"
Statistics topic that reports the number of RTPS packets and bytes that have been lost in the network.

constexpr const char *eprosima::fastdds::statistics::RESENT_DATAS_TOPIC =
"_fastdds_statistics_resent_datas"

Statistics topic that reports the number of DATA/DATAFRAG sub-messages resent.

constexpr const char *eprosima::fastdds::statistics::HEARTBEAT_COUNT_TOPIC =
"_fastdds_statistics_heartbeat_count"

Statistics topic that reports the number of HEARTBEATs that each non discovery DataWriter sends.

6.30. C++ API Reference 799

Fast DDS Documentation, Release 2.8.2

constexpr const char *eprosima::fastdds::statistics::ACKNACK_COUNT_TOPIC =
"_fastdds_statistics_acknack_count"

Statistics topic that reports the number of ACKNACKs that each non discovery DataReader sends.

constexpr const char *eprosima::fastdds::statistics::NACKFRAG_COUNT_TOPIC =
"_fastdds_statistics_nackfrag_count"

Statistics topic that reports the number of NACKFRAGs that each non discovery DataReader sends.

constexpr const char *eprosima::fastdds::statistics::GAP_COUNT_TOPIC = "_fastdds_statistics_gap_count"
Statistics topic that reports the number of GAPs that each non discovery DataWriter sends.

constexpr const char *eprosima::fastdds::statistics::DATA_COUNT_TOPIC =
"_fastdds_statistics_data_count"

Statistics topic that reports the number of DATA/DATAFRAG sub-messages that each non discovery DataWriter
sends.

constexpr const char *eprosima::fastdds::statistics::PDP_PACKETS_TOPIC =
"_fastdds_statistics_pdp_packets"

Statistics topic that reports the number of PDP discovery traffic RTPS packets transmitted by each DDS partici-
pant.

constexpr const char *eprosima::fastdds::statistics::EDP_PACKETS_TOPIC =
"_fastdds_statistics_edp_packets"

Statistics topic that reports the number of EDP discovery traffic RTPS packets transmitted by each DDS partici-
pant.

constexpr const char *eprosima::fastdds::statistics::DISCOVERY_TOPIC =
"_fastdds_statistics_discovered_entity"

Statistics topic that reports when new entities are discovered.

constexpr const char *eprosima::fastdds::statistics::SAMPLE_DATAS_TOPIC =
"_fastdds_statistics_sample_datas"

Statistics topic that reports the number of DATA/DATAFRAG sub-messages needed to send a single sample.

constexpr const char *eprosima::fastdds::statistics::PHYSICAL_DATA_TOPIC =
"_fastdds_statistics_physical_data"

Statistics topic that reports the host, user and process where the module is running.

800 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.31 Python API Reference

This section presents the most commonly used Python APIs provided by Fast DDS.

6.31.1 DDS DCPS PIM

Data Distribution Service (DDS) Data-Centric Publish-Subscribe (DCPS) Platform Independent Model (PIM) API

Core

Entity

class fastdds.Entity(*args, **kwargs)
The Entity class is the abstract base class for all the objects that support QoS policies, a listener and a status
condition.

close()
This operation disables the Entity before closing it

enable()
This operation enables the Entity

Return type ReturnCode_t

Returns RETCODE_OK

get_instance_handle()
Retrieves the instance handler that represents the Entity

Return type InstanceHandle_t

Returns Reference to the InstanceHandle

get_status_changes()
Retrieves the set of triggered statuses in the Entity

Triggered statuses are the ones whose value has changed since the last time the application read the status.
When the entity is first created or if the entity is not enabled, all communication statuses are in the non-
triggered state, so the list returned by the get_status_changes operation will be empty. The list of statuses
returned by the get_status_changes operation refers to the status that are triggered on the Entity itself and
does not include statuses that apply to contained entities.

Return type StatusMask

Returns const reference to the StatusMask with the triggered statuses set to 1

get_status_mask()
Retrieves the set of relevant statuses for the Entity

Return type StatusMask

Returns Reference to the StatusMask with the relevant statuses set to 1

get_statuscondition()
Allows access to the StatusCondition associated with the Entity

Return type StatusCondition

Returns Reference to StatusCondition object

6.31. Python API Reference 801

Fast DDS Documentation, Release 2.8.2

is_enabled()
Checks if the Entity is enabled

Return type boolean

Returns true if enabled, false if not

property thisown
The membership flag

DomainEntity

class fastdds.DomainEntity(*args, **kwargs)
The DomainEntity class is a subclass of Entity created in order to differentiate between DomainParticipants and
the rest of Entities

property thisown
The membership flag

Policy

DataRepresentationId

class fastdds.XCDR_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

class fastdds.XML_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

class fastdds.XCDR2_DATA_REPRESENTATION(*args: Any, **kwargs: Any)

DataRepresentationQosPolicy

class fastdds.DataRepresentationQosPolicy
With multiple standard data Representations available, and vendor-specific extensions possible, DataWriters and
DataReaders must be able to negotiate which data representation(s) to use. This negotiation shall occur based
on DataRepresentationQosPolicy.

Warning: If a writer’s offered representation is contained within a reader’s sequence, the offer satisfies the request
and the policies are compatible. Otherwise, they are incompatible.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property m_value

List of DataRepresentationId. By default, empty list.

property thisown
The membership flag

802 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DataSharingQosPolicy

class fastdds.DataSharingQosPolicy(*args)
Qos Policy to configure the data sharing

Notes: Immutable Qos Policy

add_domain_id(*args)

automatic(*args)
Overload 1:

Configures the DataSharing in automatic mode

The default shared memory directory of the OS is used. A default domain ID is automatically computed.

Overload 2:

Configures the DataSharing in automatic mode

The default shared memory directory of the OS is used.

Parameters domain_ids (std::vector< uint16_t,std::allocator< uint16_t >
>) – the user configured DataSharing domain IDs (16 bits).

Overload 3:

Configures the DataSharing in automatic mode

A default domain ID is automatically computed.

Parameters directory (string) – The shared memory directory to use.

Overload 4:

Configures the DataSharing in automatic mode

Parameters

• directory (string) – The shared memory directory to use.

• domain_ids (std::vector< uint16_t,std::allocator< uint16_t > >) –
the user configured DataSharing domain IDs (16 bits).

clear()
Clears the QosPolicy object

6.31. Python API Reference 803

Fast DDS Documentation, Release 2.8.2

domain_ids()
Gets the set of DataSharing domain IDs.

Each domain ID is 64 bit long. However, user-defined domain IDs are only 16 bit long, while the rest of
the 48 bits are used for the automatically generated domain ID (if any).

• Automatic domain IDs use the 48 MSB and leave the 16 LSB as zero.

• User defined domain IDs use the 16 LSB and leave the 48 MSB as zero.

Return type std::vector< uint64_t,std::allocator< uint64_t > >

Returns the current DataSharing domain IDs

kind()

Return type int

Returns the current DataSharing configuration mode

max_domains()

Return type int

Returns the current configured maximum number of domain IDs

off()
Configures the DataSharing in disabled mode

on(*args)
Overload 1:

Configures the DataSharing in active mode

A default domain ID is automatically computed.

Parameters directory (string) – The shared memory directory to use. It is mandatory to
provide a non-empty name or the creation of endpoints will fail.

Overload 2:

Configures the DataSharing in active mode

Parameters

• directory (string) – The shared memory directory to use. It is mandatory to pro-
vide a non-empty name or the creation of endpoints will fail.

• domain_ids (std::vector< uint16_t,std::allocator< uint16_t > >) –
the user configured DataSharing domain IDs (16 bits).

set_max_domains(size)

Parameters size (int) – the new maximum number of domain IDs

shm_directory()

804 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type string

Returns the current DataSharing shared memory directory

property thisown
The membership flag

DataSharingKind

class fastdds.AUTO(*args: Any, **kwargs: Any)

class fastdds.ON(*args: Any, **kwargs: Any)

class fastdds.OFF(*args: Any, **kwargs: Any)

DeadlineQosPolicy

class fastdds.DeadlineQosPolicy
DataReader expects a new sample updating the value of each instance at least once every deadline period.
DataWriter indicates that the application commits to write a new value (using the DataWriter) for each instance
managed by the DataWriter at least once every deadline period.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property period
Maximum time expected between samples. It is inconsistent for a DataReader to have a DEADLINE
period less than its TimeBasedFilterQosPolicy minimum_separation.

By default, c_TimeInifinite.

property thisown
The membership flag

DestinationOrderQosPolicy

class fastdds.DestinationOrderQosPolicy
Controls the criteria used to determine the logical order among changes made by Publisher entities to the same
instance of data (i.e., matching Topic and key).

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property kind

DestinationOrderQosPolicyKind. By default, BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS.

property thisown
The membership flag

6.31. Python API Reference 805

Fast DDS Documentation, Release 2.8.2

DestinationOrderQosPolicyKind

class fastdds.BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS(*args: Any, **kwargs: Any)

class fastdds.BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS(*args: Any, **kwargs: Any)

DisablePositiveACKsQosPolicy

class fastdds.DisablePositiveACKsQosPolicy
Class DisablePositiveACKsQosPolicy to disable sending of positive ACKs

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property duration
The duration to keep samples for (not serialized as not needed by reader). By default, c_TimeInfinite

property enabled
True if this QoS is enabled. By default, false

property thisown
The membership flag

DurabilityQosPolicy

class fastdds.DurabilityQosPolicy
This policy expresses if the data should ‘outlive’ their writing time.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

durabilityKind(*args)
Overload 1:

Translates kind to rtps layer equivalent

Return type int

Returns fastrtps::rtps::DurabilityKind_t

Overload 2:

Set kind passing the rtps layer equivalent kind

Parameters new_kind (int) – fastrtps::rtps::DurabilityKind_t

property kind
DurabilityQosPolicyKind.

By default the value for DataReaders: VOLATILE_DURABILITY_QOS, for DataWriters TRAN-
SIENT_LOCAL_DURABILITY_QOS

806 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

property thisown
The membership flag

DurabilityQosPolicyKind

class fastdds.VOLATILE_DURABILITY_QOS(*args: Any, **kwargs: Any)

class fastdds.TRANSIENT_LOCAL_DURABILITY_QOS(*args: Any, **kwargs: Any)

class fastdds.TRANSIENT_DURABILITY_QOS(*args: Any, **kwargs: Any)

class fastdds.PERSISTENT_DURABILITY_QOS(*args: Any, **kwargs: Any)

DurabilityServiceQosPolicy

class fastdds.DurabilityServiceQosPolicy
Specifies the configuration of the durability service. That is, the service that implements the DurabilityQosPolicy
kind of TRANSIENT and PERSISTENT.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property history_depth
Number of most recent values that should be maintained on the History. It only have effect if the his-
tory_kind is KEEP_LAST_HISTORY_QOS.

By default, 1.

property history_kind
Controls the HistoryQosPolicy of the fictitious DataReader that stores the data within the durability service.

By default, KEEP_LAST_HISTORY_QOS.

property max_instances
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of instances DataWriter (or DataReader) can manage.

By default, LENGTH_UNLIMITED.

property max_samples
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all
the instances associated with it. Represents the maximum samples the middleware can store for any one
DataWriter (or DataReader). It is inconsistent for this value to be less than max_samples_per_instance.

By default, LENGTH_UNLIMITED.

property max_samples_per_instance
Control the ResourceLimitsQos of the implied DataReader that stores the data within the durability service.
Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.
It is inconsistent for this value to be greater than max_samples.

By default, LENGTH_UNLIMITED.

6.31. Python API Reference 807

Fast DDS Documentation, Release 2.8.2

property service_cleanup_delay
Control when the service is able to remove all information regarding a data-instance.

By default, c_TimeZero.

property thisown
The membership flag

EntityFactoryQosPolicy

class fastdds.EntityFactoryQosPolicy(*args)
Controls the behavior of the entity when acting as a factory for other entities. In other words, configures the
side-effects of the create_* and delete_* operations.

Notes: Mutable Qos Policy

property autoenable_created_entities
Specifies whether the entity acting as a factory automatically enables the instances it creates. If True the
factory will automatically enable each created Entity otherwise it will not.

By default, True.

clear()

property thisown
The membership flag

GenericDataQosPolicy

class fastdds.GenericDataQosPolicy(*args)
Class GenericDataQosPolicy, base class to transmit user data during the discovery phase.

clear()
Clears the QosPolicy object

dataVec()

Return type eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

Returns const reference to the internal raw data.

data_vec(*args)
Overload 1:

Returns raw data vector.

Return type eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

Returns raw data as vector of octets.

Overload 2:

Returns raw data vector.

Return type eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

808 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns raw data as vector of octets.

Overload 3:

Sets raw data vector.

Parameters vec (eprosima::fastrtps::ResourceLimitedVector< unsigned char
>::collection_type) – raw data to set.

getValue()
Returns raw data vector.

Return type eprosima::fastrtps::ResourceLimitedVector< unsigned char >::collection_type

Returns raw data as vector of octets.

resize(new_size)

setValue(vec)
Sets raw data vector.

Parameters vec (eprosima::fastrtps::ResourceLimitedVector< unsigned char
>::collection_type) – raw data to set.

set_max_size(size)
Set the maximum size of the user data and reserves memory for that much.

Parameters size (int) – new maximum size of the user data. Zero for unlimited size

property thisown
The membership flag

GroupDataQosPolicy

class fastdds.GroupDataQosPolicy(*args)

property thisown
The membership flag

HistoryQosPolicy

class fastdds.HistoryQosPolicy
Specifies the behavior of the Service in the case where the value of a sample changes (one or more times) before
it can be successfully communicated to one or more existing subscribers. This QoS policy controls whether the
Service should deliver only the most recent value, attempt to deliver all intermediate values, or do something in
between. On the publishing side this policy controls the samples that should be maintained by the DataWriter
on behalf of existing DataReader entities. The behavior with regards to a DataReaderentities discovered after a
sample is written is controlled by the DURABILITY QoS policy. On the subscribing side it controls the samples
that should be maintained until the application “takes” them from the Service.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

6.31. Python API Reference 809

Fast DDS Documentation, Release 2.8.2

property depth
History depth. By default, 1. If a value other than 1 is specified, it should be consistent with the settings
of the ResourceLimitsQosPolicy.

Warning: Only takes effect if the kind is KEEP_LAST_HISTORY_QOS.

property kind

HistoryQosPolicyKind. By default, KEEP_LAST_HISTORY_QOS.

property thisown
The membership flag

HistoryQosPolicyKind

class fastdds.KEEP_LAST_HISTORY_QOS(*args: Any, **kwargs: Any)

class fastdds.KEEP_ALL_HISTORY_QOS(*args: Any, **kwargs: Any)

LatencyBudgetQosPolicy

class fastdds.LatencyBudgetQosPolicy
Specifies the maximum acceptable delay from the time the data is written until the data is inserted in the receiver’s
application-cache and the receiving application is notified of the fact.This policy is a hint to the Service, not
something that must be monitored or enforced. The Service is not required to track or alert the user of any
violation.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property duration

Maximum acceptable delay from the time data is written until it is received. By default,
c_TimeZero.

property thisown
The membership flag

LifespanQosPolicy

class fastdds.LifespanQosPolicy
Specifies the maximum duration of validity of the data written by the DataWriter.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property duration
Period of validity. By default, c_TimeInfinite.

property thisown
The membership flag

810 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

LivelinessQosPolicy

class fastdds.LivelinessQosPolicy
Determines the mechanism and parameters used by the application to determine whether an Entity is “active”
(alive). The “liveliness” status of an Entity is used to maintain instance ownership in combination with the setting
of the OwnershipQosPolicy. The application is also informed via listener when an Entity is no longer alive.

The DataReader requests that liveliness of the writers is maintained by the requested means and loss of liveliness
is detected with delay not to exceed the lease_duration.

The DataWriter commits to signaling its liveliness using the stated means at intervals not to exceed the
lease_duration. Listeners are used to notify the DataReaderof loss of liveliness and DataWriter of violations
to the liveliness contract.

property announcement_period

The period for automatic assertion of liveliness. Only used for DataWriters with AUTOMATIC
liveliness. By default, c_TimeInfinite.

Warning: When not infinite, must be < lease_duration, and it is advisable to be less than
0.7*lease_duration.

clear()
Clears the QosPolicy object

property kind
Liveliness kind By default, AUTOMATIC_LIVELINESS.

property lease_duration
Period within which liveliness should be asserted. On a DataWriter it represents the period it commits to
signal its liveliness. On a DataReader it represents the period without assertion after which a DataWriter
is considered inactive. By default, c_TimeInfinite.

property thisown
The membership flag

LivelinessQosPolicyKind

class fastdds.AUTOMATIC_LIVELINESS_QOS(*args: Any, **kwargs: Any)

class fastdds.MANUAL_BY_PARTICIPANT_LIVELINESS_QOS(*args: Any, **kwargs: Any)

class fastdds.MANUAL_BY_TOPIC_LIVELINESS_QOS(*args: Any, **kwargs: Any)

OwnershipQosPolicy

class fastdds.OwnershipQosPolicy
Specifies whether it is allowed for multiple DataWriters to write the same instance of the data and if so, how
these modifications should be arbitrated

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property kind
OwnershipQosPolicyKind

6.31. Python API Reference 811

Fast DDS Documentation, Release 2.8.2

property thisown
The membership flag

OwnershipQosPolicyKind

class fastdds.SHARED_OWNERSHIP_QOS(*args: Any, **kwargs: Any)

class fastdds.EXCLUSIVE_OWNERSHIP_QOS(*args: Any, **kwargs: Any)

OwnershipStrengthQosPolicy

class fastdds.OwnershipStrengthQosPolicy
Specifies the value of the “strength” used to arbitrate among multiple DataWriter objects that attempt to modify
the same instance of a data-object (identified by Topic + key).This policy only applies if the OWNERSHIP QoS
policy is of kind EXCLUSIVE.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property thisown
The membership flag

property value
Strength By default, 0.

ParticipantResourceLimitsQos

Partition_t

class fastdds.Partition_t(ptr)

name()
Getter for the partition name

Return type string

Returns name

size()
Getter for the size

Return type int

Returns uint32_t with the size

property thisown
The membership flag

812 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

PartitionQosPolicy

class fastdds.PartitionQosPolicy(*args)
Set of strings that introduces a logical partition among the topics visible by the Publisher and Subscriber. A
DataWriter within a Publisher only communicates with a DataReader in a Subscriber if (in addition to matching
the Topic and having compatible QoS) the Publisher and Subscriber have a common partition name string.

The empty string (“”) is considered a valid partition that is matched with other partition names using the same
rules of string matching and regular-expression matching used for any other partition name.

Notes: Mutable Qos Policy

begin()
Getter for the first position of the partition list

Return type eprosima::fastdds::dds::PartitionQosPolicy::const_iterator

Returns const_iterator

clear()
Clears list of partition names

empty()
Check if the set is empty

Return type int

Returns true if it is empty, false otherwise

end()
Getter for the end of the partition list

Return type eprosima::fastdds::dds::PartitionQosPolicy::const_iterator

Returns const_iterator

getNames()
Returns partition names.

Return type std::vector< std::string,std::allocator< std::string > >

Returns Vector of partition name strings.

max_size()
Getter for the maximum size (in bytes)

Return type int

Returns uint32_t with the maximum size

names(*args)
Overload 1:

Returns partition names.

Return type std::vector< std::string,std::allocator< std::string > >

Returns Vector of partition name strings.

Overload 2:

6.31. Python API Reference 813

Fast DDS Documentation, Release 2.8.2

Overrides partition names

Parameters nam (std::vector< std::string,std::allocator< std::string > >)
– Vector of partition name strings.

push_back(name)
Appends a name to the list of partition names.

Parameters name (string) – Name to append.

setNames(nam)
Overrides partition names

Parameters nam (std::vector< std::string,std::allocator< std::string > >)
– Vector of partition name strings.

set_max_size(size)
Setter for the maximum size reserved for partitions (in bytes)

Parameters size (int) – Size to be set

size()
Getter for the number of partitions

Return type int

Returns uint32_t with the size

property thisown
The membership flag

PresentationQosPolicy

class fastdds.PresentationQosPolicy
Specifies how the samples representing changes to data instances are presented to the subscribing application.
This policy affects the application’s ability to specify and receive coherent changes and to see the relative order
of changes.access_scope determines the largest scope spanning the entities for which the order and coherency of
changes can be preserved. The two booleans control whether coherent access and ordered access are supported
within the scope access_scope.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Immutable Qos Policy

property access_scope

Access Scope Kind By default, INSTANCE_PRESENTATION_QOS.

clear()
Clears the QosPolicy object

property coherent_access
Specifies support coherent access. That is, the ability to group a set of changes as a unit on the publishing
end such that they are received as a unit at the subscribing end. by default, false.

property ordered_access
Specifies support for ordered access to the samples received at the subscription end. That is, the ability of
the subscriber to see changes in the same order as they occurred on the publishing end. By default, false.

property thisown
The membership flag

814 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

PresentationQosPolicyAccessScopeKind

class fastdds.INSTANCE_PRESENTATION_QOS(*args: Any, **kwargs: Any)

class fastdds.TOPIC_PRESENTATION_QOS(*args: Any, **kwargs: Any)

class fastdds.GROUP_PRESENTATION_QOS(*args: Any, **kwargs: Any)

PropertyPolicyQos

PublishModeQosPolicy

class fastdds.PublishModeQosPolicy
Class PublishModeQosPolicy, defines the publication mode for a specific writer.

clear()
Clears the QosPolicy object

property flow_controller_name

Name of the flow controller used when publish mode kind is ASYN-
CHRONOUS_PUBLISH_MODE.

Since: 2.4.0

property kind

PublishModeQosPolicyKind By default, SYNCHRONOUS_PUBLISH_MODE.

property thisown
The membership flag

PublishModeQosPolicyKind

class fastdds.SYNCHRONOUS_PUBLISH_MODE(*args: Any, **kwargs: Any)

class fastdds.ASYNCHRONOUS_PUBLISH_MODE(*args: Any, **kwargs: Any)

QosPolicy

class fastdds.QosPolicy(*args, **kwargs)
Class QosPolicy, base for all QoS policies defined for Writers and Readers.

clear()
Clears the QosPolicy object

property hasChanged
Boolean that indicates if the Qos has been changed with respect to the default Qos.

send_always()
Whether it should always be sent.

Return type boolean

Returns True if it should always be sent.

property thisown
The membership flag

6.31. Python API Reference 815

Fast DDS Documentation, Release 2.8.2

QosPolicyId_t

class fastdds.INVALID_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.USERDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DURABILITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.PRESENTATION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DEADLINE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.LATENCYBUDGET_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.OWNERSHIP_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.OWNERSHIPSTRENGTH_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.LIVELINESS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TIMEBASEDFILTER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.PARTITION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.RELIABILITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DESTINATIONORDER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.HISTORY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.RESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.ENTITYFACTORY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.WRITERDATALIFECYCLE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.READERDATALIFECYCLE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TOPICDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.GROUPDATA_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TRANSPORTPRIORITY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.LIFESPAN_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DURABILITYSERVICE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DATAREPRESENTATION_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.DISABLEPOSITIVEACKS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.PROPERTYPOLICY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.PUBLISHMODE_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.READERRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.RTPSENDPOINT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.RTPSRELIABLEREADER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.RTPSRELIABLEWRITER_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TRANSPORTCONFIG_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.TYPECONSISTENCY_QOS_POLICY_ID(*args: Any, **kwargs: Any)

816 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

class fastdds.WIREPROTOCOLCONFIG_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.WRITERRESOURCELIMITS_QOS_POLICY_ID(*args: Any, **kwargs: Any)

class fastdds.NEXT_QOS_POLICY_ID(*args: Any, **kwargs: Any)

ReaderDataLifecycleQosPolicy

class fastdds.ReaderDataLifecycleQosPolicy
Specifies the behavior of the DataReader with regards to the lifecycle of the data-instances it manages. Warning:
This Qos Policy will be implemented in future releases. Notes: Mutable Qos Policy

property autopurge_disposed_samples_delay
Indicates the duration the DataReader must retain information regarding instances that have the in-
stance_state NOT_ALIVE_DISPOSED.

By default, c_TimeInfinite.

property autopurge_no_writer_samples_delay
Indicates the duration the DataReader must retain information regarding instances that have the in-
stance_state NOT_ALIVE_NO_WRITERS.

By default, c_TimeInfinite.

clear()

property thisown
The membership flag

ReliabilityQosPolicy

class fastdds.ReliabilityQosPolicy
Indicates the reliability of the endpoint.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property kind
Defines the reliability kind of the endpoint.

By default, BEST_EFFORT_RELIABILITY_QOS for DataReaders and RELI-
ABLE_RELIABILITY_QOS for DataWriters.

property max_blocking_time
Defines the maximum period of time certain methods will be blocked.

Methods affected by this property are: - DataWriter::write - DataReader::takeNextData -
DataReader::readNextData

By default, 100 ms.

property thisown
The membership flag

6.31. Python API Reference 817

Fast DDS Documentation, Release 2.8.2

ReliabilityQosPolicyKind

class fastdds.BEST_EFFORT_RELIABILITY_QOS(*args: Any, **kwargs: Any)

class fastdds.RELIABLE_RELIABILITY_QOS(*args: Any, **kwargs: Any)

ResourceLimitsQosPolicy

class fastdds.ResourceLimitsQosPolicy
Specifies the resources that the Service can consume in order to meet the requested QoS

Notes: Immutable Qos Policy

property allocated_samples
Number of samples currently allocated.

By default, 100.

clear()
Clears the QosPolicy object

property extra_samples
Represents the extra number of samples available once the max_samples have been reached in the history.
This makes it possible, for example, to loan samples even with a full history. By default, 1.

property max_instances
Represents the maximum number of instances DataWriter (or DataReader) can manage.

Value 0 means infinite resources. By default, 10.

Warning: It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

property max_samples
Specifies the maximum number of data-samples the DataWriter (or DataReader) can manage across all
the instances associated with it. Represents the maximum samples the middleware can store for any one
DataWriter (or DataReader).

Value 0 means infinite resources. By default, 5000.

Warning: It is inconsistent if max_samples < (max_instances * max_samples_per_instance).

property max_samples_per_instance
Represents the maximum number of samples of any one instance a DataWriter(or DataReader) can manage.

Value 0 means infinite resources. By default, 400.

Warning: It is inconsistent if (max_instances * max_samples_per_instance) > max_samples.

property thisown
The membership flag

818 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

RTPSEndpointQos

class fastdds.RTPSEndpointQos
Qos Policy to configure the endpoint

property entity_id
Entity ID, if the user wants to specify the EntityID of the endpoint. By default, -1.

property external_unicast_locators
The collection of external locators to use for communication.

property history_memory_policy
Underlying History memory policy. By default, PREALLOCATED_WITH_REALLOC_MEMORY_MODE.

property ignore_non_matching_locators
Whether locators that don’t match with the announced locators should be kept.

property multicast_locator_list
Multicast locator list

property remote_locator_list
Remote locator list

property thisown
The membership flag

property unicast_locator_list
Unicast locator list

property user_defined_id
User Defined ID, used for StaticEndpointDiscovery. By default, -1.

TimeBasedFilterQosPolicy

class fastdds.TimeBasedFilterQosPolicy
Filter that allows a DataReader to specify that it is interested only in (potentially) a subset of the values of the data.
The filter states that the DataReader does not want to receive more than one value each minimum_separation,
regardless of how fast the changes occur. It is inconsistent for a DataReader to have a minimum_separation longer
than its Deadline period.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property minimum_separation
Minimum interval between samples. By default, c_TimeZero (the DataReader is interested in all values)

property thisown
The membership flag

6.31. Python API Reference 819

Fast DDS Documentation, Release 2.8.2

TopicDataQosPolicy

class fastdds.TopicDataQosPolicy(*args)

property thisown
The membership flag

TransportConfigQos

class fastdds.TransportConfigQos
Qos Policy to configure the transport layer

clear()
Clears the QosPolicy object

property listen_socket_buffer_size

Listen socket buffer for all listen resources. Zero value indicates to use default system buffer
size.

By default, 0.

property send_socket_buffer_size
Send socket buffer size for the send resource. Zero value indicates to use default system buffer size.

By default, 0.

property thisown
The membership flag

property use_builtin_transports

Set as false to disable the default UDPv4 implementation. By default, true.

property user_transports
User defined transports to use alongside or in place of builtins.

TransportPriorityQosPolicy

class fastdds.TransportPriorityQosPolicy
This policy is a hint to the infrastructure as to how to set the priority of the underlying transport used to send the
data.

Warning: This QosPolicy can be defined and is transmitted to the rest of the network but is not implemented in
this version.

Notes: Mutable Qos Policy

clear()
Clears the QosPolicy object

property thisown
The membership flag

property value

Priority By default, 0.

820 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

TypeConsistencyEnforcementQosPolicy

class fastdds.TypeConsistencyEnforcementQosPolicy
The TypeConsistencyEnforcementQosPolicy defines the rules for determining whether the type used to publish
a given data stream is consistent with that used to subscribe to it. It applies to DataReaders.

Notes: Immutable Qos Policy

clear()
Clears the QosPolicy object

property m_force_type_validation
This option requires type information to be available in order to complete matching between a DataWriter
and DataReader when set to TRUE, otherwise matching can occur without complete type information
when set to FALSE.

By default, false.

property m_ignore_member_names
This option controls whether member names are taken into consideration for type assignability. If the
option is set to TRUE, member names are considered as part of assignability in addition to member IDs
(so that members with the same ID also have the same name). If the option is set to FALSE, then member
names are not ignored.

By default, false.

property m_ignore_sequence_bounds
This option controls whether sequence bounds are taken into consideration for type assignability. If the op-
tion is set to TRUE, sequence bounds (maximum lengths) are not considered as part of the type assignabil-
ity. This means that a T2 sequence type with maximum length L2 would be assignable to a T1 sequence
type with maximum length L1, even if L2 is greater than L1. If the option is set to false, then sequence
bounds are taken into consideration for type assignability and in order for T1 to be assignable from T2 it
is required that L1>= L2.

By default, true.

property m_ignore_string_bounds
This option controls whether string bounds are taken into consideration for type assignability. If the option
is set to TRUE, string bounds (maximum lengths) are not considered as part of the type assignability.
This means that a T2 string type with maximum length L2 would be assignable to a T1 string type with
maximum length L1, even if L2 is greater than L1. If the option is set to false, then string bounds are taken
into consideration for type assignability and in order for T1 to be assignable from T2 it is required that
L1>= L2.

By default, true.

property m_kind

TypeConsistencyKind. By default, ALLOW_TYPE_COERCION.

property m_prevent_type_widening
This option controls whether type widening is allowed. If the option is set to FALSE, type widening is
permitted. If the option is set to TRUE,it shall cause a wider type to not be assignable to a narrower type.

By default, false.

property thisown
The membership flag

6.31. Python API Reference 821

Fast DDS Documentation, Release 2.8.2

TypeConsistencyKind

class fastdds.DISALLOW_TYPE_COERCION(*args: Any, **kwargs: Any)

class fastdds.ALLOW_TYPE_COERCION(*args: Any, **kwargs: Any)

UserDataQosPolicy

class fastdds.UserDataQosPolicy(*args)
Class TClassName, base template for data qos policies. Data not known by the middleware, but distributed by
means of built-in topics. By default, zero-sized sequence.

Notes: Mutable Qos Policy

property thisown
The membership flag

WireProtocolConfigQos

class fastdds.WireProtocolConfigQos
Qos Policy that configures the wire protocol

property builtin
Builtin parameters.

clear()
Clears the QosPolicy object

property default_external_unicast_locators
The collection of external locators to use for communication on user created topics.

property default_multicast_locator_list
Default list of Multicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the
case that it was defined with NO MulticastLocators. This is usually left empty.

property default_unicast_locator_list
Default list of Unicast Locators to be used for any Endpoint defined inside this RTPSParticipant in the case
that it was defined with NO UnicastLocators. At least ONE locator should be included in this list.

property ignore_non_matching_locators
Whether locators that don’t match with the announced locators should be kept.

property participant_id
Participant ID By default, -1.

property port
Port Parameters

property prefix
Optionally allows user to define the GuidPrefix_t

property thisown
The membership flag

822 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

WriterDataLifecycleQosPolicy

class fastdds.WriterDataLifecycleQosPolicy
Specifies the behavior of the DataWriter with regards to the lifecycle of the data-instances it manages. Warning:
This Qos Policy will be implemented in future releases. Notes: Mutable Qos Policy

property autodispose_unregistered_instances
Controls whether a DataWriter will automatically dispose instances each time they are unregistered. The
setting autodispose_unregistered_instances = TRUE indicates that unregistered instances will also be con-
sidered disposed.

By default, true.

property thisown
The membership flag

WriterResourceLimitsQos

class fastdds.WriterResourceLimitsQos
Qos Policy to configure the limit of the writer resources

property matched_subscriber_allocation
Matched subscribers allocation limits.

property reader_filters_allocation
Reader filters allocation limits.

property thisown
The membership flag

Status

BaseStatus

class fastdds.BaseStatus
A struct storing the base status

property thisown
The membership flag

property total_count
Total cumulative count

property total_count_change
Increment since the last time the status was read

6.31. Python API Reference 823

Fast DDS Documentation, Release 2.8.2

DeadlineMissedStatus

class fastdds.DeadlineMissedStatus
A struct storing the deadline status

property last_instance_handle
Handle to the last instance missing the deadline

property thisown
The membership flag

property total_count
Total cumulative number of offered deadline periods elapsed during which a writer failed to provide data
Missed deadlines accumulate, that is, each deadline period the total_count will be incremented by 1

property total_count_change
The change in total_count since the last time the listener was called or the status was read

IncompatibleQosStatus

class fastdds.IncompatibleQosStatus
A struct storing the requested incompatible QoS status

property last_policy_id
The id of the policy that was found to be incompatible the last time an incompatibility is detected

property policies
A list of QosPolicyCount

property thisown
The membership flag

property total_count
Total cumulative number of times the concerned writer discovered a reader for the same topic The requested
QoS is incompatible with the one offered by the writer

property total_count_change
The change in total_count since the last time the listener was called or the status was read

InconsistentTopicStatus

LivelinessChangedStatus

class fastdds.LivelinessChangedStatus
A struct storing the liveliness changed status

property alive_count
The total number of currently active publishers that write the topic read by the subscriber This count
increases when a newly matched publisher asserts its liveliness for the first time or when a publisher previ-
ously considered to be not alive reasserts its liveliness. The count decreases when a publisher considered
alive fails to assert its liveliness and becomes not alive, whether because it was deleted normally or for
some other reason

property alive_count_change
The change in the alive_count since the last time the listener was called or the status was read

824 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

property last_publication_handle
Handle to the last publisher whose change in liveliness caused this status to change

property not_alive_count
The total count of current publishers that write the topic read by the subscriber that are no longer asserting
their liveliness This count increases when a publisher considered alive fails to assert its liveliness and
becomes not alive for some reason other than the normal deletion of that publisher. It decreases when a
previously not alive publisher either reasserts its liveliness or is deleted normally

property not_alive_count_change
The change in the not_alive_count since the last time the listener was called or the status was read

property thisown
The membership flag

MatchedStatus

class fastdds.MatchedStatus
A structure storing a matching status

property current_count
The number of writers currently matched to the concerned reader

property current_count_change
The change in current_count since the last time the listener was called or the status was read

property thisown
The membership flag

property total_count
Total cumulative count the concerned reader discovered a match with a writer It found a writer for the same
topic with a requested QoS that is compatible with that offered by the reader

property total_count_change
The change in total_count since the last time the listener was called or the status was read

OfferedDeadlineMissedStatus

OfferedIncompatibleQosStatus

PublicationMatchedStatus

class fastdds.PublicationMatchedStatus
A structure storing the publication status

property last_subscription_handle
Handle to the last reader that matched the writer causing the status to change

property thisown
The membership flag

6.31. Python API Reference 825

Fast DDS Documentation, Release 2.8.2

QosPolicyCount

class fastdds.QosPolicyCount(*args)
A struct storing the id of the incompatible QoS Policy and the number of times it fails

property count
Total number of times that the concerned writer discovered a reader for the same topic The requested QoS
is incompatible with the one offered by the writer

property policy_id
The id of the policy

property thisown
The membership flag

QosPolicyCountSeq

RequestedDeadlineMissedStatus

RequestedIncompatibleQosStatus

LivelinessLostStatus

SampleLostStatus

SampleRejectedStatus

class fastdds.SampleRejectedStatus
A struct storing the sample rejected status

property last_instance_handle
Handle to the instance being updated by the last sample that was rejected.

property last_reason
Reason for rejecting the last sample rejected. If no samples have been rejected, the reason is the special
value NOT_REJECTED.

property thisown
The membership flag

property total_count
Total cumulative count of samples rejected by the DataReader.

property total_count_change
The incremental number of samples rejected since the last time the listener was called or the status was
read.

826 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

SampleRejectedStatusKind

class fastdds.NOT_REJECTED(*args: Any, **kwargs: Any)

class fastdds.REJECTED_BY_INSTANCES_LIMIT(*args: Any, **kwargs: Any)

class fastdds.REJECTED_BY_SAMPLES_LIMIT(*args: Any, **kwargs: Any)

class fastdds.REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT(*args: Any, **kwargs: Any)

StatusMask

class fastdds.StatusMask(*args)
StatusMask is a bitmap or bitset field.

This bitset is used to: - determine which listener functions to call - set conditions in
dds::core::cond::StatusCondition - indicate status changes when calling dds::core::Entity::status_changes

static all()
Get all StatusMasks

Return type StatusMask

Returns StatusMask all

static data_available()
get the statusmask associated with dds::core::status::data_available

Return type StatusMask

Returns statusmask data_available

static data_on_readers()
Get the StatusMask associated with dds::core::status::data_on_readers

Return type StatusMask

Returns StatusMask data_on_readers

static inconsistent_topic()
Get the StatusMask associated with dds::core::status::InconsistentTopicStatus

Return type StatusMask

Returns StatusMask inconsistent_topic

is_active(status)
Checks if the status passed as parameter is 1 in the actual StatusMask :type status: StatusMask :param
status: Status that need to be checked :rtype: boolean :return: true if the status is active and false if not

static liveliness_changed()
Get the StatusMask associated with dds::core::status::LivelinessChangedStatus

Return type StatusMask

Returns StatusMask liveliness_changed

static liveliness_lost()
Get the StatusMask associated with dds::core::status::LivelinessLostStatus

Return type StatusMask

Returns StatusMask liveliness_lost

6.31. Python API Reference 827

Fast DDS Documentation, Release 2.8.2

static none()
Get no StatusMasks

Return type StatusMask

Returns StatusMask none

static offered_deadline_missed()
Get the StatusMask associated with dds::core::status::OfferedDeadlineMissedStatus

Return type StatusMask

Returns StatusMask offered_deadline_missed

static offered_incompatible_qos()
Get the StatusMask associated with dds::core::status::OfferedIncompatibleQosStatus

Return type StatusMask

Returns StatusMask offered_incompatible_qos

static publication_matched()
Get the statusmask associated with dds::core::status::PublicationMatchedStatus

Return type StatusMask

Returns StatusMask publication_matched

static requested_deadline_missed()
Get the StatusMask associated with dds::core::status::RequestedDeadlineMissedStatus

Return type StatusMask

Returns StatusMask requested_deadline_missed

static requested_incompatible_qos()
Get the StatusMask associated with dds::core::status::RequestedIncompatibleQosStatus

Return type StatusMask

Returns StatusMask requested_incompatible_qos

static sample_lost()
Get the StatusMask associated with dds::core::status::SampleLostStatus

Return type StatusMask

Returns StatusMask sample_lost

static sample_rejected()
Get the StatusMask associated with dds::core::status::SampleRejectedStatus

Return type StatusMask

Returns StatusMask sample_rejected

static subscription_matched()
Get the statusmask associated with dds::core::status::SubscriptionMatchedStatus

Return type StatusMask

Returns StatusMask subscription_matched

property thisown
The membership flag

828 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

SubscriptionMatchedStatus

class fastdds.SubscriptionMatchedStatus
A structure storing the subscription status

property last_publication_handle
Handle to the last writer that matched the reader causing the status change

property thisown
The membership flag

LoanableArray

LoanableCollection

class fastdds.LoanableCollection(*args, **kwargs)
A collection of generic opaque pointers that can receive the buffer from outside (loan).

This is an abstract class. See ‘LoanableSequence’ for details.

buffer()
Get the pointer to the elements buffer.

The returned value may be nullptr if maximum() is 0. Otherwise it is guaranteed that up to maximum()
elements can be accessed.

Return type void

Returns the pointer to the elements buffer.

has_ownership()
Get the ownership flag.

Return type boolean

Returns whether the collection has ownership of the buffer.

length(*args)
Overload 1:

Get the number of elements currently accessible.

Return type int

Returns the number of elements currently accessible.

Overload 2:

Set the number of elements currently accessible.

This method tells the collection that a certain number of elements should be accessible. If the new length
is greater than the current ‘maximum()’ the collection should allocate space for the new elements. If this
is the case and the collection does not own the buffer (i.e. ‘has_ownership()’ is false) then no allocation
will be performed, the length will remain unchanged, and false will be returned.

Parameters [in] – new_length New number of elements to be accessible.

6.31. Python API Reference 829

Fast DDS Documentation, Release 2.8.2

Return type boolean

Returns true if the new length was correctly set.

loan(buffer, new_maximum, new_length)
Loan a buffer to the collection.

Parameters

• [in] – buffer pointer to the buffer to be loaned.

• [in] – new_maximum number of allocated elements in buffer.

• [in] – new_length number of accessible elements in buffer.

Return type boolean

Returns false if preconditions are not met.

Return type boolean

Returns true if operation succeeds.

maximum()
Get the maximum number of elements currently allocated.

Return type int

Returns the maximum number of elements currently allocated.

property thisown
The membership flag

unloan(*args)
Overload 1:

Remove the loan from the collection.

Parameters

• [out] – maximum number of allocated elements on the returned buffer.

• [out] – length number of accessible elements on the returned buffer.

Return type void

Returns nullptr if preconditions are not met.

Return type void

Returns pointer to the previously loaned buffer of elements.

Overload 2:

Remove the loan from the collection.

Return type void

Returns nullptr if preconditions are not met.

Return type void

Returns pointer to the previously loaned buffer of elements.

830 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

LoanableSequence

StackAllocatedSequence

Domain

DomainParticipant

class fastdds.DomainParticipant(*args, **kwargs)
Class DomainParticipant used to group Publishers and Subscribers into a single working unit.

assert_liveliness()
This operation manually asserts the liveliness of the DomainParticipant. This is used in combination with
the LIVELINESS QoS policy to indicate to the Service that the entity remains active.

This operation needs to only be used if the DomainParticipant contains DataWriter entities with the LIVE-
LINESS set to MANUAL_BY_PARTICIPANT and it only affects the liveliness of those DataWriter enti-
ties. Otherwise, it has no effect.

Notes: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and
its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not
writing data regularly.

Return type ReturnCode_t

Returns RETCODE_OK if the liveliness was asserted, RETCODE_ERROR otherwise.

contains_entity(a_handle, recursive=True)
This operation checks whether or not the given handle represents an Entity that was created from the
DomainParticipant.

Parameters

• a_handle (InstanceHandle_t) – InstanceHandle of the entity to look for.

• recursive (boolean) – The containment applies recursively. That is, it applies both
to entities (TopicDescription, Publisher, or Subscriber) created directly using the Do-
mainParticipant as well as entities created using a contained Publisher, or Subscriber
as the factory, and so forth. (default: true)

Return type boolean

Returns True if entity is contained. False otherwise.

create_contentfilteredtopic(*args)
Overload 1:

Create a ContentFilteredTopic in this Participant.

Parameters

• name (string) – Name of the ContentFilteredTopic

• related_topic (Topic) – Related Topic to being subscribed

• filter_expression (string) – Logic expression to create filter

• expression_parameters (std::vector< std::string,std::allocator<
std::string > >) – Parameters to filter content

Return type ContentFilteredTopic

Returns Pointer to the created ContentFilteredTopic.

6.31. Python API Reference 831

Fast DDS Documentation, Release 2.8.2

Return type ContentFilteredTopic

Returns nullptr if related_topic does not belong to this participant.

Return type ContentFilteredTopic

Returns nullptr if a topic with the specified name has already been created.

Return type ContentFilteredTopic

Returns nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

Overload 2:

Create a ContentFilteredTopic in this Participant using a custom filter.

Parameters

• name (string) – Name of the ContentFilteredTopic

• related_topic (Topic) – Related Topic to being subscribed

• filter_expression (string) – Logic expression to create filter

• expression_parameters (std::vector< std::string,std::allocator<
std::string > >) – Parameters to filter content

• filter_class_name (string) – Name of the filter class to use

Return type ContentFilteredTopic

Returns Pointer to the created ContentFilteredTopic.

Return type ContentFilteredTopic

Returns nullptr if related_topic does not belong to this participant.

Return type ContentFilteredTopic

Returns nullptr if a topic with the specified name has already been created.

Return type ContentFilteredTopic

Returns nullptr if a filter cannot be created with the specified filter_expression and
expression_parameters.

Return type ContentFilteredTopic

Returns nullptr if the specified filter_class_name has not been registered.

create_multitopic(name, type_name, subscription_expression, expression_parameters)
Create a MultiTopic in this Participant.

Parameters

• name (string) – Name of the MultiTopic

• type_name (string) – Result type of the MultiTopic

• subscription_expression (string) – Logic expression to combine filter

• expression_parameters (std::vector< std::string,std::allocator<
std::string > >) – Parameters to subscription content

832 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type eprosima::fastdds::dds::MultiTopic

Returns Pointer to the created ContentFilteredTopic, nullptr in error case

create_publisher(*args)
Create a Publisher in this Participant.

Parameters

• qos (PublisherQos) – QoS of the Publisher.

• listener (PublisherListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Publisher

Returns Pointer to the created Publisher.

create_publisher_with_profile(*args)
Create a Publisher in this Participant.

Parameters

• profile_name (string) – Publisher profile name.

• listener (PublisherListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Publisher

Returns Pointer to the created Publisher.

create_subscriber(*args)
Create a Subscriber in this Participant.

Parameters

• qos (SubscriberQos) – QoS of the Subscriber.

• listener (SubscriberListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Subscriber

Returns Pointer to the created Subscriber.

create_subscriber_with_profile(*args)
Create a Subscriber in this Participant.

Parameters

• profile_name (string) – Subscriber profile name.

• listener (SubscriberListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Subscriber

Returns Pointer to the created Subscriber.

6.31. Python API Reference 833

Fast DDS Documentation, Release 2.8.2

create_topic(*args)
Create a Topic in this Participant.

Parameters

• topic_name (string) – Name of the Topic.

• type_name (string) – Data type of the Topic.

• qos (TopicQos) – QoS of the Topic.

• listener (TopicListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Topic

Returns Pointer to the created Topic.

create_topic_with_profile(*args)
Create a Topic in this Participant.

Parameters

• topic_name (string) – Name of the Topic.

• type_name (string) – Data type of the Topic.

• profile_name (string) – Topic profile name.

• listener (TopicListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all)

Return type Topic

Returns Pointer to the created Topic.

delete_contained_entities()
Deletes all the entities that were created by means of the “create” methods

Return type ReturnCode_t

Returns RETURN_OK code if everything correct, error code otherwise

delete_contentfilteredtopic(a_contentfilteredtopic)
Deletes an existing ContentFilteredTopic.

Parameters a_contentfilteredtopic (ContentFilteredTopic) – ContentFiltered-
Topic to be deleted

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant
or if it is referenced by any entity and RETCODE_OK if the ContentFilteredTopic was
deleted.

delete_multitopic(a_multitopic)
Deletes an existing MultiTopic.

Parameters a_multitopic (eprosima::fastdds::dds::MultiTopic) – MultiTopic to
be deleted

Return type ReturnCode_t

834 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant or
if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

delete_publisher(publisher)
Deletes an existing Publisher.

Parameters publisher (Publisher) – to be deleted.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the publisher does not belong to this
participant or if it has active DataWriters, RETCODE_OK if it is correctly deleted and
RETCODE_ERROR otherwise.

delete_subscriber(subscriber)
Deletes an existing Subscriber.

Parameters subscriber (Subscriber) – to be deleted.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the subscriber does not belong to this
participant or if it has active DataReaders, RETCODE_OK if it is correctly deleted and
RETCODE_ERROR otherwise.

delete_topic(topic)
Deletes an existing Topic.

Parameters topic (Topic) – to be deleted.

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the topic passed is a nullptr, RET-
CODE_PRECONDITION_NOT_MET if the topic does not belong to this participant or
if it is referenced by any entity and RETCODE_OK if the Topic was deleted.

enable()
This operation enables the DomainParticipant

Return type ReturnCode_t

Returns RETCODE_OK

find_topic(topic_name, timeout)
Gives access to an existing (or ready to exist) enabled Topic. It should be noted that the returned Topic is
a local object that acts as a proxy to designate the global concept of topic. Topics obtained by means of
find_topic, must also be deleted by means of delete_topic so that the local resources can be released. If a
Topic is obtained multiple times by means of find_topic or create_topic, it must also be deleted that same
number of times using delete_topic.

Parameters

• topic_name (string) – Topic name

• timeout (Duration_t) – Maximum time to wait for the Topic

Return type Topic

Returns Pointer to the existing Topic, nullptr in case of error or timeout

find_type(type_name)
This method gives access to a registered type based on its name.

6.31. Python API Reference 835

Fast DDS Documentation, Release 2.8.2

Parameters type_name (string) – Name of the type

Return type TypeSupport

Returns TypeSupport corresponding to the type_name

get_builtin_subscriber()
Allows access to the builtin Subscriber.

Return type Subscriber

Returns Pointer to the builtin Subscriber, nullptr in error case

get_current_time(current_time)
This operation returns the current value of the time that the service uses to time-stamp data-writes and to
set the reception-timestamp for the data-updates it receives.

Parameters current_time (Time_t) – Time_t reference where the current time is returned

Return type ReturnCode_t

Returns RETCODE_OK

get_default_publisher_qos(*args)
Overload 1:

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher
operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

Return type PublisherQos

Returns Current default publisher qos.

Overload 2:

This operation retrieves the default value of the Publisher QoS, that is, the QoS policies which will be used
for newly created Publisher entities in the case where the QoS policies are defaulted in the create_publisher
operation.

The values retrieved get_default_publisher_qos will match the set of values specified on the last successful
call to set_default_publisher_qos, or else, if the call was never made, the default values.

Parameters qos (PublisherQos) – PublisherQos reference where the default_publisher_qos
is returned

Return type ReturnCode_t

Returns RETCODE_OK

get_default_subscriber_qos(*args)
Overload 1:

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be
used for newly created Subscriber entities in the case where the QoS policies are defaulted in the cre-
ate_subscriber operation.

836 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

Return type SubscriberQos

Returns Current default subscriber qos.

Overload 2:

This operation retrieves the default value of the Subscriber QoS, that is, the QoS policies which will be
used for newly created Subscriber entities in the case where the QoS policies are defaulted in the cre-
ate_subscriber operation.

The values retrieved get_default_subscriber_qos will match the set of values specified on the last successful
call to set_default_subscriber_qos, or else, if the call was never made, the default values.

Parameters qos (SubscriberQos) – SubscriberQos reference where the de-
fault_subscriber_qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

get_default_topic_qos(*args)
Overload 1:

This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for
newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call
to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

Return type TopicQos

Returns Current default topic qos.

Overload 2:

This operation retrieves the default value of the Topic QoS, that is, the QoS policies that will be used for
newly created Topic entities in the case where the QoS policies are defaulted in the create_topic operation.

The values retrieved get_default_topic_qos will match the set of values specified on the last successful call
to set_default_topic_qos, or else, TOPIC_QOS_DEFAULT if the call was never made.

Parameters qos (TopicQos) – TopicQos reference where the default_topic_qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

get_discovered_participant_data(participant_data, participant_handle)
Retrieves the DomainParticipant data of a discovered not ignored participant.

participant_data Reference to the ParticipantBuiltinTopicData object to return the data :type partici-
pant_handle: InstanceHandle_t :param participant_handle: InstanceHandle of DomainParticipant to

6.31. Python API Reference 837

Fast DDS Documentation, Release 2.8.2

retrieve the data from :rtype: ReturnCode_t :return: RETCODE_OK if everything correct, PRECON-
DITION_NOT_MET if participant does not exist Warning: Not supported yet. Currently returns RET-
CODE_UNSUPPORTED

get_discovered_participants(participant_handles)
Retrieves the list of DomainParticipants that have been discovered in the domain and are not “ignored”.

participant_handles Reference to the vector where discovered participants will be returned :rtype:
ReturnCode_t :return: RETCODE_OK if everything correct, error code otherwise Warning: Not sup-
ported yet. Currently returns RETCODE_UNSUPPORTED

get_discovered_topic_data(topic_data, topic_handle)
Retrieves the Topic data of a discovered not ignored topic.

topic_data Reference to the TopicBuiltinTopicData object to return the data :type topic_handle:
InstanceHandle_t :param topic_handle: InstanceHandle of Topic to retrieve the data from :rtype:
ReturnCode_t :return: RETCODE_OK if everything correct, PRECONDITION_NOT_MET if topic
does not exist

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_discovered_topics(topic_handles)
Retrieves the list of topics that have been discovered in the domain and are not “ignored”.

topic_handles Reference to the vector where discovered topics will be returned :rtype: ReturnCode_t :re-
turn: RETCODE_OK if everything correct, error code otherwise Warning: Not supported yet. Currently
returns RETCODE_UNSUPPORTED

get_domain_id()
This operation retrieves the domain_id used to create the DomainParticipant. The domain_id identifies
the DDS domain to which the DomainParticipant belongs.

Return type int

Returns The Participant’s domain_id

get_instance_handle()
Returns the DomainParticipant’s handle.

Return type InstanceHandle_t

Returns InstanceHandle of this DomainParticipant.

get_listener()
Allows accessing the DomainParticipantListener.

Return type DomainParticipantListener

Returns DomainParticipantListener pointer

get_participant_names()
Getter for the participant names

Return type std::vector< std::string,std::allocator< std::string > >

Returns Vector with the names

get_publisher_qos_from_profile(profile_name, qos)
Fills the PublisherQos with the values of the XML profile.

Parameters

• profile_name (string) – Publisher profile name.

• qos (PublisherQos) – PublisherQos object where the qos is returned.

838 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_qos(*args)
Overload 1:

This operation returns the value of the DomainParticipant QoS policies

Parameters qos (DomainParticipantQos) – DomainParticipantQos reference where the
qos is going to be returned

Return type ReturnCode_t

Returns RETCODE_OK

Overload 2:

This operation returns the value of the DomainParticipant QoS policies

Return type DomainParticipantQos

Returns A reference to the DomainParticipantQos

get_resource_event()
Getter for the resource event

Return type eprosima::fastrtps::rtps::ResourceEvent

Returns A reference to the resource event

get_subscriber_qos_from_profile(profile_name, qos)
Fills the SubscriberQos with the values of the XML profile.

Parameters

• profile_name (string) – Subscriber profile name.

• qos (SubscriberQos) – SubscriberQos object where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_topic_qos_from_profile(profile_name, qos)
Fills the TopicQos with the values of the XML profile.

Parameters

• profile_name (string) – Topic profile name.

• qos (TopicQos) – TopicQos object where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_type_dependencies(_in)
When a DomainParticipant receives an incomplete list of TypeIdentifiers in a PublicationBuiltinTopic-
Data or SubscriptionBuiltinTopicData, it may request the additional type dependencies by invoking the
getTypeDependencies operation.

6.31. Python API Reference 839

Fast DDS Documentation, Release 2.8.2

Parameters in (eprosima::fastrtps::types::TypeIdentifierSeq) – TypeIdentifier
sequence

Return type SampleIdentity

Returns SampleIdentity

get_types(_in)
A DomainParticipant may invoke the operation getTypes to retrieve the TypeObjects associated with a list
of TypeIdentifiers.

Parameters in (eprosima::fastrtps::types::TypeIdentifierSeq) – TypeIdentifier
sequence

Return type SampleIdentity

Returns SampleIdentity

guid()
Getter for the Participant GUID

Return type GUID_t

Returns A reference to the GUID

ignore_participant(handle)
Locally ignore a remote domain participant.

Notes: This action is not reversible.

Parameters handle (InstanceHandle_t) – Identifier of the remote participant to ignore

Return type ReturnCode_t

Returns RETURN_OK code if everything correct, RETCODE_BAD_PARAMENTER other-
wise

ignore_publication(handle)
Locally ignore a remote datawriter.

Notes: This action is not reversible.

Parameters handle (InstanceHandle_t) – Identifier of the datawriter to ignore

Return type ReturnCode_t

Returns RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

ignore_subscription(handle)
Locally ignore a remote datareader.

Notes: This action is not reversible.

Parameters handle (InstanceHandle_t) – Identifier of the datareader to ignore

Return type ReturnCode_t

Returns RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

ignore_topic(handle)
Locally ignore a topic.

Notes: This action is not reversible.

840 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters handle (InstanceHandle_t) – Identifier of the topic to ignore

Return type ReturnCode_t

Returns RETURN_OK code if everything correct, error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

lookup_content_filter_factory(filter_class_name)
Lookup a custom content filter factory previously registered with register_content_filter_factory.

Parameters filter_class_name (string) – Name of the filter class. Cannot be nullptr.

Return type IContentFilterFactory

Returns nullptr if the given filter_class_name has not been previously registered on this Do-
mainParticipant. Otherwise, the content filter factory previously registered with the given
filter_class_name.

lookup_topicdescription(topic_name)
Looks up an existing, locally created ‘TopicDescription’, based on its name. May be called on a disabled
participant.

Parameters topic_name (string) – Name of the ‘TopicDescription’ to search for.

Return type TopicDescription

Returns Pointer to the topic description, if it has been created locally. Otherwise, nullptr is
returned.

Remarks: UNSAFE. It is unsafe to lookup a topic description while another thread is creating a topic.

new_remote_endpoint_discovered(partguid, userId, kind)
This method can be used when using a StaticEndpointDiscovery mechanism different that the one included
in FastRTPS, for example when communicating with other implementations. It indicates the Participant
that an Endpoint from the XML has been discovered and should be activated.

Parameters

• partguid (GUID_t) – Participant GUID_t.

• userId (int) – User defined ID as shown in the XML file.

• kind (int) – EndpointKind (WRITER or READER)

Return type boolean

Returns True if correctly found and activated.

register_content_filter_factory(filter_class_name, filter_factory)
Register a custom content filter factory, which can be used to create a ContentFilteredTopic.

DDS specifies a SQL-like content filter to be used by content filtered topics. If this filter does not meet
your filtering requirements, you can register a custom filter factory.

To use a custom filter, a factory for it must be registered in the following places:

• In any application that uses the custom filter factory to create a ContentFilteredTopic and the corre-
sponding DataReader.

• In each application that writes the data to the applications mentioned above.

For example, suppose Application A on the subscription side creates a Topic named X and a Content-
FilteredTopic named filteredX (and a corresponding DataReader), using a previously registered content
filter factory, myFilterFactory. With only that, you will have filtering at the subscription side. If you also

6.31. Python API Reference 841

Fast DDS Documentation, Release 2.8.2

want to perform filtering in any application that publishes Topic X, then you also need to register the same
definition of the ContentFilterFactory myFilterFactory in that application.

Each filter_class_name can only be used to register a content filter factory once per DomainPartici-
pant.

Parameters

• filter_class_name (string) – Name of the filter class. Cannot be nullptr, must
not exceed 255 characters, and must be unique within this DomainParticipant.

• filter_factory (IContentFilterFactory) – Factory of content filters to be reg-
istered. Cannot be nullptr.

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if any parameter is nullptr, or the filter_class_name
exceeds 255 characters.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the filter_class_name has been already
registered.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if filter_class_name is FAST-
DDS_SQLFILTER_NAME.

Return type ReturnCode_t

Returns RETCODE_OK if the filter is correctly registered.

register_remote_type(type_information, type_name, callback)
Helps the user to solve all dependencies calling internally to the typelookup service and registers the
resulting dynamic type. The registration will be perform asynchronously and the user will be notified
through the given callback, which receives the type_name as unique argument. If the type is already
registered, the function will return true, but the callback will not be called. If the given type_information
is enough to build the type without using the typelookup service, it will return true and the callback will
be never called.

Parameters

• type_information (eprosima::fastrtps::types::TypeInformation) –

• type_name (string) –

• callback (std::function< void (std::string const &,
eprosima::fastrtps::types::DynamicType_ptr const) >) –

Return type ReturnCode_t

Returns true if type is already available (callback will not be called). false if type isn’t available
yet (the callback will be called if negotiation is success, and ignored in other case).

register_type(*args)
Overload 1:

Register a type in this participant.

Parameters

• type (TypeSupport) – TypeSupport.

• type_name (string) – The name that will be used to identify the Type.

842 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with
the same name and RETCODE_OK if it is correctly registered.

Overload 2:

Register a type in this participant.

Parameters type (TypeSupport) – TypeSupport.

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there is another TypeSupport with
the same name and RETCODE_OK if it is correctly registered.

set_default_publisher_qos(qos)
This operation sets a default value of the Publisher QoS policies which will be used for newly created
Publisher entities in the case where the QoS policies are defaulted in the create_publisher operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value PUBLISHER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would
be used if the set_default_publisher_qos operation had never been called.

Parameters qos (PublisherQos) – PublisherQos to be set

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_default_subscriber_qos(qos)
This operation sets a default value of the Subscriber QoS policies that will be used for newly created
Subscriber entities in the case where the QoS policies are defaulted in the create_subscriber operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value SUBSCRIBER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would
be used if the set_default_subscriber_qos operation had never been called.

Parameters qos (SubscriberQos) – SubscriberQos to be set

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_default_topic_qos(qos)
This operation sets a default value of the Topic QoS policies which will be used for newly created Topic
entities in the case where the QoS policies are defaulted in the create_topic operation.

6.31. Python API Reference 843

Fast DDS Documentation, Release 2.8.2

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

The special value TOPIC_QOS_DEFAULT may be passed to this operation to indicate that the default
QoS should be reset back to the initial values the factory would use, that is the values that would be used
if the set_default_topic_qos operation had never been called.

Parameters qos (TopicQos) – TopicQos to be set

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_listener(*args)
Overload 1:

Modifies the DomainParticipantListener, sets the mask to StatusMask::all()

Parameters listener (DomainParticipantListener) – new value for the DomainPartic-
ipantListener

Return type ReturnCode_t

Returns RETCODE_OK

Overload 2:

Modifies the DomainParticipantListener.

Parameters

• listener (DomainParticipantListener) – new value for the DomainPartici-
pantListener

• mask (StatusMask) – StatusMask that holds statuses the listener responds to

Return type ReturnCode_t

Returns RETCODE_OK

set_qos(qos)
This operation sets the value of the DomainParticipant QoS policies.

Parameters qos (DomainParticipantQos) – DomainParticipantQos to be set

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

property thisown
The membership flag

unregister_content_filter_factory(filter_class_name)
Unregister a custom content filter factory previously registered with register_content_filter_factory.

A filter_class_name can be unregistered only if it has been previously registered to the DomainParticipant
with register_content_filter_factory.

844 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The unregistration of filter is not allowed if there are any existing ContentFilteredTopic objects that are
using the filter.

If there is any existing discovered DataReader with the same filter_class_name, filtering on the writer side
will be stopped, but this operation will not fail.

Parameters filter_class_name (string) – Name of the filter class. Cannot be nullptr.

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the filter_class_name is nullptr.

Return type ReturnCode_t

Returns RERCODE_PRECONDITION_NOT_MET if the filter_class_name has not been
previously registered.

Return type ReturnCode_t

Returns RERCODE_PRECONDITION_NOT_MET if there is any ContentFilteredTopic ref-
erencing the filter.

Return type ReturnCode_t

Returns RETCODE_OK if the filter is correctly unregistered.

unregister_type(typeName)
Unregister a type in this participant.

Parameters typeName (string) – Name of the type

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the size of the name is 0,
RERCODE_PRECONDITION_NOT_MET if there are entities using that TypeSup-
port and RETCODE_OK if it is correctly unregistered.

DomainParticipantFactory

class fastdds.DomainParticipantFactory(*args, **kwargs)
Class DomainParticipantFactory

check_xml_static_discovery(xml_file)
Check the validity of the provided static discovery XML file

Parameters xml_file (string) – xml file path

Return type ReturnCode_t

Returns RETCODE_OK if the validation is successful, RETCODE_ERROR otherwise.

create_participant(*args)
Create a Participant.

Parameters

• domain_id (int) – Domain Id.

• qos (DomainParticipantQos) – DomainParticipantQos Reference.

• listener (DomainParticipantListener) – DomainParticipantListener Pointer
(default: nullptr)

• mask (StatusMask) – StatusMask Reference (default: all)

6.31. Python API Reference 845

Fast DDS Documentation, Release 2.8.2

Return type DomainParticipant

Returns DomainParticipant pointer. (nullptr if not created.)

create_participant_with_profile(*args)
Overload 1:

Create a Participant.

Parameters

• domain_id (int) – Domain Id.

• profile_name (string) – Participant profile name.

• listener (DomainParticipantListener) – DomainParticipantListener Pointer
(default: nullptr)

• mask (StatusMask) – StatusMask Reference (default: all)

Return type DomainParticipant

Returns DomainParticipant pointer. (nullptr if not created.)

Overload 2:

Create a Participant.

Parameters

• profile_name (string) – Participant profile name.

• listener (DomainParticipantListener) – DomainParticipantListener Pointer
(default: nullptr)

• mask (StatusMask) – StatusMask Reference (default: all)

Return type DomainParticipant

Returns DomainParticipant pointer. (nullptr if not created.)

Overload 3:

Create a Participant.

Parameters

• profile_name (string) – Participant profile name.

• listener (DomainParticipantListener) – DomainParticipantListener Pointer
(default: nullptr)

• mask – StatusMask Reference (default: all)

Return type DomainParticipant

Returns DomainParticipant pointer. (nullptr if not created.)

846 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 4:

Create a Participant.

Parameters

• profile_name (string) – Participant profile name.

• listener – DomainParticipantListener Pointer (default: nullptr)

• mask – StatusMask Reference (default: all)

Return type DomainParticipant

Returns DomainParticipant pointer. (nullptr if not created.)

delete_participant(part)
Remove a Participant and all associated publishers and subscribers.

Parameters part (DomainParticipant) – Pointer to the participant.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the participant has active entities,
RETCODE_OK if the participant is correctly deleted and RETCODE_ERROR otherwise.

get_default_participant_qos(*args)
Overload 1:

This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which
will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted
in the create_participant operation. The values retrieved get_default_participant_qos will match the set
of values specified on the last successful call to set_default_participant_qos, or else, if the call was never
made, the default values.

Parameters qos (DomainParticipantQos) – DomainParticipantQos where the qos is re-
turned

Return type ReturnCode_t

Returns RETCODE_OK

Overload 2:

This operation retrieves the default value of the DomainParticipant QoS, that is, the QoS policies which
will be used for newly created DomainParticipant entities in the case where the QoS policies are defaulted
in the create_participant operation. The values retrieved get_default_participant_qos will match the set
of values specified on the last successful call to set_default_participant_qos, or else, if the call was never
made, the default values.

Return type DomainParticipantQos

Returns A reference to the default DomainParticipantQos

static get_instance()
Returns the DomainParticipantFactory singleton instance.

6.31. Python API Reference 847

Fast DDS Documentation, Release 2.8.2

Return type DomainParticipantFactory

Returns A raw pointer to the DomainParticipantFactory singleton instance.

get_participant_qos_from_profile(profile_name, qos)
Fills the DomainParticipantQos with the values of the XML profile.

Parameters

• profile_name (string) – DomainParticipant profile name.

• qos (DomainParticipantQos) – DomainParticipantQos object where the qos is re-
turned.

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_qos(qos)
This operation returns the value of the DomainParticipantFactory QoS policies.

Parameters qos (DomainParticipantFactoryQos) – DomaParticipantFactoryQos refer-
ence where the qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

static get_shared_instance()
Returns the DomainParticipantFactory singleton instance.

Return type std::shared_ptr< eprosima::fastdds::dds::DomainParticipantFactory >

Returns A shared pointer to the DomainParticipantFactory singleton instance.

load_XML_profiles_file(xml_profile_file)
Load profiles from XML file.

Parameters xml_profile_file (string) – XML profile file.

Return type ReturnCode_t

Returns RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

load_XML_profiles_string(data, length)
Load profiles from XML string.

Parameters

• data (string) – buffer containing xml data.

• length (int) – length of data

Return type ReturnCode_t

Returns RETCODE_OK if it is correctly loaded, RETCODE_ERROR otherwise.

load_profiles()
Load profiles from default XML file.

Return type ReturnCode_t

Returns RETCODE_OK

lookup_participant(domain_id)
This operation retrieves a previously created DomainParticipant belonging to specified domain_id. If no
such DomainParticipant exists, the operation will return ‘nullptr’. If multiple DomainParticipant entities
belonging to that domain_id exist, then the operation will return one of them. It is not specified which one.

848 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters domain_id (int) –

Return type DomainParticipant

Returns previously created DomainParticipant within the specified domain

lookup_participants(domain_id)
Returns all participants that belongs to the specified domain_id.

Parameters domain_id (int) –

Return type std::vector< eprosima::fastdds::dds::DomainParticipant *,std::allocator<
eprosima::fastdds::dds::DomainParticipant * > >

Returns previously created DomainParticipants within the specified domain

set_default_participant_qos(qos)
This operation sets a default value of the DomainParticipant QoS policies which will be used for newly cre-
ated DomainParticipant entities in the case where the QoS policies are defaulted in the create_participant
operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

The special value PARTICIPANT_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would
be used if the set_default_participant_qos operation had never been called.

Parameters qos (DomainParticipantQos) – DomainParticipantQos to be set

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_qos(qos)
This operation sets the value of the DomainParticipantFactory QoS policies. These policies control the
behavior of the object a factory for entities.

Note that despite having QoS, the DomainParticipantFactory is not an Entity.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return INCONSISTENT_POLICY.

Parameters qos (DomainParticipantFactoryQos) – DomainParticipantFactoryQos to be
set.

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

property thisown
The membership flag

6.31. Python API Reference 849

Fast DDS Documentation, Release 2.8.2

DomainParticipantFactoryQos

class fastdds.DomainParticipantFactoryQos
Class DomainParticipantFactoryQos, contains all the possible Qos that can be set for a determined participant.
Please consult each of them to check for implementation details and default values.

entity_factory(*args)
Overload 1:

Getter for EntityFactoryQosPolicy :rtype: EntityFactoryQosPolicy :return: EntityFactoryQosPolicy
reference

Overload 2:

Getter for EntityFactoryQosPolicy :rtype: EntityFactoryQosPolicy :return: EntityFactoryQosPolicy
reference

Overload 3:

Setter for EntityFactoryQosPolicy :type entity_factory: EntityFactoryQosPolicy :param en-
tity_factory: EntityFactoryQosPolicy

property thisown
The membership flag

DomainParticipantListener

class fastdds.DomainParticipantListener
Class DomainParticipantListener, overrides behaviour towards certain events.

on_participant_discovery(*args)
Overload 1:

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

participant Pointer to the Participant which discovered the remote participant. info Remote participant
information. User can take ownership of the object.

Overload 2:

This method is called when a new Participant is discovered, or a previously discovered participant changes
its QOS or is removed.

850 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

participant Pointer to the Participant which discovered the remote participant. info Remote participant
information. User can take ownership of the object. should_be_ignored Flag to indicate the library to
automatically ignore the discovered Participant.

on_publisher_discovery(*args)
Overload 1:

This method is called when a new Publisher is discovered, or a previously discovered publisher changes
its QOS or is removed.

participant Pointer to the Participant which discovered the remote publisher. info Remote publisher infor-
mation. User can take ownership of the object.

Overload 2:

This method is called when a new Publisher is discovered, or a previously discovered publisher changes
its QOS or is removed.

participant Pointer to the Participant which discovered the remote publisher. info Remote publisher infor-
mation. User can take ownership of the object. should_be_ignored Flag to indicate the library to automat-
ically ignore the discovered Participant.

on_subscriber_discovery(*args)
Overload 1:

This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes
its QOS or is removed.

participant Pointer to the Participant which discovered the remote subscriber. info Remote subscriber
information. User can take ownership of the object.

Overload 2:

This method is called when a new Subscriber is discovered, or a previously discovered subscriber changes
its QOS or is removed.

participant Pointer to the Participant which discovered the remote subscriber. info Remote subscriber
information. User can take ownership of the object. should_be_ignored Flag to indicate the library to
automatically ignore the discovered Participant.

on_type_dependencies_reply(participant, request_sample_id, dependencies)
This method is called when the typelookup client received a reply to a getTypeDependencies request. The
user may want to retrieve these new types using the getTypes request and create a new DynamicType using
the retrieved TypeObject.

on_type_discovery(participant, request_sample_id, topic, identifier, object, dyn_type)
This method is called when a participant discovers a new Type The ownership of all object belongs to the
caller so if needs to be used after the method ends, a full copy should be perform (except for dyn_type due
to its shared_ptr nature. For example: fastrtps::types::TypeIdentifier new_type_id = *identifier;

on_type_information_received(participant, topic_name, type_name, type_information)
This method is called when a participant receives a TypeInformation while discovering another participant.

6.31. Python API Reference 851

Fast DDS Documentation, Release 2.8.2

property thisown
The membership flag

DomainParticipantQos

class fastdds.DomainParticipantQos
Class DomainParticipantQos, contains all the possible Qos that can be set for a determined participant. Please
consult each of them to check for implementation details and default values.

allocation(*args)
Overload 1:

Getter for ParticipantResourceLimitsQos

Return type ParticipantResourceLimitsQos

Returns ParticipantResourceLimitsQos reference

Overload 2:

Getter for ParticipantResourceLimitsQos

Return type ParticipantResourceLimitsQos

Returns ParticipantResourceLimitsQos reference

Overload 3:

Setter for ParticipantResourceLimitsQos

Parameters allocation (ParticipantResourceLimitsQos) – ParticipantResourceLim-
itsQos

entity_factory(*args)
Overload 1:

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

852 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for EntityFactoryQosPolicy

Parameters value (EntityFactoryQosPolicy) – EntityFactoryQosPolicy

flow_controllers(*args)
Overload 1:

Getter for FlowControllerDescriptorList

Return type FlowControllerDescriptorList

Returns FlowControllerDescriptorList reference

Overload 2:

Getter for FlowControllerDescriptorList

Return type FlowControllerDescriptorList

Returns FlowControllerDescriptorList reference

name(*args)
Overload 1:

Getter for the Participant name

Return type string

Returns name

Overload 2:

Setter for the Participant name

Parameters value (string) – New name to be set.

properties(*args)
Overload 1:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos reference

6.31. Python API Reference 853

Fast DDS Documentation, Release 2.8.2

Overload 2:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos reference

Overload 3:

Setter for PropertyPolicyQos

Parameters properties (PropertyPolicyQos) – PropertyPolicyQos

property thisown
The membership flag

transport(*args)
Overload 1:

Getter for TransportConfigQos

Return type TransportConfigQos

Returns TransportConfigQos reference

Overload 2:

Getter for TransportConfigQos

Return type TransportConfigQos

Returns TransportConfigQos reference

Overload 3:

Setter for TransportConfigQos

Parameters transport (TransportConfigQos) – TransportConfigQos

user_data(*args)
Overload 1:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy reference

854 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 2:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy reference

Overload 3:

Setter for UserDataQosPolicy

Parameters value (UserDataQosPolicy) – UserDataQosPolicy

wire_protocol(*args)
Overload 1:

Getter for WireProtocolConfigQos

Return type WireProtocolConfigQos

Returns WireProtocolConfigQos reference

Overload 2:

Getter for WireProtocolConfigQos

Return type WireProtocolConfigQos

Returns WireProtocolConfigQos reference

Overload 3:

Setter for WireProtocolConfigQos

Parameters wire_protocol (WireProtocolConfigQos) – WireProtocolConfigQos

Publisher

DataWriter

class fastdds.DataWriter(*args, **kwargs)
Class DataWriter, contains the actual implementation of the behaviour of the DataWriter.

assert_liveliness()
This operation manually asserts the liveliness of the DataWriter. This is used in combination with the
LivelinessQosPolicy to indicate to the Service that the entity remains active. This operation need only

6.31. Python API Reference 855

Fast DDS Documentation, Release 2.8.2

be used if the LIVELINESS setting is either MANUAL_BY_PARTICIPANT or MANUAL_BY_TOPIC.
Otherwise, it has no effect.

Notes: Writing data via the write operation on a DataWriter asserts liveliness on the DataWriter itself and
its DomainParticipant. Consequently the use of assert_liveliness is only needed if the application is not
writing data regularly.

Return type ReturnCode_t

Returns RETCODE_OK if asserted, RETCODE_ERROR otherwise

clear_history()

dispose(data, handle)
This operation requests the middleware to delete the data (the actual deletion is postponed until there is
no more use for that data in the whole system). In general, applications are made aware of the deletion
by means of operations on the DataReader objects that already knew that instance. This operation does
not modify the value of the instance. The instance parameter is passed just for the purposes of iden-
tifying the instance. When this operation is used, the Service will automatically supply the value of the
source_timestamp that is made available to DataReader objects by means of the source_timestamp attribute
inside the SampleInfo. The constraints on the values of the handle parameter and the corresponding error
behavior are the same specified for the unregister_instance operation.

data Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL. handle In-
stanceHandle of the data :rtype: ReturnCode_t :return: RETCODE_PRECONDITION_NOT_MET if
the handle introduced does not match with the one associated to the data,

RETCODE_OK if the data is correctly sent and RETCODE_ERROR otherwise.

dispose_w_timestamp(instance, handle, timestamp)
This operation performs the same functions as ‘dispose’ except that the application provides the value for
the ‘source_timestamp’ that is made available to DataReader objects by means of the ‘source_timestamp’
attribute inside the SampleInfo.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the ‘dispose’ operation.

This operation may return RETCODE_PRECONDITION_NOT_MET and RET-
CODE_BAD_PARAMETER under the same circumstances described for the ‘dispose’ operation.

This operation may return RETCODE_TIMEOUT and RETCODE_OUT_OF_RESOURCES under the
same circumstances described for the ‘write’ operation.

Parameters

• instance (void) – Sample used to deduce instance’s key in case of handle parameter
is HANDLE_NIL.

• handle (InstanceHandle_t) – Instance’s key to be disposed.

• timestamp (Time_t) – Time_t used to set the source_timestamp.

Return type ReturnCode_t

Returns RTPS_DllAPI

enable()
This operation enables the DataWriter

Return type ReturnCode_t

Returns RETCODE_OK is successfully enabled. RET-
CODE_PRECONDITION_NOT_MET if the Publisher creating this DataWriter is
not enabled.

856 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

get_instance_handle()
Returns the DataWriter’s InstanceHandle

Return type InstanceHandle_t

Returns Copy of the DataWriter InstanceHandle

get_key_value(key_holder, handle)
This operation can be used to retrieve the instance key that corresponds to an ‘instance_handle’. The
operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t handle does not correspond to an
existing data-object known to the DataWriter. If the implementation is not able to check invalid handles
then the result in this situation is unspecified.

,out] key_holder Sample where the key fields will be returned. handle Handle to the instance to retrieve
the key values from.

Return type ReturnCode_t

Returns Any of the standard return codes.

get_listener()
Retrieves the listener for this DataWriter.

Return type DataWriterListener

Returns Pointer to the DataWriterListener

get_liveliness_lost_status(status)
Returns the liveliness lost status

Parameters status (LivelinessLostStatus) – Liveliness lost status struct

Return type ReturnCode_t

Returns RETCODE_OK

get_matched_subscription_data(subscription_data, subscription_handle)
Retrieves in a subscription associated with the DataWriter

subscription_data subscription data struct :type subscription_handle: InstanceHandle_t :param sub-
scription_handle: InstanceHandle_t of the subscription :rtype: ReturnCode_t :return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_matched_subscriptions(subscription_handles)
Fills the given vector with the InstanceHandle_t of matched DataReaders

subscription_handles Vector where the InstanceHandle_t are returned :rtype: ReturnCode_t :return:
RETCODE_OK Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_offered_deadline_missed_status(status)
Returns the offered deadline missed status

status Deadline missed status struct :rtype: ReturnCode_t :return: RETCODE_OK

get_offered_incompatible_qos_status(status)
Returns the offered incompatible qos status

status Offered incompatible qos status struct :rtype: ReturnCode_t :return: RETCODE_OK

get_publication_matched_status(status)
Returns the publication matched status

status publication matched status struct :rtype: ReturnCode_t :return: RETCODE_OK

6.31. Python API Reference 857

Fast DDS Documentation, Release 2.8.2

get_publisher()
Getter for the Publisher that creates this DataWriter

Return type Publisher

Returns Pointer to the Publisher

get_qos(*args)
Overload 1:

Retrieves the DataWriterQos for this DataWriter.

Return type DataWriterQos

Returns Reference to the current DataWriterQos

Overload 2:

Fills the DataWriterQos with the values of this DataWriter.

Parameters qos (DataWriterQos) – DataWriterQos object where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK

get_sending_locators(locators)
Get the list of locators from which this DataWriter may send data.

Parameters [out] – locators LocatorList where the list of locators will be stored.

Return type ReturnCode_t

Returns NOT_ENABLED if the reader has not been enabled.

Return type ReturnCode_t

Returns OK if a list of locators is returned.

get_topic()
Retrieves the topic for this DataWriter.

Return type Topic

Returns Pointer to the associated Topic

get_type()
Get data type associated to the DataWriter

Return type TypeSupport

Returns Copy of the TypeSupport

guid()
Returns the DataWriter’s GUID

Return type GUID_t

Returns Reference to the DataWriter GUID

858 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

loan_sample(*args)
Get a pointer to the internal pool where the user could directly write.

This method can only be used on a DataWriter for a plain data type. It will provide the user with a pointer
to an internal buffer where the data type can be prepared for sending.

When using NO_LOAN_INITIALIZATION on the initialization parameter, which is the default, no as-
sumptions should be made on the contents where the pointer points to, as it may be an old pointer being
reused. See ‘LoanInitializationKind’ for more details.

Once the sample has been prepared, it can then be published by calling ‘write’. After a successful call to
‘write’, the middleware takes ownership of the loaned pointer again, and the user should not access that
memory again.

If, for whatever reason, the sample is not published, the loan can be returned by calling ‘discard_loan’.

Parameters

• [out] – sample Pointer to the sample on the internal pool.

• [in] – initialization How to initialize the loaned sample.

Return type ReturnCode_t

Returns ReturnCode_t::RETCODE_ILLEGAL_OPERATION when the data type does not
support loans.

Return type ReturnCode_t

Returns ReturnCode_t::RETCODE_NOT_ENABLED if the writer has not been enabled.

Return type ReturnCode_t

Returns ReturnCode_t::RETCODE_OUT_OF_RESOURCES if the pool has been exhausted.

Return type ReturnCode_t

Returns ReturnCode_t::RETCODE_OK if a pointer to a sample is successfully obtained.

lookup_instance(instance)
NOT YET IMPLEMENTED

Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the
fields that define the key.

instance Data pointer to the sample

Return type InstanceHandle_t

Returns handle of the given instance

register_instance(instance)
Informs that the application will be modifying a particular instance. It gives an opportunity to the middle-
ware to pre-configure itself to improve performance.

instance Sample used to get the instance’s key. :rtype: InstanceHandle_t :return: Handle containing
the instance’s key.

This handle could be used in successive write or dispose operations. In case of error, HAN-
DLE_NIL will be returned.

register_instance_w_timestamp(instance, timestamp)
This operation performs the same function as register_instance and can be used instead of ‘regis-
ter_instance’ in the cases where the application desires to specify the value for the ‘source_timestamp’.

6.31. Python API Reference 859

Fast DDS Documentation, Release 2.8.2

The ‘source_timestamp’ potentially affects the relative order in which readers observe events from multi-
ple writers. See the QoS policy ‘DESTINATION_ORDER’.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for
the ‘write’ operation.

This operation may return RETCODE_OUT_OF_RESOURCES under the same circumstances described
for the ‘write’ operation.

Parameters

• instance (void) – Sample used to get the instance’s key.

• timestamp (Time_t) – Time_t used to set the source_timestamp.

Return type InstanceHandle_t

Returns Handle containing the instance’s key.

set_listener(*args)

set_qos(qos)
Establishes the DataWriterQos for this DataWriter.

Parameters qos (DataWriterQos) – DataWriterQos to be set

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

property thisown
The membership flag

unregister_instance(instance, handle)
This operation reverses the action of register_instance. It should only be called on an instance that is
currently registered. Informs the middleware that the DataWriter is not intending to modify any more of
that data instance. Also indicates that the middleware can locally remove all information regarding that
instance.

instance Sample used to deduce instance’s key in case of handle parameter is HANDLE_NIL. handle
Instance’s key to be unregistered. :rtype: ReturnCode_t :return: Returns the operation’s result.

If the operation finishes successfully, ReturnCode_t::RETCODE_OK is returned.

unregister_instance_w_timestamp(instance, handle, timestamp)
This operation performs the same function as ‘unregister_instance’ and can be used instead of ‘unreg-
ister_instance’ in the cases where the application desires to specify the value for the ‘source_timestamp’.
The ‘source_timestamp’ potentially affects the relative order in which readers observe events from multiple
writers. See the QoS policy ‘DESTINATION_ORDER’.

The constraints on the values of the handle parameter and the corresponding error behavior are the same
specified for the ‘unregister_instance’ operation.

This operation may block and return RETCODE_TIMEOUT under the same circumstances described for
the write operation

Parameters

• instance (void) – Sample used to deduce instance’s key in case of handle parameter
is HANDLE_NIL.

• handle (InstanceHandle_t) – Instance’s key to be unregistered.

860 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• timestamp (Time_t) – Time_t used to set the source_timestamp.

Return type ReturnCode_t

Returns Handle containing the instance’s key.

wait_for_acknowledgments(*args)
Overload 1:

Waits the current thread until all writers have received their acknowledgments.

Parameters max_wait (Duration_t) – Maximum blocking time for this operation

Return type ReturnCode_t

Returns RETCODE_OK if the DataWriter receive the acknowledgments before the time ex-
pires and RETCODE_ERROR otherwise

Overload 2:

Block the current thread until the writer has received the acknowledgment corresponding to the given
instance. Operations performed on the same instance while the current thread is waiting will not be taken
into consideration, i.e. this method may return RETCODE_OK with those operations unacknowledged.

Parameters

• instance (void) – Sample used to deduce instance’s key in case of handle parameter
is HANDLE_NIL.

• handle (InstanceHandle_t) – Instance handle of the data.

• max_wait (Duration_t) – Maximum blocking time for this operation.

Return type ReturnCode_t

Returns RETCODE_NOT_ENABLED if the writer has not been enabled.

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if instance is not a valid pointer.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the topic does not have a key, the key
is unknown to the writer, or the key is not consistent with handle.

Return type ReturnCode_t

Returns RETCODE_OK if the DataWriter received the acknowledgments before the time ex-
pired.

Return type ReturnCode_t

Returns RETCODE_TIMEOUT otherwise.

write(*args)
Overload 1:

Write data to the topic.

Parameters data (void) – Pointer to the data

Return type boolean

6.31. Python API Reference 861

Fast DDS Documentation, Release 2.8.2

Returns True if correct, false otherwise

Overload 2:

Write data with params to the topic.

Parameters

• data (void) – Pointer to the data

• params (WriteParams) – Extra write parameters.

Return type boolean

Returns True if correct, false otherwise

Overload 3:

Write data with handle.

The special value HANDLE_NIL can be used for the parameter handle.This indicates that the identity of
the instance should be automatically deduced from the instance_data (by means of the key).

Parameters

• data (void) – Pointer to the data

• handle (InstanceHandle_t) – InstanceHandle_t.

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the handle introduced does not match
with the one associated to the data, RETCODE_OK if the data is correctly sent and RET-
CODE_ERROR otherwise.

write_w_timestamp(data, handle, timestamp)
This operation performs the same function as write except that it also provides the value
for the ‘source_timestamp’ that is made available to DataReader objects by means of the
‘eprosima::fastdds::dds::SampleInfo::source_timestamp’ attribute “source_timestamp” inside the Sam-
pleInfo. The constraints on the values of the handle parameter and the corresponding error be-
havior are the same specified for the ‘write’ operation. This operation may block and return RET-
CODE_TIMEOUT under the same circumstances described for the ‘write’ operation. This operation
may return RETCODE_OUT_OF_RESOURCES, RETCODE_PRECONDITION_NOT_MET or RET-
CODE_BAD_PARAMETER under the same circumstances described for the write operation.

Parameters

• data (void) – Pointer to the data

• handle (InstanceHandle_t) – InstanceHandle_t

• timestamp (Time_t) – Time_t used to set the source_timestamp.

Return type ReturnCode_t

Returns Any of the standard return codes.

862 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

DataWriterListener

class fastdds.DataWriterListener
Class DataWriterListener, allows the end user to implement callbacks triggered by certain events.

on_liveliness_lost(writer, status)
Method called when the liveliness of a DataWriter is lost

Parameters

• writer (DataWriter) – Pointer to the associated DataWriter

• status (LivelinessLostStatus) – The liveliness lost status

on_offered_deadline_missed(writer, status)
A method called when a deadline is missed

Parameters

• writer (DataWriter) – Pointer to the associated DataWriter

• status (OfferedDeadlineMissedStatus) – The deadline missed status

on_offered_incompatible_qos(writer, status)
A method called when an incompatible QoS is offered

Parameters

• writer (DataWriter) – Pointer to the associated DataWriter

• status (OfferedIncompatibleQosStatus) – The deadline missed status

on_publication_matched(writer, info)
This method is called when the DataWriter is matched (or unmatched) against an endpoint.

Parameters

• writer (DataWriter) – Pointer to the associated DataWriter

• info (PublicationMatchedStatus) – Information regarding the matched
DataReader

on_unacknowledged_sample_removed(writer, instance)
Method called when a sample has been removed unacknowledged

Parameters

• writer (DataWriter) – Pointer to the associated DataWriter

• instance (InstanceHandle_t) – Handle to the instance the sample was removed
from

property thisown
The membership flag

6.31. Python API Reference 863

Fast DDS Documentation, Release 2.8.2

DataWriterQos

class fastdds.DataWriterQos
Class DataWriterQos, containing all the possible Qos that can be set for a determined DataWriter. Although these
values can be and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

data_sharing(*args)
Overload 1:

Getter for DataSharingQosPolicy

Return type DataSharingQosPolicy

Returns DataSharingQosPolicy reference

Overload 2:

Getter for DataSharingQosPolicy

Return type DataSharingQosPolicy

Returns DataSharingQosPolicy reference

Overload 3:

Setter for DataSharingQosPolicy

Parameters data_sharing (DataSharingQosPolicy) – new value for the DataShar-
ingQosPolicy

deadline(*args)
Overload 1:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQosPolicy reference

Overload 2:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQosPolicy reference

864 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for DeadlineQosPolicy

Parameters deadline (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

destination_order(*args)
Overload 1:

Getter for DestinationOrderQosPolicy

Return type DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

Overload 2:

Getter for DestinationOrderQosPolicy

Return type DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

Overload 3:

Setter for DestinationOrderQosPolicy

Parameters destination_order (DestinationOrderQosPolicy) – new value for the
DestinationOrderQosPolicy

durability(*args)
Overload 1:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQosPolicy reference

Overload 2:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQosPolicy reference

6.31. Python API Reference 865

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for DurabilityQosPolicy

Parameters durability (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

durability_service(*args)
Overload 1:

Getter for DurabilityServiceQosPolicy

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy reference

Overload 2:

Getter for DurabilityServiceQosPolicy

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy reference

Overload 3:

Setter for DurabilityServiceQosPolicy

Parameters durability_service (DurabilityServiceQosPolicy) – new value for the
DurabilityServiceQosPolicy

endpoint(*args)
Overload 1:

Getter for RTPSEndpointQos

Return type RTPSEndpointQos

Returns RTPSEndpointQos reference

Overload 2:

Getter for RTPSEndpointQos :rtype: RTPSEndpointQos :return: RTPSEndpointQos reference

866 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for RTPSEndpointQos

Parameters endpoint (RTPSEndpointQos) – new value for the RTPSEndpointQos

get_writerqos(pqos, tqos)

history(*args)
Overload 1:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQosPolicy reference

Overload 2:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQosPolicy reference

Overload 3:

Setter for HistoryQosPolicy

Parameters history (HistoryQosPolicy) – new value for the HistoryQosPolicy

latency_budget(*args)
Overload 1:

Getter for LatencyBudgetQosPolicy

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

Overload 2:

Getter for LatencyBudgetQosPolicy

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

6.31. Python API Reference 867

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for LatencyBudgetQosPolicy

Parameters latency_budget (LatencyBudgetQosPolicy) – new value for the Latency-
BudgetQosPolicy

lifespan(*args)
Overload 1:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQosPolicy reference

Overload 2:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQosPolicy reference

Overload 3:

Setter for LifespanQosPolicy

Parameters lifespan (LifespanQosPolicy) – new value for the LifespanQosPolicy

liveliness(*args)
Overload 1:

Getter for LivelinessQosPolicy

Return type LivelinessQosPolicy

Returns LivelinessQosPolicy reference

Overload 2:

Getter for LivelinessQosPolicy

Return type LivelinessQosPolicy

Returns LivelinessQosPolicy reference

868 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for LivelinessQosPolicy

Parameters liveliness (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

ownership(*args)
Overload 1:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQosPolicy reference

Overload 2:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQosPolicy reference

Overload 3:

Setter for OwnershipQosPolicy

Parameters ownership (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

ownership_strength(*args)
Overload 1:

Getter for OwnershipStrengthQosPolicy

Return type OwnershipStrengthQosPolicy

Returns OwnershipStrengthQosPolicy reference

Overload 2:

Getter for OwnershipStrengthQosPolicy

Return type OwnershipStrengthQosPolicy

Returns OwnershipStrengthQosPolicy reference

6.31. Python API Reference 869

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for OwnershipStrengthQosPolicy

Parameters ownership_strength (OwnershipStrengthQosPolicy) – new value for the
OwnershipStrengthQosPolicy

properties(*args)
Overload 1:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos reference

Overload 2:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos reference

Overload 3:

Setter for PropertyPolicyQos

Parameters properties (PropertyPolicyQos) – new value for the PropertyPolicyQos

publish_mode(*args)
Overload 1:

Getter for PublishModeQosPolicy

Return type PublishModeQosPolicy

Returns PublishModeQosPolicy reference

Overload 2:

Getter for PublishModeQosPolicy

Return type PublishModeQosPolicy

Returns PublishModeQosPolicy reference

870 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for PublishModeQosPolicy

Parameters publish_mode (PublishModeQosPolicy) – new value for the PublishMode-
QosPolicy

reliability(*args)
Overload 1:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

Overload 2:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

Overload 3:

Setter for ReliabilityQosPolicy

Parameters reliability (ReliabilityQosPolicy) – new value for the Reliabili-
tyQosPolicy

reliable_writer_qos(*args)
Overload 1:

Getter for RTPSReliableWriterQos

Return type RTPSReliableWriterQos

Returns RTPSReliableWriterQos reference

Overload 2:

Getter for RTPSReliableWriterQos

Return type RTPSReliableWriterQos

Returns RTPSReliableWriterQos reference

6.31. Python API Reference 871

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for RTPSReliableWriterQos

Parameters reliable_writer_qos (RTPSReliableWriterQos) – new value for the RTP-
SReliableWriterQos

resource_limits(*args)
Overload 1:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

Overload 2:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

Overload 3:

Setter for ResourceLimitsQosPolicy

Parameters resource_limits (ResourceLimitsQosPolicy) – new value for the Re-
sourceLimitsQosPolicy

property thisown
The membership flag

transport_priority(*args)
Overload 1:

Getter for TransportPriorityQosPolicy

Return type TransportPriorityQosPolicy

Returns TransportPriorityQosPolicy reference

Overload 2:

Getter for TransportPriorityQosPolicy

Return type TransportPriorityQosPolicy

Returns TransportPriorityQosPolicy reference

872 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for TransportPriorityQosPolicy

Parameters transport_priority (TransportPriorityQosPolicy) – new value for the
TransportPriorityQosPolicy

user_data(*args)
Overload 1:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy reference

Overload 2:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy reference

Overload 3:

Setter for UserDataQosPolicy

Parameters user_data (UserDataQosPolicy) – new value for the UserDataQosPolicy

writer_data_lifecycle(*args)
Overload 1:

Getter for WriterDataLifecycleQosPolicy

Return type WriterDataLifecycleQosPolicy

Returns WriterDataLifecycleQosPolicy reference

Overload 2:

Getter for WriterDataLifecycleQosPolicy

Return type WriterDataLifecycleQosPolicy

Returns WriterDataLifecycleQosPolicy reference

6.31. Python API Reference 873

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for WriterDataLifecycleQosPolicy

Parameters writer_data_lifecycle (WriterDataLifecycleQosPolicy) – new value
for the WriterDataLifecycleQosPolicy

writer_resource_limits(*args)
Overload 1:

Getter for WriterResourceLimitsQos

Return type WriterResourceLimitsQos

Returns WriterResourceLimitsQos reference

Overload 2:

Getter for WriterResourceLimitsQos

Return type WriterResourceLimitsQos

Returns WriterResourceLimitsQos reference

Overload 3:

Setter for WriterResourceLimitsQos

Parameters writer_resource_limits (WriterResourceLimitsQos) – new value for the
WriterResourceLimitsQos

class fastdds.DATAWRITER_QOS_DEFAULT(*args: Any, **kwargs: Any)

Publisher

class fastdds.Publisher(*args, **kwargs)
Class Publisher, used to send data to associated subscribers.

begin_coherent_changes()
Signals the beginning of a set of coherent cache changes using the Datawriters attached to the publisher

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

copy_from_topic_qos(writer_qos, topic_qos)
Copies TopicQos into the corresponding DataWriterQos

874 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

writer_qos topic_qos :rtype: ReturnCode_t :return: RETCODE_OK if successful, an error code other-
wise Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

create_datawriter(*args)
This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

Parameters

• topic (Topic) – Topic the DataWriter will be listening

• qos – QoS of the DataWriter.

• listener (DataWriterListener) – Pointer to the listener (default: nullptr).

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all).

Return type DataWriter

Returns Pointer to the created DataWriter. nullptr if failed.

create_datawriter_with_profile(*args)
This operation creates a DataWriter. The returned DataWriter will be attached and belongs to the Publisher.

Parameters

• topic (Topic) – Topic the DataWriter will be listening

• profile_name (string) – DataWriter profile name.

• listener (DataWriterListener) – Pointer to the listener (default: nullptr).

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all).

Return type DataWriter

Returns Pointer to the created DataWriter. nullptr if failed.

delete_contained_entities()
Deletes all contained DataWriters

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

delete_datawriter(writer)
This operation deletes a DataWriter that belongs to the Publisher.

The delete_datawriter operation must be called on the same Publisher object used to create the DataWriter.
If delete_datawriter is called on a different Publisher, the operation will have no effect and it will return
false.

The deletion of the DataWriter will automatically unregister all instances. Depending on the settings of the
WRITER_DATA_LIFECYCLE QosPolicy, the deletion of the DataWriter may also dispose all instances.

Parameters writer (DataWriter) – DataWriter to delete

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if it does not belong to this Publisher,
RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

enable()
This operation enables the Publisher

Return type ReturnCode_t

6.31. Python API Reference 875

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK is successfully enabled. RET-
CODE_PRECONDITION_NOT_MET if the participant creating this Publisher is
not enabled.

end_coherent_changes()
Signals the end of a set of coherent cache changes

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_datawriter_qos_from_profile(profile_name, qos)
Fills the DataWriterQos with the values of the XML profile.

Parameters

• profile_name (string) – DataWriter profile name.

• qos (DataWriterQos) – DataWriterQos object where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_datawriters(writers)
Fills the given vector with all the datawriters of this publisher.

Parameters writers (std::vector< eprosima::fastdds::dds::DataWriter *,std::allocator<
eprosima::fastdds::dds::DataWriter * > >) – Vector where the DataWriters are returned

Return type boolean

Returns true

get_default_datawriter_qos(*args)
Overload 1:

This operation returns the default value of the DataWriter QoS, that is, the QoS policies which will be
used for newly created DataWriter entities in the case where the QoS policies are defaulted in the cre-
ate_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last suc-
cessful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

Return type DataWriterQos

Returns Current default WriterQos

Overload 2:

This operation retrieves the default value of the DataWriter QoS, that is, the QoS policies which will
be used for newly created DataWriter entities in the case where the QoS policies are defaulted in the
create_datawriter operation.

The values retrieved by get_default_datawriter_qos will match the set of values specified on the last suc-
cessful call to set_default_datawriter_qos, or else, if the call was never made, the default values.

Parameters qos (DataWriterQos) – Reference to the current default WriterQos.

876 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type ReturnCode_t

Returns RETCODE_OK

get_instance_handle()
Returns the Publisher’s handle.

Return type InstanceHandle_t

Returns InstanceHandle of this Publisher.

get_listener()
Retrieves the attached PublisherListener.

Return type PublisherListener

Returns PublisherListener pointer

get_participant()
This operation returns the DomainParticipant to which the Publisher belongs.

Return type DomainParticipant

Returns Pointer to the DomainParticipant

get_qos(*args)
Overload 1:

Allows accessing the Publisher Qos.

Return type PublisherQos

Returns PublisherQos reference

Overload 2:

Retrieves the Publisher Qos.

Return type ReturnCode_t

Returns RETCODE_OK

has_datawriters()
This operation checks if the publisher has DataWriters

Return type boolean

Returns true if the publisher has one or several DataWriters, false otherwise

lookup_datawriter(topic_name)
This operation retrieves a previously created DataWriter belonging to the Publisher that is attached to a
Topic with a matching topic_name. If no such DataWriter exists, the operation will return nullptr.

If multiple DataWriter attached to the Publisher satisfy this condition, then the operation will return one
of them. It is not specified which one.

Parameters topic_name (string) – Name of the Topic

Return type DataWriter

Returns Pointer to a previously created DataWriter associated to a Topic with the requested
topic_name

6.31. Python API Reference 877

Fast DDS Documentation, Release 2.8.2

resume_publications()
Indicates to FastDDS that the modifications to the DataWriters are complete.

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

set_default_datawriter_qos(qos)
This operation sets a default value of the DataWriter QoS policies which will be used for newly created
DataWriter entities in the case where the QoS policies are defaulted in the create_datawriter operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value DATAWRITER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would
be used if the set_default_datawriter_qos operation had never been called.

Parameters qos (DataWriterQos) – DataWriterQos to be set

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_listener(*args)
Overload 1:

Modifies the PublisherListener, sets the mask to StatusMask::all()

Parameters listener (PublisherListener) – new value for the PublisherListener

Return type ReturnCode_t

Returns RETCODE_OK

Overload 2:

Modifies the PublisherListener.

Parameters

• listener (PublisherListener) – new value for the PublisherListener

• mask (StatusMask) – StatusMask that holds statuses the listener responds to

Return type ReturnCode_t

Returns RETCODE_OK

set_qos(qos)
Allows modifying the Publisher Qos. The given Qos must be supported by the PublisherQos.

Parameters qos (PublisherQos) – PublisherQos to be set

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

878 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

suspend_publications()
Indicates to FastDDS that the contained DataWriters are about to be modified

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

property thisown
The membership flag

wait_for_acknowledgments(max_wait)
This operation blocks the calling thread until either all data written by the reliable DataWriter entities is
acknowledged by all matched reliable DataReader entities, or else the duration specified by the max_wait
parameter elapses, whichever happens first. A return value of true indicates that all the samples written
have been acknowledged by all reliable matched data readers; a return value of false indicates that max_wait
elapsed before all the data was acknowledged.

Parameters max_wait (Duration_t) – Maximum blocking time for this operation

Return type ReturnCode_t

Returns RETCODE_TIMEOUT if the function takes more than the maximum blocking time
established, RETCODE_OK if the Publisher receives the acknowledgments and RET-
CODE_ERROR otherwise.

PublisherListener

class fastdds.PublisherListener
Class PublisherListener, allows the end user to implement callbacks triggered by certain events. It inherits all
the DataWriterListener callbacks.

property thisown
The membership flag

PublisherQos

class fastdds.PublisherQos
Class PublisherQos, containing all the possible Qos that can be set for a determined Publisher. Although these
values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

entity_factory(*args)
Overload 1:

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

Overload 2:

6.31. Python API Reference 879

Fast DDS Documentation, Release 2.8.2

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

Overload 3:

Setter for EntityFactoryQosPolicy

Parameters entity_factory (EntityFactoryQosPolicy) – EntityFactoryQosPolicy

group_data(*args)
Overload 1:

Getter for GroupDataQosPolicy

Return type GroupDataQosPolicy

Returns GroupDataQosPolicy reference

Overload 2:

Getter for GroupDataQosPolicy

Return type GroupDataQosPolicy

Returns GroupDataQosPolicy reference

Overload 3:

Setter for GroupDataQosPolicy

Parameters group_data (GroupDataQosPolicy) – GroupDataQosPolicy

partition(*args)
Overload 1:

Getter for PartitionQosPolicy

Return type PartitionQosPolicy

Returns PartitionQosPolicy reference

Overload 2:

Getter for PartitionQosPolicy

880 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type PartitionQosPolicy

Returns PartitionQosPolicy reference

Overload 3:

Setter for PartitionQosPolicy

Parameters partition (PartitionQosPolicy) – PartitionQosPolicy

presentation(*args)
Overload 1:

Getter for PresentationQosPolicy

Return type PresentationQosPolicy

Returns PresentationQosPolicy reference

Overload 2:

Getter for PresentationQosPolicy

Return type PresentationQosPolicy

Returns PresentationQosPolicy reference

Overload 3:

Setter for PresentationQosPolicy

Parameters presentation (PresentationQosPolicy) – PresentationQosPolicy

property thisown
The membership flag

class fastdds.PUBLISHER_QOS_DEFAULT(*args: Any, **kwargs: Any)

RTPSReliableWriterQos

class fastdds.RTPSReliableWriterQos
Qos Policy to configure the DisablePositiveACKsQos and the writer timing attributes

property disable_heartbeat_piggyback
Disable heartbeat piggyback mechanism.

property disable_positive_acks
Disable positive acks QoS, implemented in the library.

6.31. Python API Reference 881

Fast DDS Documentation, Release 2.8.2

property thisown
The membership flag

property times
Writer Timing Attributes

Subscriber

DataReader

class fastdds.DataReader(*args, **kwargs)
Class DataReader, contains the actual implementation of the behaviour of the Subscriber.

create_querycondition(sample_states, view_states, instance_states, query_expression,
query_parameters)

This operation creates a QueryCondition. The returned QueryCondition will be attached and belong to
the DataReader.

Parameters

• [in] – sample_states Only data samples with sample_state matching one of these
will trigger the created condition.

• [in] – view_states Only data samples with view_state matching one of these will
trigger the created condition.

• [in] – instance_states Only data samples with instance_state matching one of
these will trigger the created condition.

• [in] – query_expression Only data samples matching this query will trigger the cre-
ated condition.

• [in] – query_parameters Value of the parameters on the query expression.

Return type eprosima::fastdds::dds::QueryCondition

Returns pointer to the created QueryCondition, nullptr in case of error.

create_readcondition(sample_states, view_states, instance_states)
This operation creates a ReadCondition. The returned ReadCondition will be attached and belong to the
DataReader.

Parameters

• [in] – sample_states Only data samples with sample_state matching one of these
will trigger the created condition.

• [in] – view_states Only data samples with view_state matching one of these will
trigger the created condition.

• [in] – instance_states Only data samples with instance_state matching one of
these will trigger the created condition.

Return type ReadCondition

Returns pointer to the created ReadCondition, nullptr in case of error.

delete_contained_entities()
This operation deletes all the entities that were created by means of the “create” operations on the
DataReader. That is, it deletes all contained ReadCondition and QueryCondition objects.

882 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

The operation will return PRECONDITION_NOT_MET if the any of the contained entities is in a state
where it cannot be deleted.

Return type ReturnCode_t

Returns Any of the standard return codes.

delete_readcondition(a_condition)
This operation deletes a ReadCondition attached to the DataReader.

Parameters a_condition (ReadCondition) – pointer to a ReadCondition belonging to the
DataReader

Return type ReturnCode_t

Returns RETCODE_OK

enable()
This operation enables the DataReader.

Return type ReturnCode_t

Returns RETCODE_OK is successfully enabled. RET-
CODE_PRECONDITION_NOT_MET if the Subscriber creating this DataReader is
not enabled.

get_first_untaken_info(info)
Returns information about the first untaken sample.

Parameters [out] – info Pointer to a SampleInfo_t structure to store first untaken sample
information.

Return type ReturnCode_t

Returns RETCODE_OK if sample info was returned. RETCODE_NO_DATA if there is no
sample to take.

get_instance_handle()
Getter for the associated InstanceHandle.

Return type InstanceHandle_t

Returns Copy of the InstanceHandle

get_key_value(key_holder, handle)
NOT YET IMPLEMENTED

This operation can be used to retrieve the instance key that corresponds to an instance_handle. The
operation will only fill the fields that form the key inside the key_holder instance.

This operation may return BAD_PARAMETER if the InstanceHandle_t a_handle does not correspond to
an existing data-object known to the DataReader. If the implementation is not able to check invalid handles
then the result in this situation is unspecified.

,out] key_holder handle

Return type ReturnCode_t

Returns Any of the standard return codes.

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_listener()
Getter for the DataReaderListener

Return type DataReaderListener

6.31. Python API Reference 883

Fast DDS Documentation, Release 2.8.2

Returns Pointer to the DataReaderListener

get_listening_locators(locators)
Get the list of locators on which this DataReader is listening.

Parameters [out] – locators LocatorList where the list of locators will be stored.

Return type ReturnCode_t

Returns NOT_ENABLED if the reader has not been enabled.

Return type ReturnCode_t

Returns OK if a list of locators is returned.

get_liveliness_changed_status(status)
Get the liveliness changed status.

Parameters [out] – status LivelinessChangedStatus object where the status is returned.

Return type ReturnCode_t

Returns RETCODE_OK

get_matched_publication_data(publication_data, publication_handle)
Retrieves in a publication associated with the DataWriter

publication_data publication data struct :type publication_handle: InstanceHandle_t :param publica-
tion_handle: InstanceHandle_t of the publication :rtype: ReturnCode_t :return: RETCODE_OK Warn-
ing: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_matched_publications(publication_handles)
Fills the given vector with the InstanceHandle_t of matched DataReaders

publication_handles Vector where the InstanceHandle_t are returned :rtype: ReturnCode_t :return: RET-
CODE_OK Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_qos(*args)
Overload 1:

Getter for the DataReaderQos.

Return type DataReaderQos

Returns Pointer to the DataReaderQos.

Overload 2:

Getter for the DataReaderQos.

Parameters [in] – qos DataReaderQos where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK

get_requested_deadline_missed_status(status)
Get the requested deadline missed status.

Return type ReturnCode_t

Returns The deadline missed status.

884 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

get_requested_incompatible_qos_status(status)
Get the requested incompatible qos status.

Parameters [out] – status Requested incompatible qos status.

Return type ReturnCode_t

Returns RETCODE_OK

get_sample_lost_status(status)
Get the SAMPLE_LOST communication status

status SampleLostStatus object where the status is returned.

Return type ReturnCode_t

Returns RETCODE_OK

get_sample_rejected_status(status)
Get the SAMPLE_REJECTED communication status

status SampleRejectedStatus object where the status is returned.

Return type ReturnCode_t

Returns RETCODE_OK

get_subscriber()
Getter for the Subscriber :rtype: Subscriber :return: Subscriber pointer

get_subscription_matched_status(status)
Returns the subscription matched status

status subscription matched status struct :rtype: ReturnCode_t :return: RETCODE_OK

get_topicdescription()
Get TopicDescription.

Return type TopicDescription

Returns TopicDescription pointer.

get_unread_count(*args)
Overload 1:

Get the number of samples pending to be read. The number includes samples that may not yet be available
to be read or taken by the user, due to samples being received out of order.

Return type int

Returns the number of samples on the reader history that have never been read.

Overload 2:

Get the number of samples pending to be read.

Parameters mark_as_read (boolean) – Whether the unread samples should be marked as
read or not.

Return type int

Returns the number of samples on the reader history that have never been read.

6.31. Python API Reference 885

Fast DDS Documentation, Release 2.8.2

guid(*args)
Overload 1:

Get associated GUID.

Return type GUID_t

Returns Associated GUID

Overload 2:

Get associated GUID.

Return type GUID_t

Returns Associated GUID

is_sample_valid(data, info)
Checks whether a loaned sample is still valid or is corrupted. Calling this method on a sample which has
not been loaned, or one for which the loan has been returned yields undefined behavior.

Parameters

• data (void) – Pointer to the sample data to check

• info (SampleInfo) – Pointer to the SampleInfo related to data

Return type boolean

Returns true if the sample is valid

lookup_instance(instance)
Takes as a parameter an instance and returns a handle that can be used in subsequent operations that accept
an instance handle as an argument. The instance parameter is only used for the purpose of examining the
fields that define the key.

Parameters [in] – instance Data pointer to the sample

Return type InstanceHandle_t

Returns handle of the given instance.

Return type InstanceHandle_t

Returns HANDLE_NIL if instance is nullptr.

Return type InstanceHandle_t

Returns HANDLE_NIL if there is no instance on the DataReader’s history with the same key
as instance.

read(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of Data values from the DataReader. The caller can limit the size of
the returned collection with the max_samples parameter.

The properties of the data_values collection and the setting of the ‘PresentationQosPolicy’ may impose
further limits on the size of the returned ‘list.’

1. If ‘PresentationQosPolicy::access_scope’ is ‘INSTANCE_PRESENTATION_QOS’, then the re-
turned collection is a ‘list’ where samples belonging to the same data-instance are consecutive.

886 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

2. If ‘PresentationQosPolicy::access_scope’ is ‘TOPIC_PRESENTATION_QOS’ and ‘Presentation-
QosPolicy::ordered_access’ is set to false, then the returned collection is a ‘list’ where samples
belonging to the same data-instance are consecutive.

3. If ‘PresentationQosPolicy::access_scope’ is ‘TOPIC_PRESENTATION_QOS’ and ‘Presentation-
QosPolicy::ordered_access’ is set to true, then the returned collection is a ‘list’ where samples
belonging to the same instance may or may not be consecutive. This is because to preserve order
it may be necessary to mix samples from different instances.

4. If ‘PresentationQosPolicy::access_scope’ is ‘GROUP_PRESENTATION_QOS’ and ‘Presentation-
QosPolicy::ordered_access’ is set to false, then the returned collection is a ‘list’ where samples
belonging to the same data instance are consecutive.

5. If ‘PresentationQosPolicy::access_scope’ is ‘GROUP_PRESENTATION_QOS’ and ‘Presentation-
QosPolicy::ordered_access’ is set to true, then the returned collection contains at most one sample.
The difference in this case is due to the fact that it is required that the application is able to read
samples belonging to different DataReader objects in a specific order.

In any case, the relative order between the samples of one instance is consistent with the ‘Destina-
tionOrderQosPolicy’:

• If ‘DestinationOrderQosPolicy::kind’ is ‘BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS’,
samples belonging to the same instances will appear in the relative order in which there were received
(FIFO, earlier samples ahead of the later samples).

• If ‘DestinationOrderQosPolicy::kind’ is ‘BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS’,
samples belonging to the same instances will appear in the relative order implied by the
source_timestamp (FIFO, smaller values of source_timestamp ahead of the larger values).

The actual number of samples returned depends on the information that has been received by the middle-
ware as well as the ‘HistoryQosPolicy’, ‘ResourceLimitsQosPolicy’, and ‘ReaderResourceLimitsQos’:

• In the case where the ‘HistoryQosPolicy::kind’ is KEEP_LAST_HISTORY_QOS, the call will return
at most ‘HistoryQosPolicy::depth’ samples per instance.

• The maximum number of samples returned is limited by ‘ResourceLimitsQosPolicy::max_samples’,
and by ‘ReaderResourceLimitsQos::max_samples_per_read’.

• For multiple instances, the number of samples returned is additionally limited by the
product (‘ResourceLimitsQosPolicy::max_samples_per_instance’ * ‘ResourceLimitsQosPol-
icy::max_instances)’.

• If ReaderResourceLimitsQos::sample_infos_allocation has a maximum limit, the number of samples
returned may also be limited if insufficient ‘SampleInfo’ resources are available.

If the operation succeeds and the number of samples returned has been limited (by means of a maximum
limit, as listed above, or insufficient ‘SampleInfo’ resources), the call will complete successfully and pro-
vide those samples the reader is able to return. The user may need to make additional calls, or return
outstanding loaned buffers in the case of insufficient resources, in order to access remaining samples.

In addition to the collection of samples, the read operation also uses a collection of ‘SampleInfo’ structures
(sample_infos).

The initial (input) properties of the data_values and sample_infos collections will determine the pre-
cise behavior of this operation. For the purposes of this description the collections are modeled as having
three properties:

• the current length (len, see ‘LoanableCollection::length())’

• the maximum length (max_len, see ‘LoanableCollection::maximum())’

6.31. Python API Reference 887

Fast DDS Documentation, Release 2.8.2

• whether the collection container owns the memory of the elements within (owns, see ‘LoanableCol-
lection::has_ownership())’

The initial (input) values of the len, max_len, and owns properties for the data_values and
sample_infos collections govern the behavior of the read operation as specified by the following rules:

1. The values of len, max_len, and owns for the two collections must be identical. Otherwise read
will fail with RETCODE_PRECONDITION_NOT_MET.

2. On successful output, the values of len, max_len, and owns will be the same for both collections.

3. If the input max_len == 0 , then the data_values and sample_infos collections will be filled with
elements that are ‘loaned’ by the DataReader. On output, owns will be false, len will be set to the
number of values returned, and max_len will be set to a value verifying max_len >= len . The use
of this variant allows for zero-copy access to the data and the application will need to return the loan
to the DataReader using the ‘return_loan’ operation.

4. If the input max_len > 0 and the input owns == false , then the read operation will fail with
RETCODE_PRECONDITION_NOT_MET. This avoids the potential hard-to-detect memory leaks
caused by an application forgetting to return the loan.

5. If input max_len > 0 and the input owns == true , then the read operation will copy the Data values
and SampleInfo values into the elements already inside the collections. On output, owns will be
true, len will be set to the number of values copied, and max_len will remain unchanged. The
use of this variant forces a copy but the application can control where the copy is placed and the
application will not need to return the loan. The number of samples copied depends on the values of
max_len and max_samples:

• If max_samples == LENGTH_UNLIMITED , then at most max_len values will be copied. The
use of this variant lets the application limit the number of samples returned to what the sequence
can accommodate.

• If max_samples <= max_len , then at most max_samples values will be copied. The use of this
variant lets the application limit the number of samples returned to fewer that what the sequence
can accommodate.

• If max_samples > max_len , then the read operation will fail with RET-
CODE_PRECONDITION_NOT_MET. This avoids the potential confusion where the
application expects to be able to access up to max_samples, but that number can never be
returned, even if they are available in the DataReader, because the output sequence cannot
accommodate them.

As described above, upon return the data_values and sample_infos collections may contain elements
‘loaned’ from the DataReader. If this is the case, the application will need to use the ‘return_loan’ operation
to return the loan once it is no longer using the Data in the collection. Upon return from ‘return_loan’, the
collection will have max_len == 0 and owns == false .

The application can determine whether it is necessary to return the loan or not based on the state of the
collections when the read operation was called, or by accessing the owns property. However, in many
cases it may be simpler to always call ‘return_loan’, as this operation is harmless (i.e., leaves all elements
unchanged) if the collection does not have a loan.

On output, the collection of Data values and the collection of SampleInfo structures are of the same
length and are in a one-to-one correspondence. Each SampleInfo provides information, such as the
source_timestamp, the sample_state, view_state, and instance_state, etc., about the corre-
sponding sample.

Some elements in the returned collection may not have valid data. If the
instance_state in the SampleInfo is ‘NOT_ALIVE_DISPOSED_INSTANCE_STATE’ or
‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE’, then the last sample for that instance in the

888 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

collection, that is, the one whose SampleInfo has sample_rank == 0 does not contain valid data. Samples
that contain no data do not count towards the limits imposed by the ‘ResourceLimitsQosPolicy’.

The act of reading a sample changes its sample_state to ‘READ_SAMPLE_STATE’. If the sample
belongs to the most recent generation of the instance, it will also set the view_state of the instance to be
‘NOT_NEW_VIEW_STATE’. It will not affect the instance_state of the instance.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Important: If the samples “returned” by this method are loaned from the middleware (see ‘take’ for more
information on memory loaning), it is important that their contents not be changed. Because the memory
in which the data is stored belongs to the middleware, any modifications made to the data will be seen the
next time the same samples are read or taken; the samples will no longer reflect the state that was received
from the network.

Parameters

• [in,out] – data_values A LoanableCollection object where the received data sam-
ples will be returned.

• [in,out] – sample_infos A SampleInfoSeq object where the received sample info
will be returned.

• [in] – max_samples The maximum number of samples to be returned. If the special
value ‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described above.

• [in] – sample_states Only data samples with sample_state matching one of these
will be returned.

• [in] – view_states Only data samples with view_state matching one of these will
be returned.

• [in] – instance_states Only data samples with instance_state matching one of
these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

read_instance(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader. The behavior is identical to ‘read’,
except that all samples returned belong to the single specified instance whose handle is a_handle.

Upon successful completion, the data collection will contain samples all belonging to the same instance.
The corresponding ‘SampleInfo’ verifies ‘SampleInfo::instance_handle’ == a_handle.

This operation is semantically equivalent to the ‘read’ operation, except in building the collection. The
DataReader will check that the sample belongs to the specified instance and otherwise it will not place the
sample in the returned collection.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

6.31. Python API Reference 889

Fast DDS Documentation, Release 2.8.2

• [in,out] – data_values A LoanableCollection object where the received data sam-
ples will be returned.

• [in,out] – sample_infos A SampleInfoSeq object where the received sample info
will be returned.

• [in] – max_samples The maximum number of samples to be returned. If the special
value ‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

• [in] – a_handle The specified instance to return samples for. The method will fail
with RETCODE_BAD_PARAMETER if the handle does not correspond to an existing
data-object known to the DataReader.

• [in] – sample_states Only data samples with sample_state matching one of these
will be returned.

• [in] – view_states Only data samples with view_state matching one of these will
be returned.

• [in] – instance_states Only data samples with instance_state matching one of
these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

read_next_instance(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader where all the samples belong to
a single instance. The behavior is similar to ‘read_instance’, except that the actual instance is not directly
specified. Rather, the samples will all belong to the ‘next’ instance with instance_handle ‘greater’ than
the specified ‘previous_handle’ that has available samples.

This operation implies the existence of a total order ‘greater-than’ relationship between the instance han-
dles. The specifics of this relationship are not all important and are implementation specific. The important
thing is that, according to the middleware, all instances are ordered relative to each other. This ordering
is between the instance handles, and should not depend on the state of the instance (e.g. whether it has
data or not) and must be defined even for instance handles that do not correspond to instances currently
managed by the DataReader. For the purposes of the ordering, it should be ‘as if’ each instance handle
was represented as an integer.

The behavior of this operation is ‘as if’ the DataReader invoked ‘read_instance’, passing the smallest
instance_handle among all the ones that: (a) are greater than previous_handle, and (b) have available
samples (i.e. samples that meet the constraints imposed by the specified states).

The special value ‘HANDLE_NIL’ is guaranteed to be ‘less than’ any valid instance_handle. So the use
of the parameter value previous_handle == ‘HANDLE_NIL’ will return the samples for the instance
which has the smallest instance_handle among all the instances that contain available samples.

This operation is intended to be used in an application-driven iteration, where the application starts
by passing previous_handle == ‘HANDLE_NIL’, examines the samples returned, and then uses the
instance_handle returned in the ‘SampleInfo’ as the value of the previous_handle argument to
the next call to ‘read_next_instance’. The iteration continues until ‘read_next_instance’ fails with RET-
CODE_NO_DATA.

Note that it is possible to call the ‘read_next_instance’ operation with a previous_handle that does
not correspond to an instance currently managed by the DataReader. This is because as stated earlier
the ‘greater-than’ relationship is defined even for handles not managed by the DataReader. One practical
situation where this may occur is when an application is iterating through all the instances, takes all the

890 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

samples of a ‘NOT_ALIVE_NO_WRITERS_INSTANCE_STATE’ instance, returns the loan (at which
point the instance information may be removed, and thus the handle becomes invalid), and tries to read the
next instance.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• [in,out] – data_values A LoanableCollection object where the received data sam-
ples will be returned.

• [in,out] – sample_infos A SampleInfoSeq object where the received sample info
will be returned.

• [in] – max_samples The maximum number of samples to be returned. If the special
value ‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

• [in] – previous_handle The ‘next smallest’ instance with a value greater than this
value that has available samples will be returned.

• [in] – sample_states Only data samples with sample_state matching one of these
will be returned.

• [in] – view_states Only data samples with view_state matching one of these will
be returned.

• [in] – instance_states Only data samples with instance_state matching one of
these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

read_next_instance_w_condition(data_values, sample_infos, max_samples, previous_handle,
a_condition)

This operation accesses a collection of Data values from the DataReader. The behavior is identical to
‘read_next_instance’ except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’
instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b)
have samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation ‘read_next_instance’ it is possible to call ‘read_next_instance_w_condition’ with
a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the ‘read_next_instance_w_condition’ operation follows the same rules than the read op-
eration regarding the pre-conditions and post-conditions for the data_values and sample_infos collec-
tions. Similar to read, the ‘read_next_instance_w_condition’ operation may ‘loan’ elements to the output
collections which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the return value will be RET-
CODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. If the special value

6.31. Python API Reference 891

Fast DDS Documentation, Release 2.8.2

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are available, up
to the limits described in the documentation for ‘read()’.

previous_handle The ‘next smallest’ instance with a value greater than this value that has avail-
able samples will be returned.

a_condition A ReadCondition that returned data_values must pass

Return type ReturnCode_t

Returns Any of the standard return codes.

read_next_sample(data, info)
This operation copies the next, non-previously accessed Data value from the DataReader; the operation
also copies the corresponding SampleInfo. The implied order among the samples stored in the DataReader
is the same as for the read operation.

The read_next_sample operation is semantically equivalent to the read operation where the input Data
sequence has max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the view_states =
ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

The read_next_sample operation provides a simplified API to ‘read’ samples avoiding the need for the
application to manage sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing
is copied

Parameters

• [out] – data Data pointer to store the sample

• [out] – info SampleInfo pointer to store the sample information

Return type ReturnCode_t

Returns Any of the standard return codes.

read_w_condition(data_values, sample_infos, max_samples, a_condition)
This operation accesses via ‘read’ the samples that match the criteria specified in the ReadCondition. This
operation is especially useful in combination with QueryCondition to filter data samples based on the
content.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and
return RETCODE_PRECONDITION_NOT_MET.

In case the ReadCondition is a ‘plain’ ReadCondition and not the specialized QueryCondition, the opera-
tion is equivalent to calling read and passing as sample_states, view_states and instance_states
the value of the corresponding attributes in a_condition. Using this operation the application can avoid
repeating the same parameters specified when creating the ReadCondition.

The samples are accessed with the same semantics as the read operation. If the DataReader has no samples
that meet the constraints, the return value will be RETCODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. a_condition A ReadCondition that returned data_values
must pass

Return type ReturnCode_t

Returns Any of the standard return codes.

892 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

return_loan(data_values, sample_infos)
This operation indicates to the DataReader that the application is done accessing the collection of
data_values and sample_infos obtained by some earlier invocation of ‘read’ or ‘take’ on the
DataReader.

The data_values and sample_infos must belong to a single related ‘pair’; that is, they should corre-
spond to a pair returned from a single call to read or take. The data_values and sample_infos must
also have been obtained from the same DataReader to which they are returned. If either of these conditions
is not met, the operation will fail and return RETCODE_PRECONDITION_NOT_MET.

This operation allows implementations of the ‘read’ and ‘take’ operations to “loan” buffers from the
DataReader to the application and in this manner provide “zero-copy” access to the data. During the
loan, the DataReader will guarantee that the data and sample-information are not modified.

It is not necessary for an application to return the loans immediately after the read or take calls. However,
as these buffers correspond to internal resources inside the DataReader, the application should not retain
them indefinitely.

The use of the ‘return_loan’ operation is only necessary if the read or take calls “loaned” buffers to the
application. This only occurs if the data_values and sample_infos collections had max_len == 0 at
the time read or take was called. The application may also examine the owns property of the collection
to determine if there is an outstanding loan. However, calling ‘return_loan’ on a collection that does not
have a loan is safe and has no side effects.

If the collections had a loan, upon return from return_loan the collections will have max_len == 0 .

Parameters

• [in,out] – data_values A LoanableCollection object where the received data sam-
ples were obtained from an earlier invocation of read or take on this DataReader.

• [in,out] – sample_infos A SampleInfoSeq object where the received sample infos
were obtained from an earlier invocation of read or take on this DataReader.

Return type ReturnCode_t

Returns Any of the standard return codes.

set_listener(*args)

set_qos(qos)
Setter for the DataReaderQos.

Parameters [in] – qos new value for the DataReaderQos.

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

take(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of data-samples from the DataReader and a corresponding collection
of SampleInfo structures, and ‘removes’ them from the DataReader. The operation will return either a
‘list’ of samples or else a single sample. This is controlled by the ‘PresentationQosPolicy’ using the same
logic as for the ‘read’ operation.

The act of taking a sample removes it from the DataReader so it cannot be ‘read’ or ‘taken’ again. If
the sample belongs to the most recent generation of the instance, it will also set the view_state of the
instance to NOT_NEW. It will not affect the instance_state of the instance.

6.31. Python API Reference 893

Fast DDS Documentation, Release 2.8.2

The behavior of the take operation follows the same rules than the ‘read’ operation regarding the pre-
conditions and post-conditions for the data_values and sample_infos collections. Similar to ‘read’,
the take operation may ‘loan’ elements to the output collections which must then be returned by means of
‘return_loan’. The only difference with ‘read’ is that, as stated, the samples returned by take will no longer
be accessible to successive calls to read or take.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

Parameters

• [in,out] – data_values A LoanableCollection object where the received data sam-
ples will be returned.

• [in,out] – sample_infos A SampleInfoSeq object where the received sample info
will be returned.

• [in] – max_samples The maximum number of samples to be returned. If the special
value ‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are
available, up to the limits described in the documentation for ‘read()’.

• [in] – sample_states Only data samples with sample_state matching one of these
will be returned.

• [in] – view_states Only data samples with view_state matching one of these will
be returned.

• [in] – instance_states Only data samples with instance_state matching one of
these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

take_instance(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the
DataReader.

This operation has the same behavior as ‘read_instance’, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are available, up
to the limits described in the documentation for ‘read()’.

a_handle The specified instance to return samples for. The method will fail with RET-
CODE_BAD_PARAMETER if the handle does not correspond to an existing data-object known to
the DataReader.

894 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

sample_states Only data samples with sample_statematching one of these will be returned. view_states
Only data samples with view_state matching one of these will be returned. instance_states Only data
samples with instance_state matching one of these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

take_next_instance(*args)
Access a collection of data samples from the DataReader.

This operation accesses a collection of data values from the DataReader and ‘removes’ them from the
DataReader.

This operation has the same behavior as ‘read_next_instance’, except that the samples are ‘taken’ from the
DataReader such that they are no longer accessible via subsequent ‘read’ or ‘take’ operations.

Similar to the operation ‘read_next_instance’, it is possible to call this operation with a previous_handle
that does not correspond to an instance currently managed by the DataReader.

The behavior of this operation follows the same rules as the ‘read’ operation regarding the pre-conditions
and post-conditions for the data_values and sample_infos. Similar to ‘read’, this operation may ‘loan’
elements to the output collections, which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the operations fails with RET-
CODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are available, up
to the limits described in the documentation for ‘read()’.

previous_handle The ‘next smallest’ instance with a value greater than this value that has avail-
able samples will be returned.

sample_states Only data samples with sample_statematching one of these will be returned. view_states
Only data samples with view_state matching one of these will be returned. instance_states Only data
samples with instance_state matching one of these will be returned.

Return type ReturnCode_t

Returns Any of the standard return codes.

take_next_instance_w_condition(data_values, sample_infos, max_samples, previous_handle,
a_condition)

This operation accesses a collection of Data values from the DataReader. The behavior is identical to
‘read_next_instance’ except that all samples returned satisfy the specified condition. In other words, on
success all returned samples belong to the same instance, and the instance is the instance with ‘smallest’
instance_handle among the ones that verify (a) instance_handle >= previous_handle and (b)
have samples for which the specified ReadCondition evaluates to TRUE.

Similar to the operation ‘read_next_instance’ it is possible to call ‘read_next_instance_w_condition’ with
a previous_handle that does not correspond to an instance currently managed by the DataReader.

The behavior of the ‘read_next_instance_w_condition’ operation follows the same rules than the read op-
eration regarding the pre-conditions and post-conditions for the data_values and sample_infos collec-
tions. Similar to read, the ‘read_next_instance_w_condition’ operation may ‘loan’ elements to the output
collections which must then be returned by means of ‘return_loan’.

If the DataReader has no samples that meet the constraints, the return value will be RETCODE_NO_DATA

6.31. Python API Reference 895

Fast DDS Documentation, Release 2.8.2

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are available, up
to the limits described in the documentation for ‘read()’.

previous_handle The ‘next smallest’ instance with a value greater than this value that has avail-
able samples will be returned.

a_condition A ReadCondition that returned data_values must pass

Return type ReturnCode_t

Returns Any of the standard return codes.

take_next_sample(data, info)
This operation copies the next, non-previously accessed Data value from the DataReader and ‘removes’ it
from the DataReader so it is no longer accessible. The operation also copies the corresponding SampleInfo.

This operation is analogous to ‘read_next_sample’ except for the fact that the sample is ‘removed’ from
the DataReader.

This operation is semantically equivalent to the ‘take’ operation where the input sequence has
max_length = 1 , the sample_states = NOT_READ_SAMPLE_STATE , the view_states =
ANY_VIEW_STATE , and the instance_states = ANY_INSTANCE_STATE .

This operation provides a simplified API to ’take’ samples avoiding the need for the application to manage
sequences and specify states.

If there is no unread data in the DataReader, the operation will return RETCODE_NO_DATA and nothing
is copied.

Parameters

• [out] – data Data pointer to store the sample

• [out] – info SampleInfo pointer to store the sample information

Return type ReturnCode_t

Returns Any of the standard return codes.

take_w_condition(data_values, sample_infos, max_samples, a_condition)
This operation is analogous to ‘read_w_condition’ except it accesses samples via the ‘take’ operation.

The specified ReadCondition must be attached to the DataReader; otherwise the operation will fail and
return RETCODE_PRECONDITION_NOT_MET.

The samples are accessed with the same semantics as the ‘take’ operation.

This operation is especially useful in combination with QueryCondition to filter data samples based on the
content.

If the DataReader has no samples that meet the constraints, the return value will be RET-
CODE_NO_DATA.

,out] data_values A LoanableCollection object where the received data samples will be returned. ,out]
sample_infos A SampleInfoSeq object where the received sample info will be returned. max_samples The
maximum number of samples to be returned. If the special value

‘LENGTH_UNLIMITED’ is provided, as many samples will be returned as are.

a_condition A ReadCondition that returned data_values must pass

896 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type ReturnCode_t

Returns Any of the standard return codes.

property thisown
The membership flag

type()
Getter for the data type.

Return type TypeSupport

Returns TypeSupport associated to the DataReader.

wait_for_historical_data(max_wait)
NOT YET IMPLEMENTED

Method to block the current thread until an unread message is available.

max_wait Max blocking time for this operation. :rtype: ReturnCode_t :return: RETCODE_OK if there
is new unread message, ReturnCode_t::RETCODE_TIMEOUT if timeout Warning: Not supported yet.
Currently returns RETCODE_UNSUPPORTED

wait_for_unread_message(timeout)
Method to block the current thread until an unread message is available.

Parameters [in] – timeout Max blocking time for this operation.

Return type boolean

Returns true if there is new unread message, false if timeout

DataReaderListener

class fastdds.DataReaderListener
Class DataReaderListener, it should be used by the end user to implement specific callbacks to certain actions.

on_data_available(reader)
Virtual function to be implemented by the user containing the actions to be performed when new Data
Messages are received.

Parameters reader (DataReader) – DataReader

on_liveliness_changed(reader, status)
Method called when the liveliness status associated to a subscriber changes

Parameters

• reader (DataReader) – The DataReader

• status (eprosima::fastrtps::LivelinessChangedStatus) – The liveliness
changed status

on_requested_deadline_missed(reader, status)
Virtual method to be called when a topic misses the deadline period

Parameters

• reader (DataReader) – DataReader

• status (eprosima::fastrtps::RequestedDeadlineMissedStatus) – The re-
quested deadline missed status

6.31. Python API Reference 897

Fast DDS Documentation, Release 2.8.2

on_requested_incompatible_qos(reader, status)
Method called an incompatible QoS was requested.

Parameters

• reader (DataReader) – The DataReader

• status (RequestedIncompatibleQosStatus) – The requested incompatible QoS
status

on_sample_lost(reader, status)
Method called when a sample was lost.

Parameters

• reader (DataReader) – The DataReader

• status (SampleLostStatus) – The sample lost status

on_sample_rejected(reader, status)
Method called when a sample was rejected.

Parameters

• reader (DataReader) – The DataReader

• status (eprosima::fastrtps::SampleRejectedStatus) – The rejected status

on_subscription_matched(reader, info)
Virtual method to be called when the subscriber is matched with a new Writer (or unmatched); i.e., when
a writer publishing in the same topic is discovered.

Parameters

• reader (DataReader) – DataReader

• info (SubscriptionMatchedStatus) – The subscription matched status

property thisown
The membership flag

DataReaderQos

class fastdds.DataReaderQos
Class DataReaderQos, containing all the possible Qos that can be set for a determined DataReader. Although
these values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour asso-
ciated with them has been implemented in the library. Please consult each of them to check for implementation
details and default values.

data_sharing(*args)
Overload 1:

Getter for DataSharingQosPolicy

Return type DataSharingQosPolicy

Returns DataSharingQosPolicy reference

898 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 2:

Getter for DataSharingQosPolicy

Return type DataSharingQosPolicy

Returns DataSharingQosPolicy reference

Overload 3:

Setter for DataSharingQosPolicy

Parameters data_sharing (DataSharingQosPolicy) – new value for the DataShar-
ingQosPolicy

deadline(*args)
Overload 1:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQosPolicy reference

Overload 2:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQosPolicy const reference

Overload 3:

Setter for DeadlineQosPolicy

Parameters new_value (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

destination_order(*args)
Overload 1:

Getter for DestinationOrderQosPolicy

Return type DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy reference

6.31. Python API Reference 899

Fast DDS Documentation, Release 2.8.2

Overload 2:

Getter for DestinationOrderQosPolicy

Return type DestinationOrderQosPolicy

Returns DestinationOrderQosPolicy const reference

Overload 3:

Setter for DestinationOrderQosPolicy

Parameters new_value (DestinationOrderQosPolicy) – new value for the Destina-
tionOrderQosPolicy

durability(*args)
Overload 1:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQosPolicy reference

Overload 2:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQosPolicy const reference

Overload 3:

Setter for DurabilityQosPolicy

Parameters new_value (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

durability_service(*args)
Overload 1:

Getter for DurabilityServiceQosPolicy

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy reference

900 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 2:

Getter for DurabilityServiceQosPolicy

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQosPolicy const reference

Overload 3:

Setter for DurabilityServiceQosPolicy

Parameters new_value (DurabilityServiceQosPolicy) – new value for the Durability-
ServiceQosPolicy

endpoint(*args)
Overload 1:

Getter for RTPSEndpointQos

Return type RTPSEndpointQos

Returns RTPSEndpointQos reference

Overload 2:

Getter for RTPSEndpointQos

Return type RTPSEndpointQos

Returns RTPSEndpointQos const reference

Overload 3:

Setter for RTPSEndpointQos

Parameters new_value (RTPSEndpointQos) – new value for the RTPSEndpointQos

expects_inline_qos(*args)
Overload 1:

Getter for expectsInlineQos

Return type boolean

Returns expectsInlineQos

6.31. Python API Reference 901

Fast DDS Documentation, Release 2.8.2

Overload 2:

Setter for expectsInlineQos

Parameters new_value (boolean) – new value for the expectsInlineQos

get_readerqos(sqos)

history(*args)
Overload 1:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQosPolicy reference

Overload 2:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQosPolicy const reference

Overload 3:

Setter for HistoryQosPolicy

Parameters new_value (HistoryQosPolicy) – new value for the HistoryQosPolicy

latency_budget(*args)
Overload 1:

Getter for LatencyBudgetQosPolicy

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy reference

Overload 2:

Getter for LatencyBudgetQosPolicy

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQosPolicy const reference

902 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for LatencyBudgetQosPolicy

Parameters new_value (LatencyBudgetQosPolicy) – new value for the LatencyBud-
getQosPolicy

lifespan(*args)
Overload 1:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQosPolicy reference

Overload 2:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQosPolicy const reference

Overload 3:

Setter for LifespanQosPolicy

Parameters new_value (LifespanQosPolicy) – new value for the LifespanQosPolicy

liveliness(*args)
Overload 1:

Getter for LivelinessQosPolicy

Return type LivelinessQosPolicy

Returns LivelinessQosPolicy reference

Overload 2:

Getter for LivelinessQosPolicy

Return type LivelinessQosPolicy

Returns LivelinessQosPolicy const reference

6.31. Python API Reference 903

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for LivelinessQosPolicy

Parameters new_value (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

ownership(*args)
Overload 1:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQosPolicy reference

Overload 2:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQosPolicy const reference

Overload 3:

Setter for OwnershipQosPolicy

Parameters new_value (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

properties(*args)
Overload 1:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos reference

Overload 2:

Getter for PropertyPolicyQos

Return type PropertyPolicyQos

Returns PropertyPolicyQos const reference

904 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for PropertyPolicyQos

Parameters new_value (PropertyPolicyQos) – new value for the PropertyPolicyQos

reader_data_lifecycle(*args)
Overload 1:

Getter for ReaderDataLifecycleQosPolicy

Return type ReaderDataLifecycleQosPolicy

Returns ReaderDataLifecycleQosPolicy reference

Overload 2:

Getter for ReaderDataLifecycleQosPolicy

Return type ReaderDataLifecycleQosPolicy

Returns ReaderDataLifecycleQosPolicy const reference

Overload 3:

Setter for ReaderDataLifecycleQosPolicy

Parameters new_value (ReaderDataLifecycleQosPolicy) – new value for the Reader-
DataLifecycleQosPolicy

reader_resource_limits(*args)
Overload 1:

Getter for ReaderResourceLimitsQos

Return type ReaderResourceLimitsQos

Returns ReaderResourceLimitsQos reference

Overload 2:

Getter for ReaderResourceLimitsQos

Return type ReaderResourceLimitsQos

Returns ReaderResourceLimitsQos const reference

6.31. Python API Reference 905

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for ReaderResourceLimitsQos

Parameters new_value (ReaderResourceLimitsQos) – new value for the ReaderResource-
LimitsQos

reliability(*args)
Overload 1:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

Returns ReliabilityQosPolicy reference

Overload 2:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

Returns ReliabilityQosPolicy const reference

Overload 3:

Setter for ReliabilityQosPolicy

Parameters new_value (ReliabilityQosPolicy) – new value for the ReliabilityQosPolicy

reliable_reader_qos(*args)
Overload 1:

Getter for RTPSReliableReaderQos

Return type RTPSReliableReaderQos

Returns RTPSReliableReaderQos reference

Overload 2:

Getter for RTPSReliableReaderQos

Return type RTPSReliableReaderQos

Returns RTPSReliableReaderQos const reference

906 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for RTPSReliableReaderQos

Parameters new_value (RTPSReliableReaderQos) – new value for the RTPSReli-
ableReaderQos

resource_limits(*args)
Overload 1:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy reference

Overload 2:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQosPolicy const reference

Overload 3:

Setter for ResourceLimitsQosPolicy

Parameters new_value (ResourceLimitsQosPolicy) – new value for the ResourceLimit-
sQosPolicy

property thisown
The membership flag

time_based_filter(*args)
Overload 1:

Getter for TimeBasedFilterQosPolicy

Return type TimeBasedFilterQosPolicy

Returns TimeBasedFilterQosPolicy reference

Overload 2:

Getter for TimeBasedFilterQosPolicy

Return type TimeBasedFilterQosPolicy

Returns TimeBasedFilterQosPolicy const reference

6.31. Python API Reference 907

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for TimeBasedFilterQosPolicy

Parameters new_value (TimeBasedFilterQosPolicy) – new value for the TimeBasedFil-
terQosPolicy

type_consistency(*args)
Overload 1:

Getter for TypeConsistencyQos

Return type TypeConsistencyQos

Returns TypeConsistencyQos reference

Overload 2:

Getter for TypeConsistencyQos

Return type TypeConsistencyQos

Returns TypeConsistencyQos const reference

Overload 3:

Setter for TypeConsistencyQos

Parameters new_value (TypeConsistencyQos) – new value for the TypeConsistencyQos

user_data(*args)
Overload 1:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy reference

Overload 2:

Getter for UserDataQosPolicy

Return type UserDataQosPolicy

Returns UserDataQosPolicy const reference

908 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for UserDataQosPolicy

Parameters new_value (UserDataQosPolicy) – new value for the UserDataQosPolicy

class fastdds.DATAREADER_QOS_DEFAULT(*args: Any, **kwargs: Any)

InstanceStateKind

class fastdds.ALIVE_INSTANCE_STATE(*args: Any, **kwargs: Any)

class fastdds.NOT_ALIVE_DISPOSED_INSTANCE_STATE(*args: Any, **kwargs: Any)

class fastdds.NOT_ALIVE_NO_WRITERS_INSTANCE_STATE(*args: Any, **kwargs: Any)

ReaderResourceLimitsQos

class fastdds.ReaderResourceLimitsQos
Qos Policy to configure the limit of the reader resources

clear()

property matched_publisher_allocation
Matched publishers allocation limits.

property max_samples_per_read
Maximum number of samples to return on a single call to read / take.

This attribute is a signed integer to be consistent with the max_samples argument of ‘DataReader’ meth-
ods, but should always have a strict positive value. Bear in mind that a big number here may cause the
creation of the DataReader to fail due to pre-allocation of internal resources.

Default value: 32.

property outstanding_reads_allocation
Loaned collections allocation limits.

property sample_infos_allocation
SampleInfo allocation limits.

property thisown
The membership flag

RTPSReliableReaderQos

class fastdds.RTPSReliableReaderQos
Qos Policy to configure the DisablePositiveACKsQos and the reader attributes

clear()

property disable_positive_ACKs
Control the sending of positive ACKs

property thisown
The membership flag

6.31. Python API Reference 909

Fast DDS Documentation, Release 2.8.2

property times
Times associated with the Reliable Readers events.

SampleInfo

class fastdds.SampleInfo
SampleInfo is the information that accompanies each sample that is ‘read’ or ‘taken.’

property absolute_generation_rank
the generation difference between the time the sample was received, and the time the most recent sample
was received. The most recent sample used for the calculation may or may not be in the returned collection

property disposed_generation_count
number of times the instance had become alive after it was disposed

property generation_rank
the generation difference between the time the sample was received, and the time the most recent sample
in the collection was received.

property instance_handle
identifies locally the corresponding instance

property instance_state
indicates whether the instance is currently in existence or, if it has been disposed, the reason why it was
disposed.

property no_writers_generation_count
number of times the instance had become alive after it was disposed because no writers

property publication_handle
identifies locally the DataWriter that modified the instance Is the same InstanceHandle_t that is returned
by the operation get_matched_publications on the DataReader

property reception_timestamp
time provided by the DataReader when the sample was added to its history

property related_sample_identity
Related Sample Identity (Extension for RPC)

property sample_identity
Sample Identity (Extension for RPC)

property sample_rank
number of samples related to the same instance that follow in the collection

property sample_state
indicates whether or not the corresponding data sample has already been read

property source_timestamp
time provided by the DataWriter when the sample was written

property thisown
The membership flag

property valid_data
whether the DataSample contains data or is only used to communicate of a change in the instance

property view_state
indicates whether the DataReader has already seen samples for the most-current generation of the related
instance.

910 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

SampleStateKind

class fastdds.READ_SAMPLE_STATE(*args: Any, **kwargs: Any)

class fastdds.NOT_READ_SAMPLE_STATE(*args: Any, **kwargs: Any)

Subscriber

class fastdds.Subscriber(*args, **kwargs)
Class Subscriber, contains the public API that allows the user to control the reception of messages. This class
should not be instantiated directly. DomainRTPSParticipant class should be used to correctly create this element.

begin_access()
Indicates that the application is about to access the data samples in any of the DataReader objects attached
to the Subscriber.

Return type ReturnCode_t

Returns RETCODE_OK

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

static copy_from_topic_qos(reader_qos, topic_qos)
Copies TopicQos into the corresponding DataReaderQos

, out] reader_qos topic_qos :rtype: ReturnCode_t :return: RETCODE_OK if successful, an error code
otherwise Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

create_datareader(*args)
This operation creates a DataReader. The returned DataReader will be attached and belong to the Sub-
scriber.

Parameters

• topic (TopicDescription) – Topic the DataReader will be listening.

• reader_qos (DataReaderQos) – QoS of the DataReader.

• listener (DataReaderListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all).

Return type DataReader

Returns Pointer to the created DataReader. nullptr if failed.

create_datareader_with_profile(*args)
This operation creates a DataReader. The returned DataReader will be attached and belongs to the Sub-
scriber.

Parameters

• topic (TopicDescription) – Topic the DataReader will be listening.

• profile_name (string) – DataReader profile name.

• listener (DataReaderListener) – Pointer to the listener (default: nullptr)

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all).

Return type DataReader

6.31. Python API Reference 911

Fast DDS Documentation, Release 2.8.2

Returns Pointer to the created DataReader. nullptr if failed.

delete_contained_entities()
Deletes all contained DataReaders. If the DataReaders have any QueryCondition or ReadCondition, they
are deleted before the DataReader itself.

Return type ReturnCode_t

Returns RETCODE_OK if successful, an error code otherwise

delete_datareader(reader)
This operation deletes a DataReader that belongs to the Subscriber.

The delete_datareader operation must be called on the same Subscriber object used to create the
DataReader. If delete_datareader is called on a different Subscriber, the operation will have no effect
and it will return an error.

Parameters reader (DataReader) – DataReader to delete

Return type ReturnCode_t

Returns RETCODE_PRECONDITION_NOT_MET if the datareader does not belong to this
subscriber, RETCODE_OK if it is correctly deleted and RETCODE_ERROR otherwise.

enable()
This operation enables the Subscriber

Return type ReturnCode_t

Returns RETCODE_OK is successfully enabled. RET-
CODE_PRECONDITION_NOT_MET if the participant creating this Subscriber is
not enabled.

end_access()
Indicates that the application has finished accessing the data samples in DataReader objects managed by
the Subscriber.

Return type ReturnCode_t

Returns RETCODE_OK

Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_datareader_qos_from_profile(profile_name, qos)
Fills the DataReaderQos with the values of the XML profile.

Parameters

• profile_name (string) – DataReader profile name.

• qos (DataReaderQos) – DataReaderQos object where the qos is returned.

Return type ReturnCode_t

Returns RETCODE_OK if the profile exists. RETCODE_BAD_PARAMETER otherwise.

get_datareaders(*args)
Overload 1:

This operation allows the application to access the DataReader objects.

Parameters readers (std::vector< eprosima::fastdds::dds::DataReader *,std::allocator<
eprosima::fastdds::dds::DataReader * > >) – Vector of DataReader where the list of
existing readers is returned

Return type ReturnCode_t

912 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK

Overload 2:

This operation allows the application to access the DataReader objects that contain samples with the spec-
ified sample_states, view_states, and instance_states.

readers Vector of DataReader where the list of existing readers is returned :type sample_states: std::vector<
eprosima::fastdds::dds::SampleStateKind,std::allocator< eprosima::fastdds::dds::SampleStateKind
> > :param sample_states: Vector of SampleStateKind :type view_states: std::vector<
eprosima::fastdds::dds::ViewStateKind,std::allocator< eprosima::fastdds::dds::ViewStateKind
> > :param view_states: Vector of ViewStateKind :type instance_states: std::vector<
eprosima::fastdds::dds::InstanceStateKind,std::allocator< eprosima::fastdds::dds::InstanceStateKind
> > :param instance_states: Vector of InstanceStateKind :rtype: ReturnCode_t :return: RETCODE_OK
Warning: Not supported yet. Currently returns RETCODE_UNSUPPORTED

get_default_datareader_qos(*args)
Overload 1:

This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the cre-
ate_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Return type DataReaderQos

Returns Current default DataReaderQos.

Overload 2:

This operation returns the default value of the DataReader QoS, that is, the QoS policies which will be
used for newly created DataReader entities in the case where the QoS policies are defaulted in the cre-
ate_datareader operation.

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Return type DataReaderQos

Returns Current default DataReaderQos.

Overload 3:

This operation retrieves the default value of the DataReader QoS, that is, the QoS policies which will
be used for newly created DataReader entities in the case where the QoS policies are defaulted in the
create_datareader operation.

6.31. Python API Reference 913

Fast DDS Documentation, Release 2.8.2

The values retrieved get_default_datareader_qos will match the set of values specified on the last successful
call to get_default_datareader_qos, or else, if the call was never made, the default values.

Parameters qos (DataReaderQos) – DataReaderQos where the default_qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

get_instance_handle()
Returns the Subscriber’s handle.

Return type InstanceHandle_t

Returns InstanceHandle of this Subscriber.

get_listener()
Retrieves the attached SubscriberListener.

Return type SubscriberListener

Returns Pointer to the SubscriberListener

get_participant()
This operation returns the DomainParticipant to which the Subscriber belongs.

Return type DomainParticipant

Returns DomainParticipant Pointer

get_qos(*args)
Overload 1:

Allows accessing the Subscriber Qos.

Return type SubscriberQos

Returns SubscriberQos reference

Overload 2:

Retrieves the Subscriber Qos.

Parameters qos (SubscriberQos) – SubscriberQos where the qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

has_datareaders()
This operation checks if the subscriber has DataReaders

Return type boolean

Returns true if the subscriber has one or several DataReaders, false in other case

lookup_datareader(topic_name)
This operation retrieves a previously-created DataReader belonging to the Subscriber that is attached to a
Topic with a matching topic_name. If no such DataReader exists, the operation will return nullptr.

If multiple DataReaders attached to the Subscriber satisfy this condition, then the operation will return one
of them. It is not specified which one.

914 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Parameters topic_name (string) – Name of the topic associated to the DataReader

Return type DataReader

Returns Pointer to a previously created DataReader created on a Topic with that topic_name

notify_datareaders()
This operation invokes the operation on_data_available on the DataReaderListener objects attached to
contained DataReader entities.

This operation is typically invoked from the on_data_on_readers operation in the SubscriberListener. That
way the SubscriberListener can delegate to the DataReaderListener objects the handling of the data.

Return type ReturnCode_t

Returns RETCODE_OK

set_default_datareader_qos(qos)
This operation sets a default value of the DataReader QoS policies which will be used for newly created
DataReader entities in the case where the QoS policies are defaulted in the create_datareader operation.

This operation will check that the resulting policies are self consistent; if they are not, the operation will
have no effect and return false.

The special value DATAREADER_QOS_DEFAULT may be passed to this operation to indicate that the
default QoS should be reset back to the initial values the factory would use, that is the values that would
be used if the set_default_datareader_qos operation had never been called.

Parameters qos (DataReaderQos) – new value for DataReaderQos to set as default

Return type ReturnCode_t

Returns RETCODE_INCONSISTENT_POLICY if the Qos is not self consistent and RET-
CODE_OK if the qos is changed correctly.

set_listener(*args)
Overload 1:

Modifies the SubscriberListener, sets the mask to StatusMask::all()

Parameters listener (SubscriberListener) – new value for SubscriberListener

Return type ReturnCode_t

Returns RETCODE_OK

Overload 2:

Modifies the SubscriberListener.

Parameters

• listener (SubscriberListener) – new value for the SubscriberListener

• mask (StatusMask) – StatusMask that holds statuses the listener responds to.

Return type ReturnCode_t

Returns RETCODE_OK

set_qos(qos)
Allows modifying the Subscriber Qos. The given Qos must be supported by the SubscriberQos.

6.31. Python API Reference 915

Fast DDS Documentation, Release 2.8.2

Parameters qos (SubscriberQos) – new value for SubscriberQos

Return type ReturnCode_t

Returns RETCODE_IMMUTABLE_POLICY if any of the Qos cannot be changed, RET-
CODE_INCONSISTENT_POLICY if the Qos is not self consistent and RETCODE_OK
if the qos is changed correctly.

property thisown
The membership flag

SubscriberListener

class fastdds.SubscriberListener
Class SubscriberListener, it should be used by the end user to implement specific callbacks to certain actions. It
also inherits all DataReaderListener callbacks.

on_data_on_readers(sub)
Virtual function to be implemented by the user containing the actions to be performed when a new Data
Message is available on any reader.

Parameters sub (Subscriber) – Subscriber

property thisown
The membership flag

SubscriberQos

class fastdds.SubscriberQos
Class SubscriberQos, contains all the possible Qos that can be set for a determined Subscriber. Although these
values can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated
with them has been implemented in the library. Please consult each of them to check for implementation details
and default values.

entity_factory(*args)
Overload 1:

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

Overload 2:

Getter for EntityFactoryQosPolicy

Return type EntityFactoryQosPolicy

Returns EntityFactoryQosPolicy reference

916 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for EntityFactoryQosPolicy

Parameters entity_factory (EntityFactoryQosPolicy) – new value for the EntityFac-
toryQosPolicy

group_data(*args)
Overload 1:

Getter for GroupDataQosPolicy

Return type GroupDataQosPolicy

Returns GroupDataQosPolicy reference

Overload 2:

Getter for GroupDataQosPolicy

Return type GroupDataQosPolicy

Returns GroupDataQosPolicy reference

Overload 3:

Setter for GroupDataQosPolicy

Parameters group_data (GroupDataQosPolicy) – new value for the GroupDataQosPolicy

partition(*args)
Overload 1:

Getter for PartitionQosPolicy

Return type PartitionQosPolicy

Returns PartitionQosPolicy reference

Overload 2:

Getter for PartitionQosPolicy

Return type PartitionQosPolicy

Returns PartitionQosPolicy reference

6.31. Python API Reference 917

Fast DDS Documentation, Release 2.8.2

Overload 3:

Setter for PartitionQosPolicy

Parameters partition (PartitionQosPolicy) – new value for the PartitionQosPolicy

presentation(*args)
Overload 1:

Getter for PresentationQosPolicy

Return type PresentationQosPolicy

Returns PresentationQosPolicy reference

Overload 2:

Getter for PresentationQosPolicy

Return type PresentationQosPolicy

Returns PresentationQosPolicy reference

Overload 3:

Setter for PresentationQosPolicy

Parameters presentation (PresentationQosPolicy) – new value for the Presentation-
QosPolicy

property thisown
The membership flag

class fastdds.SUBSCRIBER_QOS_DEFAULT(*args: Any, **kwargs: Any)

TypeConsistencyQos

class fastdds.TypeConsistencyQos
Qos Policy to configure the XTypes Qos associated to the DataReader

clear()
Clears the QosPolicy object

property representation
Data Representation Qos.

property thisown
The membership flag

property type_consistency
Type consistency enforcement Qos.

918 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

ViewStateKind

class fastdds.NEW_VIEW_STATE(*args: Any, **kwargs: Any)

class fastdds.NOT_NEW_VIEW_STATE(*args: Any, **kwargs: Any)

Topic

Topic

class fastdds.Topic(*args, **kwargs)
Class Topic, represents the fact that both publications and subscriptions are tied to a single data-type

get_impl()

get_listener()
Retrieves the attached TopicListener.

Return type TopicListener

Returns pointer to TopicListener

get_participant()
Getter for the DomainParticipant

Return type DomainParticipant

Returns DomainParticipant pointer

get_qos(*args)
Overload 1:

Allows accessing the Topic Qos.

Return type TopicQos

Returns reference to TopicQos

Overload 2:

Retrieves the Topic Qos.

Parameters qos (TopicQos) – TopicQos where the qos is returned

Return type ReturnCode_t

Returns RETCODE_OK

set_listener(*args)
Modifies the TopicListener.

Parameters

• listener (TopicListener) – new value for the TopicListener

• mask (StatusMask) – StatusMask that holds statuses the listener responds to (default:
all).

Return type ReturnCode_t

6.31. Python API Reference 919

Fast DDS Documentation, Release 2.8.2

Returns RETCODE_OK

set_qos(qos)
Allows modifying the Topic Qos. The given Qos must be supported by the Topic.

Parameters qos (TopicQos) – new TopicQos value to set for the Topic.

property thisown
The membership flag

TopicDataType

class fastdds.TopicDataType(*args, **kwargs)
Class TopicDataType used to provide the DomainRTPSParticipant with the methods to serialize, deserialize and
get the key of a specific data type. The user should created a class that inherits from this one, where Serialize
and deserialize methods MUST be implemented.

auto_fill_type_information(*args)
Overload 1:

Get the type information auto-fill configuration

Return type boolean

Returns true if the type information should be auto-filled

Overload 2:

Set type information auto-fill configuration

Parameters auto_fill_type_information (boolean) – new value to set

auto_fill_type_object(*args)
Overload 1:

Get the type object auto-fill configuration

Return type boolean

Returns true if the type object should be auto-filled

Overload 2:

Set the type object auto-fill configuration

Parameters auto_fill_type_object (boolean) – new value to set

construct_sample(memory)
Construct a sample on a memory location.

Parameters memory (void) – Pointer to the memory location where the sample should be
constructed.

Return type boolean

920 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns whether this type supports in-place construction or not.

createData()
Create a Data Type.

Return type void

Returns Void pointer to the created object.

deleteData(data)
Remove a previously created object.

Parameters data (void) – Pointer to the created Data.

deserialize(payload, data)
Deserialize method, it should be implemented by the user, since it is abstract.

payload Pointer to the payload data Pointer to the data :rtype: boolean :return: True if correct.

getKey(data, ihandle, force_md5=False)
Get the key associated with the data.

data Pointer to the data. ihandle Pointer to the Handle. force_md5 Force MD5 checking. :rtype: boolean
:return: True if correct.

getName()
Get topic data type name

Return type string

Returns Topic data type name

getSerializedSizeProvider(data)
Gets the SerializedSizeProvider function

Parameters data (void) – Pointer

Return type std::function< uint32_t () >

Returns function

is_bounded()
Checks if the type is bounded.

is_plain()
Checks if the type is plain.

property m_isGetKeyDefined
Indicates whether the method to obtain the key has been implemented.

property m_typeSize
Maximum serialized size of the type in bytes. If the type has unbounded fields, and therefore cannot have
a maximum size, use 0.

serialize(data, payload)
Serialize method, it should be implemented by the user, since it is abstract. It is VERY IMPORTANT that
the user sets the SerializedPayload length correctly.

data Pointer to the data payload Pointer to the payload :rtype: boolean :return: True if correct.

setName(nam)
Set topic data type name

Parameters nam (string) – Topic data type name

6.31. Python API Reference 921

Fast DDS Documentation, Release 2.8.2

property thisown
The membership flag

type_identifier(*args)
Overload 1:

Get the type identifier

Return type std::shared_ptr< eprosima::fastdds::dds::TypeIdV1 >

Returns TypeIdV1

Overload 2:

Set type identifier

Parameters id (TypeIdV1) – new value for TypeIdV1

Overload 3:

Set type identifier

Parameters id (std::shared_ptr< eprosima::fastdds::dds::TypeIdV1 >) – shared
pointer to TypeIdV1

type_information(*args)
Overload 1:

Get the type information

Return type std::shared_ptr< eprosima::fastdds::dds::xtypes::TypeInformation >

Returns TypeInformation

Overload 2:

Set type information

Parameters info (TypeInformation) – new value for TypeInformation

Overload 3:

Set type information

Parameters info (std::shared_ptr< eprosima::fastdds::dds::xtypes::TypeInformation
>) – shared pointer to TypeInformation

922 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

type_object(*args)
Overload 1:

Get the type object

Return type std::shared_ptr< eprosima::fastdds::dds::TypeObjectV1 >

Returns TypeObjectV1

Overload 2:

Set type object

Parameters object (TypeObjectV1) – new value for TypeObjectV1

Overload 3:

Set type object

Parameters object (std::shared_ptr< eprosima::fastdds::dds::TypeObjectV1
>) – shared pointer to TypeObjectV1

TopicDescription

class fastdds.TopicDescription(*args, **kwargs)
Class TopicDescription, represents the fact that both publications and subscriptions are tied to a single data-type

get_impl()

get_name()
Get the name used to create this TopicDescription.

Return type string

Returns the name used to create this TopicDescription.

get_participant()
Get the DomainParticipant to which the TopicDescription belongs.

Return type DomainParticipant

Returns The DomainParticipant to which the TopicDescription belongs.

get_type_name()
Get the associated type name.

Return type string

Returns the type name.

property thisown
The membership flag

6.31. Python API Reference 923

Fast DDS Documentation, Release 2.8.2

TopicListener

class fastdds.TopicListener
Class TopicListener, it should be used by the end user to implement specific callbacks to certain actions.

on_inconsistent_topic(topic, status)
Virtual function to be implemented by the user containing the actions to be performed when another topic
exists with the same name but different characteristics.

Parameters

• topic (Topic) – Topic

• status (InconsistentTopicStatus) – The inconsistent topic status

property thisown
The membership flag

TopicQos

class fastdds.TopicQos
Class TopicQos, containing all the possible Qos that can be set for a determined Topic. Although these values
can be set and are transmitted during the Endpoint Discovery Protocol, not all of the behaviour associated with
them has been implemented in the library. Please consult each of them to check for implementation details and
default values.

deadline(*args)
Overload 1:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQos reference

Overload 2:

Getter for DeadlineQosPolicy

Return type DeadlineQosPolicy

Returns DeadlineQos reference

Overload 3:

Setter for DeadlineQosPolicy

Parameters deadline (DeadlineQosPolicy) – new value for the DeadlineQosPolicy

destination_order(*args)
Overload 1:

Getter for DestinationOrderQosPolicy

924 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type DestinationOrderQosPolicy

Returns DestinationOrderQos reference

Overload 2:

Getter for DestinationOrderQosPolicy

Return type DestinationOrderQosPolicy

Returns DestinationOrderQos reference

Overload 3:

Setter for DestinationOrderQosPolicy

Parameters destination_order (DestinationOrderQosPolicy) – new value for the
DestinationOrderQosPolicy

durability(*args)
Overload 1:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQos reference

Overload 2:

Getter for DurabilityQosPolicy

Return type DurabilityQosPolicy

Returns DurabilityQos reference

Overload 3:

Setter for DurabilityQosPolicy

Parameters durability (DurabilityQosPolicy) – new value for the DurabilityQosPolicy

durability_service(*args)
Overload 1:

Getter for DurabilityServiceQosPolicy

6.31. Python API Reference 925

Fast DDS Documentation, Release 2.8.2

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQos reference

Overload 2:

Getter for DurabilityServiceQosPolicy

Return type DurabilityServiceQosPolicy

Returns DurabilityServiceQos reference

Overload 3:

Setter for DurabilityServiceQosPolicy

Parameters durability_service (DurabilityServiceQosPolicy) – new value for the
DurabilityServiceQosPolicy

history(*args)
Overload 1:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQos reference

Overload 2:

Getter for HistoryQosPolicy

Return type HistoryQosPolicy

Returns HistoryQos reference

Overload 3:

Setter for HistoryQosPolicy

Parameters history (HistoryQosPolicy) – new value for the HistoryQosPolicy

latency_budget(*args)
Overload 1:

Getter for LatencyBudgetQosPolicy

926 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQos reference

Overload 2:

Getter for LatencyBudgetQosPolicy

Return type LatencyBudgetQosPolicy

Returns LatencyBudgetQos reference

Overload 3:

Setter for LatencyBudgetQosPolicy

Parameters latency_budget (LatencyBudgetQosPolicy) – new value for the Latency-
BudgetQosPolicy

lifespan(*args)
Overload 1:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQos reference

Overload 2:

Getter for LifespanQosPolicy

Return type LifespanQosPolicy

Returns LifespanQos reference

Overload 3:

Setter for LifespanQosPolicy

Parameters lifespan (LifespanQosPolicy) – new value for the LifespanQosPolicy

liveliness(*args)
Overload 1:

Getter for LivelinessQosPolicy

6.31. Python API Reference 927

Fast DDS Documentation, Release 2.8.2

Return type LivelinessQosPolicy

Returns LivelinessQos reference

Overload 2:

Getter for LivelinessQosPolicy

Return type LivelinessQosPolicy

Returns LivelinessQos reference

Overload 3:

Setter for LivelinessQosPolicy

Parameters liveliness (LivelinessQosPolicy) – new value for the LivelinessQosPolicy

ownership(*args)
Overload 1:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQos reference

Overload 2:

Getter for OwnershipQosPolicy

Return type OwnershipQosPolicy

Returns OwnershipQos reference

Overload 3:

Setter for OwnershipQosPolicy

Parameters ownership (OwnershipQosPolicy) – new value for the OwnershipQosPolicy

reliability(*args)
Overload 1:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

928 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Returns ReliabilityQos reference

Overload 2:

Getter for ReliabilityQosPolicy

Return type ReliabilityQosPolicy

Returns ReliabilityQos reference

Overload 3:

Setter for ReliabilityQosPolicy

Parameters reliability (ReliabilityQosPolicy) – new value for the Reliabili-
tyQosPolicy

resource_limits(*args)
Overload 1:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQos reference

Overload 2:

Getter for ResourceLimitsQosPolicy

Return type ResourceLimitsQosPolicy

Returns ResourceLimitsQos reference

Overload 3:

Setter for ResourceLimitsQosPolicy

Parameters resource_limits (ResourceLimitsQosPolicy) – new value for the Re-
sourceLimitsQosPolicy

property thisown
The membership flag

6.31. Python API Reference 929

Fast DDS Documentation, Release 2.8.2

topic_data(*args)
Overload 1:

Getter for TopicDataQosPolicy

Return type TopicDataQosPolicy

Returns TopicDataQos reference

Overload 2:

Getter for TopicDataQosPolicy

Return type TopicDataQosPolicy

Returns TopicDataQos reference

Overload 3:

Setter for TopicDataQosPolicy

Parameters value (TopicDataQosPolicy) – new value for the TopicDataQosPolicy

transport_priority(*args)
Overload 1:

Getter for TransportPriorityQosPolicy

Return type TransportPriorityQosPolicy

Returns TransportPriorityQos reference

Overload 2:

Getter for TransportPriorityQosPolicy

Return type TransportPriorityQosPolicy

Returns TransportPriorityQos reference

Overload 3:

Setter for TransportPriorityQosPolicy

Parameters transport_priority (TransportPriorityQosPolicy) – new value for the
TransportPriorityQosPolicy

930 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

class fastdds.TOPIC_QOS_DEFAULT(*args: Any, **kwargs: Any)

TypeIdV1

class fastdds.TypeIdV1(*args)
Class TypeIdV1

clear()
Clears the QosPolicy object

get()
Getter for the TypeIndentifier

Return type eprosima::fastrtps::types::TypeIdentifier

Returns TypeIdentifier reference

property m_type_identifier
Type Identifier

property thisown
The membership flag

TypeInformation

class fastdds.TypeInformation(*args)
Class xtypes::TypeInformation

assigned(*args)
Overload 1:

Check if it is assigned

Return type boolean

Returns true if assigned, false if not

Overload 2:

Setter for assigned boolean

Parameters value (boolean) – Boolean to be set

clear()
Clears the QosPolicy object

property thisown
The membership flag

property type_information
Type Information

6.31. Python API Reference 931

Fast DDS Documentation, Release 2.8.2

TypeObjectV1

class fastdds.TypeObjectV1(*args)
Class TypeObjectV1

clear()
Clears the QosPolicy object

get()
Getter for the TypeObject

Return type eprosima::fastrtps::types::TypeObject

Returns TypeObject reference

property m_type_object
Type Object

property thisown
The membership flag

TypeSupport

class fastdds.TypeSupport(*args)
Notes: This class inherits from std::shared_ptr<TopicDataType>. Class TypeSupport used to provide the Do-
mainRTPSParticipant with the methods to serialize, deserialize and get the key of a specific data type. The user
should created a class that inherits from this one, where Serialize and deserialize methods MUST be imple-
mented.

create_data()
Creates new data

Return type void

Returns Pointer to the data

delete_data(data)
Deletes data

Parameters data (void) – Pointer to the data to delete

deserialize(payload, data)
Deserializes the data

Parameters

• payload (eprosima::fastrtps::rtps::SerializedPayload_t) – Pointer to
payload

• data (void) – Pointer to data

Return type boolean

Returns true if it is deserialized correctly, false if not

empty()
Check if the TypeSupport is empty

Return type boolean

Returns true if empty, false if not

932 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

get_key(data, i_handle, force_md5=False)
Getter for the data key

Parameters

• data (void) – Pointer to data

• i_handle (InstanceHandle_t) – InstanceHandle pointer to store the key

• force_md5 (boolean) – boolean to force md5 (default: false)

Return type boolean

Returns true if the key is returned, false if not

get_serialized_size_provider(data)
Getter for the SerializedSizeProvider

Parameters data (void) – Pointer to data

Return type std::function< uint32_t () >

Returns function

get_type_name()
Getter for the type name

Return type string

Returns name of the data type

is_bounded()
Checks if the type is bounded.

is_plain()
Checks if the type is plain.

register_type(*args)
Overload 1:

Registers the type on a participant

Parameters participant (DomainParticipant) – DomainParticipant where the type is
going to be registered

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the type name is empty, RET-
CODE_PRECONDITION_NOT_MET if there is another type with the same name
registered on the DomainParticipant and RETCODE_OK if it is registered correctly

Overload 2:

Registers the type on a participant

Parameters

• participant (DomainParticipant) – DomainParticipant where the type is going
to be registered

• type_name (string) – Name of the type to register

6.31. Python API Reference 933

Fast DDS Documentation, Release 2.8.2

Return type ReturnCode_t

Returns RETCODE_BAD_PARAMETER if the type name is empty, RET-
CODE_PRECONDITION_NOT_MET if there is another type with the same name
registered on the DomainParticipant and RETCODE_OK if it is registered correctly

serialize(data, payload)
Serializes the data

Parameters

• data (void) – Pointer to data

• payload (eprosima::fastrtps::rtps::SerializedPayload_t) – Pointer to
payload

Return type boolean

Returns true if it is serialized correctly, false if not

set(ptr)

property thisown
The membership flag

6.32 Introduction

eProsima Fast DDS-Gen is a Java application that generates eProsima Fast DDS source code using the data types
defined in an IDL (Interface Definition Language) file. This generated source code can be used in any Fast DDS ap-
plication in order to define the data type of a topic, which will later be used to publish or subscribe. eProsima Fast
DDS defines the data type exchanged in a Topic through two classes: the TypeSupport and the TopicDataType.
TopicDataType describes the data type exchanged between a publication and a subscription, i.e. the data correspond-
ing to a Topic; while TypeSupport encapsulates an instance of TopicDataType, providing the functions needed to
register the type and interact with the publication and subscription. Please refer to Definition of data types for more
information on data types.

To declare the structured data, the IDL format must be used. IDL is a specification language, made by OMG (Object
Management Group), which describes an interface in a language independent manner, allowing communication be-
tween software components that do not share the same language. The eProsima Fast DDS-Gen tool reads the IDL files
and parses a subset of the OMG IDL specification to generate source code for data serialization. This subset includes
the data type descriptions included in Defining a data type via IDL. The rest of the file content is ignored.

eProsima Fast DDS-Gen generated source code uses Fast CDR, a C++11 library that provides the data serialization
and codification mechanisms. Therefore, as stated in the RTPS standard, when the data are sent, they are serialized
and encoded using the corresponding Common Data Representation (CDR). The CDR transfer syntax is a low-level
representation for inter-agents transfer, mapping from OMG IDL data types to byte streams. Please refer to the official
CDR specification for more information on the CDR transfer syntax (see PDF section 15.3).

The main feature of eProsima Fast DDS-Gen is to facilitate the implementation of DDS applications without the knowl-
edge of serialization or deserialization mechanisms. With Fast DDS-Gen it is also possible to generate the C++ source
code of a DDS application with a publisher and a subscriber that uses the eProsima Fast DDS library (see Building
a publish/subscribe application). Fast DDS-Gen can also generate Python bindings for the data types in order to use
them within a Python-based Fast DDS application (see Building Python auxiliary libraries).

For installing Fast DDS-Gen, please refer to Linux installation of Fast DDS-Gen or to Windows installation of Fast
DDS-Gen.

934 Chapter 6. Structure of the documentation

https://www.omg.org/
https://www.omg.org/spec/IDL/4.2/
https://github.com/eProsima/Fast-CDR
https://www.omg.org/spec/DDSI-RTPS/2.2/PDF
https://www.omg.org/cgi-bin/doc?formal/02-06-51

Fast DDS Documentation, Release 2.8.2

6.33 Usage

This section explains the usage of Fast DDS-Gen tool and briefly describes the generated files.

6.33.1 Running the Fast DDS-Gen Java application

First, the steps outlined in Linux installation of Fast DDS-Gen or Window installation of Fast DDS-Gen must be ac-
complished for the installation of Fast DDS-Gen. According to this section, an executable file for Linux and Windows
that runs the Java Fast DDS-Gen application is available in the scripts folder. If the scripts folder path is added to
the PATH environment variable, Fast DDS-Gen can be executed running the following commands:

• Linux:

$ fastddsgen

• Windows:

> fastddsgen.bat

Note: In case the PATH has not been modified, these scripts can be found in the <fastddsgen_directory>/
scripts directory.

6.33.2 Supported options

The expected argument list of the application is:

fastddsgen [<options>] <IDL file> [<IDL file> ...]

Where the option choices are:

6.33. Usage 935

Fast DDS Documentation, Release 2.8.2

Option Description
-help Shows the help information.
-version Shows the current version of eProsima Fast DDS-Gen.
-d <di-
rectory>

Sets the output directory where the generated files are created.

-I <direc-
tory>

Add directory to preprocessor include paths.

-t <direc-
tory>

Sets a specific directory as a temporary directory.

-example
<plat-
form>

Generates an example and a solution to compile the generated source code for a specific platform. The
help command shows the supported platforms.

-replace Replaces the generated source code files even if they exist.
-
ppDisable

Disables the preprocessor.

-ppPath Specifies the preprocessor path.
-
typeobject

Generates TypeObject files for the IDL provided and modifies MyType constructor to register the Type-
Object representation into the factory.

-
typeros2

Generates type naming compatible with ROS 2

-python Generates source code and a CMake solution to compile a library containing the data types Python
bindings required to run a Fast DDS Python-based application. This option is incompatible with the
-example and -typeobject ones.

-cs Enables Case Sensitivity

Please refer to Dynamic Topic Types for more information on TypeObject representation.

6.34 Building a publish/subscribe application

Fast DDS-Gen can be used to build a fully functional publication/subscription application from an IDL file that defines
the Topic under which messages are published and received. The application generated allows for the creation of as
many publishers and subscribers as desired, all belonging to the same Domain and communicating using the same
Topic.

• Background

• Prerequisites

• Create the application workspace

• Import linked libraries and its dependencies

– Installation from binaries

– Colcon installation

• Creating the IDL file with the data type

• Generating a minimal functional example

– Generate the Fast DDS source code

– Build the Fast DDS application

– Run the Fast DDS application

936 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• Summary and next steps

6.34.1 Background

eProsima Fast DDS-Gen is a Java application that generates eProsima Fast DDS source code using the data types defined
in an IDL (Interface Definition Language) file. This generated source code can be used in any Fast DDS application in
order to define the data type of a topic, which will later be used to publish or subscribe. Please refer to Fast DDS-Gen
introduction for more information.

6.34.2 Prerequisites

First of all, follow the steps outlined in the Installation Manual for the installation of eProsima Fast DDS and all its
dependencies. Moreover, perform the steps outlined in Linux installation of Fast DDS-Gen or in Window installation
of Fast DDS-Gen, depending on the operating system, for the installation of the eProsima Fast DDS-Gen tool.

6.34.3 Create the application workspace

The application workspace will have the following structure at the end of the project. The file build/HelloWorld is
the generated Fast DDS application.

.
FastDDSGenHelloWorld

build
CMakeCache.txt
CMakeFiles
cmake_install.cmake
HelloWorld
libHelloWorld_lib.a
Makefile

CMakeLists.txt
HelloWorld.cxx
HelloWorld.h
HelloWorld.idl
HelloWorldPublisher.cxx
HelloWorldPublisher.h
HelloWorldPubSubMain.cxx
HelloWorldPubSubTypes.cxx
HelloWorldPubSubTypes.h
HelloWorldSubscriber.cxx
HelloWorldSubscriber.h

Execute the following command to create the directory in which the files generated by Fast DDS-Gen will be saved.

mkdir FastDDSGenHelloWorld && cd FastDDSGenHelloWorld
mkdir build

6.34. Building a publish/subscribe application 937

Fast DDS Documentation, Release 2.8.2

6.34.4 Import linked libraries and its dependencies

The DDS application requires the Fast DDS and Fast CDR libraries. The way of making these accessible from the
workspace depends on the installation procedure followed in the Installation Manual.

Installation from binaries

If the installation from binaries has been followed, these libraries are already accessible from the workspace.

• On Linux: The header files can be found in directories /usr/include/fastrtps/ and /usr/include/
fastcdr/ for Fast DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory
/usr/lib/.

• On Windows: The header files can be found in directories C:\Program Files\eProsima\fastrtps 2.0.
0\include\fastrtps and C:\Program Files\eProsima\fastrtps 2.0.0\include\fastcdr\ for Fast
DDS and Fast CDR respectively. The compiled libraries of both can be found in the directory C:\Program
Files\eProsima\fastrtps 2.0.0\lib\.

Colcon installation

If the Colcon installation has been followed, there are several ways to import the libraries. To make these accessible
only from the current shell session, run one of the following two commands.

• On Linux:

source <path/to/Fast-DDS/workspace>/install/setup.bash

• On Windows:

<path/to/Fast-DDS/workspace>/install/setup.bat

However, to make these accessible from any session, add the Fast DDS installation directory to the $PATH variable in
the shell configuration files running the following command.

• On Linux:

echo 'source <path/to/Fast-DDS/workspace>/install/setup.bash' >> ~/.bashrc

• On Windows: Open the Edit the system environment variables control panel and add <path/to/Fast-DDS/
workspace>/install/setup.bat to the PATH.

6.34.5 Creating the IDL file with the data type

To build a minimal application, the Topic must be defined by means of an IDL file. For this example the Topic data
type defined by IDL is just a string message. Topics are explained in more detail in Topic, while the Topic data types
to be defined using IDL are presented in Definition of data types. In the preferred text editor, create the HelloWorld.idl
file with the following content and save it in the FastDDSGenHelloWorld directory.

// HelloWorld.idl
struct HelloWorld
{

string message;
};

938 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Then, this file is translated to something Fast DDS understands. For this, use the Fast DDS-Gen code generation tool,
which can do two different things:

1. Generate C++ definitions for a custom topic.

2. Generate a functional example that uses the topic data.

The second option is the one used to create this publish/subscribe application, while the first option is applied in this
other tutorial: Writing a simple C++ publisher and subscriber application.

6.34.6 Generating a minimal functional example

If the steps outlined in the Installation Manual have been followed, then Fast DDS, Fast CDR, and Fast-RTPS-Gen
should be installed in the system.

Generate the Fast DDS source code

The application files are generated using the following command. The -example option creates an example application,
and the CMake files needed to build it. In the workspace directory (FastDDSGenHelloWorld directory), execute one
of the following commands according to the installation followed and the operating system.

• On Linux:

– For an installation from binaries or a colcon installation:

<path-to-Fast-DDS-workspace>/src/fastddsgen/scripts/fastddsgen -example␣
→˓CMake HelloWorld.idl

– For a stand-alone installation, run:

<path-to-Fast-DDS-Gen>/scripts/fastddsgen -example CMake HelloWorld.idl

• On Windows:

– For a colcon installation:

<path-to-Fast-DDS-workspace>/src/fastddsgen/scripts/fastddsgen.bat -
→˓example CMake HelloWorld.idl

– For a stand-alone installation, run:

<path-to-Fast-DDS-Gen>/scripts/fastddsgen.bat -example CMake HelloWorld.idl

– For an installation from binaries, run:

fastddsgen.bat -example CMake HelloWorld.idl

Warning: The colcon installation does not build the fastddsgen.jar file although it does download the Fast
DDS-Gen repository. The following commands must be executed to build the Java executable:

cd <path-to-Fast-DDS-workspace>/src/fastddsgen
gradle assemble

6.34. Building a publish/subscribe application 939

Fast DDS Documentation, Release 2.8.2

Build the Fast DDS application

Then, compile the generated code executing the following commands from the FastDDSGenHelloWorld directory.

• On Linux:

cd build
cmake ..
make

• On Windows:

cd build
cmake -G "Visual Studio 15 2017 Win64" ..
cmake --build .

Run the Fast DDS application

The application build can be used to spawn any number of publishers and subscribers associated with the topic.

• On Linux:

./HelloWorld publisher

./HelloWorld subscriber

• On Windows:

HelloWorld.exe publisher
HelloWorld.exe subscriber

Each time <Enter> is pressed on the Publisher, a new datagram is generated, sent over the network and received by
Subscribers currently online. If more than one subscriber is available, it can be seen that the message is equally received
on all listening nodes.

The values on the custom IDL-generated data type can also be modified as indicated below.

HelloWorld sample; //Auto-generated container class for topic data from Fast DDS-Gen
sample.msg("Hello there!"); // Add contents to the message
publisher->write(&sample); //Publish

Warning: It may be necessary to set up a special rule in the Firewall for eprosima Fast DDS to work correctly on
Windows.

6.34.7 Summary and next steps

In this tutorial, a publisher/subscriber DDS application using Fast DDS-Gen has been built. The tutorial also describes
how to generate IDL files that contain the description of the Topic data type.

To continue developing DDS applications please take a look at the eProsima Fast DDS examples on github for ideas on
how to improve this basic application through different configuration options, and also for examples of advanced Fast
DDS features.

940 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/tree/master/examples

Fast DDS Documentation, Release 2.8.2

6.35 Building Python auxiliary libraries

eProsima Fast DDS-Gen can generate the required source files and CMake project to build the Python modules that
allow the use of the IDL defined data types within a Fast DDS Python-based application. Each IDL file will result in
a new Python module that will contain all the data types defined in the file. The Python binding is generated building
the provided solution using SWIG.

Calling eProsima Fast DDS-Gen with the option -python will generate these files. eProsima Fast DDS-Gen will gen-
erate a .i file which will be processed by SWIG and a CMake project to call SWIG first generating C++ files (for
connecting C++ and Python) and Python files (Python module for your type) and then compiling the C++ sources.

Before calling CMake, the Building process needs several Dependencies to be met.

6.35.1 Dependencies

SWIG

SWIG is a development tool that allows connecting programs written in C/C++ with a variety of other programming
languages, among them Python. SWIG 4.0 is required in order to build Fast DDS Python bindings.

SWIG can be installed directly from the package manager of the appropriate Linux distribution. For Ubuntu, please
run:

sudo apt install swig

Header files and static library for Python

Python static libraries and header files are needed to compile C++ source code generated by SWIG. They can be installed
directly from the package manager of the appropriate Linux distribution. For Ubuntu, please run:

sudo apt install libpython3-dev

6.35.2 Building

Call CMake:

mkdir build
cd build
cmake ..
cmake --build .

This will create the Python files (.py) with the modules (one per each IDL file) that have to be imported within the
Python script.

6.35. Building Python auxiliary libraries 941

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/

Fast DDS Documentation, Release 2.8.2

6.36 Defining a data type via IDL

This section describes the data types that can be defined using IDL files, as well as other mechanisms for building data
types using IDL files.

• Supported IDL types

– Primitive types

– Arrays

– Sequences

– Maps

– Structures

– Unions

– Bitsets

– Enumerations

– Bitmasks

– Data types with a key

• Including other IDL files

• Annotations

• Forward declaration

• IDL 4.2 aliases

• IDL 4.2 comments

6.36.1 Supported IDL types

Be aware that Fast DDS-Gen is not case sensitive as it is specified in the IDL specification. To activate case sensitivity
use option -cs when running Fast DDS-Gen (see Supported options).

942 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/4.2/PDF

Fast DDS Documentation, Release 2.8.2

Primitive types

The following table shows the basic IDL types supported by Fast DDS-Gen and how they are mapped to C++11.

IDL C++11
char char
octet uint8_t
short int16_t
unsigned short uint16_t
long int32_t
unsigned long uint32_t
long long int64_t
unsigned long long uint64_t
float float
double double
long double long double
boolean bool
string std::string

Arrays

Fast DDS-Gen supports unidimensional and multidimensional arrays. Arrays are always mapped to std::array con-
tainers. The following table shows the array types supported and their mapping.

IDL C++11
char a[5] std::array<char,5> a
octet a[5] std::array<uint8_t,5> a
short a[5] std::array<int16_t,5> a
unsigned short a[5] std::array<uint16_t,5> a
long a[5] std::array<int32_t,5> a
unsigned long a[5] std::array<uint32_t,5> a
long long a[5] std::array<int64_t,5> a
unsigned long long a[5] std::array<uint64_t,5> a
float a[5] std::array<float,5> a
double a[5] std::array<double,5> a

6.36. Defining a data type via IDL 943

Fast DDS Documentation, Release 2.8.2

Sequences

Fast DDS-Gen supports sequences, which map into the std::vector container. The following table represents how
the map between IDL and C++11 is handled.

IDL C++11
sequence<char> std::vector<char>
sequence<octet> std::vector<uint8_t>
sequence<short> std::vector<int16_t>
sequence<unsigned short> std::vector<uint16_t>
sequence<long> std::vector<int32_t>
sequence<unsigned long> std::vector<uint32_t>
sequence<long long> std::vector<int64_t>
sequence<unsigned long long> std::vector<uint64_t>
sequence<float> std::vector<float>
sequence<double> std::vector<double>

Maps

Fast DDS-Gen supports maps, which are equivalent to the std::map container. The equivalence between types is
handled in the same way as for sequences.

IDL C++11
map<char, unsigned long long> std::map<char, uint64_T>

Note: Only Primitive types are currently supported.

Structures

You can define an IDL structure with a set of members with multiple types. It will be converted into a C++ class in
which the members of the structure defined via IDL are mapped to private data members of the class. Furthermore,
set() and get() member functions are created to access these private data members.

The following IDL structure:

struct Structure
{

octet octet_value;
long long_value;
string string_value;

};

Would be converted to:

class Structure
{
public:

Structure();
~Structure();

(continues on next page)

944 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

(continued from previous page)

Structure(const Structure &x);
Structure(Structure &&x);
Structure& operator=(const Structure &x);
Structure& operator=(Structure &&x);

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std::string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

Structures can inherit from other structures, extending their member set.

struct ParentStruct
{

octet parent_member;
};

struct ChildStruct : ParentStruct
{

long child_member;
};

In this case, the resulting C++ code will be:

class ParentStruct
{

octet parent_member;
};

class ChildStruct : public ParentStruct
{

long child_member;
};

6.36. Defining a data type via IDL 945

Fast DDS Documentation, Release 2.8.2

Unions

In IDL, a union is defined as a sequence of members with their own types and a discriminant that specifies which
member is in use. An IDL union type is mapped as a C++ class with member functions to access the union members
and the discriminant.

The following IDL union:

union Union switch(long)
{
case 1:
octet octet_value;

case 2:
long long_value;

case 3:
string string_value;

};

Would be converted to:

class Union
{
public:

Union();
~Union();
Union(const Union &x);
Union(Union &&x);
Union& operator=(const Union &x);
Union& operator=(Union &&x);

void d(int32_t __d);
int32_t _d() const;
int32_t& _d();

void octet_value(uint8_t _octet_value);
uint8_t octet_value() const;
uint8_t& octet_value();
void long_value(int64_t _long_value);
int64_t long_value() const;
int64_t& long_value();
void string_value(const std::string

&_string_value);
void string_value(std:: string &&_string_value);
const std::string& string_value() const;
std::string& string_value();

private:
int32_t m__d;
uint8_t m_octet_value;
int64_t m_long_value;
std::string m_string_value;

};

946 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Bitsets

Bitsets are a special kind of structure, which encloses a set of bits. A bitset can represent up to 64 bits. Each member
is defined as bitfield and eases the access to a part of the bitset.

For example:

bitset MyBitset
{

bitfield<3> a;
bitfield<10> b;
bitfield<12, int> c;

};

The type MyBitset will store a total of 25 bits (3 + 10 + 12) and will require 32 bits in memory (lowest primitive type
to store the bitset’s size).

• The bitfield ‘a’ allows us to access to the first 3 bits (0..2).

• The bitfield ‘b’ allows us to access to the next 10 bits (3..12).

• The bitfield ‘c’ allows us to access to the next 12 bits (13..24).

The resulting C++ code will be similar to:

class MyBitset
{
public:

void a(char _a);
char a() const;

void b(uint16_t _b);
uint16_t b() const;

void c(int32_t _c);
int32_t c() const;

private:
std::bitset<25> m_bitset;

};

Internally, it is stored as a std::bitset. For each bitfield, get() and set() member functions are generated with
the smaller possible primitive unsigned type to access it. In the case of bitfield ‘c’, the user has established that this
accessing type will be int, so the generated code uses int32_t instead of automatically use uint16_t.

Bitsets can inherit from other bitsets, extending their member set.

bitset ParentBitset
{

bitfield<3> parent_member;
};

bitset ChildBitset : ParentBitset
{

bitfield<10> child_member;
};

In this case, the resulting C++ code will be:

6.36. Defining a data type via IDL 947

Fast DDS Documentation, Release 2.8.2

class ParentBitset
{

std::bitset<3> parent_member;
};

class ChildBitset : public ParentBitset
{

std::bitset<10> child_member;
};

Note that in this case, ChildBitset will have two std::bitset data members, one belonging to ParentBitset and
the other belonging to ChildBitset.

Enumerations

An enumeration in IDL format is a collection of identifiers that have an associated numeric value. An IDL enumeration
type is mapped directly to the corresponding C++11 enumeration definition.

The following IDL enumeration:

enum Enumeration
{

RED,
GREEN,
BLUE

};

Would be converted to:

enum Enumeration : uint32_t
{

RED,
GREEN,
BLUE

};

Bitmasks

Bitmasks are a special kind of Enumeration to manage masks of bits. It allows defining bit masks based on their
position.

The following IDL bitmask:

@bit_bound(8)
bitmask MyBitMask
{

@position(0) flag0,
@position(1) flag1,
@position(4) flag4,
@position(6) flag6,
flag7

};

948 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Would be converted to:

enum MyBitMask : uint8_t
{

flag0 = 0x01 << 0,
flag1 = 0x01 << 1,
flag4 = 0x01 << 4,
flag6 = 0x01 << 6,
flag7 = 0x01 << 7

};

The annotation bit_bound defines the width of the associated enumeration. It must be a positive number between 1
and 64. If omitted, it will be 32 bits. For each flag, the user can use the annotation position to define the position
of the flag. If omitted, it will be auto incremented from the last defined flag, starting at 0.

Data types with a key

In order to use keyed topics, the user should define some key members inside the structure. This is achieved by writing
the @Key annotation before the members of the structure that are used as keys. For example in the following IDL file
the id and type field would be the keys:

struct MyType
{

@Key long id;
@Key string type;
long positionX;
long positionY;

};

Fast DDS-Gen automatically detects these tags and correctly generates the serialization methods for the key generation
function in TopicDataType (getKey()). This function will obtain the 128-bit MD5 digest of the big-endian serialization
of the Key Members.

6.36.2 Including other IDL files

Other IDL files can be included in addition to the current IDL file. Fast DDS-Gen uses a C/C++ preprocessor for this
purpose, and #include directive can be used to include an IDL file.

#include "OtherFile.idl"
#include <AnotherFile.idl>

If Fast DDS-Gen does not find a C/C++ preprocessor in default system paths, the preprocessor path can be specified
using parameter -ppPath. The parameter -ppDisable can be used to disable the usage of the C/C++ preprocessor.

6.36. Defining a data type via IDL 949

Fast DDS Documentation, Release 2.8.2

6.36.3 Annotations

The application allows the user to define and use their own annotations as defined in the OMG IDL 4.2 specification.
User annotations will be passed to TypeObject generated code if the -typeobject argument was used.

@annotation MyAnnotation
{

long value;
string name;

};

Additionally, the following standard annotations are builtin (recognized and passed to TypeObject when unimple-
mented).

Annotation Implemented behavior
@id [Unimplemented] Assign a 32-bit integer identifier to an element.
@autoid [Unimplemented] Automatically allocate identifiers to the elements.
@optional [Unimplemented] Setting an element as optional.
@extensi-
bility

[Unimplemented] Applied to any element which is constructed. Allow specifying how the element
is allowed to evolve.

@final [Unimplemented] Shortcut for @extensibility(FINAL)
@append-
able

[Unimplemented] Shortcut for @extensibility(APPENDABLE)

@mutable [Unimplemented] Shortcut for @extensibility(MUTABLE)
@position Setting a position to an element or group of elements. Used by bitmasks.
@value [Unimplemented] Allow setting a constant value to any element.
@key Alias for eProsima’s @Key annotation. Indicate that a data member is part of the key (please refer

to Topics, keys and instances for more information).
@must_understand[Unimplemented] Indicate that the data member must be understood by any application making use

of that piece of data.
@de-
fault_literal

[Unimplemented] Allow selecting one member as the default within a collection.

@default Allow specifying the default value of the annotated element.
@range [Unimplemented] Allow specifying a range of allowed values for the annotated element.
@min [Unimplemented] Allow specifying a minimum value for the annotated element.
@max [Unimplemented] Allow specifying a maximum value for the annotated element.
@unit [Unimplemented] Allow specifying a unit of measurement for the annotated element.
@bit_bound Allow setting a size to a bitmasks.
@external [Unimplemented] Force the annotated element to be placed in a dedicated data space.
@nested [Unimplemented] Allow indicating that the objects from the type under annotation will always be

nested within another one.
@verbatim [Unimplemented] Allow injecting some user-provided information into what the compiler will gen-

erate.
@service [Unimplemented] Allow indicating that an interface is to be treated as a service.
@oneway [Unimplemented] Allow indicating that an operation is one way only, meaning that related informa-

tion flow will go from client to server but not back.
@ami [Unimplemented] Allow indicating that an interface or an operation is to be made callable asyn-

chronously.
@non_serializedThe annotated member will be omitted from serialization.

Most unimplemented annotations are related to Extended Types.

950 Chapter 6. Structure of the documentation

https://www.omg.org/spec/IDL/4.2/

Fast DDS Documentation, Release 2.8.2

6.36.4 Forward declaration

Fast DDS-Gen supports forward declarations. This allows declaring inter-dependant structures, unions, etc.

struct ForwardStruct;

union ForwardUnion;

struct ForwardStruct
{

ForwardUnion fw_union;
};

union ForwardUnion switch (long)
{

case 0:
ForwardStruct fw_struct;

default:
string empty;

};

6.36.5 IDL 4.2 aliases

IDL 4.2 allows using the following names for primitive types:

int8
uint8
int16
uint16
int32
uint32
int64
uint64

6.36.6 IDL 4.2 comments

There are two ways to write IDL comments:

• The characters /* start a comment, which terminates with the characters */.

• The characters // start a comment, which terminates at the end of the line on which they occur.

Please refer to the IDL 4.2 specification (Section 7.2 Lexical Conventions) for more information on IDL conventions.

/* MyStruct definition */
struct MyStruc
{

string mymessage; // mymessage data member.
};

6.36. Defining a data type via IDL 951

https://www.omg.org/spec/IDL/4.2/PDF

Fast DDS Documentation, Release 2.8.2

6.37 CLI

The Fast DDS command line interface provides a set commands and sub-commands to perform, Fast DDS related,
maintenance and configuration tasks.

An executable file for Linux and Windows that runs the Fast DDS CLI application is available in the tools folder. If
the tools/fastdds folder path is added to the PATH, or by sourcing the <path/to/fastdds>/install/setup.bash configuration
file, Fast DDS CLI can be executed running the following commands:

• Linux:

$ fastdds <command> [<command-args>]

• Windows:

> fastdds.bat <command> [<command-args>]

There are two verbs whose functionality is described in the following table:

Verbs Description
discovery Launches a server for Discovery Server.
shm Allows manual cleaning of garbage files that may be generated by Shared Memory Transport

6.37.1 discovery

This command launches a SERVER (or BACKUP) for Discovery Server. This server will manage the discovery phases
of the CLIENTS which are connected to it. Clients must know how to reach the server, which is accomplished by
specifying an IP address, the servers GUID prefix, and a transport protocol like UDP or TCP. Servers do not need any
prior knowledge of their clients, but require a GUID prefix, and the listening IP address where they may be reached.
For more information on the different Fast DDS discovery mechanisms and how to configure them, please refer to
Discovery.

Important: It is possible to interconnect servers (or backup servers) instantiated with fastdds discovery using
environment variable ROS_DISCOVERY_SERVER (see ROS_DISCOVERY_SERVER) or a XML configuration file.

How to run

On a shell, execute:

fastdds discovery -i {0-255} [optional parameters]

Where the parameters are:

952 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Op-
tion

Description

-i
--server-id

Unique server identifier. Specifies zero based server position in ROS_DISCOVERY_SERVER environment
variable. Must be an integer in range [0, 255] If not specified, it must be defined using a XML configura-
tion file.

-h
-help

Produce help message.

-l
--ip-address

IPv4/IPv6 address chosen to listen the clients. Defaults to any (0.0.0.0/::0). Instead of an address, a DNS
domain name can be specified.

-p
--port

UDP port chosen to listen the clients. Defaults to ‘11811’.

-b
--backup

Creates a BACKUP server (see Discovery Protocol)

-x
--xml-file

XML configuration file (see XML profiles). In this case, the default configuration file is not loaded. The
CLI options override XML configuration for that specific parameter. The default profile in the XML file
is loaded except if a specific profile name is specified: profile_name@xml_file

The output is:

Server is running
Participant Type: <SERVER|BACKUP>
Server ID: <server-id>
Server GUID prefix: 44.53.<server-id-in-hex>.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[<ip-address>]:<port>

UDPv6:[<ip-address>]:<port>

Once the server is instantiated, the clients can be configured either programmatically or by XML (see Discovery Server
Settings), or using environment variable ROS_DISCOVERY_SERVER (see ROS_DISCOVERY_SERVER)

Examples

1. Launch a default server with id 0 (first on ROS_DISCOVERY_SERVER) listening on all available interfaces on
UDP port ‘11811’. Only one server can use default values per machine.

fastdds discovery -i 0

Output:

Server is running
Participant Type: SERVER
Server ID: 0
Server GUID prefix: 44.53.00.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[0.0.0.0]:11811

2. Launch a default server with id 1 (second on ROS_DISCOVERY_SERVER) listening on localhost with UDP port
14520. Only localhost clients can reach the server defining as ROS_DISCOVERY_SERVER=;127.0.0.1:14520 .

fastdds discovery -i 1 -l 127.0.0.1 -p 14520

Output:

6.37. CLI 953

Fast DDS Documentation, Release 2.8.2

Server is running
Participant Type: SERVER
Server ID: 1
Server GUID prefix: 44.53.01.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[127.0.0.1]:14520

This same output can be obtained loading the following XML configuration file DiscoveryServerCLI.xml:

<participant profile_name="participant_profile_discovery_server_cli" is_default_
→˓profile="true">
<rtps>

<prefix>44.53.01.5f.45.50.52.4f.53.49.4d.41</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>localhost</address>
<port>14520</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

<participant profile_name="second_participant_profile_discovery_server_cli">
<rtps>

<prefix>44.53.02.5f.45.50.52.4f.53.49.4d.41</prefix>
<builtin>

<discovery_config>
<discoveryProtocol>SERVER</discoveryProtocol>

</discovery_config>
<metatrafficUnicastLocatorList>

<locator>
<udpv4>

<address>192.168.36.34</address>
<port>8783</port>

</udpv4>
</locator>
<locator>

<udpv4>
<address>172.20.96.1</address>
<port>51083</port>

</udpv4>
</locator>

</metatrafficUnicastLocatorList>
</builtin>

</rtps>
</participant>

954 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

fastdds discovery -x [PATH_TO_FILE]/DiscoveryServerCLI.xml

3. Launch a default server with id 1 (second on ROS_DISCOVERY_SERVER) listening on IPv6 address
2a02:ec80:600:ed1a::3 with UDP port 14520.

fast-discovery-serverd-1.0.1.exe -i 1 -l 2a02:ec80:600:ed1a::3 -p 14520

Output:

Server is running
Participant Type: SERVER
Server ID: 1
Server GUID prefix: 44.53.01.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv6:[2a02:ec80:600:ed1a::3]:14520

4. Launch a default server with id 2 (third on ROS_DISCOVERY_SERVER) listening on WiFi (192.168.36.34) and
Ethernet (172.20.96.1) local interfaces with UDP ports 8783 and 51083 respectively (addresses and ports are
made up for the example).

fastdds discovery -i 2 -l 192.168.36.34 -p 8783 -l 172.20.96.1 -p 51083

Output:

Server is running
Participant Type SERVER
Server ID: 2
Server GUID prefix: 44.53.02.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[192.168.36.34]:8783

UDPv4:[172.20.96.1]:51083

Using the same XML configuration file from the second example, the same output can be obtained loading a
specific profile: second_participant_profile_discovery_server_cli.

fastdds discovery -x second_participant_profile_discovery_server_cli@[PATH_TO_FILE]/
→˓DiscoveryServerCLI.xml

5. Launch a default server with id 3 (fourth on ROS_DISCOVERY_SERVER) listening on 172.30.144.1 with UDP port
12345 and provided with a backup file. If the server crashes it will automatically restore its previous state when
re-enacted.

fastdds discovery -i 3 -l 172.30.144.1 -p 12345 -b

Output:

Server is running
Participant Type BACKUP
Server ID: 3
Server GUID prefix: 44.53.03.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[172.30.144.1]:12345

6. Launch a default server with id 0 (first on ROS_DISCOVERY_SERVER) listening on localhost with UDP port 14520.
Only localhost clients can reach the server defining as ROS_DISCOVERY_SERVER=localhost:14520.

fastdds discovery -i 0 -l localhost -p 14520

6.37. CLI 955

Fast DDS Documentation, Release 2.8.2

Output:

Server is running
Participant Type: SERVER
Server ID: 0
Server GUID prefix: 44.53.00.5f.45.50.52.4f.53.49.4d.41
Server Addresses: UDPv4:[127.0.0.1]:14520

6.37.2 shm

Provides maintenance tasks related with Shared Memory Transport. Shared Memory transport creates Segments, blocks
of memory accessible from different processes. Zombie files are memory blocks that were reserved by shared memory
and are no longer in use which take up valuable memory resources. This tool finds and frees those memory allocations.

fastdds shm [<shm-command>]

Sub-command Description
clean Cleans SHM zombie files.

Option Description
-h -help Produce help message.

6.38 Docker Images

eProsima provides the Fast DDS and the Fast DDS Suite Docker images for those who want a quick demonstration of
Fast DDS running on an Ubuntu platform. They can be downloaded from eProsima’s downloads page.

This Docker images were built for Ubuntu 22.04 (Focal Fossa).

To run a container you need Docker installed. From a terminal, run:

sudo apt install docker.io

6.38.1 Fast DDS Image

This Docker image contains the Fast DDS library and its dependencies, ready to be used in a final user application.
This includes:

• eProsima Fast DDS libraries and examples: Fast DDS libraries bundled with several examples that showcase a
variety of capabilities of eProsima’s Fast DDS implementation.

To load this image into your Docker repository, from a terminal, run:

docker load -i "ubuntu-fastdds <FastDDS-Version>.tar"

You can run this Docker container as follows:

docker run -it ubuntu-fastdds:<FastDDS-Version>

From the resulting Bash Shell you can run each feature.

956 Chapter 6. Structure of the documentation

https://eprosima.com/index.php/downloads-all

Fast DDS Documentation, Release 2.8.2

Fast DDS Examples

Included in this Docker container is a set of binary examples that showcase several functionalities of the Fast DDS
libraries. These examples’ path can be accessed from a terminal by typing:

goToExamples

From this folder, you can access all examples, both for DDS and RTPS layers.

Hello World Example

This is a minimal example that will perform a Publisher/Subscriber match and start sending samples.

goToExamples
cd dds/HelloWorldExample/bin
tmux new-session "./DDSHelloWorldExample publisher 0 1000" \; \

split-window "./DDSHelloWorldExample subscriber" \; \
select-layout even-vertical

This example is not constrained to the current instance. It’s possible to run several instances of this container to check
the communication between them by running the following from each container.

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample publisher

or

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample subscriber

Benchmark Example

This example creates either a Publisher or a Subscriber and on a successful match starts sending samples. After a few
seconds the process that launched the Publisher will show a report with the number of samples transmitted.

On the subscriber side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark subscriber udp

On the publisher side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark publisher udp

6.38. Docker Images 957

Fast DDS Documentation, Release 2.8.2

6.38.2 Fast DDS Suite Image

This Docker image contains the complete Fast DDS suite. This includes:

• eProsima Fast DDS libraries and examples: Fast DDS libraries bundled with several examples that showcase a
variety of capabilities of eProsima’s Fast DDS implementation.

• Shapes Demo: eProsima Shapes Demo is an application in which Publishers and Subscribers are shapes of
different colors and sizes moving on a board. Each shape refers to its own topic: Square, Triangle or Circle. A
single instance of the eProsima Shapes Demo can publish on or subscribe to several topics at a time.

You can read more about this application on the Shapes Demo documentation page.

• Fast DDS Monitor: eProsima Fast DDS Monitor is a graphical desktop application aimed at monitoring DDS
environments deployed using the eProsima Fast DDS library. Thus, the user can monitor in real time the status
of publication/subscription communications between DDS entities. They can also choose from a wide variety of
communication parameters to be measured (latency, throughput, packet loss, etc.), as well as record and compute
in real time statistical measurements on these parameters (mean, variance, standard deviation, etc.).

You can read more about this application on the Fast DDS Monitor documentation page.

• DDS Router: eProsima DDS Router is an end-user software application that enables the connection of distributed
DDS networks. That is, DDS entities such as publishers and subscribers deployed in one geographic location
and using a dedicated local network will be able to communicate with other DDS entities deployed in different
geographic areas on their own dedicated local networks as if they were all on the same network through the use
of eProsima DDS Router. This is achieved by deploying a DDS Router on an edge device of each local network
so that the DDS Router routes DDS traffic from one network to the other through WAN communication.

You can read more about this application on the DDS Router documentation website.

• Plotjuggler eProsima Edition: eProsima Fast DDS Visualizer Plugin is a plugin for the PlotJuggler application.
PlotJuggler is a graphical desktop application providing visualization features of data series, time series, X-Y
plots. It also adds data management features, such as data import and export, custom and built-in data manipu-
lation functions, data series merges, etc. Also, this software supports many different layouts, with dynamic, rich
and user-friendly customization.

You can read more about this application on the Plotjuggler eProsima Edition documentation website.

To load this image into your Docker repository, from a terminal run

docker load -i "ubuntu-fastdds-suite <FastDDS-Version>.tar"

You can run this Docker container as follows

xhost local:root
docker run -it --privileged -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix \
ubuntu-fastdds-suite:<FastDDS-Version>

From the resulting Bash Shell you can run each feature.

958 Chapter 6. Structure of the documentation

https://eprosima-shapes-demo.readthedocs.io/
https://fast-dds-monitor.readthedocs.io/
https://eprosima-dds-router.readthedocs.io
https://plotjuggler-fastdds-plugins.readthedocs.io/en/latest/

Fast DDS Documentation, Release 2.8.2

Fast DDS Examples

Included in this Docker container is a set of binary examples that showcase several functionalities of the Fast DDS
libraries. These examples’ path can be accessed from a terminal by typing

goToExamples

From this folder you can access all examples, both for DDS and RTPS. We detail the steps to launch two such examples
below.

Hello World Example

This is a minimal example that will perform a Publisher/Subscriber match and start sending samples.

goToExamples
cd dds/HelloWorldExample/bin
tmux new-session "./DDSHelloWorldExample publisher 0 1000" \; \

split-window "./DDSHelloWorldExample subscriber" \; \
select-layout even-vertical

This example is not constrained to the current instance. It’s possible to run several instances of this container to check
the communication between them by running the following from each container.

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample publisher

or

goToExamples
cd dds/HelloWorldExample/bin
./DDSHelloWorldExample subscriber

Benchmark Example

This example creates either a Publisher or a Subscriber and on a successful match starts sending samples. After a few
seconds the process that launched the Publisher will show a report with the number of samples transmitted.

On the subscriber side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark subscriber udp

On the publisher side, run:

goToExamples
cd dds/Benchmark/bin
./DDSBenchmark publisher udp

6.38. Docker Images 959

Fast DDS Documentation, Release 2.8.2

Shapes Demo

To launch the Shapes Demo, from a terminal run

ShapesDemo

eProsima Shapes Demo usage information can be found on the Shapes Demo documentation.

Fast DDS Monitor

To launch the Fast DDS Monitor, from a terminal run

fastdds_monitor

eProsima Fast DDS Monitor user manual can be found on the Fast DDS Monitor documentation.

DDS Router

This example configures a DDS Router to communicate a publisher and subscriber running in different DDS Domains.

Run the following command to create the DDS Router yaml configuration file (/config.yml).

echo "version: v2.0
participants:
- name: simple_dds_participant_0
kind: local
domain: 0

- name: simple_dds_participant_1
kind: local
domain: 1" > /config.yml

Then execute the following command to run the Publisher in Domain 0, the Subscriber in Domain 1, and the DDS
Router communicating both Domains.

goToExamples
cd dds/BasicConfigurationExample/bin
tmux new-session \

"ddsrouter --config-path /config.yml" \; \
split-window -h "./BasicConfigurationExample publisher --domain 0 --interval 1000 --

→˓transport udp" \; \
split-window -v "./BasicConfigurationExample subscriber --domain 1 --transport udp"

eProsima DDS Router usage information can be found on the DDS Router documentation.

960 Chapter 6. Structure of the documentation

https://eprosima-shapes-demo.readthedocs.io/en/latest/first_steps/first_steps.html
https://fast-dds-monitor.readthedocs.io/en/latest/rst/user_manual/initialize_monitoring.html
https://eprosima-dds-router.readthedocs.io/en/latest/rst/getting_started/project_overview.html

Fast DDS Documentation, Release 2.8.2

PlotJuggler eProsima Edition

To launch the PlotJuggler eProsima Edition, from a terminal run

plotjuggler

eProsima PlotJuggler eProsima Edition usage information can be located on the PlotJuggler eProsima Edition User
Manual. Information about the release lifecycle can be found here.

6.39 Version 2.8.2 (EOL)

This release includes the following improvements:

1. Add ASAN CI tests for Fast DDS and Discovery Server

2. Mirror master onto both 2.8.x & 2.9.x

3. Doxygen documentation: add deprecation notice to ThroughputControllerDescriptor

4. Several fixes to remove warnings in Ubuntu Jammy (22.04)

5. Improve behavior when HAVE_STRICT_REALTIME is not set

6. Using functors in StatefulWriter.cpp for_matched_readers

7. Fix build on old compilers

8. Avoid creation of DynamicTypes on example

9. Implement a validity check for firstSN

This release includes the following bugfixes:

1. Fix bug in Topic creation with different Type Name

2. Fix tests failing with subprocess aborted error

3. Fix communication with asymmetric ignoreParticipantFlags

4. Added ignore_participant_flags() to Blackbox_FastRTPS PubSubReader.

5. Fix Deadlock in remove_participant (ResourceEvent thread) when compiled WITH_SECURITY

6. Fix failed tests when compiling with statistics enabled

7. Fix Windows StatistisQosTests.cpp linkage and Failed test

8. Fixing deadlock in WLP

9. Fix notification lost

10. Fix StatelessWriter ACK check

11. Fix total_unread_ consistent with reader’s history upon get_first_untaken_info()

12. Fix chain of trust issues

13. Fixed StatisticsSubmessageData unaligned access

14. Fix build error when GTEST_INDIVIDUAL is OFF

15. Correctly handle builtin endpoints mask

16. Added missing mutex to WLP::remove_local_reader

17. Handle SIGTERM in fast discovery server

6.39. Version 2.8.2 (EOL) 961

https://plotjuggler-fastdds-plugins.readthedocs.io/en/latest/
https://plotjuggler-fastdds-plugins.readthedocs.io/en/latest/
https://github.com/eProsima/Fast-DDS/blob/master/RELEASE_SUPPORT.md

Fast DDS Documentation, Release 2.8.2

18. Improve auto gaps in data sharing

19. Replaced SecurityManager temporary ProxyDatas with ProxyPools

20. Fix crash when disable_positive_acks is enable and the remote reader is best-effort

21. Protect from uncaught exception during SHM Segment creation

22. Fix asio dependency

23. Include the right header when building for iOS

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40 Previous versions

6.40.1 Version 2.8.1 (EOL)

This release includes the following bugfixes:

1. Statistics module fixes:

1. Increase statistics DataWriter history.

2. Fix Statistics module CI.

3. Install Statistics IDL file.

4. Fix for building in old compilers.

5. Fix core dumped in DomainParticipant::delete_contained_entities-api.

1. Address sanitizer fixes:

1. Add ASAN CI job and SANITIZE CMake option.

2. Fixes reported by address sanitizer.

1. Synchronization fixes:

1. Fix data races when creating DataWriters.

2. Ensure shared_mutex implementation is consistent throughout supported platforms.

1. Other fixes:

1. Include missing ReadCondition header.

2. Fix selection of output locators.

3. Fix null-dereference on parseXMLEnumDynamicType.

4. Include 2.8.x branch release support.

5. Send GAPs correctly when using separate sending.

6. Fixes for building in old compilers.

7. Fix DataReader::read_next_instance-api and DataReader::take_next_instance-api implementation.

962 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.2 Version 2.8.0 (EOL)

This minor release includes several new features, performance improvements (especially in the case of topics with
many instances), CI improvements (including the ability to run the CI in Android emulators or devices), and several
bug fixes.

Note: Mind that, even though this release is API compatible with previous v2.x versions, it is NOT ABI compatible
with previous versions. This means that applications upgrading Fast DDS to v2.8.0 will require recompilation, though
not source code modification.

Note: It is also advisable to regenerate the type support from the IDL files using [Fast DDS-Gen v2.2.0](https://github.
com/eProsima/Fast-DDS-Gen/releases/tag/v2.2.0). Furthermore, if upgrading to v2.8.0, it is also recommended to
upgrade Fast CDR to [v1.0.25](https://github.com/eProsima/Fast-CDR/releases/tag/v1.0.25)

This release includes the following features:

1. Full Ownership and OwnershipStrength QoS support

2. External locators

3. UDPv6 support for fast-discovery-server tool and ROS_DISCOVERY_SERVER

4. XML configuration support for statistics DataWriters QoS

5. SNI support

6. Propagate PropertyQoS properties when explicitly set

7. Add API to createRTPSWriter with a custom pool

8. Add std::string::compare API to fixed_string

9. Get WAN address API in TCPv4 transport descriptors

10. Adding DomainParticipantFactory::get_shared_instance() API

This release includes the following improvements:

1. Performance improvements:

1. Skip writer_removed processing for unaccounted instances

2. Improve GUID_t operator< performance

2. CI improvements:

1. Add optional parameters to thread-sanitizer job

2. Enable Android testing on device

3. Examples:

1. Update BasicConfigurationExample to allow set up TTL

2. Add Guid info to BasicConfiguration Example cout

6.40. Previous versions 963

https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.2.0
https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.2.0
https://github.com/eProsima/Fast-CDR/releases/tag/v1.0.25

Fast DDS Documentation, Release 2.8.2

4. Internal implementation improvements:

1. Add script to generate idl files

2. Group set_qos_from_attributes free functions into a separate file

3. Update script for generating idl files

4. Set last_heartbeat_count_ private member of WriterProxy as atomic

5. Android Improvements

6. Upgrade Fast CDR submodule

This release includes the following bugfixes:

1. Synchronization fixes:

1. Fix datarace using writer’s locator selectors

2. Add lock guard at changing SHM port listener status members

3. Add atomic variable to prevent datarace in FlowController

4. Disable RTPSParticipantImpl after removing it from RTPSDomain participants list

5. Fixing datarace on listener callbacks

6. Protect access to reader listeners

7. Use thread-safe localtime function in unix distributions

8. Fixed usage of uninitialised ifreq

9. Adding protection to id_counter access

2. Repository fixes:

1. Fix spelling mistake

2. Add python3 dependency to package.xml

3. Other:

1. Fix null dereference on parseXMLBitsetDynamicType

2. Change internal include path of nlohmann/json header file

3. Instance allocation consistency

4. Fix complex member printing for DynamicDataHelper

5. Fix initialization order in mock

6. Upgraded internal type supports

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

964 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.3 Version 2.7.1

This release includes the following features in an ABI compatible way:

1. Checking STATIC EDP XML Files by means of DomainParticipantFactory::check_xml_static_discovery().

2. ReadCondition implementation.

This release includes the following improvements:

1. Thread sanitizer CI.

2. Overload get_unread_count().

3. Improve read/take performance when using topic with a great number of keys.

4. Improve rediscovery on lossy environments.

5. New CMake option USE_THIRDPARTY_SHARED_MUTEX.

6. Notify changes in bulk in RTPS readers.

This release includes the following bugfixes:

1. Fix Fast CDR submodule update to v1.0.24.

2. Fix access to some pointers.

3. Fixed validation on ParameterPropertyList_t.

4. Fixed acknowledgement in DataSharing.

5. Fixed wrong usage of std::remove_if.

6. Suppress OpenSSL 3.0 warnings.

7. Fixed race condition in Logging module.

8. Other minor fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.4 Version 2.7.0

This release includes the following improvements:

1. Support for DDS SampleRejectedStatus API

2. Support for DDS DataWriter methods:

1. DataWriter::write_w_timestamp()

2. DataWriter::register_instance_w_timestamp()

3. DataWriter::unregister_instance_w_timestamp()

4. DataWriter::dispose_w_timestamp()

3. Support for DDS find_topic()

4. Support for GCC 12

5. Upgrade CMake minimum requirement to 3.16.3

6.40. Previous versions 965

Fast DDS Documentation, Release 2.8.2

6. Add Windows DLL support to Dynamic Types API

Some bugfixes are also included:

1. Deadlocks and data races

2. Move deprecated OpenSSL cleanup function to match the right version

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.5 Version 2.6.2

This release includes the following improvements:

1. Support for GCC 12.

2. Overload DataReader::get_unread_count().

3. Improve read/take performance when using topic with a great number of keys.

4. Improve rediscovery on lossy environments.

This release includes the following bugfixes:

1. Fixed several deadlocks and data races.

2. Fixed validation on ParameterPropertyList_t.

3. Fixed wrong usage of std::remove_if.

4. Fixed acknowledgement in DataSharing.

5. Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.6 Version 2.6.1

This release includes the following improvements:

1. Support for writer side content filtering

2. Support hexadecimal values on SQL filter

3. Support for DataWriter::get_key_value()

4. Support for DataReader::lookup_instance()

5. Support for SampleLostStatus on DataReader

6. Improved doxygen documentation

Some bugfixes are also included:

1. Fixed several lock order inversion issues

2. Fixed data race when closing UDP channels

3. Fixed empty partition validation checks

966 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

4. Fixed corner case with reliable writers and samples with a huge number of fragments

5. Other minor fixes and improvements

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.7 Version 2.6.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed. Some API is also being deprecated.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

1. Allow modifying remote server locators at runtime

2. Add statistics physical information to DATA[p] using properties

3. Content filter discovery information RTPS API

4. Endpoint discovery RTPS API

5. on_sample_lost RTPS API

6. Transport layer API extension

7. XML support for Fast DDS CLI

8. New exchange format to reduce bandwidth in Static Discovery

It also includes the following improvements:

1. Support lowercase keywords on SQL filter

2. Separate initialization and enabling of BuiltinProtocols

3. Add disable_positive_acks to Static Discovery XML

4. Several updates in the DDS-PIM API

5. Support for octet vectors on XML parser

6. Update README and roadmap

7. Update Fast-CDR submodule to v1.0.24

8. Add new CMake option APPEND_PROJECT_NAME_TO_INCLUDEDIR

Some bugfixes are also included:

1. Fix MatchedStatus last_*_handle

2. Fix recommended statistics DataReaderQos to enable backwards compatibility

3. Fixes for supporting Python bindings in Windows platforms

4. Fix publishing physical data on statistics topic

6.40. Previous versions 967

Fast DDS Documentation, Release 2.8.2

5. Other minor fixes and improvements

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.8 Version 2.5.2 (EOL)

This release includes the following improvements:

1. Support lowercase keywords and hexadecimal values on SQL filter.

2. Support for GCC 12.

This release includes the following bugfixes:

1. Fix MatchedStatus last_*_handle.

2. Fix recommended statistics DataReaderQos to enable backwards compatibility.

3. Fix deadlocks and data races.

4. Fix empty partition validation checks.

5. Fix corner case with reliable writers and samples with a huge number of fragments.

6. Other minor fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.9 Version 2.5.1 (EOL)

This release includes the following improvements:

1. ContentFilterTopic filtering at the DataReader side.

2. Release lifecycle.

This release includes the following bugfixes:

1. XML parser fixes.

2. Discovery Server fixes.

3. Fix DataSharing sample validation.

4. PKCS#11 support fixes.

5. Test fixes.

6. Doxygen documentation fixes.

7. GAP message fix.

8. Enable memory protection on DataSharing readers.

9. TCP reconnection issues.

10. Fix dynamic network interfaces feature.

11. Several Security module fixes.

968 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

12. STRICT_REALTIME fix.

13. Suppress OpenSSL 3.0 warnings.

14. Move optionparser to thirdparty.

15. Thread-safe access to endpoints collections.

16. MemberDescriptor fully qualified name.

17. Setting QoS fix.

18. Other minor fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.10 Version 2.5.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

1. Support for PKCS#11 format URIs for private keys

2. Added interfaces for content filter APIs

3. Allow new network interfaces to be detected at runtime

4. New API on DataWriter to wait for a specific instance to be acknowledged

5. Added interfaces for concatenation of transports

6. Allow XML profiles to be loaded from a string

7. Allow disabling piggyback heartbeat on XML and DataWriter QoS

8. New basic configuration example

It also includes the following improvements:

1. Working implementation of instance_state and view_state

2. Allow zero-valued keys

3. Made some type aliases public to ease python bindings integration

4. Improved performance by avoiding unnecessary payload copies for samples that are going to be rejected

5. Removed unnecessary headers from Log module public headers

6. Add support for Key annotation in TypeObjectFactory

7. Only export public symbols on non-windows platforms

8. Some documentation improvements

6.40. Previous versions 969

Fast DDS Documentation, Release 2.8.2

Some important bugfixes are also included:

1. Fixed payload pool handling on EDPSimple destructor

2. Fixed null dereference on XML parser

3. Correctly export XTypes related methods on Windows

4. Ensure correct boost singleton destruction order

5. Avoid warning when environment file filename is empty

6. Correctly set GUID of DataWriter and DataReader upon creation

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.11 Version 2.4.2 (EOL)

This release includes the following improvements:

1. Enable memory protection on DataSharing readers

2. Add const overload of DataReader::guid()

3. Set recommended statistics DataReaderQos to PREALLOCATED_WITH_REALLOC

4. Allow fully qualified name on MemberDescriptor

This release includes the following bugfixes:

1. Fix and refactor EDPSimple destructor

2. Fix several build warnings on certain platforms

3. Fix OSS fuzz issues

4. Fix TCP synchronization issues

5. Correct reporting of MatchedStatus last_*_handle

6. Ensure correct boost singleton destruction order

7. Fix inserting minimum CacheChange_t in GAP message

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.12 Version 2.4.1 (EOL)

This release includes the following improvements:

1. Fixed several flaky tests

2. Improved bandwidth usage of GAPs and HEARTBEATs

3. Correctly implement delete_contained_entities

4. Use native inter-process on Windows

5. Improved performance of unregister_instance

6. Improved OSS-fuzz integration

970 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

7. Support for partitions on DataWriterQoS and DataReaderQoS

8. Some documentation improvements

9. Removed unused macro to avoid naming clashes

This release includes the following bugfixes:

1. Avoid bad_node_size exception when cross building

2. Fixed build on old compilers

3. Fixed buffers exhaustion when compiled with statistics

4. Fixed runtime addition of Discovery Servers

5. Fixed dangling sample references with big data

6. Fixed history record issues with persistence

7. Correctly disable DataReader on destruction

8. Fixed alignment issues on XTypes QoS policies serialization

9. Fixed reconnection to Discovery Server

10. Correctly use builtin publisher for statistics DataWriters

11. Fixed various GCC-11 warnings

12. Use only public APIs from foonathan::memory

13. Fixed installation directories for DDS examples

14. Fixed read after free on security code

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.13 Version 2.4.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

This minor release includes the following features:

• Conditions and Wait-sets implementation.

• Flow controllers.

• Configure Discovery Server locators using names.

• Modifying remote servers list at run time.

• Environment file override.

It also includes the following improvements:

6.40. Previous versions 971

Fast DDS Documentation, Release 2.8.2

• Allow setting custom folder for data-sharing files.

• Allow setting persistence guid with static discovery.

• Check for NDEBUG in logInfo.

• Removed old unused CMake code.

• Fixed TLS behavior on TCP example.

• Prepare API for easy integration of python bindings.

• Improved statistics performance.

Some important bugfixes are also included:

• Fixed order of returned samples on topics with keys.

• Allow updating partitions to an empty set.

• Correctly propagate DomainParticipantQos updates.

• Avoid a volatile data-sharing reader to block a writer.

• Correctly give priority to intra-process over data-sharing.

• Fixed reallocation issue on LivelinessManager.

• Fixed deadline issue on volatile DataWriter

• Fixed STRICT_REALTIME silently not active with Unix POSIX systems.

• Fixed build errors with OpenSSL 3.0

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.14 Version 2.3.6 (EOL)

This release includes the following improvements:

1. Improve rediscovery on lossy environments.

2. Upgrade CMake minimum requirement to 3.13.

3. Improve Guid_t operator < performance.

This release includes the following bugfixes:

1. Fixed validation on ParameterPropertyList_t.

2. Add python3 dependency to package.xml.

3. Fix null references and uncaught exceptions on XML parser.

4. Install Statistics IDL file.

5. Fix data races when creating DataWriters.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

972 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.15 Version 2.3.5 (EOL)

This release includes the following improvements:

1. Fixed several flaky tests.

2. Use native inter-process on Windows.

3. Support for partitions on DataWriterQoS and DataReaderQoS.

4. Support for GCC 12.

5. Correctly implement delete_contained_entities.

This release also includes the following bugfixes:

1. Fixed deadline issue on volatile DataWriter.

2. Allow updating partitions to an empty set.

3. Fixed order of returned samples on topics with keys.

4. Fixed issues in LivelinessManager.

5. Correctly give priority to intra-process over data-sharing.

6. Avoid bad_node_size exception when cross-building.

7. Fixed build errors with OpenSSL 3.0.

8. Avoid a volatile data-sharing reader to block a writer.

9. Fixed history record issues with persistence.

10. Correctly disable DataReader on destruction.

11. Fixed various GCC 11 warnings.

12. Fixed payload pool handling on EDPSimple destructor.

13. Fixed read after free on security code.

14. Fixed null dereference on XML parser.

15. Ensure correct boost singleton destruction order.

16. Enable memory protection on DataSharing readers.

17. TCP reconnection issues.

18. MemberDescriptor fully qualified name.

19. Fix recommended statistics DataReaderQos to enable backwards compatibility.

20. Fixed dangling sample references with big data.

21. Fixed deadlocks and data races.

22. Fixed reconnection to Discovery Server.

23. Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40. Previous versions 973

Fast DDS Documentation, Release 2.8.2

6.40.16 Version 2.3.4 (EOL)

This release includes the following improvements:

1. Support of googletest using colcon

2. Network latency reports source participant

3. Update Fast DDS Gen to v2.0.2

This release includes the following bugfixes:

1. Fix mutex lock count on PDPListener

2. Limit SequenceNumberSet number of bits on deserialization

3. Fix segmentation fault on discovery server

4. Fix deadlock with security and timers

5. Fix bug using not protected code in a test

6. Fix deadlock with LivelinessManager

7. Fix interval loop on events

8. Fix run event when was cancelled

9. Validate sequence range on CDRMessage::readSequenceNumberSet

10. Fix subscription throughput data generation

11. Allow examples to build on QNX

12. Fix code on SHM clean

13. Accept Statistics DataWriters in Discovery Server

14. Fix read/take behavior when a future change is found

15. Correctly handle deserialization errors on read_next_sample() / take_next_sample()

16. Fixing SequenceNumberSet_t deserialization

17. Proper history clean up when a reader unmatches a writer

18. Unprotected code loaning samples

19. Fix publication throughput statistic on volatile writers

20. Fix Fast DDS CLI server name

21. Several fixes in examples and tests

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

974 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.17 Version 2.3.3 (EOL)

This release includes the following improvements:

• Added more durability kinds in Static Discovery xml parser

• Explicitly enable/disable data-sharing on performance tests

• Allow fully qualified name in TypeDescriptor

• Added missing DynamicData::get_union_id() method

• Change log severity in DiscoveryServer first announcement

• Several corrections to README

This release includes the following bugfixes:

• Fixed warnings and segfaults on 32-bit platforms

• Fixed UDPv6 behavior

• Fixed persistence guid issue on statistics writers

• Fixed static linking with open SSL

• Fixed statistics header file inclusion

• Fixed build on RedHat systems

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.18 Version 2.3.2 (EOL)

This release includes the following feature:

• Statistics Module

It also includes the following improvements:

• Update Asio submodule and avoid exporting Asio API

• Improve Windows installers

• Ease Google Fuzz integration

• Improve Doxygen documentation on lifetime of pointers created with RTPSDomain

• Update Fast CDR to v1.0.21

This release includes the following bugfixes:

• Add a correct multicast address for UDPv6

• Recover from out-of-sync TCP datagrams

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40. Previous versions 975

Fast DDS Documentation, Release 2.8.2

6.40.19 Version 2.3.1 (EOL)

This release includes several bugfixes and improvements:

• Added Fast DDS Statistics Module implementation

• Fixed alignment issues on generated code calculation of maximum serialized size

• Fixed calculation of data-sharing domain id

• Fixed issues on data-sharing with volatile writers

• Fixed build issues on old compilers

• Fixed some tests when the library is built without security

• Fixed and exposed pull mode on writers

• Fixed handling of –data_sharing on latency test

• Fixed calculation of memory pools sizes on debug builds

• Correctly update memory policy on writers and readers

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.20 Version 2.3.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

• Unique network flows

• Discovery super-client

• Statistics module API

• New flow controller API

• Static discovery configuration from raw string

• Added reception timestamp to SampleInfo

• Exposing get_unread_count on DataReader

It also includes the following improvements:

• Data-sharing delivery internal refactor

• Additional metadata on persistence databases

• Refactor on ReturnCode_t to make it switch friendly

976 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• Performance tests refactored to use DDS-PIM high-level API

• Receive const pointers on delete_xxx methods

• Discovery server improvements

• Made SOVERSION follow major.minor

Some important bugfixes are also included:

• Fixed shared memory usage on QNX

• Fixed reference counting on internal pools

• Fixed singleton destruction order

• Fixed interoperability issues with x-types information

• Fixed recovery of shared memory buffers

• Lifespan support in persistent writers

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.21 Version 2.2.1 (EOL)

This release includes the following improvements:

1. Data-sharing delivery internal refactor.

2. Performance tests refactored to use DDS-PIM high-level API.

3. Discovery server improvements.

This release includes the following bugfixes:

1. Fixed reference counting on internal pools.

2. Fixed singleton destruction order.

3. Fixed default multicast locators.

4. Fixed interoperability issues with x-types information.

5. Fixed Reader history issues.

6. Fixed data races issues.

7. Fixed shared memory issues.

8. Fixed heartbeat and ACK issues.

9. Fixed LivelinessManager issues.

10. Fixed TCP reception synchronization.

11. Fixed build issues on old compilers.

12. Allow modifying Partition QoS in enabled entities.

13. Other minor fixes and improvements.

6.40. Previous versions 977

Fast DDS Documentation, Release 2.8.2

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

6.40.22 Version 2.2.0 (EOL)

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

This release adds the following features:

• Data Sharing delivery (avoids transport encapsulation for localhost communications)

• Complete DDS-PIM high-level API declarations

• Extension APIs allowing zero-copy delivery (both intra-process and inter-process)

• Upgrade to Quality Level 1

It also includes the following improvements:

• Code coverage policy

• Added several tests to increase coverage

• Increased GUID uniqueness

• Allow logInfo messages to be compiled on build types other than debug

Some important bugfixes are also included:

• Fixed timed events manager race condition

• Fixed payload protection issues with SHM transport

• Writers correctly handle infinite resource limits on keyed topics

• Fixed unsafe code on AESGCMGMAC plugin

• Several fixes for IPv6 (whitelists, address parser)

• Fixes on liveliness timing handling

• Fixed warnings building on C++20

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from any older version, regenerating the code is highly recommended.

978 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.23 Version 2.1.2

This release includes the following improvements:

1. Allow fully qualified name in TypeDescriptor.

2. Use native inter-process on Windows.

3. Support for GCC 12.

4. Support of googletest using colcon.

This release also includes the following bugfixes:

1. Fixed recovery of shared memory buffers.

2. Fixed issues in LivelinessManager.

3. Fixed default multicast locators.

4. Fixed TCP issues.

5. Fixed deadlocks and data races.

6. Fixed deadline issue on volatile DataWriter.

7. Avoid bad_node_size exception when cross-building.

8. Fixed order of returned samples on topics with keys.

9. Allow updating partitions to an empty set.

10. Suppress OpenSSL 3.0 warnings.

11. MemberDescriptor fully qualified name.

12. Fixed history record issues with persistence.

13. Fixed reconnection to Discovery Server.

14. Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.24 Version 2.1.1

This release includes the following bugfixes:

• Fixed race condition on security handshake

• Fixed SHM data corruption when using both payload and sub-message protection

• Fixed some interoperability issues

• Fixed race condition on timed-events thread

• Fixed usage of SHM on QNX systems

It also includes the following improvements:

• Increased uniqueness of GUID prefix

• Discovery server improvements

6.40. Previous versions 979

Fast DDS Documentation, Release 2.8.2

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.25 Version 2.1.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks on two of the three
public APIs:

• Methods and attributes have been added on several classes of the DDS-PIM high-level API, so indexes of symbols
on dynamic libraries may have changed.

• Methods and attributes have been added on several classes of the RTPS low-level API, so indexes of symbols on
dynamic libraries may have changed.

• Old Fast-RTPS high-level API remains ABI compatible.

Users of the RTPS low-level API should also be aware of the following API deprecations:

• History::reserve_Cache has been deprecated

– Methods RTPSWriter::new_change or RTPSReader::reserveCache should be used instead

• History::release_Cache has been deprecated

– Methods RTPSWriter::release_change or RTPSReader::releaseCache should be used instead

This release adds the following features:

• Support persistence for large data

• Added support for on_requested_incompatible_qos and on_offered_incompatible_qos

• SKIP_DEFAULT_XML environment variable

• Added FORCE value to THIRDPARTY cmake options

• New log consumer (StdOutErrConsumer)

• Added methods to get qos defined in XML Profile

• Support for persistence on TRANSIENT_LOCAL

It also includes the following improvements:

• Internal refactor for intra-process performance boost

• Allow usage of foonathan/memory library built without debug tool

• Large data support on performance tests

• Reduced flakiness of several tests

Some important bugfixes are also included:

• Fixed behavior of several DDS API methods

• Fixed interoperability issues with RTI connext

• Fixed DLL export of some methods

• Avoid redefinition of compiler defined macros

• Fixed some intra-process related segmentation faults and deadlocks

• Fixed large data payload protection issues on intra-process

980 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

• Fixed C++17 and VS 2019 warnings

• Fixed linker problems on some platforms

• Fixed transient local retransmission after participant drop

• Fixed assertion failure on persistent writers

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.26 Version 2.0.3 (EOL)

It also includes the following improvements:

1. Increased uniqueness of GUID prefix (#1648)

2. Upgrade Fast CDR to v1.0.20 (#1793)

This release includes the following bugfixes:

1. Fixed some race conditions (#1540, #2023)

2. Fixed SHM issues (#1644, #1895, #2266)

3. Fixed some interoperability issues (#1624, #1752, #1849)

4. Fixed Discovery Server 2.0 issues (#1639, #1651, #1761, #1796)

5. Fixed several issues on QNX systems (#1744, #1773, #1776)

6. Fix singleton destruction order (#1758)

7. Fix heartbeat and ACK issues (#1865)

8. Fix issues in LivelinessManager (#1872, #2147)

9. Fix multicast issues (#1966, #1905)

10. Fix TCP reception synchronization (#1981)

11. XTypes standard compliance and fixes (#2006, #2278)

12. Other minor fixes (#1558, #1734, #1814, #1935, #1978, #2121)

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.27 Version 2.0.2 (EOL)

This release includes the following improvements:

• Improve QNX support

• Security improvements

• Fast DDS Quality Declaration (QL 2)

• Large traffic reduction when using Discovery Server (up to 85-90% for large deployments)

• Configuration of Clients of Discovery Server using an environment variable

6.40. Previous versions 981

Fast DDS Documentation, Release 2.8.2

• A CLI for Fast DDS:

– This can be used to launch a discovery server

– Clean SHM directories with one command

• Shared memory transport enabled by default

• Solved edge-case interoperability issue with CycloneDDS

• Add package.xml

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.28 Version 2.0.1 (EOL)

This release includes the following bug fixes:

• Fixed sending GAPs to late joiners

• Fixed asserting liveliness on data reception

• Avoid calling OpenSSL_add_all_algorithms() when not required

Other improvements:

• Fixing warnings

PRs in merge order: #1295, #1300, #1304, #1290, #1307.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL
files using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.29 Version 2.0.0 (EOL)

This release has the following API breaks:

• eClock API, which was deprecated on v1.9.1, has been removed

• eprosima::fastrtps::rtps::RTPSDomain::createParticipant methods now have an additional first argument do-
main_id

• Data member domainId has been removed from eprosima::fastrtps::rtps::RTPSParticipantAttributes and added
to eprosima::fastrtps::ParticipantAttributes

Users should also be aware of the following deprecation announcement:

• All classes inside the namespace eprosima::fastrtps should be considered deprecated. Equivalent functionality
is offered through namespace eprosima::fastdds.

• Namespaces beneath eprosima::fastrtps are not included in this deprecation, i.e. eprosima::fastrtps::rtps can
still be used)

This release adds the following features:

• Added support for register/unregister/dispose instance

982 Chapter 6. Structure of the documentation

https://github.com/eProsima/Fast-DDS/pull/1295
https://github.com/eProsima/Fast-DDS/pull/1300
https://github.com/eProsima/Fast-DDS/pull/1304
https://github.com/eProsima/Fast-DDS/pull/1290
https://github.com/eProsima/Fast-DDS/pull/1307

Fast DDS Documentation, Release 2.8.2

• Added DDS compliant API. This new API exposes all the functionality of the Publisher-Subscriber Fast RTPS
API adhering to the Data Distribution Service (DDS) version 1.4 specification

• Added Security Logging Plugin (contributed by Cannonical Ltd.)

• Bump to FastCDR v1.0.14

It also includes the following bug fixes and improvements:

• Support for OpenSSL 1.1.1d and higher

• Support for latest versions of gtest

• Support for FreeBSD

• Fault tolerance improvements to Shared Memory transport

• Fixed segfault when no network interfaces are detected

• Correctly ignoring length of PID_SENTINEL on parameter list

• Improved traffic on PDP simple mode

• Reduced CPU and memory usage

6.40.30 Version 1.10.1 (EOL)

This release includes the following improvements:

1. Add new CMake option: SHM_TRANSPORT_DEFAULT. Shared Memory (SHM) Transport disabled by de-
fault.

2. Comply with the RTPS standard concerning PID_SENTINEL.

3. Support for OpenSSL 1.1.1d.

This release includes the following bugfixes:

1. Fix crash when there are no network interfaces.

2. Several Shared Memory Transport fixes.

3. Other minor fixes.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.31 Version 1.10.0 (EOL)

This release adds the following features:

• New built-in Shared Memory Transport

• Transport API refactored to support locator iterators

• Added subscriber API to retrieve info of first non-taken sample

• Added parameters to fully avoid dynamic allocations

• History of built-in endpoints can be configured

• Bump to FastCDR v1.0.13.

• Bump to Fast-RTPS-Gen v1.0.4.

• Require CMake 3.5 but use policies from 3.13

6.40. Previous versions 983

https://www.omg.org/spec/DDS/1.4

Fast DDS Documentation, Release 2.8.2

It also includes the following bug fixes and improvements:

• Fixed alignment on parameter lists

• Fixed error sending more than 256 fragments.

• Fix handling of STRICT_REALTIME.

• Fixed submessage_size calculation on last data_frag.

• Solved an issue when recreating a publishing participant with the same GUID.

• Solved an issue where a publisher could block on write for a long time when a new subscriber (late joiner) is
matched, if the publisher had already sent a large number of messages.

• Correctly handling the case where lifespan expires at the same time on several samples.

• Solved some issues regarding liveliness on writers with no readers.

• Correctly removing changes from histories on keyed topics.

• Not reusing cache change when sample does not fit.

• Fixed custom wait_until methods when time is in the past.

• Several data races and ABBA locks fixed.

• Reduced CPU and memory usage.

• Reduced flakiness of liveliness tests.

• Allow for more use cases on performance tests.

Several bug fixes on discovery server:

• Fixed local host communications.

• Correctly trimming server history.

• Fixed backup server operation.

• Fixed timing issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen. If you are upgrading from a version older than 1.10.0, regenerating the code is recommended.

6.40.32 Version 1.9.5 (EOL)

This release includes the following improvements:

1. Propagate serialization error when reading samples from Subscriber History.

2. Improvements in test suite.

3. Improvements to reduce memory consumption.

4. Update CMake (3.5) using newer policies.

5. Improve PDP StatefulWriter announcement.

6. Performance improvements.

7. Message receiver improvements.

8. QoS Policies improvements.

This release includes the following bugfixes:

1. Fix compiler warnings in Windows when building the test suite.

984 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

2. Fix several data races.

3. Fix History issues.

4. Fix errors when sending data fragments.

5. Fix strict real-time behavior.

6. Fix in Discovery Server.

7. Fix CMake option.

8. Fix interoperability issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.33 Version 1.9.4 (EOL)

This release adds the following features:

• Intra-process delivery mechanism is now active by default.

• Synchronous writers are now allowed to send fragments.

• New memory mode DYNAMIC_RESERVE on history pool.

• Performance tests can now be run on Windows and Mac.

• XML profiles for requester and replier.

It also includes the following bug fixes and improvements:

• Bump to FastCDR v1.0.12.

• Bump to Fast-RTPS-Gen v1.0.3.

• Fixed deadlock between PDP and StatefulReader.

• Improved CPU usage and allocations on timed events management.

• Performance improvements on reliable writers.

• Fixing bugs when Intra-process delivery is activated.

• Reducing dynamic allocations and memory footprint.

• Improvements and fixes on performance tests.

• Other minor bug fixes and improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40. Previous versions 985

Fast DDS Documentation, Release 2.8.2

6.40.34 Version 1.9.3 (EOL)

This release adds the following features:

• Participant discovery filtering flags.

• Intra-process delivery mechanism opt-in.

It also includes the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.2.

• Bring back compatibility with XTypes 1.1 on PID_TYPE_CONSISTENCY.

• Ensure correct alignment when reading a parameter list.

• Add CHECK_DOCUMENTATION cmake option.

• EntityId_t and GuidPrefix_t have now their own header files.

• Fix potential race conditions and deadlocks.

• Improve the case where check_acked_status is called between reader matching process and its acknack reception.

• RTPSMessageGroup_t instances now use the thread-local storage.

• FragmentedChangePitStop manager removed.

• Remove the data fragments vector on CacheChange_t.

• Only call find_package for TinyXML2 if third-party options are off

• Allow XMLProfileManager methods to not show error log messages if a profile is not found.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.35 Version 1.9.2 (EOL)

This release includes the following feature:

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

It also adds the following bug fixes and improvements:

• Bump to Fast-RTPS-Gen v1.0.1.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

986 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.36 Version 1.9.1 (EOL)

This release includes the following features:

• Fast-RTPS-Gen is now an independent project.

• Header eClock.h is now marked as deprecated.

It also adds the following bug fixes and improvements:

• Bump to FastCDR v1.0.11.

• Installation from sources documentation fixed.

• Fixed assertion on WriterProxy.

• Fixed potential fall through while parsing Parameters.

• Removed deprecated guards causing compilation errors in some 32 bits platforms.

• addTOCDRMessage method is now exported in the DLL, fixing issues related with Parameters’ constructors.

• Improve windows performance by avoiding usage of _Cnd_timedwait method.

• Fixed reported communication issues by sending multicast through localhost too.

• Fixed potential race conditions and deadlocks.

• Eliminating use of acceptMsgDirectTo.

• Discovery Server framework reconnect/recreate strategy.

• Removed unused folders.

• Restored subscriber API.

• SequenceNumber_t improvements.

• Added STRICT_REALTIME cmake option.

• SubscriberHistory improvements.

• Assertion of participant liveliness by receiving RTPS messages from the remote participant.

• Fixed error while setting next deadline event in create_new_change_with_params.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.37 Version 1.9.0 (EOL)

This release includes the following features:

• Partial implementation of allocation QoS.

• Implementation of Discovery Server.

• Implementation of non-blocking calls.

It also adds the following bug fixes and improvements:

• Added sliding window to BitmapRange.

• Modified default behavior for unknown writers.

• A Flush() method was added to the logger to ensure all info is logged.

• A test for loading Duration_t from XML was added.

6.40. Previous versions 987

Fast DDS Documentation, Release 2.8.2

• Optimized WLP when removing local writers.

• Some liveliness tests were updated so that they are more stable on Windows.

• A fix was added to CMakeLists.txt for installing static libraries.

• A fix was added to performance tests so that they can run on the RT kernel.

• Fix for race condition on built-in protocols creation.

• Fix for setting nullptr in a fixed_string.

• Fix for v1.8.1 not building with -DBUILD_JAVA=ON.

• Fix for GAP messages not being sent in some cases.

• Fix for coverity report.

• Several memory issues fixes.

• fastrtps.repos file was updated.

• Documentation for building with Colcon was added.

• Change CMake configuration directory if INSTALLER_PLATFORM is set.

• IDL sub-module updated to current version.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.38 Version 1.8.5 (EOL)

This release includes the following bugfixes:

1. Fix Subscriber History to correctly notify late-joiners in case of KEEP_LAST, RELIABLE, and TRAN-
SIENT_LOCAL.

2. Fix Writer History behavior when there are no matched readers.

3. Fix heartbeat and ACK issues.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.39 Version 1.8.4 (EOL)

This release adds the following feature:

• XML profiles for requester and replier

It also has the following important bug fixes:

• Solved an issue when recreating a publishing participant with the same GUID (either on purpose or by chance)

• Solved an issue where a publisher could block on write for a long time when, after a large number of samples
have been sent, a new subscriber is matched.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen

988 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.40 Version 1.8.3 (EOL)

This release adds the following bug fixes and improvements:

• Fix serialization of TypeConsistencyEnforcementQosPolicy.

• Bump to Fast-RTPS-Gen v1.0.2.

• Bump to IDL-Parser v1.0.1.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen

6.40.41 Version 1.8.2 (EOL)

This release includes the following features:

• Modified unknown writers default behavior.

• Multiple initial PDP announcements.

• Flag to avoid builtin multicast.

• STRICT_REALTIME compilation flag.

It also adds the following bug fixes and improvements:

• Fix for setting nullptr in a fixed string.

• Fix for not sending GAP in several cases.

• Solve Coverity report issues.

• Fix issue of fastddsgen failing to open IDL.g4 file.

• Fix unnamed lock in AESGCMGMAC_KeyFactory.cpp.

• Improve XMLProfiles example.

• Multicast is now sent through localhost too.

• BitmapRange now implements sliding window.

• Improve SequenceNumber_t struct.

• Participant’s liveliness is now asserted when receiving any RTPS message.

• Fix leak on RemoteParticipantLeaseDuration.

• Modified default values to improve behavior in Wi-Fi scenarios.

• SubscriberHistory improvements.

• Removed use of acceptMsgDirectTo.

• WLP improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen

6.40. Previous versions 989

Fast DDS Documentation, Release 2.8.2

6.40.42 Version 1.8.1 (EOL)

This release includes the following features:

• Implementation of LivelinessQosPolicy QoS.

It also adds the following bug fixes and improvements:

• Fix for get_change on history, which was causing issues during discovery.

• Fix for announcement of participant state, which was sending ParticipantBuiltinData twice.

• Fix for closing multicast UDP channel.

• Fix for race conditions in SubscriberHistory, UDPTransportInterface and StatefulReader.

• Fix for lroundl error on Windows in Time_t.

• CDR & IDL submodules update.

• Use of java 1.8 or greater for fastddsgen.jar generation.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.43 Version 1.8.0 (EOL)

This release included the following features:

• Implementation of IDL 4.2.

• Implementation of DeadlineQosPolicy QoS.

• Implementation of LifespanQosPolicy QoS.

• Implementation of DisablePositiveACKsQosPolicy QoS.

• Secure sockets on TCP transport (TLS over TCP).

It also adds the following improvements and bug fixes:

• Real-time improvements: non-blocking write calls for best-effort writers, addition of fixed size strings, fixed size
bitmaps, resource limited vectors, etc.

• Duration parameters now use nanoseconds.

• Configuration of participant mutation tries.

• Automatic calculation of the port when a value of 0 is received on the endpoint custom locators.

• Non-local addresses are now filtered from whitelists.

• Optimization of check for acked status for stateful writers.

• Linked libs are now not exposed when the target is a shared lib.

• Limitation on the domain ID has been added.

• UDP non-blocking send is now optional and configurable via XML.

• Fix for non-deterministic tests.

• Fix for ReaderProxy history being reloaded incorrectly in some cases.

• Fix for RTPS domain hostid being potentially not unique.

• Fix for participants with different lease expiration times failing to reconnect.

990 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

Known issues

• When using TPC transport, sometimes callbacks are not invoked when removing a participant due to a bug in
ASIO.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.44 Version 1.7.3 (EOL)

This release includes the following bugfixes:

1. Remove inline specifier from public method not defined in header file.

2. Fix FastRTPS-Gen version generation

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.45 Version 1.7.2 (EOL)

This release fixes an important bug:

• Allocation limits on subscribers with a KEEP_LAST QoS was taken from resource limits configuration and
didn’t take history depth into account.

It also has the following improvements:

• Vendor FindThreads.cmake from CMake 3.14 release candidate to help with sanitizers.

• Fixed format of gradle file.

Some other minor bugs and performance improvements.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40.46 Version 1.7.1 (EOL)

This release included the following features:

• LogFileConsumer added to the logging system.

• Handle FASTRTPS_DEFAULT_PROFILES_FILE environment variable indicating the default profiles XML
file.

• XML parser made more restrictive and with better error messages.

It also fixes some important bugs: * Fixed discovery issues related to the selected network interfaces on Windows.
* Improved discovery times. * Workaround ASIO issue with multicast on QNX systems. * Improved TCP transport
performance. * Improved handling of key-only data submessages.

Some other minor bugs and performance improvements.

KNOWN ISSUES

• Allocation limits on subscribers with a KEEP_LAST QoS is taken from resource limits configuration and doesn’t
take history depth into account.

Note: If you are upgrading from a version older than 1.7.0, it is required to regenerate generated source from IDL files
using fastddsgen.

6.40. Previous versions 991

Fast DDS Documentation, Release 2.8.2

6.40.47 Version 1.7.0 (EOL)

This release included the following features:

• TCP Transport.

• Dynamic Topic Types.

• Security 1.1 compliance.

Also bug fixing, allocation and performance improvements.

Note: If you are upgrading from an older version, it is required to regenerate generated source from IDL files using
fastddsgen.

6.40.48 Version 1.6.0 (EOL)

This release included the following features:

• Persistence.

• Security access control plugin API and builtin Access control plugin: DDS:Access:Permissions plugin.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

6.40.49 Version 1.5.0 (EOL)

This release included the following features:

• Configuration of Fast RTPS entities through XML profiles.

• Added heartbeat piggyback support.

Also bug fixing.

Note: If you are upgrading from an older version than 1.4.0, it is advisable to regenerate generated source from IDL
files using fastddsgen.

6.40.50 Version 1.4.0 (EOL)

This release included the following:

• Added secure communications.

• Removed all Boost dependencies. Fast RTPS is not using Boost libraries anymore.

• Added compatibility with Android.

• Bug fixing.

Note: After upgrading to this release, it is advisable to regenerate generated source from IDL files using fastddsgen.

992 Chapter 6. Structure of the documentation

Fast DDS Documentation, Release 2.8.2

6.40.51 Version 1.3.1 (EOL)

This release included the following:

• New examples that illustrate how to tweak Fast RTPS towards different applications.

• Improved support for embedded Linux.

• Bug fixing.

6.40.52 Version 1.3.0 (EOL)

This release introduced several new features:

• Unbound Arrays support: Now you can send variable size data arrays.

• Extended Fragmentation Configuration: It allows you to setup a Message/Fragment max size different to the
standard 64Kb limit.

• Improved logging system: Get even more introspection about the status of your communications system.

• Static Discovery: Use XML to map your network and keep discovery traffic to a minimum.

• Stability and performance improvements: A new iteration of our built-in performance tests will make bench-
marking easier for you.

• ReadTheDocs Support: We improved our documentation format and now our installation and user manuals are
available online on ReadTheDocs.

6.40.53 Version 1.2.0 (EOL)

This release introduced two important new features:

• Flow Controllers: A mechanism to control how you use the available bandwidth avoiding data bursts. The
controllers allow you to specify the maximum amount of data to be sent in a specific period of time. This is very
useful when you are sending large messages requiring fragmentation.

• Discovery Listeners: Now the user can subscribe to the discovery information to know the entities present in the
network (Topics, Publishers & Subscribers) dynamically without prior knowledge of the system. This enables
the creation of generic tools to inspect your system.

But there is more:

• Full ROS 2 Support: Fast RTPS is used by ROS 2, the upcoming release of the Robot Operating System (ROS).

• Better documentation: More content and examples.

• Improved performance.

• Bug fixing.

6.40. Previous versions 993

Fast DDS Documentation, Release 2.8.2

994 Chapter 6. Structure of the documentation

INDEX

A
absolute_generation_rank (fastdds.SampleInfo

property), 910
access_scope (fastdds.PresentationQosPolicy prop-

erty), 814
add_domain_id() (fastdds.DataSharingQosPolicy

method), 803
alive_count (fastdds.LivelinessChangedStatus prop-

erty), 824
alive_count_change (fastdds.LivelinessChangedStatus

property), 824
ALIVE_INSTANCE_STATE (class in fastdds), 909
all() (fastdds.StatusMask static method), 827
allocated_samples (fastdds.ResourceLimitsQosPolicy

property), 818
allocation() (fastdds.DomainParticipantQos method),

852
ALLOW_TYPE_COERCION (class in fastdds), 822
announcement_period (fastdds.LivelinessQosPolicy

property), 811
assert_liveliness() (fastdds.DataWriter method),

855
assert_liveliness() (fastdds.DomainParticipant

method), 831
assigned() (fastdds.TypeInformation method), 931
ASYNCHRONOUS_PUBLISH_MODE (class in fastdds), 815
AUTO (class in fastdds), 805
auto_fill_type_information() (fast-

dds.TopicDataType method), 920
auto_fill_type_object() (fastdds.TopicDataType

method), 920
autodispose_unregistered_instances (fast-

dds.WriterDataLifecycleQosPolicy property),
823

autoenable_created_entities (fast-
dds.EntityFactoryQosPolicy property), 808

automatic() (fastdds.DataSharingQosPolicy method),
803

AUTOMATIC_LIVELINESS_QOS (class in fastdds), 811
autopurge_disposed_samples_delay (fast-

dds.ReaderDataLifecycleQosPolicy property),
817

autopurge_no_writer_samples_delay (fast-
dds.ReaderDataLifecycleQosPolicy property),
817

B
BaseStatus (class in fastdds), 823
begin() (fastdds.PartitionQosPolicy method), 813
begin_access() (fastdds.Subscriber method), 911
begin_coherent_changes() (fastdds.Publisher

method), 874
BEST_EFFORT_RELIABILITY_QOS (class in fastdds), 818
BIT (C macro), 727
BIT0 (C macro), 726
BIT1 (C macro), 726
BIT2 (C macro), 726
BIT3 (C macro), 726
BIT4 (C macro), 726
BIT5 (C macro), 726
BIT6 (C macro), 726
BIT7 (C macro), 726
buffer() (fastdds.LoanableCollection method), 829
builtin (fastdds.WireProtocolConfigQos property), 822
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_READER

(C macro), 744
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_DATA_WRITER

(C macro), 744
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_READER

(C macro), 744
BUILTIN_ENDPOINT_PARTICIPANT_MESSAGE_SECURE_DATA_WRITER

(C macro), 744
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_READER

(C macro), 744
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REPLY_DATA_WRITER

(C macro), 744
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_READER

(C macro), 744
BUILTIN_ENDPOINT_TYPELOOKUP_SERVICE_REQUEST_DATA_WRITER

(C macro), 744
BUILTIN_PARTICIPANT_DATA_MAX_SIZE (C macro),

744
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

(class in fastdds), 806

995

Fast DDS Documentation, Release 2.8.2

BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
(class in fastdds), 806

C
C_B_BLUE (C macro), 792
C_B_CYAN (C macro), 792
C_B_GREEN (C macro), 792
C_B_MAGENTA (C macro), 792
C_B_RED (C macro), 792
C_B_WHITE (C macro), 793
C_B_YELLOW (C macro), 793
C_BLUE (C macro), 792
C_BRIGHT (C macro), 792
C_CYAN (C macro), 793
C_DEF (C macro), 793
C_GREEN (C macro), 793
C_MAGENTA (C macro), 793
C_RED (C macro), 793
C_WHITE (C macro), 793
C_YELLOW (C macro), 794
CDR_BE (C macro), 718
CDR_LE (C macro), 718
check_xml_static_discovery() (fast-

dds.DomainParticipantFactory method),
845

clear() (fastdds.DataRepresentationQosPolicy
method), 802

clear() (fastdds.DataSharingQosPolicy method), 803
clear() (fastdds.DeadlineQosPolicy method), 805
clear() (fastdds.DestinationOrderQosPolicy method),

805
clear() (fastdds.DisablePositiveACKsQosPolicy

method), 806
clear() (fastdds.DurabilityQosPolicy method), 806
clear() (fastdds.DurabilityServiceQosPolicy method),

807
clear() (fastdds.EntityFactoryQosPolicy method), 808
clear() (fastdds.GenericDataQosPolicy method), 808
clear() (fastdds.HistoryQosPolicy method), 809
clear() (fastdds.LatencyBudgetQosPolicy method), 810
clear() (fastdds.LifespanQosPolicy method), 810
clear() (fastdds.LivelinessQosPolicy method), 811
clear() (fastdds.OwnershipQosPolicy method), 811
clear() (fastdds.OwnershipStrengthQosPolicy method),

812
clear() (fastdds.PartitionQosPolicy method), 813
clear() (fastdds.PresentationQosPolicy method), 814
clear() (fastdds.PublishModeQosPolicy method), 815
clear() (fastdds.QosPolicy method), 815
clear() (fastdds.ReaderDataLifecycleQosPolicy

method), 817
clear() (fastdds.ReaderResourceLimitsQos method),

909
clear() (fastdds.ReliabilityQosPolicy method), 817

clear() (fastdds.ResourceLimitsQosPolicy method), 818
clear() (fastdds.RTPSReliableReaderQos method), 909
clear() (fastdds.TimeBasedFilterQosPolicy method),

819
clear() (fastdds.TransportConfigQos method), 820
clear() (fastdds.TransportPriorityQosPolicy method),

820
clear() (fastdds.TypeConsistencyEnforcementQosPolicy

method), 821
clear() (fastdds.TypeConsistencyQos method), 918
clear() (fastdds.TypeIdV1 method), 931
clear() (fastdds.TypeInformation method), 931
clear() (fastdds.TypeObjectV1 method), 932
clear() (fastdds.WireProtocolConfigQos method), 822
clear_history() (fastdds.DataWriter method), 856
close() (fastdds.Entity method), 801
coherent_access (fastdds.PresentationQosPolicy prop-

erty), 814
construct_sample() (fastdds.TopicDataType method),

920
contains_entity() (fastdds.DomainParticipant

method), 831
copy_from_topic_qos() (fastdds.Publisher method),

874
copy_from_topic_qos() (fastdds.Subscriber static

method), 911
count (fastdds.QosPolicyCount property), 826
create_contentfilteredtopic() (fast-

dds.DomainParticipant method), 831
create_data() (fastdds.TypeSupport method), 932
create_datareader() (fastdds.Subscriber method),

911
create_datareader_with_profile() (fast-

dds.Subscriber method), 911
create_datawriter() (fastdds.Publisher method), 875
create_datawriter_with_profile() (fast-

dds.Publisher method), 875
create_multitopic() (fastdds.DomainParticipant

method), 832
create_participant() (fast-

dds.DomainParticipantFactory method),
845

create_participant_with_profile() (fast-
dds.DomainParticipantFactory method),
846

create_publisher() (fastdds.DomainParticipant
method), 833

create_publisher_with_profile() (fast-
dds.DomainParticipant method), 833

create_querycondition() (fastdds.DataReader
method), 882

create_readcondition() (fastdds.DataReader
method), 882

create_subscriber() (fastdds.DomainParticipant

996 Index

Fast DDS Documentation, Release 2.8.2

method), 833
create_subscriber_with_profile() (fast-

dds.DomainParticipant method), 833
create_topic() (fastdds.DomainParticipant method),

833
create_topic_with_profile() (fast-

dds.DomainParticipant method), 834
createData() (fastdds.TopicDataType method), 921
current_count (fastdds.MatchedStatus property), 825
current_count_change (fastdds.MatchedStatus prop-

erty), 825

D
data_available() (fastdds.StatusMask static method),

827
data_on_readers() (fastdds.StatusMask static

method), 827
data_sharing() (fastdds.DataReaderQos method), 898
data_sharing() (fastdds.DataWriterQos method), 864
data_vec() (fastdds.GenericDataQosPolicy method),

808
DataReader (class in fastdds), 882
DATAREADER_QOS_DEFAULT (class in fastdds), 909
DataReaderListener (class in fastdds), 897
DataReaderQos (class in fastdds), 898
DATAREPRESENTATION_QOS_POLICY_ID (class in fast-

dds), 816
DataRepresentationQosPolicy (class in fastdds), 802
DataSharingQosPolicy (class in fastdds), 803
dataVec() (fastdds.GenericDataQosPolicy method),

808
DataWriter (class in fastdds), 855
DATAWRITER_QOS_DEFAULT (class in fastdds), 874
DataWriterListener (class in fastdds), 863
DataWriterQos (class in fastdds), 864
deadline() (fastdds.DataReaderQos method), 899
deadline() (fastdds.DataWriterQos method), 864
deadline() (fastdds.TopicQos method), 924
DEADLINE_QOS_POLICY_ID (class in fastdds), 816
DeadlineMissedStatus (class in fastdds), 824
DeadlineQosPolicy (class in fastdds), 805
default_external_unicast_locators (fast-

dds.WireProtocolConfigQos property), 822
default_multicast_locator_list (fast-

dds.WireProtocolConfigQos property), 822
default_unicast_locator_list (fast-

dds.WireProtocolConfigQos property), 822
delete_contained_entities() (fastdds.DataReader

method), 882
delete_contained_entities() (fast-

dds.DomainParticipant method), 834
delete_contained_entities() (fastdds.Publisher

method), 875

delete_contained_entities() (fastdds.Subscriber
method), 912

delete_contentfilteredtopic() (fast-
dds.DomainParticipant method), 834

delete_data() (fastdds.TypeSupport method), 932
delete_datareader() (fastdds.Subscriber method),

912
delete_datawriter() (fastdds.Publisher method), 875
delete_multitopic() (fastdds.DomainParticipant

method), 834
delete_participant() (fast-

dds.DomainParticipantFactory method),
847

delete_publisher() (fastdds.DomainParticipant
method), 835

delete_readcondition() (fastdds.DataReader
method), 883

delete_subscriber() (fastdds.DomainParticipant
method), 835

delete_topic() (fastdds.DomainParticipant method),
835

deleteData() (fastdds.TopicDataType method), 921
depth (fastdds.HistoryQosPolicy property), 809
deserialize() (fastdds.TopicDataType method), 921
deserialize() (fastdds.TypeSupport method), 932
destination_order() (fastdds.DataReaderQos

method), 899
destination_order() (fastdds.DataWriterQos

method), 865
destination_order() (fastdds.TopicQos method), 924
DESTINATIONORDER_QOS_POLICY_ID (class in fastdds),

816
DestinationOrderQosPolicy (class in fastdds), 805
disable_heartbeat_piggyback (fast-

dds.RTPSReliableWriterQos property), 881
disable_positive_ACKs (fast-

dds.RTPSReliableReaderQos property),
909

disable_positive_acks (fast-
dds.RTPSReliableWriterQos property), 881

DISABLEPOSITIVEACKS_QOS_POLICY_ID (class in fast-
dds), 816

DisablePositiveACKsQosPolicy (class in fastdds),
806

DISALLOW_TYPE_COERCION (class in fastdds), 822
DISC_BUILTIN_ENDPOINT_PARTICIPANT_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_PROXY_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_ANNOUNCER

Index 997

Fast DDS Documentation, Release 2.8.2

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_SECURE_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_PARTICIPANT_STATE_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_PUBLICATION_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_PUBLICATION_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_PUBLICATION_SECURE_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_DETECTOR

(C macro), 744
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_ANNOUNCER

(C macro), 744
DISC_BUILTIN_ENDPOINT_SUBSCRIPTION_SECURE_DETECTOR

(C macro), 744
dispose() (fastdds.DataWriter method), 856
dispose_w_timestamp() (fastdds.DataWriter method),

856
disposed_generation_count (fastdds.SampleInfo

property), 910
domain_ids() (fastdds.DataSharingQosPolicy method),

803
DomainEntity (class in fastdds), 802
DomainParticipant (class in fastdds), 831
DomainParticipantFactory (class in fastdds), 845
DomainParticipantFactoryQos (class in fastdds), 850
DomainParticipantListener (class in fastdds), 850
DomainParticipantQos (class in fastdds), 852
durability() (fastdds.DataReaderQos method), 900
durability() (fastdds.DataWriterQos method), 865
durability() (fastdds.TopicQos method), 925
DURABILITY_QOS_POLICY_ID (class in fastdds), 816
durability_service() (fastdds.DataReaderQos

method), 900
durability_service() (fastdds.DataWriterQos

method), 866
durability_service() (fastdds.TopicQos method),

925
durabilityKind() (fastdds.DurabilityQosPolicy

method), 806
DurabilityQosPolicy (class in fastdds), 806
DURABILITYSERVICE_QOS_POLICY_ID (class in fast-

dds), 816
DurabilityServiceQosPolicy (class in fastdds), 807
duration (fastdds.DisablePositiveACKsQosPolicy prop-

erty), 806

duration (fastdds.LatencyBudgetQosPolicy property),
810

duration (fastdds.LifespanQosPolicy property), 810

E
empty() (fastdds.PartitionQosPolicy method), 813
empty() (fastdds.TypeSupport method), 932
enable() (fastdds.DataReader method), 883
enable() (fastdds.DataWriter method), 856
enable() (fastdds.DomainParticipant method), 835
enable() (fastdds.Entity method), 801
enable() (fastdds.Publisher method), 875
enable() (fastdds.Subscriber method), 912
enabled (fastdds.DisablePositiveACKsQosPolicy prop-

erty), 806
end() (fastdds.PartitionQosPolicy method), 813
end_access() (fastdds.Subscriber method), 912
end_coherent_changes() (fastdds.Publisher method),

876
endpoint() (fastdds.DataReaderQos method), 901
endpoint() (fastdds.DataWriterQos method), 866
Entity (class in fastdds), 801
entity_factory() (fast-

dds.DomainParticipantFactoryQos method),
850

entity_factory() (fastdds.DomainParticipantQos
method), 852

entity_factory() (fastdds.PublisherQos method), 879
entity_factory() (fastdds.SubscriberQos method),

916
entity_id (fastdds.RTPSEndpointQos property), 819
ENTITYFACTORY_QOS_POLICY_ID (class in fastdds), 816
EntityFactoryQosPolicy (class in fastdds), 808
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_READER

(C macro), 692
ENTITYID_P2P_BUILTIN_PARTICIPANT_MESSAGE_SECURE_WRITER

(C macro), 692
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_READER

(C macro), 691
ENTITYID_P2P_BUILTIN_PARTICIPANT_STATELESS_WRITER

(C macro), 691
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_READER

(C macro), 692
ENTITYID_P2P_BUILTIN_PARTICIPANT_VOLATILE_MESSAGE_SECURE_WRITER

(C macro), 692
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_READER

(C macro), 691
ENTITYID_P2P_BUILTIN_RTPSParticipant_MESSAGE_WRITER

(C macro), 691
ENTITYID_RTPSParticipant (C macro), 691
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_READER (C

macro), 691
ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_READER

(C macro), 691

998 Index

Fast DDS Documentation, Release 2.8.2

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_SECURE_WRITER
(C macro), 691

ENTITYID_SEDP_BUILTIN_PUBLICATIONS_WRITER (C
macro), 691

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_READER
(C macro), 691

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_READER
(C macro), 692

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_SECURE_WRITER
(C macro), 691

ENTITYID_SEDP_BUILTIN_SUBSCRIPTIONS_WRITER
(C macro), 691

ENTITYID_SEDP_BUILTIN_TOPIC_READER (C macro),
691

ENTITYID_SEDP_BUILTIN_TOPIC_WRITER (C macro),
691

ENTITYID_SPDP_BUILTIN_RTPSParticipant_READER
(C macro), 691

ENTITYID_SPDP_BUILTIN_RTPSParticipant_WRITER
(C macro), 691

ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_READER
(C macro), 692

ENTITYID_SPDP_RELIABLE_BUILTIN_PARTICIPANT_SECURE_WRITER
(C macro), 692

ENTITYID_TL_SVC_REPLY_READER (C macro), 691
ENTITYID_TL_SVC_REPLY_WRITER (C macro), 691
ENTITYID_TL_SVC_REQ_READER (C macro), 691
ENTITYID_TL_SVC_REQ_WRITER (C macro), 691
ENTITYID_UNKNOWN (C macro), 691
eprosima::fastdds::dds::BaseStatus (C++

struct), 561
eprosima::fastdds::dds::BaseStatus::total_count

(C++ member), 562
eprosima::fastdds::dds::BaseStatus::total_count_change

(C++ member), 562
eprosima::fastdds::dds::Condition (C++ class),

569
eprosima::fastdds::dds::Condition::get_trigger_value

(C++ function), 570
eprosima::fastdds::dds::ConditionSeq (C++

type), 570
eprosima::fastdds::dds::ContentFilteredTopic

(C++ class), 659
eprosima::fastdds::dds::ContentFilteredTopic::get_expression_parameters

(C++ function), 659
eprosima::fastdds::dds::ContentFilteredTopic::get_filter_expression

(C++ function), 659
eprosima::fastdds::dds::ContentFilteredTopic::get_participant

(C++ function), 660
eprosima::fastdds::dds::ContentFilteredTopic::get_related_topic

(C++ function), 659
eprosima::fastdds::dds::ContentFilteredTopic::set_expression_parameters

(C++ function), 659
eprosima::fastdds::dds::ContentFilteredTopic::set_filter_expression

(C++ function), 659
eprosima::fastdds::dds::DataReader (C++

class), 618
eprosima::fastdds::dds::DataReader::~DataReader

(C++ function), 629
eprosima::fastdds::dds::DataReader::create_querycondition

(C++ function), 633
eprosima::fastdds::dds::DataReader::create_readcondition

(C++ function), 633
eprosima::fastdds::dds::DataReader::delete_contained_entities

(C++ function), 634
eprosima::fastdds::dds::DataReader::delete_readcondition

(C++ function), 633
eprosima::fastdds::dds::DataReader::enable

(C++ function), 629
eprosima::fastdds::dds::DataReader::get_first_untaken_info

(C++ function), 630
eprosima::fastdds::dds::DataReader::get_instance_handle

(C++ function), 631
eprosima::fastdds::dds::DataReader::get_key_value

(C++ function), 630
eprosima::fastdds::dds::DataReader::get_listener

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_listening_locators

(C++ function), 634
eprosima::fastdds::dds::DataReader::get_liveliness_changed_status

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_matched_publication_data

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_matched_publications

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_qos

(C++ function), 631
eprosima::fastdds::dds::DataReader::get_requested_deadline_missed_status

(C++ function), 631
eprosima::fastdds::dds::DataReader::get_requested_incompatible_qos_status

(C++ function), 631
eprosima::fastdds::dds::DataReader::get_sample_lost_status

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_sample_rejected_status

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_subscriber

(C++ function), 633
eprosima::fastdds::dds::DataReader::get_subscription_matched_status

(C++ function), 632
eprosima::fastdds::dds::DataReader::get_topicdescription

(C++ function), 631
eprosima::fastdds::dds::DataReader::get_unread_count

(C++ function), 630
eprosima::fastdds::dds::DataReader::guid

(C++ function), 631
eprosima::fastdds::dds::DataReader::is_sample_valid

(C++ function), 634
eprosima::fastdds::dds::DataReader::lookup_instance

Index 999

Fast DDS Documentation, Release 2.8.2

(C++ function), 630
eprosima::fastdds::dds::DataReader::read

(C++ function), 618
eprosima::fastdds::dds::DataReader::read_instance

(C++ function), 622
eprosima::fastdds::dds::DataReader::read_next_instance

(C++ function), 623
eprosima::fastdds::dds::DataReader::read_next_instance_w_condition

(C++ function), 624
eprosima::fastdds::dds::DataReader::read_next_sample

(C++ function), 624
eprosima::fastdds::dds::DataReader::read_w_condition

(C++ function), 621
eprosima::fastdds::dds::DataReader::return_loan

(C++ function), 629
eprosima::fastdds::dds::DataReader::set_listener

(C++ function), 631, 632
eprosima::fastdds::dds::DataReader::set_qos

(C++ function), 631
eprosima::fastdds::dds::DataReader::take

(C++ function), 625
eprosima::fastdds::dds::DataReader::take_instance

(C++ function), 626
eprosima::fastdds::dds::DataReader::take_next_instance

(C++ function), 627
eprosima::fastdds::dds::DataReader::take_next_instance_w_condition

(C++ function), 628
eprosima::fastdds::dds::DataReader::take_next_sample

(C++ function), 628
eprosima::fastdds::dds::DataReader::take_w_condition

(C++ function), 626
eprosima::fastdds::dds::DataReader::type

(C++ function), 631
eprosima::fastdds::dds::DataReader::wait_for_historical_data

(C++ function), 629
eprosima::fastdds::dds::DataReader::wait_for_unread_message

(C++ function), 629
eprosima::fastdds::dds::DATAREADER_QOS_DEFAULT

(C++ member), 640
eprosima::fastdds::dds::DataReaderListener

(C++ class), 634
eprosima::fastdds::dds::DataReaderListener::~DataReaderListener

(C++ function), 634
eprosima::fastdds::dds::DataReaderListener::DataReaderListener

(C++ function), 634
eprosima::fastdds::dds::DataReaderListener::on_data_available

(C++ function), 634
eprosima::fastdds::dds::DataReaderListener::on_liveliness_changed

(C++ function), 635
eprosima::fastdds::dds::DataReaderListener::on_requested_deadline_missed

(C++ function), 634
eprosima::fastdds::dds::DataReaderListener::on_requested_incompatible_qos

(C++ function), 635
eprosima::fastdds::dds::DataReaderListener::on_sample_lost

(C++ function), 635
eprosima::fastdds::dds::DataReaderListener::on_sample_rejected

(C++ function), 635
eprosima::fastdds::dds::DataReaderListener::on_subscription_matched

(C++ function), 634
eprosima::fastdds::dds::DataReaderQos (C++

class), 635
eprosima::fastdds::dds::DataReaderQos::data_sharing

(C++ function), 640
eprosima::fastdds::dds::DataReaderQos::DataReaderQos

(C++ function), 636
eprosima::fastdds::dds::DataReaderQos::deadline

(C++ function), 636
eprosima::fastdds::dds::DataReaderQos::destination_order

(C++ function), 637
eprosima::fastdds::dds::DataReaderQos::durability

(C++ function), 636
eprosima::fastdds::dds::DataReaderQos::durability_service

(C++ function), 639
eprosima::fastdds::dds::DataReaderQos::endpoint

(C++ function), 640
eprosima::fastdds::dds::DataReaderQos::expects_inline_qos

(C++ function), 639
eprosima::fastdds::dds::DataReaderQos::history

(C++ function), 637
eprosima::fastdds::dds::DataReaderQos::latency_budget

(C++ function), 636
eprosima::fastdds::dds::DataReaderQos::lifespan

(C++ function), 638
eprosima::fastdds::dds::DataReaderQos::liveliness

(C++ function), 636
eprosima::fastdds::dds::DataReaderQos::ownership

(C++ function), 638
eprosima::fastdds::dds::DataReaderQos::properties

(C++ function), 639
eprosima::fastdds::dds::DataReaderQos::reader_data_lifecycle

(C++ function), 638
eprosima::fastdds::dds::DataReaderQos::reader_resource_limits

(C++ function), 640
eprosima::fastdds::dds::DataReaderQos::reliability

(C++ function), 637
eprosima::fastdds::dds::DataReaderQos::reliable_reader_qos

(C++ function), 639
eprosima::fastdds::dds::DataReaderQos::resource_limits

(C++ function), 637
eprosima::fastdds::dds::DataReaderQos::time_based_filter

(C++ function), 638
eprosima::fastdds::dds::DataReaderQos::type_consistency

(C++ function), 639
eprosima::fastdds::dds::DataReaderQos::user_data

(C++ function), 637, 638
eprosima::fastdds::dds::DataRepresentationId

(C++ enum), 527
eprosima::fastdds::dds::DataRepresentationId::XCDR2_DATA_REPRESENTATION

1000 Index

Fast DDS Documentation, Release 2.8.2

(C++ enumerator), 527
eprosima::fastdds::dds::DataRepresentationId::XCDR_DATA_REPRESENTATION

(C++ enumerator), 527
eprosima::fastdds::dds::DataRepresentationId::XML_DATA_REPRESENTATION

(C++ enumerator), 527
eprosima::fastdds::dds::DataRepresentationQosPolicy

(C++ class), 527
eprosima::fastdds::dds::DataRepresentationQosPolicy::~DataRepresentationQosPolicy

(C++ function), 528
eprosima::fastdds::dds::DataRepresentationQosPolicy::clear

(C++ function), 528
eprosima::fastdds::dds::DataRepresentationQosPolicy::DataRepresentationQosPolicy

(C++ function), 528
eprosima::fastdds::dds::DataRepresentationQosPolicy::m_value

(C++ member), 528
eprosima::fastdds::dds::DataRepresentationQosPolicy::operator==

(C++ function), 528
eprosima::fastdds::dds::DataSharingKind

(C++ enum), 530
eprosima::fastdds::dds::DataSharingKind::AUTO

(C++ enumerator), 530
eprosima::fastdds::dds::DataSharingKind::OFF

(C++ enumerator), 530
eprosima::fastdds::dds::DataSharingKind::ON

(C++ enumerator), 530
eprosima::fastdds::dds::DataSharingQosPolicy

(C++ class), 528
eprosima::fastdds::dds::DataSharingQosPolicy::~DataSharingQosPolicy

(C++ function), 528
eprosima::fastdds::dds::DataSharingQosPolicy::add_domain_id

(C++ function), 530
eprosima::fastdds::dds::DataSharingQosPolicy::automatic

(C++ function), 529
eprosima::fastdds::dds::DataSharingQosPolicy::clear

(C++ function), 528
eprosima::fastdds::dds::DataSharingQosPolicy::DataSharingQosPolicy

(C++ function), 528
eprosima::fastdds::dds::DataSharingQosPolicy::domain_ids

(C++ function), 529
eprosima::fastdds::dds::DataSharingQosPolicy::kind

(C++ function), 528
eprosima::fastdds::dds::DataSharingQosPolicy::max_domains

(C++ function), 529
eprosima::fastdds::dds::DataSharingQosPolicy::off

(C++ function), 530
eprosima::fastdds::dds::DataSharingQosPolicy::on

(C++ function), 529, 530
eprosima::fastdds::dds::DataSharingQosPolicy::set_max_domains

(C++ function), 529
eprosima::fastdds::dds::DataSharingQosPolicy::shm_directory

(C++ function), 528
eprosima::fastdds::dds::DataWriter (C++

class), 597
eprosima::fastdds::dds::DataWriter::assert_liveliness

(C++ function), 603
eprosima::fastdds::dds::DataWriter::clear_history

(C++ function), 603
eprosima::fastdds::dds::DataWriter::discard_loan

(C++ function), 604
eprosima::fastdds::dds::DataWriter::dispose

(C++ function), 602
eprosima::fastdds::dds::DataWriter::dispose_w_timestamp

(C++ function), 602
eprosima::fastdds::dds::DataWriter::enable

(C++ function), 598
eprosima::fastdds::dds::DataWriter::get_instance_handle

(C++ function), 600
eprosima::fastdds::dds::DataWriter::get_key_value

(C++ function), 600
eprosima::fastdds::dds::DataWriter::get_listener

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_liveliness_lost_status

(C++ function), 603
eprosima::fastdds::dds::DataWriter::get_matched_subscription_data

(C++ function), 603
eprosima::fastdds::dds::DataWriter::get_matched_subscriptions

(C++ function), 603
eprosima::fastdds::dds::DataWriter::get_offered_deadline_missed_status

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_offered_incompatible_qos_status

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_publication_matched_status

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_publisher

(C++ function), 603
eprosima::fastdds::dds::DataWriter::get_qos

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_sending_locators

(C++ function), 604
eprosima::fastdds::dds::DataWriter::get_topic

(C++ function), 601
eprosima::fastdds::dds::DataWriter::get_type

(C++ function), 601
eprosima::fastdds::dds::DataWriter::guid

(C++ function), 600
eprosima::fastdds::dds::DataWriter::loan_sample

(C++ function), 604
eprosima::fastdds::dds::DataWriter::LoanInitializationKind

(C++ enum), 598
eprosima::fastdds::dds::DataWriter::LoanInitializationKind::CONSTRUCTED_LOAN_INITIALIZATION

(C++ enumerator), 598
eprosima::fastdds::dds::DataWriter::LoanInitializationKind::NO_LOAN_INITIALIZATION

(C++ enumerator), 598
eprosima::fastdds::dds::DataWriter::LoanInitializationKind::ZERO_LOAN_INITIALIZATION

(C++ enumerator), 598
eprosima::fastdds::dds::DataWriter::lookup_instance

(C++ function), 600
eprosima::fastdds::dds::DataWriter::register_instance

Index 1001

Fast DDS Documentation, Release 2.8.2

(C++ function), 599
eprosima::fastdds::dds::DataWriter::register_instance_w_timestamp

(C++ function), 599
eprosima::fastdds::dds::DataWriter::set_listener

(C++ function), 602
eprosima::fastdds::dds::DataWriter::set_qos

(C++ function), 601
eprosima::fastdds::dds::DataWriter::unregister_instance

(C++ function), 599
eprosima::fastdds::dds::DataWriter::unregister_instance_w_timestamp

(C++ function), 600
eprosima::fastdds::dds::DataWriter::wait_for_acknowledgments

(C++ function), 601, 604
eprosima::fastdds::dds::DataWriter::write

(C++ function), 598
eprosima::fastdds::dds::DataWriter::write_w_timestamp

(C++ function), 599
eprosima::fastdds::dds::DATAWRITER_QOS_DEFAULT

(C++ member), 612
eprosima::fastdds::dds::DataWriterListener

(C++ class), 605
eprosima::fastdds::dds::DataWriterListener::~DataWriterListener

(C++ function), 605
eprosima::fastdds::dds::DataWriterListener::DataWriterListener

(C++ function), 605
eprosima::fastdds::dds::DataWriterListener::on_liveliness_lost

(C++ function), 606
eprosima::fastdds::dds::DataWriterListener::on_offered_deadline_missed

(C++ function), 605
eprosima::fastdds::dds::DataWriterListener::on_offered_incompatible_qos

(C++ function), 605
eprosima::fastdds::dds::DataWriterListener::on_publication_matched

(C++ function), 605
eprosima::fastdds::dds::DataWriterListener::on_unacknowledged_sample_removed

(C++ function), 606
eprosima::fastdds::dds::DataWriterQos (C++

class), 606
eprosima::fastdds::dds::DataWriterQos::~DataWriterQos

(C++ function), 606
eprosima::fastdds::dds::DataWriterQos::data_sharing

(C++ function), 611, 612
eprosima::fastdds::dds::DataWriterQos::DataWriterQos

(C++ function), 606
eprosima::fastdds::dds::DataWriterQos::deadline

(C++ function), 607
eprosima::fastdds::dds::DataWriterQos::destination_order

(C++ function), 608
eprosima::fastdds::dds::DataWriterQos::durability

(C++ function), 606
eprosima::fastdds::dds::DataWriterQos::durability_service

(C++ function), 606, 607
eprosima::fastdds::dds::DataWriterQos::endpoint

(C++ function), 610, 611
eprosima::fastdds::dds::DataWriterQos::history

(C++ function), 608
eprosima::fastdds::dds::DataWriterQos::latency_budget

(C++ function), 607
eprosima::fastdds::dds::DataWriterQos::lifespan

(C++ function), 608, 609
eprosima::fastdds::dds::DataWriterQos::liveliness

(C++ function), 607
eprosima::fastdds::dds::DataWriterQos::ownership

(C++ function), 609
eprosima::fastdds::dds::DataWriterQos::ownership_strength

(C++ function), 609
eprosima::fastdds::dds::DataWriterQos::properties

(C++ function), 610
eprosima::fastdds::dds::DataWriterQos::publish_mode

(C++ function), 610
eprosima::fastdds::dds::DataWriterQos::reliability

(C++ function), 607
eprosima::fastdds::dds::DataWriterQos::reliable_writer_qos

(C++ function), 610
eprosima::fastdds::dds::DataWriterQos::representation

(C++ function), 610
eprosima::fastdds::dds::DataWriterQos::resource_limits

(C++ function), 608
eprosima::fastdds::dds::DataWriterQos::throughput_controller

(C++ function), 611
eprosima::fastdds::dds::DataWriterQos::transport_priority

(C++ function), 608
eprosima::fastdds::dds::DataWriterQos::user_data

(C++ function), 609
eprosima::fastdds::dds::DataWriterQos::writer_data_lifecycle

(C++ function), 609
eprosima::fastdds::dds::DataWriterQos::writer_resource_limits

(C++ function), 611
eprosima::fastdds::dds::DeadlineMissedStatus

(C++ struct), 562
eprosima::fastdds::dds::DeadlineMissedStatus::~DeadlineMissedStatus

(C++ function), 562
eprosima::fastdds::dds::DeadlineMissedStatus::DeadlineMissedStatus

(C++ function), 562
eprosima::fastdds::dds::DeadlineMissedStatus::last_instance_handle

(C++ member), 562
eprosima::fastdds::dds::DeadlineMissedStatus::total_count

(C++ member), 562
eprosima::fastdds::dds::DeadlineMissedStatus::total_count_change

(C++ member), 562
eprosima::fastdds::dds::DeadlineQosPolicy

(C++ class), 530
eprosima::fastdds::dds::DeadlineQosPolicy::~DeadlineQosPolicy

(C++ function), 531
eprosima::fastdds::dds::DeadlineQosPolicy::clear

(C++ function), 531
eprosima::fastdds::dds::DeadlineQosPolicy::DeadlineQosPolicy

(C++ function), 531
eprosima::fastdds::dds::DeadlineQosPolicy::period

1002 Index

Fast DDS Documentation, Release 2.8.2

(C++ member), 531
eprosima::fastdds::dds::DestinationOrderQosPolicy

(C++ class), 531
eprosima::fastdds::dds::DestinationOrderQosPolicy::~DestinationOrderQosPolicy

(C++ function), 531
eprosima::fastdds::dds::DestinationOrderQosPolicy::clear

(C++ function), 531
eprosima::fastdds::dds::DestinationOrderQosPolicy::DestinationOrderQosPolicy

(C++ function), 531
eprosima::fastdds::dds::DestinationOrderQosPolicy::kind

(C++ member), 532
eprosima::fastdds::dds::DestinationOrderQosPolicyKind

(C++ enum), 532
eprosima::fastdds::dds::DestinationOrderQosPolicyKind::BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

(C++ enumerator), 532
eprosima::fastdds::dds::DestinationOrderQosPolicyKind::BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

(C++ enumerator), 532
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy

(C++ class), 532
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::~DisablePositiveACKsQosPolicy

(C++ function), 532
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::clear

(C++ function), 532
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::DisablePositiveACKsQosPolicy

(C++ function), 532
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::duration

(C++ member), 533
eprosima::fastdds::dds::DisablePositiveACKsQosPolicy::enabled

(C++ member), 533
eprosima::fastdds::dds::DomainEntity (C++

class), 526
eprosima::fastdds::dds::DomainEntity::DomainEntity

(C++ function), 527
eprosima::fastdds::dds::DomainParticipant

(C++ class), 576
eprosima::fastdds::dds::DomainParticipant::~DomainParticipant

(C++ function), 576
eprosima::fastdds::dds::DomainParticipant::assert_liveliness

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::contains_entity

(C++ function), 586
eprosima::fastdds::dds::DomainParticipant::create_contentfilteredtopic

(C++ function), 579, 580
eprosima::fastdds::dds::DomainParticipant::create_multitopic

(C++ function), 580
eprosima::fastdds::dds::DomainParticipant::create_publisher

(C++ function), 577
eprosima::fastdds::dds::DomainParticipant::create_publisher_with_profile

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::create_subscriber

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::create_subscriber_with_profile

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::create_topic

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::create_topic_with_profile

(C++ function), 579
eprosima::fastdds::dds::DomainParticipant::delete_contained_entities

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::delete_contentfilteredtopic

(C++ function), 580
eprosima::fastdds::dds::DomainParticipant::delete_multitopic

(C++ function), 580
eprosima::fastdds::dds::DomainParticipant::delete_publisher

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::delete_subscriber

(C++ function), 578
eprosima::fastdds::dds::DomainParticipant::delete_topic

(C++ function), 579
eprosima::fastdds::dds::DomainParticipant::enable

(C++ function), 577
eprosima::fastdds::dds::DomainParticipant::find_topic

(C++ function), 581
eprosima::fastdds::dds::DomainParticipant::find_type

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::get_builtin_subscriber

(C++ function), 581
eprosima::fastdds::dds::DomainParticipant::get_current_time

(C++ function), 586
eprosima::fastdds::dds::DomainParticipant::get_default_publisher_qos

(C++ function), 583
eprosima::fastdds::dds::DomainParticipant::get_default_subscriber_qos

(C++ function), 584
eprosima::fastdds::dds::DomainParticipant::get_default_topic_qos

(C++ function), 584, 585
eprosima::fastdds::dds::DomainParticipant::get_discovered_participant_data

(C++ function), 585
eprosima::fastdds::dds::DomainParticipant::get_discovered_participants

(C++ function), 585
eprosima::fastdds::dds::DomainParticipant::get_discovered_topic_data

(C++ function), 586
eprosima::fastdds::dds::DomainParticipant::get_discovered_topics

(C++ function), 585
eprosima::fastdds::dds::DomainParticipant::get_domain_id

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::get_instance_handle

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::get_listener

(C++ function), 576
eprosima::fastdds::dds::DomainParticipant::get_participant_names

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::get_publisher_qos_from_profile

(C++ function), 583
eprosima::fastdds::dds::DomainParticipant::get_qos

(C++ function), 576
eprosima::fastdds::dds::DomainParticipant::get_resource_event

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::get_subscriber_qos_from_profile

Index 1003

Fast DDS Documentation, Release 2.8.2

(C++ function), 584
eprosima::fastdds::dds::DomainParticipant::get_topic_qos_from_profile

(C++ function), 585
eprosima::fastdds::dds::DomainParticipant::get_type_dependencies

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::get_types

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::guid

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::has_active_entities

(C++ function), 589
eprosima::fastdds::dds::DomainParticipant::ignore_participant

(C++ function), 581
eprosima::fastdds::dds::DomainParticipant::ignore_publication

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::ignore_subscription

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::ignore_topic

(C++ function), 581
eprosima::fastdds::dds::DomainParticipant::lookup_content_filter_factory

(C++ function), 589
eprosima::fastdds::dds::DomainParticipant::lookup_topicdescription

(C++ function), 581
eprosima::fastdds::dds::DomainParticipant::new_remote_endpoint_discovered

(C++ function), 587
eprosima::fastdds::dds::DomainParticipant::register_content_filter_factory

(C++ function), 588
eprosima::fastdds::dds::DomainParticipant::register_remote_type

(C++ function), 588
eprosima::fastdds::dds::DomainParticipant::register_type

(C++ function), 586
eprosima::fastdds::dds::DomainParticipant::set_default_publisher_qos

(C++ function), 582
eprosima::fastdds::dds::DomainParticipant::set_default_subscriber_qos

(C++ function), 583
eprosima::fastdds::dds::DomainParticipant::set_default_topic_qos

(C++ function), 584
eprosima::fastdds::dds::DomainParticipant::set_listener

(C++ function), 576, 577
eprosima::fastdds::dds::DomainParticipant::set_qos

(C++ function), 576
eprosima::fastdds::dds::DomainParticipant::unregister_content_filter_factory

(C++ function), 589
eprosima::fastdds::dds::DomainParticipant::unregister_type

(C++ function), 587
eprosima::fastdds::dds::DomainParticipantFactory

(C++ class), 589
eprosima::fastdds::dds::DomainParticipantFactory::check_xml_static_discovery

(C++ function), 592
eprosima::fastdds::dds::DomainParticipantFactory::create_participant

(C++ function), 589
eprosima::fastdds::dds::DomainParticipantFactory::create_participant_with_profile

(C++ function), 590
eprosima::fastdds::dds::DomainParticipantFactory::delete_participant

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::get_default_participant_qos

(C++ function), 590, 591
eprosima::fastdds::dds::DomainParticipantFactory::get_instance

(C++ function), 592
eprosima::fastdds::dds::DomainParticipantFactory::get_participant_qos_from_profile

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::get_qos

(C++ function), 592
eprosima::fastdds::dds::DomainParticipantFactory::get_shared_instance

(C++ function), 592
eprosima::fastdds::dds::DomainParticipantFactory::load_profiles

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::load_XML_profiles_file

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::load_XML_profiles_string

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::lookup_participant

(C++ function), 590
eprosima::fastdds::dds::DomainParticipantFactory::lookup_participants

(C++ function), 590
eprosima::fastdds::dds::DomainParticipantFactory::set_default_participant_qos

(C++ function), 591
eprosima::fastdds::dds::DomainParticipantFactory::set_qos

(C++ function), 592
eprosima::fastdds::dds::DomainParticipantFactoryQos

(C++ class), 592
eprosima::fastdds::dds::DomainParticipantFactoryQos::~DomainParticipantFactoryQos

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantFactoryQos::DomainParticipantFactoryQos

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantFactoryQos::entity_factory

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantListener

(C++ class), 593
eprosima::fastdds::dds::DomainParticipantListener::~DomainParticipantListener

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantListener::DomainParticipantListener

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantListener::on_participant_discovery

(C++ function), 593
eprosima::fastdds::dds::DomainParticipantListener::on_publisher_discovery

(C++ function), 594
eprosima::fastdds::dds::DomainParticipantListener::on_subscriber_discovery

(C++ function), 594
eprosima::fastdds::dds::DomainParticipantListener::on_type_dependencies_reply

(C++ function), 595
eprosima::fastdds::dds::DomainParticipantListener::on_type_discovery

(C++ function), 594
eprosima::fastdds::dds::DomainParticipantListener::on_type_information_received

(C++ function), 595
eprosima::fastdds::dds::DomainParticipantListener::onParticipantAuthentication

(C++ function), 594
eprosima::fastdds::dds::DomainParticipantQos

1004 Index

Fast DDS Documentation, Release 2.8.2

(C++ class), 595
eprosima::fastdds::dds::DomainParticipantQos::~DomainParticipantQos

(C++ function), 595
eprosima::fastdds::dds::DomainParticipantQos::allocation

(C++ function), 596
eprosima::fastdds::dds::DomainParticipantQos::DomainParticipantQos

(C++ function), 595
eprosima::fastdds::dds::DomainParticipantQos::entity_factory

(C++ function), 596
eprosima::fastdds::dds::DomainParticipantQos::flow_controllers

(C++ function), 597
eprosima::fastdds::dds::DomainParticipantQos::FlowControllerDescriptorList

(C++ type), 595
eprosima::fastdds::dds::DomainParticipantQos::name

(C++ function), 597
eprosima::fastdds::dds::DomainParticipantQos::properties

(C++ function), 596
eprosima::fastdds::dds::DomainParticipantQos::transport

(C++ function), 597
eprosima::fastdds::dds::DomainParticipantQos::user_data

(C++ function), 595, 596
eprosima::fastdds::dds::DomainParticipantQos::wire_protocol

(C++ function), 596
eprosima::fastdds::dds::DurabilityQosPolicy

(C++ class), 533
eprosima::fastdds::dds::DurabilityQosPolicy::~DurabilityQosPolicy

(C++ function), 533
eprosima::fastdds::dds::DurabilityQosPolicy::clear

(C++ function), 533
eprosima::fastdds::dds::DurabilityQosPolicy::durabilityKind

(C++ function), 533
eprosima::fastdds::dds::DurabilityQosPolicy::DurabilityQosPolicy

(C++ function), 533
eprosima::fastdds::dds::DurabilityQosPolicy::kind

(C++ member), 534
eprosima::fastdds::dds::DurabilityQosPolicyKind

(C++ enum), 534
eprosima::fastdds::dds::DurabilityQosPolicyKind::PERSISTENT_DURABILITY_QOS

(C++ enumerator), 534
eprosima::fastdds::dds::DurabilityQosPolicyKind::TRANSIENT_DURABILITY_QOS

(C++ enumerator), 534
eprosima::fastdds::dds::DurabilityQosPolicyKind::TRANSIENT_LOCAL_DURABILITY_QOS

(C++ enumerator), 534
eprosima::fastdds::dds::DurabilityQosPolicyKind::VOLATILE_DURABILITY_QOS

(C++ enumerator), 534
eprosima::fastdds::dds::DurabilityServiceQosPolicy

(C++ class), 534
eprosima::fastdds::dds::DurabilityServiceQosPolicy::~DurabilityServiceQosPolicy

(C++ function), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::clear

(C++ function), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::DurabilityServiceQosPolicy

(C++ function), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::history_depth

(C++ member), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::history_kind

(C++ member), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_instances

(C++ member), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_samples

(C++ member), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::max_samples_per_instance

(C++ member), 535
eprosima::fastdds::dds::DurabilityServiceQosPolicy::service_cleanup_delay

(C++ member), 535
eprosima::fastdds::dds::Entity (C++ class), 525
eprosima::fastdds::dds::Entity::close (C++

function), 526
eprosima::fastdds::dds::Entity::enable (C++

function), 526
eprosima::fastdds::dds::Entity::Entity (C++

function), 526
eprosima::fastdds::dds::Entity::get_instance_handle

(C++ function), 526
eprosima::fastdds::dds::Entity::get_status_changes

(C++ function), 526
eprosima::fastdds::dds::Entity::get_status_mask

(C++ function), 526
eprosima::fastdds::dds::Entity::get_statuscondition

(C++ function), 526
eprosima::fastdds::dds::Entity::is_enabled

(C++ function), 526
eprosima::fastdds::dds::EntityFactoryQosPolicy

(C++ class), 536
eprosima::fastdds::dds::EntityFactoryQosPolicy::~EntityFactoryQosPolicy

(C++ function), 536
eprosima::fastdds::dds::EntityFactoryQosPolicy::autoenable_created_entities

(C++ member), 536
eprosima::fastdds::dds::EntityFactoryQosPolicy::EntityFactoryQosPolicy

(C++ function), 536
eprosima::fastdds::dds::FileConsumer (C++

class), 794
eprosima::fastdds::dds::FileConsumer::FileConsumer

(C++ function), 794
eprosima::fastdds::dds::GenericDataQosPolicy

(C++ class), 536
eprosima::fastdds::dds::GenericDataQosPolicy::clear

(C++ function), 537
eprosima::fastdds::dds::GenericDataQosPolicy::data_vec

(C++ function), 537
eprosima::fastdds::dds::GenericDataQosPolicy::dataVec

(C++ function), 537
eprosima::fastdds::dds::GenericDataQosPolicy::GenericDataQosPolicy

(C++ function), 536, 537
eprosima::fastdds::dds::GenericDataQosPolicy::getValue

(C++ function), 537
eprosima::fastdds::dds::GenericDataQosPolicy::operator=

(C++ function), 537

Index 1005

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::GenericDataQosPolicy::set_max_size
(C++ function), 537

eprosima::fastdds::dds::GenericDataQosPolicy::setValue
(C++ function), 537

eprosima::fastdds::dds::GroupDataQosPolicy
(C++ class), 538

eprosima::fastdds::dds::GuardCondition (C++
class), 570

eprosima::fastdds::dds::GuardCondition::get_trigger_value
(C++ function), 570

eprosima::fastdds::dds::GuardCondition::set_trigger_value
(C++ function), 570

eprosima::fastdds::dds::HistoryQosPolicy
(C++ class), 538

eprosima::fastdds::dds::HistoryQosPolicy::~HistoryQosPolicy
(C++ function), 538

eprosima::fastdds::dds::HistoryQosPolicy::clear
(C++ function), 538

eprosima::fastdds::dds::HistoryQosPolicy::depth
(C++ member), 539

eprosima::fastdds::dds::HistoryQosPolicy::HistoryQosPolicy
(C++ function), 538

eprosima::fastdds::dds::HistoryQosPolicy::kind
(C++ member), 539

eprosima::fastdds::dds::HistoryQosPolicyKind
(C++ enum), 539

eprosima::fastdds::dds::HistoryQosPolicyKind::KEEP_ALL_HISTORY_QOS
(C++ enumerator), 539

eprosima::fastdds::dds::HistoryQosPolicyKind::KEEP_LAST_HISTORY_QOS
(C++ enumerator), 539

eprosima::fastdds::dds::IContentFilter (C++
struct), 660

eprosima::fastdds::dds::IContentFilter::evaluate
(C++ function), 660

eprosima::fastdds::dds::IContentFilter::FilterSampleInfo
(C++ struct), 660

eprosima::fastdds::dds::IContentFilter::FilterSampleInfo::related_sample_identity
(C++ member), 660

eprosima::fastdds::dds::IContentFilter::FilterSampleInfo::sample_identity
(C++ member), 660

eprosima::fastdds::dds::IContentFilterFactory
(C++ struct), 661

eprosima::fastdds::dds::IContentFilterFactory::create_content_filter
(C++ function), 661

eprosima::fastdds::dds::IContentFilterFactory::delete_content_filter
(C++ function), 661

eprosima::fastdds::dds::IncompatibleQosStatus
(C++ struct), 562

eprosima::fastdds::dds::IncompatibleQosStatus::last_policy_id
(C++ member), 563

eprosima::fastdds::dds::IncompatibleQosStatus::policies
(C++ member), 563

eprosima::fastdds::dds::IncompatibleQosStatus::total_count
(C++ member), 563

eprosima::fastdds::dds::IncompatibleQosStatus::total_count_change
(C++ member), 563

eprosima::fastdds::dds::InconsistentTopicStatus
(C++ type), 563

eprosima::fastdds::dds::InstanceStateKind
(C++ enum), 640

eprosima::fastdds::dds::InstanceStateKind::ALIVE_INSTANCE_STATE
(C++ enumerator), 641

eprosima::fastdds::dds::InstanceStateKind::NOT_ALIVE_DISPOSED_INSTANCE_STATE
(C++ enumerator), 641

eprosima::fastdds::dds::InstanceStateKind::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE
(C++ enumerator), 641

eprosima::fastdds::dds::LatencyBudgetQosPolicy
(C++ class), 539

eprosima::fastdds::dds::LatencyBudgetQosPolicy::~LatencyBudgetQosPolicy
(C++ function), 540

eprosima::fastdds::dds::LatencyBudgetQosPolicy::clear
(C++ function), 540

eprosima::fastdds::dds::LatencyBudgetQosPolicy::duration
(C++ member), 540

eprosima::fastdds::dds::LatencyBudgetQosPolicy::LatencyBudgetQosPolicy
(C++ function), 540

eprosima::fastdds::dds::LifespanQosPolicy
(C++ class), 540

eprosima::fastdds::dds::LifespanQosPolicy::~LifespanQosPolicy
(C++ function), 540

eprosima::fastdds::dds::LifespanQosPolicy::clear
(C++ function), 540

eprosima::fastdds::dds::LifespanQosPolicy::duration
(C++ member), 541

eprosima::fastdds::dds::LifespanQosPolicy::LifespanQosPolicy
(C++ function), 540

eprosima::fastdds::dds::LivelinessChangedStatus
(C++ struct), 563

eprosima::fastdds::dds::LivelinessChangedStatus::alive_count
(C++ member), 563

eprosima::fastdds::dds::LivelinessChangedStatus::alive_count_change
(C++ member), 563

eprosima::fastdds::dds::LivelinessChangedStatus::last_publication_handle
(C++ member), 563

eprosima::fastdds::dds::LivelinessChangedStatus::not_alive_count
(C++ member), 563

eprosima::fastdds::dds::LivelinessChangedStatus::not_alive_count_change
(C++ member), 563

eprosima::fastdds::dds::LivelinessLostStatus
(C++ type), 566

eprosima::fastdds::dds::LivelinessQosPolicy
(C++ class), 541

eprosima::fastdds::dds::LivelinessQosPolicy::~LivelinessQosPolicy
(C++ function), 541

eprosima::fastdds::dds::LivelinessQosPolicy::announcement_period
(C++ member), 541

eprosima::fastdds::dds::LivelinessQosPolicy::clear
(C++ function), 541

1006 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::LivelinessQosPolicy::kind
(C++ member), 541

eprosima::fastdds::dds::LivelinessQosPolicy::lease_duration
(C++ member), 541

eprosima::fastdds::dds::LivelinessQosPolicy::LivelinessQosPolicy
(C++ function), 541

eprosima::fastdds::dds::LivelinessQosPolicyKind
(C++ enum), 542

eprosima::fastdds::dds::LivelinessQosPolicyKind::AUTOMATIC_LIVELINESS_QOS
(C++ enumerator), 542

eprosima::fastdds::dds::LivelinessQosPolicyKind::MANUAL_BY_PARTICIPANT_LIVELINESS_QOS
(C++ enumerator), 542

eprosima::fastdds::dds::LivelinessQosPolicyKind::MANUAL_BY_TOPIC_LIVELINESS_QOS
(C++ enumerator), 542

eprosima::fastdds::dds::LoanableArray (C++
struct), 572

eprosima::fastdds::dds::LoanableArray::buffer_for_loans
(C++ function), 572

eprosima::fastdds::dds::LoanableCollection
(C++ class), 572

eprosima::fastdds::dds::LoanableCollection::buffer
(C++ function), 572

eprosima::fastdds::dds::LoanableCollection::has_ownership
(C++ function), 572

eprosima::fastdds::dds::LoanableCollection::length
(C++ function), 572

eprosima::fastdds::dds::LoanableCollection::loan
(C++ function), 573

eprosima::fastdds::dds::LoanableCollection::maximum
(C++ function), 572

eprosima::fastdds::dds::LoanableCollection::unloan
(C++ function), 573

eprosima::fastdds::dds::LoanableSequence
(C++ class), 574

eprosima::fastdds::dds::LoanableSequence::~LoanableSequence
(C++ function), 575

eprosima::fastdds::dds::LoanableSequence::LoanableSequence
(C++ function), 574, 575

eprosima::fastdds::dds::LoanableSequence::operator=
(C++ function), 575

eprosima::fastdds::dds::Log (C++ class), 794
eprosima::fastdds::dds::Log::ClearConsumers

(C++ function), 795
eprosima::fastdds::dds::Log::Context (C++

struct), 795
eprosima::fastdds::dds::Log::Entry (C++

struct), 795
eprosima::fastdds::dds::Log::Flush (C++ func-

tion), 795
eprosima::fastdds::dds::Log::GetVerbosity

(C++ function), 795
eprosima::fastdds::dds::Log::KillThread

(C++ function), 795
eprosima::fastdds::dds::Log::Kind (C++ enum),

794
eprosima::fastdds::dds::Log::Kind::Error

(C++ enumerator), 794
eprosima::fastdds::dds::Log::Kind::Info

(C++ enumerator), 794
eprosima::fastdds::dds::Log::Kind::Warning

(C++ enumerator), 794
eprosima::fastdds::dds::Log::QueueLog (C++

function), 795
eprosima::fastdds::dds::Log::RegisterConsumer

(C++ function), 795
eprosima::fastdds::dds::Log::ReportFilenames

(C++ function), 795
eprosima::fastdds::dds::Log::ReportFunctions

(C++ function), 795
eprosima::fastdds::dds::Log::Reset (C++ func-

tion), 795
eprosima::fastdds::dds::Log::SetCategoryFilter

(C++ function), 795
eprosima::fastdds::dds::Log::SetErrorStringFilter

(C++ function), 795
eprosima::fastdds::dds::Log::SetFilenameFilter

(C++ function), 795
eprosima::fastdds::dds::Log::SetVerbosity

(C++ function), 795
eprosima::fastdds::dds::LogConsumer (C++

class), 796
eprosima::fastdds::dds::MatchedStatus (C++

struct), 564
eprosima::fastdds::dds::MatchedStatus::~MatchedStatus

(C++ function), 564
eprosima::fastdds::dds::MatchedStatus::current_count

(C++ member), 564
eprosima::fastdds::dds::MatchedStatus::current_count_change

(C++ member), 564
eprosima::fastdds::dds::MatchedStatus::MatchedStatus

(C++ function), 564
eprosima::fastdds::dds::MatchedStatus::total_count

(C++ member), 564
eprosima::fastdds::dds::MatchedStatus::total_count_change

(C++ member), 564
eprosima::fastdds::dds::OfferedDeadlineMissedStatus

(C++ type), 564
eprosima::fastdds::dds::OfferedIncompatibleQosStatus

(C++ type), 565
eprosima::fastdds::dds::OStreamConsumer

(C++ class), 796
eprosima::fastdds::dds::OwnershipQosPolicy

(C++ class), 542
eprosima::fastdds::dds::OwnershipQosPolicy::~OwnershipQosPolicy

(C++ function), 542
eprosima::fastdds::dds::OwnershipQosPolicy::clear

(C++ function), 542
eprosima::fastdds::dds::OwnershipQosPolicy::kind

Index 1007

Fast DDS Documentation, Release 2.8.2

(C++ member), 543
eprosima::fastdds::dds::OwnershipQosPolicy::OwnershipQosPolicy

(C++ function), 542
eprosima::fastdds::dds::OwnershipQosPolicyKind

(C++ enum), 543
eprosima::fastdds::dds::OwnershipQosPolicyKind::EXCLUSIVE_OWNERSHIP_QOS

(C++ enumerator), 543
eprosima::fastdds::dds::OwnershipQosPolicyKind::SHARED_OWNERSHIP_QOS

(C++ enumerator), 543
eprosima::fastdds::dds::OwnershipStrengthQosPolicy

(C++ class), 543
eprosima::fastdds::dds::OwnershipStrengthQosPolicy::~OwnershipStrengthQosPolicy

(C++ function), 543
eprosima::fastdds::dds::OwnershipStrengthQosPolicy::clear

(C++ function), 543
eprosima::fastdds::dds::OwnershipStrengthQosPolicy::OwnershipStrengthQosPolicy

(C++ function), 543
eprosima::fastdds::dds::OwnershipStrengthQosPolicy::value

(C++ member), 544
eprosima::fastdds::dds::PARTICIPANT_QOS_DEFAULT

(C++ member), 597
eprosima::fastdds::dds::ParticipantResourceLimitsQos

(C++ type), 544
eprosima::fastdds::dds::Partition_t (C++

class), 544
eprosima::fastdds::dds::Partition_t::name

(C++ function), 544
eprosima::fastdds::dds::Partition_t::Partition_t

(C++ function), 544
eprosima::fastdds::dds::Partition_t::size

(C++ function), 544
eprosima::fastdds::dds::PartitionQosPolicy

(C++ class), 544
eprosima::fastdds::dds::PartitionQosPolicy::~PartitionQosPolicy

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::begin

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::clear

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::const_iterator

(C++ class), 546
eprosima::fastdds::dds::PartitionQosPolicy::const_iterator::const_iterator

(C++ function), 546
eprosima::fastdds::dds::PartitionQosPolicy::empty

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::end

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::getNames

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::max_size

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::names

(C++ function), 546
eprosima::fastdds::dds::PartitionQosPolicy::PartitionQosPolicy

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::push_back

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::set_max_size

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::setNames

(C++ function), 545
eprosima::fastdds::dds::PartitionQosPolicy::size

(C++ function), 545
eprosima::fastdds::dds::PresentationQosPolicy

(C++ class), 546
eprosima::fastdds::dds::PresentationQosPolicy::~PresentationQosPolicy

(C++ function), 546
eprosima::fastdds::dds::PresentationQosPolicy::access_scope

(C++ member), 547
eprosima::fastdds::dds::PresentationQosPolicy::clear

(C++ function), 546
eprosima::fastdds::dds::PresentationQosPolicy::coherent_access

(C++ member), 547
eprosima::fastdds::dds::PresentationQosPolicy::ordered_access

(C++ member), 547
eprosima::fastdds::dds::PresentationQosPolicy::PresentationQosPolicy

(C++ function), 546
eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind

(C++ enum), 547
eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::GROUP_PRESENTATION_QOS

(C++ enumerator), 547
eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::INSTANCE_PRESENTATION_QOS

(C++ enumerator), 547
eprosima::fastdds::dds::PresentationQosPolicyAccessScopeKind::TOPIC_PRESENTATION_QOS

(C++ enumerator), 547
eprosima::fastdds::dds::PropertyPolicyQos

(C++ type), 547
eprosima::fastdds::dds::PublicationMatchedStatus

(C++ struct), 565
eprosima::fastdds::dds::PublicationMatchedStatus::last_subscription_handle

(C++ member), 565
eprosima::fastdds::dds::Publisher (C++ class),

612
eprosima::fastdds::dds::Publisher::~Publisher

(C++ function), 612
eprosima::fastdds::dds::Publisher::begin_coherent_changes

(C++ function), 614
eprosima::fastdds::dds::Publisher::copy_from_topic_qos

(C++ function), 615
eprosima::fastdds::dds::Publisher::create_datawriter

(C++ function), 613
eprosima::fastdds::dds::Publisher::create_datawriter_with_profile

(C++ function), 613
eprosima::fastdds::dds::Publisher::delete_contained_entities

(C++ function), 614
eprosima::fastdds::dds::Publisher::delete_datawriter

(C++ function), 613
eprosima::fastdds::dds::Publisher::enable

1008 Index

Fast DDS Documentation, Release 2.8.2

(C++ function), 612
eprosima::fastdds::dds::Publisher::end_coherent_changes

(C++ function), 614
eprosima::fastdds::dds::Publisher::get_datawriter_qos_from_profile

(C++ function), 615
eprosima::fastdds::dds::Publisher::get_datawriters

(C++ function), 616
eprosima::fastdds::dds::Publisher::get_default_datawriter_qos

(C++ function), 615
eprosima::fastdds::dds::Publisher::get_instance_handle

(C++ function), 616
eprosima::fastdds::dds::Publisher::get_listener

(C++ function), 612
eprosima::fastdds::dds::Publisher::get_participant

(C++ function), 614
eprosima::fastdds::dds::Publisher::get_qos

(C++ function), 612
eprosima::fastdds::dds::Publisher::has_datawriters

(C++ function), 616
eprosima::fastdds::dds::Publisher::lookup_datawriter

(C++ function), 613
eprosima::fastdds::dds::Publisher::resume_publications

(C++ function), 614
eprosima::fastdds::dds::Publisher::set_default_datawriter_qos

(C++ function), 615
eprosima::fastdds::dds::Publisher::set_listener

(C++ function), 612
eprosima::fastdds::dds::Publisher::set_qos

(C++ function), 612
eprosima::fastdds::dds::Publisher::suspend_publications

(C++ function), 614
eprosima::fastdds::dds::Publisher::wait_for_acknowledgments

(C++ function), 614
eprosima::fastdds::dds::PUBLISHER_QOS_DEFAULT

(C++ member), 617
eprosima::fastdds::dds::PublisherListener

(C++ class), 616
eprosima::fastdds::dds::PublisherListener::~PublisherListener

(C++ function), 616
eprosima::fastdds::dds::PublisherListener::PublisherListener

(C++ function), 616
eprosima::fastdds::dds::PublisherQos (C++

class), 616
eprosima::fastdds::dds::PublisherQos::~PublisherQos

(C++ function), 616
eprosima::fastdds::dds::PublisherQos::entity_factory

(C++ function), 617
eprosima::fastdds::dds::PublisherQos::group_data

(C++ function), 617
eprosima::fastdds::dds::PublisherQos::partition

(C++ function), 617
eprosima::fastdds::dds::PublisherQos::presentation

(C++ function), 616, 617
eprosima::fastdds::dds::PublisherQos::PublisherQos

(C++ function), 616
eprosima::fastdds::dds::PublishModeQosPolicy

(C++ class), 548
eprosima::fastdds::dds::PublishModeQosPolicy::clear

(C++ function), 548
eprosima::fastdds::dds::PublishModeQosPolicy::flow_controller_name

(C++ member), 548
eprosima::fastdds::dds::PublishModeQosPolicy::kind

(C++ member), 548
eprosima::fastdds::dds::PublishModeQosPolicyKind

(C++ enum), 548
eprosima::fastdds::dds::PublishModeQosPolicyKind::ASYNCHRONOUS_PUBLISH_MODE

(C++ enumerator), 548
eprosima::fastdds::dds::PublishModeQosPolicyKind::SYNCHRONOUS_PUBLISH_MODE

(C++ enumerator), 548
eprosima::fastdds::dds::QosPolicy (C++ class),

548
eprosima::fastdds::dds::QosPolicy::~QosPolicy

(C++ function), 549
eprosima::fastdds::dds::QosPolicy::clear

(C++ function), 549
eprosima::fastdds::dds::QosPolicy::hasChanged

(C++ member), 549
eprosima::fastdds::dds::QosPolicy::QosPolicy

(C++ function), 549
eprosima::fastdds::dds::QosPolicy::send_always

(C++ function), 549
eprosima::fastdds::dds::QosPolicyCount (C++

struct), 565
eprosima::fastdds::dds::QosPolicyCount::count

(C++ member), 565
eprosima::fastdds::dds::QosPolicyCount::policy_id

(C++ member), 565
eprosima::fastdds::dds::QosPolicyCount::QosPolicyCount

(C++ function), 565
eprosima::fastdds::dds::QosPolicyCountSeq

(C++ type), 566
eprosima::fastdds::dds::QosPolicyId_t (C++

enum), 549
eprosima::fastdds::dds::QosPolicyId_t::DATAREPRESENTATION_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::DEADLINE_QOS_POLICY_ID

(C++ enumerator), 549
eprosima::fastdds::dds::QosPolicyId_t::DESTINATIONORDER_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::DISABLEPOSITIVEACKS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::DURABILITY_QOS_POLICY_ID

(C++ enumerator), 549
eprosima::fastdds::dds::QosPolicyId_t::DURABILITYSERVICE_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::ENTITYFACTORY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::GROUPDATA_QOS_POLICY_ID

Index 1009

Fast DDS Documentation, Release 2.8.2

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::HISTORY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::INVALID_QOS_POLICY_ID

(C++ enumerator), 549
eprosima::fastdds::dds::QosPolicyId_t::LATENCYBUDGET_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::LIFESPAN_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::LIVELINESS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::NEXT_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::OWNERSHIP_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::OWNERSHIPSTRENGTH_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::PARTITION_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::PRESENTATION_QOS_POLICY_ID

(C++ enumerator), 549
eprosima::fastdds::dds::QosPolicyId_t::PROPERTYPOLICY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::PUBLISHMODE_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::READERDATALIFECYCLE_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::READERRESOURCELIMITS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::RELIABILITY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::RESOURCELIMITS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::RTPSENDPOINT_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::RTPSRELIABLEREADER_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::RTPSRELIABLEWRITER_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TIMEBASEDFILTER_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TOPICDATA_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TRANSPORTCONFIG_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TRANSPORTPRIORITY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TYPECONSISTENCY_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::USERDATA_QOS_POLICY_ID

(C++ enumerator), 549
eprosima::fastdds::dds::QosPolicyId_t::WIREPROTOCOLCONFIG_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::WRITERDATALIFECYCLE_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::QosPolicyId_t::WRITERRESOURCELIMITS_QOS_POLICY_ID

(C++ enumerator), 550
eprosima::fastdds::dds::ReadCondition (C++

class), 641
eprosima::fastdds::dds::ReadCondition::get_datareader

(C++ function), 642
eprosima::fastdds::dds::ReadCondition::get_instance_state_mask

(C++ function), 642
eprosima::fastdds::dds::ReadCondition::get_sample_state_mask

(C++ function), 642
eprosima::fastdds::dds::ReadCondition::get_trigger_value

(C++ function), 642
eprosima::fastdds::dds::ReadCondition::get_view_state_mask

(C++ function), 642
eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy

(C++ class), 551
eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::~ReaderDataLifecycleQosPolicy

(C++ function), 551
eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::autopurge_disposed_samples_delay

(C++ member), 551
eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::autopurge_no_writer_samples_delay

(C++ member), 551
eprosima::fastdds::dds::ReaderDataLifecycleQosPolicy::ReaderDataLifecycleQosPolicy

(C++ function), 551
eprosima::fastdds::dds::ReaderResourceLimitsQos

(C++ class), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::~ReaderResourceLimitsQos

(C++ function), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::matched_publisher_allocation

(C++ member), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::max_samples_per_read

(C++ member), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::outstanding_reads_allocation

(C++ member), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::ReaderResourceLimitsQos

(C++ function), 642
eprosima::fastdds::dds::ReaderResourceLimitsQos::sample_infos_allocation

(C++ member), 642
eprosima::fastdds::dds::ReliabilityQosPolicy

(C++ class), 551
eprosima::fastdds::dds::ReliabilityQosPolicy::~ReliabilityQosPolicy

(C++ function), 552
eprosima::fastdds::dds::ReliabilityQosPolicy::clear

(C++ function), 552
eprosima::fastdds::dds::ReliabilityQosPolicy::kind

(C++ member), 552
eprosima::fastdds::dds::ReliabilityQosPolicy::max_blocking_time

(C++ member), 552
eprosima::fastdds::dds::ReliabilityQosPolicy::ReliabilityQosPolicy

1010 Index

Fast DDS Documentation, Release 2.8.2

(C++ function), 552
eprosima::fastdds::dds::ReliabilityQosPolicyKind

(C++ enum), 552
eprosima::fastdds::dds::ReliabilityQosPolicyKind::BEST_EFFORT_RELIABILITY_QOS

(C++ enumerator), 552
eprosima::fastdds::dds::ReliabilityQosPolicyKind::RELIABLE_RELIABILITY_QOS

(C++ enumerator), 552
eprosima::fastdds::dds::RequestedDeadlineMissedStatus

(C++ type), 566
eprosima::fastdds::dds::RequestedIncompatibleQosStatus

(C++ type), 566
eprosima::fastdds::dds::ResourceLimitsQosPolicy

(C++ class), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::~ResourceLimitsQosPolicy

(C++ function), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::allocated_samples

(C++ member), 554
eprosima::fastdds::dds::ResourceLimitsQosPolicy::clear

(C++ function), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::extra_samples

(C++ member), 554
eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_instances

(C++ member), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_samples

(C++ member), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::max_samples_per_instance

(C++ member), 553
eprosima::fastdds::dds::ResourceLimitsQosPolicy::ResourceLimitsQosPolicy

(C++ function), 553
eprosima::fastdds::dds::RTPSEndpointQos

(C++ class), 554
eprosima::fastdds::dds::RTPSEndpointQos::entity_id

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::external_unicast_locators

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::history_memory_policy

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::ignore_non_matching_locators

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::multicast_locator_list

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::remote_locator_list

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::unicast_locator_list

(C++ member), 554
eprosima::fastdds::dds::RTPSEndpointQos::user_defined_id

(C++ member), 554
eprosima::fastdds::dds::RTPSReliableReaderQos

(C++ class), 643
eprosima::fastdds::dds::RTPSReliableReaderQos::~RTPSReliableReaderQos

(C++ function), 643
eprosima::fastdds::dds::RTPSReliableReaderQos::disable_positive_ACKs

(C++ member), 643
eprosima::fastdds::dds::RTPSReliableReaderQos::RTPSReliableReaderQos

(C++ function), 643
eprosima::fastdds::dds::RTPSReliableReaderQos::times

(C++ member), 643
eprosima::fastdds::dds::RTPSReliableWriterQos

(C++ class), 618
eprosima::fastdds::dds::RTPSReliableWriterQos::~RTPSReliableWriterQos

(C++ function), 618
eprosima::fastdds::dds::RTPSReliableWriterQos::disable_heartbeat_piggyback

(C++ member), 618
eprosima::fastdds::dds::RTPSReliableWriterQos::disable_positive_acks

(C++ member), 618
eprosima::fastdds::dds::RTPSReliableWriterQos::RTPSReliableWriterQos

(C++ function), 618
eprosima::fastdds::dds::RTPSReliableWriterQos::times

(C++ member), 618
eprosima::fastdds::dds::SampleInfo (C++

struct), 643
eprosima::fastdds::dds::SampleInfo::absolute_generation_rank

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::disposed_generation_count

(C++ member), 643
eprosima::fastdds::dds::SampleInfo::generation_rank

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::instance_handle

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::instance_state

(C++ member), 643
eprosima::fastdds::dds::SampleInfo::no_writers_generation_count

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::publication_handle

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::reception_timestamp

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::related_sample_identity

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::sample_identity

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::sample_rank

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::sample_state

(C++ member), 643
eprosima::fastdds::dds::SampleInfo::source_timestamp

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::valid_data

(C++ member), 644
eprosima::fastdds::dds::SampleInfo::view_state

(C++ member), 643
eprosima::fastdds::dds::SampleLostStatus

(C++ type), 566
eprosima::fastdds::dds::SampleRejectedStatus

(C++ struct), 566
eprosima::fastdds::dds::SampleRejectedStatus::last_instance_handle

(C++ member), 566
eprosima::fastdds::dds::SampleRejectedStatus::last_reason

Index 1011

Fast DDS Documentation, Release 2.8.2

(C++ member), 566
eprosima::fastdds::dds::SampleRejectedStatus::total_count

(C++ member), 566
eprosima::fastdds::dds::SampleRejectedStatus::total_count_change

(C++ member), 566
eprosima::fastdds::dds::SampleRejectedStatusKind

(C++ enum), 567
eprosima::fastdds::dds::SampleRejectedStatusKind::NOT_REJECTED

(C++ enumerator), 567
eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_INSTANCES_LIMIT

(C++ enumerator), 567
eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_SAMPLES_LIMIT

(C++ enumerator), 567
eprosima::fastdds::dds::SampleRejectedStatusKind::REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

(C++ enumerator), 567
eprosima::fastdds::dds::SampleStateKind

(C++ enum), 644
eprosima::fastdds::dds::SampleStateKind::NOT_READ_SAMPLE_STATE

(C++ enumerator), 645
eprosima::fastdds::dds::SampleStateKind::READ_SAMPLE_STATE

(C++ enumerator), 645
eprosima::fastdds::dds::StackAllocatedSequence

(C++ struct), 576
eprosima::fastdds::dds::StatusCondition

(C++ class), 570
eprosima::fastdds::dds::StatusCondition::get_enabled_statuses

(C++ function), 571
eprosima::fastdds::dds::StatusCondition::get_entity

(C++ function), 571
eprosima::fastdds::dds::StatusCondition::get_trigger_value

(C++ function), 570
eprosima::fastdds::dds::StatusCondition::set_enabled_statuses

(C++ function), 570
eprosima::fastdds::dds::StatusMask (C++

class), 567
eprosima::fastdds::dds::StatusMask::all

(C++ function), 568
eprosima::fastdds::dds::StatusMask::data_available

(C++ function), 569
eprosima::fastdds::dds::StatusMask::data_on_readers

(C++ function), 569
eprosima::fastdds::dds::StatusMask::inconsistent_topic

(C++ function), 568
eprosima::fastdds::dds::StatusMask::is_active

(C++ function), 568
eprosima::fastdds::dds::StatusMask::liveliness_changed

(C++ function), 569
eprosima::fastdds::dds::StatusMask::liveliness_lost

(C++ function), 569
eprosima::fastdds::dds::StatusMask::MaskType

(C++ type), 567
eprosima::fastdds::dds::StatusMask::none

(C++ function), 568
eprosima::fastdds::dds::StatusMask::offered_deadline_missed

(C++ function), 568
eprosima::fastdds::dds::StatusMask::offered_incompatible_qos

(C++ function), 568
eprosima::fastdds::dds::StatusMask::operator>>

(C++ function), 568
eprosima::fastdds::dds::StatusMask::operator<<

(C++ function), 568
eprosima::fastdds::dds::StatusMask::publication_matched

(C++ function), 569
eprosima::fastdds::dds::StatusMask::requested_deadline_missed

(C++ function), 568
eprosima::fastdds::dds::StatusMask::requested_incompatible_qos

(C++ function), 568
eprosima::fastdds::dds::StatusMask::sample_lost

(C++ function), 568
eprosima::fastdds::dds::StatusMask::sample_rejected

(C++ function), 568
eprosima::fastdds::dds::StatusMask::StatusMask

(C++ function), 567
eprosima::fastdds::dds::StatusMask::subscription_matched

(C++ function), 569
eprosima::fastdds::dds::StdoutConsumer (C++

class), 796
eprosima::fastdds::dds::StdoutErrConsumer

(C++ class), 796
eprosima::fastdds::dds::StdoutErrConsumer::stderr_threshold

(C++ function), 797
eprosima::fastdds::dds::StdoutErrConsumer::STDERR_THRESHOLD_DEFAULT

(C++ member), 797
eprosima::fastdds::dds::Subscriber (C++

class), 645
eprosima::fastdds::dds::Subscriber::~Subscriber

(C++ function), 645
eprosima::fastdds::dds::Subscriber::begin_access

(C++ function), 647
eprosima::fastdds::dds::Subscriber::copy_from_topic_qos

(C++ function), 649
eprosima::fastdds::dds::Subscriber::create_datareader

(C++ function), 646
eprosima::fastdds::dds::Subscriber::create_datareader_with_profile

(C++ function), 646
eprosima::fastdds::dds::Subscriber::delete_contained_entities

(C++ function), 648
eprosima::fastdds::dds::Subscriber::delete_datareader

(C++ function), 646
eprosima::fastdds::dds::Subscriber::enable

(C++ function), 645
eprosima::fastdds::dds::Subscriber::end_access

(C++ function), 647
eprosima::fastdds::dds::Subscriber::get_datareader_qos_from_profile

(C++ function), 649
eprosima::fastdds::dds::Subscriber::get_datareaders

(C++ function), 647
eprosima::fastdds::dds::Subscriber::get_default_datareader_qos

1012 Index

Fast DDS Documentation, Release 2.8.2

(C++ function), 648
eprosima::fastdds::dds::Subscriber::get_instance_handle

(C++ function), 649
eprosima::fastdds::dds::Subscriber::get_listener

(C++ function), 645
eprosima::fastdds::dds::Subscriber::get_participant

(C++ function), 649
eprosima::fastdds::dds::Subscriber::get_qos

(C++ function), 645
eprosima::fastdds::dds::Subscriber::has_datareaders

(C++ function), 647
eprosima::fastdds::dds::Subscriber::lookup_datareader

(C++ function), 646
eprosima::fastdds::dds::Subscriber::notify_datareaders

(C++ function), 647
eprosima::fastdds::dds::Subscriber::set_default_datareader_qos

(C++ function), 648
eprosima::fastdds::dds::Subscriber::set_listener

(C++ function), 645, 646
eprosima::fastdds::dds::Subscriber::set_qos

(C++ function), 645
eprosima::fastdds::dds::SUBSCRIBER_QOS_DEFAULT

(C++ member), 651
eprosima::fastdds::dds::SubscriberListener

(C++ class), 649
eprosima::fastdds::dds::SubscriberListener::~SubscriberListener

(C++ function), 649
eprosima::fastdds::dds::SubscriberListener::on_data_on_readers

(C++ function), 649
eprosima::fastdds::dds::SubscriberListener::SubscriberListener

(C++ function), 649
eprosima::fastdds::dds::SubscriberQos (C++

class), 650
eprosima::fastdds::dds::SubscriberQos::~SubscriberQos

(C++ function), 650
eprosima::fastdds::dds::SubscriberQos::entity_factory

(C++ function), 651
eprosima::fastdds::dds::SubscriberQos::group_data

(C++ function), 650
eprosima::fastdds::dds::SubscriberQos::partition

(C++ function), 650
eprosima::fastdds::dds::SubscriberQos::presentation

(C++ function), 650
eprosima::fastdds::dds::SubscriberQos::SubscriberQos

(C++ function), 650
eprosima::fastdds::dds::SubscriptionMatchedStatus

(C++ struct), 569
eprosima::fastdds::dds::SubscriptionMatchedStatus::last_publication_handle

(C++ member), 569
eprosima::fastdds::dds::TimeBasedFilterQosPolicy

(C++ class), 555
eprosima::fastdds::dds::TimeBasedFilterQosPolicy::~TimeBasedFilterQosPolicy

(C++ function), 555
eprosima::fastdds::dds::TimeBasedFilterQosPolicy::clear

(C++ function), 555
eprosima::fastdds::dds::TimeBasedFilterQosPolicy::minimum_separation

(C++ member), 555
eprosima::fastdds::dds::TimeBasedFilterQosPolicy::TimeBasedFilterQosPolicy

(C++ function), 555
eprosima::fastdds::dds::Topic (C++ class), 658
eprosima::fastdds::dds::Topic::get_inconsistent_topic_status

(C++ function), 658
eprosima::fastdds::dds::Topic::get_listener

(C++ function), 658
eprosima::fastdds::dds::Topic::get_participant

(C++ function), 658
eprosima::fastdds::dds::Topic::get_qos (C++

function), 658
eprosima::fastdds::dds::Topic::set_listener

(C++ function), 658
eprosima::fastdds::dds::Topic::set_qos (C++

function), 658
eprosima::fastdds::dds::TOPIC_QOS_DEFAULT

(C++ member), 665
eprosima::fastdds::dds::TopicDataQosPolicy

(C++ class), 555
eprosima::fastdds::dds::TopicDataType (C++

class), 652
eprosima::fastdds::dds::TopicDataType::~TopicDataType

(C++ function), 652
eprosima::fastdds::dds::TopicDataType::auto_fill_type_information

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::auto_fill_type_object

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::construct_sample

(C++ function), 654
eprosima::fastdds::dds::TopicDataType::createData

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::deleteData

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::deserialize

(C++ function), 652
eprosima::fastdds::dds::TopicDataType::getKey

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::getName

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::getSerializedSizeProvider

(C++ function), 653
eprosima::fastdds::dds::TopicDataType::is_bounded

(C++ function), 654
eprosima::fastdds::dds::TopicDataType::is_plain

(C++ function), 654
eprosima::fastdds::dds::TopicDataType::m_isGetKeyDefined

(C++ member), 655
eprosima::fastdds::dds::TopicDataType::m_typeSize

(C++ member), 655
eprosima::fastdds::dds::TopicDataType::serialize

(C++ function), 652

Index 1013

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::TopicDataType::setName
(C++ function), 653

eprosima::fastdds::dds::TopicDataType::TopicDataType
(C++ function), 652

eprosima::fastdds::dds::TopicDataType::type_identifier
(C++ function), 654

eprosima::fastdds::dds::TopicDataType::type_information
(C++ function), 654

eprosima::fastdds::dds::TopicDataType::type_object
(C++ function), 654

eprosima::fastdds::dds::TopicDescription
(C++ class), 657

eprosima::fastdds::dds::TopicDescription::get_name
(C++ function), 657

eprosima::fastdds::dds::TopicDescription::get_participant
(C++ function), 657

eprosima::fastdds::dds::TopicDescription::get_type_name
(C++ function), 657

eprosima::fastdds::dds::TopicListener (C++
class), 662

eprosima::fastdds::dds::TopicListener::~TopicListener
(C++ function), 662

eprosima::fastdds::dds::TopicListener::on_inconsistent_topic
(C++ function), 662

eprosima::fastdds::dds::TopicListener::TopicListener
(C++ function), 662

eprosima::fastdds::dds::TopicQos (C++ class),
662

eprosima::fastdds::dds::TopicQos::deadline
(C++ function), 663

eprosima::fastdds::dds::TopicQos::destination_order
(C++ function), 664

eprosima::fastdds::dds::TopicQos::durability
(C++ function), 662, 663

eprosima::fastdds::dds::TopicQos::durability_service
(C++ function), 663

eprosima::fastdds::dds::TopicQos::history
(C++ function), 664

eprosima::fastdds::dds::TopicQos::latency_budget
(C++ function), 663

eprosima::fastdds::dds::TopicQos::lifespan
(C++ function), 665

eprosima::fastdds::dds::TopicQos::liveliness
(C++ function), 663

eprosima::fastdds::dds::TopicQos::ownership
(C++ function), 665

eprosima::fastdds::dds::TopicQos::reliability
(C++ function), 664

eprosima::fastdds::dds::TopicQos::representation
(C++ function), 665

eprosima::fastdds::dds::TopicQos::resource_limits
(C++ function), 664

eprosima::fastdds::dds::TopicQos::topic_data
(C++ function), 662

eprosima::fastdds::dds::TopicQos::TopicQos
(C++ function), 662

eprosima::fastdds::dds::TopicQos::transport_priority
(C++ function), 664, 665

eprosima::fastdds::dds::TransportConfigQos
(C++ class), 556

eprosima::fastdds::dds::TransportConfigQos::~TransportConfigQos
(C++ function), 556

eprosima::fastdds::dds::TransportConfigQos::clear
(C++ function), 556

eprosima::fastdds::dds::TransportConfigQos::listen_socket_buffer_size
(C++ member), 556

eprosima::fastdds::dds::TransportConfigQos::send_socket_buffer_size
(C++ member), 556

eprosima::fastdds::dds::TransportConfigQos::TransportConfigQos
(C++ function), 556

eprosima::fastdds::dds::TransportConfigQos::use_builtin_transports
(C++ member), 556

eprosima::fastdds::dds::TransportConfigQos::user_transports
(C++ member), 556

eprosima::fastdds::dds::TransportPriorityQosPolicy
(C++ class), 557

eprosima::fastdds::dds::TransportPriorityQosPolicy::~TransportPriorityQosPolicy
(C++ function), 557

eprosima::fastdds::dds::TransportPriorityQosPolicy::clear
(C++ function), 557

eprosima::fastdds::dds::TransportPriorityQosPolicy::TransportPriorityQosPolicy
(C++ function), 557

eprosima::fastdds::dds::TransportPriorityQosPolicy::value
(C++ member), 557

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy
(C++ class), 557

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::~TypeConsistencyEnforcementQosPolicy
(C++ function), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::clear
(C++ function), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_force_type_validation
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_member_names
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_sequence_bounds
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_ignore_string_bounds
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_kind
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::m_prevent_type_widening
(C++ member), 558

eprosima::fastdds::dds::TypeConsistencyEnforcementQosPolicy::TypeConsistencyEnforcementQosPolicy
(C++ function), 558

eprosima::fastdds::dds::TypeConsistencyKind
(C++ enum), 559

eprosima::fastdds::dds::TypeConsistencyKind::ALLOW_TYPE_COERCION
(C++ enumerator), 559

1014 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::TypeConsistencyKind::DISALLOW_TYPE_COERCION
(C++ enumerator), 559

eprosima::fastdds::dds::TypeConsistencyQos
(C++ class), 651

eprosima::fastdds::dds::TypeConsistencyQos::~TypeConsistencyQos
(C++ function), 651

eprosima::fastdds::dds::TypeConsistencyQos::clear
(C++ function), 651

eprosima::fastdds::dds::TypeConsistencyQos::representation
(C++ member), 651

eprosima::fastdds::dds::TypeConsistencyQos::type_consistency
(C++ member), 651

eprosima::fastdds::dds::TypeConsistencyQos::TypeConsistencyQos
(C++ function), 651

eprosima::fastdds::dds::TypeIdV1 (C++ class),
666

eprosima::fastdds::dds::TypeIdV1::~TypeIdV1
(C++ function), 666

eprosima::fastdds::dds::TypeIdV1::clear
(C++ function), 666

eprosima::fastdds::dds::TypeIdV1::get (C++
function), 666

eprosima::fastdds::dds::TypeIdV1::m_type_identifier
(C++ member), 666

eprosima::fastdds::dds::TypeIdV1::TypeIdV1
(C++ function), 666

eprosima::fastdds::dds::TypeObjectV1 (C++
class), 667

eprosima::fastdds::dds::TypeObjectV1::~TypeObjectV1
(C++ function), 668

eprosima::fastdds::dds::TypeObjectV1::clear
(C++ function), 668

eprosima::fastdds::dds::TypeObjectV1::get
(C++ function), 668

eprosima::fastdds::dds::TypeObjectV1::m_type_object
(C++ member), 668

eprosima::fastdds::dds::TypeObjectV1::TypeObjectV1
(C++ function), 668

eprosima::fastdds::dds::TypeSupport (C++
class), 655

eprosima::fastdds::dds::TypeSupport::create_data
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::delete_data
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::deserialize
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::empty
(C++ function), 657

eprosima::fastdds::dds::TypeSupport::get_key
(C++ function), 657

eprosima::fastdds::dds::TypeSupport::get_serialized_size_provider
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::get_type_name
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::is_bounded
(C++ function), 657

eprosima::fastdds::dds::TypeSupport::is_plain
(C++ function), 657

eprosima::fastdds::dds::TypeSupport::operator=
(C++ function), 655

eprosima::fastdds::dds::TypeSupport::register_type
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::serialize
(C++ function), 656

eprosima::fastdds::dds::TypeSupport::TypeSupport
(C++ function), 655

eprosima::fastdds::dds::UserDataQosPolicy
(C++ class), 559

eprosima::fastdds::dds::ViewStateKind (C++
enum), 651

eprosima::fastdds::dds::ViewStateKind::NEW_VIEW_STATE
(C++ enumerator), 652

eprosima::fastdds::dds::ViewStateKind::NOT_NEW_VIEW_STATE
(C++ enumerator), 652

eprosima::fastdds::dds::WaitSet (C++ class),
571

eprosima::fastdds::dds::WaitSet::attach_condition
(C++ function), 571

eprosima::fastdds::dds::WaitSet::detach_condition
(C++ function), 571

eprosima::fastdds::dds::WaitSet::get_conditions
(C++ function), 571

eprosima::fastdds::dds::WaitSet::wait (C++
function), 571

eprosima::fastdds::dds::WireProtocolConfigQos
(C++ class), 559

eprosima::fastdds::dds::WireProtocolConfigQos::~WireProtocolConfigQos
(C++ function), 559

eprosima::fastdds::dds::WireProtocolConfigQos::builtin
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::clear
(C++ function), 559

eprosima::fastdds::dds::WireProtocolConfigQos::default_external_unicast_locators
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::default_multicast_locator_list
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::default_unicast_locator_list
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::ignore_non_matching_locators
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::participant_id
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::port
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::prefix
(C++ member), 560

eprosima::fastdds::dds::WireProtocolConfigQos::throughput_controller
(C++ member), 560

Index 1015

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::dds::WireProtocolConfigQos::WireProtocolConfigQos
(C++ function), 559

eprosima::fastdds::dds::WriterDataLifecycleQosPolicy
(C++ class), 560

eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::~WriterDataLifecycleQosPolicy
(C++ function), 561

eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::autodispose_unregistered_instances
(C++ member), 561

eprosima::fastdds::dds::WriterDataLifecycleQosPolicy::WriterDataLifecycleQosPolicy
(C++ function), 561

eprosima::fastdds::dds::WriterResourceLimitsQos
(C++ class), 561

eprosima::fastdds::dds::WriterResourceLimitsQos::~WriterResourceLimitsQos
(C++ function), 561

eprosima::fastdds::dds::WriterResourceLimitsQos::matched_subscriber_allocation
(C++ member), 561

eprosima::fastdds::dds::WriterResourceLimitsQos::reader_filters_allocation
(C++ member), 561

eprosima::fastdds::dds::WriterResourceLimitsQos::WriterResourceLimitsQos
(C++ function), 561

eprosima::fastdds::dds::xtypes::TypeInformation
(C++ class), 666

eprosima::fastdds::dds::xtypes::TypeInformation::~TypeInformation
(C++ function), 667

eprosima::fastdds::dds::xtypes::TypeInformation::assigned
(C++ function), 667

eprosima::fastdds::dds::xtypes::TypeInformation::clear
(C++ function), 667

eprosima::fastdds::dds::xtypes::TypeInformation::type_information
(C++ member), 667

eprosima::fastdds::dds::xtypes::TypeInformation::TypeInformation
(C++ function), 667

eprosima::fastdds::rtps::c_VendorId_eProsima
(C++ member), 726

eprosima::fastdds::rtps::c_VendorId_Unknown
(C++ member), 726

eprosima::fastdds::rtps::ChainingTransport
(C++ class), 777

eprosima::fastdds::rtps::ChainingTransport::~ChainingTransport
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::AddDefaultOutputLocator
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::ChainingTransport
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::CloseInputChannel
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::configureInitialPeerLocator
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::DoInputLocatorsMatch
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::fillMetatrafficMulticastLocator
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::fillMetatrafficUnicastLocator
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::fillUnicastLocator
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::getDefaultMetatrafficMulticastLocators
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::getDefaultMetatrafficUnicastLocators
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::getDefaultUnicastLocators
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::init
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::is_local_locator
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::is_locator_allowed
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::IsInputChannelOpen
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::IsLocatorSupported
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::max_recv_buffer_size
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::NormalizeLocator
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::OpenInputChannel
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::OpenOutputChannel
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::receive
(C++ function), 780

eprosima::fastdds::rtps::ChainingTransport::RemoteToMainLocal
(C++ function), 777

eprosima::fastdds::rtps::ChainingTransport::select_locators
(C++ function), 778

eprosima::fastdds::rtps::ChainingTransport::send
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::transform_remote_locator
(C++ function), 779

eprosima::fastdds::rtps::ChainingTransport::update_network_interfaces
(C++ function), 780

eprosima::fastdds::rtps::ChainingTransportDescriptor
(C++ struct), 776

eprosima::fastdds::rtps::ChainingTransportDescriptor::low_level_descriptor
(C++ member), 777

eprosima::fastdds::rtps::ChainingTransportDescriptor::max_message_size
(C++ function), 776

eprosima::fastdds::rtps::ChainingTransportDescriptor::min_send_buffer_size
(C++ function), 776

eprosima::fastdds::rtps::ContentFilterProperty
(C++ class), 684

eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration
(C++ struct), 685

eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration::expression_initial_size
(C++ member), 685

eprosima::fastdds::rtps::ContentFilterProperty::AllocationConfiguration::expression_parameters
(C++ member), 685

1016 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::rtps::ContentFilterProperty::content_filtered_topic_name
(C++ member), 684

eprosima::fastdds::rtps::ContentFilterProperty::ContentFilterProperty
(C++ function), 684

eprosima::fastdds::rtps::ContentFilterProperty::expression_parameters
(C++ member), 684

eprosima::fastdds::rtps::ContentFilterProperty::filter_class_name
(C++ member), 684

eprosima::fastdds::rtps::ContentFilterProperty::filter_expression
(C++ member), 684

eprosima::fastdds::rtps::ContentFilterProperty::related_topic_name
(C++ member), 684

eprosima::fastdds::rtps::ExternalLocators
(C++ type), 673

eprosima::fastdds::rtps::FASTDDS_FLOW_CONTROLLER_DEFAULT
(C++ member), 731

eprosima::fastdds::rtps::FASTDDS_STATISTICS_FLOW_CONTROLLER_DEFAULT
(C++ member), 731

eprosima::fastdds::rtps::FlowControllerDescriptor
(C++ struct), 731

eprosima::fastdds::rtps::FlowControllerDescriptor::max_bytes_per_period
(C++ member), 731

eprosima::fastdds::rtps::FlowControllerDescriptor::name
(C++ member), 731

eprosima::fastdds::rtps::FlowControllerDescriptor::period_ms
(C++ member), 731

eprosima::fastdds::rtps::FlowControllerDescriptor::scheduler
(C++ member), 731

eprosima::fastdds::rtps::FlowControllerSchedulerPolicy
(C++ enum), 731

eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::FIFO
(C++ enumerator), 731

eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::HIGH_PRIORITY
(C++ enumerator), 732

eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::PRIORITY_WITH_RESERVATION
(C++ enumerator), 732

eprosima::fastdds::rtps::FlowControllerSchedulerPolicy::ROUND_ROBIN
(C++ enumerator), 731

eprosima::fastdds::rtps::LocatorList (C++
class), 701

eprosima::fastdds::rtps::LocatorList::~LocatorList
(C++ function), 701

eprosima::fastdds::rtps::LocatorList::assign
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::begin
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::clear
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::empty
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::end
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::erase
(C++ function), 703

eprosima::fastdds::rtps::LocatorList::isValid
(C++ function), 703

eprosima::fastdds::rtps::LocatorList::LocatorList
(C++ function), 701

eprosima::fastdds::rtps::LocatorList::operator=
(C++ function), 701

eprosima::fastdds::rtps::LocatorList::operator==
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::push_back
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::reserve
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::resize
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::size
(C++ function), 702

eprosima::fastdds::rtps::LocatorList::swap
(C++ function), 703

eprosima::fastdds::rtps::LocatorListConstIterator
(C++ type), 703

eprosima::fastdds::rtps::LocatorListIterator
(C++ type), 703

eprosima::fastdds::rtps::Locators (C++ class),
704

eprosima::fastdds::rtps::Locators::Locators
(C++ function), 704

eprosima::fastdds::rtps::Locators::operator!=
(C++ function), 704

eprosima::fastdds::rtps::Locators::operator*
(C++ function), 704

eprosima::fastdds::rtps::Locators::operator++
(C++ function), 704

eprosima::fastdds::rtps::Locators::operator==
(C++ function), 704

eprosima::fastdds::rtps::LocatorsIterator
(C++ struct), 703

eprosima::fastdds::rtps::LocatorsIterator::operator!=
(C++ function), 703

eprosima::fastdds::rtps::LocatorsIterator::operator*
(C++ function), 704

eprosima::fastdds::rtps::LocatorsIterator::operator++
(C++ function), 703

eprosima::fastdds::rtps::LocatorsIterator::operator==
(C++ function), 703

eprosima::fastdds::rtps::LocatorWithMask
(C++ class), 710

eprosima::fastdds::rtps::LocatorWithMask::mask
(C++ function), 710

eprosima::fastdds::rtps::operator>> (C++
function), 706

eprosima::fastdds::rtps::operator<< (C++
function), 706

eprosima::fastdds::rtps::RemoteServerAttributes
(C++ class), 678

Index 1017

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::rtps::RemoteServerAttributes::guidPrefix
(C++ member), 678

eprosima::fastdds::rtps::RemoteServerAttributes::metatrafficMulticastLocatorList
(C++ member), 678

eprosima::fastdds::rtps::RemoteServerAttributes::metatrafficUnicastLocatorList
(C++ member), 678

eprosima::fastdds::rtps::RemoteServerList_t
(C++ type), 678

eprosima::fastdds::rtps::s_defaultTTL (C++
member), 776

eprosima::fastdds::rtps::s_IPv4AddressAny
(C++ member), 774

eprosima::fastdds::rtps::s_IPv6AddressAny
(C++ member), 774

eprosima::fastdds::rtps::s_maximumInitialPeersRange
(C++ member), 774

eprosima::fastdds::rtps::s_maximumMessageSize
(C++ member), 774

eprosima::fastdds::rtps::s_minimumSocketBuffer
(C++ member), 774

eprosima::fastdds::rtps::SendResourceList
(C++ type), 774

eprosima::fastdds::rtps::SharedMemTransportDescriptor
(C++ struct), 790

eprosima::fastdds::rtps::SharedMemTransportDescriptor::~SharedMemTransportDescriptor
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::create_transport
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::healthy_check_timeout_ms
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::max_message_size
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::min_send_buffer_size
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::operator=
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::operator==
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::port_queue_capacity
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::rtps_dump_file
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::segment_size
(C++ function), 791

eprosima::fastdds::rtps::SharedMemTransportDescriptor::SharedMemTransportDescriptor
(C++ function), 791

eprosima::fastdds::rtps::SocketTransportDescriptor
(C++ struct), 775

eprosima::fastdds::rtps::SocketTransportDescriptor::~SocketTransportDescriptor
(C++ function), 775

eprosima::fastdds::rtps::SocketTransportDescriptor::interfaceWhiteList
(C++ member), 776

eprosima::fastdds::rtps::SocketTransportDescriptor::min_send_buffer_size
(C++ function), 775

eprosima::fastdds::rtps::SocketTransportDescriptor::operator=
(C++ function), 775

eprosima::fastdds::rtps::SocketTransportDescriptor::operator==
(C++ function), 776

eprosima::fastdds::rtps::SocketTransportDescriptor::receiveBufferSize
(C++ member), 776

eprosima::fastdds::rtps::SocketTransportDescriptor::sendBufferSize
(C++ member), 776

eprosima::fastdds::rtps::SocketTransportDescriptor::SocketTransportDescriptor
(C++ function), 775

eprosima::fastdds::rtps::SocketTransportDescriptor::TTL
(C++ member), 776

eprosima::fastdds::rtps::TCPTransportDescriptor
(C++ struct), 784

eprosima::fastdds::rtps::TCPTransportDescriptor::~TCPTransportDescriptor
(C++ function), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::add_listener_port
(C++ function), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::apply_security
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::calculate_crc
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::check_crc
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::enable_tcp_nodelay
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::keep_alive_frequency_ms
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::keep_alive_timeout_ms
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::listening_ports
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::logical_port_increment
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::logical_port_range
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::max_logical_port
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::operator=
(C++ function), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::operator==
(C++ function), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::TCPTransportDescriptor
(C++ function), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::tls_config
(C++ member), 785

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig
(C++ struct), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::add_option
(C++ function), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::add_verify_mode
(C++ function), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::cert_chain_file
(C++ member), 788

1018 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::default_verify_path
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::get_option
(C++ function), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::get_verify_mode
(C++ function), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::handshake_role
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::operator==
(C++ function), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::options
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::password
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::private_key_file
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::rsa_private_key_file
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::server_name
(C++ member), 789

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole
(C++ enum), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::CLIENT
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::DEFAULT
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSHandShakeRole::SERVER
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions
(C++ enum), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::DEFAULT_WORKAROUNDS
(C++ enumerator), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_COMPRESSION
(C++ enumerator), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_SSLV2
(C++ enumerator), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_SSLV3
(C++ enumerator), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_1
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_2
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NO_TLSV1_3
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::NONE
(C++ enumerator), 786

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSOptions::SINGLE_DH_USE
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode
(C++ enum), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::UNUSED
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_CLIENT_ONCE
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_FAIL_IF_NO_PEER_CERT
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_NONE
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::TLSVerifyMode::VERIFY_PEER
(C++ enumerator), 787

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::tmp_dh_file
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_depth
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_file
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_mode
(C++ member), 788

eprosima::fastdds::rtps::TCPTransportDescriptor::TLSConfig::verify_paths
(C++ member), 788

eprosima::fastdds::rtps::TCPv4TransportDescriptor
(C++ struct), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::~TCPv4TransportDescriptor
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::create_transport
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::get_WAN_address
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::operator=
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::operator==
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::set_WAN_address
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::TCPv4TransportDescriptor
(C++ function), 789

eprosima::fastdds::rtps::TCPv4TransportDescriptor::wan_addr
(C++ member), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor
(C++ struct), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor::~TCPv6TransportDescriptor
(C++ function), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor::create_transport
(C++ function), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor::operator=
(C++ function), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor::operator==
(C++ function), 790

eprosima::fastdds::rtps::TCPv6TransportDescriptor::TCPv6TransportDescriptor
(C++ function), 790

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor
(C++ struct), 782

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::~test_UDPv4TransportDescriptor
(C++ function), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::create_transport
(C++ function), 783

Index 1019

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::DestinationLocatorFilter
(C++ type), 782

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_ack_nack_messages_filter_
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_data_frag_messages_filter_
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_data_messages_filter_
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_gap_messages_filter_
(C++ member), 784

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::drop_heartbeat_messages_filter_
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropAckNackMessagesPercentage
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropDataFragMessagesPercentage
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropDataMessagesPercentage
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropGapMessagesPercentage
(C++ member), 784

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropHeartbeatMessagesPercentage
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropLogLength
(C++ member), 784

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropParticipantBuiltinTopicData
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropPublicationBuiltinTopicData
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::dropSubscriptionBuiltinTopicData
(C++ member), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::filter
(C++ type), 782

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::locator_filter_
(C++ member), 784

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::operator=
(C++ function), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::operator==
(C++ function), 783

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::sequenceNumberDataMessagesToDrop
(C++ member), 784

eprosima::fastdds::rtps::test_UDPv4TransportDescriptor::test_UDPv4TransportDescriptor
(C++ function), 783

eprosima::fastdds::rtps::TransportDescriptorInterface
(C++ struct), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::~TransportDescriptorInterface
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::create_transport
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::max_initial_peers_range
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::max_message_size
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::maxInitialPeersRange
(C++ member), 772

eprosima::fastdds::rtps::TransportDescriptorInterface::maxMessageSize
(C++ member), 772

eprosima::fastdds::rtps::TransportDescriptorInterface::min_send_buffer_size
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::operator=
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::operator==
(C++ function), 771

eprosima::fastdds::rtps::TransportDescriptorInterface::TransportDescriptorInterface
(C++ function), 771

eprosima::fastdds::rtps::TransportInterface
(C++ class), 772

eprosima::fastdds::rtps::TransportInterface::~TransportInterface
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::AddDefaultOutputLocator
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::CloseInputChannel
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::configureInitialPeerLocator
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::DoInputLocatorsMatch
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::fillMetatrafficMulticastLocator
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::fillMetatrafficUnicastLocator
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::fillUnicastLocator
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::get_configuration
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::getDefaultMetatrafficMulticastLocators
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::getDefaultMetatrafficUnicastLocators
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::getDefaultUnicastLocators
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::init
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::is_local_locator
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::is_locator_allowed
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::IsInputChannelOpen
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::IsLocatorSupported
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::kind
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::max_recv_buffer_size
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::NormalizeLocator
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::OpenInputChannel
(C++ function), 773

1020 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::rtps::TransportInterface::OpenOutputChannel
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::operator=
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::RemoteToMainLocal
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::select_locators
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::shutdown
(C++ function), 774

eprosima::fastdds::rtps::TransportInterface::transform_remote_locator
(C++ function), 773

eprosima::fastdds::rtps::TransportInterface::TransportInterface
(C++ function), 772

eprosima::fastdds::rtps::TransportInterface::update_network_interfaces
(C++ function), 774

eprosima::fastdds::rtps::TransportReceiverInterface
(C++ class), 775

eprosima::fastdds::rtps::TransportReceiverInterface::~TransportReceiverInterface
(C++ function), 775

eprosima::fastdds::rtps::TransportReceiverInterface::OnDataReceived
(C++ function), 775

eprosima::fastdds::rtps::UDPTransportDescriptor
(C++ struct), 780

eprosima::fastdds::rtps::UDPTransportDescriptor::~UDPTransportDescriptor
(C++ function), 781

eprosima::fastdds::rtps::UDPTransportDescriptor::m_output_udp_socket
(C++ member), 781

eprosima::fastdds::rtps::UDPTransportDescriptor::non_blocking_send
(C++ member), 781

eprosima::fastdds::rtps::UDPTransportDescriptor::operator=
(C++ function), 781

eprosima::fastdds::rtps::UDPTransportDescriptor::operator==
(C++ function), 781

eprosima::fastdds::rtps::UDPTransportDescriptor::UDPTransportDescriptor
(C++ function), 781

eprosima::fastdds::rtps::UDPv4TransportDescriptor
(C++ struct), 781

eprosima::fastdds::rtps::UDPv4TransportDescriptor::~UDPv4TransportDescriptor
(C++ function), 781

eprosima::fastdds::rtps::UDPv4TransportDescriptor::create_transport
(C++ function), 781

eprosima::fastdds::rtps::UDPv4TransportDescriptor::operator=
(C++ function), 781

eprosima::fastdds::rtps::UDPv4TransportDescriptor::UDPv4TransportDescriptor
(C++ function), 781

eprosima::fastdds::rtps::UDPv6TransportDescriptor
(C++ struct), 782

eprosima::fastdds::rtps::UDPv6TransportDescriptor::~UDPv6TransportDescriptor
(C++ function), 782

eprosima::fastdds::rtps::UDPv6TransportDescriptor::create_transport
(C++ function), 782

eprosima::fastdds::rtps::UDPv6TransportDescriptor::operator=
(C++ function), 782

eprosima::fastdds::rtps::UDPv6TransportDescriptor::UDPv6TransportDescriptor
(C++ function), 782

eprosima::fastdds::rtps::VendorId_t (C++
type), 728

eprosima::fastdds::statistics::ACKNACK_COUNT_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::DATA_COUNT_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::dds::DataReaderQos
(C++ class), 799

eprosima::fastdds::statistics::dds::DataReaderQos::DataReaderQos
(C++ function), 799

eprosima::fastdds::statistics::dds::DataWriterQos
(C++ class), 798

eprosima::fastdds::statistics::dds::DataWriterQos::DataWriterQos
(C++ function), 798

eprosima::fastdds::statistics::dds::DomainParticipant
(C++ class), 797

eprosima::fastdds::statistics::dds::DomainParticipant::disable_statistics_datawriter
(C++ function), 798

eprosima::fastdds::statistics::dds::DomainParticipant::enable_statistics_datawriter
(C++ function), 797

eprosima::fastdds::statistics::dds::DomainParticipant::enable_statistics_datawriter_with_profile
(C++ function), 797

eprosima::fastdds::statistics::dds::DomainParticipant::narrow
(C++ function), 798

eprosima::fastdds::statistics::dds::STATISTICS_DATAREADER_QOS
(C++ member), 799

eprosima::fastdds::statistics::dds::STATISTICS_DATAWRITER_QOS
(C++ member), 798

eprosima::fastdds::statistics::DISCOVERY_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::EDP_PACKETS_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::GAP_COUNT_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::HEARTBEAT_COUNT_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::HISTORY_LATENCY_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::NACKFRAG_COUNT_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::NETWORK_LATENCY_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::PDP_PACKETS_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::PHYSICAL_DATA_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::PUBLICATION_THROUGHPUT_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::RESENT_DATAS_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::RTPS_LOST_TOPIC
(C++ member), 799

Index 1021

Fast DDS Documentation, Release 2.8.2

eprosima::fastdds::statistics::RTPS_SENT_TOPIC
(C++ member), 799

eprosima::fastdds::statistics::SAMPLE_DATAS_TOPIC
(C++ member), 800

eprosima::fastdds::statistics::SUBSCRIPTION_THROUGHPUT_TOPIC
(C++ member), 799

eprosima::fastrtps::c_TimeInfinite (C++ mem-
ber), 720

eprosima::fastrtps::c_TimeInvalid (C++ mem-
ber), 720

eprosima::fastrtps::c_TimeZero (C++ member),
720

eprosima::fastrtps::Duration_t (C++ type), 720
eprosima::fastrtps::operator!= (C++ function),

722
eprosima::fastrtps::operator+ (C++ function),

723
eprosima::fastrtps::operator== (C++ function),

722
eprosima::fastrtps::operator- (C++ function),

723
eprosima::fastrtps::operator> (C++ function),

723
eprosima::fastrtps::operator>= (C++ function),

723
eprosima::fastrtps::operator< (C++ function),

722
eprosima::fastrtps::operator<= (C++ function),

723
eprosima::fastrtps::operator<< (C++ function),

723
eprosima::fastrtps::rtps::AuthenticatedPeerCredentialToken

(C++ type), 725
eprosima::fastrtps::rtps::BinaryProperty

(C++ class), 685
eprosima::fastrtps::rtps::BinaryPropertyHelper

(C++ class), 685
eprosima::fastrtps::rtps::BinaryPropertySeq

(C++ type), 685
eprosima::fastrtps::rtps::BuiltinAttributes

(C++ class), 668
eprosima::fastrtps::rtps::BuiltinAttributes::avoid_builtin_multicast

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::discovery_config

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::initialPeersList

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::metatraffic_external_unicast_locators

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::metatrafficMulticastLocatorList

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::metatrafficUnicastLocatorList

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::mutation_tries

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::readerHistoryMemoryPolicy

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::readerPayloadSize

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::typelookup_config

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::use_WriterLivelinessProtocol

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::writerHistoryMemoryPolicy

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinAttributes::writerPayloadSize

(C++ member), 669
eprosima::fastrtps::rtps::BuiltinEndpointSet_t

(C++ type), 726
eprosima::fastrtps::rtps::c_default_RTPSParticipantAllocationAttributes

(C++ member), 670
eprosima::fastrtps::rtps::c_EntityId_ReaderLiveliness

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_ReaderLivelinessSecure

(C++ member), 691
eprosima::fastrtps::rtps::c_EntityId_RTPSParticipant

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SEDPPubReader

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SEDPPubWriter

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SEDPSubReader

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SEDPSubWriter

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SPDPReader

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_SPDPWriter

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_reader

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_TypeLookup_reply_writer

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_reader

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_TypeLookup_request_writer

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_Unknown

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_WriterLiveliness

(C++ member), 690
eprosima::fastrtps::rtps::c_EntityId_WriterLivelinessSecure

(C++ member), 691
eprosima::fastrtps::rtps::c_Guid_Unknown

(C++ member), 694
eprosima::fastrtps::rtps::c_GuidPrefix_Unknown

(C++ member), 696
eprosima::fastrtps::rtps::c_InstanceHandle_Unknown

1022 Index

Fast DDS Documentation, Release 2.8.2

(C++ member), 697
eprosima::fastrtps::rtps::c_ProtocolVersion

(C++ member), 726
eprosima::fastrtps::rtps::c_ProtocolVersion_2_0

(C++ member), 726
eprosima::fastrtps::rtps::c_ProtocolVersion_2_1

(C++ member), 726
eprosima::fastrtps::rtps::c_ProtocolVersion_2_2

(C++ member), 726
eprosima::fastrtps::rtps::c_ProtocolVersion_2_3

(C++ member), 726
eprosima::fastrtps::rtps::c_SequenceNumber_Unknown

(C++ member), 715
eprosima::fastrtps::rtps::CacheChange_t

(C++ struct), 685
eprosima::fastrtps::rtps::CacheChange_t::CacheChange_t

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::contains_first_fragment

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::copy

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::copy_not_memcpy

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::get_missing_fragments

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::getFragmentCount

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::getFragmentSize

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::inline_qos

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::instanceHandle

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::is_fully_assembled

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::isRead

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::kind

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::sequenceNumber

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::serializedPayload

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::setFragmentSize

(C++ function), 686
eprosima::fastrtps::rtps::CacheChange_t::sourceTimestamp

(C++ member), 687
eprosima::fastrtps::rtps::CacheChange_t::writerGUID

(C++ member), 687
eprosima::fastrtps::rtps::CDRMessage_t (C++

struct), 689
eprosima::fastrtps::rtps::CDRMessage_t::buffer

(C++ member), 689
eprosima::fastrtps::rtps::CDRMessage_t::CDRMessage_t

(C++ function), 689
eprosima::fastrtps::rtps::CDRMessage_t::length

(C++ member), 689
eprosima::fastrtps::rtps::CDRMessage_t::max_size

(C++ member), 689
eprosima::fastrtps::rtps::CDRMessage_t::msg_endian

(C++ member), 689
eprosima::fastrtps::rtps::CDRMessage_t::pos

(C++ member), 689
eprosima::fastrtps::rtps::CDRMessage_t::reserved_size

(C++ member), 689
eprosima::fastrtps::rtps::ChangeForReader_t

(C++ class), 687
eprosima::fastrtps::rtps::ChangeForReader_t::getChange

(C++ function), 687
eprosima::fastrtps::rtps::ChangeForReaderCmp

(C++ struct), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t

(C++ enum), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t::ACKNOWLEDGED

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t::REQUESTED

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNACKNOWLEDGED

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNDERWAY

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeForReaderStatus_t::UNSENT

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeKind_t (C++

enum), 688
eprosima::fastrtps::rtps::ChangeKind_t::ALIVE

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_DISPOSED

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_DISPOSED_UNREGISTERED

(C++ enumerator), 688
eprosima::fastrtps::rtps::ChangeKind_t::NOT_ALIVE_UNREGISTERED

(C++ enumerator), 688
eprosima::fastrtps::rtps::Count_t (C++ type),

726
eprosima::fastrtps::rtps::DataHolder (C++

class), 725
eprosima::fastrtps::rtps::DataHolderHelper

(C++ class), 725
eprosima::fastrtps::rtps::DataHolderSeq

(C++ type), 725
eprosima::fastrtps::rtps::DiscoveryProtocol

(C++ enum), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::BACKUP

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::CLIENT

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::EXTERNAL

Index 1023

Fast DDS Documentation, Release 2.8.2

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::NONE

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::SERVER

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::SIMPLE

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoveryProtocol::SUPER_CLIENT

(C++ enumerator), 670
eprosima::fastrtps::rtps::DiscoverySettings

(C++ class), 671
eprosima::fastrtps::rtps::DiscoverySettings::discoveryProtocol

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::discoveryServer_client_syncperiod

(C++ member), 672
eprosima::fastrtps::rtps::DiscoverySettings::getStaticEndpointXMLFilename

(C++ function), 671
eprosima::fastrtps::rtps::DiscoverySettings::ignoreParticipantFlags

(C++ member), 672
eprosima::fastrtps::rtps::DiscoverySettings::initial_announcements

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::leaseDuration

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::leaseDuration_announcementperiod

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::m_DiscoveryServers

(C++ member), 672
eprosima::fastrtps::rtps::DiscoverySettings::m_PDPfactory

(C++ member), 672
eprosima::fastrtps::rtps::DiscoverySettings::m_simpleEDP

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::setStaticEndpointXMLFilename

(C++ function), 671
eprosima::fastrtps::rtps::DiscoverySettings::static_edp_xml_config

(C++ function), 671
eprosima::fastrtps::rtps::DiscoverySettings::use_SIMPLE_EndpointDiscoveryProtocol

(C++ member), 671
eprosima::fastrtps::rtps::DiscoverySettings::use_STATIC_EndpointDiscoveryProtocol

(C++ member), 671
eprosima::fastrtps::rtps::DurabilityKind_t

(C++ type), 727
eprosima::fastrtps::rtps::Endianness_t (C++

enum), 727
eprosima::fastrtps::rtps::Endianness_t::BIGEND

(C++ enumerator), 727
eprosima::fastrtps::rtps::Endianness_t::LITTLEEND

(C++ enumerator), 727
eprosima::fastrtps::rtps::Endpoint (C++

class), 730
eprosima::fastrtps::rtps::Endpoint::getAttributes

(C++ function), 730
eprosima::fastrtps::rtps::Endpoint::getGuid

(C++ function), 730
eprosima::fastrtps::rtps::Endpoint::getMutex

(C++ function), 730
eprosima::fastrtps::rtps::EndpointAttributes

(C++ class), 672
eprosima::fastrtps::rtps::EndpointAttributes::data_sharing_configuration

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::durabilityKind

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::endpointKind

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::external_unicast_locators

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::getEntityID

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::getUserDefinedID

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::ignore_non_matching_locators

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::multicastLocatorList

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::ownershipKind

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::persistence_guid

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::properties

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::reliabilityKind

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::remoteLocatorList

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::set_data_sharing_configuration

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::setEntityID

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::setUserDefinedID

(C++ function), 672
eprosima::fastrtps::rtps::EndpointAttributes::topicKind

(C++ member), 673
eprosima::fastrtps::rtps::EndpointAttributes::unicastLocatorList

(C++ member), 673
eprosima::fastrtps::rtps::EndpointKind_t

(C++ type), 727
eprosima::fastrtps::rtps::EntityId_t (C++

struct), 692
eprosima::fastrtps::rtps::EntityId_t::cmp

(C++ function), 693
eprosima::fastrtps::rtps::EntityId_t::EntityId_t

(C++ function), 692
eprosima::fastrtps::rtps::EntityId_t::operator=

(C++ function), 692
eprosima::fastrtps::rtps::EntityId_t::operator<

(C++ function), 692
eprosima::fastrtps::rtps::EntityId_t::to_uint32

(C++ function), 692
eprosima::fastrtps::rtps::Exception (C++

1024 Index

Fast DDS Documentation, Release 2.8.2

class), 730
eprosima::fastrtps::rtps::Exception::~Exception

(C++ function), 730
eprosima::fastrtps::rtps::Exception::minor

(C++ function), 730
eprosima::fastrtps::rtps::Exception::raise

(C++ function), 730
eprosima::fastrtps::rtps::Exception::what

(C++ function), 730
eprosima::fastrtps::rtps::FragmentNumber_t

(C++ type), 694
eprosima::fastrtps::rtps::FragmentNumberSet_t

(C++ type), 694
eprosima::fastrtps::rtps::GUID_t (C++ struct),

694
eprosima::fastrtps::rtps::GUID_t::entityId

(C++ member), 695
eprosima::fastrtps::rtps::GUID_t::GUID_t

(C++ function), 694
eprosima::fastrtps::rtps::GUID_t::guidPrefix

(C++ member), 695
eprosima::fastrtps::rtps::GUID_t::is_builtin

(C++ function), 695
eprosima::fastrtps::rtps::GUID_t::is_on_same_host_as

(C++ function), 695
eprosima::fastrtps::rtps::GUID_t::is_on_same_process_as

(C++ function), 695
eprosima::fastrtps::rtps::GuidPrefix_t (C++

struct), 696
eprosima::fastrtps::rtps::GuidPrefix_t::cmp

(C++ function), 697
eprosima::fastrtps::rtps::GuidPrefix_t::GuidPrefix_t

(C++ function), 696
eprosima::fastrtps::rtps::GuidPrefix_t::operator!=

(C++ function), 696
eprosima::fastrtps::rtps::GuidPrefix_t::operator==

(C++ function), 696
eprosima::fastrtps::rtps::GuidPrefix_t::operator<

(C++ function), 696
eprosima::fastrtps::rtps::History (C++ class),

732
eprosima::fastrtps::rtps::History::changesBegin

(C++ function), 734
eprosima::fastrtps::rtps::History::changesEnd

(C++ function), 734
eprosima::fastrtps::rtps::History::find_change

(C++ function), 734
eprosima::fastrtps::rtps::History::find_change_nts

(C++ function), 733
eprosima::fastrtps::rtps::History::get_earliest_change

(C++ function), 734
eprosima::fastrtps::rtps::History::get_max_change

(C++ function), 734
eprosima::fastrtps::rtps::History::get_min_change

(C++ function), 734
eprosima::fastrtps::rtps::History::getHistorySize

(C++ function), 733
eprosima::fastrtps::rtps::History::getMutex

(C++ function), 734
eprosima::fastrtps::rtps::History::getTypeMaxSerialized

(C++ function), 734
eprosima::fastrtps::rtps::History::isFull

(C++ function), 733
eprosima::fastrtps::rtps::History::m_att

(C++ member), 735
eprosima::fastrtps::rtps::History::matches_change

(C++ function), 734
eprosima::fastrtps::rtps::History::release_Cache

(C++ function), 733
eprosima::fastrtps::rtps::History::remove_all_changes

(C++ function), 733
eprosima::fastrtps::rtps::History::remove_change

(C++ function), 733, 734
eprosima::fastrtps::rtps::History::remove_change_nts

(C++ function), 733
eprosima::fastrtps::rtps::History::reserve_Cache

(C++ function), 732, 733
eprosima::fastrtps::rtps::HistoryAttributes

(C++ class), 674
eprosima::fastrtps::rtps::HistoryAttributes::extraReservedCaches

(C++ member), 675
eprosima::fastrtps::rtps::HistoryAttributes::HistoryAttributes

(C++ function), 674
eprosima::fastrtps::rtps::HistoryAttributes::initialReservedCaches

(C++ member), 675
eprosima::fastrtps::rtps::HistoryAttributes::maximumReservedCaches

(C++ member), 675
eprosima::fastrtps::rtps::HistoryAttributes::memoryPolicy

(C++ member), 675
eprosima::fastrtps::rtps::HistoryAttributes::payloadMaxSize

(C++ member), 675
eprosima::fastrtps::rtps::IChangePool (C++

class), 735
eprosima::fastrtps::rtps::IChangePool::release_cache

(C++ function), 735
eprosima::fastrtps::rtps::IChangePool::reserve_cache

(C++ function), 735
eprosima::fastrtps::rtps::IdentityStatusToken

(C++ type), 725
eprosima::fastrtps::rtps::IdentityToken

(C++ type), 725
eprosima::fastrtps::rtps::iHandle2GUID (C++

function), 699
eprosima::fastrtps::rtps::InitialAnnouncementConfig

(C++ struct), 675
eprosima::fastrtps::rtps::InitialAnnouncementConfig::count

(C++ member), 675
eprosima::fastrtps::rtps::InitialAnnouncementConfig::period

Index 1025

Fast DDS Documentation, Release 2.8.2

(C++ member), 675
eprosima::fastrtps::rtps::InstanceHandle_t

(C++ struct), 697
eprosima::fastrtps::rtps::InstanceHandle_t::isDefined

(C++ function), 697
eprosima::fastrtps::rtps::InstanceHandle_t::operator=

(C++ function), 697
eprosima::fastrtps::rtps::InstanceHandle_t::value

(C++ member), 698
eprosima::fastrtps::rtps::IPayloadPool (C++

class), 735
eprosima::fastrtps::rtps::IPayloadPool::get_payload

(C++ function), 736
eprosima::fastrtps::rtps::IPayloadPool::release_payload

(C++ function), 737
eprosima::fastrtps::rtps::IsAddressDefined

(C++ function), 700
eprosima::fastrtps::rtps::IsLocatorValid

(C++ function), 700
eprosima::fastrtps::rtps::LivelinessData

(C++ struct), 764
eprosima::fastrtps::rtps::LivelinessData::count

(C++ member), 764
eprosima::fastrtps::rtps::LivelinessData::guid

(C++ member), 764
eprosima::fastrtps::rtps::LivelinessData::kind

(C++ member), 764
eprosima::fastrtps::rtps::LivelinessData::lease_duration

(C++ member), 764
eprosima::fastrtps::rtps::LivelinessData::LivelinessData

(C++ function), 764
eprosima::fastrtps::rtps::LivelinessData::operator!=

(C++ function), 764
eprosima::fastrtps::rtps::LivelinessData::operator==

(C++ function), 764
eprosima::fastrtps::rtps::LivelinessData::status

(C++ member), 764
eprosima::fastrtps::rtps::LivelinessData::time

(C++ member), 764
eprosima::fastrtps::rtps::Locator_t (C++

class), 700
eprosima::fastrtps::rtps::Locator_t::address

(C++ member), 701
eprosima::fastrtps::rtps::Locator_t::get_address

(C++ function), 701
eprosima::fastrtps::rtps::Locator_t::kind

(C++ member), 701
eprosima::fastrtps::rtps::Locator_t::Locator_t

(C++ function), 700
eprosima::fastrtps::rtps::Locator_t::operator=

(C++ function), 700
eprosima::fastrtps::rtps::Locator_t::port

(C++ member), 701
eprosima::fastrtps::rtps::Locator_t::set_address

(C++ function), 700
eprosima::fastrtps::rtps::Locator_t::set_Invalid_Address

(C++ function), 701
eprosima::fastrtps::rtps::LocatorSelector

(C++ class), 708
eprosima::fastrtps::rtps::LocatorSelector::add_entry

(C++ function), 708
eprosima::fastrtps::rtps::LocatorSelector::clear

(C++ function), 708
eprosima::fastrtps::rtps::LocatorSelector::enable

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::for_each

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::is_selected

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::iterator

(C++ class), 709
eprosima::fastrtps::rtps::LocatorSelector::iterator::operator!=

(C++ function), 710
eprosima::fastrtps::rtps::LocatorSelector::iterator::operator*

(C++ function), 710
eprosima::fastrtps::rtps::LocatorSelector::iterator::operator++

(C++ function), 710
eprosima::fastrtps::rtps::LocatorSelector::iterator::operator==

(C++ function), 710
eprosima::fastrtps::rtps::LocatorSelector::IteratorIndex

(C++ struct), 710
eprosima::fastrtps::rtps::LocatorSelector::LocatorSelector

(C++ function), 708
eprosima::fastrtps::rtps::LocatorSelector::remove_entry

(C++ function), 708
eprosima::fastrtps::rtps::LocatorSelector::reset

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::select

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::selected_size

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::selection_start

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::state_has_changed

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelector::transport_starts

(C++ function), 709
eprosima::fastrtps::rtps::LocatorSelectorEntry

(C++ struct), 706
eprosima::fastrtps::rtps::LocatorSelectorEntry::enable

(C++ function), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::enabled

(C++ member), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState

(C++ struct), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::EntryState

(C++ function), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::multicast

1026 Index

Fast DDS Documentation, Release 2.8.2

(C++ member), 708
eprosima::fastrtps::rtps::LocatorSelectorEntry::EntryState::unicast

(C++ member), 708
eprosima::fastrtps::rtps::LocatorSelectorEntry::LocatorSelectorEntry

(C++ function), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::multicast

(C++ member), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::remote_guid

(C++ member), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::reset

(C++ function), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::state

(C++ member), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::transport_should_process

(C++ member), 707
eprosima::fastrtps::rtps::LocatorSelectorEntry::unicast

(C++ member), 707
eprosima::fastrtps::rtps::MatchingInfo (C++

class), 711
eprosima::fastrtps::rtps::MatchingInfo::MatchingInfo

(C++ function), 711
eprosima::fastrtps::rtps::MatchingInfo::remoteEndpointGuid

(C++ member), 711
eprosima::fastrtps::rtps::MatchingInfo::status

(C++ member), 711
eprosima::fastrtps::rtps::MatchingStatus

(C++ enum), 711
eprosima::fastrtps::rtps::MatchingStatus::MATCHED_MATCHING

(C++ enumerator), 711
eprosima::fastrtps::rtps::MatchingStatus::REMOVED_MATCHING

(C++ enumerator), 711
eprosima::fastrtps::rtps::MemoryManagementPolicy

(C++ enum), 759
eprosima::fastrtps::rtps::MemoryManagementPolicy::DYNAMIC_RESERVE_MEMORY_MODE

(C++ enumerator), 759
eprosima::fastrtps::rtps::MemoryManagementPolicy::DYNAMIC_REUSABLE_MEMORY_MODE

(C++ enumerator), 759
eprosima::fastrtps::rtps::MemoryManagementPolicy::PREALLOCATED_MEMORY_MODE

(C++ enumerator), 759
eprosima::fastrtps::rtps::MemoryManagementPolicy::PREALLOCATED_WITH_REALLOC_MEMORY_MODE

(C++ enumerator), 759
eprosima::fastrtps::rtps::octet (C++ type), 727
eprosima::fastrtps::rtps::operator!= (C++

function), 693, 695, 698, 705, 715, 721
eprosima::fastrtps::rtps::operator+ (C++

function), 716, 722
eprosima::fastrtps::rtps::operator== (C++

function), 693, 695, 698, 705, 706, 715, 721,
741

eprosima::fastrtps::rtps::operator- (C++
function), 716, 722

eprosima::fastrtps::rtps::operator> (C++
function), 715, 721

eprosima::fastrtps::rtps::operator>= (C++

function), 716, 722
eprosima::fastrtps::rtps::operator>> (C++

function), 693, 696–698, 705
eprosima::fastrtps::rtps::operator< (C++

function), 695, 698, 704, 715, 721
eprosima::fastrtps::rtps::operator<= (C++

function), 716, 721
eprosima::fastrtps::rtps::operator<< (C++

function), 693–695, 697, 698, 705, 713, 716,
717, 722, 727

eprosima::fastrtps::rtps::participant_stateless_message_reader_entity_id
(C++ member), 690

eprosima::fastrtps::rtps::participant_stateless_message_writer_entity_id
(C++ member), 690

eprosima::fastrtps::rtps::participant_volatile_message_secure_reader_entity_id
(C++ member), 691

eprosima::fastrtps::rtps::participant_volatile_message_secure_writer_entity_id
(C++ member), 691

eprosima::fastrtps::rtps::ParticipantAuthenticationInfo
(C++ struct), 741

eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::guid
(C++ member), 741

eprosima::fastrtps::rtps::ParticipantAuthenticationInfo::status
(C++ member), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo
(C++ struct), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS
(C++ enum), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_PARTICIPANT
(C++ enumerator), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_PARTICIPANT
(C++ enumerator), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::DROPPED_PARTICIPANT
(C++ enumerator), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::IGNORED_PARTICIPANT
(C++ enumerator), 742

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::DISCOVERY_STATUS::REMOVED_PARTICIPANT
(C++ enumerator), 741

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::info
(C++ member), 742

eprosima::fastrtps::rtps::ParticipantDiscoveryInfo::status
(C++ member), 742

eprosima::fastrtps::rtps::ParticipantFilteringFlags
(C++ enum), 675

eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_DIFFERENT_HOST
(C++ enumerator), 675

eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_DIFFERENT_PROCESS
(C++ enumerator), 675

eprosima::fastrtps::rtps::ParticipantFilteringFlags::FILTER_SAME_PROCESS
(C++ enumerator), 675

eprosima::fastrtps::rtps::ParticipantFilteringFlags::NO_FILTER
(C++ enumerator), 675

eprosima::fastrtps::rtps::ParticipantProxyData
(C++ class), 742

Index 1027

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::ParticipantProxyData::clear
(C++ function), 742

eprosima::fastrtps::rtps::ParticipantProxyData::copy
(C++ function), 742

eprosima::fastrtps::rtps::ParticipantProxyData::default_locators
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::get_backup_stamp
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::get_persistence_guid
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::get_sample_identity
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::get_serialized_size
(C++ function), 742

eprosima::fastrtps::rtps::ParticipantProxyData::m_availableBuiltinEndpoints
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_expectsInlineQos
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_guid
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_manualLivelinessCount
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_participantName
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_protocolVersion
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::m_VendorId
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::metatraffic_locators
(C++ member), 743

eprosima::fastrtps::rtps::ParticipantProxyData::readFromCDRMessage
(C++ function), 742

eprosima::fastrtps::rtps::ParticipantProxyData::set_backup_stamp
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::set_persistence_guid
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::set_sample_identity
(C++ function), 743

eprosima::fastrtps::rtps::ParticipantProxyData::updateData
(C++ function), 742

eprosima::fastrtps::rtps::ParticipantProxyData::writeToCDRMessage
(C++ function), 742

eprosima::fastrtps::rtps::PermissionsCredentialToken
(C++ type), 725

eprosima::fastrtps::rtps::PermissionsToken
(C++ type), 726

eprosima::fastrtps::rtps::PortParameters
(C++ class), 712

eprosima::fastrtps::rtps::PortParameters::domainIDGain
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::getMulticastPort
(C++ function), 712

eprosima::fastrtps::rtps::PortParameters::getUnicastPort
(C++ function), 712

eprosima::fastrtps::rtps::PortParameters::offsetd0
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::offsetd1
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::offsetd2
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::offsetd3
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::participantIDGain
(C++ member), 712

eprosima::fastrtps::rtps::PortParameters::portBase
(C++ member), 712

eprosima::fastrtps::rtps::Property (C++
class), 713

eprosima::fastrtps::rtps::PropertyHelper
(C++ class), 713

eprosima::fastrtps::rtps::PropertyPolicy
(C++ class), 676

eprosima::fastrtps::rtps::PropertyPolicy::binary_properties
(C++ function), 676

eprosima::fastrtps::rtps::PropertyPolicy::properties
(C++ function), 676

eprosima::fastrtps::rtps::PropertyPolicyHelper
(C++ class), 676

eprosima::fastrtps::rtps::PropertyPolicyHelper::find_property
(C++ function), 676

eprosima::fastrtps::rtps::PropertyPolicyHelper::get_properties_with_prefix
(C++ function), 676

eprosima::fastrtps::rtps::PropertyPolicyHelper::length
(C++ function), 676

eprosima::fastrtps::rtps::PropertySeq (C++
type), 713

eprosima::fastrtps::rtps::ProtocolVersion_t
(C++ struct), 727

eprosima::fastrtps::rtps::ReaderAttributes
(C++ class), 677

eprosima::fastrtps::rtps::ReaderAttributes::disable_positive_acks
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::endpoint
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::expectsInlineQos
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::liveliness_kind_
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::liveliness_lease_duration
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::matched_writers_allocation
(C++ member), 677

eprosima::fastrtps::rtps::ReaderAttributes::times
(C++ member), 677

eprosima::fastrtps::rtps::ReaderDiscoveryInfo
(C++ struct), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS
(C++ enum), 745

1028 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_READER
(C++ enumerator), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_READER
(C++ enumerator), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::IGNORED_READER
(C++ enumerator), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::DISCOVERY_STATUS::REMOVED_READER
(C++ enumerator), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::info
(C++ member), 745

eprosima::fastrtps::rtps::ReaderDiscoveryInfo::status
(C++ member), 745

eprosima::fastrtps::rtps::ReaderHistory
(C++ class), 737

eprosima::fastrtps::rtps::ReaderHistory::add_change
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::can_change_be_added_nts
(C++ function), 737

eprosima::fastrtps::rtps::ReaderHistory::completed_change
(C++ function), 738

eprosima::fastrtps::rtps::ReaderHistory::matches_change
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::ReaderHistory
(C++ function), 737

eprosima::fastrtps::rtps::ReaderHistory::received_change
(C++ function), 738

eprosima::fastrtps::rtps::ReaderHistory::remove_change
(C++ function), 740

eprosima::fastrtps::rtps::ReaderHistory::remove_change_nts
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::remove_changes_with_guid
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::remove_fragmented_changes_until
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::writer_unmatched
(C++ function), 739

eprosima::fastrtps::rtps::ReaderHistory::writer_update_its_ownership_strength_nts
(C++ function), 739

eprosima::fastrtps::rtps::ReaderListener
(C++ class), 753

eprosima::fastrtps::rtps::ReaderListener::on_data_available
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::on_incompatible_type
(C++ function), 755

eprosima::fastrtps::rtps::ReaderListener::on_liveliness_changed
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::on_requested_incompatible_qos
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::on_sample_lost
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::on_sample_rejected
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::on_writer_discovery
(C++ function), 754

eprosima::fastrtps::rtps::ReaderListener::onNewCacheChangeAdded
(C++ function), 753

eprosima::fastrtps::rtps::ReaderListener::onReaderMatched
(C++ function), 753

eprosima::fastrtps::rtps::ReaderProxyData
(C++ class), 745

eprosima::fastrtps::rtps::ReaderProxyData::clear
(C++ function), 746

eprosima::fastrtps::rtps::ReaderProxyData::copy
(C++ function), 746

eprosima::fastrtps::rtps::ReaderProxyData::get_sample_identity
(C++ function), 745

eprosima::fastrtps::rtps::ReaderProxyData::get_serialized_size
(C++ function), 745

eprosima::fastrtps::rtps::ReaderProxyData::is_update_allowed
(C++ function), 746

eprosima::fastrtps::rtps::ReaderProxyData::m_qos
(C++ member), 746

eprosima::fastrtps::rtps::ReaderProxyData::plugin_security_attributes_
(C++ member), 746

eprosima::fastrtps::rtps::ReaderProxyData::readFromCDRMessage
(C++ function), 746

eprosima::fastrtps::rtps::ReaderProxyData::security_attributes_
(C++ member), 746

eprosima::fastrtps::rtps::ReaderProxyData::set_sample_identity
(C++ function), 745

eprosima::fastrtps::rtps::ReaderProxyData::update
(C++ function), 746

eprosima::fastrtps::rtps::ReaderProxyData::writeToCDRMessage
(C++ function), 746

eprosima::fastrtps::rtps::ReaderTimes (C++
class), 677

eprosima::fastrtps::rtps::ReaderTimes::heartbeatResponseDelay
(C++ member), 677

eprosima::fastrtps::rtps::ReaderTimes::initialAcknackDelay
(C++ member), 677

eprosima::fastrtps::rtps::ReliabilityKind_t
(C++ type), 728

eprosima::fastrtps::rtps::RemoteLocatorList
(C++ struct), 713

eprosima::fastrtps::rtps::RemoteLocatorList::add_multicast_locator
(C++ function), 714

eprosima::fastrtps::rtps::RemoteLocatorList::add_unicast_locator
(C++ function), 714

eprosima::fastrtps::rtps::RemoteLocatorList::multicast
(C++ member), 714

eprosima::fastrtps::rtps::RemoteLocatorList::operator=
(C++ function), 714

eprosima::fastrtps::rtps::RemoteLocatorList::RemoteLocatorList
(C++ function), 713

eprosima::fastrtps::rtps::RemoteLocatorList::unicast
(C++ member), 714

eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes
(C++ struct), 678

Index 1029

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes::max_multicast_locators
(C++ member), 678

eprosima::fastrtps::rtps::RemoteLocatorsAllocationAttributes::max_unicast_locators
(C++ member), 678

eprosima::fastrtps::rtps::RTPSDomain (C++
class), 759

eprosima::fastrtps::rtps::RTPSDomain::createParticipant
(C++ function), 759, 760

eprosima::fastrtps::rtps::RTPSDomain::createRTPSReader
(C++ function), 762, 763

eprosima::fastrtps::rtps::RTPSDomain::createRTPSWriter
(C++ function), 760–762

eprosima::fastrtps::rtps::RTPSDomain::removeRTPSParticipant
(C++ function), 763

eprosima::fastrtps::rtps::RTPSDomain::removeRTPSReader
(C++ function), 763

eprosima::fastrtps::rtps::RTPSDomain::removeRTPSWriter
(C++ function), 762

eprosima::fastrtps::rtps::RTPSDomain::stopAll
(C++ function), 759

eprosima::fastrtps::rtps::RTPSParticipant
(C++ class), 748

eprosima::fastrtps::rtps::RTPSParticipant::announceRTPSParticipantState
(C++ function), 748

eprosima::fastrtps::rtps::RTPSParticipant::enable
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::get_domain_id
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::get_new_entity_id
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::getGuid
(C++ function), 748

eprosima::fastrtps::rtps::RTPSParticipant::getMaxDataSize
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::getMaxMessageSize
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::getParticipantNames
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::getRTPSParticipantAttributes
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::getRTPSParticipantID
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::ignore_participant
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::ignore_reader
(C++ function), 751

eprosima::fastrtps::rtps::RTPSParticipant::ignore_writer
(C++ function), 751

eprosima::fastrtps::rtps::RTPSParticipant::is_security_enabled_for_reader
(C++ function), 751

eprosima::fastrtps::rtps::RTPSParticipant::is_security_enabled_for_writer
(C++ function), 751

eprosima::fastrtps::rtps::RTPSParticipant::newRemoteReaderDiscovered
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::newRemoteWriterDiscovered
(C++ function), 748

eprosima::fastrtps::rtps::RTPSParticipant::registerReader
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::registerWriter
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::resetRTPSParticipantAnnouncement
(C++ function), 748

eprosima::fastrtps::rtps::RTPSParticipant::set_check_type_function
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::set_listener
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::stopRTPSParticipantAnnouncement
(C++ function), 748

eprosima::fastrtps::rtps::RTPSParticipant::typelookup_manager
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::update_attributes
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::updateReader
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipant::updateWriter
(C++ function), 749

eprosima::fastrtps::rtps::RTPSParticipant::wlp
(C++ function), 750

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes
(C++ struct), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::content_filter
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::data_limits
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::locators
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::participants
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::readers
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::send_buffers
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::total_readers
(C++ function), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::total_writers
(C++ function), 679

eprosima::fastrtps::rtps::RTPSParticipantAllocationAttributes::writers
(C++ member), 679

eprosima::fastrtps::rtps::RTPSParticipantAttributes
(C++ class), 679

eprosima::fastrtps::rtps::RTPSParticipantAttributes::allocation
(C++ member), 681

eprosima::fastrtps::rtps::RTPSParticipantAttributes::builtin
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::default_external_unicast_locators
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::defaultMulticastLocatorList
(C++ member), 680

1030 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::RTPSParticipantAttributes::defaultUnicastLocatorList
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::flow_controllers
(C++ member), 681

eprosima::fastrtps::rtps::RTPSParticipantAttributes::getName
(C++ function), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::ignore_non_matching_locators
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::listenSocketBufferSize
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::participantID
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::port
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::prefix
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::properties
(C++ member), 681

eprosima::fastrtps::rtps::RTPSParticipantAttributes::sendSocketBufferSize
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::setName
(C++ function), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::throughputController
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::useBuiltinTransports
(C++ member), 681

eprosima::fastrtps::rtps::RTPSParticipantAttributes::userData
(C++ member), 680

eprosima::fastrtps::rtps::RTPSParticipantAttributes::userTransports
(C++ member), 681

eprosima::fastrtps::rtps::RTPSParticipantListener
(C++ class), 751

eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_dependencies_reply
(C++ function), 752

eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_discovery
(C++ function), 752

eprosima::fastrtps::rtps::RTPSParticipantListener::on_type_information_received
(C++ function), 753

eprosima::fastrtps::rtps::RTPSParticipantListener::onParticipantDiscovery
(C++ function), 751

eprosima::fastrtps::rtps::RTPSParticipantListener::onReaderDiscovery
(C++ function), 752

eprosima::fastrtps::rtps::RTPSParticipantListener::onWriterDiscovery
(C++ function), 752

eprosima::fastrtps::rtps::RTPSReader (C++
class), 755

eprosima::fastrtps::rtps::RTPSReader::assert_writer_liveliness
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::begin_sample_access_nts
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::change_read_by_user
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::change_removed_by_history
(C++ function), 756

eprosima::fastrtps::rtps::RTPSReader::end_sample_access_nts
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::expectsInlineQos
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::get_content_filter
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::getHistory
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::getListener
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::is_sample_valid
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::isInCleanState
(C++ function), 758

eprosima::fastrtps::rtps::RTPSReader::liveliness_changed_status_
(C++ member), 759

eprosima::fastrtps::rtps::RTPSReader::matched_writer_add
(C++ function), 755

eprosima::fastrtps::rtps::RTPSReader::matched_writer_is_matched
(C++ function), 755

eprosima::fastrtps::rtps::RTPSReader::matched_writer_remove
(C++ function), 755

eprosima::fastrtps::rtps::RTPSReader::nextUnreadCache
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::nextUntakenCache
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::processDataFragMsg
(C++ function), 756

eprosima::fastrtps::rtps::RTPSReader::processDataMsg
(C++ function), 755

eprosima::fastrtps::rtps::RTPSReader::processGapMsg
(C++ function), 756

eprosima::fastrtps::rtps::RTPSReader::processHeartbeatMsg
(C++ function), 756

eprosima::fastrtps::rtps::RTPSReader::releaseCache
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::reserveCache
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::set_content_filter
(C++ function), 757

eprosima::fastrtps::rtps::RTPSReader::setListener
(C++ function), 757

eprosima::fastrtps::rtps::RTPSWriter (C++
class), 765

eprosima::fastrtps::rtps::RTPSWriter::calculateMaxDataSize
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::deliver_sample_nts
(C++ function), 768

eprosima::fastrtps::rtps::RTPSWriter::get_disable_positive_acks
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_announcement_period
(C++ function), 768

eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_kind
(C++ function), 768

Index 1031

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::RTPSWriter::get_liveliness_lease_duration
(C++ function), 768

eprosima::fastrtps::rtps::RTPSWriter::get_separate_sending
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::get_seq_num_max
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::get_seq_num_min
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::getListener
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::getMaxDataSize
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::getRTPSParticipant
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::getTypeMaxSerialized
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::has_been_fully_delivered
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::is_acked_by_all
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::is_datasharing_compatible
(C++ function), 768

eprosima::fastrtps::rtps::RTPSWriter::isAsync
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::liveliness_lost_status_
(C++ member), 769

eprosima::fastrtps::rtps::RTPSWriter::matched_reader_add
(C++ function), 765

eprosima::fastrtps::rtps::RTPSWriter::matched_reader_is_matched
(C++ function), 765

eprosima::fastrtps::rtps::RTPSWriter::matched_reader_remove
(C++ function), 765

eprosima::fastrtps::rtps::RTPSWriter::new_change
(C++ function), 765

eprosima::fastrtps::rtps::RTPSWriter::process_acknack
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::process_nack_frag
(C++ function), 768

eprosima::fastrtps::rtps::RTPSWriter::reader_data_filter
(C++ function), 765, 766

eprosima::fastrtps::rtps::RTPSWriter::release_change
(C++ function), 765

eprosima::fastrtps::rtps::RTPSWriter::remove_older_changes
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::send_nts
(C++ function), 769

eprosima::fastrtps::rtps::RTPSWriter::set_separate_sending
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::try_remove_change
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::updateAttributes
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriter::wait_for_acknowledgement
(C++ function), 767

eprosima::fastrtps::rtps::RTPSWriter::wait_for_all_acked
(C++ function), 766

eprosima::fastrtps::rtps::RTPSWriterPublishMode
(C++ enum), 681

eprosima::fastrtps::rtps::RTPSWriterPublishMode::ASYNCHRONOUS_WRITER
(C++ enumerator), 681

eprosima::fastrtps::rtps::RTPSWriterPublishMode::SYNCHRONOUS_WRITER
(C++ enumerator), 681

eprosima::fastrtps::rtps::SampleIdentity
(C++ class), 714

eprosima::fastrtps::rtps::SampleIdentity::operator=
(C++ function), 714

eprosima::fastrtps::rtps::SampleIdentity::operator<
(C++ function), 715

eprosima::fastrtps::rtps::SampleIdentity::SampleIdentity
(C++ function), 714

eprosima::fastrtps::rtps::sedp_builtin_publications_secure_reader
(C++ member), 691

eprosima::fastrtps::rtps::sedp_builtin_publications_secure_writer
(C++ member), 690

eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_reader
(C++ member), 691

eprosima::fastrtps::rtps::sedp_builtin_subscriptions_secure_writer
(C++ member), 691

eprosima::fastrtps::rtps::SendBuffersAllocationAttributes
(C++ struct), 681

eprosima::fastrtps::rtps::SendBuffersAllocationAttributes::dynamic
(C++ member), 681

eprosima::fastrtps::rtps::SendBuffersAllocationAttributes::preallocated_number
(C++ member), 681

eprosima::fastrtps::rtps::SequenceNumber_t
(C++ struct), 717

eprosima::fastrtps::rtps::SequenceNumber_t::operator++
(C++ function), 717

eprosima::fastrtps::rtps::SequenceNumber_t::operator+=
(C++ function), 717

eprosima::fastrtps::rtps::SequenceNumber_t::SequenceNumber_t
(C++ function), 717

eprosima::fastrtps::rtps::SequenceNumber_t::to64long
(C++ function), 717

eprosima::fastrtps::rtps::SequenceNumberDiff
(C++ struct), 718

eprosima::fastrtps::rtps::SequenceNumberHash
(C++ struct), 718

eprosima::fastrtps::rtps::SequenceNumberSet_t
(C++ type), 718

eprosima::fastrtps::rtps::SerializedPayload_t
(C++ struct), 719

eprosima::fastrtps::rtps::SerializedPayload_t::copy
(C++ function), 719

eprosima::fastrtps::rtps::SerializedPayload_t::data
(C++ member), 719

eprosima::fastrtps::rtps::SerializedPayload_t::empty
(C++ function), 719

1032 Index

Fast DDS Documentation, Release 2.8.2

eprosima::fastrtps::rtps::SerializedPayload_t::encapsulation
(C++ member), 719

eprosima::fastrtps::rtps::SerializedPayload_t::length
(C++ member), 719

eprosima::fastrtps::rtps::SerializedPayload_t::max_size
(C++ member), 719

eprosima::fastrtps::rtps::SerializedPayload_t::pos
(C++ member), 719

eprosima::fastrtps::rtps::SerializedPayload_t::representation_header_size
(C++ member), 720

eprosima::fastrtps::rtps::SerializedPayload_t::reserve_fragmented
(C++ function), 719

eprosima::fastrtps::rtps::SerializedPayload_t::SerializedPayload_t
(C++ function), 719

eprosima::fastrtps::rtps::SimpleEDPAttributes
(C++ class), 682

eprosima::fastrtps::rtps::SimpleEDPAttributes::use_PublicationReaderANDSubscriptionWriter
(C++ member), 682

eprosima::fastrtps::rtps::SimpleEDPAttributes::use_PublicationWriterANDSubscriptionReader
(C++ member), 682

eprosima::fastrtps::rtps::sort_seqNum (C++
function), 718

eprosima::fastrtps::rtps::SubmessageFlag
(C++ type), 728

eprosima::fastrtps::rtps::ThroughputControllerDescriptor
(C++ struct), 732

eprosima::fastrtps::rtps::ThroughputControllerDescriptor::bytesPerPeriod
(C++ member), 732

eprosima::fastrtps::rtps::ThroughputControllerDescriptor::periodMillisecs
(C++ member), 732

eprosima::fastrtps::rtps::Time_t (C++ class),
724

eprosima::fastrtps::rtps::Time_t::fraction
(C++ function), 724

eprosima::fastrtps::rtps::Time_t::from_ns
(C++ function), 724

eprosima::fastrtps::rtps::Time_t::nanosec
(C++ function), 724

eprosima::fastrtps::rtps::Time_t::now (C++
function), 725

eprosima::fastrtps::rtps::Time_t::seconds
(C++ function), 724

eprosima::fastrtps::rtps::Time_t::Time_t
(C++ function), 724

eprosima::fastrtps::rtps::Time_t::to_ns
(C++ function), 724

eprosima::fastrtps::rtps::Token (C++ type), 726
eprosima::fastrtps::rtps::TopicKind_t (C++

type), 728
eprosima::fastrtps::rtps::TypeLookupSettings

(C++ class), 682
eprosima::fastrtps::rtps::TypeLookupSettings::use_client

(C++ member), 682
eprosima::fastrtps::rtps::TypeLookupSettings::use_server

(C++ member), 682
eprosima::fastrtps::rtps::VariableLengthDataLimits

(C++ struct), 682
eprosima::fastrtps::rtps::VariableLengthDataLimits::max_datasharing_domains

(C++ member), 682
eprosima::fastrtps::rtps::VariableLengthDataLimits::max_partitions

(C++ member), 682
eprosima::fastrtps::rtps::VariableLengthDataLimits::max_properties

(C++ member), 682
eprosima::fastrtps::rtps::VariableLengthDataLimits::max_user_data

(C++ member), 682
eprosima::fastrtps::rtps::WriteParams (C++

class), 728
eprosima::fastrtps::rtps::WriteParams::related_sample_identity

(C++ function), 729
eprosima::fastrtps::rtps::WriteParams::sample_identity

(C++ function), 728
eprosima::fastrtps::rtps::WriteParams::source_timestamp

(C++ function), 729
eprosima::fastrtps::rtps::WriteParams::WRITE_PARAM_DEFAULT

(C++ member), 729
eprosima::fastrtps::rtps::WriterAttributes

(C++ class), 683
eprosima::fastrtps::rtps::WriterAttributes::disable_heartbeat_piggyback

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::disable_positive_acks

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::endpoint

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::flow_controller_name

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::keep_duration

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::liveliness_announcement_period

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::liveliness_kind

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::liveliness_lease_duration

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::matched_readers_allocation

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::mode

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::throughputController

(C++ member), 683
eprosima::fastrtps::rtps::WriterAttributes::times

(C++ member), 683
eprosima::fastrtps::rtps::WriterDiscoveryInfo

(C++ struct), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS

(C++ enum), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::CHANGED_QOS_WRITER

(C++ enumerator), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::DISCOVERED_WRITER

Index 1033

Fast DDS Documentation, Release 2.8.2

(C++ enumerator), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::IGNORED_WRITER

(C++ enumerator), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::DISCOVERY_STATUS::REMOVED_WRITER

(C++ enumerator), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::info

(C++ member), 747
eprosima::fastrtps::rtps::WriterDiscoveryInfo::status

(C++ member), 747
eprosima::fastrtps::rtps::WriterHistory

(C++ class), 740
eprosima::fastrtps::rtps::WriterHistory::add_change

(C++ function), 740
eprosima::fastrtps::rtps::WriterHistory::matches_change

(C++ function), 740
eprosima::fastrtps::rtps::WriterHistory::remove_change

(C++ function), 741
eprosima::fastrtps::rtps::WriterHistory::remove_change_nts

(C++ function), 740
eprosima::fastrtps::rtps::WriterHistory::remove_min_change

(C++ function), 741
eprosima::fastrtps::rtps::WriterHistory::WriterHistory

(C++ function), 740
eprosima::fastrtps::rtps::WriterListener

(C++ class), 769
eprosima::fastrtps::rtps::WriterListener::on_incompatible_type

(C++ function), 770
eprosima::fastrtps::rtps::WriterListener::on_liveliness_lost

(C++ function), 770
eprosima::fastrtps::rtps::WriterListener::on_offered_incompatible_qos

(C++ function), 770
eprosima::fastrtps::rtps::WriterListener::on_reader_discovery

(C++ function), 770
eprosima::fastrtps::rtps::WriterListener::onWriterChangeReceivedByAll

(C++ function), 770
eprosima::fastrtps::rtps::WriterListener::onWriterMatched

(C++ function), 769
eprosima::fastrtps::rtps::WriterProxyData

(C++ class), 747
eprosima::fastrtps::rtps::WriterProxyData::clear

(C++ function), 747
eprosima::fastrtps::rtps::WriterProxyData::copy

(C++ function), 748
eprosima::fastrtps::rtps::WriterProxyData::get_sample_identity

(C++ function), 747
eprosima::fastrtps::rtps::WriterProxyData::get_serialized_size

(C++ function), 748
eprosima::fastrtps::rtps::WriterProxyData::is_update_allowed

(C++ function), 747
eprosima::fastrtps::rtps::WriterProxyData::m_qos

(C++ member), 748
eprosima::fastrtps::rtps::WriterProxyData::plugin_security_attributes_

(C++ member), 748
eprosima::fastrtps::rtps::WriterProxyData::readFromCDRMessage

(C++ function), 748
eprosima::fastrtps::rtps::WriterProxyData::security_attributes_

(C++ member), 748
eprosima::fastrtps::rtps::WriterProxyData::set_sample_identity

(C++ function), 747
eprosima::fastrtps::rtps::WriterProxyData::update

(C++ function), 747
eprosima::fastrtps::rtps::WriterProxyData::writeToCDRMessage

(C++ function), 748
eprosima::fastrtps::rtps::WriterTimes (C++

struct), 684
eprosima::fastrtps::rtps::WriterTimes::heartbeatPeriod

(C++ member), 684
eprosima::fastrtps::rtps::WriterTimes::initialHeartbeatDelay

(C++ member), 684
eprosima::fastrtps::rtps::WriterTimes::nackResponseDelay

(C++ member), 684
eprosima::fastrtps::rtps::WriterTimes::nackSupressionDuration

(C++ member), 684
eprosima::fastrtps::Time_t (C++ struct), 720
eprosima::fastrtps::Time_t::now (C++ function),

721
eprosima::fastrtps::Time_t::Time_t (C++ func-

tion), 720
eprosima::fastrtps::Time_t::to_ns (C++ func-

tion), 721
EXCLUSIVE_OWNERSHIP_QOS (class in fastdds), 812
expects_inline_qos() (fastdds.DataReaderQos

method), 901
external_unicast_locators (fast-

dds.RTPSEndpointQos property), 819
extra_samples (fastdds.ResourceLimitsQosPolicy

property), 818

F
FASTDDS_SEQUENCE (C macro), 575
FASTDDS_SQLFILTER_NAME (C macro), 660
FASTDDS_STATUS_COUNT (C macro), 569
find_topic() (fastdds.DomainParticipant method), 835
find_type() (fastdds.DomainParticipant method), 835
flow_controller_name (fast-

dds.PublishModeQosPolicy property), 815
flow_controllers() (fastdds.DomainParticipantQos

method), 853

G
generation_rank (fastdds.SampleInfo property), 910
GenericDataQosPolicy (class in fastdds), 808
get() (fastdds.TypeIdV1 method), 931
get() (fastdds.TypeObjectV1 method), 932
get_builtin_subscriber() (fast-

dds.DomainParticipant method), 836
get_current_time() (fastdds.DomainParticipant

method), 836

1034 Index

Fast DDS Documentation, Release 2.8.2

get_datareader_qos_from_profile() (fast-
dds.Subscriber method), 912

get_datareaders() (fastdds.Subscriber method), 912
get_datawriter_qos_from_profile() (fast-

dds.Publisher method), 876
get_datawriters() (fastdds.Publisher method), 876
get_default_datareader_qos() (fastdds.Subscriber

method), 913
get_default_datawriter_qos() (fastdds.Publisher

method), 876
get_default_participant_qos() (fast-

dds.DomainParticipantFactory method),
847

get_default_publisher_qos() (fast-
dds.DomainParticipant method), 836

get_default_subscriber_qos() (fast-
dds.DomainParticipant method), 836

get_default_topic_qos() (fast-
dds.DomainParticipant method), 837

get_discovered_participant_data() (fast-
dds.DomainParticipant method), 837

get_discovered_participants() (fast-
dds.DomainParticipant method), 838

get_discovered_topic_data() (fast-
dds.DomainParticipant method), 838

get_discovered_topics() (fast-
dds.DomainParticipant method), 838

get_domain_id() (fastdds.DomainParticipant method),
838

get_first_untaken_info() (fastdds.DataReader
method), 883

get_impl() (fastdds.Topic method), 919
get_impl() (fastdds.TopicDescription method), 923
get_instance() (fastdds.DomainParticipantFactory

static method), 847
get_instance_handle() (fastdds.DataReader

method), 883
get_instance_handle() (fastdds.DataWriter method),

856
get_instance_handle() (fastdds.DomainParticipant

method), 838
get_instance_handle() (fastdds.Entity method), 801
get_instance_handle() (fastdds.Publisher method),

877
get_instance_handle() (fastdds.Subscriber method),

914
get_key() (fastdds.TypeSupport method), 932
get_key_value() (fastdds.DataReader method), 883
get_key_value() (fastdds.DataWriter method), 857
get_listener() (fastdds.DataReader method), 883
get_listener() (fastdds.DataWriter method), 857
get_listener() (fastdds.DomainParticipant method),

838
get_listener() (fastdds.Publisher method), 877

get_listener() (fastdds.Subscriber method), 914
get_listener() (fastdds.Topic method), 919
get_listening_locators() (fastdds.DataReader

method), 884
get_liveliness_changed_status() (fast-

dds.DataReader method), 884
get_liveliness_lost_status() (fastdds.DataWriter

method), 857
get_matched_publication_data() (fast-

dds.DataReader method), 884
get_matched_publications() (fastdds.DataReader

method), 884
get_matched_subscription_data() (fast-

dds.DataWriter method), 857
get_matched_subscriptions() (fastdds.DataWriter

method), 857
get_name() (fastdds.TopicDescription method), 923
get_offered_deadline_missed_status() (fast-

dds.DataWriter method), 857
get_offered_incompatible_qos_status() (fast-

dds.DataWriter method), 857
get_participant() (fastdds.Publisher method), 877
get_participant() (fastdds.Subscriber method), 914
get_participant() (fastdds.Topic method), 919
get_participant() (fastdds.TopicDescription

method), 923
get_participant_names() (fast-

dds.DomainParticipant method), 838
get_participant_qos_from_profile() (fast-

dds.DomainParticipantFactory method), 848
get_publication_matched_status() (fast-

dds.DataWriter method), 857
get_publisher() (fastdds.DataWriter method), 857
get_publisher_qos_from_profile() (fast-

dds.DomainParticipant method), 838
get_qos() (fastdds.DataReader method), 884
get_qos() (fastdds.DataWriter method), 858
get_qos() (fastdds.DomainParticipant method), 839
get_qos() (fastdds.DomainParticipantFactory method),

848
get_qos() (fastdds.Publisher method), 877
get_qos() (fastdds.Subscriber method), 914
get_qos() (fastdds.Topic method), 919
get_readerqos() (fastdds.DataReaderQos method),

902
get_requested_deadline_missed_status() (fast-

dds.DataReader method), 884
get_requested_incompatible_qos_status() (fast-

dds.DataReader method), 884
get_resource_event() (fastdds.DomainParticipant

method), 839
get_sample_lost_status() (fastdds.DataReader

method), 885
get_sample_rejected_status() (fast-

Index 1035

Fast DDS Documentation, Release 2.8.2

dds.DataReader method), 885
get_sending_locators() (fastdds.DataWriter

method), 858
get_serialized_size_provider() (fast-

dds.TypeSupport method), 933
get_shared_instance() (fast-

dds.DomainParticipantFactory static method),
848

get_status_changes() (fastdds.Entity method), 801
get_status_mask() (fastdds.Entity method), 801
get_statuscondition() (fastdds.Entity method), 801
get_subscriber() (fastdds.DataReader method), 885
get_subscriber_qos_from_profile() (fast-

dds.DomainParticipant method), 839
get_subscription_matched_status() (fast-

dds.DataReader method), 885
get_topic() (fastdds.DataWriter method), 858
get_topic_qos_from_profile() (fast-

dds.DomainParticipant method), 839
get_topicdescription() (fastdds.DataReader

method), 885
get_type() (fastdds.DataWriter method), 858
get_type_dependencies() (fast-

dds.DomainParticipant method), 839
get_type_name() (fastdds.TopicDescription method),

923
get_type_name() (fastdds.TypeSupport method), 933
get_types() (fastdds.DomainParticipant method), 840
get_unread_count() (fastdds.DataReader method),

885
get_writerqos() (fastdds.DataWriterQos method),

867
getKey() (fastdds.TopicDataType method), 921
getName() (fastdds.TopicDataType method), 921
getNames() (fastdds.PartitionQosPolicy method), 813
getSerializedSizeProvider() (fast-

dds.TopicDataType method), 921
getValue() (fastdds.GenericDataQosPolicy method),

809
group_data() (fastdds.PublisherQos method), 880
group_data() (fastdds.SubscriberQos method), 917
GROUP_PRESENTATION_QOS (class in fastdds), 815
GROUPDATA_QOS_POLICY_ID (class in fastdds), 816
GroupDataQosPolicy (class in fastdds), 809
guid() (fastdds.DataReader method), 885
guid() (fastdds.DataWriter method), 858
guid() (fastdds.DomainParticipant method), 840

H
has_datareaders() (fastdds.Subscriber method), 914
has_datawriters() (fastdds.Publisher method), 877
has_ownership() (fastdds.LoanableCollection

method), 829
hasChanged (fastdds.QosPolicy property), 815

history() (fastdds.DataReaderQos method), 902
history() (fastdds.DataWriterQos method), 867
history() (fastdds.TopicQos method), 926
history_depth (fastdds.DurabilityServiceQosPolicy

property), 807
history_kind (fastdds.DurabilityServiceQosPolicy

property), 807
history_memory_policy (fastdds.RTPSEndpointQos

property), 819
HISTORY_QOS_POLICY_ID (class in fastdds), 816
HistoryQosPolicy (class in fastdds), 809

I
ignore_non_matching_locators (fast-

dds.RTPSEndpointQos property), 819
ignore_non_matching_locators (fast-

dds.WireProtocolConfigQos property), 822
ignore_participant() (fastdds.DomainParticipant

method), 840
ignore_publication() (fastdds.DomainParticipant

method), 840
ignore_subscription() (fastdds.DomainParticipant

method), 840
ignore_topic() (fastdds.DomainParticipant method),

840
IncompatibleQosStatus (class in fastdds), 824
inconsistent_topic() (fastdds.StatusMask static

method), 827
instance_handle (fastdds.SampleInfo property), 910
INSTANCE_PRESENTATION_QOS (class in fastdds), 815
instance_state (fastdds.SampleInfo property), 910
INVALID_QOS_POLICY_ID (class in fastdds), 816
is_active() (fastdds.StatusMask method), 827
is_bounded() (fastdds.TopicDataType method), 921
is_bounded() (fastdds.TypeSupport method), 933
is_enabled() (fastdds.Entity method), 801
is_plain() (fastdds.TopicDataType method), 921
is_plain() (fastdds.TypeSupport method), 933
is_sample_valid() (fastdds.DataReader method), 886

K
KEEP_ALL_HISTORY_QOS (class in fastdds), 810
KEEP_LAST_HISTORY_QOS (class in fastdds), 810
kind (fastdds.DestinationOrderQosPolicy property), 805
kind (fastdds.DurabilityQosPolicy property), 806
kind (fastdds.HistoryQosPolicy property), 810
kind (fastdds.LivelinessQosPolicy property), 811
kind (fastdds.OwnershipQosPolicy property), 811
kind (fastdds.PublishModeQosPolicy property), 815
kind (fastdds.ReliabilityQosPolicy property), 817
kind() (fastdds.DataSharingQosPolicy method), 804

L
last_instance_handle (fastdds.DeadlineMissedStatus

1036 Index

Fast DDS Documentation, Release 2.8.2

property), 824
last_instance_handle (fastdds.SampleRejectedStatus

property), 826
last_policy_id (fastdds.IncompatibleQosStatus prop-

erty), 824
last_publication_handle (fast-

dds.LivelinessChangedStatus property),
824

last_publication_handle (fast-
dds.SubscriptionMatchedStatus property),
829

last_reason (fastdds.SampleRejectedStatus property),
826

last_subscription_handle (fast-
dds.PublicationMatchedStatus property),
825

latency_budget() (fastdds.DataReaderQos method),
902

latency_budget() (fastdds.DataWriterQos method),
867

latency_budget() (fastdds.TopicQos method), 926
LATENCYBUDGET_QOS_POLICY_ID (class in fastdds), 816
LatencyBudgetQosPolicy (class in fastdds), 810
lease_duration (fastdds.LivelinessQosPolicy prop-

erty), 811
length() (fastdds.LoanableCollection method), 829
lifespan() (fastdds.DataReaderQos method), 903
lifespan() (fastdds.DataWriterQos method), 868
lifespan() (fastdds.TopicQos method), 927
LIFESPAN_QOS_POLICY_ID (class in fastdds), 816
LifespanQosPolicy (class in fastdds), 810
listen_socket_buffer_size (fast-

dds.TransportConfigQos property), 820
liveliness() (fastdds.DataReaderQos method), 903
liveliness() (fastdds.DataWriterQos method), 868
liveliness() (fastdds.TopicQos method), 927
liveliness_changed() (fastdds.StatusMask static

method), 827
liveliness_lost() (fastdds.StatusMask static

method), 827
LIVELINESS_QOS_POLICY_ID (class in fastdds), 816
LivelinessChangedStatus (class in fastdds), 824
LivelinessQosPolicy (class in fastdds), 811
load_profiles() (fastdds.DomainParticipantFactory

method), 848
load_XML_profiles_file() (fast-

dds.DomainParticipantFactory method),
848

load_XML_profiles_string() (fast-
dds.DomainParticipantFactory method),
848

loan() (fastdds.LoanableCollection method), 830
loan_sample() (fastdds.DataWriter method), 858
LoanableCollection (class in fastdds), 829

LOCATOR_ADDRESS_INVALID (C macro), 699
LOCATOR_INVALID (C macro), 699
LOCATOR_KIND_INVALID (C macro), 699
LOCATOR_KIND_RESERVED (C macro), 699
LOCATOR_KIND_SHM (C macro), 699
LOCATOR_KIND_TCPv4 (C macro), 699
LOCATOR_KIND_TCPv6 (C macro), 699
LOCATOR_KIND_UDPv4 (C macro), 699
LOCATOR_KIND_UDPv6 (C macro), 699
LOCATOR_PORT_INVALID (C macro), 699
lookup_content_filter_factory() (fast-

dds.DomainParticipant method), 841
lookup_datareader() (fastdds.Subscriber method),

914
lookup_datawriter() (fastdds.Publisher method), 877
lookup_instance() (fastdds.DataReader method), 886
lookup_instance() (fastdds.DataWriter method), 859
lookup_participant() (fast-

dds.DomainParticipantFactory method),
848

lookup_participants() (fast-
dds.DomainParticipantFactory method),
849

lookup_topicdescription() (fast-
dds.DomainParticipant method), 841

M
m_force_type_validation (fast-

dds.TypeConsistencyEnforcementQosPolicy
property), 821

m_ignore_member_names (fast-
dds.TypeConsistencyEnforcementQosPolicy
property), 821

m_ignore_sequence_bounds (fast-
dds.TypeConsistencyEnforcementQosPolicy
property), 821

m_ignore_string_bounds (fast-
dds.TypeConsistencyEnforcementQosPolicy
property), 821

m_isGetKeyDefined (fastdds.TopicDataType property),
921

m_kind (fastdds.TypeConsistencyEnforcementQosPolicy
property), 821

m_prevent_type_widening (fast-
dds.TypeConsistencyEnforcementQosPolicy
property), 821

m_type_identifier (fastdds.TypeIdV1 property), 931
m_type_object (fastdds.TypeObjectV1 property), 932
m_typeSize (fastdds.TopicDataType property), 921
m_value (fastdds.DataRepresentationQosPolicy prop-

erty), 802
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS (class in

fastdds), 811

Index 1037

Fast DDS Documentation, Release 2.8.2

MANUAL_BY_TOPIC_LIVELINESS_QOS (class in fastdds),
811

matched_publisher_allocation (fast-
dds.ReaderResourceLimitsQos property),
909

matched_subscriber_allocation (fast-
dds.WriterResourceLimitsQos property),
823

MatchedStatus (class in fastdds), 825
max_blocking_time (fastdds.ReliabilityQosPolicy

property), 817
max_domains() (fastdds.DataSharingQosPolicy

method), 804
max_instances (fastdds.DurabilityServiceQosPolicy

property), 807
max_instances (fastdds.ResourceLimitsQosPolicy

property), 818
max_samples (fastdds.DurabilityServiceQosPolicy prop-

erty), 807
max_samples (fastdds.ResourceLimitsQosPolicy prop-

erty), 818
max_samples_per_instance (fast-

dds.DurabilityServiceQosPolicy property),
807

max_samples_per_instance (fast-
dds.ResourceLimitsQosPolicy property),
818

max_samples_per_read (fast-
dds.ReaderResourceLimitsQos property),
909

max_size() (fastdds.PartitionQosPolicy method), 813
maximum() (fastdds.LoanableCollection method), 830
minimum_separation (fast-

dds.TimeBasedFilterQosPolicy property),
819

multicast_locator_list (fastdds.RTPSEndpointQos
property), 819

N
name() (fastdds.DomainParticipantQos method), 853
name() (fastdds.Partition_t method), 812
names() (fastdds.PartitionQosPolicy method), 813
new_remote_endpoint_discovered() (fast-

dds.DomainParticipant method), 841
NEW_VIEW_STATE (class in fastdds), 919
NEXT_QOS_POLICY_ID (class in fastdds), 817
no_writers_generation_count (fastdds.SampleInfo

property), 910
none() (fastdds.StatusMask static method), 827
not_alive_count (fastdds.LivelinessChangedStatus

property), 825
not_alive_count_change (fast-

dds.LivelinessChangedStatus property),
825

NOT_ALIVE_DISPOSED_INSTANCE_STATE (class in fast-
dds), 909

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE (class in
fastdds), 909

NOT_NEW_VIEW_STATE (class in fastdds), 919
NOT_READ_SAMPLE_STATE (class in fastdds), 911
NOT_REJECTED (class in fastdds), 827
notify_datareaders() (fastdds.Subscriber method),

915

O
OFF (class in fastdds), 805
off() (fastdds.DataSharingQosPolicy method), 804
offered_deadline_missed() (fastdds.StatusMask

static method), 828
offered_incompatible_qos() (fastdds.StatusMask

static method), 828
ON (class in fastdds), 805
on() (fastdds.DataSharingQosPolicy method), 804
on_data_available() (fastdds.DataReaderListener

method), 897
on_data_on_readers() (fastdds.SubscriberListener

method), 916
on_inconsistent_topic() (fastdds.TopicListener

method), 924
on_liveliness_changed() (fast-

dds.DataReaderListener method), 897
on_liveliness_lost() (fastdds.DataWriterListener

method), 863
on_offered_deadline_missed() (fast-

dds.DataWriterListener method), 863
on_offered_incompatible_qos() (fast-

dds.DataWriterListener method), 863
on_participant_discovery() (fast-

dds.DomainParticipantListener method),
850

on_publication_matched() (fast-
dds.DataWriterListener method), 863

on_publisher_discovery() (fast-
dds.DomainParticipantListener method),
851

on_requested_deadline_missed() (fast-
dds.DataReaderListener method), 897

on_requested_incompatible_qos() (fast-
dds.DataReaderListener method), 897

on_sample_lost() (fastdds.DataReaderListener
method), 898

on_sample_rejected() (fastdds.DataReaderListener
method), 898

on_subscriber_discovery() (fast-
dds.DomainParticipantListener method),
851

on_subscription_matched() (fast-
dds.DataReaderListener method), 898

1038 Index

Fast DDS Documentation, Release 2.8.2

on_type_dependencies_reply() (fast-
dds.DomainParticipantListener method),
851

on_type_discovery() (fast-
dds.DomainParticipantListener method),
851

on_type_information_received() (fast-
dds.DomainParticipantListener method),
851

on_unacknowledged_sample_removed() (fast-
dds.DataWriterListener method), 863

ordered_access (fastdds.PresentationQosPolicy prop-
erty), 814

outstanding_reads_allocation (fast-
dds.ReaderResourceLimitsQos property),
909

ownership() (fastdds.DataReaderQos method), 904
ownership() (fastdds.DataWriterQos method), 869
ownership() (fastdds.TopicQos method), 928
OWNERSHIP_QOS_POLICY_ID (class in fastdds), 816
ownership_strength() (fastdds.DataWriterQos

method), 869
OwnershipQosPolicy (class in fastdds), 811
OWNERSHIPSTRENGTH_QOS_POLICY_ID (class in fast-

dds), 816
OwnershipStrengthQosPolicy (class in fastdds), 812

P
participant_id (fastdds.WireProtocolConfigQos prop-

erty), 822
PARTICIPANTRESOURCELIMITS_QOS_POLICY_ID (class

in fastdds), 816
partition() (fastdds.PublisherQos method), 880
partition() (fastdds.SubscriberQos method), 917
PARTITION_QOS_POLICY_ID (class in fastdds), 816
Partition_t (class in fastdds), 812
PartitionQosPolicy (class in fastdds), 813
period (fastdds.DeadlineQosPolicy property), 805
PERSISTENT_DURABILITY_QOS (class in fastdds), 807
PL_CDR_BE (C macro), 718
PL_CDR_LE (C macro), 718
policies (fastdds.IncompatibleQosStatus property), 824
policy_id (fastdds.QosPolicyCount property), 826
port (fastdds.WireProtocolConfigQos property), 822
prefix (fastdds.WireProtocolConfigQos property), 822
presentation() (fastdds.PublisherQos method), 881
presentation() (fastdds.SubscriberQos method), 918
PRESENTATION_QOS_POLICY_ID (class in fastdds), 816
PresentationQosPolicy (class in fastdds), 814
properties() (fastdds.DataReaderQos method), 904
properties() (fastdds.DataWriterQos method), 870
properties() (fastdds.DomainParticipantQos method),

853

PROPERTYPOLICY_QOS_POLICY_ID (class in fastdds),
816

publication_handle (fastdds.SampleInfo property),
910

publication_matched() (fastdds.StatusMask static
method), 828

PublicationMatchedStatus (class in fastdds), 825
publish_mode() (fastdds.DataWriterQos method), 870
Publisher (class in fastdds), 874
PUBLISHER_QOS_DEFAULT (class in fastdds), 881
PublisherListener (class in fastdds), 879
PublisherQos (class in fastdds), 879
PUBLISHMODE_QOS_POLICY_ID (class in fastdds), 816
PublishModeQosPolicy (class in fastdds), 815
push_back() (fastdds.PartitionQosPolicy method), 814

Q
QosPolicy (class in fastdds), 815
QosPolicyCount (class in fastdds), 826

R
read() (fastdds.DataReader method), 886
read_instance() (fastdds.DataReader method), 889
read_next_instance() (fastdds.DataReader method),

890
read_next_instance_w_condition() (fast-

dds.DataReader method), 891
read_next_sample() (fastdds.DataReader method),

892
READ_SAMPLE_STATE (class in fastdds), 911
read_w_condition() (fastdds.DataReader method),

892
reader_data_lifecycle() (fastdds.DataReaderQos

method), 905
reader_filters_allocation (fast-

dds.WriterResourceLimitsQos property),
823

reader_resource_limits() (fastdds.DataReaderQos
method), 905

READERDATALIFECYCLE_QOS_POLICY_ID (class in fast-
dds), 816

ReaderDataLifecycleQosPolicy (class in fastdds),
817

READERRESOURCELIMITS_QOS_POLICY_ID (class in
fastdds), 816

ReaderResourceLimitsQos (class in fastdds), 909
reception_timestamp (fastdds.SampleInfo property),

910
register_content_filter_factory() (fast-

dds.DomainParticipant method), 841
register_instance() (fastdds.DataWriter method),

859
register_instance_w_timestamp() (fast-

dds.DataWriter method), 859

Index 1039

Fast DDS Documentation, Release 2.8.2

register_remote_type() (fastdds.DomainParticipant
method), 842

register_type() (fastdds.DomainParticipant method),
842

register_type() (fastdds.TypeSupport method), 933
REJECTED_BY_INSTANCES_LIMIT (class in fastdds), 827
REJECTED_BY_SAMPLES_LIMIT (class in fastdds), 827
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT (class

in fastdds), 827
related_sample_identity (fastdds.SampleInfo prop-

erty), 910
reliability() (fastdds.DataReaderQos method), 906
reliability() (fastdds.DataWriterQos method), 871
reliability() (fastdds.TopicQos method), 928
RELIABILITY_QOS_POLICY_ID (class in fastdds), 816
ReliabilityQosPolicy (class in fastdds), 817
reliable_reader_qos() (fastdds.DataReaderQos

method), 906
RELIABLE_RELIABILITY_QOS (class in fastdds), 818
reliable_writer_qos() (fastdds.DataWriterQos

method), 871
remote_locator_list (fastdds.RTPSEndpointQos

property), 819
representation (fastdds.TypeConsistencyQos prop-

erty), 918
requested_deadline_missed() (fastdds.StatusMask

static method), 828
requested_incompatible_qos() (fastdds.StatusMask

static method), 828
resize() (fastdds.GenericDataQosPolicy method), 809
resource_limits() (fastdds.DataReaderQos method),

907
resource_limits() (fastdds.DataWriterQos method),

872
resource_limits() (fastdds.TopicQos method), 929
RESOURCELIMITS_QOS_POLICY_ID (class in fastdds),

816
ResourceLimitsQosPolicy (class in fastdds), 818
resume_publications() (fastdds.Publisher method),

877
return_loan() (fastdds.DataReader method), 892
RTPSENDPOINT_QOS_POLICY_ID (class in fastdds), 816
RTPSEndpointQos (class in fastdds), 819
RTPSMESSAGE_COMMON_DATA_PAYLOAD_SIZE (C

macro), 689
RTPSMESSAGE_COMMON_RTPS_PAYLOAD_SIZE (C

macro), 689
RTPSMESSAGE_DATA_EXTRA_INLINEQOS_SIZE (C

macro), 689
RTPSMESSAGE_DATA_MIN_LENGTH (C macro), 690
RTPSMESSAGE_DEFAULT_SIZE (C macro), 689
RTPSMESSAGE_HEADER_SIZE (C macro), 689
RTPSMESSAGE_INFOTS_SIZE (C macro), 690
RTPSMESSAGE_OCTETSTOINLINEQOS_DATAFRAGSUBMSG

(C macro), 690
RTPSMESSAGE_OCTETSTOINLINEQOS_DATASUBMSG (C

macro), 690
RTPSMESSAGE_SUBMESSAGEHEADER_SIZE (C macro),

689
RTPSRELIABLEREADER_QOS_POLICY_ID (class in fast-

dds), 816
RTPSReliableReaderQos (class in fastdds), 909
RTPSRELIABLEWRITER_QOS_POLICY_ID (class in fast-

dds), 816
RTPSReliableWriterQos (class in fastdds), 881

S
sample_identity (fastdds.SampleInfo property), 910
sample_infos_allocation (fast-

dds.ReaderResourceLimitsQos property),
909

sample_lost() (fastdds.StatusMask static method), 828
sample_rank (fastdds.SampleInfo property), 910
sample_rejected() (fastdds.StatusMask static

method), 828
sample_state (fastdds.SampleInfo property), 910
SampleInfo (class in fastdds), 910
SampleRejectedStatus (class in fastdds), 826
send_always() (fastdds.QosPolicy method), 815
send_socket_buffer_size (fast-

dds.TransportConfigQos property), 820
serialize() (fastdds.TopicDataType method), 921
serialize() (fastdds.TypeSupport method), 934
service_cleanup_delay (fast-

dds.DurabilityServiceQosPolicy property),
807

set() (fastdds.TypeSupport method), 934
set_default_datareader_qos() (fastdds.Subscriber

method), 915
set_default_datawriter_qos() (fastdds.Publisher

method), 878
set_default_participant_qos() (fast-

dds.DomainParticipantFactory method),
849

set_default_publisher_qos() (fast-
dds.DomainParticipant method), 843

set_default_subscriber_qos() (fast-
dds.DomainParticipant method), 843

set_default_topic_qos() (fast-
dds.DomainParticipant method), 843

set_listener() (fastdds.DataReader method), 893
set_listener() (fastdds.DataWriter method), 860
set_listener() (fastdds.DomainParticipant method),

844
set_listener() (fastdds.Publisher method), 878
set_listener() (fastdds.Subscriber method), 915
set_listener() (fastdds.Topic method), 919

1040 Index

Fast DDS Documentation, Release 2.8.2

set_max_domains() (fastdds.DataSharingQosPolicy
method), 804

set_max_size() (fastdds.GenericDataQosPolicy
method), 809

set_max_size() (fastdds.PartitionQosPolicy method),
814

set_qos() (fastdds.DataReader method), 893
set_qos() (fastdds.DataWriter method), 860
set_qos() (fastdds.DomainParticipant method), 844
set_qos() (fastdds.DomainParticipantFactory method),

849
set_qos() (fastdds.Publisher method), 878
set_qos() (fastdds.Subscriber method), 915
set_qos() (fastdds.Topic method), 920
setName() (fastdds.TopicDataType method), 921
setNames() (fastdds.PartitionQosPolicy method), 814
setValue() (fastdds.GenericDataQosPolicy method),

809
SHARED_OWNERSHIP_QOS (class in fastdds), 812
shm_directory() (fastdds.DataSharingQosPolicy

method), 804
size() (fastdds.Partition_t method), 812
size() (fastdds.PartitionQosPolicy method), 814
source_timestamp (fastdds.SampleInfo property), 910
StatusMask (class in fastdds), 827
Subscriber (class in fastdds), 911
SUBSCRIBER_QOS_DEFAULT (class in fastdds), 918
SubscriberListener (class in fastdds), 916
SubscriberQos (class in fastdds), 916
subscription_matched() (fastdds.StatusMask static

method), 828
SubscriptionMatchedStatus (class in fastdds), 829
suspend_publications() (fastdds.Publisher method),

878
SYNCHRONOUS_PUBLISH_MODE (class in fastdds), 815

T
take() (fastdds.DataReader method), 893
take_instance() (fastdds.DataReader method), 894
take_next_instance() (fastdds.DataReader method),

895
take_next_instance_w_condition() (fast-

dds.DataReader method), 895
take_next_sample() (fastdds.DataReader method),

896
take_w_condition() (fastdds.DataReader method),

896
thisown (fastdds.BaseStatus property), 823
thisown (fastdds.DataReader property), 897
thisown (fastdds.DataReaderListener property), 898
thisown (fastdds.DataReaderQos property), 907
thisown (fastdds.DataRepresentationQosPolicy prop-

erty), 802
thisown (fastdds.DataSharingQosPolicy property), 805

thisown (fastdds.DataWriter property), 860
thisown (fastdds.DataWriterListener property), 863
thisown (fastdds.DataWriterQos property), 872
thisown (fastdds.DeadlineMissedStatus property), 824
thisown (fastdds.DeadlineQosPolicy property), 805
thisown (fastdds.DestinationOrderQosPolicy property),

805
thisown (fastdds.DisablePositiveACKsQosPolicy prop-

erty), 806
thisown (fastdds.DomainEntity property), 802
thisown (fastdds.DomainParticipant property), 844
thisown (fastdds.DomainParticipantFactory property),

849
thisown (fastdds.DomainParticipantFactoryQos prop-

erty), 850
thisown (fastdds.DomainParticipantListener property),

851
thisown (fastdds.DomainParticipantQos property), 854
thisown (fastdds.DurabilityQosPolicy property), 806
thisown (fastdds.DurabilityServiceQosPolicy property),

808
thisown (fastdds.Entity property), 802
thisown (fastdds.EntityFactoryQosPolicy property), 808
thisown (fastdds.GenericDataQosPolicy property), 809
thisown (fastdds.GroupDataQosPolicy property), 809
thisown (fastdds.HistoryQosPolicy property), 810
thisown (fastdds.IncompatibleQosStatus property), 824
thisown (fastdds.LatencyBudgetQosPolicy property),

810
thisown (fastdds.LifespanQosPolicy property), 810
thisown (fastdds.LivelinessChangedStatus property),

825
thisown (fastdds.LivelinessQosPolicy property), 811
thisown (fastdds.LoanableCollection property), 830
thisown (fastdds.MatchedStatus property), 825
thisown (fastdds.OwnershipQosPolicy property), 811
thisown (fastdds.OwnershipStrengthQosPolicy prop-

erty), 812
thisown (fastdds.Partition_t property), 812
thisown (fastdds.PartitionQosPolicy property), 814
thisown (fastdds.PresentationQosPolicy property), 814
thisown (fastdds.PublicationMatchedStatus property),

825
thisown (fastdds.Publisher property), 879
thisown (fastdds.PublisherListener property), 879
thisown (fastdds.PublisherQos property), 881
thisown (fastdds.PublishModeQosPolicy property), 815
thisown (fastdds.QosPolicy property), 815
thisown (fastdds.QosPolicyCount property), 826
thisown (fastdds.ReaderDataLifecycleQosPolicy prop-

erty), 817
thisown (fastdds.ReaderResourceLimitsQos property),

909
thisown (fastdds.ReliabilityQosPolicy property), 817

Index 1041

Fast DDS Documentation, Release 2.8.2

thisown (fastdds.ResourceLimitsQosPolicy property),
818

thisown (fastdds.RTPSEndpointQos property), 819
thisown (fastdds.RTPSReliableReaderQos property),

909
thisown (fastdds.RTPSReliableWriterQos property), 881
thisown (fastdds.SampleInfo property), 910
thisown (fastdds.SampleRejectedStatus property), 826
thisown (fastdds.StatusMask property), 828
thisown (fastdds.Subscriber property), 916
thisown (fastdds.SubscriberListener property), 916
thisown (fastdds.SubscriberQos property), 918
thisown (fastdds.SubscriptionMatchedStatus property),

829
thisown (fastdds.TimeBasedFilterQosPolicy property),

819
thisown (fastdds.Topic property), 920
thisown (fastdds.TopicDataQosPolicy property), 820
thisown (fastdds.TopicDataType property), 921
thisown (fastdds.TopicDescription property), 923
thisown (fastdds.TopicListener property), 924
thisown (fastdds.TopicQos property), 929
thisown (fastdds.TransportConfigQos property), 820
thisown (fastdds.TransportPriorityQosPolicy property),

820
thisown (fastdds.TypeConsistencyEnforcementQosPolicy

property), 821
thisown (fastdds.TypeConsistencyQos property), 918
thisown (fastdds.TypeIdV1 property), 931
thisown (fastdds.TypeInformation property), 931
thisown (fastdds.TypeObjectV1 property), 932
thisown (fastdds.TypeSupport property), 934
thisown (fastdds.UserDataQosPolicy property), 822
thisown (fastdds.WireProtocolConfigQos property), 822
thisown (fastdds.WriterDataLifecycleQosPolicy prop-

erty), 823
thisown (fastdds.WriterResourceLimitsQos property),

823
time_based_filter() (fastdds.DataReaderQos

method), 907
TIME_T_INFINITE_NANOSECONDS (C macro), 720
TIME_T_INFINITE_SECONDS (C macro), 720
TIMEBASEDFILTER_QOS_POLICY_ID (class in fastdds),

816
TimeBasedFilterQosPolicy (class in fastdds), 819
times (fastdds.RTPSReliableReaderQos property), 909
times (fastdds.RTPSReliableWriterQos property), 882
Topic (class in fastdds), 919
topic_data() (fastdds.TopicQos method), 929
TOPIC_PRESENTATION_QOS (class in fastdds), 815
TOPIC_QOS_DEFAULT (class in fastdds), 930
TOPICDATA_QOS_POLICY_ID (class in fastdds), 816
TopicDataQosPolicy (class in fastdds), 820
TopicDataType (class in fastdds), 920

TopicDescription (class in fastdds), 923
TopicListener (class in fastdds), 924
TopicQos (class in fastdds), 924
total_count (fastdds.BaseStatus property), 823
total_count (fastdds.DeadlineMissedStatus property),

824
total_count (fastdds.IncompatibleQosStatus property),

824
total_count (fastdds.MatchedStatus property), 825
total_count (fastdds.SampleRejectedStatus property),

826
total_count_change (fastdds.BaseStatus property),

823
total_count_change (fastdds.DeadlineMissedStatus

property), 824
total_count_change (fastdds.IncompatibleQosStatus

property), 824
total_count_change (fastdds.MatchedStatus prop-

erty), 825
total_count_change (fastdds.SampleRejectedStatus

property), 826
TRANSIENT_DURABILITY_QOS (class in fastdds), 807
TRANSIENT_LOCAL_DURABILITY_QOS (class in fastdds),

807
transport() (fastdds.DomainParticipantQos method),

854
transport_priority() (fastdds.DataWriterQos

method), 872
transport_priority() (fastdds.TopicQos method),

930
TRANSPORTCONFIG_QOS_POLICY_ID (class in fastdds),

816
TransportConfigQos (class in fastdds), 820
TRANSPORTPRIORITY_QOS_POLICY_ID (class in fast-

dds), 816
TransportPriorityQosPolicy (class in fastdds), 820
type() (fastdds.DataReader method), 897
type_consistency (fastdds.TypeConsistencyQos prop-

erty), 918
type_consistency() (fastdds.DataReaderQos

method), 908
type_identifier() (fastdds.TopicDataType method),

922
type_information (fastdds.TypeInformation property),

931
type_information() (fastdds.TopicDataType method),

922
type_object() (fastdds.TopicDataType method), 922
TYPECONSISTENCY_QOS_POLICY_ID (class in fastdds),

816
TYPECONSISTENCYENFORCEMENT_QOS_POLICY_ID

(class in fastdds), 816
TypeConsistencyEnforcementQosPolicy (class in

fastdds), 821

1042 Index

Fast DDS Documentation, Release 2.8.2

TypeConsistencyQos (class in fastdds), 918
TypeIdV1 (class in fastdds), 931
TypeInformation (class in fastdds), 931
TYPELOOKUP_DATA_MAX_SIZE (C macro), 744
TypeObjectV1 (class in fastdds), 932
TypeSupport (class in fastdds), 932

U
unicast_locator_list (fastdds.RTPSEndpointQos

property), 819
unloan() (fastdds.LoanableCollection method), 830
unregister_content_filter_factory() (fast-

dds.DomainParticipant method), 844
unregister_instance() (fastdds.DataWriter method),

860
unregister_instance_w_timestamp() (fast-

dds.DataWriter method), 860
unregister_type() (fastdds.DomainParticipant

method), 845
use_builtin_transports (fast-

dds.TransportConfigQos property), 820
user_data() (fastdds.DataReaderQos method), 908
user_data() (fastdds.DataWriterQos method), 873
user_data() (fastdds.DomainParticipantQos method),

854
user_defined_id (fastdds.RTPSEndpointQos prop-

erty), 819
user_transports (fastdds.TransportConfigQos prop-

erty), 820
USERDATA_QOS_POLICY_ID (class in fastdds), 816
UserDataQosPolicy (class in fastdds), 822

V
valid_data (fastdds.SampleInfo property), 910
value (fastdds.OwnershipStrengthQosPolicy property),

812
value (fastdds.TransportPriorityQosPolicy property),

820
view_state (fastdds.SampleInfo property), 910
VOLATILE_DURABILITY_QOS (class in fastdds), 807

W
wait_for_acknowledgments() (fastdds.DataWriter

method), 861
wait_for_acknowledgments() (fastdds.Publisher

method), 879
wait_for_historical_data() (fastdds.DataReader

method), 897
wait_for_unread_message() (fastdds.DataReader

method), 897
wire_protocol() (fastdds.DomainParticipantQos

method), 855
WIREPROTOCOLCONFIG_QOS_POLICY_ID (class in fast-

dds), 817

WireProtocolConfigQos (class in fastdds), 822
write() (fastdds.DataWriter method), 861
write_w_timestamp() (fastdds.DataWriter method),

862
writer_data_lifecycle() (fastdds.DataWriterQos

method), 873
writer_resource_limits() (fastdds.DataWriterQos

method), 874
WRITERDATALIFECYCLE_QOS_POLICY_ID (class in fast-

dds), 816
WriterDataLifecycleQosPolicy (class in fastdds),

823
WRITERRESOURCELIMITS_QOS_POLICY_ID (class in

fastdds), 817
WriterResourceLimitsQos (class in fastdds), 823

X
XCDR2_DATA_REPRESENTATION (class in fastdds), 802
XCDR_DATA_REPRESENTATION (class in fastdds), 802
XML_DATA_REPRESENTATION (class in fastdds), 802

Index 1043

	Fast DDS-Gen
	RTPS Wire Protocol
	Main Features
	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	DDS API
	Fast DDS-Gen
	RTPS Wire Protocol
	Main Features
	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	Linux installation from binaries
	Install
	Contents
	Run an application
	Including Fast-DDS in a CMake project

	Uninstall

	Windows installation from binaries
	Requirements
	Visual Studio

	Install
	Contents
	Environment variables
	Including Fast-DDS in a CMake project

	Linux installation from sources
	Fast DDS library installation
	Requirements
	CMake, g++, pip3, wget and git

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	Libp11 and SoftHSM libraries
	Gtest

	Colcon installation
	Run an application

	CMake installation
	Local installation
	Global installation
	Run an application

	Fast DDS Python bindings installation
	Requirements
	SWIG
	Header files and static library for Python

	Dependencies
	Colcon installation
	Run an application

	CMake installation
	Local installation
	Global installation
	Run an application

	Fast DDS-Gen installation
	Requirements
	Java JDK
	Gradle

	Compiling Fast DDS-Gen
	Contents

	Windows installation from sources
	Fast DDS library installation
	Requirements
	Visual Studio
	Chocolatey
	CMake, pip3, wget and git
	Gtest

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	Libp11 and SoftHSM libraries

	Colcon installation
	Run an application

	CMake installation
	Local installation
	Global installation
	Run an application

	Fast DDS-Gen installation
	Requirements
	Java JDK
	Gradle

	Compiling Fast DDS-Gen
	Contents

	Mac OS installation from sources
	Fast DDS library installation
	Requirements
	Homebrew
	Xcode Command Line Tools
	CMake, g++, pip3, wget and git
	Gtest

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL

	Colcon installation
	Run an application

	CMake installation
	Local installation
	Global installation
	Run an application

	Fast DDS-Gen installation
	Requirements
	Java JDK
	Gradle

	Compiling Fast DDS-Gen
	Contents

	CMake options
	General options
	Log options
	Third-party libraries options
	Test options

	Getting Started
	What is DDS?
	The DCPS conceptual model

	What is RTPS?
	Writing a simple C++ publisher and subscriber application
	Background
	Prerequisites
	Create the application workspace
	Import linked libraries and its dependencies
	Installation from binaries and manual installation
	Colcon installation

	Configure the CMake project
	Build the topic data type
	CMakeLists.txt

	Write the Fast DDS publisher
	Examining the code
	CMakeLists.txt

	Write the Fast DDS subscriber
	Examining the code
	CMakeLists.txt

	Putting all together
	Summary
	Next steps

	Writing a simple Python publisher and subscriber application
	Background
	Prerequisites
	Create the application workspace
	Import linked libraries and its dependencies
	Colcon installation

	Build the topic data type
	CMakeLists.txt

	Write the Fast DDS publisher
	Examining the code

	Write the Fast DDS subscriber
	Examining the code

	Putting all together
	Summary
	Next steps

	Library Overview
	Architecture
	DDS Layer
	RTPS layer
	Transport layer

	Programming and execution model
	Concurrency and multithreading
	Event-driven architecture

	Functionalities
	Discovery Protocols
	Security
	Logging
	XML profiles configuration
	Environment variables

	DDS Layer
	Core
	Entity
	Types of Entities
	Common Entity Characteristics
	Entity Identifier
	QoS policy
	Listener
	Status
	StatusCondition
	Enabling Entities

	Policy
	Standard QoS Policies
	DeadlineQosPolicy
	Compatibility Rule
	Example
	C++
	XML
	DestinationOrderQosPolicy
	DestinationOrderQosPolicyKind
	Compatibility Rule
	DurabilityQosPolicy
	DurabilityQosPolicyKind
	Compatibility Rule
	Example
	C++
	XML
	DurabilityServiceQosPolicy
	EntityFactoryQosPolicy
	Example
	C++
	XML
	GroupDataQosPolicy
	Example
	HistoryQosPolicy
	HistoryQosPolicyKind
	Example
	C++
	XML
	LatencyBudgetQosPolicy
	Compatibility Rule
	LifespanQosPolicy
	Example
	C++
	XML
	LivelinessQosPolicy
	LivelinessQosPolicyKind
	Compatibility Rule
	Example
	C++
	XML
	OwnershipQosPolicy
	OwnershipQosPolicyKind
	Compatibility Rule
	Example
	C++
	XML
	OwnershipStrengthQosPolicy
	Example
	C++
	XML
	PartitionQosPolicy
	Example
	C++
	XML
	PresentationQosPolicy
	PresentationQosPolicyAccessScopeKind
	Compatibility Rule
	ReaderDataLifecycleQosPolicy
	ReliabilityQosPolicy
	ReliabilityQosPolicyKind
	Compatibility Rule
	Example
	C++
	XML
	ResourceLimitsQosPolicy
	Consistency Rule
	Example
	C++
	XML
	TimeBasedFilterQosPolicy
	TopicDataQosPolicy
	Example
	TransportPriorityQosPolicy
	UserDataQosPolicy
	Example
	WriterDataLifecycleQosPolicy

	eProsima Extensions
	DataSharingQosPolicy
	DataSharingKind
	Data-sharing configuration helper functions
	Example
	C++
	XML
	DisablePositiveACKsQosPolicy
	Compatibility Rule
	Example
	C++
	XML
	FlowControllersQos
	ParticipantResourceLimitsQos
	RemoteLocatorsAllocationAttributes
	ResourceLimitedContainerConfig
	SendBuffersAllocationAttributes
	VariableLengthDataLimits
	ContentFilterProperty::AllocationConfiguration
	Example
	C++
	XML
	PropertyPolicyQos
	Example
	C++
	XML
	PublishModeQosPolicy
	PublishModeQosPolicyKind
	Example
	C++
	XML
	ReaderResourceLimitsQos
	Example
	C++
	XML
	RTPSEndpointQos
	MemoryManagementPolicy
	Example
	C++
	XML
	RTPSReliableReaderQos
	ReaderTimes
	Example
	C++
	XML
	RTPSReliableWriterQos
	WriterTimes
	DisableHeartbeatPiggyback
	Example
	C++
	XML
	TransportConfigQos
	TransportDescriptorInterface
	Example
	C++
	XML
	TypeConsistencyQos
	Example
	C++
	XML
	WireProtocolConfigQos
	ThroughputControllerDescriptor
	Example
	C++
	XML
	WriterResourceLimitsQos
	Example
	C++
	XML

	XTypes Extensions
	DataRepresentationQosPolicy
	DataRepresentationId
	Example
	C++
	XML
	TypeConsistencyEnforcementQosPolicy
	TypeConsistencyKind
	Example
	C++
	XML

	Status
	InconsistentTopicStatus
	DataOnReaders
	DataAvailable
	LivelinessChangedStatus
	RequestedDeadlineMissedStatus
	RequestedIncompatibleQosStatus
	QosPolicyCountSeq
	QosPolicyCount

	SampleLostStatus
	SampleRejectedStatus
	SampleRejectedStatusKind

	SubscriptionMatchedStatus
	LivelinessLostStatus
	OfferedDeadlineMissedStatus
	OfferedIncompatibleQosStatus
	PublicationMatchedStatus

	Conditions and Wait-sets
	GuardCondition
	StatusCondition
	ReadCondition

	Domain
	DomainParticipant
	DomainParticipantQos
	Default DomainParticipantQos

	DomainParticipantListener
	DomainParticipantFactory
	DomainParticipantFactoryQos
	Loading profiles from an XML file

	Creating a DomainParticipant
	Profile based creation of a DomainParticipant
	Deleting a DomainParticipant

	Partitions
	Wildcards in Partitions
	Full example

	Publisher
	Publisher
	PublisherQos
	Default PublisherQos

	PublisherListener
	Creating a Publisher
	Profile based creation of a Publisher
	Deleting a Publisher

	DataWriter
	DataWriterQos
	Default DataWriterQos

	DataWriterListener
	Creating a DataWriter
	Profile based creation of a DataWriter
	Deleting a DataWriter

	Publishing data
	Blocking of the write operation
	Borrowing a data buffer

	Subscriber
	Subscriber
	SubscriberQos
	Default SubscriberQos

	SubscriberListener
	Creating a Subscriber
	Profile based creation of a Subscriber
	Deleting a Subscriber

	DataReader
	DataReaderQos
	Default DataReaderQos

	DataReaderListener
	Creating a DataReader
	Profile based creation of a DataReader
	Deleting a DataReader

	SampleInfo
	sample_state
	view_state
	instance_state
	disposed_generation_count
	no_writers_generation_count
	sample_rank
	generation_rank
	absolute_generation_rank
	source_timestamp
	instance_handle
	publication_handle
	valid_data
	sample_identity
	related_sample_identity

	Accessing received data
	Loaning and Returning Data and SampleInfo Sequences
	Processing returned data
	Accessing data on callbacks
	Accessing data with a waiting thread
	Wait-sets and DataAvailable status condition
	DataReader non-blocking calls

	Topic
	Topics, keys and instances
	Instance advantages
	Instance lifecycle
	Practical applications
	Commercial flights tracking
	Relational databases

	TopicDescription
	Topic
	TopicQos
	Default TopicQos

	ContentFilteredTopic
	TopicListener
	Definition of data types
	Dynamic data types
	Data types with a key

	Creating a Topic
	Profile based creation of a Topic
	Deleting a Topic

	Filtering data on a Topic
	Creating a ContentFilteredTopic
	Updating the filter expression and parameters
	Deleting a ContentFilteredTopic

	The default SQL-like filter
	Grammar
	Like condition
	Match condition
	Type comparisons
	Example

	Using custom filters
	Creating the Custom Filter
	Creating the Factory for the Custom Filter
	Registering the Factory
	Creating a ContentFilteredTopic using the Custom Filter

	Where is filtering applied: writer vs reader side
	Conditions for writer side filtering
	Discovery race condition

	Fast DDS-Gen for data types source code generation
	Basic usage
	Output files

	RTPS Layer
	Relation to the DDS Layer
	How to use the RTPS Layer
	Managing the Participant
	Managing the Writers and Readers
	Using the History to Send and Receive Data

	Configuring Readers and Writers
	Setting the data durability kind

	Configuring the History
	Changing the maximum size of the payload
	Changing the size of the History

	Using a custom Payload Pool
	IPayloadPool interface
	Default Payload pool implementation
	Example using a custom Payload pool

	Discovery
	Discovery phases
	Discovery mechanisms
	Discovery settings
	General Discovery Settings
	Discovery Protocol
	Ignore Participant flags
	Lease Duration
	Announcement Period

	SIMPLE Discovery Settings
	Initial Announcements
	Simple EDP Attributes
	Initial peers

	STATIC Discovery Settings
	STATIC EDP
	STATIC EDP XML Configuration Specification
	Locators definition
	Ownership QoS
	Liveliness QoS

	Checking STATIC EDP XML Files
	STATIC EDP XML Example

	Loading STATIC EDP XML Files

	Discovery Server Settings
	Key concepts
	Choosing between Client and Server
	The GuidPrefix as the server unique identifier
	Server side setup
	Client side setup

	The server locator list
	Server side setup
	Client side setup

	Fine tuning discovery server handshake
	Modifying remote servers list at run time
	Configure Discovery Server locators using names
	Full example
	Server side setup
	Client side setup

	DomainParticipantListener Discovery Callbacks

	Transport Layer
	Transport API
	TransportDescriptorInterface
	Data members

	TransportInterface
	Data members

	Locator
	Data members
	Configuring IP locators with IPLocator

	Chaining of transports
	ChainingTransportDescriptor
	ChainingTransport

	UDP Transport
	UDPTransportDescriptor
	UDPv4TransportDescriptor
	UDPv6TransportDescriptor

	Enabling UDP Transport

	TCP Transport
	TCPTransportDescriptor
	TCPv4TransportDescriptor
	TCPv6TransportDescriptor

	Enabling TCP Transport
	WAN or Internet Communication over TCPv4
	HelloWorldExampleTCP

	Shared Memory Transport
	Definition of Concepts
	Segment
	Segment Buffer
	Buffer Descriptor
	Port
	Port Health Check

	SharedMemTransportDescriptor
	Enabling Shared Memory Transport
	HelloWorldExampleSharedMem

	Data-sharing delivery
	Overview
	Constraints
	Data-sharing delivery configuration
	Data-Sharing delivery kind
	Data-sharing domain identifiers
	Maximum number of Data-sharing domain identifiers
	Shared memory directory

	DataReader and DataWriter history coupling
	Data acknowledgement
	Blocking reuse of samples until acknowledged

	Intra-process delivery
	GUID Prefix considerations for intra-process delivery

	TLS over TCP
	TLS Verification Mode
	TLS Options
	TLS Handshake Role

	Listening Locators
	Adding Listening Locators
	Metatraffic Multicast Locators
	Metatraffic Unicast Locators
	User-traffic Multicast Locators
	User-traffic Unicast Locators

	Default Listening Locators
	Well Known Ports

	Announced Locators
	Default Announced Locators
	External Locators
	Externality levels
	Matching algorithm
	Additional considerations

	Interface Whitelist
	Disabling all Multicast Traffic

	Persistence Service
	Configuration
	PERSISTENCE:SQLITE3 built-in plugin
	Example

	Security
	Authentication plugin: DDS:Auth:PKI-DH
	Generation of X.509 certificates
	Generating the CA certificate for self-signing
	Generating the DomainParticipant certificate
	Generating the Certificate Revocation List (CRL)

	Access control plugin: DDS:Access:Permissions
	Permissions CA Certificate
	Domain Governance Document
	Domain Rules
	Domains
	Allow Unauthenticated Participants
	Enable Join Access Control
	Discovery Protection Kind
	Liveliness Protection Kind
	RTPS Protection Kind
	Topic Rule
	Topic expression
	Enable Discovery Protection
	Enable Liveliness Protection
	Enable Read Access Control
	Enable Write Access Control
	Metadata Protection Kind
	Data Protection Kind
	Domain Governance XSD

	DomainParticipant Permissions Document
	Grant Section
	Subject name
	Validity
	Rules

	Domains Section
	Format of the Allowed/Denied Actions sections
	Topics Condition
	Partitions Condition
	DomainParticipant Permissions XSD

	Signing documents using x509 certificate

	Cryptographic plugin: DDS:Crypto:AES-GCM-GMAC
	Logging plugin: DDS:Logging:DDS_LogTopic
	PKCS#11 support

	Logging
	Module Structure
	Log Entry Specification
	Logging Thread
	Logging Messages
	Module Configuration
	Log Entry
	Timestamp
	Category
	Verbosity Level
	Message
	File Context
	Function Name

	Register Consumers
	Reset Configuration
	XML Configuration

	Filters
	Category Filtering
	File Name Filtering
	Content Filtering
	Reset Logging Filters

	Consumers
	StdoutConsumer
	StdoutErrConsumer
	FileConsumer

	Disable Logging Module

	Statistics Module
	Statistics Module DDS Layer
	Statistics Topic names
	HISTORY_LATENCY_TOPIC
	NETWORK_LATENCY_TOPIC
	PUBLICATION_THROUGHPUT_TOPIC
	SUBSCRIPTION_THROUGHPUT_TOPIC
	RTPS_SENT_TOPIC
	RTPS_LOST_TOPIC
	HEARTBEAT_COUNT_TOPIC
	ACKNACK_COUNT_TOPIC
	NACKFRAG_COUNT_TOPIC
	GAP_COUNT_TOPIC
	DATA_COUNT_TOPIC
	RESENT_DATAS_TOPIC
	SAMPLE_DATAS_TOPIC
	PDP_PACKETS_TOPIC
	EDP_PACKETS_TOPIC
	DISCOVERY_TOPIC
	PHYSICAL_DATA_TOPIC

	Statistics Domain Participant
	Enable statistics DataWriters
	Disable statistics DataWriters
	Obtain pointer to the extended DomainParticipant class
	Example
	Automatically enabling statistics DataWriters

	Statistics recommended QoS
	Statistics DataWriter recommended QoS
	Statistics DataReader recommended QoS

	Troubleshooting
	Monitoring application is not receiving any statistic data

	XML profiles
	Creating an XML profiles file
	Loading and applying profiles
	Rooted vs Standalone profiles definition
	Modifying predefined XML profiles

	DomainParticipant profiles
	DomainParticipant XML attributes
	DomainParticipant configuration
	RTPS element type
	Port Configuration
	ParticipantAllocationType
	Builtin parameters
	discovery_config
	ignoreParticipantFlags
	simpleEDP
	Initial Announcements

	DataWriter profiles
	DataWriter XML attributes
	DataWriter configuration
	Times

	DataReader profiles
	DataReader XML attributes
	DataReader configuration
	Times

	Transport descriptors
	TLS Configuration

	Log profiles
	ConsumerDataType
	PropertyType

	Dynamic Types profiles
	XML Structure
	Type definition
	Enum
	Typedef
	Struct
	Union
	Bitset
	Bitmask
	Member types
	Primitive types
	Arrays
	Sequences
	Maps

	Complex types
	Complex types attributes

	Loading dynamic types in a Fast DDS application

	Common
	LocatorListType
	ExternalLocatorListType
	PropertiesPolicyType
	DurationType
	TopicType
	HistoryQoS
	ResourceLimitsQos

	QoS
	Durability
	Liveliness
	ReliabilityQosPolicy
	Partition
	Deadline
	Lifespan
	Ownership
	Ownership Strength
	DisablePositiveAcks
	LatencyBudget
	DisableHeartbeatPiggyback
	PublishMode
	Data-Sharing

	Throughput Configuration
	HistoryMemoryPolicy
	Allocation Configuration

	Example

	Environment variables
	FASTRTPS_DEFAULT_PROFILES_FILE
	SKIP_DEFAULT_XML
	ROS_DISCOVERY_SERVER
	FASTDDS_STATISTICS
	FASTDDS_ENVIRONMENT_FILE

	PropertyPolicyQos Options
	Non consolidated QoS
	DataWriter operating mode QoS Policy
	Unique network flows QoS Policy
	Statistics Module Settings
	Physical Data in Discovery Information

	Endpoint Partitions
	Static Discovery’s Exchange Format

	Flow Controller Settings
	Persistence Service Settings
	Security Plugins Settings
	Logging Module Settings

	Dynamic Topic Types
	Overview of Dynamic Types
	Involved classes
	DynamicType
	DynamicTypeBuilderFactory
	DynamicTypeBuilder
	TypeDescriptor
	DynamicTypeMember
	MemberDescriptor
	DynamicData
	DynamicDataFactory
	DynamicPubSubType

	Minimum example

	Supported Types
	Primitive Types
	String and WString
	Alias
	Enumeration
	Bitmask
	Structure
	Bitset
	Union
	Sequence
	Array
	Map

	Complex Types
	Nested structures
	Structure inheritance
	Alias of an alias
	Unions with complex types

	Annotations
	Builtin annotations

	Dynamic Types Discovery and Endpoint Matching
	TypeObject
	TypeInformation
	TypeIdentifier
	TypeObjectFactory
	Fast DDS-Gen
	Discovery-Time Data Typing
	TypeLookup Service

	Serialization
	XML profiles
	Memory management
	Dynamic HelloWorld Examples
	DynamicHelloWorldExample
	DDSDynamicHelloWorldExample
	TypeLookupService

	Typical Use-Cases
	Fast DDS over WIFI
	Configuring Initial Peers
	Disabling multicast discovery
	Discovery Server
	UDPv4 basic example setup
	UDPv4 redundancy example
	UDPv4 persistency example
	UDPv4 partitioning using servers
	Option 1
	Option 2
	Option 3

	Well Known Network Deployments
	Peer-to-Peer Participant Discovery Phase
	STATIC Endpoint Discovery Phase
	Create STATIC discovery XML files
	Create entities and load STATIC discovery XML files

	Large Data Rates
	Increasing socket buffers size
	Finding out system maximum values
	Linux
	Windows

	Increasing the Transmit Queue Length of an interface (Linux only)
	Flow Controllers
	Scheduling policy
	Example configuration

	Tuning Heartbeat Period
	Using Non-strict Reliability
	Practical Examples
	Example: Sending a large file
	Example: Video streaming

	Topics with many subscribers
	Real-time behavior
	Tuning allocations
	Parameters on the participant
	Limiting the number of discovered entities
	Limiting the size of custom parameters

	Parameters on the DataWriter
	Parameters on the DataReader
	Full example

	Non-blocking calls

	Reduce memory usage
	Limiting Resources
	Set Dynamic Allocation

	Zero-Copy communication
	Overview
	Getting started
	Writing and reading in Zero-Copy transfers
	DataWriter
	DataReader

	Caveats
	Constraints
	Next steps

	Unique network flows
	Background
	Identifying a flow
	Definitions
	APIs

	Requesting unique flows
	Example

	Statistics module
	Enable Statistics module
	Create monitoring application

	Dynamic network interfaces
	Dynamic network interface addition at run-time
	Prerequisites
	Notify Fast DDS

	How to use eProsima DDS Record and Replay (rosbag2 and DDS)
	rosbag2 interactions with a native Fast DDS application
	Prerequisites
	DDS IDL interoperability with ROS 2 messages
	Fast DDS Application tuning
	eProsima DDS Record and Replay

	ROS 2 using Fast DDS middleware
	Configuring Fast DDS in ROS 2
	Changing publication mode
	XML configuration
	XML configuration file location
	Applying different profiles to different entities
	Creating publishers/subscribers with different profiles
	Creating services with different profiles
	Creating clients with different profiles
	Creating ROS contexts and nodes

	Example

	Use ROS 2 with Fast-DDS Discovery Server
	Discovery Server v2
	Prerequisites
	Run the demo
	Setup Discovery Server
	Launch node listener
	Launch node talker
	Demonstrate Discovery Server execution

	Advance user cases
	Server Redundancy
	Backup Server
	Discovery partitions

	ROS 2 Introspection
	Daemon’s related commands
	No Daemon commands

	Compare Discovery Server with Simple Discovery

	C++ API Reference
	DDS DCPS PIM
	Core
	Entity
	DomainEntity
	Policy
	DataRepresentationId
	DataRepresentationQosPolicy
	DataSharingQosPolicy
	DataSharingKind
	DeadlineQosPolicy
	DestinationOrderQosPolicy
	DestinationOrderQosPolicyKind
	DisablePositiveACKsQosPolicy
	DurabilityQosPolicy
	DurabilityQosPolicyKind
	DurabilityServiceQosPolicy
	EntityFactoryQosPolicy
	GenericDataQosPolicy
	GroupDataQosPolicy
	HistoryQosPolicy
	HistoryQosPolicyKind
	LatencyBudgetQosPolicy
	LifespanQosPolicy
	LivelinessQosPolicy
	LivelinessQosPolicyKind
	OwnershipQosPolicy
	OwnershipQosPolicyKind
	OwnershipStrengthQosPolicy
	ParticipantResourceLimitsQos
	Partition_t
	PartitionQosPolicy
	PresentationQosPolicy
	PresentationQosPolicyAccessScopeKind
	PropertyPolicyQos
	PublishModeQosPolicy
	PublishModeQosPolicyKind
	QosPolicy
	QosPolicyId_t
	ReaderDataLifecycleQosPolicy
	ReliabilityQosPolicy
	ReliabilityQosPolicyKind
	ResourceLimitsQosPolicy
	RTPSEndpointQos
	TimeBasedFilterQosPolicy
	TopicDataQosPolicy
	TransportConfigQos
	TransportPriorityQosPolicy
	TypeConsistencyEnforcementQosPolicy
	TypeConsistencyKind
	UserDataQosPolicy
	WireProtocolConfigQos
	WriterDataLifecycleQosPolicy
	WriterResourceLimitsQos

	Status
	BaseStatus
	DeadlineMissedStatus
	IncompatibleQosStatus
	InconsistentTopicStatus
	LivelinessChangedStatus
	MatchedStatus
	OfferedDeadlineMissedStatus
	OfferedIncompatibleQosStatus
	PublicationMatchedStatus
	QosPolicyCount
	QosPolicyCountSeq
	RequestedDeadlineMissedStatus
	RequestedIncompatibleQosStatus
	LivelinessLostStatus
	SampleLostStatus
	SampleRejectedStatus
	SampleRejectedStatusKind
	StatusMask
	SubscriptionMatchedStatus

	Condition
	Condition
	ConditionSeq
	GuardCondition
	StatusCondition
	Wait-set

	LoanableArray
	LoanableCollection
	LoanableSequence
	StackAllocatedSequence

	Domain
	DomainParticipant
	DomainParticipantFactory
	DomainParticipantFactoryQos
	DomainParticipantListener
	DomainParticipantQos

	Publisher
	DataWriter
	DataWriterListener
	DataWriterQos
	Publisher
	PublisherListener
	PublisherQos
	RTPSReliableWriterQos

	Subscriber
	DataReader
	DataReaderListener
	DataReaderQos
	InstanceStateKind
	ReadCondition
	ReaderResourceLimitsQos
	RTPSReliableReaderQos
	SampleInfo
	SampleStateKind
	Subscriber
	SubscriberListener
	SubscriberQos
	TypeConsistencyQos
	ViewStateKind

	Topic
	TopicDataType
	TypeSupport
	TopicDescription
	Topic
	ContentFilteredTopic
	IContentFilter
	IContentFilterFactory
	TopicListener
	TopicQos
	TypeIdV1
	TypeInformation
	TypeObjectV1

	RTPS
	Attributes
	BuiltinAttributes
	c_default_RTPSParticipantAllocationAttributes
	DiscoveryProtocol
	DiscoverySettings
	EndpointAttributes
	ExternalLocators
	HistoryAttributes
	InitialAnnouncementConfig
	ParticipantFilteringFlags
	PropertyPolicy
	PropertyPolicyHelper
	ReaderAttributes
	ReaderTimes
	RemoteLocatorsAllocationAttributes
	RemoteServerAttributes
	RemoteServerList_t
	RTPSParticipantAllocationAttributes
	RTPSParticipantAttributes
	RTPSWriterPublishMode
	SendBuffersAllocationAttributes
	SimpleEDPAttributes
	TypeLookupSettings
	VariableLengthDataLimits
	WriterAttributes
	WriterTimes

	Builtin data
	ContentFilterProperty

	Common
	BinaryProperty
	BinaryProperty
	BinaryPropertyHelper
	BinaryPropertySeq

	CacheChange
	CacheChange_t
	ChangeForReader_t
	ChangeForReaderCmp
	ChangeForReaderStatus_t
	ChangeKind_t

	CDRMessage
	CDRMessage_t
	Macro definitions (#define)

	EntityId
	Const values
	Macro definitions (#define)
	EntityId_t
	EntityId_t Operators

	FragmentNumber
	FragmentNumber_t
	FragmentNumberSet_t

	Guid
	c_Guid_Unknown
	GUID_t
	GUID_t Operators

	GuidPrefix
	c_GuidPrefix_Unknown
	GuidPrefix_t
	GuidPrefix_t Operators

	InstanceHandle
	c_InstanceHandle_Unknown
	InstanceHandle_t
	InstanceHandle_t Operators

	Locator
	Macro definitions (#define)
	IsAddressDefined
	IsLocatorValid
	Locator_t
	LocatorList
	LocatorListConstIterator
	LocatorListIterator
	LocatorsIterator
	Locators
	Locator Operators

	LocatorSelectorEntry
	LocatorSelector
	LocatorWithMask
	MatchingInfo
	MatchingInfo
	MatchingStatus

	PortParameters
	Property
	Property
	PropertyHelper
	PropertySeq

	RemoteLocators
	RemoteLocators Operators
	RemoteLocatorList

	SampleIdentity
	SequenceNumber
	c_SequenceNumber_Unknown
	SequenceNumber_t Operators
	SequenceNumber_t
	SequenceNumberDiff
	SequenceNumberHash
	SequenceNumberSet_t
	sort_seqNum

	SerializedPayload
	Macro definitions (#define)
	SerializedPayload_t

	Time_t
	Const values
	Macro definitions (#define)
	eprosima::fastrtps::Duration_t
	eprosima::fastrtps::Time_t
	Time_t Operators
	Time_t

	Token
	AuthenticatedPeerCredentialToken
	DataHolder
	DataHolderHelper
	DataHolderSeq
	IdentityStatusToken
	IdentityToken
	PermissionsCredentialToken
	PermissionsToken
	Token

	Types
	BuiltinEndpointSet_t
	Const values
	Count_t
	Macro definitions (#define)
	DurabilityKind_t
	Endianness_t
	EndpointKind_t
	octet
	ProtocolVersion_t
	ReliabilityKind_t
	SubmessageFlag
	TopicKind_t
	VendorId_t

	WriteParams

	Endpoint
	Exceptions
	Exception

	Flow control
	FlowControllerDescriptor
	FlowControllerSchedulerPolicy
	ThroughputControllerDescriptor

	History
	History
	IChangePool
	IPayloadPool
	ReaderHistory
	WriterHistory

	RTPSParticipant
	ParticipantDiscoveryInfo
	ParticipantAuthenticationInfo
	ParticipantDiscoveryInfo
	ParticipantProxyData
	ReaderDiscoveryInfo
	ReaderProxyData
	WriterDiscoveryInfo
	WriterProxyData

	RTPSParticipant
	RTPSParticipantListener

	RTPSReader
	ReaderListener
	RTPSReader

	Resources
	MemoryManagementPolicy

	RTPSDomain
	RTPSWriter
	LivelinessData
	RTPSWriter
	WriterListener

	Transport
	Transport Generic Interfaces
	TransportDescriptorInterface
	TransportInterface
	TransportReceiverInterface
	SocketTransportDescriptor

	Chaining of transports
	ChainingTransportDescriptor
	ChainingTransport

	UDP Transport
	UDPTransportDescriptor
	UDPv4TransportDescriptor
	UDPv6TransportDescriptor
	test_UDPv4TransportDescriptor

	TCP Transport
	TCPTransportDescriptor
	TCPv4TransportDescriptor
	TCPv6TransportDescriptor

	Shared Memory Transport
	SharedMemTransportDescriptor

	LOG
	Colors
	Color Blue
	Color Bright
	Color Bright Blue
	Color Bright Cyan
	Color Bright Green
	Color Bright Magenta
	Color Bright Red
	Color Bright White
	Color Bright Yellow
	Color Cyan
	Color Def
	Color Green
	Color Magenta
	Color Red
	Color White
	Color Yellow

	FileConsumer
	Log
	LogConsumer
	logError
	logInfo
	logWarning
	OStreamConsumer
	StdoutConsumer
	StdoutErrConsumer

	Statistics
	DomainParticipant
	DataWriterQos
	DataReaderQos
	Topic names

	Python API Reference
	DDS DCPS PIM
	Core
	Entity
	DomainEntity
	Policy
	DataRepresentationId
	DataRepresentationQosPolicy
	DataSharingQosPolicy
	DataSharingKind
	DeadlineQosPolicy
	DestinationOrderQosPolicy
	DestinationOrderQosPolicyKind
	DisablePositiveACKsQosPolicy
	DurabilityQosPolicy
	DurabilityQosPolicyKind
	DurabilityServiceQosPolicy
	EntityFactoryQosPolicy
	GenericDataQosPolicy
	GroupDataQosPolicy
	HistoryQosPolicy
	HistoryQosPolicyKind
	LatencyBudgetQosPolicy
	LifespanQosPolicy
	LivelinessQosPolicy
	LivelinessQosPolicyKind
	OwnershipQosPolicy
	OwnershipQosPolicyKind
	OwnershipStrengthQosPolicy
	ParticipantResourceLimitsQos
	Partition_t
	PartitionQosPolicy
	PresentationQosPolicy
	PresentationQosPolicyAccessScopeKind
	PropertyPolicyQos
	PublishModeQosPolicy
	PublishModeQosPolicyKind
	QosPolicy
	QosPolicyId_t
	ReaderDataLifecycleQosPolicy
	ReliabilityQosPolicy
	ReliabilityQosPolicyKind
	ResourceLimitsQosPolicy
	RTPSEndpointQos
	TimeBasedFilterQosPolicy
	TopicDataQosPolicy
	TransportConfigQos
	TransportPriorityQosPolicy
	TypeConsistencyEnforcementQosPolicy
	TypeConsistencyKind
	UserDataQosPolicy
	WireProtocolConfigQos
	WriterDataLifecycleQosPolicy
	WriterResourceLimitsQos

	Status
	BaseStatus
	DeadlineMissedStatus
	IncompatibleQosStatus
	InconsistentTopicStatus
	LivelinessChangedStatus
	MatchedStatus
	OfferedDeadlineMissedStatus
	OfferedIncompatibleQosStatus
	PublicationMatchedStatus
	QosPolicyCount
	QosPolicyCountSeq
	RequestedDeadlineMissedStatus
	RequestedIncompatibleQosStatus
	LivelinessLostStatus
	SampleLostStatus
	SampleRejectedStatus
	SampleRejectedStatusKind
	StatusMask
	SubscriptionMatchedStatus

	LoanableArray
	LoanableCollection
	LoanableSequence
	StackAllocatedSequence

	Domain
	DomainParticipant
	DomainParticipantFactory
	DomainParticipantFactoryQos
	DomainParticipantListener
	DomainParticipantQos

	Publisher
	DataWriter
	DataWriterListener
	DataWriterQos
	Publisher
	PublisherListener
	PublisherQos
	RTPSReliableWriterQos

	Subscriber
	DataReader
	DataReaderListener
	DataReaderQos
	InstanceStateKind
	ReaderResourceLimitsQos
	RTPSReliableReaderQos
	SampleInfo
	SampleStateKind
	Subscriber
	SubscriberListener
	SubscriberQos
	TypeConsistencyQos
	ViewStateKind

	Topic
	Topic
	TopicDataType
	TopicDescription
	TopicListener
	TopicQos
	TypeIdV1
	TypeInformation
	TypeObjectV1
	TypeSupport

	Introduction
	Usage
	Running the Fast DDS-Gen Java application
	Supported options

	Building a publish/subscribe application
	Background
	Prerequisites
	Create the application workspace
	Import linked libraries and its dependencies
	Installation from binaries
	Colcon installation

	Creating the IDL file with the data type
	Generating a minimal functional example
	Generate the Fast DDS source code
	Build the Fast DDS application
	Run the Fast DDS application

	Summary and next steps

	Building Python auxiliary libraries
	Dependencies
	SWIG
	Header files and static library for Python

	Building

	Defining a data type via IDL
	Supported IDL types
	Primitive types
	Arrays
	Sequences
	Maps
	Structures
	Unions
	Bitsets
	Enumerations
	Bitmasks
	Data types with a key

	Including other IDL files
	Annotations
	Forward declaration
	IDL 4.2 aliases
	IDL 4.2 comments

	CLI
	discovery
	How to run
	Examples

	shm

	Docker Images
	Fast DDS Image
	Fast DDS Examples
	Hello World Example
	Benchmark Example

	Fast DDS Suite Image
	Fast DDS Examples
	Hello World Example
	Benchmark Example

	Shapes Demo
	Fast DDS Monitor
	DDS Router
	PlotJuggler eProsima Edition

	Version 2.8.2 (EOL)
	Previous versions
	Version 2.8.1 (EOL)
	Version 2.8.0 (EOL)
	Version 2.7.1
	Version 2.7.0
	Version 2.6.2
	Version 2.6.1
	Version 2.6.0
	Version 2.5.2 (EOL)
	Version 2.5.1 (EOL)
	Version 2.5.0 (EOL)
	Version 2.4.2 (EOL)
	Version 2.4.1 (EOL)
	Version 2.4.0 (EOL)
	Version 2.3.6 (EOL)
	Version 2.3.5 (EOL)
	Version 2.3.4 (EOL)
	Version 2.3.3 (EOL)
	Version 2.3.2 (EOL)
	Version 2.3.1 (EOL)
	Version 2.3.0 (EOL)
	Version 2.2.1 (EOL)
	Version 2.2.0 (EOL)
	Version 2.1.2
	Version 2.1.1
	Version 2.1.0
	Version 2.0.3 (EOL)
	Version 2.0.2 (EOL)
	Version 2.0.1 (EOL)
	Version 2.0.0 (EOL)
	Version 1.10.1 (EOL)
	Version 1.10.0 (EOL)
	Version 1.9.5 (EOL)
	Version 1.9.4 (EOL)
	Version 1.9.3 (EOL)
	Version 1.9.2 (EOL)
	Version 1.9.1 (EOL)
	Version 1.9.0 (EOL)
	Version 1.8.5 (EOL)
	Version 1.8.4 (EOL)
	Version 1.8.3 (EOL)
	Version 1.8.2 (EOL)
	Version 1.8.1 (EOL)
	Version 1.8.0 (EOL)
	Version 1.7.3 (EOL)
	Version 1.7.2 (EOL)
	Version 1.7.1 (EOL)
	Version 1.7.0 (EOL)
	Version 1.6.0 (EOL)
	Version 1.5.0 (EOL)
	Version 1.4.0 (EOL)
	Version 1.3.1 (EOL)
	Version 1.3.0 (EOL)
	Version 1.2.0 (EOL)

	Index

